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LATIN SQUARES, P-QUASIGROUPS AND GRAPH DECOMPOSITIONS
A. D. Keedwell

In this mainly expository paper, we discuss two particular types of quasi-
group (latin square) which have connections with other branches of mathe-
matics, notably with statistics, graph theory and coding theory.

A square nxn matrix L on n distinct symbols is called row complete if
every piir of symbols of L occurs just once as an adjacent pair of elements in
some row of L. It is called row latin if each symbol occurs exactly once in
each row of the matrix. The concepts column complete and column latin are
similarly defined. A square matrix which is both row latin and column latin
is called a latin square. '

We shall also find it convenient to call a rectangular matrix R of size

1 . . .
mxn or nxmrow complete, where m < —2—n , if each wunordered pair of its

symbols occurs just once as an adjacent pair of elements in some row of R.
Here, [ ] denotes “integer part®.

Row complete latin squares are used in statistics in connection with the
design of experiments. They are of particular value for the design of sequential
experiments but may also be useful for eliminating interactions between adjacent
plots in field experiments. A detailed explanation of these applications is given
in {2]. Here, we shall be content to give a single illustration. In an experiment
on farm animals, it is desired to apply a number of different dietary treat-
ments to a given animal in succession. The effect of a given treatment on the
animal may be affected both by the number of treatments which that animal
has already received and also by the nature of the immediately preceding
treatment which it has had applied to it. If several animals are available for
treatment, the first possibility can be allowed for statistically if it can be arranged
that the number n of animals to be treated is equal to the number of treatments
to be applied and if the order in which the treatments are to be applied to
these n animals is allowed to be determined by the order of the entries in the
n rows of an n xn latin square (whose n distinct elements denote the n treat-
ments). Then any particular experiment has a different number of predecessors
for each of the n different animals, since a given element of the latin square
is preceded by a different number of other elements in each of the n rows of
the square. The possibility of interaction between one experiment and the

41
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\

immediately preceding one can also be allowed for if the latin square chosen
is row complete. The resulting experiment is then said to be statistically “balanced«
both with respect to the effect of the immediately preceding expenment and
also with respect to the number of preceding experiments.

Until very recently, the only row complete latin squares known were
multiplication tables of groups (or quasigroups isotopic to groups). Also each
of these known row complete latin squares had the property that it could be
made column complete as well by a suitable reordering of its rows. In fact,
it is not difficult to show:

Theorem 1. Every row complete latin square which represents the
multiplication table of a group can be made column complete as well as row
complete by suitably reordering its rows.

Proof — Let the given square be the multiplication table of the group
G where h,h,, ..., h, and g, g,,..., 8, are two orderings of the elements of
G, as in Fig. 1.

h, hy -« hy -« h «-+ h,

gl &h gh

g &h gh

&s g
8 g
8n 8y hn
Fig. 1
Since the square is row complete the elements hit hy, hythy,.. sht hy

are all distinct and are the non-identity elements of the group in a new order
for suppose that h;'h, =h;'h =k say. Let the arbitrary element g of G

occur in the stb row of column u and in the ¢** row of column v. Then
g=g,h,=g h, The entries in the (u+ 1) column of row s and in the (v+1)th
column of row ¢ are g, h,,, = (g, h,) (h;'h,,)=gk and g, b, = (g, h) (B 1 h,, )=
= gk respectively. Hence, the ordered pair (g, gk) occur as adjacent elements
in both the s't and the #*® rows of the square, contrary to hypothesis.

Now let the rows be reordered according to the permutation

(gl gz ...g")
hrl h;l P h;—l
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so that the reordered square takes the form shown in Fig. 2. This reordering
will not affect the row completeness.

Moreover, in the new square each ordered pair of elements will occur
at most once as a pair of adjacent elements in the columns : for, suppose
that the entries of the (s, )*® and (z, v)*® cells are the same, equal to g say. Then,
hy'h,~=g=h;"h, The entries of the (s+1, %)% and (¢+1, »)* cells must then
be distinct, for Ay h,=hi} b, would imply (A3 k) (A B) =i}y k) (7' H,)
and so (h;11h)g=(hi1h)g. But then, A h,=h; ) h, whence (A h)'=
= (k7 h)"\. Thus we would have A lh, a=ht 'a, +1 Which is contrary to
hypothesis. This shows that the new square is column complete as well as row
complete and so proves the theorem.

[ h, h, h,
AT e hr'h,
hi'| hy'h, e
At g
! g
! e

Fig. 2.

The above theorem was first given in [8]. An examination of the proof
suggests the hypothesis that the theorem is also true for an inverse property
loop G which satisfies the identity (gh) (h~1k) =gk for all g, 4, k in G. However
(as V.D. Belousov pointed out to the author during the Conference itself) such
a loop is already a group. To see this, write A1k =/. Then k=(eh)(h"Lk)=
hl and so (gh)l=g(hl) for all g, A, I in G.

The multiplication table of finite group G can be written in the form
of a row complete latin square if and only if the group is sequenceable ; that
is, if and only if there exists an ordering of the elements g,, g,, ..., &, of G

such that the partial products p,=ng,. for s=1, 2,...n are all distinct. (For
i=1

the orginal proof, see [4].). To see the necessity of this condition, let the row

complete latin square L=(g,) be the multiplication table of G so that g;=g;g;.

In that case g,-]'g,,j“=gf1g,"g,-gj+l=gj_lgj+l=hj say for all values of i

Suppose that h;=h; for j'#j. Then, because gyy=g; for some value of i’
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(each element of G occurs exactly once in each column of L), we have
8it,jr 41 =8y b =g, ;=g ,,,. However, this contradicts the row completeness
of L. Thus k;# hy unless j'=j. Consider now the first row of L. Its j*® element is

8y =& (81 &) (g5 2,3 -(g,',}_lgu)= guh by - -h_,. Since the elements of

i=1
the first row of L are all different, it follows that the partial products [T 4,

k=1
for j=2,3,...,n—1 are all distinct, where the elements & %,,..., k,_; are
the non-identity elements of G. That is, the elements e, h h,,..., A, , form a
sequencing for G. To see the sufficiency of the condition, consider the latin
square L=(g;) where g;= p,"l Pj» p; being one of the partial products defined
above. We require to show that the ordered pair of elements (u, v) of G occur
consecutively in some row of L. That is, we require to find integers i, j such
that p;’'p,=u and p; ! pj+=v. From these two equations, ug;,,=v. This deter-
mines j. Then p;=p;u~1 and this fixes i. Thus, every pair of elements of G
occurs exactly once and L is row complete. ’

Evidently, p,=g,=¢ (where e denotes the group identity) is necessary
for a group G to be sequenceable. Ii the group G is abelian, it is known that
p,=e unless G has a unique element & of order two and that, in the Ilatter
case, p,=h. (see [12]). Thus, a finite abelian group can be sequenceable only
if it has a unique element of order two. B. Gordon [4] has proved that this
condition is sufficient as well as necessary. Namely, a finite abelian group is
sequenceable if and only if it is the direct product of two groups 4 and B
such that 4 is a cyclic group of order 2%, k>0, and B is of odd order.

As regards the sequenceability of groups of odd order, little is known.
It is clear from the preceding remarks that an abelian group of odd order
cannot be sequenceable. The non-abelian group of smallest odd order is the
(unique) non-abelian group of order 21 generated by two elements a and b
with the defining relations a”=5%=e¢, ab=ba?. This group has been shown to
be sequenceable by N. S. Mendelsohn [10]. The non-abelian group of order 27
generated by two elements a and b with the defining relations a?=5b?=e¢,
ab=ba", where p=9, g=3 and r=4, has been shown to be sequenceable by
the present author [6] and very recently the groups on two generators with
similar structure having orders 39 (p=13, ¢=3,r=3), 55(p=11, ¢=35, r=3)
and 57 (p=19, g=3, r=7) have been shown to be sequenceable by L. L. Wang
[13]. The present author has conjectured in [6] that all non-abelian groups on
two generators are sequenceable and the recent results of L.L. Wang lend
strength to this conjecture.

As regards non-abelian sequenceable groups of even order, B. Gordon
{4] has shown that the dihedral groups D, and D, of orders 6 and 8 are not
sequenceable, and J. Dénes and E. Torok [3] have shown that the dihedral groups
D, Dy, D, and Dg of orders 10, 12, 14 and 16 are sequenceable but that the
remaining non-abelian groups of orders less than or equal to 14 are not
sequenceable.

It is known that there are no row complete latin squares of orders 2, 3,
5 or 7. This has been shown by D. Warwick [14] and by P.J. Owens [11].
Very recently, P. J. Owens has constructed the first examples of row complete
latin squares which are not the multiplication tables of groups (that is, they
do not satisfy the quadrangle condition, see {2]). These are of orders 8 and
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10. He has also constructed a row complete latin square of order 14 which
cannot be made column complete as well by any reordering of its rows.

Finally, we mention that a row complete latin square of order n defines
a decomposition of the complete directed graph on n vertices into disjoint
Hamiltonian paths. To see this, let the vertices of the graph be labelled by
means of the symbols of the square. Then each row of the square defines a
Hamiltonian path whose directed edges are given by the ordered pairs of
adjacent symbols in that row. This fact was first observed by N. S. Mendelsohn

[10] and by J. Dénes and E. To6r6k [3]. If n is even, a row complete —%—n X n

latin rectangle similarly defines a decomposition of the complete undirected
graph on n vertices into disjoint Hamiltonian paths. Also, suitable row complete
latin rectangles exist for all even values of n, as is shown in [7] and [2].
(Since each Hamiltonian path has n—1 edges and the complete undirected

graph has —;~n (n—1) edges, no decomposition of this kind can exist if » is odd).

Another type of quasigroup (latin square) which defines decompositions
of the complete undirected graph is the so-called P-quasigroup (or partition
quasigroup ).

Let us first define a P-groupoid.

Definition. A groupoid (Q,-) is called a P-groupoid if it satisfies the
following three properties: (i) a-a=a for all a & Q; (i) a# b implies a*a-b
and b7#a-bfor all g, b & Q; (iii) a-b=c implies and is implied by c¢-b=a for
all a, b, c&€ Q.

A one-to-one correspondence between P-groupoids of # elements and
decompositions of the complete undirected graph on n vertices into disjoint
closed paths is easily established by labelling the vertices of the graph with
the elements of the P-groupoid and prescribing that the edges (a, b) and (b, ¢)
shall belong to the same closed path of the graph if and only if a-b=c, a#b.
We deduce at once that the number of elements of a P-groupoid is odd.
A P-groupoid which is also a quasigroup is called a P-quasigroup. Thus, a
P-quasigroup is an idempotent quasigroup with the additional property that
whenever the relation a-b=c holds in (Q,-) so also does the relation c-b=a.

The concepts of P-groupoid and P-quasigroup were introduced by A.
Kotzig [9]. The following facts were first pointed out in [7], [5], [1] and [8]
respectively.

Observation 1. 4 decomposition of the complete undirected graph on
n vertices v, v,, ..., v, into disjoint closed paths corresponds to a P-quasigroup
(V,-) if and only if, for fixed values of i and k, (v, v;) and (v;, v,) are adjacent
edges of a closed path for one and only one value of j.

Proof. If (¥,-) is a P-quasigroup, the entry k occurs once and once
only in the i*® row of the multiplication table of (V,-). Let the column in
which this entry occurs be the j*". Then we have i-j=k and (v;,v), (v, v,) are
adjacent edges of a closed path of G, for this value of j and no "other.

Observation 2. Commutative P-quasigroups of order n exist exactly

when n=1 or 3 mod 6 and then and only then the complete undirected graph
on n vertices can be decomposed into disjoint triangular circuits.
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Proof. The vertices of the triangles define the triads of a Steiner triple
system.

Observation 3. A P-yuasigroup of order n exists which defines a
decomposition of the complete undirected graph on n vertices into disjoint
Hamiltonian circuits whenever n is a prime.

Proof. We define the required P-quasigroup by taking the set V=
={1,2,...n} and observing that, if an operation (-) is defined on ¥ by the
statement r-s=2s—r (modr), we obtain a P-quasigroup (V,-) having the
desired property.

For further details and a discussion of the connection between (V,-) and
a certain row complete latin square, see [1].

Observation 4. The existence of a P-quasigroup of order n=2r+1
which defines a decomposition of "the complete undirected graph on n vertices
into a single Eulerian closed path is equivalent to the existence of a codeword
on 2r+1 symbols of length r(2r+1)+1 in which no pair of consecutive
symbols and no pair of nearly consecutive symbols is repeated.

Proof. Two symbols of a codeword are said to be nearly consecutive
if they are separated by a single symbol. We may establish a correspondence
between Eulerian circuits of the complete undirected graph G, on n vertices and

codewords of length %n (n—1)+1 by regarding each pair of consecutive symbols

of the codeword as representing an edge of the graph joining the vertices
represented by those two symbols. The last symbol of the codeword is taken
to be the same as the first in order that the path represented should be closed.
Since each edge of the graph occurs exactly once in an Eulerian circuit, each pair
of consecutive symbols must occur once and only once in the corresponding
codeword. Also if the Eulerian circuit is to correspond to a P-quasigroup,
each pair of nearly consecutive symbols must occur in the codeword at most
once otherwise the property stated in observation 1 above would be violated.

In his original paper [9], A. Kotzig raised the question <“For which
values of n does a P-quasigroup exist which defines a decomposition of the com-
plete undirected graph on » vertices into a single Eulerian closed path 7’ He
showed that such a P-quasigroup exists for the orders n=3 and 7 but not
when n=135. Subsequent work on this topic has made use of the equivalence
with the codeword existence problem which is stated in observation 4 above
and has shown that suitable P-quasigroups exist whenever n=4r+3 except
possibly when r=127 mod 595 and whenever n=4r+1 (r# 1) except possibly
when r=5 mod 7.

The main theorem required is as follows:

Theorem 2. Let U denote a sequence of non-zero integers U Uy us Uy
such that —r<u,<r and |u;| # |u;| unless j=1 (so that |u |, |u,|,...,|u.|isa
s

reordering of the natural numbers 1, 2,...r). Let 6,= > mod 2r+1. Also,
=1

let u;+u, ,=h, mod 2r+1 for i=1,2,...,r—1, where —r<h,<r; and let h,

denote the smallest integer congruent to u, +u, modulo 2r+1. Then, if such a
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sequence U exists with the following additional properties: (a) the integers | h; |
are all distinct for i=1,2,...,r; and (b) (6,,2r+1)=1, there exists a code-
word on 2r+1 symbols of length r (2r+1)+1 in which no pair of consecutive
symbols and no pair of nearly consecutive symbols is repeated. (Equivalently,
there exists an Eulerian circuit of the complete undirected graph on 2r+41
vertices which corresponds to a P-quasigroup).

If such a sequence U exists with the following alternative additional pro-
perties: (a)* the integers |h;| are all distinct for i=1,2,...,r—1 and no one
of them is equal to 1; (b)* u,=1 or 2; and (¢)* i fu,=1, (-3+¢,, 2r+1)=1;
if uy=2, (=2+a,, 2r+1)=1, then there exists a codeword on 4r+3 symbols
of length 2r+1)(4r+3)+1 in which no pair of consecutive symbols and no
pair of nearly consecutive symbols is repeated.

The second part of this theorem is due to the present author and a
proof will be found in [8). The first part is the joint work of the present
author and A.J. W. Hilton. It is proved in [5].

Once the theorem has been established, it only remains to show the
existence of suitable sequences U. By way of illustration we state the following
theorem which is proved fully in [5].

Theorem 3. The following sequences U satisfy the conditions (a) and (b)
of theorem 1: —

r=2t; uy= —2t, u,=2¢t-2, u;=2t—-4,...,u,_,=4, u,=2, u, =1,
Upy=3, ..., Uy =2t-3, U,,;=2t—1, modulo 4t+1; t#1 and t% 5 mod 7,

r=2t+1; uy=—(2t+1), u,=2t-1, u3=2¢-3,...,u4=3, u, =1,
Upy=2, Uy y=4, ..., Uy =212, Uy, , =21, modulo 4¢+3; t¥# 1 mod 1.

Theorem 2 and the sequences obtained in [8] and [5] together solve
Kotzig’s problem for all values of n of the form 4r+1 except r=1and r=35
mod 7 and they also solve it for all values of n of the form 4r+3 except
when r=127 mod 595. It is likely that the construction of further sequences
U which satisfy the conditions of theorem 2 (that is, sequences U additional
to the several classes of such sequences obtained in [8] and [5]) would enable
Kotzig’s P-quasigroup problem and the equivalent codeword existence problem
to be resolved completely.
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