Симпозијум КВАЗИГРУПЕ И ФУНКЦИОНАЛНЕ ЈЕДНАЧИНЕ Symposium en QUASIGROUPES ET EQUATIONS FONCTIONNELLES Београд—Нови Сад, 18—21. 9. 1974.

SOLUTIONS OF BOUNDED VARIATION OF A LINEAR HOMOGENEOUS FUNCTIONAL EQUATION

Marek Cezary Zdun

This paper aims at giving a survey of some results related to the functional equation

(1)
$$\varphi(f(x)) = g(x) \varphi(x)$$

where, f and g are given functions and φ is unknown function.

Let J be an interval in R. Let us put

$$\operatorname{Var} g | J = \sup \left\{ \operatorname{Var} g | \langle c, d \rangle | \langle c, d \rangle \subset J \right\}.$$

Let us denote by BV[J] the class of real-valued functions of bounded variation on the interval J, i.e.

$$BV[J] = \{g: J \rightarrow R \mid \text{Var } g \mid J < \infty\}.$$

We assume the following general hypothesis:

(H) f is continuous and strictly increasing in J=(a, b) (we admit $a=-\infty$) and inequality a < f(x) < x holds for $x \in J$ moreover $g \in BV[J]$, $\lim_{x \to a+} g(x) = 1$ and $\inf \langle \{g(x) \mid x \in J\} \rangle 0$.

Let us consider the following sequence of functions

$$G_n(x) = \prod_{i=0}^{n-1} g(f^i(x)) \qquad n \geqslant 1, \quad x \in J,$$

where f^i denotes the *i*-th iterate of the function f.

There are three posibilities regarding the behaviour of the sequence G_n .

- (A) there exists an $x_0 \in J$ such that there exists a finite limit $\lim_{n \to \infty} G_n(x_0) \neq 0$.
- (B) there exists an $x_0 \in J$ such that $\lim_{n \to \infty} G_n(x_0) = 0$.
- (C) neither of the cases (A) and (B) occurs.

Theorem 1. Let hypothesis (H) be fulfilled and suppose that case (A) occurs. Then equation (1) has at most one-parameter family of solutions in the class BV[J]. If a function $\varphi \in BV[J]$ satisfies equation (1) then φ is given by the formula

$$\varphi(x) = \eta / \prod_{i=0}^{\infty} g(f^i(x)), \quad x \in J.$$

The product $\prod_{i=0}^{\infty} g(f^i(x))$ converges uniformly on any compact $K \subset J$.

In this case there need not exist solution $\varphi \in BV[J]$ and $\varphi \not\equiv 0$. In the case (B) we have the following theorems.

Theorem 2. Let hypothesis (H) be fulfilled. If $\sum_{n=1}^{\infty} G_n(n) < \infty$ for an $x \in J$, then equation (1) has a solution in the class BV[J] depending on an arbitrary function. More exactly: for any $y \in J$ and for any function $\varphi_0 \in BV[f(y), y\rangle$ there exists exactly one function $\varphi \in BV[J]$ satisfying equation (1) such that $\varphi(x) = \varphi_0(x)$ for $x \in (f(y), y)$.

Theorem 3. If hypothesis (H) is fulfilled and case (B) occurs and $\sum_{n=1}^{\infty} G_n(x) = \infty$ for an $x \in J$, then equation (1) has at most one-parameter family of solutions in the class BV[J]. If a function $\varphi \in BV[J]$ satisfies equation (1), then φ is given by the formula

(2)
$$\varphi(x) = \eta \lim_{n \to \infty} G_n(x) / G_n(\overline{x}), \quad \text{for an } \overline{x} \in J.$$

Sequence (2) converges uniformly on any compact $K \subset J$.

Under the above assumption there need not exists a solution $\varphi \in BV[J]$ and $\varphi \not\equiv 0$. The example is given in paper [1].

In the case (C) the only solution in the class BV[J] is a function $\varphi \equiv 0$. We give some conditions of the existence of solutions in the class BV[J] non identically equal to zero.

Theorem 4. Let hypothesis (H) be fulfilled and suppose that case (A) or (B) occurs and $\sum_{n=1}^{\infty} G_n(x) \operatorname{Var} g | (a, f^n(x)) < \infty$ for an $x \in J$. Then equation (1) has a one-parameter family of solutions in the class BV[J].

Theorem 5. Let hypothesis (H) be fulfilled. If case (A) or (B) occurs and g is monotonic in a neighbourhood of a, then equation (1) has a one-parameter family of solutions in the class BV [J].

Finally we shall consider the case where g(x) < 0 for $x \in J$ and $\lim_{x \to a+} g(x) = -1$. We have the following.

Theorem 6. If the functions f and -g satisfy hypothesis (H), then equation (1) has a solution $\varphi \in BV[J]$ and $\varphi \not\equiv 0$ if and only if $\sum_{n=1}^{\infty} |G_n(x)| < \infty$ for an $x \in J$. The solution $\varphi \in BV[J]$ and $\varphi \not\equiv 0$ if it exists then φ depends on an arbitrary function.

The proofs of the above theorems are presented in paper [1]. The solutions of bounded variation of a general linear equation

$$\varphi(f(x)) = g(x)\varphi(x) + h(x)$$

are considered in papers [2], [3]. In particular, the case where $\lim_{x\to a+} |g(x)| \neq 1$ is investigated in paper [3].

REFERENCES

- [1] Zdun M.C., Solutions of bounded variation of a linear homogeneous functional equation in the indeterminate case, Aequationes Math. (to appear).
- [2] Zdun M. C., Note on solutions of bounded variation of a linear non-homogeneous functional equation, Mathematica, Cluj (to appear).
- [3] Zdun M.C., Solutions of bounded variation of a linear functional equation and some their interpretation for recurrent sequences, Prace Matematyczne Uniwersytetu Slaskiego (to appear).

