Симпозијум КВАЗИГРУПЕ И ФУНКЦИОНАЛНЕ ЈЕДНАЧИНЕ Symposium en QUASIGROUPES ET EQUATIONS FONCTIONNELLES Београд—Нови Сад, 18—21. 9. 1974.

A CLASS OF BALANCED LAWS ON QUASIGROUPS (II)

Branka P. Alimpić

In this paper we enlarge the results, obtained in [1] for a class of balanced laws of the I kind on an analogous class of balanced laws of the II kind. In both cases the operations, satisfying the laws, are quasigroups, defined on a nonempty set S.

Let $w_1 = w_2$ be a balanced law of the II kind in the form

(1)
$$A(u_1, \ldots, u_m) = B(v_1, \ldots, v_n), m > 2, n > 2,$$

where u_i $(i=1,\ldots,m)$ is either a variable or a term A_i $(x_{i_1},\ldots,x_{i_{\alpha}}), x_{i_1},\ldots,x_{i_{\alpha}}$ being variables, analogously v_j $(j=1,\ldots,n)$ is either a variable or a term B_i $(x_{i_1},\ldots,v_{i_{\beta}}), x_{i_1},\ldots,x_{i_{\beta}}$ being variables. A, B, A_i, B_j are functions letters.

For (1) we suppose the following conditions hold:

- (i) For any two terms u_i and v_j there is at most one variable occurring in each of them.
- (ii) If in each of two terms u_i and $u_k(v_j, v_h)$ occurs exactly one variable, these variables occur in different terms v_j , $v_h(u_i, u_k)$ respectively.
- (iii) The order of occurrence of the variables in any term u_i (v_j) is equal to the order of occurrence of these variables in the term w_2 (w_1) .

For example, such is the law

$$A(A_1(x, y, z, u), A_2(v, w), t) = B(x, B_2(y, v), B_3(z, t), B_4(u, w)).$$

In the set of terms $T = \{u_1, \ldots, u_m, v_1, \ldots, v_n\}$ we introduce the relation of connectness defined in [1], and in the set of all quasigroups derived from A and B we introduce the relations \Rightarrow and \Leftrightarrow , defined in [1], too.

For the laws of the II kind, hold the lemmas, analogous to the lemmas 1, 2, 3 from [1]. The proofs of the lemmas 2 and 3 rest unchanged, for the lemma 1 we need a new proof.

Lemma 1. If all terms u_i, v_j of the law (1) are connected, for any two binary quasigroups $L^P_{\alpha\beta}$ and $L^Q_{\mu\nu}$ $(P, Q \leftarrow \{A, B\})$, derived from A and B, we have $L^P_{\alpha\beta} \Leftrightarrow L^Q_{\mu\nu}$.

2*

Proof. First, if $L_{\alpha}^{A} \longleftrightarrow L_{\mu}^{B}$, and $\beta > \alpha$, there exists $\nu \neq \mu$ such that $L_{\alpha\beta}^{A} \longleftrightarrow L_{\mu\nu}^{B}$ ($L_{\mu\nu}^{B} = L_{\mu\nu}^{B}$, for $\mu < \nu$, and $L_{\mu\nu}^{B} = L_{\nu\mu}^{B}$, for $\nu < \mu$). Indeed, if $L_{\alpha}^{A} \overset{\times}{\longleftrightarrow} L_{\mu}^{B}$, then x occurs in the terms u_{α} and ν_{μ} . The term u_{β} either contains a variable y occuring in some term ν_{ν} , $\nu \neq \mu$, or contains only one variable y occuring in the term ν_{μ} . In the first case we get $L_{\alpha\beta}^{A} \overset{xy}{\longleftrightarrow} L_{\mu\nu}^{B}$, and in the second case, in view of (ii), there exists a variable z occurring in the term u_{α} and in a term ν_{ν} , $\nu \neq \mu$, and we get $L_{\alpha\beta}^{A} \overset{zy}{\longleftrightarrow} L_{\mu\nu}^{B}$.

Since for every two L^P_{α} and L^Q_{μ} holds $L^P_{\alpha} \Leftrightarrow L^Q_{\mu}$, it follows for every $L^P_{\alpha\beta}$ and L^Q_{μ} $(P,Q \in \{A,B\})$ there exists ν so that $L^P_{\alpha\beta} \Leftrightarrow L^Q_{\overline{\mu}\overline{\nu}}$.

Further, for every α , β , μ , $\alpha < \beta$, $\beta \neq \mu$ we get $L^P_{\alpha\beta} \Leftrightarrow L^P_{\overline{\mu}\overline{\beta}}$ $(P \in \{A, B\})$. Let us consider a sequence

$$L^p_{\alpha} \longleftrightarrow L^p_{\alpha} \longleftrightarrow L^p_{\sigma} \longleftrightarrow \cdots \longleftrightarrow L^p_{\tau} \longleftrightarrow L^p_{u}$$

defining $L^P_{\alpha} \leftrightarrow L^P_{\mu}$. There exists an index ν so that $L^P_{\alpha\beta} \leftrightarrow L^Q_{\rho\nu}$. If $\sigma \neq \beta$, then $L^Q_{\rho\nu} \leftrightarrow L^P_{\sigma\beta}$, if $\sigma = \beta$, then $L^Q_{\rho\nu} \leftrightarrow L^P_{\alpha\sigma} = L^P_{\alpha\beta}$. On this way, we get finally $L^P_{\alpha\beta} \leftrightarrow L^P_{\mu\beta}$, Let $L^P_{\alpha\beta}$ and $L^Q_{\mu\nu}$ be two arbitrary quasigroups. There exists an index λ so

Let $L^P_{\alpha\beta}$ and $L^Q_{\mu\nu}$ be two arbitrary quasigroups. There exists an index λ so that $L^P_{\alpha\beta} \Leftrightarrow L^Q_{\mu\lambda}$, and $L^Q_{\mu\lambda} \Leftrightarrow L^Q_{\mu\nu}$. Hence we get $L^P_{\alpha\beta} \Leftrightarrow L^Q_{\mu\nu}$, and the lemma is proved.

Let $L^P_{\alpha\beta}$ and $L^P_{\mu\nu}$ $(P,Q\in\{A,B,A_i,B_j\})$ be two derived quasigroups so that $L^P_{\alpha\beta}\stackrel{xy}{\longleftrightarrow} L^Q_{\mu\nu}$. Since the law (1) is of the II kind, we have either

$$\varphi L_{\alpha\beta}^{P} (\varphi_1 x, \varphi_2 y) = \psi L_{\mu\nu}^{Q} (\psi_1 x, \psi_2 y), \text{ or}$$
$$\varphi L_{\alpha\beta}^{P} (\varphi_1 x, \varphi_2 y) = \psi L_{\mu\nu}^{Q} (\psi_2 y, \psi_1 x).$$

In the second case we say the relation $L^p_{\alpha\beta} \leftrightarrow L^Q_{\mu\nu}$ is an inversion.

Let \approx be the following equivalence relation of the set I_2 of all quasi-groups $L^P_{\alpha\beta}$ ($P \in \{A, B, A_i, B_j\}$). For $L^P_{\alpha\beta}$, $L^Q_{\mu\nu} \in I_2$ we put $L^P_{\alpha\beta} \approx L^Q_{\mu\nu}$, iff $L^P_{\alpha\beta} \Leftrightarrow L^Q_{\mu\nu}$ and there exists at least one sequence defining $L^P_{\alpha\beta} \Leftrightarrow L^Q_{\mu\nu}$ with an even number of inversions.

The relation \approx is containing in the relation \Leftrightarrow , more preciselly, each class C_{\Leftrightarrow} of the relation \Leftrightarrow is the union of at most two classes C_{\approx}' and C_{\approx}'' of the relation \approx .

Let all terms u_i , v_j of the law (1) be connected. By the lemmas 1 and 3, for every two operations $L^P_{\alpha\beta}$ and $L^Q_{\mu\nu}$ $(P,Q\in\{A,B,A_i,B_j\})$ we have $L^P_{\alpha\beta}\Leftrightarrow L^Q_{\mu\nu}$. We distinguish two cases:

1.
$$C \Leftrightarrow = C \approx$$
,

2.
$$C_{\Leftrightarrow} = C'_{\approx} \cup C''_{\approx}$$
.

In the case 1, there are two possibilities:

1.' From the law (1) does not yield any inversion, that is the law (1) is of the I kind.

1." From the law (1) yields at least one inversion, that is, the law (1) is of the II kind.

In the case 1" for every quasigroup $L^P_{\alpha\beta}$ there exists at least one sequence defining $L^P_{\alpha\beta} \Leftrightarrow L^P_{\alpha\beta}$ with an odd number of inversions. Let, for example, the relation $L^P_{\gamma\delta} \leftrightarrow L^Q_{\mu\nu}$ be an inversion. Since $L^P_{\alpha\beta} \approx L^P_{\gamma\delta}$ and $L^Q_{\mu\nu} \approx L^P_{\alpha\beta}$, there exists a sequence $L^P_{\alpha\beta} \Leftrightarrow L^P_{\gamma\delta} \leftrightarrow L^Q_{\mu\nu} \Leftrightarrow L^P_{\alpha\beta}$ with an odd number of inversions.

In the case 2 each sequence defining $L^P_{\alpha\beta} \Leftrightarrow L^P_{\alpha\beta}$ has an even number of inversions. Indeed, let, for example, be $L^P_{\alpha\beta} \in C'_{\approx}$, and let exist a sequence defining $L^P_{\alpha\beta} \Leftrightarrow L^P_{\alpha\beta}$ with an odd number of inversions. Let $L^P_{\mu\nu} \in C'_{\approx}$, and $L^Q_{\rho\lambda} \in C''_{\approx}$. Then there exists a sequence $L^P_{\mu\nu} \Leftrightarrow L^P_{\alpha\beta} \Leftrightarrow L^P_{\alpha\beta} \Leftrightarrow L^Q_{\lambda\rho}$ with an even number of inversions, that is, $L^P_{\mu\nu} \approx L^Q_{\lambda\rho}$, what is in contradiction with the assumption about $L^P_{\alpha\beta}$ and $L^Q_{\alpha\beta}$.

assumption about $L^P_{\mu\nu}$ and $L^Q_{\lambda\rho}$.

Let for the law (1) hold 2. We change all operations $L^P_{\alpha\beta}$ of one of the classes, say C''_{\approx} , with the operations $L^{P^*}_{\alpha\beta}(L^{P^*}_{\alpha\beta}(x,y) \stackrel{\text{def}}{=} L^P_{\alpha\beta}(y,x))$. The obtained law $w_1^* = w_2^*$ is of the I kind. Indeed, from so obtained law $w_1^* = w_2^*$ it yields $C_{\approx} = C_{\Leftrightarrow}$, and for every operation $L^P_{\alpha\beta}$ each sequence defining $L^P_{\alpha\beta} \Leftrightarrow L^P_{\alpha\beta}$ has an even number of inversions.

Hence, we can consider only the laws of the II kind for which the relation \Leftrightarrow and \approx on the set I_2 are the same.

Theorem 1. Let all quasigroups derived from quasigroups satisfying the law (1) be in the relation \approx . Then there exist a commutative group (S, o) so that the following equalities hold:

$$A(x_1, \dots, x_m) = L_1^A x_1 \circ \dots \circ L_m^A x_m$$

$$B(x_1, \dots, x_n) = L_1^B x_1 \circ \dots \circ L_n^B x_n$$

$$L_i^A A_i(x_1, \dots, x_n) = L_i^A L_1^{Ai} x_1 \circ \dots \circ L_i^A L_n^{Ai} x_n$$

$$L_i^B B_j(x_1, \dots, x_n) = L_i^B L_1^{Bj} x_1 \circ \dots \circ L_i^B L_n^{Bj} x_n$$

Proof. In the set S we introduce the binary operation \circ defined by

$$L_{12}^{A}(x, y) = L_{1}^{A} x \circ L_{2}^{A} y.$$

Let $L^P_{\alpha\beta}$ and $L^Q_{\mu\nu}$ $(P,Q\in\{A,B\})$ be two quasigroups derived from the law (1) so that $L^P_{\alpha\beta}\leftrightarrow L^Q_{\mu\nu}$ holds. If this relation is an inversion, and if $L^P_{\alpha\beta}(x,y)=L^P_{\alpha}\times L^P_{\beta}y$, we have $L^Q_{\mu\nu}(x,y)=L^Q_{\nu}y\circ L^Q_{\mu}x$.

Since all quasigroups $L^P_{\alpha\beta}$ are in the relation \approx , and for every $L^P_{\alpha\beta}$ there exists a sequence with an odd number of inversions, defining $L^P_{\alpha\beta} \Leftrightarrow L^P_{\alpha\beta}$, we get

$$L_{\alpha\beta}^{P}(x, y) = L_{\alpha}^{P} x \circ L_{\beta}^{P} y, \text{ and}$$

$$L_{\alpha\beta}^{P}(x, y) = L_{\beta}^{P} y \circ L_{\alpha}^{P} x.$$

Hence, we get for every $x, y \in S$

$$L^{P}_{\alpha} x \circ L^{P}_{\beta} y = L^{P}_{\beta} y \circ L^{P}_{\alpha} x.$$

Since $L^{\mathbf{p}}_{\alpha}$ and $L^{\mathbf{p}}_{\beta}$ are bijections, we have

$$x \circ y = y \circ x$$

that is, the operation o is commutative.

The proof of the rest of the theorem is analogous to the proof of the theorem 1 in [1].

Now we suppose the relation of connectness of the set $T = \{u_1, \ldots, u_m, v_1, \ldots, v_n\}$ of the law (1) has r(r>1) equivalence classes $C_i = \{u_{\alpha_i}, \ldots, u_{\beta_i}, v_{\gamma_i}, \ldots, v_{\delta_i}\}$, $i=1,\ldots,r$. Introducing quasigroups A and B conjugated with A and B respectively, from (1) we obtain a law in the form

(2)
$$A(u_{\alpha_1},\ldots,u_{\beta_1},\ldots,u_{\alpha_p},\ldots,u_{\beta_p})=B(v_{\gamma_1},\ldots,v_{\delta_1},\ldots,v_{\gamma_p},\ldots,v_{\delta_p}).$$

For the law (2) hold all results obtained in [1] for the analogous law of the I kind.

Finally, let us consider an arbitrary law in the form

(3)
$$A(A_1(x_1,\ldots,x_{\alpha}),\ldots,A_m(x_{\beta},\ldots,x_{\beta}))=B(B_1(y_1,\ldots,y_{\gamma}),\ldots,B_n(y_{\delta},\ldots,y_{\beta})),$$

where the sequence y_1, \ldots, y_p is a permutation of x_1, \ldots, x_p , and A, B, A_i and B_i are quasigroups on a set S. Such a law can be transformed into a law (1) satisfying conditions (i), (ii) and (iii) by substitution of some quasigroups by GD-groupoids.

We give an example.

Tet

$$A(A_1(x, y), z, A_3(u, v), A_4(w, t)) = B(x, B_2(y, z), B_3(u, w), B_4(v, t))$$

be the functional equality by unknown quasigroups A, B, A_1, \ldots, B_4 of a set S. A general solution of this equality is given by

$$A(x, y, z, u) = \pi (\alpha x \circ \beta y, \mu z + \nu u),$$

$$B(x, y, z, u) = \pi (\gamma x \circ \epsilon y, \sigma z + \tau u),$$

$$\alpha A_1(x, y) = \gamma x \circ \delta y,$$

$$\epsilon B_2(x, y) = \delta x \circ \beta y,$$

$$\mu A_3(x, y) = \lambda x + \rho y,$$

$$\nu A_4(x, y) = \omega x + \pi y,$$

$$\sigma B_3(x, y) = \mu x + \omega y,$$

$$\tau B_4(x, y) = \rho x + \pi y,$$

where π is an arbitrary loop, \circ is an arbitrary group, + is an arbitrary commutative group, and α , β , ..., π are arbitrary bijections of the set S.

REFERENCE

[1] B. P. Alimpić, A class of balanced laws on quasigroups (1). Ibidem

Симпозијум КВАЗИГРУПЕ И ФУНКЦИОНАЛНЕ ЈЕДНАЧИНЕ Symposium en QUASIGROUPES ET EQUATIONS FONCTIONNELLES Београд—Нови Сад, 18—21. 9. 1974.

ON EXTENDING OF SOLUTIONS OF FUNCTIONAL EQUATIONS IN A SINGLE VARIABLE

Karol Baron

In this talk I want to present two results regarding the problem of the unique extension of solutions of the functional equation

(1)
$$\varphi(x) = h\left(x, \triangle_{s \in S} \varphi \circ f_{s}(x)\right)$$

in which

$$h: X \times Y^S \to Y$$
 and $f_s: X \to X$, $s \in S$,

where X, Y and S are arbitrary sets, are given functions. Here and in the sequel Y^S denotes the set of all functions from S into Y with the Tychonoff topology in the case where Y is a topological space whereas $\triangle g_s$ denotes the diagonal

of a family of transformations $\{g_s: s \in S\}$ (i.e. if g_s map X into Y, $s \in S$, then $\triangle g_s$ is a map from X into Y^S such that for the projection map p_s

$$p_s \circ \underset{s \in S}{\triangle} g_s = g_s, \quad s \in S$$
).

Theorem 1. Let $U \subset X$ be an arbitrary set such that

$$(2) f_s(U) \subset U, s \in S.$$

If

(i) for every $x \in X$ there exists a positive integer k such that for every $s_1, \ldots, s_k \in S$

$$f_{s_1} \circ \cdot \cdot \cdot \circ f_{s_k}(x) \in U$$
,

then for every solution $\varphi_0: U \to Y$ of the equation (1) there exists exactly one solution $\varphi: X \to Y$ of it such that $\varphi|_U = \varphi_0$.

Moreover, if X and Y are topological spaces, U is open, h, f_s , $s \in S$, and φ_0 are continuous functions and

(ii) for every open set V such that $U \subset V \subset X$ we have $\bigcap \{f_s^{-1}(V): s \in S\}$ open, then φ is also continuous.

The hypothesis (i) in this theorem cannot be replaced (an example may be given) by

(iii) for every $x \in X$ there exists a positive integer k such that for every $s \in S$, $f_s^k(x) \in U$.

On the other hand the hypothesis

(iv) X is a closed subset of a finite dimensional Banach space and $\{f_s: s \in S\}$ is a locally equicontinuous family such that for a certain $\xi \in X$

(3)
$$\sup \{ \|f_s(x) - \xi\| : s \in S \} < \|x - \xi\|, \quad x \in X \setminus \{\xi\},$$

implies (i) whenever U is open (in X) and $\xi \in U$.

Theorem 2. Let X be a closed and convex subset of a finite dimensional Banach space, $U \subset X$ an open set (in X) such that condition (2) is satisfied. If $\{f_s: s \in S\}$ is a locally equicontinuous family such that (3) holds for a certain $\xi \in U$, then for every solution $\varphi_0: U \to Y$ of (1) there exists exactly one solution $\varphi: X \to Y$ of it such that $\varphi|_U = \varphi_0$.

Moreover, if Y is a topological space, h and φ_0 are continuous functions, then φ is also a continuous function.

In view of the above mentioned connexion between hypotheses (iv) and (i) the first part of Theorem 2 follows from Theorem 1. However, in the other part of Theorem 2 the restrictive hypothesis (ii) does not occur.

On the other hand the proof of Theorem 1 is effective contrary to the proof of Theorem 2 where the Kuratowski-Zorn Lemma is used.

Department of Mathematics Silesian University Katowice, Poland.