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ON AN EXTENSION OF PEXIDER’S EQUATION

Jdnos Rimdn
1. Introduction

Some results of Z. Dardczy and L. Losonczi [2] on the extensions of
additive functions seem to have important applications in the theory of functi-
onal equations (cp. e. g. K. Lajké [3], L. Székelyhidi [4]).

In connection with the above-mentioned results, in this paper we shall
deal with the extensions of the equation

fx+y)=g(x)+h(y).

2. Definitions and notations

We shall use the following notations and definitions.

Let D C R2? be an arbitrary non-empty set (R is the set of real numbers) and
D,={x|3y, (x,») €D},
D,={r|3x (xy) €D},
D, ,={x+y|(x ») €D}

Throughout the paper E denotes an Abelian group (written additively).

Definition 1. Let D CR*(D# @), f.D,,,~E, g:D,—~E, h:D,—~E"
be functions such that

fx+y)=gx)+h (), (x»)€ED.
If there exists an ordered triple of functions (F, G, H) such that

) F, G, H.R—~E,
(i) F(x-+y)=G (x)+ H(y) for all (x, y) €ER?
and

F(x)=f(x) forall x&D,,,
(iii) G(x)=g(x) for all x& D,
H(x)=h(x) for all x& D,
then (F, G, H) is called an extension of (f, g, #) from the set D.
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Definition 2. Let D CR*(D# @), f:D,,,~E, g:D,—~E, h:D,~E
be functions such that ’

fG+y)=g@)+h(), (x,y)€D.

If there exists an ordered triple of functions (F*, G*, H*) and a point (4, v) & D
such that

1° F*, G*, H* .R—E,

2° F*(x+y)=G* (x)+ H* (y) for all (x,y) € R?
and
F*(x)—F*(u+v)=f(x)~f(u+v) for all xc D, ,,,

3° G* (x) -G* W=g(x)—g 1 for all x& D,
H*(x)—H*(W=h(x)-h () for all x € D,
then (F*, G*, H*) is called a quasi-extension of (f, g, h) from the set D.

3. Results

Let D=K,={(x, y)| x*+y2<r?} (r>0 is a constant) be an open disk.
Then we have

Theorem 1. (cp. (2], Satz 2.) Let f:(K),,,~E, g:(K),~E and
h:(K,),—~E be functions such that

fG+y)=g@)+h(y), () EK,.
Then (f, g, h) has one and only one extension (F, G, H) from the set K,.

Proof. Clearly (K,),=(K;),=(—r, r) and (K,),,,=(—r V2, r}2). Every
x & R can be written in one and only one way in the form

r
xX=n-—+t,
2

where n€Z={0,+1,+2,...} and te[O, —;—) Let us define the functions
F:R—E, G:R—>E, H:R—F as follows:

F(x)=nf(%)+f(t)——n(a+b),
G(x)=ng(§)+g(t)—na,
H(x)=nh(—;—)+h(t)—nb,

where a=g (0) and b=h(0). We show that (F, G, H) is the unique -extension
of (f, g h) from K,.
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A) First we prove that (ii) holds. If (x, y) € R?, then

ron D, ,
e )
) If t,+t26[0, —;—) then we have
Fetp)=F(tm 21+
=Geam)f (T)+S k)=t a4 5=
=n(g (%)+b)+m(a+h(—;—))+g(t1)+h(tz)—(m+n) (a+b)=
—ng (-%)+g(t,)—na+mh (%)+h(tz)—mb=G(x)+H(y).
21 tl+tze[—;~, r), then we can wrte 1+ 1, =+ twith re[o, —;-) and
F(x+y)=F((n+m+l)%+t)=(n+m+1)f(—;—)+f(t)—(n+m+l) (a+)=
o))l e
—(n+m+l)(a+b)=ng<—;—)—na+mh (—;—)—mb+f(—;—+t)=
- ,'zg(%) — na+mh (é) —mb+ £ (t+ 1) =
=ng(-;—)+g(t,)—na+mh(—;—)+h(tz)—mb=G(x)+H(y).

Thus F(x+y)=G (x)+ H(y) for all (x, y)&R2
B) Now we show that (iii) also holds.

1) 1f x< [0, 1), the x=0-—’~+t(t O,L))and
) 1[0, 7). then x=0- 24110,

F(x) =O-f(—;—)+f(t)-0-(a+b)=f(t)=f(x) and

hid
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similarly G (x)=g (x), H (x)=h(x).

2) If xe[—;—, r), then x=—;~+t and thus

F(x)= f( )+f(:)—a—b=g(%_)+b+a+h(:)—a-b=

r
2
~e(5 e h=f (54 1)1

G (x)= %)+g(r)—a=g(—;—)+h(t)—(a+h(t))+g(r>=

ol
= ( )—f(t)+g(t)éf(X)—f(‘)+g(’)=
gx

x)+b—g({t)—b+g(t)=g(x) and similarly H (x)=h (x).

3) If x&[r, rV2), then %6[0, r) and so by (ii), B./1. and B./2. we have

reo=rGo5)-o () (3o () )

4) It is easy to see that
f(=x)=-f(x)+2(a+b), x&D,,,,
g(—x)=—-gx)+2a, . xED,,
h(—=x)=—h(x)+2b, xeD,,

and similarly for functions F, G, H for all x&R. On the basis' of the above
F(x)=f(x) for all x&(-r}2,0),

G(x)=g(x) _
H=hx) } for all x&(—r, 0)

and thus (iii) is proved.
C) Finally we show that (F, G, H) is the unique extension of (f, g, h)
from X,.
Namely if (F,, G,, H,) is also an extension of (f, g, k) from K, then
by (iii)
F@Q)=F, 0)=f(0)=a+b,
n G(0)=G,(0)=g(0)=a,

H(0)=H, (0)=h(0)=b.
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Let ¢ be an arbitrary real number. There exist x&|O0, —;—-) and n&Z such that

t=nx, furthermore one easily proves that for all x&R and for all n€Z
F(nx)=nF{x)—(n—1) (a+b),

)] Gnx)=nG(x)—(n—1)a,
Hmx)=nH(x)—(n—1)b,

and similarly for functions F,, G,, H,.
By virtue of (1), (2) and (iii) we have

F(t)=Fmx)=nF(x)—(n—1) (@a+b)=nf(x)—(n—1) (a+b)=
—nF,(x)—(n—1) (a+b)=F, () =F, ()

and G(1))=G, (1), H({t)=H,(t) for all tER, q.e.d.

Before formulating Theorem 2. we note the following:

Let DCR?* (D# @), f:D,,,~E, g:D,~E,
h:D,—~E be functions such that

SFx+y)=g@®)+h(»), (xy)ED.
If (F*, G*, H*) is a quasi-extension of (f, g, h) from the set D and
F*(x)=F*(x)+¢, G*(x)=G*(x)+c,, H*(x)=H*(x)+c; (xER),

where ¢, ¢,, ¢c,€ E and ¢, —c,—¢;=0, then (F,*, G*, H*) is also a quasi-exten-
sion of (f, g, h) from D.

In the sequel the quasi-extensions of the two above types of (f, g, A)
will be regarded as equivalent.

Define the set K, (u, VVCR? as follows:

K, (u, v={(x, y)| (x—u)*+ (y—~v)?<r?} (r>0is a constant and (v, v)ER?).
Then we have

Theorem 2. (cp. [2], Satz 3) Let f:(K, (,)),,,—~E, g: (K (u,v)),~E,
h: (K, (u,v)),—~ E be functions such that

fx+y)=g®+h(), (x, yEK, (4, ).

Then (f, g, h) has a quasi-extension (F*, G*, H*) from the set K, (u, v) which is
unique up to equz'valence

Proof. Putx X+u and y=Y+v, where (X, Y)EK,. Then (x, y)E
€K, (u,v) and

3) SX+Y+u+vy=gX+uw+h(Y+v), (X, V)EK,.
Setting Y=0 and X=0 in (3) we obtain
“4) S +utn=gX+w+h(), XE(K,),
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and

&) fY+uty=gW+h(Y+v), YE(K),
respectively.

Define functions f*, g*, A* by

f*X)=fX+utv), XE(K)xry
grX)=f(X+utv)-g), X&(K), and
) P X)=fX+u+v)-h(), Xc(K),
By virtue of equations (3), (4) and (5) we have
[¥*X+Y)=g*(X)+h*(Y) for all (X, Y)EK,.

By virtue of Theorem 1. (f*, g*, h*) has one and only one extension (F*, G*, H*)
from the set X,.

Obviously,
F*(x+y)=G*(x)+ H* () for all (x, y)ER™

Now we prove that 3° also holds. First choose x& (K, (4, v)),. Then
G*()-G*W=G*X+u)-G*W)=F*X+u+v)-H*()-G*(u)=
=G*(X)+ H* (u+v)—H* (»)—G* (w)=G* (X)-G* (0)=
=g*(X)-g*O)=f(X+u+)—gW)—fu+N+g )=
=fX+u+v)—g@)—h()=gX+u)-gW)=g(x)—g @)
In a similar manner we can prove that
H* (x)—H* ()=h(x)—h () for all xE(K, (u,v)),.
Finally if t&(X, (u.v)),,,, then we can write t=x+y, where x=(K, (4, v)),
and ye (KX, (u,v)),. Thus
F*(t)-F*(u+v)=F*(x+y)—F*(u+v)=
=G*()—-G* W+ H*()-H*()=g(x)—g W)+
+hM)-hO) =G+ y)—f@+v)=f(O)-fu+v).

By a simple calculation it can be shown that (F*, G*, H) is the unique
quasi-extension of (f, g, h) from K, (u, v), apart from equivalence, q.e.d.

The following lemma has fundamental importance for the proof of the
main result of the present paper:

Lemma. (cp. [2], Hilfssatz) Let DCR? be a set, D=D"JD? where
DY, D?* are open sets and D'\D*# . Furthermore let f:D,, ,—E, g:D,~E,
h:D,~E be functions such that

fx+N=g®@)+h®), (x yED.

Assume that (f, g, h) has a quasi-extension (F, G, H,) unique up to equivalence
from the set D! (i=1,2). Then

F,(x)=F, (x)+¢;, G,(x)=G,(x)+¢,, H (x)=H,(x)+c¢, (x&R)
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and ¢, —c,—¢;=0 (¢}, ¢, ¢; < E) and with the notations F=F,, G=G,, H=H,
(F, G, H) is a quasi-extension of (f, g, h) from the set D, which is unique up
to equivalence.

Proof. First we note that the point (4, vW&D in Definition 2. can be
replaced by an arbitrary point (¢, d)& D.

It is known (see e. g., [1]) that there exist additive functions ¢,:R—E
and ¢,:R—E such that

(6) Fi(x)=9,(0)+a+b, G (X)=9¢,(x)+a, H(x)=9,(x)+b (xcR)
(i=1, 2), where a;=G;(0), b,= H, (0).

Let (¢,d)&D'N\D? be an arbitrary point. Since D! and D? are open,
DN D, contains an open interval I, and by our conditions we obtain

G (x)—G,(c)=g(x)—g(c) and G,(x)-G,(c)=g(x)—g(c), x&I,.
From this we have
G, (x)—G,(c)=G,(x)— G, (¢) for all x&I, and by (6)
¢ (D)+a,~9 (0)—a,=9,(x)+a,~9,(c)—a,, x&l,,

ie.
¢, (x—c)=9,(x—c) for all x&1I,.
Thus ¢, (x)=¢, (x) (x&R) and with the notation ¢ (x) =g, (x) we obtain
G, (¥)=9(x)+a, and G,(x)=¢(x)+a, for all xER,
ie.

G, (x)=G,(x)+a,—a, for all x&R.

. Similarly we can prove that

H,(x)=H,(x)+b,—b, and
F,(x)=F,(x)+a,+b,—a,—b, for all x&R.

With the notations ¢,=a,+b,—a,—b,, c,=a,—a,, ¢,=b,—b, one indeed
has ¢,—c¢,—¢;=0.

By a simple calculation we obtain that (F=F,, G=G, H=H)) is a
quasi-extension of (f, g, #) from D unique up to equivalence.

By the lemma and by theorem 2. one can prove the following

Theorem 3. (cp. [2], Satz 4.) Let DCR? (D @) be an arbitrary
open connected set and f:D,, ,—~E, g:D,—~E, h:D,~E be functions such that

fx+y)=g(x)+h(y), (x peED.

Then (f, g, h) has a quasi-extension (F, G, H) from the set D, which is unigue
up to equivalence.

Proof. Since Disopen and connected, there exist open disks K1, K2,..., K~,...
such that D= ) K’ and (K1UK*U .. .UKY)NK"* £ 5 (n=1, 2,...).

iml
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By virtue of Theorem 2. (f, g, A) has a quasi-extension (F,, G,, H,) from
the set K” (n=1, 2,...), which is unique up to equivalence. From this with
the aid of the Lemma, the statement of Theorem 3. already follows.

The author would like to thank Professor Z. Daréczy for the raising of
the problem and for his valuable advice.
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