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A CLASS OF BALANCED LAWS ON QUASIGROUPS (II)
Branka P. Alimpié

In this paper we enlarge the results, obtained in [1] for a class of balanced
laws of the I kind on an analogous class of balanced laws of the II kind. In
both cases the operations, satisfying the laws, are quasigroups, defined on a

nonempty set S.
Let w,=w, be a balanced law of the II kind in the form

(1) Ay, ...,u)=B@,...,v), m>2,n>2,

where u, (i=1,...,m) is either a variable or a term A4; (Xi,,..., Xia), Xi, .00, Xt
being variables, analogously v; (j=1,...,n) is either a variable or a term
B; (xiys+ .. Vig)y Xiy»...,Xig being variables. 4, B, 4, B, are functions letters.

For (1) we suppose the following conditions hold:

() For any two terms u; and v, there is at most one variable occuring
in each of them.

(ii) If in each of two terms u; and u, (¥, v,) occurs exactly one variable,
these variables occur in different terms v, v, (u;, u,) respectively. )

(iii) The order of occurence of the variables in any term u; (v) is equal
to the order of occurence of these variables in the term w, (w,).

For example, such is the law

A (4, (x, 3, 2,u), 4, (7, W), 1) = B(%, B, (», V), B, (2, 1), B, (u, w).

In the set of terms T={w,...,u,,v,...,v,} we introduce the relation
of connectness defined in [1], and in the set of all quasigroups derived from A4
and B we introduce the relations => and &, defined in [1], too.

For the laws of the II kind, hold the lemmas, analogous to the lemmas
1, 2, 3 from [1]. The proofs of the lemmas 2 and 3 rest unchanged, for the
lemma 1 we need a new proof.

Lemma 1. If all terms u,v, of the law (1) are connected, for any two
binary quasigroups L%, and Lg, (P, Q<= {4, B}), derived from A and B, we
have Lf & L2
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Proof. First, if Lfe—)Lﬁ, and f>«, there exists v#u such that
y) B,rB _ B B B e rd X

Lay—)L‘E(L‘;:—- we 10T u<v, and L =L_, for v<p). Indeed, if L’ L3
then x occurs in the terms u, and v,. The term wug either contains a vari-
able y occuring in some term ¥, vy, or contains only cne variable y

. . . xy B .
occuring in the term v,. In the first case we get Lz« Lj;,and in the second
case, in view of (ii), there exists a variable z occuring in the term w, and in

a term v,, v#u, and we get L:Q&L%.
Since for every two LF and L2 holds L7 <> L2, it follows for every L
and L2 (P, Q € {4, B}) there exists v so that Lfﬁ(z)L%.

Further, for every «, 8, u, a<B, B we get L2, < LT, (PE {4, B}).
Let us consider a sequence

P Peyoo P
Lo L2 L [P LE

defining L <—-)L£ . There exists an index v so that L:aé——)L‘%. If 6#p, then
L%(——»L%, if 6=p, then L%(—-)L56=L:B. On this way, we get finally La% HLEE,
Let Lf, and L2 be two arbitrary quasigroups. There exists an index A so
that L{:B@L%, and L%@Lfv. Hence we get Liﬂ(:)Lfv, and the lemma is
proved.
Let Li’a and L.}:\. (P,QE {4,B, 4, B;}) be two derived quasigroups so

that Leg<s L2, Since the law (1) is of the II kind, we have either
¢ sz @ %9,5)=¢ Lf,, (s x4, ¥), or
P L};g @1 %, 9, y)= q) L‘?\, (‘pz 3 ‘-h x).

In the second case we say the relation L7« L2 is an inversion.

Let ~ be the following equivalence relation of the set I, of all quasi-
groups LE (P& {4, B, 4;,B;}). For Lf,, L2 € I, weput LY ~ 1.2, iff LY < 19
and there exists at least one sequence defining Lf & [ 9 with an even number
of inversions.

The relation a is containing in the relation <, more preciselly, each
class Ce, of the relation & is the union of at most two classes C_, and C_
of the relation ~.

Let all terms u;, v; of the law (1) be connected. By the lemmas 1 and
3, for every two operations Lf; and L2 (P, Q € {4, B, A;, B;}) we have L, o112,
We distinguish two cases:

1. C¢=;=CN9
2. C=)=C; U C;.

In the case 1. there are two possibilities:

1. From the law (1) does not yield any inversion, that is the law (1) is
of the T kind.
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1.” From the law (1) yields at least one inversion, that is, the law (1)
is of the II kind.

In the case 1” for every quasigroup LE, there exists at least one sequence
defining Lf, < LY with an odd number of inversions. Let, for example, the
relation LP <——>LQ be an inversion. Since L, ~ LE and L2 ~ Lf,, there exists
a sequence L? <==>LP (-——)LQ & L7, with an odd number of inversions.

In the case 2 each sequence defmmg Lf <& LF has an even number of
inversions. Indeed, let, for example, be L{:B 6 CN, and let exist a sequence
defining L%, & L%, with an odd number of inversions. Let L € C,, and
LG C, Then there exists a sequence LY & LT, & LE < Lg with an even
number of inversions, that is, LT ~ L2, what is in contradlctlon with the
assumption about LY and Lg.

Let for the law (1) hold 2. We change all operations LF; of one of the

classes, say CN, with the operations LP‘ (L A (x, y) Lgﬂ o, x)) The obtained
law wy=w} is “of the I kind. Indeed, from so obtained law w]=wj it yields
Cz'-ca: and for every operation L” each sequence defining LP <> L% has an
even number of inversions.

Hence, we can consider only the laws of the II kind for which the rela-
tion & and =~ on the set I, are the same.

Theorem 1. Let all quasigroups derived from quasigroups satisfying the
law (1) be in the relation ~. Then there exist a commutative group (S, o) so
that the following equalities hold:

A(xgy. .., =L4xo. . oLdx,
B(xp...;x)=L¥x0- . oLBx,
LEd;(xy. .., X)=LALfixo- - oLAL% X,
L7By(xp...,x)=LEL%x0.--oLBLB x,
Proof. In the set S we introduce the binary operation o defined by
L, (x, ) =L{xoL{y

Let LF and L2 (P,Q €{4,B}) be two quasigroups derived from the law
(1) so that LfBHLEV holds. If this relation is an inversion, and if L” (x, )=
=LlPxoLfy, we have LO (x,y)=L2 yoL2x.

Since all quasigroups L:a are in the relation ~, and for every Lﬁa there
exists a sequence with an odd number of inversions, defining Li’BchB, we get

L3 (6 p)=LExo LYy, and
Hence, we get for every x,y € S -

fooL€y=Lé’yoLf X.
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Since L% and Lg are bijections, we have
Xoy=yox,

that is, the operation o is commutative.

The proof of the rest of the theorem is analogous to the proof of the
theorem 1 in [1].

Now we suppose the relation of connectness of the set T={u,,...,u,,
Vy...sv,} of the law (1) has r (r>1) equivalence classes C,=({u¢‘_,...,uai,
V- ..,vai}, i=1,...,r. Introducing quasigroups 4 and B conjugated with 4
and B respectively, from (1) we obtain a law in the form

) Ay slgyestgyeosUg)=B Wy, .. Vs, .. ,er,...,vs’).

For the law (2) hold all results obtained in [1] for the analogous law of
the I kind.

Finally, let us consider an arbitrary law in the form
() A, (g ev s Xa)s e s Ay (Xgs o 5 X)) =B (By(¥ps -+« 5 Py)y oo By (s, e V)b

where the sequence y,,..., y, is a permutation of x,, ..., x,, and 4, B, 4, and B
are quasigroups on a set S. Such a law can be transformed into a law (lf
satisfying conditions (i), (i) and (iii) by substitution of some quasigroups by
GD-groupoids.

We give an example.

Let

A(A4,(x,5),z, 4, (u,v), A, (W, 1)) =B (x, B, (3, z), B, (u, w), B, (v, 1))

be the functional equality by unknown quasigroups 4, B, 4,,...,B, of a set
S. A general solution of this equality is given by

A, p,z,)=n(axoBy, pz+vu),
B(x, y,z, u)y=mn(y xoe y, 62+ 1U),
x A (x,y)=vx03y,
eB,(x,»)=8x0By,

pAd; (xy)=rx+py,
vA,(x,p)=0x+Ty,

6 By(x,y)=ux+a0y,
TB,(x,y)=px+Ty,

where = is an arbitrary loop, o is an arbitrary group, + is an arbitrary
commutative group, and «, B,..., 7 are arbitrary bijections of the set S.

REFERENCE
[11 B. P. Alimpié¢, 4 class of balanced laws on quasigroups (I). Ibidem




36opuux pagosa Maiiemafiuuxol uncitiuidyma, Hoea cepuja xr. 1 (9), 1976.
Recueil des travaux de IInstitut Mathématique, Nouvelle série, Ne 1 (9), 1976.

Camnosujym KBASUTPYVIIE U ©®VHKIIMOHAJHE JEOJHAYMHE
Symposium en QUASIGROUPES ET EQUATIONS FONCTIONNELLES
Beorpan—Hosu Can, 18—21. 9. 1974,

ON EXTENDING OF SOLUTIONS OF FUNCTIONAL EQUATIONS IN
A SINGLE VARIABLE

Karol Baron

In this talk I want to present two results regarding the problem of the
unique extension of solutions of the functional equation
0 ?()=h(x, A 0of,()
in which
h:XxY5—Y and f,: X— X, s€ S,

where X, Y and S are arbitrary sets, are given functions. Here and in the sequel
Y® denotes the set of all functions from § into Y with the Tychonoff topology
in the case where ¥ is a topological space whereas A g, denotes the diagonal

of a family of transformations {g,:s S} (i.e. if g, map X into ¥, s& S, then
A g is a map from X into Y* such that for the projection map p,

s€S
po Ag=8, SES)
s€S

Theorem 1. Let UCX be an arbitrary set such that
2) LO)CU, sESs.
If

(i) for every x & X there exists a positive integer k such that for every
S SHES
f-;lo e oﬁk(x)gU’

then for every solution @,:U—>Y of the equation (1) there exists exactly one
solution @:X— Y of it such that @|,=eq,.

Moreover, if X and Y are topological spaces, U is open, h, f,, s& S, and
@, are continuous functions and

(ii) for every open set V such that UCV C X we have ﬂ{f;l(V):seS}
open,
then ¢ is also continuous.
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The hypothesis (i) in this theorem cannot be replaced (an example may
be given) by

(iii) for every x € X there exists a positive integrer k such that for every

sES, fimevU.
On the other hand the hypothesis

(iv) X is a closed subset of a finite dimensional Banach space and
{f,:s€ 8} is a locally equicontinuous family such that for a certain £ € X

3) sup (|, (9 —E[| :s€ Sy< | x—Ell,  xEX\{E)
implies (i) whenever U is open (in X) and £€U.

Theorem 2. Let X be a closed and convex subset of a finite dimensional
Banach space, UC X an open set (in X) such that condition (2) is satistied.
If {f,:s& S} is a locally equicontinuous family such that (3) holds for a certain
Ec U, then for every solution ¢,:U— Y of (1) there exists exactly one solution
@:X—> Y of it such that ¢|,;=0q,.

Moreover, if Y is a topological space, h and ¢, are continuous functions,
then o is also a continuous function.

In view of the above mentioned connexion between hypotheses (iv) and
(i) the first part of Theorem 2 follows from Theorem 1. However, in the
other part of Theorem 2 the restrictive hypothesis (ii) does not occur.

On the other hand the proof of Theorem 1 is effective contrary to the
proof of Theorem 2 where the Kuratowski-Zorn Lemma is used.
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