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ABSTRACT

The notion of a free covering (k+1)-group of an (sk+1)-
-group was defined in [16] as a generalization of the notion of
a free covering group (see [32]). In the paper various construc-
tions of such (k+1)-groups are discussed and their functorial
nature is emphasized. These constructions lead to the correspon-
ding constructions of associated (k+1)-groups (the notion of an
associated group is due to Post [32]) and in consequence to a
new functor AsS:GrSk+1 > Grk+1. The main purpose of the second

part of the paper is to describe some basic properties of the
functor As.

1. INTRODUCTION

In investigations of the category of n-groups (abbrevi-
ated in the sequel to Grn) and also in investigations of proper-
ties of n-groups it is convenient to use some functors from the
category Grn to the category Grm. Such functors appeared in the
first papers on the theory of n-groups [7], [32] (of course im-
plicitly since the notion of a functor was not known then}. The=-

se were constructions of m-groups derived from n-groups and free
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convering groups of n—-groups. In the meantime, various other
constructions of m-groups from'n—groups were found (cf. e.q.
[21, (141, [15]1, (341, [10], [12], (131}, however many authors
did not emphasize the functorial character of these construc-
tions. The only exceptions are [1], [31] and a series of papers
by the Macedonian school (e.g. [4]-[6]). The last ones are de-
voted to n-semigroups and n-groupoids rather than to n-groups.
A systematic investigation of the functorial character of vari-
ous constructions of n-groups was initiated in [16], [17] and
is continued in [8], [91, [19]-[23], [25], [26], [28], [29].
For further bibliographic information see [10].

In this paper a new functor As®: Grsk+1 > Grk+1 which
assigns an associated (k+1)-group to an (sk+1)-group will be
defined (cf. [31] for k=1). The notion of an associated group
has already been introduced by Post in [32] and it is closely
related to the notion of a free covering group. So, here, while
considering constructions of associated (k+1)-groups, we shall
say more about various constructions of free covering (k+1)-

-groups of (n+1)-groups.

2. PRELIMINARIES

The terminology and notation used in this paper are
the same as that of [8], [9], [20], [26] (cf. also [19], [21],

(23], [25]).
(t)
The symbol a is well defined for t>0 in each polyadic

groupoid (G, f). For the purpose of our paper it is convenient
to extend this definition to the case when t is a negative in-
teger. But we can do so only under an additional condition im-
posed upon the polyadic groupoid (G, f):(G, f) should be a poly-
adic group. Now, let t be a negative integer. Then

(t) (u(n-2) +t) (u)
f(..., a ,...) = f(_)(..., a ;@ ,eed)

for an arbitrary u such that u(n-2)3-t. Similér notation is used
when we deal with polyads. By a polyad (to be exact, an m-ad) in
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an n-group (G, f) we mean any sequence of elements a1,...,am€G
(possibly with repetitions). This sequence is denoted by <@qeen

Y1 > or <a™
m 1

In Section 3 we shall recall, after Post [32], a certa-

>. It is also convenient to consider an empty polyad.

in equivalence relation of polyads which will be denoted here by
® (note that in [24], [27], [29] this relation is denoted by

= or =, respectively. In our investigations we do not distingu-
£ g
ish polyads which are in the relation ©. So in this paper the

symbol<aﬁ5 denotes the m-ad <@ ;...,a,> up to ©, i.e., the equi-

m

valence class of <aT> with respect to o. According to this con-
vention, the empty polyad can be identified with an identity

n-ad of the (n+1)-group (G,f).

To avoid numerous repetitions, we shall introduce some
abbreviations. Henceforth, throughout the paper we shall assume
that n=s-k. Furthermore, ¢ = (G, f), A = (A, £f), B = (B, f)
shall always denote nonempty (n+1)-groups (f is always an (n+1)-
*s (G*s, f*) shall denote a
free covering (k+1)=-group of an (n+1)-group G and (Go’ f*) shall

-group operation). Similarly, G

denote an associated (k+1)-group of G (when it is irrelevant how
those (k+1)-groups have been constructed). In our paper we deal
with various constructions of these (k+1)-groups, but by f* we
always mean a (k+1)=-group operation in the free covering or in
the associated (k+1)-group, irrespective of which construction
we have in hand. However, the (k+1)-groups themselves will be

denoted by different symbols, depending on their construction.

Let us recall briefly two important constructions of
polyadic groups which will be used in this paper. Given a (k+1)-
-group (G, g), by WS(G, g) we mean (as in [16]1, (81, [20], [26])
the (n+1)-group (G, g(s)) with
(1) 9(s) (x?”) = 9,(9(";9_(9"‘]1“1)' xﬁljy)...), x2:11+2).

s

The (n+1)-group WS(G, g)=(G, g(s)) is said to be an

(n+1) -group derived from the (k+1)=-group (G, g) (cf. [7], [32],

[16]). This leads us to the forgetful functor L Grk+1 > Grn+1
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(for more facts concerning ¥  see [20]) and [26]). Note that the
derived polyadic groups defined by (1) are a particular case of
the C-derived polyadic groups defined in [16] (where they are
called PE-derived ones). The functor Ws is also denoted by PE-
-der® or Der® (as a particular case of the functor C-ders, c.

[29]). Next, let (G,f) be an (n+1)-group. By ret®
: aqr---08g_4(G,f)

we mean (as in [2], [34], [8], [9]) the (k+1)-group (G,g) with

FX:}

(2) gt = gy, aF kg, AT X

We use a special notation when the (s~1)-ads are chosen

in some particular ways. Namely, if a, = ... = a = a we write

1 s=1
briefly Retz(G,f) instead of retz- a(G,f). Similarly, if
RN
. _ _ _ = ! = .S .
a; = ... =a, ,=a and ag_y = a we write Reta(G,f) in place of
s s
reta,...,a,a(G'f)' The (k+1)-group reta1’.“’a (G,£) (also

s=1

Retz(G,f) and ﬁets(G,f)) is called a (k+1)-ary retract of the
(n+1)~group (G,f). The assignment of the (k+1)-ary retract to
an (n+1)-group is functorial (cf. [8]). So we have the functor
,retS:Grn+1 > Grk+1 (:o be exact, the class of functors, since

the (k+1)-groups ret_ a " (G,f) depends on the choice of
17859

the (s-1)-ad <a?_1>) and also RetS:Gr
*6rye .-
ce all functors obtained in this way are naturally equivalent

= .5
n+1 k+1 and Ret .Grn+1+

In fact, the procedure of choice is not essential, sin-

+ Gr

(cf. [8]). The functor which is the composition of the functors

. su, .
wu.Grn+1 + Grun+1 and ret 'Grun+ +sﬁ: +1 1s denoted briefly
by /retsluzerUM + Gry ,, (and RetS:/U Fet™ '~ respectively). In particu-
lar, we have ret:'u a (G,f) = ret:u a Wu(G,f).

17°°° " us-1 17°°° " us-1

The set zS = {0,1,...,5;11 where s=2,3,... together
with the (k+1)-ary operation w(x1 )=l1+...+1k+1+1 (mod s) is
a cyclic (k+1)-group of order s (cf. [32], [16], [18], [26]).
This (k+1)-group will be denoted by Cs,k+1' Additionally, by
C1,k+1 we mean the one-element (k+1)-group ({0}, ¢). Post has

proved that the (k+1)-group C has the unique element 1 of

s, k+1
order 1 (in the sense of [32]; in the sense of [9] this is an

element of order k) if and only if g.c.d. (k,s)=1. Then, as it
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is easy to check, 1lk+1 = es. This fact will be used in the
constructions of some (k+1)-groups in Section 4.

By X we always mean the skew element to x in an appro-
priate (n+1)-group (even though polyadic groups of some other
arities, especially (k+1)-groups, are actually under conside-

ration).

To avoid numerous repetitions, we shall write f.c.
(k+1)-groups for free covering (k+1)-groups and f.c. groups for
free covering groups.

3. VARIOUS CONSTRUCTIONS OF FREE COVERING
(k+1)-GROUPS OF (n+1)-GROUPS

The notion of a free covering (k+1)-group of an (n+1)-
group was defined in [16] and investigated [18]-{20], [22].
This is a generalization of the well-known notion, succesfully
exploited by many authors, of a free covering group, which was
introduced by Post in [32]. Note that free covering groups
have recently been called universal groups by many authors.

Recall (cf. [16], [20]) that a pair <G*S,T> where
7:G » WS(G*S), G€Grn+1, G*SGGrk+1,
(k+1)-group of an (n+1)-group G if for each homomorphism H:G -
»ws(B), where BeGrk+1, there exists a unique homomorphism h*:
G*S > B such that ws(h*)r = h., It is worth adding that by Theo-
rem 2 of [18] (also Theorem 2 of [16]) for every f.c. (k+1)-

is said to be a free covering

* *
group G S, there exists a unique homomorphism r:G s, Cs K+1
- ’
with ¢ 1(0) = 1(G) (if G#@, then ¢ is an epimorphism). This is

' *
why such a (k+1)=~group will be denoted also by <G s,r,;> or by
*

<G s,§>.

The following construction of a free covering (k+1)-
group of an (n+1)-group is a generalization of the construction
used in [16). Let G = (G,f) be an arbitrary nonempty (n+1)-gro-
up. Fix a sequence of polyads Py = <c1,1,...,c1’n>, Py =

= <

Cj,17++% x> (i =1,...,8-1) in G. By pi (i =0,1,...,8~1)

we always mean a polyad inverse to the polyad Py in G, Often
such a sequence of polyads shall be briefly denoted by p. From



14 J. Michalski

*
the set G ° = GxZ_ (admitting Z,

]
operation £ in G*S in the following way:

= {0}) and define a (k+1)-ary

(3) £ R 1) ey g iy ) =

k+1’"k+1

), w1kt

k+1 (1l

IR A1 VA S T NI A TN
1

for Kypeee,X €G and 11,...,1

k+1 k+1€zs'

The above~defined (k+1)-groupoid will be denoted by

S G (or briefly by fcsG). Note that if the n-ad Py

Pore++rPg_y
is an identity polyad in G, we get

fc

*
£ ((x1111)r~--r(xi_1rli_1)r (xilo)l

’

(xi+1’li+1)""’(xk+1’lk+1)) = (f(_)(x1,p11,...,xi_1

reee Xy quPy P ke

Py sRysXj497P
i+1 k+1 ©(1377,0,1571)

i-1

1-1
1 o0rlig))-

w(l
This formula enables us to take the empty polyad for
Py which is equivalent to assumption that Po is an identity
polyad in G. Such a (k+1)-groupoid will be occasionally deno-

ted by fc3 G (where p_. 1s not at all defined). We
p1l~°°lps_1 o

: s =
write also fch where p = (p1,...,ps_1).
*
For s=1 we may identify the set G with the set G S =
= Gx{0}. In this case we get fc1 G = ret1’n+1G. In particular,
o o

if Py is the empty polyad (or equivalently, if Po is an identi-
ty polyad in G), we have fc; G = G.

o
Note that a special choice of polyads (namely, when
(ik)
p; = <c¢> for an arbitrary but fixed element c€G) leads to the

construction of a free covering (k+1)-group given in [16] (and
investigated in [18], [20]). The (k+1)~group described above
will be denoted by Fch (instead of the more complicated symbol

S
f G).
cpol-~olps-1 )
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T *

Theorem 1. The (k+1)-groupoid fcsG = (zes,f ) together
with the embedding X:G » stCSG given by A(x)=(f(x,pé),0) 8 @
free covering (k+1)-group of an:(n+1)—group G.

Proof. The mapping p :GxZ_ + GxZ_ given by p (x,1)=
s s p;c

(n-1-1k) _ - pic
= (f(x,pl, c ,¢),1) is a bijection. One can check that
pp-c:fc:G > Fch is a homomorphism of the corresponding (k+1)-

groupoids. Thus the (k+1)-groupoid fch is a (k+1)-group (since,

by Theorem 1 of [16], FciG is a (k+1)-group). Moreover,
(n-1-1k) _

Ppscr(X) = Pp;c{EX,pL) 0)=(f ) (x,pl,Po, © ,€) ,0) =1 (x)

for x€G. Hence <fc§G,A> is a f.c. (k+1)-group of G, which com-

pletes the proof of Theorem 1.

There is only one difference between the construction
of chG and the construction used in [16]. In [16] a single
element from G was chosen, here we choose a sequence of poly-
ads. Since in various constructions of polyadic groups (those
of (k+1)=-ary retracts of (n+1)-groups, (n+1)-groups C-derived
from (k+1)-groups etc.) it is common to choose polyads instead
of simple elements, the construction of a f.c. (k+1)-group gi-
ven above can be more convenient for applications. Choosing
polyads in some particular ways we can obtain various construc-
tions of f.c. (k+1)-groups.

For example, it may be done as follows: let py =

(ik-1)
=< c ,c> (i=0,...,s=-1) where c is an arbitrary but fixed

element of G. Then

*
(4) £ (g, 1) peees (R qoly q))
(11k-1)
= £,y x ¢ TP Sy
(L, k=1 (-5 k)
c .G, c ), ety
for x1,...,xk41€G and 11,...,1k+1EZS. This (k+1) -group will be

denoted by a special symbol fc(s:G. Note that (according to the
remark about fc;G) for s=1 we may identify fc;G with
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1,n+1 - —G.

ret
C,...,C,C,C

Now we shall give another comnstruction of a free cove-
ring (k+1)-group of an (n+1)-group (if differs from the given-
-above ones in forming of the set G*S). This construction is
founded on the original construction of an f.c. group due to
Post (cf. [32]).

Post has introduced an equivalence relation ¢ on the

set of all polyads of a given (n+1)-group G = (G,f). This rela-

tion is defined as follows: <aT>e<bT+un> if and only if for a
certain i (i=1,...,n+1-m) and for some elements c1,...,cr€G the
equality

i _m rxr _ i . m+un r
(5) £y feyragiciy) = £, (eq,by 1Cieq)
holds.

We allow m=0, assuming then that <a?> is the empty
polyad.

One can prove (cf. [32]) that <aT>O<bT+un> if and only

if for every i=1,...,n+1-m and for every sequence c .,C

equality (5) holds. Now, if a binary operaticn defi;ed by zon-
catenation of polyads is introduced in the set of all polyads
(of arbitrary length) of an (n+1)=-group G, then the above-men-
tioned relation is a congruence relation in the so-defined
semigroup. Moreover, the quotient semigroup is even a group.

We denote it by pfcG = (G~,.). Note that Pfc1G = G. Every
element a€G may be treated as a polyad of length 1 in the (n+1)-
group G. The mapping u:G + G~ given by u(x) = <x> (where, ac-
cording to a remark in Section 2, by <x> we understand the equ-
ivalence class of <x> with respect to @) is an embedding of G
into wnPfan. The group Pfan, together with the embedding u,
is a free covering group of G.

A free covering (k+1)-group of a given (n+1)-group is
determined unigquely up to an isomorphism, and so pfc™G and
chG are isomorphic. Moreover, there exists an isomorphism
nc:Fan > pfc™G such that ne™ = u. By the Post Coset theorem
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{cf. [32]) and Theorem 1 of [18], it follows that the isomor-

phism e assigns an (1+1)-ad (of course, up to @) to an element
(1)
(x,1); to be exact, nc(x,l) = <x, ¢>. In view of Corollary 1 of

[18] the (k+1)-group Fcza is isomorphic to the sub-(k+1)-group
of WkchG consisting of all elements of the form (x,lk) where
1=0,...,s-1. The embedding E:Fch > WkFCEG is then defined by
£(x,1)=(x,1k). The (k+1)-groups Fch and ncg(Fch) are isomor-
phic. Denote the latter one by PfcSG. As is easy to see, the

(k+1)~group Pfc®; is a sub-(k+1)-group of WkanG consisting of
all polyads of length 1k+1, i.e., of all (lk+1)-ads (up to 9).

For 's=1 we have Pfc1G = G.

Proposition 1. The (k+1)~group pfcSc together with the
embedding n:G WstcsG 18 a free covering (k+1)-group of an

(n+1) ~group G.

Above, we have given several from many possible con-
structions of free covering (k+1)-groups. Note that in a sense
the constructions of the (k+1)-groups fc:G (depending on the
choice of polyads) are derived from the construction of pfcSq.
Namely, Post has considered egquivalence classes of polyads,
whereas our constructions are based on some representatives of
these classes. It happens that in various specific situations
it is easier to deal with representatives rather than with
equivalence classes. Corollary 1 of [18] enables us to give an
appropriate construction of an f.c. (k+1)-group for any con-
struction of an f.c. group (cf. (31, [4]1, [30], [33D).

As was noticed and discussed in [20] (cf. also [16]
and [26]) the assignment of free covering (k+1)-groups to (n+1)-
groups is of a functorial character. Note that in investigations

of the category Gr it is convenient to add the empty (n+1)-

+
group. However, al? lhe above-described constructions of an
f.c. (k+1)-group require the assumption that the (n+1)-group
under consideration is nonempty. Therefore, when we define the-
se functors, it is necessary to assume additionally that the
free covering (k+1)-group of the empty (n+1)-group is the empty

(k+1)-group (for k>1) or the one-element group (for k=1).
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Various constructions of an f.c. (k+1)-group and even
various choices of polyads or elements give different functors.
But all of these are naturally equivalent. So, in investiga-
tions of this functor (denoted by ¢_ in (161, [17]1, [191-[21],
f23], [25], [26]), we can use an appropriate construction of

the f.c. (k+1)=-group.

Now, we shall give, in an explicit form, some of the

natural equivalences mentioned above:

a:fc® » £c° where ap;q(x,1)=(f(x,p1,qi),l);

g:fc® » pfcS where Bp(x,l) = <X,Pp>i
Y:PfCS > feS where Yp(<x%k+1>)=(f(x?{k+1’pi) ,1).

Choosing polyads in appropriate ways and substituting
them for p and q in the above formulas we get various other
natural equivalences which have already appeared in our consi-
derations or will appear in the next sections. So we have:

s s (n-1-1k) _
p:fc” > Fc where .c(x,1)=(f(x,p1, c ,C) 1)
. ’

°p
(1)

S
<x’ c >;

n:FeS » pfc® where nc(x,l)

(1k-1)

S
<X, c 1C> 3

§:Fc® » pfcS where Gc(x,l)

1k+1 (n-1k)

s >)=(f(xy", ¢ ),1).

w:Pfc® + Fe where mc(<x%k+1

It has been proved in [18] that if an (n+1)-group G =
(G,f) is derived from a (k+1)-group (G,g), then the (k+1) -group

(G,g)sz k+1 is also a f.c. (k+1)-group of G. In Theorem 6 of

’

[18]) we gave the explicit form of the natural equivalence
(n+l-s)

S
veiFe_(G,£) > (G,g)xC .
(5—1)c S,k+1

d ),l) (where 4 denotes the skew element to c in (G,qg)).
However, in this case the (k+1)-group FcSG itself was not of

Namely, vc(x,1)=(f(X, c '

an especially simple form. The situation changes if we use the

construction of Theorem 1 and choose an appropriate polyad.
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Proposition 2. Given an (n+1)-group (G,f) and a (k+1)-
group (G,q), let <c§> be an identity k-ad in (G,g). Put p; =

= < s for 1=1,000 521, Then  (6,£) = ¥_(G,9), if and

17
i

only gf fcs(G,f)=(G,g)tCs'k+1.

*
Proof. Suppose that (G,f) = Vx(G,g). Then we have f =g.

Conversely, let fc (G,f)=(G,qg) xC Then f

s,k+1° (s )n+1
= 9(s)*®(s) ’ i.e. (s)((x 1 ),...,(xn+1,ln+1)) (g(s) (x ),
w(s)(1n+1)). Putting li=0 for i=1,...,n+1 we obtain (f(xn+1),0)=

n+1 . _
(g(s) (x1 )IO)I i.e., f = g(S).

4. ASSOCIATED (k+1)-GROUPS OF (n+1)-GROUPS

Together with the notion of a free covering group in
[32] Post introduced the notion of an associated group of
an n- group. By the Post Coset theorem every f.c. group G *no_
= (G f ) of an (n+1)—group G = (G,f) contains an invariant
subgroup (G f) such that G /G is a cyclic group of order n.
Post called this group (G f ) the associated group of an
(n+1) -group G. The constructlon of such a group is founded on
the construction of a free covering group. Basing the construc-
tion of an associated group on the Post construction we define
an associated group as the set of all the equivalence classes
of n-ads with concatenation as the group operation. Hence, the

associated group of a group is identical to the group itself.

The construction in the previous section enables us to
describe the associated group of an (n+1)-group G = (G,f) as
the set of elements of the form (x,n-1) with an appropriate
operation f*, i.e., (when we identify the set G with the set
Go = Gx{n-1}) as a binary retract of the (n+1)-group (G,f).
According to Theorem 1 of [8], every binary retract is isomor-

phic to an associated group. Moreover, choosing an appropriate
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n-ad in G one can show that every binary retract of G is an
associated group of G, provided an appropriate construction of
an f.c. group is used.

In Theorem 2 of [18] a characterization of free cove-
ring (k+1)-groups of (n+1)-groups is given, which is a genera-
lization of the above-mentioned Coset theorem. However, in
contrast to the Post theorem, when we deal with the case of
k=1, in general the f.c. (k+1)-group G*s need not contain an
invariant sub-(k+1)-group (Gof*) such that G*S/Go is a cyclic
(k+1) -group of order s. The (k+1)-group Go exists only in the
case when g.c.d. (k,s)=1 (cf. Theorem 3 of [18]). And only in
this case it makes sense to define an associated (k+1)-group
of an (n+1)-group. Then, in view of Theorem 3 of [18], the f.c.
(k+1) ~group <G*S,r,c> contains a sub-(k+1) -group (Go,f*) such
that G*S/G° = Cq k41" Namely, G = c—1(1), where 1‘?CS'k+1
the unique element of order 1. Therefore, henceforth 1 shall

is
»always denote the so-defined element of Cs,k+1'
Let 9 be an embedding of the (k+1)-group (Go,f*) into
G*S. From Theorem 4 of [18] (cf. also [1], [4], [32] for k=1),
‘it follows that the assignment of the associated (k+1)-group
(Go,f*) to an (n+1)-group G is functorial (just as for f.c.
(k+1) —groups of (n+1)-groups) and ¢ is a natural transformation
of these functors. Similarly to the case of f.c. (k+1)-groups,
we assume that tﬂe associated (k+1)=-group of the empty (n+1)-
group is the empty one if k>1 or the one-element group for k=1.
Since free covering (k+1)-groups play a central role in the
construction of associated (k+1)-groups, this construction de-
pends on the choice of a construction of f.c. (k+1)-groups.
Namely, using the Post construction, by the associated (k+1)-
group, we mean the set of equivalence classes of (lk+1)-ads

(where 1 is defined as above, i.e., l€C k+1
(k+1) sok
ment with @{( 1 )=1) together with a (k+1)-group operation de-

fined just as in the f.c. (k+1)-group PfcSG (i.e., the conca-
tenation of polyads). The associated (k+1)-group of an (n+1)-
-group G described above will be denoted by as%G and the cor-

responding functor by Ass:Grn+1 - Grk+1 (or briefly As). Note

is the only ele-
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16 = ¢ and the

functor As1:Grn+1 - Grn+1 is simply the identity functor. The
functor As® can be embedded into the functor Pfc®. To be exact,
o:asS » pfc® is a natural transformation of these functors

(cf. (31] for k=1).

that, according to this definition, we have As

The next construction of an associated (k+1)-group of
an (n+1)-group G is founded on the construction of the (k+1)-
group fc;G. In this case we may identify the associated (k+1)-
group of an (n+1)-group G with some retracts of G. Namely,

every (k+1)-ary retract of the form ret;'g, where P is an
1 .
lk~ad and ¢ has the same meaning as in Section 2 (i.e., lk+1=

= eg), may be identified with the associated (k+1)-group. So,

we have the natural transformations of the functors:

cp:ret;ieG-*fcﬁG ;

6 _:Ret3'%G+>FcS6 ;
C C C

~

o] :ﬁets'eG->fcsG
c c c

where o is given by the formula o(x) = (x,1). Note that the
retract and the corresponding (k+1)-group is always considered
for the same choice of the lk-ad (or the element). All these
constructions (Ass, rets'e, Rets'e, Ret®’%) lead to naturally
equivalent functors, which simplifies the investigation of its
properties. Since the associated (k+1)-group is a sub-(k+1)-
group of the free covering (k+1)-group and the embedding ¢ is

a natural transformation of the corresponding functors, the
natural equivalences of the functors fcs, ch, fcs, pfcS given
in the previous section determine the natural equivalences of
the functors rets’E, Rets’e, ﬁets’e, as®. These equivalences
are given by the same formulas. They differ only from the for-
mer equivalences by domains and codomains. That is why, to sim-
plify notation, they will be denoted (though it is informal) by
the same symbols. And so we write
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S,¢ S,E
:ret’’ £’ :
upl'ql P, G > re a, G

8,¢€ s
cret’ ' G As" G ;
BPl Py

S S,€
:As ret”’
Ypl G ~ P, G

and so on.

5. SOME PROPERTIES OF THE FUNCTOR As

In the description of the functor as® it is convenient
to use the fact that as® is naturally equivalent to the func-

s —
tors ret®’%, RrRetS’%, RetS’€,

Let h:(a,f) » (B,f) be a homomorphism of (n+1)-groups.
The morphism Ret>’fh:Ret3’/€(a,f) - RetS’¢(B,f) is given b
a;b a b Y

- s (1k-1) _ (n-1k)
Reta:bh(x) = f(h(x), h(a) , h{a), b ) (cf. (8], [9]). Hence

PROPOSITION 3. The functor As preserves and reflects

monomorphisms and epimorphisms.

Consider the following example. Let <d?> be a central
non-identity n-ad of order s in an (n+1)—group'(A,f). The map-
ping h:A > A given by h(x) = f(x,d?) is an endomorphism of

(A,f). As is easy to check,

N

s,e (1k-1) _ (n-1k)
Ret>/ h(x) = f(h(x), h(a) , h(a), a ) =x.

On the other hand, it is evident that Ret::;idA(x) = X.
’

Hence
Proposition 4. The functor As is not faithful.

Given a (k+1)-group (A,g), let <ek> be an identity k-ad

1
in (A,g). Observe that retZ’F WS(A,g)=(A,g). So we get
qrecee

€y
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Proposition 5., EBvery (k+1)-group ie isomorphic to an

assoctated (k+1)-group of an (n+1)-group.

Since not every (n+1)=-group is derived from a (k+1)-
group (cf. [7], [32]), [18]), it follows that non-isomorphic
(n+1) ~groups may have isomorphic assoclated (k+1)-groups. Hen-
ce, by Proposition 5 we get

Proposition 6. The funetor As is not full.

Now we are going to give a criterion which enables us
to check if the homomorphism ﬁ:AsS(A,f) > Ass(B,f) is of the
form h = As®h (here h:(a,f) > (B,f)). Using Theorem 2 of [9]
and Proposition 6 of [9] we can give the required conditions
for associated (k+1)-groups treated as (k+1)-ary retracts.
Below we shall use Proposition 6 of [9] to formulate an appro-
priate condition for the functor As.

Theorem 2. Given (n+1)-groups (A,f) and (B,f), let
H:ASS(A,f) > Ass(B,f) be a homomorphism of the corresponding
k+1 -groups. Then the following conditions are, equivalent:

i) h = As®h where h:(n,f) > (B,f);

i1} for every element a A there existe an element b€B such that

(1k) _ (1k)

(6) h(< a ,a») = < b ,b>,
. (n(n+k-es=-e)+es) (n(n+k-es-¢) +es)
(7) h(< a >) = < b >,
(n-1k) (1k=1) _
(8) h(< a ,x%k+1, a ,a>) =
(n-1k) (lk=1) _
=< b LE(<x1™T5), b B
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i11) for some element a€A there exists an element bEB such that
equalities (6), (7) and (8) hold,

Proof. Let h:(A,f) » (B,f) be a homomorphism of (n+1)-
groups and let h = as5n. Taking into consideration the natural
equivalences given in the previous section and using the nota-
tion given there we can write an explicite form of the homomor-
phism h. Take any element a€A, let b = h(a). Then, by Lemma 2
of [9) ﬁetz;;h(x) = h(x) for every x€A, i.e., h:ﬁetas'E (p,£) -
> ﬁetg’e (B,f) is also a homomorphism of (k+1)-groups. As is

easy to see, we have h = § , where wa:Ass(A,f) > ﬁet:’e(A,fL

plw,
and Gb:ﬁetg’e(B,f) > AsS(B,f) are isomorphisms defined in the

(n-1k)
previous section, i.e., wa(<x%k+1>) = f(x#k+1, a ) and
(1lk-1)

6b(x) = <x, b ,b>. Hence, ﬁ(<x}k+1> %k+1>
{n~1k)
=6b(f(h(x1),...,h(xlk+1), b })) = <f(h(x1)""’h(x1k+1)'
(n-1k)  (lk-1) _
b )., b ,b> = <h(x1),...,h(x

fies (6), (7), (8). In fact

) = thma({x ) =

lk+1)>. We show that h satis-

(1k) _ (1k) _ (n-1k)
h{< a ,a>) = 5bh(f( a ,a, a )) =
(1k) _
= ébh(a) = 5b(b) = < b ,b>

In a similar way one can check that condition (7) is satisfied.
Now, we have

(n-1k) (1k-1)
h(< a ,x%k+1, a ,a>) =
(n-1k) (1k-1) _ (n-1k)

1k+1
6bh(f( a P X7 * , a ,a, a )) =

a

(n-1k) (1k-1) _ (n-lk)))
= db(f( b ,h(x1),...,h(xlk+1), b ,b,
{n-1k) (1k-1) _
= < b rh(<xlk+1>)r b >,

1
\
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which shows that (8) is also satisfied. Thus (i) implies (ii).
Obviously, (ii) implies (iii).

Now, let ﬁ:Ass(A,f) + AsS(B,f) be a homomorphism of
(k+1) -groups. Assume that for some a€A there exists b€B such
that h satisfies conditions (6) , (7)), (8). Let h:A + B be a
mapping given by h = mbﬂéa. Thus h, as the composition of homo-
morphisms, is a homomorphism of (k+1)-groups, i.e.,
h:Pet>’“(A,f) + Retp’'"(B,f). Note that

- (1k-1) (1k)
mbh(<a, a ,a») = wb(< b

h{a) ,b>) =

(1k) _ (n-1k)
£( b ,b, b )

I
o

In similar way one can verify that

(n(n+k-es-e+1) +1) ' (n(n+k-es=-c+1) +1)

h(E, | a 1) = 0 b ), i.e.,

()
h satisfies the condition (4) of Proposition 6 of [9]. Observe
. (1k-1) _ (1k-1) _ (1k-1)

that h(<x, a ,a») = 5bhma(<x, a ,a>») = th(f(x, a ,

_ {(n-k) (1k-1) _
a, a )) = <h(x), b ,b>. Using this fact we get

(n-1k) (1k-1) _
h(f( a /X, a ,a)) =

. (n-1k) (1k~1) _ (1k-1)
= mbh(<f( a /X, a ,a), a ,a») =

(n-1k) _ (1k=-1) _ (1k-1) _
= mb(< b ,hi<x, a ,a», b ,b>») =

(n-1k) (1k=1) _ (1k-1)

w (< b ,hlx), b ,b, b ,b>) =-

{(n-1k) (1k-1) _
=f{( b ,hix), b ,b),
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i.e., condition (3) of Proposition 6 of [9] is also satisfied.
Thus h:(A,f) > (B,f) is a homomorphism of (n+1)-groups. Moreo-

ver, ﬁet::;h(x)_= h(x) for every x€A. On the other hand we
; N

€ -—

bh =

which shows that (iii) implies (i). This completes the proof.

= '3, s ~ - s X .8
have Reta; bAs hGa, whence mbhsa mbAs hea. Then h=As"h,

Note that if k=1, then we have s=n, l=n-1, e=1. In this
case the condition (6) is always satisfied, whenever h:Asn(A,f)
> As™(B,f) is a homomorphism of groups. So Theorem 2 for k=1
has a simpler formulation.

Corollary 1 (cf. [321). Given (n+1)-groups (A,f), (B,f),
let h:Asn(A,f) > As™(B,£f) be a homomorphism of the correspon-
ding groups. Then the following conditions are equivalent:

i) h = As"h where h:(a,f) -~ (B,f);

11) for every element a€A there exists an element bEB such that

. (n) (n)
(9) h(< a »>) = <b >,

(n-2) (n-2)

(10) h(<a,x®, a ,a») = <b,h(<x®>), b ,b> ;
1

1'
111) for some element a€A there exists an element bEB such that
equalities (9) and (10) hold.

Associated (k+1)-groups of isomorphic (n+1)-groups are
isomorphic. As was shown above, the converse statement is hot
always true; there are non-isomorphic (n+1)-groups with iso-
morphic associated (k+1)-groups. Already in [32] a condition
was given which decides when the existence of an isomorphism
of (n+1)-groups follows from the existence of an isomorphism
of associated groups. Corollaries 5, 6, 7 and 8 of [9] give
the required criteria for (k+1)-ary retracts. Now we shall give
a criterion for associated (k+1)-groups treated as sets of ap-
propriate polyads, i.e., for the functor as®. Immediately from
Theorem 2 we obtain
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Corollary 2. Given (n+1)-groups (A,f) and (B,f), let
(A,g) = AsS(A,f) and AsS(B,f) = (B,g). Then the following con-

ditions are equivalent:
z) the (n+1)=-groups (A,f) and (B,f) are isomorphic;

1) for every element a€A there exists an element bEB and an
isomorphism h:(A,g) + (B,g) satisfying the equalities (6),
(7) and (8);

i11) for some element a€A there exists an element bEB and an
isomorphism h:(A,g) + (B,qg) satisfying the equalities (6),
(7) and (8).

Note that for k=1 Corollary 2 takes form of the well-
-known Post condition (cf. [32], also [9]).

Corollary 3. Given (n+1)-groups (A,f) and (B,f), let
(a,+) = as™(a,f) and (B,-) = As"(B,f). Then the following con-

ditions are equivalent:
1) . the (n+1)-groups (A,f) and (B,f) are isomorphic;

i1) for every element a€A there exists an element bEB and an
isomorphism h:(A,+) + (B,+) satisfying the equalities (39)
and (10);

111) for some element a€A there exists an element bEB and an
isomorphism h:(A,) + (B,+) satisfying the equalities (9)
and (10).
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REZIME
ASOCIRANE k-GRUPE n-GRUPA

Pojam slobodne pokrivajuce (k+1)-grupe (sk+1)-grupe je
definisan u [16] kao uop3tenje pojma slobodne pokrivaju€e gru-
pe (videti [32]). U ovom radu diskutovane su razliZite konstruk-
cije ovih (k+1)-grupa i njihova funkcionalna veza je nagladena.
Ove konstrukcije dovode do odgovarajuce konstrukcije asociranih
(k+1)-grupa (pojam asociranih grupa potife od Posta .[32]) i,
kao postedica, do novog funktora AsS:GrSk+1 - Grk+1. Osnovni

cilj drugog dela rada je opisivanje osnovnih osobina funktora
As.
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