Mathematical Institute eLibrary of Mathematical Instituteof the Serbian Academy of Sciences and Arts Mathematical Institute
> Home / All Journals / Journal /
Front Page Novi Sad Journal of MathematicsPublisher: Department of Mathematics and Informatics, Faculty of Sciences, Novi SadISSN: 1450-5444 (Print), 2406-2014 (Online)Issue: 17_2Date: 1987Journal Homepage

Two results on the rearrangement of series 1 - 8
Harry Miller and Ekram Öztürk  
AbstractKeywords: rearrangements of series; Riemann rearrangement theorem; first and second Baire category; conditionally convergent series; regular surrmability methodsMSC: 40A05; 40C05
Associated $k$-groups of $n$-groups 9 - 30
J. Michalski  
AbstractKeywords: n-group; functorMSC: 20N15
A uniformly convergent spline difference scheme for a self-adjoint singular perturbation problem 31 - 38
Katarina Surla  
AbstractKeywords: spline difference scheme; fitting factor; singular perturbation problemMSC: 65L10
On a problem of partial algebras 39 - 55
Siniša Crvenkoović and R. Madarász  
AbstractKeywords: partial algebra; relative subalgebra; partial K- algebra; finite presentation; word problemMSC: 08A25
Об одном обобщению решеток 57 - 63
Яанез Ушан  
AbstractKeywords: semigroups; lattices; near-lattices; weak distributivityMSC: 20N99
$\langle Nn,E\rangle$-сети с $(n+1)$–расстоянием 65 - 87
Яанез Ушан  
AbstractKeywords: $\langle Nn;E\rangle$-net; (n+1)-distance functionMSC: 20N15
Один класс 6-группоидов и $2H$-геометрии 89 - 108
Яанез Ушан  
AbstractKeywords: E-6-groupoids; $A_t$-quasigroups; $A_t$-groupoids 2H-geometryMSC: 20N15
Частичные $А_т$-группоиды 109 - 127
Яанез Ушан  
AbstractKeywords: $A_m_t$-quasigroups; $A_t$-quasigroups; $A_t$-groupo-ids; partial $A_t$-groupoids; 2H-geometry; P2H-geometryMSC: 20N05
On para-associative BCC-algebras 129 - 136
Izabela M. Dudek  
AbstractKeywords: BCC-algebra; weak BCC-algebra; BCI-algebra; para-associativityMSC: 03G25 08B99
On covariantly-projective transformations of self-recurrent $SW-O_n$ 137 - 150
Nevena Pušić  
AbstractKeywords: $\pi$-projective connections; $\pi$-geodesic lines; covariantly autoparallel lines; adjoint Riemannian spaceMSC: 53B15
Article page: 12>>

Remote Address: • Server: User Agent: CCBot/2.0 (