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1. Introduction

Stevo Todorčević introduced a general approach to constructing proper forcing
notions, so called the side condition method (see the discussion on [36, p. 212]).
The side condition method deals with forcing notions equipped with models as side
conditions. Todorčević’s first motivation for this method is to add an uncountable
set with some property to some given structure by a proper forcing notion. This
method enables us to obtain lots of consequences from the Proper Forcing Axiom.
The first application of this method in the literature is the failure of Jensen’s □κ

for every uncountable regular cardinal κ in Todorčević [36].
The side condition method is also applied for other purposes. Aspero and Mota

[3] introduced a forcing iteration of proper forcing notions with finite support which
is equipped with systems of models. They showed, by their forcing iteration, a
consistency result of a consequence of the Proper Forcing Axiom with the size of
the continuum greater than ℵ2. Neeman [31] introduced a forcing iteration with
models of two types. He gave a new proof of the consistency of the Proper Forcing
Axiom by his finite support forcing iteration, under the existence of a supercompact
cardinal.

This article summarizes some techniques of the side condition method. In Sec-
tion 2, the most basic and simple forcing notion of the side condition method is
investigated. This is called the ∈-collapse. The ∈-collapse has properties stronger
than the properness: the strong properness and Y-properness. This observation
presents some possibilities of the side condition method. For example, a strongly
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proper forcing notion preserves a Suslin tree, so some Asperó and Mota’s forcing
iterations can preserve a Suslin tree (see [51]). Chodounský and Zapletal [8, §6]
constructed a Y-proper forcing iteration by Neeman’s method which forces the forc-
ing axiom for Y-proper forcing notions. Section 3 gives some preservation theorems
of strongly proper forcing notions, and Section 4 gives some preservation theorems
of Y-proper forcing notions.

Section 5 gives some applications of the side condition method, specifically, the
Open coloring Axiom (Section 5.1), the P-ideal Dichotomy (Section 5.2), the failure
of □(κ) (Section 5.3), and the failure of Weak Club Guessing (Section 5.4). Each
of introductions of these topics is in the begining of each subsection. In each
subsection, it will be proved not only that a forcing notion defined in each subsection
is proper but also that it has an extra property which the ∈-collapse has. Each
subsection is self-contained.

Our notation in this article is fairly standard. We refer readers to [16, 19, 20]
for standard notations and forcing theory. Many theorems on the side condition
method in this article can be found in [30, 42, 43]. For a cardinal κ, H(κ) denotes
the set of all sets of hereditarily cardinality less than κ, [X]κ denotes the set of all
subsets of a set X of cardinality κ, and [X]<κ denotes the set of all subsets of a set
X of cardinality less than κ. H(κ) is always considered as the structure equipped
with the membership relation ∈ and a fixed well-order.

2. The ∈-collapse

The side condition method deals with forcing notions which are equipped with
elementary submodels as side conditions. In this section, we will introduce neces-
sary basics of elementary submodels of countable size, and will see the properties
of the most basic forcing notion equipped with countable elementary submodels.

Definition 2.1 (E.g. [16, Ch. 12]). Let κ be an uncountable regular cardinal, N
a subset of H(κ). N is called an elementary submodel of H(κ) if and only if, for
any formula φ(v1, . . . , vn) with free variables v1, . . . , vn and any a1,. . . , an in N ,
φ(a1, . . . , an) holds in N if and only if φ(a1, . . . , an) holds in H(κ).

Proposition 2.2 (E.g. [14, §4.2], [18, Ch. 24]). Let κ be an uncountable regular
cardinal, and N a countable elementary submodel of H(κ).

(1) For any s ∈ H(κ), there exists a countable elementary submodel of H(κ)
which contains s as a member.

(2) For any regular cardinal λ and any elementary submodel M of H(λ), if
H(κ) belongs to M , then M ∩H(κ) is an elementary submodel of H(κ).

(3) Any finite subset of N belongs to N .
(4) Any countable set in N is a subset of N .
(5) ω1 ∩N is a countable limit ordinal.

The following is the most basic forcing notion equipped with countable elemen-
tary submodels.

Definition 2.3 (Todorčević, e.g. [36, p. 212] and [43, §7.1]). Let κ be an uncount-
able regular cardinal.
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(1) A finite set p of countable elementary submodels of H(κ) is called an ∈-
chain if and only if p is totally ordered by the membership relation ∈.

(2) The ∈-collapse P∈ of H(κ) is the partial order which consists of all finite
∈-chains of countable elementary submodels ofH(κ), and, for all conditions
p and q in P∈, q ⩽P∈ p if and only if q ⊇ p.

P∈ adds a chain of countable elementary submodels of H(κ) such that the union
of all coordinates of its chain is the whole H(κ). We will show that P∈ does not
collapse ℵ1, so P∈ collapses κ to ℵ1.

Shelah introduced the notion of the properness of forcing notions [33, 34]. Let
P be a forcing notion, λ a regular cardinal with P(P) ∈ H(λ), N a countable
elementary submodel of H(λ), and p a condition of P. p is called an (N,P)-generic
provided that, for any dense subset D of P, if D ∈ N , then D∩N is predense below
p in P. A forcing notion P is proper if and only if, for any regular cardinal λ with
P(P) ∈ H(λ), there is a closed unbounded set of countable elementary submodels
N of H(λ) with P ∈ N such that every condition of P in N has an extension
which is (N,P)-generic. Typical proper forcing notions are ccc forcing notions and
σ-closed forcing notions. The Proper Forcing Axiom (PFA) is the assertion that,
for any proper forcing P and ℵ1 many dense subsets {Dα : α ∈ ω1} of P, there
exists a filter G of P which meets all Dα. Todorčević proved that P∈ is proper. As
seen below, P∈ has more stronger properties. Baumgartner [5, §3] proved that it is
consistent that PFA holds if it is consistent that the supercompact cardinal exists.

Definition 2.4 (Shelah [34, Ch. IX, 2.6 Definition]). (1) Let P be a forcing
notion, λ a regular cardinal with P(P) ∈ H(λ), N a countable elemen-
tary submodel of H(λ) with P ∈ N , and p a condition of P. p is called
strong (N,P)-generic in the sense of Shelah if and only if, for any count-
able sequence

〈
Dn : n ∈ ω

〉
with Dn ⊆ P ∩N dense in P ∩N , there exists

q ⩽P p which is generic for {Dn : n ∈ ω}, that is, for all n ∈ ω,Dn is
predense below q in P.

(2) A forcing notion P is strongly proper provided that, for any regular cardinal
λ with P(P) ∈ H(λ), there is a closed unbounded set of countable elemen-
tary submodels N of H(λ) with P ∈ N such that every condition of P in
N has an extension which is strong (N,P)-generic in the sense of Shelah.

As seen below, Todorčević’s proof that the ∈-collapse P∈ is proper in [36] and
[43] actually shows that it is in fact strongly proper.

Definition 2.5 (Chodounský and Zapletal [8, §1]). For a forcing notion P, RO(P)
denotes the regular open algebra of P (see e.g. [19, Ch. II 3.3. Lemma], [20, Lemma
III.4.8]).

(1) Let P be a forcing notion, λ a regular cardinal with P(P) ∈ H(λ), N a
countable elementary submodel of H(λ) with P ∈ N , and p a condition of
P. p is called (N,P)-Y-generic if and only if, for any r ⩽P p, there exists a
filter F ∈ N on RO(P) such that the set {s ∈ RO(P) ∩N : r ⩽RO(P) s} is
included in the set F as a subset.
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(2) A forcing notion P satisfies Y-proper condition provided that, for any reg-
ular cardinal λ with P(P) ∈ H(λ), there is a closed unbounded set of
countable elementary submodels N of H(λ) with P ∈ N such that every
condition of P in N has an extension which is (N,P)-generic and (N,P)-Y-
generic.

A forcing notion P is called Y-cc provided that, for any regular cardinal λ with
P(P) ∈ H(λ), and any countable elementary submodel N of H(λ) with P ∈ N ,
every condition of P is (N,P)-Y-generic. Chodounský and Zapletal proved that
a Y-cc forcing notion is ccc. It has not been known yet whether a Y-proper ccc
forcing notion is Y-cc [8, Question 4.13].

Lemma 2.6. Let κ be an uncountable regular cardinal, and P∈ the ∈-collapse of
H(κ). P∈ is strongly proper and is Y-proper.

Proof. Let λ be a regular cardinal with P(P∈) ∈ H(λ), N a countable elementary
submodel of H(λ) with {P∈, H(κ)} ∈ N , and p ∈ P∈ ∩ N . Define p+ := p ∪
{N ∩H(κ)}. Then p+ ∈ P∈ and p+ ⊇ p, hence p+ ⩽P∈ p.

To show that P∈ is strongly proper, let us show that p+ is strong (N,P∈)-generic
in the sense of Mitchell [24, Definition 2.3], that is, for any dense subsetD of P∈∩N ,
D is predense below p+ in P∈. Let D be a dense subset of P∈ ∩N and q ⩽P∈ p+.
Then q ∩N is in P∈ ∩N , so there exists r ∈ D such that r ⩽P∈ q ∩N . Then, since
D ⊆ N and r is a finite subset of H(κ), r belongs to N ∩H(κ). Since N ∩H(κ) ∈ q,
r ∪ q is an ∈-chain, hence is in P∈, and so is an extension of r and q in P∈.

To show that P∈ is Y-proper, let us show that p+ is (N,P)-Y-generic. This
proof is a prototype of the proof of the Y-genericity. To show this, we introduce
the following notion. For a finite subset a of H(κ), a subset A of P∈ is called a-large
if and only if, for any set b in H(κ), there are r ∈ A and M ∈ r such that r∩M = a
and b ∈ M .

We claim that, for any condition p of P∈, the set {
∨
A : A ⊆ P∈ is p-large} is a

centered subset of RO(P∈). Let p ∈ P∈, n ∈ ω, and Ai, i ∈ n, p-large subsets of P∈.
We will prove that the Boolean calculation

∧
i∈n(

∨
Ai) in RO(P∈) is non-zero. It

suffices to prove that there are pi ∈ Ai, i ∈ n, such that {pi : i ∈ n} has a common
extension in P∈. Since each Ai is p-large, by induction on i ∈ n, we can find pi ∈ Ai

and Mi ∈ pi such that pi ∩Mi = p and {pj : j < i} ∈ Mi. Then
⋃

i∈n pi is a finite
∈-chain, so is in P∈, and is a common extension of all pi.

Let r ∈ P∈ be such that r ⩽P∈ p+, and define F as the filter on RO(P∈) that
is generated by the set {

∨
A : A ⊆ P∈ is r ∩N -large}. Since r ∩N belongs to N ,

F also belongs to N . We will prove that, for any s ∈ RO(P∈) ∩N , if r ⩽RO(P∈) s,
then s ∈ F . Let s ∈ RO(P∈) ∩ N be such that r ⩽RO(P∈) s, and define A as
the set of all t in P∈ such that t ⩽RO(P∈) s. Then A ∈ N and

∨
A = s. Since

N ∩H(κ) ∈ r ∈ P∈, r ⩽RO(P∈) s and s ∈ N , r ∩N is an extension of s in RO(P∈).
So by Proposition 2.2(1), A is r ∩N -large. Therefore, s =

∨
A ∈ F . □

The ∈-collapse can be modified to the forcing notion of finite matrices of count-
able elementary submodels, e.g. [37, §4]. This has the (2ℵ0)+-chain condition, and
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is used to add some structures. For example, Miyamoto proved that some modifi-
cation of the ∈-collapse may add a simplified (ω2, 1)-morass with linear limits [26],
and Kuzeljevic and Todorčević proved that some modification of the ∈-collapse
may add a Kurepa tree which is almost Suslin [22].

3. Preservation theorems for strongly proper forcing notions

Shelah proved that a countable support iteration of strongly proper forcing
notions is strongly proper [34, IX.2.7A Remark]. In this section, it is proved
that a strongly proper forcing notion preserves a Suslin tree and the equality
a = cov(M) = ℵ1. Therefore, if it is consistent that a supercompact cardinal
exists, then the forcing axiom for strongly proper forcing notions is consistent with
Suslin Hypothesis, a = ℵ1 and cov(M) = ℵ1.

Theorem 3.1 (Miyamoto [25]). A strongly proper forcing notion adds no uncount-
able antichains through a Suslin tree.

Proof. Let P be a strongly proper forcing notion and T a Suslin tree. Assume that
p ∈ P and Ȧ is a P-name such that p ⊩P “ Ȧ is a maximal antichain in T”. Let
λ be an uncountable regular cardinal with P(P) ∈ H(λ), M a countable elemen-

tary submodel of H(λ) such that M contains T , P, p and Ȧ as members, and let
δ := ω1 ∩M .

Denote Tδ by the set of δ-th elements of T . For t ∈ Tδ, Dt is defined as the set
of all conditions q in P∩M such that, for some s ∈ T<δ, s <T t and q ⊩P “ s ∈ Ȧ ”.
Each Dt may not be in M . We claim that each Dt is dense below p in P ∩M . To
show this, Let r ∈ P∩M be a stronger condition than p in P. Then, (inside M) the

set {s ∈ T : r ̸⊩P “ s ̸∈ Ȧ ”} is predense in T , so we can find a maximal antichain A′

in this set. By elementarity of M , we may assume that A′ ∈ M . Since T is a Suslin
tree, A′ is countable, hence A′ ⊆ M . Then, (outside M) since A′ is a maximal
antichain in T , there exists s ∈ A′ compatible with t in T . Since M |=“ s ∈ A′ ”,

there exists q ⩽P r in M such that q ⊩P “ s ∈ Ȧ”. Since T ∩M =
⋃

α<δ Tα =: T<δ,
s ∈ T<δ and so s <T t holds, hence q ∈ Dt.

Since Tδ is countable, by the strong properness of P, there exists q ⩽P p such
that Dt is predense below q for every t ∈ Tδ. Then q ⊩P “ ∀t ∈ Tδ ∃s ∈ Ȧ(s <T t)”,

therefore q ⊩P “ Ȧ ⊆ T<δ, which is countable”. □

In [25], Miyamoto proved that, for any Suslin tree T and any proper forcing
notion P, P preserves the countable chain condition of T if and only if, for any
regular cardinal λ with P(P) ∈ H(λ), any countable elementary submodel N of
H(λ) with {T,P} ∈ N , any (N,P)-generic condition p of P and any t ∈ T of level
ω1∩N , the pair

〈
p, t

〉
is (N,P×T )-generic. The last assertion is different from the

assertion that P × T is proper. In fact, for a free Suslin tree T , T × T is proper1,
but T destroys the countable chain condition of T .

1For any countable elementary submodel N of H(λ) with T ∈ N and s, t ∈ T ∩N , there are
s′, t′ ∈ Tω1∩N such that s <T s′, t <T t′ and s′ ⊥T t′. Then, since T ↾ s′ × T ↾ t′ is ccc (which

follows from the freeness of T ),
〈
s′, t′

〉
is (N,T × T )-generic.
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A subset A of the set [ω]ℵ0 is called almost disjoint if and only if the intersection
of any two elements of A is finite, and an almost disjoint family A on ω is called
a mad family if and only if A is infinite and is maximal with respect to almost
disjointness, that is, any infinite subset of ω has an infinite intersection with some
element of A. For a forcing notion P, a mad family A is called P-indestructible if
and only if P forces that A is still a mad family. A Cohen forcing is denoted by C
in this article.

Theorem 3.2 (Brendle and Yatabe [7, Theorem 2.4.8], Hrušák [15, Theorem 5],
Kurilić [21, Theorem 2]). A mad family A is C-indestructible if and only if, for
any function f from C into ω, there exists a ∈ A such that f−1[a] is somewhere
dense in C.

Hrušák showed that, if b = 2ℵ0 , then there exists a C-indestructible mad family
[15, Proposition 6(2)]. So the Continuum Hypothesis (CH) implies the existence of
a C-indestructible mad family.

Theorem 3.3. A strongly proper forcing notion preserves the maximality of a
C-indestructible mad family.

Proof. Let P be a strongly proper forcing notion, A a C-indestructible mad family,
p ∈ P, and ẋ a P-name for an infinite subset of ω. Let us find q ⩽P p and a ∈ A
such that q ⊩P “ ẋ ∩ a is infinite ”.

Denote λ := (2|P|)+. Take a countable elementary submodel M of H(λ) such
that M contains P, A, p and ẋ as members. If there exists q ⩽P p such that the
set bq := {k ∈ ω : q ⊩P “ k ∈ ẋ ”} is infinite, then the maximality of A follows the
existence of our desired a ∈ A. So we assume that any extension q of p in P satisfies
that bq is finite.

For each r ⩽P p, kr denotes the maximal number of the set br ∪ {0}. Let C be
a subset of P ∩M which is dense below p in P ∩M . Since C is a dense subset of
the countable forcing notion P ∩ M , by shrinking C if necessary, we may assume
that there exists an order-isomorphism h of (a dense subset of) C onto C. Define
the function f from C into ω such that, for each σ ∈ C, f(σ) = kh(σ). Since A is

C-indestructible, there are a ∈ A and σ ∈ C such that f−1[a] is dense below σ in
C. Then h(σ) ⩽P p and h(σ) ∈ M .

For each n ∈ ω, Dn denotes the set of all conditions q in P∩M such that n ⩽ kq
and kq ∈ a. Let us show that each Dn is dense below h(σ) in P∩M . To show this,
let n ∈ ω and s ∈ P∩M be such that s ⩽P h(σ). Since ẋ is a P-name for an infinite
subset of ω and belongs to M , by elementarity of M , there exists r ∈ C such that
r ⩽P s and kr ⩾ n. Since h−1(r) ⩽C σ, there is τ ∈ f−1[a] such that τ ⩽C h−1(r).
Then f(τ) ∈ a, h(τ) ⩽P r ⩽P h(σ), and n ⩽ kr ⩽ kh(τ) = f(τ), hence h(τ) ∈ Dn.

By the strong properness of P, there exists q ⩽P h(σ) such that, for all n ∈ ω,
Dn is predense below q in P. Then q ⊩P “ ẋ ∩ a is infinite ”. □

Theorem 3.4. A strongly proper forcing notion preserves non-meager sets of reals.

Proof. Let P be a forcing notion. For each σ ∈ ω<ω, denote [σ] := {f ∈ ωω : σ ⊆ f}.
For r ∈ P and a P-name Ḟ for a nowhere dense subset of ωω, define G(r, Ḟ ) as the
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set of all f in ωω such that, for any k ∈ ω, r ⊩P “ Ḟ ∩ [f ↾ k] ̸= ∅ ”. We claim that

G(r, Ḟ ) is nowhere dense. To show this, let σ ∈ ω<ω. Then there are s ⩽P r and

τ ∈ ω<ω such that σ ⊆ τ and s ⊩P “ Ḟ ∩ [τ ] = ∅ ”. Then G(r, Ḟ ) ∩ [τ ] is empty.

Because, if f ∈ G(r, Ḟ ) ∩ [τ ], then there is k ∈ ω such that τ ⊆ f ↾ k, and then

r ⊩P “ Ḟ ∩ [f ↾ k] ̸= ∅ ” and s ⊩P “ Ḟ ∩ [τ ] = ∅ ”.

This contradicts to the fact that [f ↾ k] ⊆ [τ ] and s ⩽P r.
Suppose that P is strongly proper, X is a non-meager subset of ωω, p ∈ P, and

{Ḟn : n ∈ ω} is a set of P-names for nowhere dense subsets of ωω. Let us show that

p ̸⊩P “X ⊆
⋃

n∈ω Ḟn ”.

Suppose not. Denote λ := (2|P|)+, and take a countable elementary submodel

M of H(λ) such that M contains P, X, p, and {Ḟn : n ∈ ω} as members. Since X

is non-meager, we can take f in the set X ∖
(⋃

n∈ω

⋃
r∈P∩M G(r, Ḟn)

)
.

For each n ∈ ω, Dn is defined as the set of all conditions s in P ∩M such that,
for some k ∈ ω, s ⊩P “ Ḟn ∩ [f ↾ k] = ∅ ”. Each Dn may not be in M . We claim

that Dn is dense in P∩M . To show this, let r ∈ P∩M . Then f ̸∈ G(r, Ḟn), which

means that there exists k ∈ ω such that r ̸⊩P “ Ḟn ∩ [f ↾ k] ̸= ∅ ”. Since M contains

r, P, Ḟn and f ↾ k as members, by elementarity of M , there exists s ∈ P ∩M such
that s ⩽P r and s ⊩P “ Ḟn ∩ [f ↾ k] = ∅ ”. Then s ∈ Dn.

By the strong properness of P, there exists q ⩽P p such that each Dn is predense
below q in P. Then q ⊩P “ f ∈ X ⊆

⋃
n∈ω Ḟn ”, so there are s ⩽P q and n ∈ ω

such that s ⊩P “ f ∈ Ḟn ”. Since Dn is predense below p in P, there are r ∈ Dn,
k ∈ ω and t ⩽P s such that r ⊩P “ Ḟn ∩ [f ↾ k] = ∅ ” and t ⩽P r. But then

t ⊩P “ f ∈ Ḟn and f ̸∈ Ḟn ”, which is a contradiction. □

4. Preservation theorems for Y-proper forcing notions

Chodounský and Zapletal [8, §6] proved that it is consistent relative to the
existence of a supercompact cardinal that the forcing axiom for Y-proper forcing
notions is consistent, by applying Neeman’s forcing iteration with two types of
models as side conditions. Their forcing iteration is Y-proper. So the forcing axiom
for Y-proper forcing notions is consistent with the existences of some mathematical
structures which are preserved by Y-proper forcing extensions.

Chodounský and Zapletal presented many preservation theorems of Y-proper
forcing notions [8, §2]. In this section, two preservation theorems are proved.

Theorem 4.1 (Chodounský and Zapletal [8, Corollary 2.9]). A Y-proper forcing
notion adds no new uncountable branches into ω1-trees.

Proof. Suppose that P is a Y-proper forcing notion, T is an ω1-tree, p ∈ P, and ḃ is
a P-name such that p forces that ḃ is an uncountable branch through T . Let λ be
a regular cardinal with P(P) ∈ H(λ), and N a countable elementary submodel of

H(λ) containing P, T , p and ḃ as members. Since P is Y -proper, there are (N,P)-
generic q ⩽P p and a filter F ∈ N on RO(P) such that {s ∈ RO(P) ∩N : q ⩽RO(P) s}
is included in F as a subset.
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Since q is (N,P)-generic, for any α ∈ ω1 ∩ N , there are t ∈ T of level α and

r ∈ P ∩ N , which is compatible with q in P, such that r forces that t is in ḃ. It
follows that the Boolean value ∥t ∈ ḃ∥ belongs to N and is weaker than r in RO(P).
Hence ∥t ∈ ḃ∥ is in F . Let c be the set of all t ∈ T such that ∥t ∈ ḃ∥ is in F . Since
F is a filter, c forms a chain through T . It follows from the above observation that
q ⊩P“c∩N = ḃ∩N”. By elementarity of N , c belongs to N , and so q ⊩P“c = ḃ”. □

The author provided examples of forcing notions which add no random reals
in [27, 47–50]. Right after [49, 50], Chodounský and Zapletal introduced Y-ccness
and Y-properness, and presented a general theorem which implies the following
theorem. The proof below is direct.

Theorem 4.2 (Chodounský and Zapletal [8, Corollary 2.6]). A Y-proper forcing
notion adds no random reals.

Proof. Suppose that P is a Y-proper forcing notion, p ∈ P, and ẋ is a P-name for
a real in 2ω. Let λ be a regular cardinal with P(P) ∈ H(λ), and take a countable
elementary submodel N of H(λ) containing P, p and ẋ as members. Since N is
countable, there exists a countable set {Un : n ∈ ω} of open subsets of 2ω such that
2ω ∩ N is included in the measure zero set

⋂
n∈ω Un. Since P is Y-proper, there

exists an extension q of p in P such that q is (N,P)-generic and (N,P)-Y-generic.
Let us show that q ⊩P“ẋ ∈

⋂
n∈ω Un”. Assume not. Then there are r ⩽P q and

m ∈ ω such that r ⊩P“ẋ ̸∈ Um”. Let F be a filter on RO(P) such that F ∈ N and
{s ∈ RO(P) ∩N : r ⩽RO(P) s} ⊆ F .

Define S as the set of v ∈ 2<ω such that the Boolean value ∥ẋ ↾ |v| ̸= v∥ is
not in F . Then the order structure (S,⊆) forms a tree, and by elementarity of N ,
S belongs to N . We claim that S is infinite. Because, if S is finite, then there
exists k ∈ ω such that S ⊆ 2<k, but then, since F is a filter, the Boolean value∧

v∈2k∥ẋ ↾ |v| ̸= v∥ is a non-zero element of RO(P) and forces in RO(P) that ẋ ↾ k
does not belong to 2k, which is a contradiction. Therefore, by elementarity of N ,
there exists u ∈ 2ω ∩N such that u ↾ k ∈ S for all k ∈ ω. Let l ∈ ω be such that
the open set [u ↾ l], which consists of all y ∈ 2ω such that u ↾ l ⊆ y, is a subset of
Um. Then the Boolean value q ∧ ∥ẋ ↾ l = u ↾ l∥ is non-zero, and

q ∧ ∥ẋ ↾ l = u ↾ l∥ ⊩RO(P) “ ẋ ∈ [ẋ ↾ l] = [u ↾ l] ⊆ Um ”,

which is a contradiction. □

5. Forcing notions equipped with models as side conditions

5.1. Todorčević’s Open Coloring Axiom. There are two different Open Coloring
Axioms. One is due to Abraham, Rubin and Shelah [1], and the other is due to
Todorčević [39, §8],[42, Part 2]. Both axioms may not be equivalent, but their
motivation is the same: Baumgartner’s theorem on ℵ1-dense sets of reals in [4].
Moore proved that the conjunction of two Open Coloring Axioms implies that the
size of the continuum is equal to ℵ2 [28].

Todorčević’s Open Coloring Axiom has been studied by many people, and has a
lot of applications, for example, [42, Part 2],[9–11,13,17, 28, 35, 41, 44, 45]. In order
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to distinguish two Open Coloring Axioms, Todorčević’s Open Coloring Axiom is
sometimes called a different name, for example, Todorčević’s Axiom [12], or the
Open Graph Axiom [42, Part 2], [43, §7.2]. In this subsection, we consider Open
Coloring Axiom due to Todorčević.

For a separable metric space X, an open graph G on X means a symmetric
irreflexive open subset of the product space X2. For a subset Y of X, we denote
Y [2] := {

〈
x, y

〉
,
〈
y, x

〉
: {x, y} ∈ [Y ]2}. A subset Y of X is called a G-homogeneous

set, or a G-clique, if and only if Y [2] ⊆ G. A subset Z of X is called G-independent
if and only if Z [2] ∩ G = ∅. The Open Coloring Axiom (OCA) is the assertion
that, for any separable metric space X and any open graph G on X, either G
is countably chromatic (that is, X can be decomposed into countably many G-
independent subsets), or there exists an uncountable G-clique [39, §8].

A typical example of OCA is about the structure of gaps in P(ω). For subsets a
and b of ω, we denote a ⊆∗ b if and only if a is almost included in b, that is, a∖ b
is finite. A pair (A,B) of families of infinite subsets of ω is called a pregap if and
only if, for any a ∈ A and any b ∈ B, a ⊆∗ b. For ordinals κ and λ, a pregap (A,B)
is called a (κ, λ)-pregap if and only if A and B can be enumerated by {aα : α ∈ κ}
and {bβ : β ∈ λ} respectively such that, for any α, α′ ∈ κ and any β, β′ ∈ λ, if
α < α′ and β < β′, then

aα ⊆∗ aα′ ⊆∗ bβ′ ⊆∗ bβ .

A subset d of ω splits a pregap (A,B), or d is an interpolation of (A,B), if and only
if, for any a ∈ A and any b ∈ B, a ⊆∗ d ⊆∗ b. A pregap is called a gap if and only
if it has no interpolations. A (κ, λ)-gap is a (κ, λ)-pregap which forms a gap. For
example, ♢ implies that there exists an (ω1, ω1)-gap which has an interpolation in
some ccc forcing extension (e.g. [51, 52]).

Suppose that (A,B) = ({aα : α ∈ ω1}, {bα : α ∈ ω1}) is an (ω1, ω1)-gap such
that, for all α ∈ ω1, aα ⊆ bα. Let X be the set of all pairs

〈
aα, bα

〉
. X is considered

as a subspace of the product topology 2ω × 2ω of two Cantor spaces. Define the
graph G as the set of all sets {

〈
a, b

〉
,
〈
a′, b′

〉
} in X [2] such that a ̸⊆ b′ or a′ ̸⊆ b. G is

an open graph on X. Since (A,B) forms a gap, G is not countably chromatic. So if
OCA holds, then G has an uncountable G-clique Y . It is known that Y guarantees
that (A,B) forms a gap in any extension without collapsing ω1.

In this section, we consider the forcing notion which plays a role in the following
theorem.

Theorem 5.1 (Todorčević [39, Ch. 8]). PFA implies OCA.

To prove the theorem, suppose that X is an uncountable separable metric space
and G is an open graph on X which is not countably chromatic.

Definition 5.2. Fix a regular cardinal κ such that X ∈ H(κ), and M denotes
the set of all countable elementary submodels of H(κ) which contain X and G as
members.

P is defined as the set of all pairs p =
〈
Hp,Mp

〉
such that

• (working part) Hp is a finite G-clique,
• (side-condition part) Mp is a finite ∈-chain of members of M,
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• Hp is separated by Mp, that is, for each {x, x′} ∈ [Hp]
2, there exists

M ∈ Mp such that M ∩ {x, x′} is a singleton, and
• for each M ∈ Mp and each G-independent Z ∈ P(X) ∩M , Z ∩Hp ⊆ M .

The order is defined by q ⩽P p if and only if Hq ⊇ Hp and Mq ⊇ Mp.

We will prove that P is proper. If PFA holds, then there exists a filter G on P
such that the set

⋃
p∈G Hp is uncountable. Then

⋃
p∈G Hp forms an uncountable

G-clique. The following lemma implies the properness of P.

Lemma 5.3. Suppose that λ is a regular cardinal such that H(κ) ∈ H(λ), N is a
countable elementary submodel of H(λ) such that N contains X, G and H(κ) as
members. Then a condition p of P is (N,P)-generic if N ∩H(κ) ∈ Mp.

Since X is separable, any member of M contains all basic open subsets of X as
members.

Proof. To show that p is (N,P)-generic, let q ⩽P p and D ∈ N a dense subset of P.
By extending q if necessary, we may assume that q ∈ D and Hq ∖N is not empty.
Let k be the size of the set Hq∖N , and take an increasing sequence

〈
Mi : i < k

〉
of

members of Mq and the enumeration {xq
i : i < k} of the set Hq ∖N such that for

each i < k, ω1 ∩N ⩽ ω1 ∩M0, {xq
j : j < i} ∈ Mi, and xq

i ̸∈ Mi. Since G is an open
graph on the separable metric space X and Hq is a G-clique, we can take pairwise
disjoint basic open subsets σi of X, i < k, such that

• for each i < k, xq
i ∈ σi and (Hq ∩N) ∩ σi = ∅,

• for each x ∈ Hq ∩N and each i < k, {x} × σi ⊆ G, and
• for each {i, j} ∈ [k]2, σi × σj ⊆ G.

Define Q as the set of all members r of D such that there are an increasing se-
quence

〈
Mr

i : i < k
〉
of members ofMr and an enumeration

〈
xr
i : i < k

〉
ofHr∖Mr

0

such that

• Hr ∩Mr
0 = Hq ∩N ,

• Mr ∩Mr
0 = Mq ∩N , and

• for each i < k, xr
i ∈ σi, {xr

j : j < i} ∈ Mr
i and xr

i ̸∈ Mr
i ,

and F := {
〈
xr
i : i < k

〉
: r ∈ Q}. We note that

• for any r ∈ P ∩N , if Hr ∪Hq is a G-clique, then r and q are compatible in
P (because then

〈
Hr ∪Hq,Mr ∪Mq

〉
is a condition of P),

• {Q,F} ∈ N , and
•
〈
xq
i : i < k

〉
∈ F .

By reverse induction on i < k, we will build basic open subsets τ0i and τ1i of σi

such that

• xq
i ∈ τ0i , τ

0
i ∩ τ1i = ∅, τ0i × τ1i ⊆ G, and

• F ∩
(
{
〈
xq
j : j < i

〉
} ×

∏
j∈[i,k) τ

1
j

)
̸= ∅.

Suppose that we have built τ0j and τ1j for each j ∈ [i+1, k). Define Y as the set of all

members y of σi such that there exists a tuple
〈
xq
j : j < i

〉
⌢
〈
yj : j ∈ [i, k)

〉
in the

product space
∏

j⩽i σj ×
∏

j∈[i+1,k) τ
1
j such that

〈
xq
j : j < i

〉
⌢
〈
yj : j ∈ [i, k)

〉
∈ F
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and yi = y, and define Z as the set of all members y of Y such that the set
{y} × (Y ∖ {y}) does not meet G. Then Y, Z ∈ Mi, Z is G-independent, and
xq
i ∈ Y . So by the definition of P, xq

i ̸∈ Z, and hence there exists y ∈ Y ∖ {xq
i }

such that {xq
i , y} ∈ G. Since G is open, there exists basic open subsets τ0i and τ1i

of σi such that xq
i ∈ τ0i , y ∈ τ1i , τ

0
i ∩ τ1i = ∅ and τ0i × τ1i ⊆ G.

Since {τ1i : i < k} ∈ N , by elementarity of N , there exists r ∈ P ∩N such that〈
xr
i : i < k

〉
∈ F ∩

∏
i<k τ

1
i . Then by the choice of σi, τ

0
i and τ1i , i < k, Hr ∪Hq is

a G-clique, hence r is compatible with q in P. □

Remark 5.4. If CH holds, then we can modify P to have the countable chain condi-
tion. Suppose that CH holds, X is a separable metric space of size ℵ1 and G is an
open graph on X. Let

〈
Mα : α ∈ ω1

〉
be a continuous increasing sequence of count-

able elementary submodels of H(ℵ2) such that M0 contains X, G and some fixed
enumeration of the reals as members. Define Q as the set of all pairs p =

〈
Hp, Op

〉
such that

• (working part) Hp is a finite G-clique,
• (side-condition part) Op is a finite subset of ω1,
• Hp is separated by Op, that is, for each {x, x′} ∈ [Hp]

2, there exists α ∈ Op

such that Mα ∩ {x, x′} is a singleton, and
• for each α ∈ Op and each G-independent Z ∈ P(X) ∩Mα, Z ∩Hp ⊆ Mα.

The order is defined by q ⩽P p if and only if Hq ⊇ Hp and Oq ⊇ Op.
Q is of size ℵ1. By a similar argument to the proof of Lemma 5.3, if N is

a countable elementary submodel of H((2ℵ1)+) such that N contains Q and the
sequence

〈
Mα : α ∈ ω1

〉
as members, then the condition

〈
∅, {ω1 ∩N}

〉
is (N,Q)-

generic. Moreover, if p ∈ Q and Hp ∩ (Mmin(Op∖N) ∖ Mmax(Op∩N)) = ∅, then〈
Hp, Op ∪ {ω1 ∩N}

〉
is a condition of Q. These observations imply that Q is ccc.

Chodounský and Zapletal proved that Y-proper forcing notions cannot add an
instance of OCA in a clopen graph [8, Corollary 2.5]. So P cannot be Y-proper.
However P has some properties of strongly proper forcing notions, namely, P pre-
serves a Suslin tree. The following is proved by Todorčević. Farah [10] proved that
OCA is consistent with the failure of Suslin Hypothesis in a different way.

Theorem 5.5. P adds no uncountable antichains through a Suslin tree.

Proof. Assume that T is a Suslin tree, p ∈ P and Ȧ is a P-name such that p ⊩P“Ȧ is
an uncountable antichain through T”. Let λ be as in Lemma 5.3, N a countable el-
ementary submodel of H(λ) such that N contains T , P, H(κ), p and Ȧ as members.
Define p+ =

〈
Hp,Mp ∪ {N ∩H(κ)}

〉
. By Lemma 5.3, p+ is (N,P)-generic.

Let t ∈ T ∖ N and q ⩽P p+ be such that q ⊩P“t ∈ Ȧ”. Let k be the size of
the set Hq ∖N , and take an increasing sequence

〈
Mi : i < k

〉
of members of Mq,

the enumeration {xq
i : i < k} of the set Hq ∖ N , and pairwise disjoint basic open

subsets σi of X, i < k, such that, for each i < k,

• ω1 ∩N ⩽ ω1 ∩M0,
• {xq

j : j < i} ∈ Mi and xq
i ̸∈ Mi,

• xq
i ∈ σi and (Hq ∩N) ∩ σi = ∅,
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• for each x ∈ Hq ∩N , {x} × σi ⊆ G, and
• for each j ∈ k ∖ {i}, σi × σj ⊆ G.

Let ĠT be a canonical T -name for a generic filter. Define the T -names Q̇ and Ḟ
such that

⊩T “ Q̇ consists of all r ∈ P (this P is the same object to the one in the ground
model) such that there are an increasing sequence

〈
Mr

i : i < k
〉
of members

of Mr and an enumeration
〈
xr
i : i < k

〉
of Hr ∖Mr

0 such that
– Hr ∩Mr

0 = Hq ∩N ,
– Mr ∩Mr

0 = Mq ∩N ,
– for each i < k, xr

i ∈ σi, {xr
j : j < i} ∈ Mr

i and xr
i ̸∈ Mr

i , and

– r ⊩P“s ∈ Ȧ ∩ ĠT ” for some s ∈ T ,
and Ḟ := {

〈
xr
i : i < k

〉
: r ∈ Q̇}”.

Then both Q̇ and Ḟ belong to N and t forces that q is in Q̇. Since T adds no new
reals, T adds no new closed subsets of X. So by a similar argument as in Lemma 5.3
applied to the ∈-chain

〈
Mr

i [ĠT ] : i < k
〉
, whose members are elementary submodels

of H(λ)[ĠT ] (which is the extension with T ), there are t′ ⩾T t (t′ is an extension
of t in the forcing notion T ) and basic open subsets τ0i and τ1i of σi such that t′

forces that, for each i < k,

• xq
i ∈ τ0i , τ

0
i ∩ τ1i = ∅, τ0i × τ1i ⊆ G, and

• Ḟ ∩
(
{
〈
xq
j : j < i

〉
} ×

∏
j∈[i,k) τ

1
j

)
̸= ∅.

By elementarity of N , there are t′′ ⩾T t′, r ∈ P ∩ N and s ∈ T ∩ N such that t′′

forces that r ∈ Q̇,
〈
xr
i : i < k

〉
∈ F ∩

∏
i<k τ

1
i , and r forces that s is in Ȧ ∩ ĠT .

Since t′′ forces that s ∈ ĠT , s and t are compatible in T . As seen in the proof
of Lemma 5.3, q and r are compatible in P. A common extension of q and r in P
forces that both t and s are in the antichain Ȧ, which is a contradiction. □

5.2. The P-ideal Dichotomy and the ideal-based forcings. The P-ideal Di-
chotomy (PID) is introduced by Todorčević [2, 40]. The origin of the P-ideal di-
chotomy is an analysis of the problem whether every hereditarily separable regular
space is Lindelöf (i.e. there are no S-spaces) [42, §23]. Todorčević proved that PFA
implies PID. If PID holds and the pseudo-intersection number p is greater than
ℵ1, then there are no S-spaces [42, §23]. Todorčević asked under PID, whether
p > ℵ1 is equivalent that there are no S-spaces [42, Question 23.8]. Raghavan and
Todorčević gave some consequences of PFA which are equivalent to the assertion
that some cardinal invariants are greater than ℵ1 under PID [32].

For an uncountable set S, an ideal I on [S]⩽ℵ0 (so I ⊆ [S]⩽ℵ0) is called a P-ideal
if and only if, for any countable subset A of I, there exists b ∈ I such that, for
each a ∈ A, a ⊆∗ b (that is, a ∖ b is finite). A subset X of S is called orthogonal
to I if and only if X ∩ a is finite for every a ∈ I. The P-ideal dichotomy (PID) is
the assertion that, for every index set S and every P-ideal I on [S]⩽ℵ0 , either there
exists a decomposition S =

⋃
n∈ω Sn of countably many sets orthogonal to I, or

there exists an uncountable subset H of S such that [H]⩽ℵ0 ⊆ I.
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A typical application of PID is Suslin Hypothesis. Let T be an ω1-tree which is
well-pruned, that is, every node of T has successors in any level of T larger than its
own. Define I as the set of all countable subsets a of T such that, for any t ∈ T ,
the set {s ∈ a : s <T t} is finite.

We claim that I is a P-ideal. To show this, let A = {an : n ∈ ω} be a countable
subset of I. We will find b ∈ I such that a ⊆∗ b for every a ∈ A. Let α ∈ ω1

be such that
⋃
A ⊆

⋃
β<α Tβ , and let {ti : i ∈ ω} be an enumeration of Tα. For

each s ∈
⋃
A, denote by ns the minimal number n with the property that s ∈ an.

Define b as the set of all members s of
⋃

A such that s ̸<T ti for all i ⩽ ns. Then,
for any n ∈ ω, since ns ⩽ n for every s ∈ an, an ∖

⋃
i⩽n{s ∈ an : s <T ti} ⊆ b.

Since each set {s ∈ an : s <T ti} is finite, an ⊆∗ b. Moreover, for each i ∈ ω, the
set {s ∈ b : s <T ti} is a subset of the set

⋃
n<i{s ∈ an : s <T ti}, which is finite.

Therefore b ∈ I.
Since any countable antichain in T belongs to I, any subset of T orthogonal to I

does not have an infinite antichain, so is a union of countably many chains through
T . So if T has a decomposition

⋃
n∈ω Sn such that each Sn is orthogonal to I, T

has an uncountable chain through T . If there exists an uncountable subset A of
T such that any countable subset of A is in I, then the subtree (A,<T ↾ A) is of
height ⩽ ω, and so A has an uncountable antichain, which is also an uncountable
antichain in T . Therefore, PID implies Suslin Hypothesis.

Baumgartner proved that Martin’s Axiom implies that every Aronszajn tree is
special, which is a strong form of Suslin Hypothesis. Kuzeljevic and Todorčević
proved that it is consistent that PID holds and there exists a non special Aronszajn
tree by use of Neeman’s iteration [23].

Theorem 5.6 (Todorčević [40]). PFA implies PID.

To show this, there are two options. One is forcing by countable approximations
[40], and the other is forcing by finite approximations [37, p. 722], [42, Theorem
20.6], [30, §5.2]. The former forcing notion enables one to show that it is consistent
that both PID and 2ℵ0 = ℵ1 hold. In this section, we consider the later forcing
notion in Definition 5.7.

Suppose that S is an uncountable set, I is a P-ideal on [S]⩽ℵ0 , and S is not
covered by countably many subsets of S orthogonal to I.

Definition 5.7. Fix a regular cardinal κ such that P(S) ∈ H(κ), and M denotes
the set of all countable elementary submodels of H(κ) which contains S and I as
members. We fix an assingment of all members M of M to members bM of I such
that bM ⊆ S ∩M and a ⊆∗ bM for every a ∈ I ∩M .

P is defined as the set of all pairs p =
〈
Hp,Mp

〉
such that

• (working part) Hp is a finite subset of S,
• (side-condition part) Mp is a finite ∈-chain of members of M,
• Hp is separated by Mp (see Definition 5.2),
• for any M ∈ Mp, Hp ∩M ⊆ bM ,
• for anyM ∈Mp and any Y ∈P(S)∩M which is orthogonal to I,Hp∩Y ⊆M .

The order is defined by q ⩽P p if and only if Hq ⊇ Hp and Mq ⊇ Mp.
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Proposition 5.8. Define J as the ideal which consists of the subsets of S orthogonal
to I. P and J have the following properties.

(A) For any p ∈ P and any H ⊆ Hp, the pair
〈
H,Mp

〉
is a condition of P, and

if conditions p and q of P are compatible, then the pair
〈
Hp ∪Hq,N

〉
is their

common extension in P for some N which includes Mp and Mq.
(B) J is a nonprincipal ideal on S such that every J-positive set has a countable

J-positive subset, and the σ-ideal σJ generated by J is a proper ideal.
(C) For each p ∈ P, there exists a σJ-positive subset Z of S such that, for any

x ∈ Z, the pair
〈
Hp ∪ {x},Mp

〉
is a condition of P.

(D) For any condition p ∈ P, any M ∈ Mp and any J-positive subset Z ∈ M of
S, the set Z ∩

⋂
N∈Mp∖M bN is not empty.

Proof. (A) directly follows from the definition of P. To show (B), let A be a J-
positive subset of S, that is, A does not belong to J, namely, A ∩ a is infinite for
some a ∈ I. Let M ∈ M contain A, I and J as members. Then, by elementarity
of M , A ∩ M is J-positive. So A ∩ M is a countable J-positive subset of A. By
our assumption of I, σJ is a proper ideal. To show (C), let p ∈ P. Define Z =
S∖

(⋃
M∈Mp

⋃
(J∩M)

)
. Then Z is σJ-large, hence is σJ-positive, and any x ∈ Z

satisfies that
〈
Hp ∪ {x},Mp

〉
∈ P. (D) directly follows from the definition of J and

the choice of {bN : N ∈ M}. □

We will prove that P is proper. If PFA holds, then, by (C), there exists a filter
G on P such that the set

⋃
p∈G Hp is uncountable. By the definition of P, any

countable subset of
⋃

p∈G Hp belongs to I.

Lemma 5.9. Suppose that λ is a regular cardinal such that H(κ) ∈ H(λ), N is
a countable elementary submodel of H(λ) such that N contains S, I and H(κ) as
members. Then a condition p of P is (N,P)-generic if N ∩H(κ) ∈ Mp.

Proof. To show that p is (N,P)-generic, let q ⩽P p and D ∈ N a dense subset of
P. By extending q if necessary, we may assume that q ∈ D and Hq ∖ N is not
empty. Let l be the size of the set Hq ∖N ,

〈
Kj : j < l

〉
an ∈-subchain of Mq and〈

xq
j : j < l

〉
an enumeration of Hq ∖ N such that K0 = N ∩ H(κ) and, for each

i < l,
〈
xq
j : j < i

〉
∈ Ki and xq

i ̸∈ Ki.

Define Tl as the set of all sequences σ =
〈
σ(i) : i < l

〉
of S of length l such

that there exists s ∈ D such that, for some M ∈ Ms, Ms ∩ M = Mq ∩ N ,
Hs ∩M = Hq ∩N , Hs ∖M = ran(σ), and for any i < l, there exists K ∈ Ms ∖M
such that {σ(j) : j < i} ∈ K and σ(i) ̸∈ K. Then

〈
xq
j : j < l

〉
∈ Tl ∈ K0. So Tl is

in Ki for all i < l. By the downward induction on j < l, we define Tj such that

Tj := Tj+1 ∖
{
σ ∈ Tj+1 : {τ(j) : τ ∈ Tj+1 and τ ↾ j = σ ↾ j} ∈ J

}
.

We claim that
〈
xq
j : j < l

〉
is in Ti for all i < l, especially

〈
xq
j : j < l

〉
is in T0. To

show this, suppose that i < l and
〈
xq
j : j < l

〉
∈ Ti+1. Then by the definition of P,

xq
i ̸∈

⋃
(J ∩Ki), and also that

xq
i ∈ {τ(i) : τ ∈ Ti+1 and τ ↾ i =

〈
xq
j : j < i

〉
} ∈ Ki.
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Therefore the set {τ(i) : τ ∈ Ti+1 and τ ↾ i =
〈
xq
j : j < i

〉
} is J-positive and hence〈

xq
j : j < l

〉
∈ Ti.

We consider T0 as a tree which consists of all initial segments of members of T0.
Then T0 has a cofinal branch (which is of length l) and each non-terminal node has
J-positive many successors in the tree T0. We will take yν ∈ S ∩ N = S ∩K0 by
induction on ν < l such that

〈
yµ : µ < ν

〉
is an initial segment of some member of T0

such that each yµ belongs to bK for all K ∈ Mq∖K0. Given
〈
yµ : µ < ν

〉
, define Z

as the set {τ(i) : τ ∈ Ti+1 and τ ↾ ν =
〈
yj : j < ν

〉
}. Z is J-positive and in K0. By

(B) and (D) in Proposition 5.8, there exists yν in the set Z ∩K0 ∩
⋂

K∈Mq∖K0
bK .

Since T0 is a subset of Tl, the sequence
〈
yν : ν < l

〉
is in Tl. By elementarity

of N , there exists r ∈ D ∩ N ∩ H(κ) which witnesses that
〈
yν : ν < l

〉
is in Tl.

Then
〈
Hr ∪Hq,Mr ∪Mq

〉
is a conditon of P, and so is a common extension of r

and q in P. □

In [49], the author proved that P adds no random reals. Chodounský and Zaple-
tal extend it by proving the following [8, Corollary 2.6, Theorem 4.6].

Theorem 5.10. P is Y-proper.

Proof. This proof follows the one of Lemma 2.6. The difference is the notion of the
largeness for this forcing notion P.

Let λ be a regular cardinal such that P(P) is in H(λ). For a condition p ∈ P,
a subset A of P is p-large if and only if, for any b ∈ H(κ), there are q ∈ A and
a countable elementary submodel M of H(λ) such that M contains H(κ) as a
member, M ∩H(κ) ∈ Mq, Hq ∩M = Hp, Mq ∩M = Mp, and b ∈ M .

Let p ∈ P. We will show that {
∨
A : A ⊆ P is p-large} is a centered subset

of RO(P). Let n ∈ ω and Ai, i ∈ n, p-large subsets of P. It suffices to find
qi ∈ Ai, i ∈ n, such that {qi : i ∈ n} has a common extension in P. To do this,
let λ∗ be a regular cardinal with H(λ) ∈ H(λ∗), and countable elementary sub-
models Ni, i ∈ n, of H(λ∗) such that each Ni contains I, J, H(κ), p, P, H(λ),
{Nj : j < i} and Ai as members. By reverse induction on i ∈ n, as in the proof of
Lemma 5.9, we can find qi ∈ Ai ∩Ni and a countable elementary submodel Mi of
H(λ) such that

• Mi contains H(κ) and {Nj : j < i} as members, and Mi ∩H(κ) ∈ Mqi ,
• Hqi ∩Mi = Hp,
• Mqi ∩Mi = Mp, and

• Hqi ∖Mi is a subset of the set
⋂n−1

j=i+1

⋂
K∈Mqj

∖Mj
bK .

Since P is a subset of H(κ), each qi is in Mi ∩ H(κ). Therefore, the pair〈⋃
i∈n Hqi ,

⋃
i∈n Mqi

〉
is a condition of P, and is a common extension of qi’s.

To show that P is Y-proper, let N be a countable elementary submodel of H(λ)
such that N contains S, I and H(κ) as members, and let p ∈ P be such that
N ∩H(κ) ∈ Mp. Let us show that p is (N,P)-Y-generic. Let r be an extension of
p in P. Denote r ↾ N =

〈
Hr ∩N,Mr ∩N

〉
, and define F as the filter on RO(P)

that is generated by the set {
∨
A : A ⊆ P is r ↾ N -large}. Then F belongs to

N . We will show that, for any s ∈ RO(P) ∩ N , if r ⩽RO(P) s, then s ∈ F . Let
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s ∈ RO(P) ∩N be such that r ⩽RO(P) s, and define A as the set of all q ∈ P such
that q ⩽RO(P) s. Then A is in N , and

∨
A = s. By elementarity of N and the fact

that N ∩H(κ) ∈ Mr, A is r ↾ N -large. Therefore s =
∨

A ∈ F . □

Remark 5.11. In [53, §3], Zapletal introduced a wide class of forcing notions with
models as side conditions, which are clossly related to the forcing notion P in this
subsection.

A triple
〈
A,⊑, J

〉
is called an ideal-based triple if and only if

(A) A ⊆ [ω1]
<ℵ0 and ⊑ is a transitive relation on A which refines the set-inclusion

⊆ such that
• for each a ∈ A and β ∈ ω1, a ∩ β ∈ A and a ∩ β ⊑ a, and
• for each a, b ∈ A, if a and b are ⊑-compatible (i.e. there exists c ∈ A
such that a ⊑ c and b ⊑ c), then a ∪ b is in A and is a ⊑-upper bound of
a and b,

(B) J is a nonprincipal ideal on ω1 such that every J-positive set has a countable
J-positive subset, and the σ-ideal σJ generated by J is a proper ideal,

(C) for each a ∈ A, there exists a σJ-positive set Z such that, for every β ∈ Z,
a ∪ {β} is in A and a ⊑ a ∪ {β}, and

(D) for each a ∈ A, there exists a J-large set Y such that, for every β ∈ Y , if
(a ∩ β) ∪ {β} is in A and a ∩ β ⊑ (a ∩ β) ∪ {β}, then a ∪ {β} is in A and
a ⊑ a ∪ {β}.

For an ideal-based triple
〈
A,⊑, J

〉
, the forcing notion P(A,⊑, J) is defined as the

set of all pairs p =
〈
Hp,Mp

〉
such that

• (working part) Hp is in A,
• (side-condition part) Mp is a finite ∈-chain of countable elementary sub-
models of H((2ℵ1)+) which contain

〈
A,⊑, J

〉
as a member,

• Hp is separated by Mp,
• for any M ∈ Mp and any Y ∈ J ∩M , Hp ∩ Y ⊆ M .

The ordering is defined by q ⩽P(A,⊑,J) p if and only if Hp ⊑ Hq and Mq ⊇ Mp.
For example, shooting an uncountable discrete subspace into a right-separated

hereditarily separable regular space is one of the ideal-based forcings [49, Example
2.3]. In [53, §3], Zapletal proved that P(A,⊑, J) keeps the additivity of the null
sets small. In [49, §4], the author proved that P(A,⊑, J) does not add random
reals, and in [8, Theorem 4.4], Chodounský and Zapletal proved that P(A,⊑, J) is
Y-proper.

5.3. The failure of □(κ). For a set S of ordinals, Lim(S) denotes the set of all limit
ordinals in S. In [38, §1], Todorčević defined a □(κ)-sequence, for an uncountable
cardinal κ, as a sequence

〈
Cα : α ∈ κ

〉
such that

(i) Cα+1 = {α}, and if α is a limit ordinal, then Cα is a closed unbounded subset
of α, and

(ii) if α is a limit point of Cβ , then Cα = Cβ ∩ α.

Jensen’s □κ is the assertion that there exists a □(κ+)-sequence such that, if the
cofinality of α is less than κ, then the cardinality of Cα is also less than κ. The
following is a weakening of □κ.
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Definition 5.12 (Todorčević [6, Ch. 4], [38, §1]). For an uncountable regular
cardinal κ, □(κ) is the assertion that there exists a □(κ)-sequence such that, for
every club subset C of κ, there exists a limit point α of C so that Cα ̸= C ∩ α.

It can be proved that □κ implies □(κ+). In [36], Todorčević proved that PFA
implies that □κ fails for any uncountable cardinal κ. This is the first application
of the side condition method in the literature. His proof is essentially a proof of
the following theorem.

Theorem 5.13 (Todorčević [36]). PFA implies that □(κ) fails for any regular
cardinal κ > ω1.

After that, Todorčević [40, §4] proved that PID implies the failure of □(κ) for
any regular cardinal κ > ω1. In this subsection, we investigate the forcing notion
for the proof of Theorem 5.13 in [36] because this is a different fashion from the
one in Section 5.2.

To prove the theorem, suppose that PFA holds, κ is an uncountable regular

cardinal greater than ω1, □(κ) holds, and C⃗ =
〈
Cα : α ∈ κ

〉
is a □(κ)-sequence

which witnesses □(κ). We will show a contradiction as follows.
For α, β ∈ Lim(κ), define α ≺ β if and only if α is a limit point of Cβ . Then, by

(ii) above, ≺ forms a tree order of Lim(κ). If E is a chain of the tree (Lim(κ),≺),

then, by (i) and (ii),
⋃

α∈E Cα is a club subset of sup(E). Therefore, since C⃗ is a
witness of □(κ), there are no chains of (Lim(κ),≺) of size κ. A function f from
a subset A of Lim(κ) into ω is called a specializing map if, for any α, β ∈ A with
α ≺ β, f(α) ̸= f(β). We will present a proper forcing P which adds a countably
closed subset E of (Lim(κ),≺) of order type ω1 and a specializing function g on
E. Then it follows from PFA that there are such E and g. Since sup(E) is in
Lim(κ) and Csup(E) is a closed unbounded subset of sup(E), there exists a closed
unbounded subset E′ of E such that each member of E′ is a limit point of Csup(E).
Then by (ii), E′ is a chain with respect to ≺, and hence g ↾ E′ is an injection from
the uncountable set E′ into ω, which is a contradiction, and finishes the proof.

The following is one of such forcing notion. The following formulation is a little
different from the original one in [36], however these are essentially same.

Definition 5.14. For a countable elementary submodel N of H(κ+), denote

δN := sup(κ ∩N),

and M denotes the set of all countable elementary submodels of H(κ+) which

contains C⃗ as a member.
P is defined as the set of all pairs p =

〈
fp, hp

〉
such that

• (side-condition part)
– dom(hp) is a finite ∈-chain of elements of M,
– for each N ∈ dom(hp), hp(N) is in κ∖ (δN + 1),
– for any N0, N1 in dom(hp), if N0 ∈ N1, then hp(N0) ∈ N1, and hence

hp(N0) < δN1
,

• (working part) fp is a specializing map from the set {δN : N ∈ dom(hp)}.
The order is defined by q ⩽P p if and only if fq ⊇ fp and hq ⊇ hp.
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We will prove the following two lemmata.

Lemma 5.15. Suppose that λ is a regular cardinal such that H(κ+) ∈ H(λ), N is

a countable elementary submodel of H(λ) such that N contains C⃗, P and H(κ+)
as members. Then a condition p of P is (N,P)-generic if N ∩H(κ+) ∈ dom(hp).

Lemma 5.16. ⊩P “ Ė := {δN : N ∈
⋃

p∈Ġ dom(hp)} is countably closed ”.

Lemma 5.15 implies that P is proper. So it follows from PFA, by use of the
cardinal-collapsing trick as in [5, §4], that there exists a filter G of P such that
the set E := {δN : N ∈

⋃
p∈G dom(hp)} is uncountable. Then E is of order type

ω1 and
⋃

p∈G fp is a specializing function from E, which implies a contradiction as
mentioned before. So the rest of the proof of Theorem 5.13 is to show Lemmata
5.15 and 5.16. Before proceeding to the proof of Lemma 5.15, we will show one
preliminary proposition.

Proposition 5.17. Let λ and N be as in the assumption of Lemma 5.15.

(1) Let I be a subset of Lim(κ) of size κ in N and ε ∈ Lim(κ) ∖ δN . Then there
exists a subset J of I of size κ in N such that every element of J is incomparable
to ε with respect to ≺.

(2) Let I be a subset of [Lim(κ)]<ℵ0 of size κ in N and σ ∈ [Lim(κ)∖δN ]<ℵ0 . Then
there exists a subset J of I of size κ in N such that every element of

⋃
J is

incomparable to any element of σ with respect to ≺.

Proof. (2) follows from (1). We will show (1). Let I and ε be as in the assertion of
the proposition. Define A as the set of all α in I such that the set {β ∈ I : α ≺ β}
is of size κ. By elementarity of N , A belongs to N . We consider the following
two cases.

Suppose that A is bounded in κ. Then by induction on ξ ∈ κ, we can take αξ ∈ I
which is greater than the supremum of the set

A ∪ {β ∈ I : ∃η < ξ(αη ≺ β)} ∪ {αη + 1 : η < ξ}.

By elementarity of N , we may assume that the set J = {αξ : ξ ∈ κ} is in N . J
forms an antichain with respect to ≺. We divide J into two disjoint subsets J0 and
J1 of size κ in N . Then, since J0 ∪ J1 forms an antichain in the tree (Lim(κ),≺)
and δN ⩽ ε, for some i ∈ {0, 1}, every element of Ji is incomparable to ε with
respect to ≺.

Suppose that A is cofinal in κ. Since the tree (Lim(κ),≺) has no chain of size κ,
there are two elements α0 and α1 in A which are incomparable with respect to ≺.
By elementarity of N , we may assume that α0 and α1 are in N . Then, since both
α0 and α1 are less than ε, for some i ∈ {0, 1}, αi is incomparable to ε with respect
to ≺. Then J := {β ∈ I : αi ≺ β} belongs to N , and any element of the set J is
incomparable to ε with respect to ≺. □

Proof of Lemma 5.15. Let λ, N and p be as in the assumption of the lemma, and
let D be a dense subset of P in N . We will show that D ∩N is predense below p.
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To do this, let q be an extension of p in P. By extending q if necessary, we may
assume that q belongs to D. Denote n := |fq ∖ N |. Define S as the set of all
elements σ of [Lim(κ)]n such that there exists r in D which satisfies that

• fr ↾ min(σ) = fq ∩N ,
• for some M ∈ dom(hr), hr ↾ M = hq ∩N , and
• dom(fr) = dom(fq ∩N) ∪ σ.

By elementarity of N and the fact that κ is regular, S is in N and is of size κ. By
Proposition 5.17, there exists σ ∈ S∩N such that every element of σ is incomparable
to any element of dom(fq). By elementarity of N , there exists r ∈ P ∩ N which
witnesses that σ is in S. Then r ∈ D and r and q are compatible in P, because〈
fr ∪ fq, hr ∪ hq

〉
is a condition of P and is a common extension of r and q in P. □

Proof of Lemma 5.16. Let p ∈ P, and
〈
α̇n : n ∈ ω

〉
a sequence of P-names such

that p ⊩P “ {α̇n : n ∈ ω} is a strictly increasing subset of Ė ”. Let us show that

p ̸⊩P “ supn∈ω α̇n ̸∈ Ė ”.
Assume not. Let q ⩽P p and a limit ordinal β be such that q ⊩P “ supn∈ω α̇n =

β ”. By extending q if necessary, we may assume that there exists N ∈ dom(hq)
such that q ⊩P “ N is the least element of

⋃
r∈Ġ dom(hr) with the property that

β ⩽ δN ”. By our assumption, it follows that β < δN because q ⊩P “β ̸∈ Ė and
δN ∈ Ė ”. Then there are q′ ⩽P q, m ∈ ω and M ∈ dom(hq′) such that q ∩N ∈ M
and q′ ⊩P “ α̇m = δM ”. Then dom(hq) ∪ {M} is an ∈-chain and δM < β < δN .
Let q′′ =

〈
fq′′ , hq′′

〉
be such that dom(hq′′) = dom(hq) ∪ {M}, hq′′(M) = β + 1

and fq′′ = fq′ ↾ {δN : N ∈ dom(hq′′)}. Then q′′ is a condition of P. q′′ may not be
compatible with q′ in P (hence q′′ may not force that α̇m = δM ), but is an extension
of q in P. Then q′′ ⊩P “ the interval of the ordinal from δM + 1 to β + 1 is disjoint
from Ė, {α̇n : n ∈ ω} ⊆ Ė, and supn∈ω α̇n = β ”. This is a contradiction. □

Theorem 5.18. P is Y-proper.

Proof. This proof follows the one of Lemma 2.6 and Theorem 5.10. Let λ be a
regular cardinal such that P(P) is in H(λ). For a condition p ∈ P, a subset A of P is
p-large if and only if, for any b ∈ H(κ+), there are q ∈ A and a countable elementary
submodel M of H(λ) such that M contains H(κ+) as a member, M ∩H(κ+) is in
dom(hq), hq ↾ M = hp, fq ↾ δM∩H(κ+) = fp, and b ∈ M .

Let p ∈ P. We will show that {
∨

A : A ⊆ P is p-large} is a centered subset of
RO(P). Let n ∈ ω and Ai, i ∈ n, p-large subsets of P. It suffices to find qi ∈ Ai,
i ∈ n, such that {qi : i ∈ n} has a common extension in P. To do this, let λ∗ be
a regular cardinal with H(λ) ∈ H(λ∗), and countable elementary submodels Ni,
i ∈ n, of H(λ∗) such that each Ni contains H(κ+), p, P, H(λ), {Nj : j < i} and
Ai as members. By reverse induction on i ∈ n, we will find qi ∈ Ai ∩ Ni and a
countable elementary submodel Mi of H(λ) such that

• Mi contains H(κ+) and {Nj : j < i} as members and Mi ∩ H(κ+) is in
dom(hqi),

• hqi ↾ Mi = hp,
• fqi ↾ δMi∩H(κ+) = fp, and
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• every member of dom(fqi ∖ fp) is incomparable to any element of⋃
i<j<n dom(fqj ∖ fp) with respect to ≺.

After finding all qi’s, the pair
〈⋃

i∈n hqi ,
⋃

i∈n fqi
〉
is a condition of P, and hence is

a common extension of all qi.
Suppose that we have found qj ∈ Aj ∩ Nj for all j with i < j < n. To find

qi, define Ii as the set of all dom(fq ∖ fp) for all q ∈ Ai. Then Ii is in Ni and,
since Ai is p-large and κ is regular, Ii is of size κ. So by Proposition 5.17, there
exists τ ∈ Ii ∩ Ni such that every member of τ is incomparable to any element
of

⋃
i<j<n dom(fqj ∖ fp) with respect to ≺. By elementarity of Ni, there exists

qi ∈ Ai ∩Ni that witnesses that τ is in Ii. This finishes the choice of qi.
The rest of the proof is similar to the one in the proof of Theorem 5.10. To show

that P is Y-proper, let N be a countable elementary submodel such that N contains

C⃗, P and H(κ+) as members, and let p ∈ P be such that N ∩H(κ+) ∈ dom(hp).
Let us show that p is (N,P)-Y-generic. Let r be an extension of p in P. Denote
r ↾ N =

〈
fr ∩N,hr ∩N

〉
, and define F as the filter on RO(P) that is generated by

the set {
∨
A : A ⊆ P is r ↾ N -large}. Then F belongs to N . We will show that,

for any s ∈ RO(P)∩N , if r ⩽RO(P) s, then s ∈ F . Let s ∈ RO(P)∩N be such that
r ⩽RO(P) s, and define A as the set of all q ∈ P such that q ⩽RO(P) s. Then A is in

N ,
∨
A = s. By elementarity of N and the fact that N ∩H(κ+) ∈ dom(hr), A is

r ↾ N -large. Therefore s =
∨
A ∈ F . □

5.4. The failure of weak club guessing and the Mapping Reflection Principle.
A ladder system is a sequence

〈
Cα : α ∈ ω1 ∩ Lim

〉
such that, for each α ∈ ω1 ∩

Lim, Cα is a cofinal subset of α of order type ω. We say that a ladder system〈
Cα : α ∈ ω1 ∩ Lim

〉
weak club guesses a club subset C of ω1 if and only if Cα ∩C

is infinite for some α in C. Weak Club Guessing, denoted by WCG, is the assertion
that there exists a ladder system which weak club guesses all club subsets of ω1.
PFA implies the negation of WCG, and it is known that a finite support iteration of
ccc forcing notions of infinite length forces WCG (see introduction of [3]). Asperó
and Mota introduced the following property of forcing notions and its forcing axiom.

Definition 5.19 (Asperó and Mota [3]). • A forcing notion P is called finitely
proper if and only if, for any large enough regular cardinal λ, any finite set
{Ni : i < m} of countable elementary submodels of H(λ) which contain P
as a member, and any condition p of P in all Ni, there exists an extension
of p which is (Ni,P)-generic for every i < m.

• PFAfin(ω1) denotes the forcing axiom for the class of finitely proper forcing
notions of size ℵ1 and for families of ℵ1 many dense sets.

Asperó and Mota proved in [3] that PFAfin(ω1) implies the failure of WCG, and,
for any regular cardinal κ greater than ℵ1, there exists a forcing iteration, called
Asperó–Mota iteration, which forces PFAfin(ω1) and 2ℵ0 = κ.

In this section, we give the forcing notion for showing the following theorem.

Theorem 5.20 (Asperó and Mota [3]). PFAfin(ω1) implies the nagation of WCG.

To show the theorem, let C⃗ =
〈
Cα : α ∈ ω1 ∩ Lim

〉
be a ladder system.
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Definition 5.21. P is defined as the set of all finite functions p such that

• dom(p) is a finite set of countable limit ordinals, and, for each α ∈ dom(p),
denote p(α) =

〈
p0(α), p1(α)

〉
which is in α× ω1,

• (working part) for each α ∈ dom(p), Cα ∩ dom(p) ⊆ p0(α),
• (side-condition part) for any α and β in dom(p), if α<β, then α<p1(α)<β.

The order is defined by q ⩽P p if and only if q ⊇ p.

This forcing notion seems to be different from the one in [3], but these are
essentially same. By use of the side condition method, the proof of the properness
may be simpler than the one in [3].

We will prove that P is proper. If PFA holds, then there exists a filter G on P
such that ω1∩Lim is included in the union of the intervals [α, p1(α)) of ordinals for
all α in the set

⋃
p∈G dom(p). Since the open intervals (α, p1(α)) of ordinals for all

α in the set
⋃

p∈G dom(p) are pairwise disjoint, the set

(ω1 ∩ Lim)∖
( ⋃

p∈G

⋃
α∈dom(p)

(α, p1(α))

)
is equal to

⋃
p∈G dom(p).

⋃
p∈G dom(p) is uncountable. Since ω1 ∩ Lim is closed in

the ordered topology of ω1,
⋃

p∈G dom(p) is club in ω1. Therefore, by the definition

of P, C⃗ does not weak club guess the club set
⋃

p∈G dom(p).

Lemma 5.22. Suppose that λ is a regular cardinal such that P(P) ∈ H(λ), λ∗ is
a regular cardinal such that H(λ) ∈ H(λ∗), N∗ is a countable elementary submodel

of H(λ∗) such that N∗ contains C⃗ and H(λ) as members. Then a condition p of
P is (N∗,P)-generic (then p is also (N∗ ∩ H(λ),P)-generic), if dom(p) contains
ω1 ∩N∗ as a member.

Proof. Let N∗ and p be as in the assumption of the lemma, and let D be a dense
subset of P in N∗. We will show that D ∩N∗ is predense below p.

To do this, let q be an extension of p in P. By extending q if necessary, we may
assume that q belongs to D. The point of the proof is that, for all α ∈ dom(q)
which is greater than ω1 ∩ N∗, Cα ∩ N∗ belongs to N∗ (because then Cα ∩ N∗

is finite), however Cω1∩N∗ ∩ N∗ = Cω1∩N∗ , which does not belong to N∗. Take

a countable elementary submodel M of H(λ) in N∗ such that M contains C⃗, P,
D, q ∩ N∗ (which is equal to q ↾ N∗ because ω1 ∩ N∗ ∈ dom(q)), q0(ω1 ∩ N∗),
and the set {Cα ∩N∗ : α ∈ dom(q)∖ ((ω1 ∩N∗) + 1)} as members. Then, for any
α ∈ dom(q)∖ ((ω1 ∩N∗) + 1), Cα ∩M = Cα ∩N∗, and Cω1∩N∗ ∩M is finite. Let
δ ∈ ω1 ∩M be such that, for all α ∈ dom(q) ∖N∗, Cα ∩M ⊆ δ. By elementarity
of M , there exists r ∈ D ∩M such that r ↾ δ = q ∩N∗ (which is equal to q ↾ M)
and r ⩽P q ∩N∗. Then q and r are compatible in P. □

Theorem 5.23. P is Y-proper.

Proof. This proof follows the ones of Lemma 2.6, Theorems 5.10 and 5.18. But
here, we need to take more care of checking the largeness of the set A than ones in
Theorems 5.10 and 5.18.
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For a condition p ∈ P and a subsetA of P, E(p,A) denotes the set of all countable
ordinals δ such that there exists q ∈ A such that q ↾ (δ + 1) = q ↾ δ = p (hence
δ ̸∈ dom(q)) and q ⩽P p, and define that a subset A of P is p-large if and only if
E(p,A) is stationary in ω1.

Let λ and λ∗ be as in Lemma 5.22, and p ∈ P. We will show that {
∨

A : A ⊆
P is p-large} is a centered subset of RO(P). Let n ∈ ω and Ai, i ∈ n, p-large
subsets of P. It suffices to find qi ∈ Ai, i ∈ n, such that {qi : i ∈ n} has a common
extension in P. To do this, take a sequence

〈
λi : i ∈ n+ 1

〉
of regular cardinals such

that λ0 = λ and, for each i ∈ n, λi+1 = (2λi)+. Denote Mn = H(λn). By reverse
induction on i ∈ n, we will find a countable elementary submodel Mi of H(λi) in
Mi+1 and qi ∈ Ai ∩Mi+1 such that

(1) Mi contains C⃗, P, p, {[H(λj)]
ℵ0 ,Aj : j ∈ i} and

{
Cα∩Mj : j ∈ n∖ (i+1), α ∈

dom(qj)∖Mj

}
as members,

(2) qi ↾ ((ω1 ∩Mi) + 1) = p (hence ω1 ∩Mi ̸∈ dom(qi)) and qi ⩽P p.

Then, as seen in the proof of the properness, we can conclude that
⋃

i∈n q
i is a

condition of P, and so {qi : i ∈ n} has a common extension in P. To find Mi and qi

as above, we assume that we have {Mj : j ∈ n∖ (i+ 1)}. Since [H(λi)]
ℵ0 and Ai

are in Mi+1 and Ai is p-large, by elementarity of Mi+1, we can take a countable
elementary submodel Mi of H(λi) in Mi+1 such that ω1 ∩Mi ∈ E(p,Ai) and Mi

satisfies (1) above. Then, by elementarity of Mi+1 again, we take qi ∈ Ai ∩Mi+1

which satisfies (2) above, which finishes the constructions of Mi and qi.
To show that P is Y-proper, suppose that N∗ is a countable elementary submodel

of H(λ∗) such that N∗ contains C⃗ and [H(λ)]ℵ0 as members, p ∈ P, and ω1 ∩N∗ ∈
dom(p). By Lemma 5.22, p is (N∗,P)-generic. Let us show that p is (N∗,P)-Y-
generic. Let r be an extension of p in P. Define F as the filter on RO(P) that
is generated by the set {

∨
A : A ⊆ P is (r ↾ N∗)-large}. Then F belongs to

N∗. We will show that, for any s ∈ RO(P) ∩ N∗, if r ⩽RO(P) s, then s ∈ F . Let
s ∈ RO(P) ∩N∗ be such that r ⩽RO(P) s, and define A as the set of all q ∈ P such
that q ⩽RO(P) s. Then A is in N∗, and

∨
A = s. So it suffices to show that A is

(r ↾ N∗)-large, because then s =
∨

A ∈ F .
We will show that A is (r ↾ N∗)-large, that is, E(r ↾ N∗,A) is stationary in ω1.

Since N∗ contains E(r ↾ N∗,A) as a member, it suffices to show that N∗ satisfies
that E(r ↾ N∗,A) is stationary in ω1. To do this, let I be a club subset of ω1 in
N∗. By elementarity of N∗, there exists a countable elementary submodel N of

H(λ) in N∗ such that N contains C⃗, P, r ↾ N∗, A and I. Then ω1 ∩N belongs to
I. r witnesses the assertion that ω1 ∩N belongs to A. Therefore, I ∩E(r ↾ N∗,A)
is not empty in N∗. □

These techniques can be applied to show that the negation of ℧ is implied by
both PFAfin(ω1) and YPFA. But we need more care to show this. For more details,
see [46].

The methods in Sections 5.3–5.4 can extend to Moore’s Mapping Reflection
Principle [29]. The Mapping Reflection Principle is the key notion to show that the
Bounded Proper Forcing Axiom implies that the size of the continuum is ℵ2.
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The Ellentuck topology on the set [X]ℵ0 is the topology generated by the sets
of the form

[x, Z] := {Y ∈ [X]ℵ0 : x ⊆ Y ⊆ Z}
for some finite subset x of X and some infinite subset Z of X.

Definition 5.24 (Moore [29]). Σ is called an open stationary set mapping when
there are an uncountable set XΣ and a regular cardinal θΣ with [XΣ]

ℵ0 ∈ H(θΣ)
such that

• dom(Σ) is a club subset of the set of countable elementary submodels of
H(θΣ),

• for every M ∈ dom(Σ),
– Σ(M) is an open subset of the space [XΣ]

ℵ0 equipped with the Ellen-
tuck topology, and

– Σ(M) is M -stationary, i.e. for any club subset E of [XΣ]
ℵ0 , if E ∈ M ,

then E ∩ Σ(M) ∩M ̸= ∅.
The Mapping Reflection Principle (MRP) is the assertion that, for any open

stationary set mapping Σ, there exists a reflecting sequence for Σ, which means a
continuous ∈-chain

〈
Nν : ν ∈ ω1

〉
in dom(Σ) such that, for all limit ordinals ν ∈ ω1,

there exists ν0 < ν such that, for any ξ ∈ (ν0, ν), Nξ ∩XΣ ∈ Σ(Nν).

Moore proved that PFA implies MRP, and MRP implies the equation 2ℵ0 =
2ℵ1 = ℵ2, the failure of □(κ) for all regular cardinal κ > ω1 [29], and the failure
of both WCG and ℧. To prove that PFA implies MRP, Moore used a σ-distributive
forcing notion. The following forcing notion is different from Moore’s one. In [27],
Miyamoto and the author proved that the following forcing notion is a Y-proper
forcing notion which adds a reflecting sequence for a given open stationary set
mapping.

Definition 5.25 (Miyamoto–Y. [27]). Let Σ be an open stationary set mapping.
Define the forcing notion P which consists of finite subsets p of ω1×dom(Σ)×dom(Σ)
such that

• for any
〈
ε,M0,M1

〉
∈ p, ε ∈ M0 ∈ M1 and M0 is a closure point of dom(Σ),

that is, M0 =
⋃
(dom(Σ) ∩M0),

• for any different
〈
ε,M0,M1

〉
and

〈
ε′,M ′

0,M
′
1

〉
in p, ω1 ∩ M0 ̸= ω1 ∩ M ′

0

holds, and moreover,
– if ω1 ∩M0 < ω1 ∩M ′

0, then M1 ∈ M ′
0, and

– if ε′ < ω1 ∩M0 < ω1 ∩M ′
0, then M0 ∩XΣ ∈ Σ(M ′

0).

The order is defined by q ⩽P p if and only if q ⊇ p.

This forcing notion is proved to be Y-proper. However, this proof is more difficult
than the ones in Sections 5.3 and 5.4.
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