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Abstract. The parameterized proxy principles were introduced by
Brodsky and Rinot in a 2017 paper, as new foundations for the con-
struction of κ-Souslin trees in a uniform way that does not depend
on the nature of the (regular uncountable) cardinal κ. Since their
introduction, these principles have facilitated construction of Souslin
trees with complex combinations of features, and have enabled the
discovery of completely new scenarios in which Souslin trees must
exist. Furthermore, the proxy principles have found new applications
beyond the construction of trees.

This paper opens with a comprehensive exposition of the proxy
principles. We motivate their very definition, emphasizing the utility
of each of the parameters and the consequent flexibility that they
provide. We then survey the findings surrounding them, present-
ing a rich spectrum of unrelated models and configurations in which
the proxy principles are known to hold, and showcasing a gallery of
Souslin trees constructed from the principles.

The last two sections of the paper offer new results. In particular,
for every positive integer n, we give a construction of a λ+-Souslin
tree all of whose n-derived trees are Souslin, but all of whose (n+1)-
derived trees are special.
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1. Introduction

In his trailblazing paper analyzing the fine structure of the constructible hierar-
chy, appearing more than fifty years ago, Jensen proved [28, Theorem 6.2] that in
Gödel’s constructible universe L, there exists a κ-Souslin tree for every regular un-
countable cardinal κ that is not weakly compact. Jensen’s proof goes through two
newly-minted combinatorial principles, diamond (♢) and square (□), introduced in
§5–6 of that paper. The isolation and formulation of these new axioms have made
the combinatorial properties of L accessible to generations of set theorists, enabling
combinatorial constructions of complicated objects and leading to the settling of
open problems in fields including topology, measure theory, and group theory.
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Let κ denote a regular uncountable cardinal. Recall that a coherent C-sequence
over κ is a sequence ⟨Cα | α < κ⟩ such that, for every limit ordinal α < κ:

• Cα is a club subset of α; and
• Cα ∩ ᾱ = Cᾱ for every ᾱ ∈ acc(Cα).

1

An easy way to obtain such a sequence is to fix at the outset some club D in
κ, and then let Cα := D ∩ α for every α ∈ acc(D) and Cα := α ∖ sup(D ∩ α) for
any other α. More interesting, however, are principles asserting the existence of
coherent C-sequences satisfying some non-triviality condition. For example:

• Jensen’s square principle □λ of [28, §5.1] asserts the existence of a coherent
C-sequence over λ+, ⟨Cα | α < λ+⟩, such that otp(Cα) ⩽ λ for every
α < λ+.

• For a stationary set E ⊆ acc(κ), the principle described in the conclu-
sion of [28, Theorem 6.1], which is commonly denoted □(E), asserts the
existence of a coherent C-sequence over κ, ⟨Cα | α < κ⟩, that avoids E,
meaning that acc(Cα) ∩ E = ∅ for every α < κ.

• Todorčević’s square principle □(κ) [51, p. 267] asserts the existence of a
coherent C-sequence over κ, ⟨Cα | α < κ⟩, that is unthreadable — meaning
that there is no club D ⊆ κ such that D ∩ α = Cα for every α ∈ acc(D).

In the decades ensuing since [28], many variants of both diamond and square
have appeared — strengthening, weakening, or adapting each one as needed to solve
various combinatorial problems.2 Strong combinations of square and diamond,
such as Gray’s principle ♢ λ from [22] and its further strengthening ♢ +

λ from [43],
have appeared as well. Square principles are primarily concerned with coherence,
whereas diamond principles are prediction principles, asserting that objects of size
κ can be predicted by means of their initial segments.

The construction of complicated combinatorial objects such as κ-Souslin trees
requires both prediction and coherence. Classical constructions of Souslin trees
have followed Jensen’s lead in requiring the ♢-sequence’s predictions to occur in
some nonreflecting stationary set E, which must then be avoided by the square
sequence in order not to interfere with building higher levels of the tree. There are
particular scenarios where the coherence requirements are transparent, such as for
κ = ℵ1 where □ℵ0

holds trivially, and we thus find many classical constructions
tailored to such cases alone.

Examining the classical literature, one sees that construction of a κ-Souslin tree
with an additional property (such as complete or regressive; rigid or homogeneous;
specializable or non-specializable; admitting an ascent path or omitting an ascend-
ing path; free or uniformly coherent) often depends on the nature of the cardinal
κ (be it a successor of a regular, a successor of a singular, or an inaccessible —
in some cases even depending on whether κ is the successor of a singular cardinal

1For any set C of ordinals, acc(C) stands for the set {β ∈ C | sup(C ∩ β) = β > 0} of its
accumulation points. In particular, for an ordinal γ, acc(γ) stands for the set of nonzero limit
ordinals below γ.

2Variants of square are surveyed in [37]. Variants of diamond are surveyed in [38], including
the close connection between diamond principles and cardinal arithmetic.
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of countable or of uncountable cofinality). To obtain the additional features, con-
structions include extensive bookkeeping, counters, timers, coding and decoding,
whose particular nature makes it difficult to transfer the process from one type of
cardinal to another.

What happens if we want to replace an axiom known to imply the existence of a
κ0-Souslin tree with strong properties by an axiom from which a plain κ1-Souslin
tree can be constructed? Do we have to revisit each scenario and tailor each of
these particular constructions in order to derive a tree with strong properties?

The parameterized proxy principles were introduced by Brodsky and Rinot in
[6] with the goal of overcoming this problem by offering new foundations for con-
structing κ-Souslin trees for an arbitrary regular uncountable cardinal κ. So far,
they have been used to construct κ-Souslin trees in [6, 7, 9–11,45, 46, 55]. The core
feature of the proxy principles is that the non-triviality of a square-like sequence is
ensured by a hitting requirement — a weak form of prediction, to be explained in
Section 2 — that is tailored for the desired construction, rather than by the classi-
cal non-triviality conditions which were not flexible enough to obtain the optimal
conclusions in many cases. This tailoring enables uniform construction of κ-Souslin
trees and other combinatorial objects, oblivious to the nature of κ.

By incorporating such a hitting feature into the square-like proxy principle, one
can reduce the requirements on the ♢-sequence: In [6], χ-complete κ-Souslin trees
were constructed using ♢(κ) instead of ♢(E) for some nonreflecting stationary
subset E of Eκ⩾χ,

3 and in [11], ♢(κ) was further relaxed to the arithmetic hypoth-

esis κ<κ = κ.
Since their introduction, the proxy principles have found new applications be-

yond the construction of Souslin trees. In conjunction with ♢, we observe the
following:

• In [8], these principles were used to construct distributive Aronszajn trees,
as well as special trees with a non-special projection.

• In [31], these principles were used to a construct a large pairwise far family
of Aronszajn trees.

• In [49], these principles were used to construct minimal non-σ-scattered
linear orders.

Furthermore, as a result of incorporating the hitting feature into the square-
like sequence, applications of the proxy principles in the absence of an arithmetic
hypothesis, let alone a prediction principle, have emerged, as follows:

• In [34], these principles were used to construct a highly chromatic graph
all of whose smaller subgraphs are countably chromatic.

• In [24, Lemma 5.9], these principles were used to construct Ulam-type
matrices.

• In [44, §5], these principles were used to construct a Dowker space whose
square is still Dowker.

3Eκ
⩾χ denotes the set {α < κ | cf(α) ⩾ χ}. The sets Eκ

>χ, Eκ
χ, Eκ

̸=χ, Eκ
<χ, and Eκ

⩽χ are

defined analogously.
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• In [47, §7], these principles were used to construct a C-sequence suitable
for conducting walks on ordinals.4

Alongside the wealth of applications of the proxy principles, we turn our at-
tention to the obvious question: How do these new proxy principles compare to
the classical combinatorial axioms? In [6, 11], a bridge to the classical founda-
tions was built, establishing that all previously known ♢-based constructions of
κ-Souslin trees may be redirected through the new foundations. Concurrently, in
[6,8–11,33,34,40–43], instances of the proxy principles have been shown to hold in
many unrelated configurations, so that any conclusion derived from those instances
is known to hold in completely new, unrelated scenarios. Significantly, in addition
to scenarios conforming to the spirit of V = L, it is shown that some instances of
the proxy principles may consistently hold above large cardinals, at a cardinal sat-
isfying stationary reflection, or in models of strong forcing axioms such as Martin’s
Maximum. Furthermore, various notions of forcing inadvertently add instances of
the proxy principles. Thus, any application of a proxy principle will automatically
be known to hold in a rich spectrum of unrelated models.

Altogether, the proxy principles provide a successful disconnection between the
combinatorial constructions and the study of the hypotheses themselves. This
project thus has two independent tasks: Deriving rich applications of the proxy
principles, and proving instances of the proxy principles in various scenarios.

1.1. This paper. The main goal of this paper is to make the proxy principles acces-
sible to anyone with experience in combinatorial set theory. Until now, the various
definitions and related results have been scattered throughout multiple lengthy pa-
pers, making it difficult for the interested researcher to adopt these principles as
a starting point for deriving desired results. We believe that the proxy principles
have attained a significant level of maturity, and we hope that by presenting this
comprehensive exposition we can engage the reader and encourage them to join us
in our adventure of applying the proxy principles to obtain optimal results.

We now present the breakdown of the current paper.
In Section 2, we give a simple example from infinite graph theory that motivates

the very need for a parameterized proxy principle, and then patiently discuss each
of the eight parameters of the proxy principle P(. . .). By the end of this section,
the reader will hopefully agree that all of the parameters are quite natural indeed.

In Section 3, we gather configurations in which instances of the proxy principle
hold, as established in the literature.

In Section 4, we list various types of Souslin trees that have been constructed
using the proxy principles, indicate where each of these results may be found in the
literature and what vector of parameters is known to be sufficient for the relevant
construction.

The last two sections of this paper are dedicated to new proxy-based construc-
tions of Souslin trees. In Section 5, we present a proxy-based construction of a large
family of pairwise-Souslin trees. A sample corollary of the latter reads as follows.

4By walking along the outcome C-sequence, the extreme instance Pr1(κ, κ, κ, κ) of Shelah’s
strong coloring principle was shown to be consistent.
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Theorem A. Assuming P(κ, 2,⊑, κ), if there exists a κ-Kurepa tree, then there
exists a κ-Aronszajn tree T admitting κ+-many κ-Souslin subtrees such that the
product of any finitely many of them is again Souslin.

We shall also show that this result is optimal in the sense that the tree T itself
cannot be κ-Souslin.

In Section 6, we present a proxy-based construction of a Souslin tree whose
square is special. More generally:

Theorem B. For an infinite cardinal λ, assuming Pλ(λ
+, 2,⊑, λ+), for every pos-

itive integer n, there exists a λ+-Souslin tree T satisfying the following:

• all n-derived trees of T are Souslin;
• all (n+ 1)-derived trees of T are special.

Such an ℵ1-tree (i.e., the case λ = ω) was constructed by Abraham and Shelah
in [2, §2] building on the approach from [17, 29] of taking generics over countable
models; hence the construction does not generalize to λ singular. A construction
for λ singular (and n = 1) was given by Abraham, Shelah and Solovay in [1, §4]
exploiting the fact that □λ for λ singular may be witnessed by a C-sequence ⟨Cα |
α < λ+⟩ with otp(Cα) < λ for all α < λ+. As such, it does not apply to λ regular.
The construction that will be given here is the first that works uniformly for λ both
regular and singular.

1.2. Notation and conventions. Throughout this paper, κ denotes a regular un-
countable cardinal, and Hκ denotes the collection of all sets of hereditary cardi-
nality less than κ. The Greek letters λ,Λ, µ, ν, χ, θ, ϑ will denote (possibly finite)
cardinals, and α, β, γ, δ, ϵ, ε, ι, σ, ς, ξ will denote ordinals.

The class of all infinite regular (resp. singular) cardinals is denoted by REG
(resp. SING), and we write Reg(κ) for REG ∩ κ. For a set X, write [X]θ for the
collection of all subsets of X of size θ, and define [X]<θ in a similar fashion.

In order to maintain the flow of the text, we decided not to pause to give the
definitions of standard objects, giving them in footnotes, instead. For the reader’s
benefit, an index of all of these definitions is provided on Page 134.

2. What are the proxy principles, anyway?

2.1. Motivation. Recall that a graph G is a pair (V,E) where E ⊆ [V ]2, and that
the chromatic number of G, denoted Chr(G), is the least cardinal θ for which there
exists a coloring c : V → θ such that for every {x, y} ∈ E, c(x) ̸= c(y). We say
that a graph G is countably chromatic iff Chr(G) ⩽ ℵ0; otherwise, it is uncountably
chromatic.

A Hajnal–Máté graph is a graph G = (V,E) in which V = ω1 and, for every
α < ω1, the set Aα := {β < α | {α, β} ∈ E} is either finite or a cofinal subset of α
of order-type ω.

Martin’s axiom at the level of ℵ1 implies that all Hajnal–Máté graphs are count-
ably chromatic (see [19, Proposition 31G]), and the same assertion is also consistent
with the continuum hypothesis (see [3, Theorem 2.1]).
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So, what does it take for G to be uncountably chromatic? It can be verified that
the following are equivalent:

(1) G is uncountably chromatic;
(2) For every partition ⟨Bn | n < ω⟩ of ω1 into uncountable sets, there is some

n < ω and some α ∈ Bn such that Aα meets Bn;
(3) For every partition ⟨Bn | n < ω⟩ of ω1 into uncountable sets, there is a

nonzero α < ω1 such that for the unique n < ω with α ∈ Bn, it is the case
that sup(Aα ∩Bn) = α.

In particular, if for every sequence ⟨Bn | n < ω⟩ of uncountable subsets of ω1,
there is an α < ω1 such that Aα meets Bn for every n < ω, then G is uncountably
chromatic.

The above connection between the hitting property of A⃗ = ⟨Aα | α < ω1⟩ and

the chromatic number of the associated graph generalizes, as follows. Let A⃗ = ⟨Aα |
α ∈ S⟩ be a ladder system over some subset S of a regular uncountable cardinal
κ.5 Derive a graph G := (κ,E) by letting E := {{α, β} | α ∈ S, β ∈ Aα}. Then,

for every cardinal θ, Chr(G) > θ provided that for every sequence B⃗ = ⟨Bi | i < θ⟩
of cofinal subsets of κ, there exists some α ∈ S such that

∧
i<θ Aα ∩Bi ̸= ∅.

Now, what happens if one wants, say, a ladder-system graph on ω2 of chromatic
number ω2 such that, in addition, all of its smaller subgraphs are countably chro-
matic?6 This quest for incompactness highlights a second feature that a ladder
system may possess, namely, coherence. However, coherence properties are typi-
cally imposed upon ladder systems in which the αth ladder is moreover a closed
subset of α; these are better known as C-sequences.7 For two sets of ordinals x, y,
write x ⊑ y iff x = y ∩ ε for some ordinal ε. A C-sequence ⟨Cα | α < κ⟩ is coher-
ent iff for all α < κ and ᾱ ∈ acc(Cα), it is the case that Cᾱ ⊑ Cα. In order to
obtain a graph that may satisfy the desired incompactness property, we impose an
additional constraint on the pairs in E, as follows:8

Definition 2.1 (The C-sequence graph, [34, 39]). Given a C-sequence C⃗ = ⟨Cα |
α < κ⟩, and a subset G ⊆ acc(κ), the graph G(C⃗) is the pair (G,E), where

E := {{α, γ} ∈ [G]2 | γ ∈ Cα, min(Cγ) > sup(Cα ∩ γ) ⩾ min(Cα)}.

Remark 2.2. For every pair γ < α of vertices that are adjacent in G(C⃗), it is the
case that γ is an element of nacc(Cα).

9

Consider G(C⃗) for a given C-sequence C⃗ = ⟨Cα | α < κ⟩ and subset G ⊆ acc(κ).

For an ordinal δ < κ, let G(C⃗)↾δ denote the initial-segment graph (G ∩ δ, E ∩ [δ]2).

5This means that for every α ∈ S, Aα is a subset of α and there is no β < α such that Aα ⊆ β.
6This is a nontrivial requirement. By [18], it is consistent that every graph of size and chro-

matic number ω2 has a subgraph of size and chromatic number ω1.
7So in a C-sequence, each Cα is a closed subset of α satisfying sup(Cα) = sup(α).
8See [34, Remark 2.6] for the history of Definition 2.1 and its connection to the Hajnal–Máté

graphs.
9For any set C of ordinals, nacc(C) denotes the set C∖acc(C) of its non-accumulation points.
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The next fact tells us, in particular, that if C⃗ is coherent, then every proper initial

segment of G(C⃗) is countably chromatic.

Fact 2.3 ([34, Lemma 2.11(1)]). Let χ ∈ Reg(κ). If Cᾱ ⊑ Cα for all α ∈ G and

ᾱ ∈ acc(Cα) ∩ Eκχ, then Chr(G(C⃗) ↾ δ) ⩽ χ for every δ < κ.

Next, what does it take for the whole of G(C⃗) to have a large chromatic number?

Based on what we saw earlier, one may guess that Chr(G(C⃗)) > θ provided that

for every sequence B⃗ = ⟨Bi | i < θ⟩ of cofinal subsets of κ, there exists some α ∈ G
such that Cα meets each of the Bi’s. However, due to the particular nature of
E (recall Definition 2.1), here we would want Cα to meet each of the Bi’s in two
consecutive points. Specifically:

Fact 2.4 ([34, Lemma 2.13]). For an infinite θ < κ, Chr(G(C⃗)) > θ, provided that

for every sequence B⃗ = ⟨Bi | i < θ⟩ of cofinal subsets of κ, there exists an α ∈ G
with min(Cα) ⩾ min(B0) such that, for every i < θ, there are β, γ ∈ Cα ∩ Bi such
that γ = min(Cα ∖ (β + 1)).

Altogether, to obtain a graph of the form G(C⃗) satisfying a desired incompact-
ness property — large chromatic number for the whole graph, along with small
chromatic number for its proper initial segments — it suffices to begin with a C-

sequence C⃗ satisfying a coherence property as in the hypothesis of Fact 2.3 along
with a hitting property as in the hypothesis of Fact 2.4. An axiom asserting the
existence of a sequence satisfying a combination of coherence and hitting properties
is what we call a proxy principle.

2.2. The proxy principles. In order to capture the considerations of the previous
subsection while maintaining the flexibility to vary both the coherence and hitting
features as needed to prove various desired results, one would like to introduce a
concise parameterized notation for the proxy principles. We would like to be able
to express something along the following lines:

• There exists a system ⟨Cα | α < κ⟩ with each Cα a nonempty collection of
closed cofinal subsets of α;

• There is a prescribed bound for how many sets are there at each level, e.g.,
|Cα| = 1 for every α < κ (as in the examples we have seen thus far), or
more generally, for some fixed cardinal µ, |Cα| < µ for every α < κ;10

• The elements of any level are compatible with the ones from below, i.e.,
there is a prescribed binary coherence relation R (such as ⊑) such that, for
every α < κ, every C ∈ Cα, and every ᾱ ∈ acc(C), there exists a D ∈ Cᾱ
with D R C;

• For some prescribed cardinal θ, every family B ⊆ [κ]κ of size θ gets “hit” at
some level α, i.e., each C ∈ Cα meets each B ∈ B. Looking at Fact 2.4, we
may also want the α of interest to come from some prescribed set G, and

10Compare this with Jensen’s weak square principle □∗
λ [28, §5.1] and Schimmerling’s gener-

alization □λ,µ [48, §5]. The utility of multi-ladder systems, i.e., systems in which there is more

than one ladder assigned to each level, is demonstrated in [44, Theorem 4.13].
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we may want a meeting that is successful twice in a row, or, more generally,
σ many times in a row for some prescribed ordinal σ.

The above considerations lead us to the definition of the parameterized proxy
principle. First, let us establish some notational conventions that we shall use
throughout the rest of the paper:

• κ is a regular uncountable cardinal;
• ν and µ are cardinals ⩽ κ+ (typically, 2 ⩽ ν ⩽ µ);
• χ and θ are cardinals ⩽ κ;
• R is a binary relation over [κ]<κ;
• S is a nonempty collection of stationary subsets of κ;
• ξ and σ are ordinals ⩽ κ.

Definition 2.5 ([6, 11]). The proxy principle P−
ξ (κ, µ,R, θ,S, ν, σ) asserts the ex-

istence of a sequence C⃗ = ⟨Cα | α < κ⟩ such that the following three requirements
are satisfied:

(1) for every α < κ, Cα is a nonempty collection of less than µ many closed
subsets C of α with sup(C) = sup(α) and otp(C) ⩽ ξ;

(2) for all α < κ, C ∈ Cα and ᾱ ∈ acc(C), there is a D ∈ Cᾱ such that D R C;
(3) for every sequence ⟨Bi | i < θ⟩ of cofinal subsets of κ, for every S ∈ S,

there exist stationarily many α ∈ S for which:11

• |Cα| < ν, and
• for all C ∈ Cα and i < min{α, θ}:

(⋆) sup{β ∈ C | succσ(C ∖ β) ⊆ Bi} = α.

Remark 2.6. succσ(D) := {δ ∈ nacc(D) | 0 < otp(D ∩ δ) ⩽ σ} is the set of the
first σ many successor elements of D, should they exist. In particular, for every
β ∈ C such that sup(otp(C∖β)) ⩾ σ, succσ(C∖β) is nothing but the next σ many
successor elements of C above β. In the special case σ = 1, requirement (⋆) above
is equivalent to asserting that sup(nacc(C) ∩Bi) = α.

Remark 2.7. One should view Clause (3) of Definition 2.5 as a genericity-type
feature. This is because the forcing to add a sequence satisfying Clauses (1) and
(2) via bounded approximations will introduce one also satisfying Clause (3) with
θ = κ, ν = µ, and arbitrarily large σ < κ (see [33, Lemma 3.9] for a proof template).

One can consider the proxy principle’s eight parameters together as a vector of
parameters (ξ, κ, µ,R, θ,S, ν, σ),12 and then divide the vector’s components into
three groups, according to the clause of Definition 2.5 in which each parameter first
appears. The first three parameters ξ, κ, µ are in Clause (1), which amounts to

saying that C⃗ is a ξ-bounded C-sequence over κ of width less than µ. The fourth

parameter R appears in Clause (2), which amounts to saying that C⃗ is R-coherent.

The remaining parameters capture the hitting characteristics of C⃗: θ tells us how

11 If min{θ, σ} > 0, then merely requiring that “there exists a nonzero α ∈ S” has an equivalent

effect. See the proof of [15, Theorem 4.3].
12 Some of our friends complained that our principle has 8 parameters. Our response: ∞8 = ∞.
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many sets can be hit simultaneously, each element of S prescribes the range in which
hitting must take place, ν forces the width to be locally small upon a successful
hit, and σ sets a minimum for the number of serial successful meets.

The special case ξ = κ imposes no order-type restriction on C⃗, in which case we
can freely omit it, writing P−(κ, · · · ) instead of P−

ξ (κ, · · · ). A small ξ is indeed

stronger (see [30, Lemma 3.13]), and imposing it enables stronger properties in
the constructed object (see [49, Main Theorem]). In case κ = λ+ is a successor
cardinal, it is tempting to view ξ := λ as the ultimate requirement; however, there
are scenarios in which a particular choice of ξ with λ < ξ < λ+ turns out to be the
optimal one (see [10, §3.3]).

The special case µ = 2 implies that each Cα is a singleton, say {Cα}, in which case
we identify the C-sequence ⟨{Cα} | α < κ⟩ with the C-sequence ⟨Cα | α < κ⟩. On
the other extreme is the case µ = κ+, which may seem pointless, but is nevertheless
valuable when combined with a small value for ν (see [47, Theorems 7.2 and 7.6]),
or with an arithmetic hypothesis (see [26, Theorem 5.14]).

The basic coherence relation R is the end-extension relation, ⊑, introduced in

Subsection 2.1, indicating that C⃗ is a coherent C-sequence. A close examination of
proxy-based constructions reveals that full coherence is not always necessary, and
the ⊑ relation can be weakened in several ways, as follows.

First, considering some C ∈
⋃
α<κ Cα and some ᾱ ∈ acc(C), it may be that

all we require is for some D ∈ Cᾱ to agree with C at the final approach to ᾱ. If
this is the case, then the construction will work just as well from a ⊑∗-coherent
instance of the proxy principle, where D ⊑∗ C iff there is some ϵ < sup(D) such
that D ∖ ϵ ⊑ C ∖ ϵ.

In another direction, some proxy-based constructions can be designed to require

genuine coherence only for some of the clubs in C⃗, or only at some of their accumu-
lation points.13 Indeed, there are contexts in which, for some infinite cardinal χ,
there is no need to require coherence for clubs of order-type < χ, or possibly, there
is no need to require coherence at accumulation points of cofinality < χ. Thus, in
such cases we may weaken ⊑ to either χ⊑ or ⊑χ, where for a coherence relation R:

• D χR C iff ((D R C) or (cf(sup(D)) < χ)), and
• D Rχ C iff ((D R C) or (otp(C) < χ and nacc(C) consists only of successor
ordinals)).14

The significance of such a weakening is that unlike coherent square sequences that
are typically refuted by reflection principles,15 ⊑χ-coherent proxy principles are
compatible with a gallery of reflection principles and provide an effective means
of obtaining optimal incompactness results (see for instance [6, Corollary 1.20],
[34, Theorem A], and Table 3.3 below).

13Recall Fact 2.3.
14The condition “nacc(C) consists only of successor ordinals” indicates that the club C may be

a “dummy club” that is not part of the genuine coherence structure of C⃗. Thus, any construction

from C⃗ should ensure that the hitting does not occur at such a C.
15 Such as large cardinals [13, Theorem 4.1],[20, Proposition 8], strong forcing axioms [14,

Theorem 1.2] and simultaneous reflection of stationary sets [23, §2].
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Note that the extreme case R = κ⊑ amounts to saying that no coherence is
needed at all, and we call it the trivial coherence relation. In this case, every Cα
may be shrunk to a singleton, yielding a proxy sequence with µ = 2.

In yet another direction, there are circumstances in which it is helpful to indicate

that C⃗ avoids a particular class of ordinals Ω, meaning that acc(C) ∩ Ω = ∅ for
every C ∈

⋃
α<κ Cα. This requirement is indicated by prepending Ω as a superscript

to the coherence relation R, thereby strengthening it to ΩR.16 In the context of
walks on ordinals, the utility of avoiding a stationary subset of κ is demonstrated

by [52, Theorem 6.2.7] and [12, Lemma 6.7]. In general, if C⃗ is a Ω⊑-coherent proxy
sequence, then for any α ∈ Ω, one is free to shrink Cα to a singleton, and this has
important ramifications (see [10, Lemma 3.8] and [11, Corollary 4.27]).

The weakest nontrivial value for the hitting parameters is (θ,S, ν, σ) := (1, {κ},
µ, 1); this minimal amount of hitting ensures that C⃗ is unthreadable,17 implying
in particular that κ is not weakly compact. Furthermore, for every χ ∈ Reg(κ),
P−(κ, κ+, χ⊑∗, 1, {κ}, κ+, 1) implies that κ admits a nontrivial C-sequence in the
sense of [52, Definition 6.3.1].18

We have already seen the utility of a large θ in the previous subsection, and
here the extreme case θ = κ is understood as a diagonal requirement, where each
C in Cα is required to hit each Bi for all of the i’s that are smaller than α. When
one constructs a χ-complete or a χ-free κ-Souslin tree, it is natural to require
Eκ⩾χ to be in S (see [9, Proposition 2.2] and [10, Theorem 4.12]). An extreme
case is requiring S to contain all stationary subsets of a given stationary S∗ ⊆ κ,
e.g., S∗ := {α < κ | cf(α) = cf(|α|)} as was done in [31, Theorem 3.1]. The
significance of distinguishing ν from µ is highlighted in [10], [11, §4.3], and Tables
3.1 and 4.3 below, where instances of the proxy principle with locally-small width
are used to derive optimal results from the existence of nonreflecting stationary
sets in scenarios where we cannot guarantee the desired coherence together with
small width overall. An application of ν = 2 may be found in [11, Theorem 6.17],
where the narrowness requirement at the hitting ordinals enables sealing potential
automorphisms of a tree;19 another application of ν = 2 is given by Corollary 5.7
below. The utility of σ > 1 is demonstrated by Fact 2.4 above. Applications of
σ = ω may be found throughout [7]. Nota bene that in some cases σ = ω implies
the existence of a nonreflecting stationary subset of Eκω (see [33, Theorem 4.1] for
a primary scenario).

16By convention, this superscript-prepending is understood as being applied last, so that, for

instance, Ω⊑χ is to be parsed as Ω(⊑χ).
17That is, for every club D ⊆ κ, there is an α ∈ acc(D) such that D ∩ α /∈ Cα.
18This is easily seen by taking a purported trivializing club D to any transversal of the proxy

sequence, and applying Definition 2.5(3) to the cofinal set B0 := acc(D), somewhat similar to

the proof of [6, Lemma 3.2]. This proof also highlights the necessity for successor (i.e., non-
accumulation) points of C in (⋆) of Definition 2.5(3).

19 In fact, it is open whether a κ-Souslin tree constructed from an instance of the proxy principle
having ν > 2 can be secured to be rigid on a club.
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Convention 2.8. When defining a sequence C⃗ witnessing an instance of the proxy
principle, it suffices to specify ⟨Cα | α ∈ acc(κ)⟩; in so doing, we make the tacit
assumption that C0 := {∅} and Cβ+1 := {{β}} for every β < κ.

2.3. Monotonicity. The reader can verify that the proxy principle satisfies mono-
tonicity properties with respect to most of its parameters, as follows:

• Any sequence witnessing P−
ξ (κ, µ,R, θ,S, ν, σ) remains a witness to the

principle if any of ξ, µ, or ν is increased; if θ or σ is decreased; if R is
weakened; if S is shrunk; or if any element of S is expanded.

• The case R = ⊑ coincides with R = Ω
χ⊑ for (Ω, χ) := (∅, ω); increasing χ

weakens each of the relations Ω
χ⊑, Ω

χ⊑∗, Ω⊑χ, and Ω⊑∗
χ, while expanding Ω

strengthens the same relations.
• For R ∈ {⊑,⊑∗}, any χ, and any Ω, P−

ξ (κ, µ,
ΩRχ, · · · ) entails P−

ξ (κ, µ,
Ω
χR, · · · ).

In addition, in some cases, strong instances of the proxy principle follow from
apparently weaker ones. See for instance [34, Lemmas 3.8 and 3.9 and §3.2], [8,
Lemmas 4.9 and 5.3], [10, Lemmas 3.8 and 3.20], and [11, Theorem 4.15 and Corol-
lary 4.40].

2.4. Simplifications. To make the parameterized proxy principle more accessible,
a few of its main instances have been given abbreviations in the literature. For S
a stationary subset of κ, the abbreviations are as follows:

• ⊠−
ξ (S) denotes P

−
ξ (κ, 2,⊑, 1, {S}, 2, 1), i.e., the instance asserting the exis-

tence of a coherent ξ-bounded C-sequence with a minimal nontrivial hitting
feature. Together with ♢(κ) this enables a very simple construction of a
κ-Souslin tree (see [11, §2.7]).

• ⊠∗
ξ(S) denotes P−

ξ (κ, κ, χ⊑∗, 1, {S}, κ, 1), where χ := min{cf(α) | α ∈ S ∩
acc(κ)}. This is a weakening of ⊠−

ξ (S) in the spirit of Jensen’s □∗
ξ that is

nonetheless sufficient for various constructions (see [9, Proposition 2.2]). In
case that κ happens to be (<χ)-closed,20 [11, Theorem 4.39] tells us that
P−
ξ (κ, κ, χ⊑∗, 1, {S}, κ, 1) is no weaker than P−

ξ (κ, κ,⊑, 1, {S}, κ, 1).
In the special case where κ is the successor of a regular cardinal ξ and

S ⊆ Eξ
+

ξ , the principle ⊠∗
ξ(S) becomes P−

ξ (κ, 2, κ⊑, 1, {S}, 2, 1) as stated

in [31, Definition 1.8]. This is because min{cf(α) | α ∈ S} = ξ, and no club
in a witness for ⊠∗

ξ(S) has accumulation points of cofinality ⩾ ξ, so here

χ⊑∗ coincides with the trivial coherence relation κ⊑, thereby allowing µ to
be shrunk to 2.

• One may replace the stationary set S by a collection S of stationary sets,
and/or add an indication for the width µ, e.g., writing ⊠−

ξ (S, <µ) for

P−
ξ (κ, µ,⊑, 1,S, µ, 1).

Whenever possible and in order to reduce an unnecessary load, a convention for
the omission of parameters has been established. As already mentioned earlier, if

20A cardinal κ is τ-closed (for a cardinal τ) iff λτ < κ for every λ < κ. A cardinal κ is
(<χ)-closed iff it is τ -closed for every τ < χ.
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we omit the parameter ξ, then we mean that ξ = κ, i.e., P−(κ, · · · ) stands for
P−
κ (κ, · · · ).21 Independently, we may omit a tail of parameters, as follows:

• If we omit σ, then σ = “<ω”, which we will discuss shortly;
• If in addition we omit ν, then ν = κ+;
• If in addition we omit S, then S = {κ};
• If in addition we omit θ, then θ = 1.

We are left with discussing our choice for a default value of σ.
Initially, in [6, p. 1953], the authors stated that the omission of σ would amount

to putting σ = 1 as this seemed to be the weakest possible value that is still useful
(following the rationale of the other omitted parameters). Later on, it was realized
that this was an illusion, since all of the applications of P−(κ, . . .) at the time
were in the context of ♢(κ), and in this context any instance P−

ξ (κ, · · · , 1) may be

witnessed by a sequence simultaneously witnessing P−
ξ (κ, · · · , n) for all n < ω; that

is, ♢(κ) implies that P−
ξ (κ, · · · , 1) is no weaker than P−

ξ (κ, · · · , <ω).22 Through
the work surrounding Fact 2.4, one learns to appreciate the possibility of having
P−
ξ (κ, · · · , σ) holding with σ slightly greater than 1. The hitting feature of Fact 2.4

— namely, requiring two consecutive meets of Cα with Bi, but not insisting that
the smaller of the two be a non-accumulation point of Cα — may be expressed as
something like “σ = 1 1

2”, but fortunately such an awkward notation can be avoided,

as [11, Theorem 4.15] shows that P−
ξ (κ, · · · , 1

1
2 ), P

−
ξ (κ, · · · , 2), and P−

ξ (κ, · · · , <ω)
are all logically equivalent.

With the revised convention of setting a default value of σ = “<ω” as in [11,
Convention 4.18], a door was opened to proxy-based constructions of κ-Souslin trees
using κ<κ = κ instead of ♢(κ) (see [11, Theorems 5.13 and 6.8]), and to the second
batch of applications mentioned in the paper’s introduction (see Page 93).23

Finally, in order to facilitate the use of the proxy principles in conjunction with
other common hypotheses, we adopt the following:

• Pξ(κ, µ,R, θ,S, ν, σ) denotes the conjunction of P−
ξ (κ, µ,R, θ,S, ν, σ) and

♢(κ);
• P•

ξ(κ, µ,R, θ,S, ν) denotes the conjunction of P−
ξ (κ, µ,R, θ,S, ν, <ω) and

κ<κ = κ.24

2.5. To bullet or not to bullet? In our applications of Pξ(κ, . . .), we shall prefer
to use a more versatile version ♢(Hκ) of ♢(κ), as follows:

Fact 2.9 ([6, Lemma 2.2]). ♢(κ) is equivalent to the principle ♢(Hκ) asserting
the existence of a partition ⟨Ri | i < κ⟩ of κ and a sequence ⟨Ωβ | β < κ⟩ of
elements of Hκ such that for all i < κ, Ω ⊆ Hκ and p ∈ Hκ+ , the following set is
stationary in κ:

21Likewise ⊠−(S),⊠−(S),⊠∗(S) and ⊠∗(S) stand for ⊠−
κ (S), . . . ,⊠∗

κ(S), respectively.
22 See [11, Theorem 4.16(1)] for a stronger result.
23 Strictly speaking, σ = 1 suffices for the construction of the said Ulam-type matrix.
24 See Definition 5.9 and Corollary 5.14 of [11]. Note that here the value of σ is hardcoded

to be <ω; this is because the obvious generalization to σ ⩾ ω (together with µ < κ) will already

imply ♢(κ) (see [11, Proposition 5.17]).
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Bi(Ω, p) := {β ∈ Ri | ∃M ≺ Hκ+ (p ∈ M, β = κ ∩M,Ωβ = Ω ∩M)}.
The way that the combination of P−

ξ (κ, . . .) and ♢(Hκ) is typically used in
recursive constructions of length κ is as follows: At limit stage α < κ, one uses the
ladders of Cα in order to climb up and eventually determine the αth level of the
ultimate object. Clause (2) of Definition 2.5 ensures that this climbing procedure
will not reach a dead end. Finally, Clause (3) of Definition 2.5 is invoked with sets
Bi that arise from an application of ♢(Hκ), namely Bi := Bi(Ω, p) for an educated
choice of Ω and p.

Looking at [11, Definition 5.9], we see that the principle P•
ξ(κ, · · · ) can be un-

derstood as a weakening of P−
ξ (κ, · · · ) ∧ ♢(Hκ) that is tailored to hit only sets Bi

of the above particular form.
Strictly speaking, P•

ξ(κ, · · · ) is weaker than Pξ(κ, · · · ),25 but due to the nature of
our constructions (as roughly described above), we do not know of any application
of Pξ(κ, · · · ) that cannot be transformed into an application of the weaker principle
P•
ξ(κ, · · · ). In particular, all of the κ-trees constructed from Pξ(κ, · · · ) in Sections

5 and 6 below, may as well be constructed assuming P•
ξ(κ, · · · ), instead.

2.6. For the adventurous readers. We mention that there are a few additional
values that can be assigned to the parameters of the proxy principle. First, by
letting ξ := <λ, we mean that all ladders in the witnessing proxy sequence have
order-type strictly less than λ. The fact that singular cardinals may admit a ladder
system having small order-type everywhere was exploited by Shelah and his co-
authors a long time ago (see [1,4] and recall the final paragraph of Subsection 1.1).
Second, by letting ξ := <, we mean that the set of lower-regressive levels (see
Definition 2.12 below) of the witnessing proxy sequence covers a club. Third, by
letting µ := ∞ we mean that |Cα| ⩽ |α| for every nonzero α < κ. Fourth, if
we write <θ instead of θ, then we mean that the proxy sequence simultaneously
satisfies Clause (3) of Definition 2.5 with θ replaced by ϑ for all ϑ < θ. An analogous
interpretation applies when writing <σ instead of σ. Fifth, by letting σ := <∞,
we mean to replace the assertion of Equation (⋆) of Definition 2.5 by:

∀σ < otp(C) sup{β ∈ C | succσ(C ∖ β) ⊆ Bi} = α.

Coming back to µ, we have the following (indexed) strengthening of P−
ξ (κ, µ

+,⊑,
θ,S), which aids in constructions of κ-trees with a µ-ascent path (see Definition 4.7
below). It reads as follows.

Definition 2.10 ([11, §4.6]). For an infinite cardinal µ < κ, the principle P−
ξ (κ, µ

ind,

⊑, θ,S) asserts the existence of a ξ-bounded C-sequence ⟨Cα | α < κ⟩ together with
a sequence ⟨i(α) | α < κ⟩ of ordinals in µ, such that:

• for every α < κ, there exists a canonical enumeration ⟨Cα,i | i(α) ⩽ i < µ⟩
of Cα (possibly with repetition) satisfying that the sequence ⟨acc(Cα,i) |
i(α) ⩽ i < µ⟩ is ⊆-increasing with

⋃
i∈[i(α),µ) acc(Cα,i) = acc(α);

25P•
ω(ω1, 2,⊑, ω1) holds after adding a single Cohen real to a model of CH (see the next

section). If ♢(ω1) failed in the ground model, then by [32, Exercise VII.H9] it remains failing in
the extension, so that Pω(ω1, . . .) will fail in the extension.
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• for all α < κ, i ∈ [i(α), µ) and ᾱ ∈ acc(Cα,i), it is the case that i ⩾ i(ᾱ)
and Cᾱ,i ⊑ Cα,i;

• for every sequence ⟨Bτ | τ < θ⟩ of cofinal subsets of κ, and every S ∈ S,
there are stationarily many α ∈ S such that for all C ∈ Cα and τ <
min{α, θ}, sup(nacc(C) ∩Bτ ) = α.

In addition to coherence as alluded to in the introduction, another concept that
is invisible at the level of κ = ℵ1 is that of a proxy-respecting tree. This concept
arises when one tries to construct a companion κ-tree S for a given κ-tree T in
such a way that the product tree S⊗T becomes Souslin [46, §5], or that the cofinal
branches of T would injectively embed into the automorphism group of S [55, §7],
or that a designated reduced power of S would contain a copy of T [7, §6]. The
point is that if we were to construct the new κ-tree S using an instance P−(· · · ) of
the proxy principle, then it will be useful to be able to interpret (even if artificially)
the other κ-tree T as an outcome of a similar application of P−(· · · ). This leads
to the following definition (that makes use of some concepts that are defined in
Subsection 4.1 below).

Definition 2.11 ([7]). A streamlined κ-tree T is P−
ξ (κ, µ,R, θ,S, ν, σ)-respecting

if there exists a subset § ⊆ κ and a system of mappings ⟨bC : (T ↾C) → αHκ ∪{∅} |
α < κ,C ∈ Cα⟩ such that:

(1) for all α ∈ § and C ∈ Cα, Tα ⊆ Im(bC);

(2) C⃗ = ⟨Cα | α < κ⟩ witnesses P−
ξ (κ, µ,R, θ, {S ∩ § | S ∈ S}, ν, σ);

(3) for all sets D ⊑ C from C⃗ and x ∈ T ↾D, bD(x) = bC(x) ↾ sup(D).

Typically, a κ-Souslin tree obtained from a proxy principle P−
ξ (· · · ) with ν = 2

using the so-called microscopic approach will be P−
ξ (· · · )-respecting. In this case,

the witnessing § is a subset of {α ∈ acc(κ) | |Cα| = 1} in which the hitting must
occur, and bC(x) (for the unique C ∈ Cα whenever α ∈ §) is a distinguished node in
Tα extending x. The microscopic nature of the construction ensures that Clause (3)
will hold, and that for all C and x, bC(x) will be comparable to x.

Another case of interest is κ = λ+ for an infinite regular cardinal λ such that
P−
λ (κ, µ, λ⊑, θ, {Eκλ}, ν, σ) holds. In this case, every κ-tree is P−

λ (κ, µ, λ⊑, θ, {Eκλ},
ν, σ)-respecting [55, Lemma 2.22]. In particular, ♢(ℵ1) implies that all ℵ1-trees are
P−
ω (ℵ1, 2,⊑,ℵ1, {ℵ1})-respecting.
Unorthodox examples of respecting trees, including Kurepa trees and the trees

recording characteristics of walks on ordinals, may be found in [43, Theorems 4.10
and 4.15].

We close this subsection by briefly touching upon a dual approach in which in-
stead of formulating an axiom asserting the existence of a C-sequence of a certain
type, one defines characteristics of C-sequences and studies their impact on the ob-
jects derived from them. Preliminary examples may be found in [8, Definition 1.1],
[35, Definition 4.2], [47, Definition 3.13], and [25, Definition 4.1]. A more systematic
study of this approach was recently initiated in [27]. We settle here for including
two samples.
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Definition 2.12 ([27, §4]). For a C-sequence, C⃗ = ⟨Cα | α < κ⟩:
• the set of avoiding levels of C⃗ is the following:

A(C⃗) := {α ∈ acc(κ) | ∀β ∈ (α, κ)∀C ∈ Cβ (α /∈ acc(C))};

• the set of lower-regressive levels of C⃗ is the following:

R(C⃗) := {α ∈ acc(κ) | ∀β ∈ (α, κ)∀C ∈ Cβ (otp(C ∩ α) < α)}.

2.7. What’s next? As mentioned in the paper’s Introduction, the proxy principles
provide a disconnection between the combinatorial constructions and the study of
the hypotheses themselves. This is a well-known approach and is no different from
other axioms such as ♢, □ or the P-Ideal Dichotomy (PID). In all of these cases,
by matching any application of the axiom with an appropriate configuration in
which the axioms is known to hold, one obtains a conclusion of possible interest.
Arguably, one factor determining the success of an axiom of this sort is the exact cut
point at which the disconnection is introduced. We think that a good cut point is
one in which the study of applications and configurations is equally wealthy. With
this view, in the upcoming two sections we shall establish that the proxy principles
are indeed a successful collection of axioms by demonstrating the rich findings in
the two independent sides of this project. At no point will we try to list all of the
resulting conclusions, as their number has order of magnitude equal to the product
of the two. In particular, we leave to the reader the task of reconnecting applications
and configurations as needed or for the joy of verifying that all classical ♢-based
Souslin-tree constructions can now be redirected through the proxy principles.26

3. Deriving instances of the proxy principle

In this section, we shall give three tables demonstrating that instances of the
proxy principles hold in many different configurations. For a stationary S ⊆ κ,
Refl(S) asserts that every stationary subset of S reflects at some ordinal in Eκ>ω,

NS+κ ↾ S stands for the collection of all stationary subsets of S, and NS+κ stands
for NS+κ ↾ κ. We also write CHλ for the assertion that 2λ = λ+, and CH(λ) for the
assertion that 2<λ = λ.

Remark 3.1. By [40, Corollary 4.13], ⊠−(κ) ∧ ♢(κ) implies P(κ, 2,⊑∗, 1, {S}) for
every stationary S ⊆ κ.

Remark 3.2. In [34, §3.3], one can find, for χ ∈ Reg(κ), a χ-directed-closed and
κ-strategically-closed forcing poset for introducing a witness to P−(κ, 2,⊑χ, κ,
(NS+κ )

V , 2, σ). This has been used in [34, §4] to prove the compatibility of strong
instances of the proxy principle with a gallery of reflection principles, such as Mar-
tin’s Maximum, Rado Conjecture, Chang’s conjecture, the Fodor-type Reflection
Principle, and ∆-reflection.

26Bear in mind Subsection 2.3.
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Table 3.1. Instances of proxy derived from combinatorial hy-

potheses. S stands for NS+λ+ ↾ Eλ
+

λ ; S∗ stands for {Eκ⩾χ | χ ∈
Reg(κ) ∧ κ is (<χ)-closed}.

Hypothesis Instance of proxy obtained Citation

♣(S) for κ = sup(S) P−(κ, 2, κ⊑, 1, {S}, 2, κ) [6, §5]

♣(S) for λ+ = sup(S) P−
λ (λ

+, 2, λ⊑, 1, {S}, 2, λ+) [6, Thm 5.1(1)]

♣(Eλ
+

λ ) for λ ∈ REG ⊠∗
λ(E

λ+

λ ) [6, Thm 5.1(1)]

♢(S) for κ = sup(S) P(κ, 2, κ⊑, 1, {S}, 2, κ) [6, §5]

♢(S) for λ+ = sup(S) Pλ(λ
+, 2, λ⊑, 1, {S}, 2, λ+) [6, Thm 5.1(2)]

♢(S) for S ⊆ Eλ
+

cf(λ), λ
+ = sup(S) Pλ(λ

+, 2, λ⊑, λ+, {Eλ
+

cf(λ)}, 2, <λ) [6, Thm 5.6]

♢(S) for ω1 = sup(S) Pω(ℵ1, 2,⊑,ℵ1, {S}, 2, <ω) [6, Thm 3.7]

♢(S) for ω1 = sup(S) Pω2(ℵ1, 2,⊑,ℵ1, {S}, 2, <ω2) [6, Thm 3.6]

♢∗(Eλ
+

λ ) for λ ∈ REG Pλ(λ
+, 2, λ⊑, λ+,S, 2, <∞) [11, §4.4]

♢(S),¬Refl(S), sup(S) = κ inaccessible P(κ, κ, S⊑, 1, {S}, 2, κ) [11, Thm 4.26(1)]

♢ λ for λ ⩾ ℵ1 Pλ(λ
+, 2,⊑, λ+, {Eλ+

cf(λ)}, 2, <λ) [6, Thm 3.6]

□λ ∧ CHλ, λ ∈ REG∖ {ℵ0} P(λ+, 2,⊑∗, ω, {Eλ+

λ }, 2, <ω) [6, Cor 6.2(2)]

□λ ∧ CHλ, λ ∈ SING Pλ(λ
+, 2,⊑, λ+, {Eλ+

cf(λ)}, 2, <λ) [6, Cor 3.10]

□λ ∧ CHλ for λ ⩾ ℵ1 Pλ(λ
+, 2,⊑, <λ, [6, Cor 3.9]

{Eλ+

ρ | ρ ∈ Reg(λ)}, 2, <λ)

□(λ+,⊑χ) ∧ CHλ for λ ⩾ ℵ1 strong limit P(λ+, 2,⊑χ, 1, [8, Cor 4.15]

{Eλ+

ρ | ρ ∈ Reg(λ)}, 2, <ω)

□(λ+) ∧ CHλ with λℵ0 = λ ⊠−(Eλ
+

ω ) [40, Cor 4.4]

□(λ+) ∧ CHλ with b ⩽ λ < ℵω ⊠−(Eλ
+

ω ) [42, Cor 5.12]

□(λ+, <λ) ∧ CHλ with λ<λ = λ ⩾ ℵ1 ∀ρ ∈ Reg(λ) ⊠∗(Eλ
+

ρ ) [41, Thm 3.5]

□(λ+) ∧ GCH with λ ⩾ ℵ1 ∀ρ ∈ Reg(λ) ⊠−(Eλ
+

ρ ) [40, Cor 4.5]

□(λ+) ∧ CHλ with λ ⩾ ℶω ∀ρ ∈ Reg(ℶω) ⊠−(Eλ
+

ρ ) [40, Cor 4.7]

⊠−(S), Refl(S), S ∈ NS+κ , ♢(κ) P(κ, 2,⊑, κ, {S}, 2, <ω) [34, Thm 3.11(2)]

□(λ+) ∧ CHλ ∧ CH(λ) for λ ∈ SING P(λ+, 2,⊑, λ+, {λ+}, 2, <ω) [8, Cor 4.22]

□(E) ∧ ♢(E), κ = sup(E) ⩾ ℵ2 ∀S ∈ NS+κ [11, Cor 4.19(2)]

P(κ, 2,⊑∗, 1, {S}, 2, <ω)

□ind(λ+, µ) ∧ CHλ ∧ ℵ0 ⩽ µ < λ ∀ρ ∈ Reg(λ)∖ µ s.t. λρ = λ [11, Thm 4.44]

P(λ+, µind,⊑, 1, {Eλ+

ρ })

CHλ,NS ↾ Eλθ saturated, λ = θ+, θ ∈ REG P(λ+, 2, λ⊑∗, θ, {Eλ+

λ }, 2, θ) [6, Thm 6.4]

λ ∈ REG∖ {ℵ0},CH(λ),CHλ,¬Refl(Eλ
+

̸=λ) Pλ(λ
+, λ+,⊑, <λ, {λ+}, 2, <λ) [10, Thm A]

λ ∈ REG∖ {ℵ0},CH(λ),CHλ,¬Refl(Eλ
+

̸=λ) P(λ+, λ+,⊑∗, 1, {Eλ+

λ }, 2, <ω) [10, Thm A]

λ ∈ SING,CH(λ),CHλ,□∗
λ,¬Refl(Eλ

+

̸=cf(λ)) Pλ2(λ+, λ+,⊑, λ+, {λ+}, 2, <λ) [10, Thm B]

V = L, κ not weakly compact P(κ, 2,⊑, κ,S∗, 2, ω) [6, Cor 1.10(5)]
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Table 3.2. Instances of proxy obtained in forcing extensions; in
all cases λ and χ stand for infinite regular cardinals, S stands for

NS+λ+ ↾ Eλ
+

λ , and the improvement from the parameter θ = 1 to
θ = κ (or θ = λ+) is secured by [11, Lemma 4.32].

Properties of forcing Properties of ground model Instance of proxy obtained Citation

Add(λ, 1) CH(λ) P−
λ (λ

+, 2, λ⊑, λ+,S, 2, <λ) [47, Cor 7.4]
CH(λ),□λ P−

λ (λ
+, 2,⊑, λ+,S, 2, <λ) [39, Thm 2.3]

CH(λ),□λ,CHλ P•
λ(λ

+, 2,⊑, λ+,S, 2, <λ) [11, Thm 6.1(11)]
CH(λ),□λ,CHλ, λ > ℵ0 Pλ(λ

+, 2,⊑, λ+,S, 2, <λ) [6, Thm 4.2(2)]

(<λ)-distributive, κ-cc, CH(λ) and Pλ(λ
+,∞,⊑, λ+, [9, Prop 3.10]

collapsing κ to λ+ κ strongly inaccessible > λ S, 2, <∞)

λ+-cc, size ⩽ λ+, Pλ(λ
+,∞,⊑, λ+,

preserves regularity of λ, CH(λ) ∧ ♢(λ+) S, 2, <∞) [9, Thm 3.4]
not λλ-bounding

λ+-cc, size ⩽ λ+, CH(λ) ∧ CHλ P(κ,∞,⊑, κ,
forces cf(λ) < |λ| κ = λ+ ⩾ ℵ2 and S = Eκλ NS+κ ↾ S, 2, <∞) [9, Thm 3.4]
(e.g., Prikry,

Magidor, Radin)

Lévy-collapsing λ to χ λ<χ = λ > χ ∧ CHλ Pχ(κ,∞,⊑, κ,
κ = λ+ and S = Eκλ NS+κ ↾ S, 2, <∞) [9, Prop 3.9]

Table 3.3. Five models in which □λ fails, yet strong instances of
the proxy principle at λ+ hold. In the last two models, GCH holds.

Features of model Instance(s) of proxy satisfied Citation

Martin’s Maximum [6, Cor 1.20]
∀λ ∈ SING ∩ cof(ω) ¬□∗

λ ∀λ ∈ SING

Pλ(λ
+, 2,⊑ℵ2 , λ

+, {Eλ+

cf(λ)}, 2, <λ)

∀λ ∈ REG∖ {ℵ0} ∀λ ∈ REG∖ {ℵ0}
♢(Eλ

+

λ ), ¬□λ,ℵ1
Pλ(λ

+, 2, λ⊑, λ+, {Eλ
+

λ }, 2, <λ)

λ supercompact, Refl(Eλ
+

<λ), Pλ(λ
+, 2,⊑λ, λ+, {Eλ

+

λ }, 2, <λ) [6, Cor 1.24]

¬♢(Eλ
+

λ ), ¬□λ

λ = χ+ω, χ supercompact, Pλ(λ
+, 2,⊑χ, λ+, {Eλ

+

cf(λ)}, 2, <λ) [6, Cor 4.7]

¬□∗
λ

λ = ℵω, Refl(λ+) ⊠−(NS+ℵω+1
) and [33, Thm 1.12]

Pℵω
(ℵω+1,ℵ1,⊑,ℵω+1, {Eℵω+1

ℵn
| n < ω})

λ ∈ REG∖ {ℵ0}, Refl(Eλ
+

<λ) ⊠−(NS+λ+) [33, Rmk 1.13]

4. A gallery of Souslin-tree constructions

As described in the paper’s Introduction, the original catalyst for the formulation
of the proxy principles was the desire for a uniform combinatorial construction of
κ-Souslin trees, and indeed the principles have served this purpose successfully. In
this section we showcase the various Souslin trees that have been built using the
proxy principles, and provide references to where these constructions can be found.
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4.1. The basics. The reader is probably familiar with the abstract definition of a
set-theoretic tree as a poset (T,<T ) all of whose downward cones are well-ordered.
In this project, we opt to work with a particular form of trees which we call stream-
lined, in which nodes of the tree are (transfinite) sequences, and the tree-order is
nothing but the initial-sequence ordering. This choice does not restrict our study,
but it does make some of the considerations smoother.27 For instance, in such a
tree T , the αth level of T coincides with the set Tα := {x ∈ T | dom(x) = α}, and
we may likewise define T ↾ C to be {x ∈ T | dom(x) ∈ C}. Furthermore, for any
⊊-increasing sequence η of nodes of T , the unique limit of the sequence, which may
or may not be in T , is

⋃
Im(η).

Definition 4.1 ([11, Definition 2.3]). A streamlined tree is a subset T ⊆ <κHκ for
some cardinal κ such that T is downward-closed, that is, {t ↾ β | β < dom(t)} ⊆ T
for every t ∈ T . The height of T , denoted ht(T ), is the least ordinal α such that
Tα = ∅. For any α ⩽ ht(T ), an α-branch is a subset B ⊆ T that is linearly ordered
by ⊊ and such that {dom(t) | t ∈ B} = α; ht(T )-branches are usually referred to
as cofinal branches through T . If ht(T ) is a limit ordinal, we denote by B(T ) the
collection of all functions f : ht(T ) → Hκ such that {f ↾ β | β < ht(T )} is a cofinal
branch through T .

By a streamlined subtree S of a tree T , we mean a subset S ⊆ T that is itself a
streamlined tree; equivalently, a streamlined subtree S of T is a downward-closed
subset of the ambient tree T .

Following [11, Convention 2.6], we shall identify a streamlined tree T with the
abstract tree (T,⊊).

Definition 4.2. (1) A streamlined κ-tree is a streamlined tree T ⊆ <κHκ such
that 0 < |Tα| < κ for every α < κ.

(2) A streamlined κ-Aronszajn tree is a streamlined κ-tree T such that
B(T ) = ∅.

(3) A streamlined κ-Kurepa tree is a streamlined κ-tree T such that
|B(T )| > κ.28

(4) A streamlined κ-Souslin tree is a streamlined κ-Aronszajn tree T with no
antichains of size κ, that is, for every A ∈ [T ]κ, there are distinct s, t ∈ A
that are comparable.29

27 See [11, §2.3] for a comparison of streamlined trees with abstract trees, highlighting the
properties of streamlined trees, the advantages of constructing them, and the fact that we lose no

generality by restricting our attention to them. Note that the proof of Lemma 2.5(1) there has a

minor glitch, but that the statement is correct. Ur Ya’ar has drawn our attention to [21, §2], where
trees of this form are called sequential trees, and where a proof of the aforementioned Lemma can
be found.

28We follow the definition given in [32, Definition II.5.16], which is satisfactory for our pur-

poses. In some contexts, it may be useful to impose that a κ-Kurepa tree is slim (see Definition 4.5

below), in order to exclude trivial examples such as the complete splitting binary tree of height a
strongly inaccessible cardinal (see [16, p. 317]).

29For s, t ∈ T , we say that s and t are comparable iff s ⊆ t or t ⊆ s; otherwise they are
incomparable. An antichain A in T is a subset A ⊆ T such that for all s, t ∈ A, if s ̸= t then s
and t are incomparable.
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Section 2 of [11], entitled “How to construct a Souslin tree the right way”, offers
a comprehensive exposition of the subject of constructing κ-Souslin trees and the
challenges involved, culminating in Subsections 2.6–2.7 with a detailed description
of a very simple construction of a κ-Souslin tree, proving the following basic result:

Fact 4.3 ([11, Proposition 2.18]). ⊠−(κ)∧♢(κ) implies the existence of a κ-Souslin
tree.

In [6, p. 1965], one finds a comparison between the classical non-smooth approach
to Souslin-tree construction (requiring nonreflecting stationary sets) and the mod-
ern approach using the proxy principles (enabling construction of a κ-Souslin tree
in models where every stationary subset of κ reflects). Further advantages of the
proxy principles in the context of Souslin-tree construction are described in [11, §1].

By a slightly more elaborate construction, it is possible to weaken the hypotheses
of Fact 4.3 considerably, as follows:

Fact 4.4 ([11, Corollary 6.7]). P•(κ, κ,⊑∗, 1, {κ}, κ) implies the existence of a κ-
Souslin tree.

Recalling the meaning of ⊠−(κ) and P•(. . .) as given in Subsection 2.4, we see
that the main improvements of Fact 4.4 over Fact 4.3 consist of weakening the
parameter µ from 2 to κ, as well as weakening the prediction principle ♢(κ) to the
arithmetic hypothesis κ<κ = κ.

4.2. Properties of trees. The literature is rich with additional properties that
κ-trees may possess. Let us discuss some of them.

Definition 4.5. A streamlined tree T of height κ is said to be:

• normal iff for all α < β < κ and x ∈ Tα, there is some y ∈ Tβ such that
x ⊊ y;30

• binary iff T ⊆ <κ2;
• ς-splitting (for an ordinal ς < κ) iff every node in T admits at least ς many
immediate successors;31

• splitting iff it is 2-splitting;
• prolific iff, for all α < κ and x ∈ Tα, {x⌢⟨ι⟩ | ι < max{ω, α}} ⊆ Tα+1;
• slim iff |Tα| ⩽ max{|α|,ℵ0} for every ordinal α;
• χ-complete iff, for any ⊊-increasing sequence η, of length < χ, of nodes of
T , the (unique) limit of the sequence,

⋃
Im(η), is also in T ;

• full iff for every α ∈ acc(κ), |B(T ↾ α)∖ Tα| ⩽ 1;
• rigid iff its only automorphism is the trivial one;
• χ-coherent iff |{α ∈ dom(x) ∩ dom(y) | x(α) ̸= y(α)}| < χ for all x, y ∈ T ;
• coherent iff it is ω-coherent;
• uniformly homogeneous iff for all y ∈ T and x ∈ T ↾ dom(y), the union of
x and y ↾ (dom(y)∖ dom(x)) (which is usually denoted by x ∗ y) is in T ;

• uniformly coherent iff it is coherent and uniformly homogeneous;

30Trees with this property are also called well-pruned ; see [32, Definition II.5.10].
31For two nodes x, y in a streamlined tree T , we say that y is an immediate successor of x iff

x ⊊ y and dom(y) = dom(x) + 1; equivalently, iff y = x⌢⟨ι⟩ for some ι.
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• regressive iff there exists a map ρ : T → T satisfying the following:
– for every non-minimal x ∈ T , ρ(x) ⊊ x;
– for all α ∈ acc(κ) and x ̸= y from Tα, either (x, ρ(y)) or (ρ(x), y) is a

pair of incomparable nodes;
• club-regressive (respectively, stationarily-regressive) iff it is regressive, as
witnessed by a map ρ satisfying the following additional feature:

– for every α ∈ Eκ>ω, there exists a club (respectively, stationary) subset
eα ⊆ α such that for all incomparable x and y from T ↾ (eα ∪ {α}),
either (x, ρ(y)) or (ρ(x), y) is a pair of incomparable nodes;

• special iff there exists a map ρ : T → T satisfying the following:
– for every non-minimal x ∈ T , ρ(x) ⊊ x;
– for every y ∈ T , ρ−1{y} is covered by less than κ many antichains;

• specializable iff there exists a forcing extension with the same cardinal struc-
ture up to and including κ, in which T is special;

• almost-Kurepa iff it is a κ-tree and |B(T )| > κ holds in the forcing extension
by (T,⊇).

Any κ-Aronszajn tree contains a κ-subtree that is normal. Inspecting the proofs
of Facts 4.3 and 4.4, we observe that the constructed trees themselves are normal,
and indeed all Souslin trees showcased here are normal. As a result of taking the
simplest approach in the construction of Fact 4.3, the tree is also club-regressive,
as explored in [6, Proposition 2.3].

Remark 4.6. Any special κ-tree is a κ-Aronszajn tree that is not κ-Souslin. An
ℵ1-tree is specializable iff it is Aronszajn. Coherent trees are regressive; regres-
sive streamlined subtrees of <κω are slim; regressive κ-trees contain no ν-Cantor
subtrees for any infinite cardinal ν; stationarily-regressive κ-trees contain no ν-
Aronszajn subtrees for all ν ∈ Reg(κ); slim splitting trees are not ℵ1-complete;
a full splitting ℵ2-tree is neither slim nor ℵ1-complete; the existence of a binary
κ-Souslin tree is equivalent to the existence of a prolific κ-Souslin tree; prolific
κ-Souslin trees (are ω-splitting and) induce strong colorings on κ in a very trans-
parent way.

Definition 4.7 ([7, Definition 1.2]). Suppose that X is a streamlined κ-tree, and
F ⊆ P(µ) for some cardinal µ. An (F , X)-ascent path through a streamlined tree

T of height κ is a system f⃗ = ⟨fx | x ∈ X⟩ such that for all x, y ∈ X:

(1) fx : µ→ Tdom(x) is a function;
(2) if x ⊊ y, then {i < µ | fx(i) ⊊ fy(i)} ∈ F ;
(3) if x ̸= y and dom(x) = dom(y), then {i < µ | fx(i) ̸= fy(i)} ∈ F .

If (X,⊊) is isomorphic to (κ,∈), then f⃗ is simply said to be an F-ascent path.

If, in addition, F is equal to Fbd
µ := {Z ⊆ µ | sup(µ ∖ Z) < µ}, then f⃗ is said to

be a µ-ascent path.

The following weakening of µ-ascent path was isolated by Lücke:
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Definition 4.8 ([36, Definition 1.3]). For a cardinal µ, a µ-ascending path through

a streamlined tree T of height κ is a sequence f⃗ = ⟨fα | α < κ⟩ such that for all
α < β < κ:

(1) fα : µ→ Tα is a function;
(2) there are i, j < µ such that fα(i) ⊊ fβ(j).

Remark 4.9. Ascent paths and ascending paths are combinatorial features that
play an important role in enabling constructions of both specializable and non-
specializable trees. First, under certain ‘mismatch’ conditions, these paths prevent
a tree from being special. Specifically, for a tree T of height κ, any of the following
implies that T is non-special:

(1) T admits a µ-ascent path for some µ ∈ Reg(λ)∖ {cf(λ)}, where κ = λ+;32

(2) T admits a µ-ascending path for some µ < cf(sup(Reg(κ))).33

But as these mismatch conditions remain valid in any forcing extension with the
same cardinal structure, they in fact imply that the tree T is non-specializable!
Complementary to that, by [33, Theorem 1.19(1)], for every singular cardinal λ,
□λ yields a special λ+-tree with a cf(λ)-ascent path. As the existence of a µ-ascent
path through a tree T implies the existence of a µ′-ascending path for all µ′ ⩾ µ,
it follows that the above mismatch conditions are sharp.

As for the other direction, we have the following:

(3) Assuming λ<λ = λ, every tree T of height λ+ that has no µ-ascending path
for every µ < λ is specializable.34

The upshot is that to construct a non-specializable tree, it suffices to construct
one with a mismatching ascent/ascending path, and to construct a specializable
tree at the successor λ+ of a cardinal λ = λ<λ, it is necessary and sufficient that
the tree admit no narrow ascending path.

Notation 4.10 (ith component, [10, Notation 4.3]). For every function x : α →
τHκ and every i < τ , we let (x)i : α→ Hκ stand for ⟨x(β)(i) | β < α⟩.

Definition 4.11 ([10, Definition 4.4]). Suppose that T ⊆ <κHκ is a streamlined
tree, and τ is a nonzero ordinal.

• For a sequence s⃗ = ⟨si | i < τ⟩ of nodes of T , we let

T (s⃗) := {x ∈ <κ(τHκ) | ∀i < τ [(x)i ∪ si ∈ T ]},

noting that T (s⃗) is a streamlined subtree of <κ(τHκ).
• A τ -derived tree of T is a tree of the form T (s⃗) for some injective sequence
s⃗ = ⟨si | i < τ⟩ of nodes of T on which the map i 7→ dom(si) is constant.

Definition 4.12 ([10, Definition 4.5]). A streamlined κ-tree T is χ-free iff for every
nonzero τ < χ, all of the τ -derived trees of T are κ-Souslin. T is free iff it is ω-free.

32This is what the proof of [50, Lemma 3] shows.
33This is [36, Corollary 1.7].
34By the forward implication of [36, Theorem 1.11], under these assumptions, the forcing poset

Pλ(T ) to add a specializing map f : T → λ via approximations of size less than λ has the λ+-cc.
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Remark 4.13. A λ-free λ+-tree is specializable; 3-free trees are rigid; 2-free κ-trees
are κ-Souslin and normal; full normal κ-Aronszajn trees are rigid on every club
[45, Observation 2.2(4)].

Definition 4.14 (The levels of vanishing branches, [44, 46]). For a streamlined
κ-tree T :

• V −(T ) := {α ∈ acc(κ) | B(T ↾ α) ̸= Tα};
• V (T ) denotes the set of all α ∈ acc(κ) such that for every x ∈ T ↾ α, there
exists f ∈ B(T ↾ α)∖ Tα with x ⊊ f .

Remark 4.15. V (T ) ⊆ V −(T ); if T is uniformly homogeneous, then V (T ) = V −(T );
if V (T ) is cofinal in κ, then T is normal; if T is splitting and full, then V (T ) is
empty; if T is uniformly coherent, then V (T ) = Eκω.

4.3. Binary vs. prolific and slim vs. complete. As demonstrated in [11, §6.1],
there is an obvious way of transforming any proxy-based construction of a prolific
κ-tree into a construction of a binary κ-tree (or, more generally, a construction of
a ς-splitting subtree of <κς, for any fixed ς ∈ [2, κ)), and vice versa. In addition,
there are abstract translations of κ-trees into binary κ-trees as may be found in the
appendix of [7].

Likewise, there is a transparent way of transforming any proxy-based construc-
tion of slim tree into a construction of a complete tree, and vice versa. This is
demonstrated by the construction of a χ-complete κ-Souslin tree from ⊠−(Eκ⩾χ) ∧
♢(κ), where κ is (<χ)-closed, in [6, Proposition 2.4]. By taking some extra care in
the construction, [9, Proposition 2.2] shows that we can replace ⊠−(Eκ⩾χ) with the

weaker instance⊠∗(Eκ⩾χ). As a rule of thumb, the construction of slim trees requires

µ ⩽ ℵ1; on the other hand, for a χ-complete tree we require κ to be (<χ)-closed
and also require the parameter S to contain some subset (modulo nonstationary)
of Eκ⩾χ.

4.4. The tables. We now turn to present a few tables summarizing various κ-
Souslin trees constructed in the literature using instances of the proxy principles.
Note that the monotonicity features of the proxy principles suggest an informal way
of comparing two κ-trees T and S by viewing T as ‘weaker’ than S provided that
T can be obtained from a vector of parameters weaker than the one necessary for
the construction of S. This informal understanding becomes more precise through
the observation that the content of Remarks 4.6, 4.13 and 4.15 indeed corresponds
with Subsection 2.3.

All trees showcased here are streamlined, normal, and splitting. Throughout
the tables in this section, χ stands for an infinite regular cardinal < κ such that
κ is (<χ)-closed. On a first pass, the reader may simply assume χ = ℵ0. In this
case, χ⊑ coincides with ⊑ (recall Subsection 2.3), and any mention of Eκ⩾χ may be
replaced by κ, since the two sets are equal modulo nonstationary. We note that
in many of the cited references the trees are constructed from P(· · · ) with some
finitary value of σ, but as explained in Subsection 2.5, all such constructions can
be carried out from the weaker P•(· · · ).
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Table 4.1. The case µ = ν = κ.

Citation R θ S Type of κ-Souslin tree

(1) [11, Thm 6.8] χ⊑∗ 1 {Eκ⩾χ} χ-complete

(2) [11, Thm 6.32] χ⊑ κ {Eκ⩾χ} χ-complete,

uniformly homogeneous
(3) [46, Thm 3.7] ⊑ 1 {κ} V (T ) ⊇ V −(K) ∩ Eκ>ω
(4) [46, Thm 4.4] S⊑ 1 {S ∪ Eκ⩾χ} V (T ) ∩ Eκ<χ = S

= V −(T ) ∩ Eκ<χ
(5) [46, Thm 4.3] S⊑ 1 {κ} V (T ) ⊇ S
(6) [46, Thm 4.8] S⊑ 1 {S} V (T ) = S = V −(T )

Table 4.2. Cases where 2 < µ < κ and ν = κ.

Citation µ R θ S Type of κ-Souslin tree

[11, Thm 6.11] µind ⊑ 1 {Eκ⩾χ} χ-complete with a µ-ascent path

See §4.3 above ℵ1 ⊑ κ {κ} slim, uniformly homogeneous
See §4.3 above ℵ1 ⊑∗ 1 {κ} slim

Table 4.3. The case µ = κ and ν = 2.

Citation R θ S Type of κ-Souslin tree

(1) [11, Thm 6.17] χ⊑ 1 S∗ χ-complete, rigid,
∀Λ < λ, T has no Λ-ascending path

(2) [11, Thm 6.14] χ⊑∗ 1 S∗ χ-complete,
∀Λ < λ, T has no Λ-ascending path

(3) [11, Thm 6.27] χ⊑ κ {Eκ⩾χ} χ-complete, χ-free

(4) Thm 5.5 below ⊑ κ {κ} pairwise-Souslin family of trees

Our first table, Table 4.1, presents κ-Souslin trees T constructed from P•(κ,
µ,R, θ,S, ν) with the weak values µ = ν = κ. In (3), K is any given streamlined
κ-tree. In (4), S ⊆ acc(κ) ∩ Eκ<χ. In (5), S ⊆ acc(κ). In (6), S ⊆ acc(κ) and we
also assume that κ is strongly inaccessible.

Our second table, Table 4.2, presents κ-Souslin trees constructed from P•(κ, µ,
R, θ,S, ν) with a moderate strengthening of the value of µ, and still no restriction
on ν.

Our third table, Table 4.3, presents κ-Souslin trees T constructed from P•(κ, µ,
R, θ,S, ν), where µ is assigned the weak value κ, but ν is now strengthened to 2.
In (1) and (2), λ < κ is an infinite cardinal, and S∗ := {Eκ⩾χ ∩ Eκ>Λ | Λ < λ};
note that if κ = λ+ where λ<λ = λ, then the trees obtained are specializable by
Remark 4.9(3).
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Our fourth table, Table 4.4, presents κ-Souslin trees T constructed from P•(κ, µ,
R, θ,S, ν) where both µ and ν are strengthened to 2. In (1), X stands for a
given streamlined κ-tree. In (4), the original paper does not mention being club-
regressive, but this can easily be verified. In (5), X stands for a given P−(· · · )-
respecting binary κ-tree. In (6), X stands for a given P−(· · · )-respecting κ-tree
with no κ-sized antichains, and η ⩽ χ. In (7), κ = λ+ is a successor cardinal, n > 1
is an integer, and the order-type limitation is ξ = λ.

Table 4.4. The case µ = ν = 2.

Citation R θ S Type of κ-Souslin tree

(1) [46, Thm 3.7] ⊑∗ 1 {κ} V (T ) ⊇ V −(X)
(2) [6, Prop 2.3] ⊑ 1 {κ} club-regressive
(3) [6, Prop 2.5] ⊑ κ {κ} club-regressive, uniformly coherent
(4) [7, Thm 6.2] ⊑ κ {Eκ⩾χ} club-regressive, χ-free

(5) [55, Thm 7.2] ⊑ κ {Eκ⩾χ} has |B(X)|-many automorphisms;

if X is Kurepa,
then T is almost-Kurepa

(6) [46, Thm 5.10] η⊑ κ {Eκ⩾χ} uniformly homogeneous,

Eκ⩾χ-regressive,

χ-complete, χ-coherent;
X ⊗ T is κ-Souslin and
P−(κ, 2, η⊑, κ, {Eκ⩾χ}, 2)-respecting

(7) Thm 6.11 below ⊑ κ {κ} club-regressive, n-free,
with special n-power

Our last table, Table 4.5, presents κ-Souslin trees T with (Fη
Λ, X)-ascent paths

constructed from P(κ, µ,R, θ,S, ν, σ) with µ = ν = 2 together with the strong
value σ = ω. Fη

Λ stands for the filter {Z ⊆ Λ | |Λ ∖ Z| < η}, and here η ⩽ Λ are
both in Reg(κ). X stands for a given streamlined κ-tree. If X admits a κ-branch
(e.g., X = <κ1), then since Fη

Λ is a subset of Fbd
Λ that projects to Fbd

η , the tree T
admits both a Λ-ascent path and an η-ascent path. By Remark 4.9(1)&(2), then, T

Table 4.5. The case µ = ν = 2 and the strong value σ = ω.

Citation R θ S Type of κ-Souslin tree
with an (Fη

Λ, X)-ascent path

(1) [7, Thm 4.2] ⊑ 1 {κ} slim with η = Λ = ω
(2) [7, Thm 4.3] ⊑ 1 {Eκ⩾χ} χ-complete with η = Λ = ω

(3) [7, Thm 5.1] ⊑η Λ {κ} slim
(4) [7, Thm 5.3] ⊑η Λ {Eκ⩾χ} χ-complete

(5) [7, Thm 6.3] ⊑η κ {Eκ⩾χ} min{χ, η}-free, χ-complete

(6) [7, Thm 6.5] ⊑η κ {Eκ⩾χ} slim, χ-free
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is non-specializable provided that either Λ ̸= cf(sup(Reg(κ))) or Λ ̸= η. In (1), (3),
and (6), we require X to be slim; in (5) and (6), X must be P−(· · · )-respecting.
In (6), χ ⩽ η.

There are a few more tree constructions that do not fit the above tables. We list
them below and refer the reader to the original papers for any missing definitions.

Fact 4.16 ([7, Theorem 6.1]). Suppose that P(κ, 2,⊑, κ, {Eκ⩾χ}, 2, ω) holds, and

κ is (<χ)-closed. For every infinite cardinal θ such that θ+ < χ, there is a slim
(χ, θ+)-free κ-Souslin tree with an injective Ffin

θ -ascent path.

Fact 4.17 ([7, Theorem 6.4]). Suppose that cf(ν) = ν < θ+ < χ < κ are infinite
cardinals, κ is (<χ)-closed, and P(κ, 2,⊑, κ, {Eκ⩾χ}, 2, ω) holds. Then there exists

a ν-free, (χ, θ+)-free, χ-complete κ-Souslin tree with an injective Fν
θ -ascent path.

Fact 4.18 ([7, Theorem 6.6]). Suppose that cf(ν) = ν < θ+ < χ < κ are infinite
cardinals, κ is (<χ)-closed, and P(κ, 2,⊑, κ, {Eκ⩾χ}, 2, ω) holds. Then there exists

a slim ν-free, (χ, θ+)-free, κ-Souslin tree with an injective Fν
θ -ascent path.

Fact 4.19 ([55, Theorem 7.5]). Suppose that:

• κ<κ = κ;
• S ⊆ Eκcf(θ) is a stationary subset of κ;

• P−(κ, κ, S⊑, 1, {S}, 2) holds and is witnessed by a sequence ⟨Cα | α < κ⟩
for which B := {α ∈ acc(κ) | |Cα| = 1} covers Eκ>cf(θ), and acc(

⋃
Cα) ⊆ B

for every α ∈ B.

Then there exists a κ-Souslin tree with a θ-ascent path.

Fact 4.20 ([45, Theorem 4.4]). Suppose that:

• κ is a strongly inaccessible cardinal;
• S ⊆ Eκ>ω is stationary, and ♢∗

S(κ-trees) holds;

• P−(κ, 2,⊑, 1, {S}) holds.
Then there is a family T of 2κ many binary, full κ-trees such that

⊗
T ′ is

κ-Souslin for every nonempty T ′ ∈ [T ]<κ.

Fact 4.21 ([45, Theorem 5.1]). Suppose that:

• κ = λ+ = 2λ for λ a regular uncountable cardinal;
• □Bλ and ♢(λ) both hold;35

• P−(κ, 2,⊑λ, κ, {Eκλ}) holds.
Then there is a family T of 2κ many binary, full κ-trees such that

⊗
T ′ is

κ-Souslin for every nonempty T ′ ∈ [T ]<λ.

Fact 4.22 (cf. [7, Corollary 1.15]). Suppose that:

• κ = λ+ for some regular uncountable cardinal λ;
• κ is (<λ)-closed;
• ν ∈ Reg(κ);
• θ is a cardinal such that ν < θ+ < λ;

35□B
λ asserts the existence of a λ-bounded ⊑λ-coherent C-sequence over λ+.
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• P(κ, 2,⊑, κ, {Eκλ}, 2, ω) holds.
Then there is a κ-Souslin tree T such that for every infinite cardinal Λ:

• If Λ < ν or θ < Λ < λ, then for every selective ultrafilter U over Λ, the
reduced power TΛ/U is an almost-Souslin κ-Aronszajn tree;

• If ν ⩽ cf(Λ) ⩽ Λ ⩽ θ, then for every uniform ultrafilter U over Λ, the
reduced power TΛ/U admits a κ-branch;

• If Λ = λ, then for every (ω,Λ)-regular ultrafilter U over Λ, the reduced
power TΛ/U is not a κ-tree.

5. A large family of Souslin trees

In [56], Zakrzewski constructed from ♢(ℵ1) a family of 2ℵ1 many ℵ1-Souslin trees
such that the product of any finitely (nonzero) many of them is again Souslin. The
main result of this section (Theorem 5.5 below) generalizes Zakrzewski’s theorem
in various ways. First, let us recall the definition of a product of trees.

Definition 5.1. For a sequence of streamlined trees ⟨T j | j < τ⟩, the product tree⊗
j<τ T

j is defined to be the poset T = (T,<T ), where:

• T := {x⃗ ∈
∏
j<τ T

j | j 7→ dom(x⃗(j)) is constant}, and
• x⃗ <T y⃗ iff x⃗(j) ⊊ y⃗(j) for every j < τ .

Remark 5.2. The tree T is easily seen to be isomorphic to a streamlined tree via
Notation 4.10, but in order to ease on the reader, we stick here to the classical
representation of products.

Second, to motivate Theorem 5.5, we state a sample corollary that does not
mention products. In what follows, two streamlined κ-trees S and T are far iff
there exist no streamlined κ-subtrees of S and T that are club-isomorphic.

Corollary 5.3. If ♢+(ℵ1) holds, then there exists a streamlined ℵ1-Aronszajn tree
T admitting ℵ2-many pairwise far streamlined ℵ1-Souslin subtrees.

Proof. Recall that ♢+(ℵ1) entails the existence of an ℵ1-Kurepa tree. In addition,
by [6, Corollary 1.10], ♢(ℵ1) implies P(ℵ1, 2,⊑,ℵ1). Thus, by Corollary 5.7 below
(using κ = ℵ1 and ℧ = ℵ2), there exists a streamlined ℵ1-Aronszajn tree admitting
ℵ2-many streamlined ℵ1-subtrees such that the product of any two of them is ℵ1-
Souslin. Finally, note that, in general, if S and T are streamlined κ-trees whose
product is κ-Souslin, then they are far. Indeed, in this case, for all streamlined
κ-subtrees S′ of S and T ′ of T and for every club D ⊆ κ, the product of S′ ↾ D
and T ′ ↾D is κ-Souslin, and then [45, Proposition 2.6] implies that there is no weak
embedding from S′ ↾D to T ′ ↾D, let alone an isomorphism. □

Looking at the preceding corollary, one may wonder whether the conclusion can
be strengthened to make the ultimate tree Souslin, as well. The next proposition
shows that this is impossible.

Proposition 5.4. Suppose ⟨T η | η < κ⟩ is a sequence of streamlined κ-subtrees
of a given streamlined κ-Souslin tree T . Then there are η < ρ < κ such that
|T η ∩ T ρ| = κ.
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Proof. We shall make use of the following standard feature of Souslin trees.

Claim 5.4.1. Suppose that S is a streamlined κ-subtree of T . Then there exists
some s ∈ S such that {t ∈ T | s ⊆ t} is a subset of S.

Proof. Suppose not. In particular, for every α < κ, we may find a pair (sα, tα)
such that:

• sα ∈ Sα;
• tα ∈ T ∖ S with sα ⊆ tα.

Fix a sparse enough set A ∈ [κ]κ such that for every pair α < β of ordinals from
A, dom(tα) < β. Since T is a κ-Souslin tree, we may pick a pair α < β of ordinals
from A such that tα ⊆ tβ . As also sβ ⊆ tβ and dom(tα) < β = dom(sβ), it follows
that tα ⊆ sβ . But sβ belongs to the streamlined tree S, which must mean that
tα ∈ S, contradicting the choice of tα. □

For each η < κ, pick some sη ∈ T such that {t ∈ T | sη ⊆ t} is a subset of T η.
As T is a κ-Souslin tree, the set N := {s ∈ T | |{t ∈ T | s ⊆ t}| < κ} has size less
than κ. Using again that T is a κ-Souslin tree, we may then find η < ρ < κ such
that sη ⊆ sρ and sρ /∈ N . So {t ∈ T | sρ ⊆ t} is a subset of T η ∩ T ρ of size κ. □

We now arrive at the main technical result of this section. To recover Za-
krzewski’s theorem, consider the case κ := ℵ1, K := <κ2 and S := {κ}.

Theorem 5.5. Suppose:

• K ⊆ <κHκ is a normal streamlined tree of height κ;
• S is a nonempty collection of stationary subsets of κ;
• P(κ, κ,⊑, κ,S, 2) holds.

Then there exists a system ⟨T η | η ∈ B(K)⟩ of prolific normal streamlined κ-
Souslin trees satisfying all of the following:

(1) For every nonzero cardinal τ such that κ is τ -closed and such that there
exists § ∈ S for which §∖Eκ>τ is nonstationary, for every injective sequence
⟨ηj | j < τ⟩ of elements of B(K), the product tree

⊗
j<τ T

ηj is again κ-
Souslin;

(2) The union of these trees T :=
⋃
{T η | η ∈ B(K)} has no κ-branches;

(3) If K is a κ-tree, then T is a κ-Aronszajn tree.

Proof. Fix a sequence C⃗ = ⟨Cα | α < κ⟩ witnessing P−(κ, κ,⊑, κ,S, 2). Without
loss of generality, 0 ∈

⋂
0<α<κ

⋂
Cα. As ♢(κ) holds, fix sequences ⟨Ωβ | β < κ⟩ and

⟨Ri | i < κ⟩ together witnessing ♢(Hκ), as in Fact 2.9. Let π : κ→ κ be such that
β ∈ Rπ(β) for all β < κ. Let ◁κ be some well-ordering of Hκ of order-type κ, and
let ϕ : κ↔ Hκ witness the isomorphism (κ,∈) ∼= (Hκ,◁κ). Put ψ := ϕ ◦ π.

We shall construct a system ⟨Lη | η ∈ K⟩ such that, for all α < κ and η ∈ Kα:

(i) Lη ∈ [ακ]<κ;
(ii) for every β < α, Lη↾β = {t ↾ β | t ∈ Lη}.
By convention, for every α ∈ acc(κ) such that ⟨Lη | η ∈ K ↾ α⟩ has already

been defined, and for every η ∈ Kα, we shall let T η :=
⋃
β<α L

η↾β , so that T η is a
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streamlined tree of height α whose βth level is Lη↾β for all β < α. Throughout, we
shall ensure that each such tree T η is normal and prolific.

The construction of the system ⟨Lη | η ∈ K⟩ is by recursion on dom(η). We
start by letting L∅ := {∅}. Next, for every α < κ such that ⟨Lη | η ∈ Kα⟩ has
already been defined, for every η ∈ Kα+1, we let

Lη := {t⌢⟨ι⟩ | t ∈ Lη↾α, ι < max{ω, α}}.

Suppose now that α ∈ acc(κ) is such that ⟨Lη | η ∈ K ↾ α⟩ has already been
defined. For each C ∈ Cα, we shall define a matrix

BC = ⟨bα,C∩β,η
x | β ∈ C, η ∈ Kβ , x ∈ T η ↾ C ∩ (β + 1)⟩

ensuring that x ⊆ bα,D̄,η̄x ⊆ bα,D,ηx ∈ Lη whenever η̄ ⊆ η and D̄ ⊑ D.36 Then, for all
C ∈ Cα, η ∈ Kα and x ∈ T η ↾C, it will follow that bC,ηx :=

⋃
β∈C∖dom(x) b

α,C∩β,η↾β
x

is an element of B(T η) extending x, and we shall let

(⋆) Lη := {bC,ηx | C ∈ Cα, x ∈ T η ↾ C}.

Let C ∈ Cα. We now turn to define the components of the matrix BC by recursion
on β ∈ C. So suppose that β ∈ C is such that

BC<β := ⟨bα,C∩β̄,η
x | β̄ ∈ C ∩ β, η ∈ Kβ̄ , x ∈ T η ↾ C ∩ (β̄ + 1)⟩

has already been defined.
▶ For all η ∈ Kβ and x ∈ T η such that dom(x) = β, let bα,C∩β,η

x := x.
▶ For all η ∈ Kβ and x ∈ T η such that dom(x) ∈ C ↾ β, there are two main

cases to consider:
▶▶ Suppose that β ∈ nacc(C) and denote β− := sup(C ∩ β).
▶▶▶ Suppose β ∈ acc(κ) and there exists a nonzero cardinal τ such that all of

the following hold:

(1) There exists a sequence ⟨ηj | j < τ⟩ of nodes in Kβ , and a maximal
antichain A in the product tree

⊗
j<τ T

ηj such that37

Ωβ = {(⟨ηj ↾ ϵ | j < τ⟩, A ∩ τ (ϵκ)) | ϵ < β};

(2) ψ(β) is a sequence ⟨xj | j < τ⟩ such that xj ∈ T ηj↾β
−
↾ (C ∩ β−) for every

j < τ ;
(3) There exists a unique j < τ such that ηj = η and xj = x.

In this case, by Clauses (1) and (2), the following set is nonempty

QC,β :=
{
t⃗ ∈

∏
j<τ

Lηj
∣∣∣∃s⃗ ∈ A∀j < τ

[
(s⃗(j) ∪ bα,C∩β−,ηj↾β

−

xj
) ⊆ t⃗(j)

]}
,

so we let t⃗ := min(QC,β ,◁κ), and then we let bα,C∩β,η
x := t⃗(j) for the unique index

j of Clause (3). It follows that bα,C∩β−,η↾β−

x ⊆ t⃗(j) = bα,C∩β,η
x .

36This also implies that the matrix is continuous, i.e., for β ∈ acc(C), η ∈ Kβ and x ∈
T η ↾ (C ∩ β), it is the case that bα,C∩β,η

x =
⋃
{bα,C∩β̄,η↾β̄

x | β̄ ∈ C ∩ β ∖ dom(x)}.
37As β ∈ acc(κ), it is the case that τ , ⟨ηj | j < τ⟩ and A are uniquely determined by Ωβ .
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▶▶▶ Otherwise, let bα,C∩β,η
x be the ◁κ-least element of Lη ∖ {Ωβ} extending

bα,C∩β−,η↾β−

x . As our trees thus far are normal and splitting (in fact, prolific), this
is well-defined.

▶▶ Suppose that β ∈ acc(C). Then we define bα,C∩β,η
x :=

⋃
{bα,C∩β̄,η↾β̄
x |

β̄ ∈ C ∩ β ∖ dom(x)}. We must show that the latter belongs to Lη. By the

coherence feature of C⃗ and since β ∈ acc(C), it is the case that C ∩ β ∈ Cβ , so,
by (⋆), it suffices to prove that bα,C∩β,η

x = bC∩β,η
x . Proving the latter amounts to

showing that bα,C∩δ,η↾δ
x = bβ,C∩δ,η↾δ

x for all δ ∈ C ∩ β ∖ dom(x). This is taken care
of by the following claim, formalizing the fact that our construction is following the
microscopic approach.

Claim 5.5.1. BC<β = BC∩β . That is, the following matrices coincide:

• ⟨bα,C∩δ,ρ
y | δ ∈ C ∩ β, ρ ∈ Kδ, y ∈ T ρ ↾ C ∩ (δ + 1)⟩;

• ⟨bβ,C∩δ,ρ
y | δ ∈ C ∩ β, ρ ∈ Kδ, y ∈ T ρ ↾ C ∩ (δ + 1)⟩.

Proof. For the scope of this proof we denote C ∩ β by D. Now, by induction on
δ ∈ D, we prove that

⟨bα,D∩δ,ρ
y | ρ ∈ Kδ, y ∈ T ρ ↾D ∩ (δ + 1)⟩ = ⟨bβ,D∩δ,ρ

y | ρ ∈ Kδ, y ∈ T ρ ↾D ∩ (δ + 1)⟩.

The base case δ = min(D) = 0 is immediate since bα,∅,∅∅ = ∅ = bβ,∅,∅∅ . The limit
case δ ∈ acc(D) follows from the continuity of the matrices under discussion as
remarked in Footnote 36, with the exception of those y’s such that dom(y) = δ,
but in this case, bα,D∩δ,ρ

y = y = bβ,D∩δ,ρ
y for all ρ ∈ Kδ.

Finally, assuming that δ− < δ are two successive elements of D such that

⟨bα,D∩δ−,ρ
y | ρ ∈ Kδ− , y ∈ T ρ ↾D ∩ (δ− + 1)⟩

= ⟨bβ,D∩δ−,ρ
y | ρ ∈ Kδ− , y ∈ T ρ ↾D ∩ (δ− + 1)⟩,

we argue as follows. Given ζ ∈ Kδ and z ∈ T ζ ↾ D ∩ (δ + 1), there are a few
possible options. If dom(z) = δ, then bα,D∩δ,ζ

z = z = bβ,D∩δ,ζ
z , and we are done.

If dom(z) < δ, then dom(z) ⩽ δ− and, by the above construction, for every γ ∈
{α, β}, the value of bγ,D∩δ,ζ

z is completely determined by δ, ⟨Lρ | ρ ∈ K ↾ (δ + 1)⟩,
Ωδ, D, ψ(δ), ζ, x, and ⟨bγ,D∩δ−,ρ

y | ρ ∈ Kδ− , y ∈ T ρ ↾ (D ∩ δ−)⟩ in such a way that

our inductive assumptions imply that bα,D∩δ,ζ
z = bβ,D∩δ,ζ

z . □

This completes the definition of the matrix BC , from which we derive bC,ηx :=⋃
β∈C∖dom(x) b

α,C∩β,η↾β
x for all η ∈ Kα and x ∈ T η ↾ C. Finally, we define Lη

as per (⋆).

Claim 5.5.2. For all η ∈ Kα, C ∈ Cα, and t ∈ {bC,ηx | x ∈ T η ↾ C}, there exists a

tail of ε ∈ C such that t = bC,ηt↾ε .

Proof. Let t be as above. Fix an x ∈ T η ↾C such that t = bC,ηx . Then, by the nature
of the above construction, t ↾ dom(x) = x, and for every given ε ∈ C ∖ dom(x),

it is the case that t ↾ ε = bα,C∩ε,η↾ε
x , and of course bα,C∩ε,η↾ε

t↾ε = t ↾ ε. That is,
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bα,C∩ε,η↾ε
x = bα,C∩ε,η↾ε

t↾ε . Then, a similar analysis to that of Claim 5.5.1 yields that

for every δ ∈ C ∖ ε, bα,C∩δ,η↾δ
x = bα,C∩δ,η↾δ

t↾ε . Altogether, t = bC,ηx = bC,ηt↾ε . □

At the end of the above process, for every η ∈ B(K), we have obtained a normal
streamlined prolific κ-tree T η :=

⋃
α<κ L

η↾α whose αth level is Lη↾α.

Claim 5.5.3. Suppose:

• τ is nonzero cardinal such that κ is τ -closed;
• § ∈ S is such that §∖ Eκ>τ is nonstationary;
• ⟨ηj | j < τ⟩ is an injective sequence of elements of B(K).

The product tree
⊗

j<τ T
ηj is a κ-Souslin tree.

Proof. For the sake of this proof, denote
⊗

j<τ T
ηj by T = (T,<T ). As κ is τ -

closed, T is a (splitting, normal) κ-tree. Thus, to show that it is a κ-Souslin tree,
it suffices to establish that it has no antichains of size κ. To this end, let A be a
maximal antichain in T.

Set Ω := {(⟨ηj ↾ ϵ | j < τ⟩, A ∩ τ (ϵκ)) | ϵ < κ}. As an application of ♢(Hκ),
using the parameter p := {ϕ,A,Ω, ⟨T ηj | j < τ⟩}, we get that for every i < κ, the
following set is stationary in κ:

Bi := {β ∈ Ri ∩ acc(κ) | ∃M ≺ Hκ+ (p ∈ M, β = κ ∩M,Ωβ = Ω ∩M)}.
Note that, for every β ∈

⋃
i<κBi, it is the case that T ↾ β ⊆ ϕ[β].

Fix a large enough δ < κ for which the map j 7→ ηj ↾ δ is injective over τ . By

the choice of C⃗, we may now find an ordinal α ∈ § ∩Eκ>τ above δ such that Cα is a
singleton, say Cα = {Cα}, and, for all i < α,

sup(nacc(Cα) ∩Bi) = α.

In particular, T ↾ α ⊆ ϕ[α]. Set η̄j := ηj ↾ α for each j < τ , and note that
T ↾ α =

⊗
j<τ T

η̄j .

Subclaim 5.5.3.1. A ⊆ T ↾ α. In particular, |A| < κ.

Proof. It suffices to show that every node in Tα extends some element of the an-
tichain A. To this end, let y⃗ = ⟨yj | j < τ⟩ be an arbitrary node in Tα. By (⋆),

for each j < τ , we may find some xj ∈ T η̄j ↾ Cα such that yj = b
Cα,η̄j
xj . By

Claim 5.5.2 and the fact that α ∈ Eκ>τ , we may assume the existence of a large
enough γ ∈ Cα ∖ (δ + 1) such that dom(xj) = γ for all j < τ . In particular,
x⃗ := ⟨xj | j < τ⟩ is a node in T ↾ α ⊆ ϕ[α]. Fix some i < α such that ϕ(i) = x⃗,
and then pick a large enough β ∈ nacc(Cα) ∩ Bi for which β− := sup(Cα ∩ β) is
bigger than γ. Note that ψ(β) = ϕ(π(β)) = ϕ(i) = x⃗, ⟨η̄j ↾β | j < τ⟩ is an injective
sequence, and

δ < γ < β− < β < α.

Let M ≺ Hκ+ be a witness for β being in Bi. Clearly,

• T ∩M = T ↾ β =
⊗

j<τ T
η̄j↾β ,

• A ∩M = A ∩ (T ↾ β) is a maximal antichain in T ↾ β, and
• Ωβ = Ω ∩M = {(⟨ηj ↾ ϵ | j < τ⟩, A ∩ τ (ϵκ)) | ϵ < β}.
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It thus follows that for every j < τ , b
α,Cα∩β,η̄j↾β
xj = t⃗(j), where t⃗ = min(QCα,β ,

◁κ). In particular, we may fix some s⃗ ∈ A such that, for every j < τ ,

(s⃗(j) ∪ bα,Cα∩β−,η̄j↾β
−

xj
) ⊆ t⃗(j) = bα,Cα∩β,η̄j↾β

xj
⊆ bCα,η̄j

xj
= yj .

So s⃗ <T y⃗. As s⃗ is an element of A, we are done. □

This completes the proof. □

As a final step, we consider the tree T :=
⋃
{T η | η ∈ B(K)}. Evidently, the αth

level of T is the union of |Kα| many sets of size less than κ. Thus, if K is a κ-tree,
then so is T .

Claim 5.5.4. T has no κ-branches.

Proof. Towards a contradiction, suppose that f ∈ B(T ). Fix an i < α such that
ϕ(i) = ∅. As an application of ♢(Hκ), we get that the following set is stationary
in κ:

Bi := {β ∈ Ri | f ↾ β = Ωβ}.

By the choice of C⃗, we may now find an ordinal α ∈ acc(κ) such that Cα is a
singleton, say Cα = {Cα}, and

sup(nacc(Cα) ∩Bi) = α.

Recalling (⋆), fix η ∈ Kα and x ∈ T η ↾ Cα such that f ↾ α = bCα,η
x . Pick

a large enough β ∈ nacc(Cα) ∩ Bi for which β− := sup(Cα ∩ β) is bigger than
dom(x). As ψ(β) = ϕ(π(β)) = ϕ(i) = ∅, it is the case that bα,Cα∩β,η↾β

x is an
element of Lη↾β ∖ {Ωβ}. In particular, bCα,η

x ↾ β ̸= Ωβ , contradicting the fact that
bCα,η
x = f ↾ α and Ωβ = f ↾ β. □

This completes the proof. □

Remark 5.6. It is tedious yet not impossible to verify that for every nonzero cardinal
τ such that κ is τ -closed and such that there exists § ∈ S for which § ∖ Eκ>τ is
nonstationary, for every injective sequence ⟨ηj | j < τ⟩ of elements of B(K), not
only that the product tree

⊗
j<τ T

ηj is κ-Souslin, but in fact, all of its τ -derived

trees are κ-Souslin. In particular, for every η ∈ B(K), T η is a free κ-Souslin tree.

We now arrive at the following strong form of Theorem A:

Corollary 5.7. Suppose that P(κ, κ,⊑, κ, {κ}, 2) holds, and let ς ∈ [2, κ). For
every cardinal ℧, if there exists a κ-tree with ℧-many cofinal branches, then there
exists a ς-splitting κ-Aronszajn subtree of <κς admitting ℧-many streamlined κ-
Souslin subtrees such that the product of any finitely (nonzero) many of them is
again Souslin.

Proof. By a standard fact (see [11, Lemma 2.5]), if there exists a κ-tree with ℧-
many cofinal branches, then there exists one K that is streamlined. Now, appeal
to Theorem 5.5 with K and S := {κ}, bearing in mind Subsection 4.3. □
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6. A free Souslin tree with a special power

Throughout this section, κ = λ+ for a fixed infinite cardinal λ. Our goal here
is to present a construction of a κ-Souslin tree whose derived trees are special.
In the context of successor cardinals, the general definition of special trees given
in Subsection 4.2 (following [51, p. 266]) coincides with a classical definition, as
follows.

Fact 6.1 ([54, Theorem 14]; see also [5, Theorem 16]). A tree of height λ+ is
special iff it may be covered by λ many antichains.

Consider the linear order Qλ consisting of all nonempty finite sequences of or-
dinals in λ, with the ordering q <Qλ

p iff either p ⊊ q or q(n) < p(n) for the least
n < ω such that q(n) ̸= p(n). This is a linear order of size λ having no first or last
element, satisfying that in-between any two of its elements there are λ-many ele-
ments including an increasing sequence of order-type λ, and that all of its subsets
of size less than cf(λ) have an upper bound.38

As |Qλ| = λ, to show that a tree (T,<T ) of height λ+ is special, it suffices
to exhibit a strictly increasing map f : T → Qλ, i.e., such that s <T t implies
f(s) <Qλ

f(t). In fact, the existence of a special λ+-tree is equivalent to the
existence of a λ+-tree T admitting a strictly increasing map f : T → Qλ.39

Definition 6.2. For a subset T ⊆ <κHκ and a nonzero cardinal χ:

• Denote Tχ := {x⃗ : χ 1−1−→ T | (dom ◦ x⃗) is constant}. The ordering <Tχ of
Tχ is defined as follows:40

x⃗ <Tχ y⃗ ⇐⇒
∧
i<χ

x⃗(i) ⊊ y⃗(i).

• For x⃗ ∈ Tχ, let ι(x⃗) := min{α < κ | ⟨x⃗(i) ↾ α | i < χ⟩ is injective}.

Notation 6.3. Dual to Notation 4.10, for every y ∈ χ(αHκ), we let ⋔(y) denote
the unique function from α to χHκ satisfying (⋔(y))i = y(i) for every i < χ.
This will allow us to move back and forth between the classical and streamlined
representations of derived trees.

Notation 6.4. For every T ∈ Hκ, denote β(T ) := 0 unless there is β < κ such
that T ⊆ ⩽βHκ and T ⊈ <βHκ, in which case, we let β(T ) := β for this unique β.

38This definition may be found in [53, p. 273] and [1, Conventions 4.1(4)]. We warn the reader

that some authors denote by Qλ a different linear order that shares some of the above features,

but whose size is sensitive to cardinal-arithmetic assumptions.
39 Jensen [28] proved that the existence of a special λ+-tree is equivalent to □∗

λ, whereas the

streamlined tree T (ρ0) obtained by conducting walks on ordinals along a □∗
λ-sequence can be

shown to admit a strictly increasing map to Qλ.
40 If T is a streamlined tree, then elements of Tχ are sometimes referred to as injective level

sequences, and (Tχ, <Tχ ) should be understood as the union of all χ-derived trees of T . We shall
soon construct a streamlined λ+-tree T such that (Tχ, <Tχ ) admits a strictly increasing map to
Qλ, from which it will follow that all χ-derived trees of T are special.
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Fix some well-ordering ◁κ of Hκ. We collect here a couple of actions from
[11, §6.2] which will be used in the upcoming construction. The readers can verify
to themselves that additional actions from the same reference can be incorporated
into the upcoming proof.

Definition 6.5. (1) The default extension function, extend : (Hκ)
2 → Hκ, is

defined as follows. Let extend(x, T ) := x, unless

Q := {z ∈ Tβ(T ) | x ⊆ z}

is nonempty,41 in which case, we let extend(x, T ) := min(Q,◁κ).
(2) The function for sealing antichains, anti : (Hκ)

3 → Hκ, is defined as follows.
Let anti(x, T,℧) := extend(x, T ), unless

Q := {z ∈ Tβ(T ) | ∃y ∈ ℧ (x ∪ y ⊆ z)}

is nonempty, in which case, we let anti(x, T,℧) := min(Q,◁κ).

The following is obvious.

Lemma 6.6. Suppose T,℧ ∈ Hκ, where T is a normal streamlined subtree of
⩽β(T )Hκ. For every x ∈ T , anti(x, T,℧) is a node in Tβ(T ) extending x. □

Hereafter, χ denotes some cardinal in [2, ω]. The next batch of definitions is mo-
tivated by the Abraham–Shelah–Solovay construction from [1, §4]. Note, however,
that the approach taken here is eventually quite different from the one in [1], since
it works uniformly for λ both singular and regular.

Definition 6.7. We define three maps φ0, φ1, φ2 : Qλ → Qλ via:

• φ2(q) :=

{
⟨ξ + 1⟩, if q = ⟨ξ⟩;
p, if q = p⌢⟨ξ⟩ for p ̸= ∅.

• φ1(q) :=

{
⟨ξ + 1, 0⟩, if q = ⟨ξ⟩;
p⌢⟨ξ + 1⟩, if q = p⌢⟨ξ⟩ for p ̸= ∅.

• φ0(q) :=

{
⟨ξ + 1, 0, 0⟩, if q = ⟨ξ⟩;
p⌢⟨ξ + 1, 0⟩, if q = p⌢⟨ξ⟩ for p ̸= ∅.

Remark 6.8. For every q in Qλ, all of the following hold:

• q <Qλ
φ0(q) <Qλ

φ1(q) <Qλ
φ2(q);

• φ2(q) = φ2(φ1(q));
• φ1(q) = φ2(φ0(q)).

Definition 6.9 (Elevators). For a streamlined tree T , a map f : Tχ → Qλ, two
maps φ,ψ : Qλ → Qλ, and ordinals β < α, we say that a function e : Tβ → Tα is a
(φ,ψ)-elevator (with respect to f) iff the two hold:

(1) y ⊊ e(y) for every y ∈ Tβ , and

41Recall that Tβ stands for {x ∈ T | dom(x) = β}.
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(2) for every ⟨yi | i < χ⟩ ∈ (Tβ)
χ,

(φ ◦ f)(⟨e(yi) | i < χ⟩) = (ψ ◦ f)(⟨yi | i < χ⟩).
A map e satisfying just Clause (1) will be simply referred to as an elevator.

Definition 6.10 (Coordination). Let T be a streamlined tree, and let f be a
function from Tχ to Qλ. For a pair of ordinals β < α, we say that Tβ and Tα are
coordinated (with respect to f) iff for all nonzero n < χ and all ⟨zj | j < n⟩ ∈ (Tα)

n

such that ι(⟨zj | j < n⟩) ⩽ β, the following three hold:

(i) there exists a (φ2, φ1)-elevator e1 : Tβ → Tα such that e1(zj ↾ β) = zj for
all j < n;

(ii) there exists a (φ2, φ2)-elevator e2 : Tβ → Tα such that e2(zj ↾ β) = zj for
all j < n;

(iii) if α = β+1, then for everym < 3, there exists an (id, φm)-elevator e : Tβ →
Tα such that e(zj ↾ β) = zj for all j < n.

We are now ready to prove the main result of this section, which also yields
Theorem B.

Theorem 6.11. Suppose that Pλ(λ
+, 2,⊑, λ+) holds. Let χ ∈ [2, ω] with χ < cf(λ).

Then there is a normal χ-free, slim, prolific, club-regressive, streamlined λ+-Souslin
tree T such that (Tχ, <Tχ) admits a strictly increasing map to Qλ.

Proof. Recall that κ = λ+. Fix C⃗ = ⟨Cα | α < κ⟩ witnessing P−
λ (κ, 2,⊑, κ). For

every α ∈ acc(κ), let

Dα := {0} ∪ {η + 1 | η ∈ nacc(Cα)} ∪ acc(Cα),

so that Dα is a club in α for which Dα ∩ acc(κ) = acc(Dα) = acc(Cα), so that

nacc(Dα) ⊆ nacc(α). Evidently, D⃗ := ⟨Dα | α ∈ acc(κ)⟩ is yet another λ-bounded
coherent C-sequence. Recall that by Definition 2.12, A(D⃗) = {α ∈ acc(κ) | ∀β ∈
(α, κ) (α /∈ acc(Dβ))}, so since D⃗ is λ-bounded and coherent, we have here {α ∈
acc(κ) | otp(Dα) = λ} ⊆ A(D⃗).

As ♢(κ) holds, fix sequences ⟨Ωβ | β < κ⟩ and ⟨Ri | i < κ⟩ together witnessing
♢(Hκ), as in Fact 2.9. Let π : κ → κ be such that β ∈ Rπ(β) for all β < κ. Let
◁κ be some well-ordering of Hκ of order-type κ, and let ϕ : κ ↔ Hκ witness the
isomorphism (κ,∈) ∼= (Hκ,◁κ). Put ψ := ϕ ◦ π.

By recursion on α < κ, we shall construct ⟨(Tα, fα) | α < κ⟩ such that Tα will
end up being the αth level of the ultimate normal, slim, streamlined tree T , and
fα : (Tα)

χ → Qλ will form the αth level of the ultimate strictly increasing map
f : Tχ → Qλ. We shall also make sure that for all β < α < κ, Tβ and Tα be
coordinated.

By convention, for every α < κ such that ⟨(Tβ , fβ) | β < α⟩ has already been
defined, for every C ⊆ α, we shall let T ↾ C :=

⋃
β∈C Tβ .

The recursion starts by setting T0 := {∅} and letting f0 be the empty function.
Next, given α < κ such that (Tα, fα) has already been successfully defined, set
Tα+1 := {t⌢⟨τ⟩ | t ∈ Tα, τ < max{ω, α}}. Before we can define fα+1 : (Tα+1)

χ →
Qλ, we shall need the following claim.
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Claim 6.11.1. Let Sα+1 :=
⋃

0<n<χ{s ∈ (Tα+1)
n | ι(s) ⩽ α}. Then there exists

a matrix ⟨As,m | s ∈ Sα+1, m < 3⟩ such that, for every (s,m) ∈ Sα+1 × 3, the
following three hold:

(1) Im(s) ⊆ As,m ⊆ Tα+1;
(2) for every y ∈ Tα, there exists a unique z ∈ As,m extending y;
(3) for every (s′,m′) ∈ Sα+1 × 3∖ {(s,m)}, we have |As,m ∩As′,m′ | < χ.

Proof. Denote α′ := max{ω, α}. For each s ∈ Sα+1, denote Zs := {z(α) | z ∈
Im(s)}, which is an element of [α′]<χ. As χ ⩽ ω and as we have been constructing
a slim tree, the definition of Tα+1 implies that we may fix an enumeration ⟨sγ |
γ < |α′|⟩ of Sα+1. Recursively construct a sequence ⟨(τγ,0, τγ,1, τγ,2) | γ < |α′|⟩
consisting of elements of α′ × α′ × α′ by letting {τγ,0, τγ,1, τγ,2} consist of the first
three elements of α′ that do not belong to the following set:

{τβ,m | β < γ, m < 3} ∪
⋃

β⩽γ
Zsβ .

Finally, for all γ < |α′| and m < 3, let

Asγ ,m := Im(sγ) ∪ {y⌢⟨τγ,m⟩ | y ∈ Tα ∖ {(z ↾ α) | z ∈ Im(sγ)}}.

It is clear that the above definition takes care of Clauses (1) and (2). To verify
Clause (3), let (s,m), (s′,m′) in Sα+1×3 be given. Find β, γ < |α′| such that s = sβ
and s′ = sγ . Without loss of generality, β ⩽ γ. Now, if |As,m∩As′,m′ | ⩾ χ, then we
may pick z ∈ As,m ∩As′,m′ ∖ Im(s′), so that z(α) ∈ Zsβ ∪{τβ,m} and z(α) = τγ,m′ .
As τγ,m′ /∈ Zsβ , it follows that τβ,m = τγ,m′ and hence (s,m) = (s′,m′). □

Fix a matrix ⟨As,m | s ∈ Sα+1, m < 3⟩ as in the preceding claim. To define
fα+1 : (Tα+1)

χ → Qλ, let w⃗ = ⟨wi | i < χ⟩ in (Tα+1)
χ be given. There are three

cases to consider:
▶ If ι(w⃗) = α+ 1, then let fα+1(w⃗) := ⟨0⟩.
▶ If ι(w⃗) ⩽ α and {wi | i < χ} ⊆ As,m for some (s,m) ∈ Sα+1 × 3, then by

Clause (3) of the above claim, the pair (s,m) is unique, so we let

fα+1(w⃗) := (φm ◦ fα)(⟨wi ↾ α | i < χ⟩).

▶ Otherwise, since Qλ has no maximal elements, let fα+1(w⃗) be some element
of Qλ which is bigger than fα(⟨wi ↾ α | i < χ⟩).

Altogether, for every w⃗ ∈ (Tα+1)
χ such that ι(w⃗) ⩽ α, it is the case that

fα(⟨wi ↾ α | i < χ⟩) <Qλ
fα+1(w⃗).

Claim 6.11.2. (1) Tα and Tα+1 are coordinated;
(2) For every β < α, Tβ and Tα+1 are coordinated.

Proof. (1) Consider any given nonzero n < χ and ⟨zj | j < n⟩ ∈ (Tα+1)
n with

ι(⟨zj | j < n⟩) ⩽ α. In particular, s := ⟨zj | j < n⟩ is in Sα+1. We go over the
clauses of Definition 6.10 in reverse order:

(iii) Given m < 3, define an elevator e : Tα → Tα+1 by letting, for every y ∈ Tα,
e(y) be the unique z ∈ As,m extending y. As Im(s) = {zj | j < n} ⊆ As,m,
for every j < n, e(zj ↾α) must be zj . We claim that e is an (id, φm)-elevator.
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Indeed, for any ⟨yi | i < χ⟩ ∈ (Tα)
χ, {e(yi) | i < χ} ⊆ As,m, so by the

definition of fα+1:

fα+1(⟨e(yi) | i < χ⟩) = (φm ◦ fα)(⟨yi | i < χ⟩)).

(ii) By Clause (iii), we may fix an (id, φ1)-elevator e2 : Tα → Tα+1 such that
e2(zj ↾ α) = zj for all j < n. By Remark 6.8, it is also a (φ2, φ2)-elevator.

(i) By Clause (iii), we may fix an (id, φ0)-elevator e1 : Tα → Tα+1 such that
e1(zj ↾ α) = zj for all j < n. By Remark 6.8, it is also a (φ2, φ1)-elevator.

(2) Fix β < α, nonzero n < χ, and ⟨zj | j < n⟩ ∈ (Tα+1)
n with ι(⟨zj | j < n⟩) ⩽

β. We go over the clauses of Definition 6.10:

(i) By Clause (1) of this claim, fix a (φ2, φ2)-elevator e : Tα → Tα+1 such that
e(zj ↾ α) = zj for all j < n. In addition, as Tβ and Tα are coordinated, fix
a (φ2, φ1)-elevator e1 : Tβ → Tα such that e1(zj ↾ β) = zj ↾ α for all j < n.
Set E1 := e ◦ e1. Then E1(zj ↾ β) = e(e1(zj ↾ β)) = e(zj ↾ α) = zj for all
j < n. In addition, for all y ∈ Tβ , y ⊊ e1(y) ⊊ e(e1(y)) = E1(y). Finally,
for every ⟨yi | i < χ⟩ ∈ (Tβ)

χ,

(φ2 ◦ fα+1)(⟨E1(yi) | i < χ⟩) = (φ2 ◦ fα+1)(⟨e(e1(yi)) | i < χ⟩)
= (φ2 ◦ fα)(⟨e1(yi) | i < χ⟩)
= (φ1 ◦ fβ)(⟨yi | i < χ⟩).

Thus, E1 is a (φ2, φ1)-elevator, as sought.
(ii) Replace 1 by 2 throughout the above proof.
(iii) This clause is satisfied vacuously in this case, as α+ 1 ̸= β + 1. □

Next, suppose that we have reached an α ∈ acc(κ) such that ⟨(Tβ , fβ) | β < α⟩
has already been successfully defined. For each x ∈ T ↾Dα, we shall define a branch
bαx through

⋃
β<α Tβ , and then let

(⋆) Tα := {bαx | x ∈ T ↾Dα}.

The branch bαx will be obtained as the limit
⋃

Im(bαx) of a sequence ⟨bαx(β) |
β ∈ Dα ∖ dom(x)⟩ of nodes such that:

• for every β ∈ Dα ∖ dom(x), bαx(β) ∈ Tβ ;
• for every pair β < β′ of ordinals in Dα ∖ dom(x), x ⊆ bαx(β) ⊊ bαx(β

′);
• for every β ∈ acc(Dα ∖ dom(x)), bαx(β) =

⋃
(Im(bαx ↾ β)).

The construction is by recursion on β ∈ Dα, where at stage β we shall be
determining bαx(β) for all x ∈ T ↾ (Dα ∩ (β + 1)) simultaneously.

▶ For β := min(Dα), it is the case that β = 0 and so Tβ = {x} for x := ∅.
Therefore, we set bαx(β) := x.

▶ Suppose that we are given a nonzero β ∈ nacc(Dα) such that bαx ↾ β has
already been defined for all x ∈ T ↾ (Dα ∩ β). We need to define bαx(β) for all
x ∈ T ↾ (Dα ∩ (β + 1)). For every x ∈ Tβ , we just let bαx(β) := x. Our next task
is defining bαx(β) for all x ∈ T ↾ (Dα ∩ β). To this end, we introduce the following
pieces of notation.
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Notation 6.11.3. Denote β− := sup(Dα∩β) and note that by the definition ofDα, it
is the case that β = η+1 for a unique η ∈ Cα∖β−. Now, let Eαβ denote the collection

of all (id, φ1)-elevators e : Tβ− → Tβ satisfying that if there exists a nonzero n < χ
such that ψ(η) ∈ (T ↾ (Dα ∩ β−))n, then letting T̄ := (T ↾ (β + 1))(ψ(η)) (using
Definition 4.11), for every j < n,

e(bαψ(η)(j)(β
−)) = (anti(⋔(⟨bαψ(η)(j)(β

−) | j < n⟩), T̄ ,Ωη))j .

Note that the definitions of β−, η and Eαβ are all determined by no more than
the following objects:

• ⟨(Tγ , fγ) | γ ⩽ β⟩,
• ψ(η),
• Dα ∩ (β + 1), and possibly also on
• ⟨bαψ(η)(j)(β

−) | j < n⟩ and Ωη, where we note in particular that ψ(η)(j) ∈
T ↾ (Dα ∩ β−) for all j < n.

Claim 6.11.4. Eαβ is nonempty.

Proof. If there exists some nonzero n < χ such that ψ(η) ∈ (T ↾ (Dα ∩ β−))n,
then let

z := anti(⋔(⟨bαψ(η)(j)(β
−) | j < n⟩), T̄ ,Ωη).

Otherwise, just set (n, z) := (0, ∅). Now, there are two options:

The case η = β−: As Tη and Tβ are coordinated and β = η + 1, we fix an
(id, φ1)-elevator e : Tη → Tβ such that e((z)j ↾η) = (z)j for all j < n. Since
η = β−, e demonstrates that Eαβ is nonempty.

The case η > β−: As Tβ− and Tη are coordinated, we first fix a (φ2, φ1)-
elevator e1 : Tβ− → Tη such that e1(b

α
ψ(η)(j)(β

−)) = (z)j ↾ η for all j < n.

Then, as Tη and Tβ are coordinated and β = η + 1, we also fix an (id, φ2)-
elevator e2 : Tη → Tβ such that e2((z)j ↾ η) = (z)j for all j < n. Set
e := e2 ◦ e1. Clearly, e(bαψ(η)(j)(β

−)) = (z)j for all j < n. In addition, for

every ⟨yi | i < χ⟩ ∈ (Tβ−)χ,

fβ(⟨e(yi) | i < χ⟩) = fβ(⟨e2(e1(yi)) | i < χ⟩)
= (φ2 ◦ fη)(⟨e1(yi) | i < χ⟩)
= (φ1 ◦ fβ−)(⟨yi | i < χ⟩).

So, e demonstrates that Eαβ is nonempty. □

Let e := min(Eαβ ,◁κ), and then define bαx(β) := e(bαx(β
−)) for every x ∈ T ↾

(Dα ∩ β).
▶ Suppose that we are given a β ∈ acc(Dα) such that bαx ↾ β has already been

defined for all x ∈ T ↾ (Dα ∩ β). For every x ∈ T ↾ (Dα ∩ (β + 1)), we let

bαx(β) :=

{
x, if x ∈ Tβ ;⋃
Im(bαx ↾ β), if x ∈ T ↾ (Dα ∩ β).

In order to argue that bαx(β) is indeed an element of Tβ , it suffices to prove the
following claim.
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Claim 6.11.5. For every x ∈ T ↾ (Dα ∩ β), bαx(β) = bβx .

Proof. It suffices to show that for every x ∈ T ↾ (Dα ∩ β), for every γ ∈ (Dα ∩ β)∖
dom(x), it is the case that bαx(γ) = bβx ↾ γ. Recalling that β ∈ acc(Dα) and that

D⃗ is coherent, we infer that Dα ∩ β = Dβ . Thus, it suffices to show that for every
x ∈ T ↾ Dβ , for every γ ∈ Dβ ∖ dom(x), it is the case that bαx(γ) = bβx(γ). The
proof is by induction on γ ∈ Dβ simultaneously for all x ∈ T ↾Dβ , as follows:

▶ The base case γ = 0 is obvious, as bα∅ (0) = ∅ = bβ∅ (0).

▶ Suppose that γ− < γ are successive elements of Dβ and that, for every
x ∈ T ↾ (Dβ ∩ γ), bαx(γ

−) = bβx(γ
−). By our construction, it is the case that

bαx(γ) := eα(b
α
x(γ

−)) for eα := min(Eαγ ,◁κ) and that bβx(γ) := eβ(b
β
x(γ

−)) for

eβ := min(Eβγ ,◁κ). Reading the comment right after Notation 6.11.3, it is clear that

in this case Eαγ = Eβγ , and so eα = eβ , and thus bαx(γ) = bβx(γ) for all x ∈ T ↾(Dβ∩γ).
For x ∈ Tγ , clearly b

α
x(γ) = x = bβx(γ).

▶ Suppose γ ∈ acc(Dβ). For every x ∈ T ↾ (Dβ ∩ γ) such that the two sequences
bαx and bβx agree up to γ, it is the case that they have the same unique limit, so that
bαx(γ) = bβx(γ). For x ∈ Tγ , again, b

α
x(γ) = x = bβx(γ). □

We are done defining ⟨bαx | x ∈ T ↾Dα⟩, and so we define Tα as per (⋆).

Claim 6.11.6. For all x ∈ T ↾Dα and γ ∈ Dα ∖ dom(x), bαx = bαbαx (γ).

Proof. By the canonical nature of the above construction. □

Now, to define fα : (Tα)
χ → Qλ, let w⃗ = ⟨wi | i < χ⟩ in (Tα)

χ be given.
For each i < χ, find xi ∈ T ↾ Dα of minimal height such that bαxi

= wi. Set
γ := sup{dom(xi) | i < χ}, and notice that it follows from Claim 6.11.6 that
ι(w⃗) ⩽ γ. There are two main cases to consider:

▶ If γ = α, then cf(α) = χ = ω. Now, there are two subcases here:
▶▶ If ι(w⃗) = α, then it is harmless to let fα(w⃗) := ⟨0⟩.
▶▶ If ι(w⃗) < α, then since cf(α) ⩽ χ < cf(λ), the set F := {fδ(⟨wi ↾ δ |

i < χ⟩) | ι(w⃗) ⩽ δ < α} is bounded in Qλ; fix some upper bound q of
F , and let fα(w⃗) := q.

▶ If γ < α, then denote (φ1 ◦ fγ)(⟨wi ↾ γ | i < χ⟩) by p⌢⟨ξ⟩. Note that
the definition of φ1 ensures that p is nonempty. Now, again there are two
subcases:
▶▶ If α ∈ A(D⃗), then let fα(w⃗) := p.
▶▶ Otherwise, let fα(w⃗) := p⌢⟨ξ + σ⟩, where σ := otp(Dα ∖ (γ + 1)).42

This completes the definition of the function fα. Next, we must verify that
⋃
β⩽α fβ

is strictly increasing, and that Tβ and Tα are coordinated for every β < α. It will
be easier to show once we have established the following claim.

Claim 6.11.7. Let ⟨wi | i < χ⟩ ∈ (Tα)
χ. For each i < χ, find xi ∈ T ↾Dα of minimal

height such that bαxi
= wi. Suppose that γ := sup{dom(xi) | i < χ} is smaller than

α, and let p⌢⟨ξ⟩ denote (φ1 ◦ fγ)(⟨wi ↾ γ | i < χ⟩). Then:

42Note that σ ⩽ otp(Dα) < λ since α /∈ A(D⃗).



PROXY PRINCIPLES IN COMBINATORIAL SET THEORY 129

(1) For every β ∈ Dα ∖ γ,

(φ2 ◦ fβ)(⟨wi ↾ β | i < χ⟩) = p;

(2) For every β ∈ Dα ∖ (γ + 1),

fβ(⟨wi ↾ β | i < χ⟩) = p⌢⟨ξ + σ⟩,
where σ := otp(Dα ∩ β ∖ (γ + 1)).

Proof. (1) The conclusion for β > γ follows from Clause (2) below. As for β = γ,
note that by Remark 6.8,

(φ2 ◦ fβ)(⟨wi ↾ β | i < χ⟩) = (φ2 ◦ φ1 ◦ fβ)(⟨wi ↾ β | i < χ⟩) = φ2(p
⌢⟨ξ⟩) = p.

(2) For each i < χ, write yi := wi ↾ γ, and note that bαyi = wi by Claim 6.11.6.
We now prove the claim by induction on β ∈ Dα ∖ (γ + 1):

Base: Suppose β = min(Dα ∖ (γ + 1)), so that otp(Dα ∩ β ∖ (γ + 1)) = 0.
Recalling the construction, there exists some (id, φ1)-elevator e : Tγ → Tβ
(coming from Eαβ ) such that bαx(β) = e(bαx(γ)) for every x ∈ Tγ . Thus,

fβ(⟨bαyi(β) | i < χ⟩) = (φ1 ◦ fγ)(⟨bαyi(γ) | i < χ⟩)
= (φ1 ◦ fγ)(⟨yi | i < χ⟩)
= (φ1 ◦ fγ)(⟨wi ↾ γ | i < χ⟩)
= p⌢⟨ξ⟩
= p⌢⟨ξ + σ⟩,

since σ = 0.
Successor step: Suppose β ∈ nacc(Dα) is such that β− := sup(Dα ∩ β) is

bigger than γ and satisfies

fβ−(⟨bαyi(β
−) | i < χ⟩) = p⌢⟨ξ + σ⟩,

where σ := otp(Dα∩β−∖ (γ+1)). Recalling the construction, there exists
some (id, φ1)-elevator e : Tβ− → Tβ such that bαx(β) = e(bαx(β

−)) for every
x ∈ T ↾ (Dα ∩ β). Thus,

fβ(⟨bαyi(β) | i < χ⟩) = (φ1 ◦ fβ−)(⟨bαyi(β
−) | i < χ⟩)

= φ1(p
⌢⟨ξ + σ⟩)

= p⌢⟨ξ + σ + 1⟩,
as sought.

Limit step: Suppose β ∈ acc(Dα ∖ γ). By Claim 6.11.5, ⟨bαyi(β) | i < χ⟩ =
⟨bβyi | i < χ⟩. The definition of fβ(⟨wi ↾ β | i < χ⟩) goes through the
following considerations. For each i < χ, find x̄i ∈ T ↾ Dβ of minimal

height such that bβx̄i
= wi ↾ β, and then set γ̄ := sup{dom(x̄i) | i < χ}.

As bαyi ↾ β = wi ↾ β for every i < χ, we infer that γ̄ ⩽ γ. To see that

also γ̄ ⩾ γ, note that for every i < χ, by Claim 6.11.5, bαx̄i
↾ β = bβx̄i

, and

hence bαx̄i
↾ γ = bβx̄i

↾ γ = wi ↾ γ = yi, and then Claim 6.11.6 implies that
bαx̄i

= bαyi = wi.
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Now, since γ̄ = γ < β and β /∈ A(D⃗), it is the case that fβ(⟨wi ↾ β |
i < χ⟩) = p⌢⟨ξ + σ⟩ where σ := otp(Dβ ∖ (γ + 1)). But Dβ = Dα ∩ β and
hence σ = otp(Dα ∩ β ∖ (γ + 1)). □

Claim 6.11.8. Let w⃗ = ⟨wi | i < χ⟩ in (Tα)
χ be given. Then fβ(⟨wi ↾ β | i <

χ⟩) <Qλ
fα(w⃗) for every β ∈ [ι(w⃗), α).

Proof. By the induction hypothesis on ⟨(Tβ , fβ) | β < α⟩, to show that fβ(⟨wi ↾ β |
i < χ⟩) <Qλ

fα(w⃗) for a tail of β < α, it suffices to prove that this is the case for
cofinally many β < α. For each i < χ, find xi ∈ T ↾Dα of minimal height such that
bαxi

= wi. Set γ := sup{dom(xi) | i < χ}, so that γ ∈ Dα ∪ {α}. By the definition

of fα, we may avoid trivialities and assume that γ < α. In this case, we let p⌢⟨ξ⟩
denote (φ1 ◦ fγ)(⟨wi ↾ γ | i < χ⟩), and observe that by Claim 6.11.7(2), it suffices
to prove that for every σ < otp(Dα ∖ (γ + 1)),

p⌢⟨ξ + σ⟩ <Qλ
fα(w⃗).

However, the definition of fα makes it clear that this is indeed the case. □

Claim 6.11.9. Let ϵ < α. Then Tϵ and Tα are coordinated.

Proof. Consider any given nonzero n < χ and ⟨zj | j < n⟩ ∈ (Tα)
n with ι(⟨zj |

j < n⟩) ⩽ ϵ. Before going over the clauses of Definition 6.10, let us first establish
the following crucial subclaim.

Subclaim 6.11.9.1. There are β ∈ (ϵ, α) and a (φ2, φ2)-elevator e : Tβ → Tα such
that ⟨e(zj ↾ β) | j < n⟩ = ⟨zj | j < n⟩.

Proof. For each j < n, fix x̄j ∈ T ↾Dα of minimal height such that zj = bαx̄j
. As n

is finite, we may let β := min(Dα ∖max{dom(x̄j), ϵ+ 1 | j < n}).
▶ If α /∈ A(D⃗), then define an elevator e : Tβ → Tα via e(y) := bαy . By

Claim 6.11.6, e(zj ↾ β) = zj for every j < n.
To see that e is a (φ2, φ2)-elevator, let ⟨yi | i < χ⟩ ∈ (Tβ)

χ. For each i < χ,
denote wi := e(yi), and find xi ∈ T ↾ Dα of minimal height such that bαxi

= wi.
As wi = bαyi , the minimality of xi implies that dom(xi) ⩽ dom(yi), so that γ :=

sup{dom(xi) | i < χ} satisfies γ ⩽ β < α. Let p⌢⟨ξ⟩ denote (φ1 ◦ fγ)(⟨wi ↾ γ |
i < χ⟩), and denote w⃗ := ⟨wi | i < χ⟩.

On one hand, since β ∈ Dα ∖ γ, Claim 6.11.7(1) asserts that (φ2 ◦ fβ)(⟨wi ↾ β |
i < χ⟩) = p. On the other hand, by the definition of fα, it is the case that
fα(w⃗) = p⌢⟨ξ+σ⟩ for some σ ⩽ otp(Dα), and hence (φ2 ◦ fα)(w⃗) = p. Altogether,
(φ2 ◦ fα)(w⃗) = (φ2 ◦ fβ)(⟨wi ↾ β | i < χ⟩).

▶ If α ∈ A(D⃗), then as Tβ and Tβ+1 are coordinated, let us fix an (id, φ0)-
elevator e0 : Tβ → Tβ+1 such that e0(zj ↾ β) = zj ↾ (β + 1) for every j < n. Set
δ := min(Dα ∖ (β + 2)). As Tβ+1 and Tδ are coordinated, fix a (φ2, φ2)-elevator
e2 : Tβ+1 → Tδ such that e2(zj ↾ (β + 1)) = zj ↾ δ for every j < n. Finally, define
an elevator e : Tβ → Tα via e(y) := bαe2(e0(y)). By Claim 6.11.6, e(zj ↾ β) = zj for

every j < n.
To see that e is a (φ2, φ2)-elevator, let ⟨yi | i < χ⟩ ∈ (Tβ)

χ. For each i < χ,
denote wi := e(yi) and find xi ∈ T ↾Dα of minimal height such that bαxi

= wi. As
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wi = bαe2(e0(yi)), the minimality of xi implies that dom(xi) ⩽ dom(e2(e0(yi))), so

that γ := sup{dom(xi) | i < χ} satisfies γ ⩽ δ < α.
Now, by the definition of fα, letting p

⌢⟨ξ⟩ denote (φ1 ◦ fγ)(⟨wi ↾ γ | i < χ⟩), it
is the case that fα(w⃗) = p, for w⃗ := ⟨wi | i < χ⟩. In addition, since δ ∈ Dα ∖ γ,
Claim 6.11.7(1) asserts that (φ2 ◦ fδ)(⟨wi ↾ δ | i < χ⟩) = p.

By Remark 6.8 and the choice of e0 and e2:

(φ2 ◦ fβ)(⟨wi ↾ β | i < χ⟩) = (φ2 ◦ φ2 ◦ φ0 ◦ fβ)(⟨wi ↾ β | i < χ⟩)
= (φ2 ◦ φ2 ◦ fβ+1)(⟨e0(wi ↾ β) | i < χ⟩)
= (φ2 ◦ φ2 ◦ fβ+1)(⟨wi ↾ (β + 1) | i < χ⟩)
= (φ2 ◦ φ2 ◦ fδ)(⟨e2(wi ↾ (β + 1)) | i < χ⟩)
= (φ2 ◦ φ2 ◦ fδ)(⟨wi ↾ δ | i < χ⟩)
= φ2(p) = (φ2 ◦ fα)(w⃗),

as sought. □

Let β and e : Tβ → Tα be given by the subclaim. We now go over the clauses of
Definition 6.10:

(i) By the induction hypothesis, Tϵ and Tβ are coordinated, so we may fix a
(φ2, φ1)-elevator e1 : Tϵ → Tβ such that e1(zj ↾ ϵ) = zj ↾ β for all j < n. Set
E1 := e ◦ e1. Then E1(zj ↾ ϵ) = e(e1(zj ↾ ϵ)) = e(zj ↾ β) = zj for all j < n.
In addition, for every y ∈ Tϵ, y ⊊ e1(y) ⊊ e(e1(y)) = E1(y). Finally, for
every ⟨yi | i < χ⟩ ∈ (Tϵ)

χ,

(φ2 ◦ fα)(⟨E1(yi) | i < χ⟩) = (φ2 ◦ fα)(⟨e(e1(yi)) | i < χ⟩)
= (φ2 ◦ fβ)(⟨e1(yi) | i < χ⟩)
= (φ1 ◦ fϵ)(⟨yi | i < χ⟩).

Thus, E1 is a (φ2, φ1)-elevator, as sought.
(ii) Replace 1 by 2 throughout the above proof.
(iii) α is a limit ordinal, so the requirement is satisfied vacuously. □

At the end of the above process, we have obtained a normal, slim, prolific,
streamlined κ-tree T :=

⋃
α<κ Tα such that f :=

⋃
α<κ fα is a strictly increasing

map from (Tχ, <Tχ) to Qλ. The proof that T is club-regressive follows that of
[6, Claim 2.3.4]; thus we are left with proving that T is χ-free. To this end, let
s⃗ = ⟨sj | j < n⟩ ∈ Tn be given for some nonzero n < χ, and suppose that A is a
maximal antichain in T (s⃗). Let ϵ denote the unique element of {dom(sj) | j < n}.
Consider the club E := {α ∈ acc(κ∖ ϵ) | (T ↾ α)n ⊆ ϕ[α]}.

As the sequences ⟨Ωβ | β < κ⟩ and ⟨Ri | i < κ⟩ together witness ♢(Hκ), for each
i < κ, we obtain from [7, Subclaim 4.1.4.1] that the following set is stationary in κ:

Bi := {η ∈ Ri | A ∩ (T (s⃗) ↾ η) = Ωη is a maximal antichain in T (s⃗) ↾ η}.

Finally, using the hitting feature of the proxy sequence, pick some α ∈ E such
that, for all i < α,

sup(nacc(Cα) ∩Bi ∩ acc(κ)) = α.
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Claim 6.11.10. A ⊆ T (s⃗) ↾ α. In particular, |A| < κ.

Proof. Let w be an arbitrary node in the αth level of T (s⃗), and we shall show that it
extends an element of A. Recalling (⋆), for each j < n, we may fix some xj ∈ T ↾Dα

such that (w)j = bαxj
. As n is finite, by Claim 6.11.6, we may assume the existence

of some γ ∈ Dα∖ ϵ such that sj ⊆ xj and dom(xj) = γ for all j < n. In particular,
⟨xj | j < n⟩ ∈ (Tγ)

n and T̄ := T (⟨xj | j < n⟩) is a normal streamlined subtree
of T (s⃗).

Next, as α ∈ E, we may find some i < α with ϕ(i) = ⟨xj | j < n⟩. Pick a large
enough η ∈ nacc(Cα) ∩Bi ∩ acc(κ) such that sup(Dα ∩ η) > γ. Denote β := η + 1
and β− := sup(Dα ∩ β), so that γ < β− ⩽ η < β with β ∈ Dα. Note that β− < η,
since otherwise, η = β− ∈ Dα ∩ acc(κ) = acc(Cα), contradicting the fact that
η ∈ nacc(Cα).

Recalling Notation 6.11.3 and Claim 6.11.4, let e := min(Eαβ ,◁κ), so that bαxj
(β) =

e(bαxj
(β−)) for every j < n. As ψ(η) = ϕ(π(η)) = ϕ(i) = ⟨xj | j < n⟩ and the latter

is indeed an element of (T ↾ (Dα ∩ β−))n, we get that for every j < n,

e(bαxj
(β−)) = (anti(⋔(⟨bαxj

(β−) | j < n⟩), T̄ ↾ (β + 1),Ωη))j .

By the choice of η, A ∩ (T (s⃗) ↾ η) = Ωη is a maximal antichain in T (s⃗) ↾ η, so
there exists a y ∈ Ωη that is comparable to ⋔(⟨bαxj

(β−) | j < n⟩). Furthermore,

any node witnessing this comparability belongs to T̄ . Together with the normality
of T̄ , it follows that the following set is nonempty:

Q := {z ∈ T̄β | ∃y ∈ Ωη (⋔(⟨bαxj
(β−) | j < n⟩) ∪ y ⊆ z)}.

Denote z := min(Q,◁κ), and let y ∈ Ωη be a witness for z ∈ Q. Recalling
Definition 6.5(2), this means that for every j < n,

(w)j ↾ β = bαxj
(β) = e(bαxj

(β−)) = (z)j ,

and hence y ⊊ z ⊊ w. As y ∈ Ωη ⊆ A, we infer that w indeed extends an element
of A. □

This completes the proof. □

Corollary 6.12. Suppose that λ is a singular cardinal satisfying both □λ and
2λ = λ+. Then for every positive integer n, there exists a streamlined λ+-Souslin
tree T satisfying the two:

• all n-derived trees of T are Souslin;
• all (n+ 1)-derived trees of T are special.

Proof. By [6, Corollary 3.10], for a singular cardinal λ, Pλ(λ
+, 2,⊑, λ+) is equiv-

alent to the conjunction of □λ and 2λ = λ+. Now, appeal to Theorem 6.11 with
χ := n+ 1. □

It is not hard to see that assuming λ = λ<λ, every λ+-tree whose square is special
is in particular specializable. We do not know of an example of a specializable λ+-
Souslin tree for λ singular, and so we ask whether the tree given by Corollary 6.12
is (or can be tweaked to be) specializable.
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Verlag, Basel, 2007.
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