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ABSTRACT

For a2 given language L, the problem of partial Vv -
algebras asks whether there is a universal algorithm which for
any finite partial V - algebra A, and any identity psq€Eq(LUA)
with no variables, decides whether or not FV(A)Epmg. First, it
is shown that the solution of the word problem implies the so-
lution of the problem of partial algebras for any variety V.
Second, if the problem of partial V - algebras is solvable,
then, a class of finite presentations can be given for which
the word problem is solvable. '

1. BASIC NOTIONS

Let A be a set and BEAn. Then f: B»A is called a
partial operation on A of type n.

A partial algebra A is a pair (A,F), where A is a
nonvoid set and F is a collection of partial operations on A.

In our considerations F is always a finite set.

Let A be a partial algebra. Denote by A{A) the posi-
‘tive diagram of A:
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AA) = {f(a1,...,an)=a|f€F, a -+ ,a €A,

17

f(a1,...,an) is defined and equals a in A}.

Of course, if A is finite, then A(A) is also finite.

Suppose that A and B are partial algebras.¢: A->B is
called a homomorphism of A into B if,wheneverf(a1,...,an) is
defined, then so is f(w(a1),...,w(an)) and

e(f(a,,...,a )) = flela,) ,...,w(ani)).

A homomorphism ¢ is an i<somorphism if ¢ is a bijection.

Let A = (A,F) be a partial algebra and let @+BcA.
Then

(i) B is a subalgebra of A if it is closed under all the ope-
1,...,bnEB and f(b1,...,bn) is defi-
ned in A, then f(a1,...,an)€B.

rations in A i.e. if b

(ii) B is a relative subalgebra of A if for all feF and all
b1""'bn' beB, we have: f(b1,...,bn) is defined and equ-
als b if and only if f(b
f(b -+b)=b in A.

1""'bn) is defined in A and

10

It is not difficult to give an example of a partial algebra A
and a set BcA, such that B is the carrier of some relative

subalgebra of A but not the carrier of any subalgebra of A.

Let X be a class of algebras, A a nonvoid set, and
F a set of partial operations on A. Then, (A,F) is a partial
K - algebra if (A,F) is a relative subalgebra of an algebrat
in K. For example, if L is the class of all the lattices, then,
a partial algebra A is a partial L - algebra (or simply, parti-
al lattice) if A is a relative subalgebra (or relative sublat-

tice) of some lattice.
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Definition 1.({31).Let X be a elass of algebras and
let A be a partial algebra. The algebra FK(A) is called the al-
gebra freely generated by the partial algebra A over K if the

following conditions are satisfied:
() FK(A)EK;

(77) FK(A) <g generated by A' and there exists an isomorphism
x: A'+A between A' and A, where A' is a relative subalge-~
bra of FK(A);

(2i1) If ® is a homomorphism of A into CE€K, then, there exists
a homomorphism ¢ of FK(A) into C sueh that ¢ is an exten-
ston of Xw.

It is not very hard to prove that FK(A) is unique up
to the isomorphism and, if A is an algebra from K, then FK(A)zA,
Also, it is well known that if K is an equational class, then
FK(A) exists if A is (isomorphic to) a relative subalgebra of
an algebra 8 in K (see [3]). In other words, in the case of
equational classes K, FK(A) exists if A is a partial K - alge-
bra.

For example, if A is a partial lattice, then, FL(A)
always exists, It is well known (see [3]) that these lattices
(of the form FL(A)) are the lattices that can be described by
finitely many generators and finitely many relations.

In order to establish a similar equivalence in the
case of an arbitrary variety V, we need a precise definition
of a finitely presented algebra in V. In the sequel, Fv(x) de-
notes the free algebra over V, generated by a set of free ge-
nerators X.
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Definition 2.([1]1).Let V = mod(X) ke a variety in the
language L, G a set of new constant symbols and R a set of iden-
tities with no variables in the language LUG. Then {(G,R) is cal-
led a presentation in V. Let V = mod(IUR). The algebra presen-

ted by (G,R) in V 18 the reduct of Fo(ﬂ) to the Zﬁnguage L. We
denote such an algebra by PV(G,R). We say that PV(G,R) is fini-

tely presented if G and R are finite sets. U

Proposition 1. Let K = mod(Z) be a variety, A a par-
tial algebra. Then,

FK(A) o PK(A,A(A) ).

Proof. Let |A| = m and o« be an ordinal with |«

m,
and A = {ay|y<a}. Let {xY|y<a} be a free generating set of
FK(a). Define the mapping

fi: Fylo) » Py(n,a(A))
as an extension of the mapping

h: {xY|Y<a} -+ {aY|y<a}, h(xY) =a, for vy<a,
to a homomorphism of the whole algebra Fy(a) into PK(A,A(A)).
Such a mapping h exists (it is unique), since FK(a) is the free
algebra of K and PK(A,A(A))GK. Further on, h is "onto" since
the algebra PK(A’A(é)) is generated by {aYly<a}. If we denote
by 8 the kernel of h, then we have

FK(u)/e = PK(A,A(A)).

Oon the other hand, we can prove that FK(a)/e satisfies condi-
tions (i), (ii) and (iii) of Definition 1. (see [3]).

Hence, we obtain
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FK(A) = PK(A,A(A)). O

2. SOME DECIDABILITY PROBLEMS

Denote by Eg(L) the set of identities in language £.
Let V be a variety in language £ and (G,R) a finite presentati-

on in V.

The word problem for (G,R) Zin V asks if there is an
algorithm to determine, for any identity prg€EQ(LUG) with no

variables, whether or not

PV(G,R)Fqu.

Let K be a class of algebras in language L, and let
A be a partial XK - algebra. The problem of partial X - algebra
A asks if there is algorithm to determine for any identity

P EEq (LUG) with no variables whether or not

FK(A)kprg.

We are going to consider the following three problems

for a variety V in language [.

I The word problem in the first level for V asks whether the-
re is a universal algorithm to solve the word problem for
all finitely presented algebras in V. j

II The problem of partial V - algebras asks if there is a uni-
versal algorithm which for any finite partial V - algebra
A, and any identity pag€Eq(fLUA) with no variables, decides

whether or not

FV(A)Fpg.
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III The problem of quasi-identities for V asks if there is an
algorithm which for any guasi-identity q in £ decides whe-
ther or not

VE q.

It is natural to look for the relationship between
the problems I, II and III. We can prove the following result

Proposition 2.([2]).For any variety, the problem of

quasi-identities and the word probleh in the first level are
equivalent. O

Hence, for any variety, the problems I and III are
equivalent. It is not hard to prove, using Proposition 1, that
the positive solution of problem I implies the existence of an
ralgorithm from problem II: '

Proposition 3. Let K be a variety in language L. If
the word problem in the first level for K is solvable, then

the problem of partial K - algebras i8 solvable too.

Proof. Let A be a finite partial K - algebra,
p~q€EEqQ (LUA) , with no variables. Then, because of Proposition 1.,

FE(A) = Py(R,a(A)),
so that
FK(A)Epeq  iff Py(A,a(A))FPa.

Hence, directly from the algorithm for the solution
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of the word problem, we obtain an algorithm for the solution of
the problem of partial algebras. O

Conversely, can we construct an algorithm for the so-
lution of the word problem knowing an algorithm which solves
the problem of partial algebras?

In this paper we shall give a class of finite presen-
tations for which it is possible to construct an algorithm for
the solution of the word problem.

3. SOME AUXILIARY CONSTRUCTIONS

Definition 3. Let K be a variety in language L and

(A,R) some finite presentation-+in K. Then,

(1) If t is a term in L, then by Sub(t) we denote the set of
all the subterms of t;

(2) Sub(R) = u{Sub(t) |(3s) (ssteRvtmseR};

(3) A' = {COIUESub(R)}UA.

Note, that the elements of Sub(R) are terms in LUA,
with no variables. Denote by [t]| the length of a term t (i.e.
the number of symbols in t).

Definition 4. Let K be a variety in £ and (A,R) a fi-

nite presentation in K.

(1) Define the mapping
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¢: Sub(R) -~ Eg(LuA')
in the following way:
(i) IFf |tl=1, then o(t) is taC, ;

(2Z) If t = f(t1,...,tn) where f 1s an n-ary function sym-
bol and t1""’tn are terms, then @(t) is f(Ct reee
1
...,Ct ) ™ Ct.
n
(2) Define the set R' as

R! =w[5ub(R)]u{cp~cq|[p[= 1 and prg€ER}U

U{f(Ct1:...,Ctn)%qup=f(t1,...,tn) and pegeR},

»

where @[Sub(R)] = {p(t) |teSub(R)}.

Note that if teSub(R) and |t| = 1, then te€A or t is a constant
in £ and the set R' is a set of identities, in the language

LUA', with no variables.

Exampie 1. Let L be the variety of all the lattices
in the language {a,v}, & = {a, b, d} and

R = {aabsd, (avd)absdaal.
Then,
Sub(R) = {a, b, d, aab, (avd)ab, avd, daal,

C

o ,
A' = {Cas Cpr Cqr Coub’ Cravdrab * Cavd’ Cdaa

C . a, b, ds
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1] —_
R' = {aﬁca’ b‘“‘Jcb’ dglcd’ caAcbgcaAb’

CadekC

CavdAchC(avd)Abf avd’

CarCa™yprar CarCh™ar Cava”Cp™Caaal-

Recall, now, the rules of inference in the equational

logic.

(1)
(2)
(3)

(4)

(5

Let 1, 0, 6, p,... be arbitrary terms in £. Then,
T~T is an axiom;
From ot infer te0;
From omt and tw~06 infer omd;

If o,NT, for i€{1,...,n}, then for any n~ary function symbol
feL infer

f(°1""'°n) ~ f(r1,...,rn);

If o(x1,...,xn) ] r(x1,...,xn), then for all terms Py

ie{1,...,n} infer

c(p1,...,pn) 8 T(P1,.a.,pn).

The following lemmas are about some syntactic proper=-

ties of sets of identities, therefore the proofs are "technical”.

Lemma 1. Let K be a variety in £ and (A,R) a finite

presentation in K. Then, for every t€Sub(R), we have
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R' F t™C,.

Proof. By induction on the length of t.

(i) If |t =1, then t ~ C, € R' so that

(11) Let t = f(t1,...,tn). Then, since t€Sub(R), it follows

that t ,tnESub(R) and by the induction hypothesis

17

R' | £, mC i€{1,2,...,n}.

r
ty

By the definition of R', f(C ) ~ Ct € R'., From

yeeesC
t t,

the rules of equational logic it follows that
R' | £(ty,...,t ) mC.  i.e.

R' l. t ~ Ct'

Lemma 2. Zet R be the set of identities, in the lan-
guage LUA, which appears from the set R' in such a way that in
every identity in R' every symbol Ct(tESub(R)) i8 replaced by t.
" Then, for all the identities pmg in LUA, and any set I of iden-

tities in L, we have
TUR |- p~q iff EUR - pw q.

Proof. Let e€R'. Prove that identity &, which appears
from e when we replace all the symbols Ce by t, is in R or it
is a trivial identity of the form 1~t. If e€R' we have four ca-

S€s.

1) e is taC,, lt] = 1. Then, & is the trivial identity tst.
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2) e is f(Ct1,...,Ctn) L Ct’ where t = f(t1,...,tn). But, then
again, we have tsit.

3) e is Cp ~ Cq, where |p| = 1 and psq€ER. Then e is psq, which
belongs to R.

4) e is f(Ct1,...,Ct ) ~ Cq' where pm~géR and p f(t1,...,tn).

n
Then e is f(t1,...,tn)~q, which belongs to R.

Therefore
R } R.

Conversely, R c R since if p~J€R and p = f(t1,...,t ),

then f(C, ,...,C, )NCqER » so that f(ty,...,t )ageR i.e. prgeR.
1 n

Therefore, ﬁFR and the proof is ended.

Example 2. Let L be the variety of all the lattices
and (A,R) be the same as in Example 1. Then,

R = {ama, bab, ded, aabsaab, (avd) abss(avd)ab,

avdmavd, daassdaa, aabmd, (avd) abssdab}l

4. MAIN RESULT

From the set R' we obtained (by the replacement of
some symbols) the set R, which is of the same "deductive power"
as the set R. On the other hand, our aim is to obtain from the
set R' such a set of identities R* which can be the positive
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diagram of some partial algebra. First of all, from the set R'
we have to take out the identities of the form tht, where
ltl = 1. Further on, in the set R' there are identities of the

form f(Ct1,...~,Ctn)~Cp and f(Ct1,...,Ctn)~Cq, where Cp*cq’ and
therefore are not supposed to be in the positive diagram of some

partial algebra.

We shall formulate two rules:

(a) If a set of identities I contains an identity of the form
‘prg, Where |p| = |g| = 1, then we take out this identity
from the set I and in all the other identities we replace
the symbol g by p.

(B) If a set of identities I contains some identities of the
form taty, tst,, where t1¢t2, then from I we take out the
identity tmt2 and in all the other identities we replace

the symbol t, by t1.

Let I be a set of identities. Denote by a(I) the set
of identities which appears from I, if the rule o is applied,
and by B(I) the set of identities which apﬁears from I, when
the rule B'is applied.

We say that the set of identities I is a-pure if
a(I)=I. Analogously, I is g-pure if g(I)=I. Obviously, if I is
a finite set of'identities, then there are natural numbers m,n
such that the set o™(I) is a-pure and the set 3m(I) is g-pure.

Definition 5. Let (A,R) be a finite presentation in a
variety XK. Let n be a natural number such that an(R') 18 a-pure
and m be a natural number such that g (a™(R')) is g-pure. Then,
let

r* = g™ (™ (R"))
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and A* be
appear in

R* is the
£) with a

the set of all these symbols from A'Uconst(L) which
the tdentities of R¥*.

It is not difficult to see that R* c Eq(LUA*) and that
positive diagram of a partial algebra (in the language
carrier A*., Denote this algebra by A*.

We can assume, not losing generality, that A ¢ A* i.e.

that in application of the rule a we have g¢A and in the appli-

cation of

and (A,R)

rule g, we have t2¢A.

Example 3. Let L be the variety of all the lattices
the same as in Example 1. Then,

351y =
a” (R'} = {aabaC o] dAbﬁC(avd)Ab' aydal

aab’ Tav avd’

drasCy ., aabed, cavdAbﬁcha}, i
R* = 82(a3(R')) = {avdaC. ., daasC aabad
avd’ d/\a’ A ’
cavdAbNCdAa}’
A* = {a, b, 4, cavd’ cha}’
A* = (A* aA,v), where A(A*) = R*
Lemma 3.

(i) Let Z(¢,d) be a set of identities in £ which contain the {

symbolg c and 4 as cpnstant symbols and let ¢(c) be an

identity not containfng d. Then,

T(c,d)ulcendllolc) iff ZIlc,c)lelc).
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(1) In point (i), we can put, instead of the constants ¢ and 4,
any closed terms t, and t,.

Proof.
(+). Let I{c,c)@(c). Then, since
(c,d)u{cmallz(c,c),
we have
x(c,d)u{cadl}o(c).
(+) . Prove the following:
If ©(c,d)uicdl-y(c,d) and if
*) vy (c, @)y vy(c,d),... ¥, (c,d) = y(c,d)
is a proof-sequence for y(c,d), then
(**) yy(c,c), ¥yle,c), .oy (ch0) = y(c,c)
is a proof-gequence for y(c,c) from x(c,c).
Clearly, if n=1, then
v(c,d)EX(c,d)V{cmd}

or it is an axiom of equational logic. Then, vy(c,c)ex(c,c)
or y{(c,c) is cmc or it is an axiom, so that

z(c,c)vlc,c).

Suppose the assertion holds for k<n and prove that it holds
for n. Then, wn(c,d) is obtained by rules (2)-(5)} from some
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previous identities in sequence (*). It is not difficult to
see then that wn(c,c) is obtained by the same rule from the

corresponding formulas in sequence (**).

(ii) Analogously to (i).

Corollary. Let K = mod(f) be a variety in £, (A,R) a

finite presentation in K. Then, for every <identity paqcEq(LUA)

with no variables,
SURFprg iff SUR*-pasy.

Proof. On the one hand,

TUR'-pag 1iff

i££ TUR'U{taC, | tESUb(R) }preg  (Lemma 1.)
iff FURFpesq (Lemma 3.)
iff FURFprx]. (Lemma 2.)

On the other hand,
ZUR'|peq

iff YUR*-prq,

because of the construction of R* and Lemma 3. Therefore,

TURFpeg iff  EIUR*-peq.
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Proposition 4, Let (A,R) be a finite presentation in
a variety K = mod(X), 7Zn language L, and let A* be a K-partial
algebra. Then, if the problem of the partial algebra A* in K is
solvable,the word problem for (A,R) in K is solvable, too.

Proof. Let psq€Eq(LUA), with no variables. Then,

Pg (A,R)Epaqg
ZURFpmq (Definition 2.)
iff ZUR*-prgq (Corollary)
iff Py (A*,R*)= paq (Definition 2.)
iff FK(A*)Eprg. (Proposition 1.)

Hence, if the problem of partial K-algebras is solvab-
le, then we can solve the word problem for all those finite pre-
sentations (A,R) in K for which the corresponding partial alge-
bra A* is a K-partial algebra. It is easy to give an example of
a variety X and a finite presentation (A,R), so that A* is not

K~-partial algebra.

Example 4. Let L be the variety of all the lattices,
A = {a,b,d}, R = {aabwa, baand}. Then, R* = R and A* = A. But
then A* is not a partial lattice i.e. it is not a relative sub-

algebra of any lattice B (we shall have that a=d).
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REZIME
0 JEDNOM PROBLEMU PARCIJALNIH ALGEBRI

Neka je A konaina parcijalna algebra, V varijetet a
FV(A) algebra slobodno generisana sa A u V,

Problem parcijalnih V-algebri pita da 1i postoji uni-
verzalni algoritam koji odluCuje da 1i za bilo koji identitet
p~q€EQ(LUA), bez promenljivih, vazi

FV(A)Epag.

U radu se ispituje odnos problema re€i‘za V i problema
parcijalnih algebri. Pokazano je da reSivost problema reéi impli-
cira re$ivost problema parcijalnih algebri. Takodje, data je kla-
sa konacnih prezentacija za koju reSivost problema parcijalnih
algebri implicira reSivost problema reli.
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