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A SURVEY ON DIVISIBILITY
OF ULTRAFILTERS

Abstract. An extension of the divisibility relation on N to the set
βN of ultrafilters on N was defined and investigated in several papers
during the last ten years. Here we make a survey of results obtained so
far, adding several results connecting the themes of different stages
of the research. The highlights include: separation of βN into the
lower part L (with its division into levels) and the upper part; identi-
fying basic ingredients (powers of primes) and fragmentation of each
ultrafilter into them; finding the corresponding upward closed sets
belonging to an ultrafilter with given basic ingredients; existence and
number of direct successors of a given divisibility class; extending
the congruence relation (in two ways) and checking properties of the
obtained relations.
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1. Introduction

Ultrafilters are a powerful tool, often used in many mathematical areas, such
as logic, topology and combinatorics. Each ultrafilter on a set S establishes a
kind of “majority criterion” on finite partitions of S which can be used in various
constructions. Some of the standard introductory texts for ultrafilters are [2,3,12].

In particular, their use in infinitary combinatorics has been relevant since Galvin
and Glazer’s ultrafilter proof of the famous Hindman’s finite sums theorem.

Theorem 1.1. For every coloring f : N → {1, 2, . . . , k} there is an infinite A ⊆
N such that the set FS(A) := {a1 + a2 + · · · + an : n ∈ N ∧ a1, a2, . . . , an ∈
A are distinct} is monochromatic.

Let βN denote the set of ultrafilters on the set N of natural numbers. It is
common to identify, for every n ∈ N, the principal ultrafilter {A ⊆ N : n ∈ A} with
n, thus considering βN as an extension of N. It is also possible to extend binary
operations, such as +, to βN. Combinatorial phenomena regarding such operations
are often easier to understand when N is observed from a broader viewpoint of βN.
In the case of Hindman’s finite sums theorem, it turned out that any set belonging
to a +-idempotent ultrafilter contains a set of the form FS(A) for some infinite A.
Since such an ultrafilter F exists in ZFC, and one of the monochromatic sets must
belong to F , this suffices to prove the theorem. The complete proof can be found
in [12, Chapter 5]. The book contains many more applications of this kind.

This general idea motivated us to start to study possible extensions of the di-
visibility relation | on N. One of the extensions introduced in [21] turned out to
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have many interesting properties, some of which resemble those of divisibility on N.
Actually, extensions of general relations to ultrafilters were considered indepen-
dently in [18], and two universal ways, called canonical, were isolated. One of them
yields the same relation we are dealing with, although it was defined in a slightly
different way. (The other one is of no use for exploring divisibility.)

This is primarily a survey paper, and therefore most of the proofs will be omitted,
including instead references to corresponding papers. However, we will use the
opportunity to generalize some of the theorems and include their proofs. Also, we
will add a few new facts, most of them simple but connecting results that previously
appeared in different papers. Sections 4 and 5 deal mostly with results from [22],
and Section 6 with generalizations from [27]. Section 7 contains results about
congruence taken from [25] and [8], and Section 8 is concerned with other related
relations, considered in [21] and [26].

2. Basic definitions and notation

What makes working with ultrafilters more accessible is the fact that the set βN
of ultrafilters on N has a significant topological structure, when provided with base
sets Ā = {F ∈ βN : A ∈ F}. When each n ∈ N is identified with the principal
ultrafilter {A ⊆ N : n ∈ A}, this topological space is the so-called Stone-Čech
compactification of the discrete space on N; the general construction is described
in detail in [29]. One of the features of this space is that every function f : N → N
can be uniquely extended to a continuous f̃ : βN → βN.

This can be used to extend also the operation · from N to βN. In fact, every
associative operation ∗ on N can be extended to an operation (also denoted by ∗)
on βN, making (βN, ∗) a right-topological semigroup:

(2.1) A ∈ F ∗ G ⇔ {n ∈ N : n−1A ∈ G} ∈ F ,

where n−1A = {m ∈ N : n ∗m ∈ A}. The book [12] contains a detailed analysis of
various aspects of (βN, ∗).

Recall that the extension f̃ of a function f : N → N was defined by setting f̃(F)
to be generated by direct images f [A] = {n ∈ N : (∃a ∈ A)f(a) = n} of sets A ∈ F .
Analogously, for A ⊆ N let A ↑:= {n ∈ N : (∃a ∈ A)a | n}.

Definition 2.1. For F ,G ∈ βN, F |̃ G if and only if (∀A ∈ F)A ↑∈ G.

For A ⊆ N let also A ↓:= {n ∈ N : (∃a ∈ A)n | a}. Now let

U := {A ∈ P (N)∖ {∅} : A ↑= A}
and V := {A ∈ P (N) ∖ {N} : A ↓= A} be the families of all upward and all
downward closed sets. It is easy to show that

F |̃ G if and only if F ∩ U ⊆ G if and only if G ∩ V ⊆ F .

Since |̃ is not antisymmetric, we define

F =∼ G if and only if F |̃ G and G |̃ F ,

and work with respective equivalence classes [F ]∼.
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Divisibility by m ∈ N is very simple to check: if we denote mN := {mn : n ∈ N},
then m |̃ F if and only if mN ∈ F .

Definition 2.2. An ultrafilter is N-free if it is not divisible by any m ∈ N.

Several equivalent conditions for being N-free can be found in [24], Theorem 5.3.

Definition 2.3. Let us denote

MAX := {F ∈ βN : (∀G ∈ βN)G |̃ F} = {F ∈ βN : U ⊆ F}.

The existence of maximal ultrafilters follows from the fact that U has the finite
intersection property.

Definition 2.4. If {Fi : i ∈ I} is a family of ultrafilters and W is an ultrafilter on
I, G = limi→W Fi is the ultrafilter defined by: A ∈ G if and only if {i ∈ I : A ∈
Fi} ∈ W.

It is shown in [23, Example 4.2], that (βN/ =∼, |̃ ) is not well-founded.

Lemma 2.5 ([24, Lemma 4.1.]). (a) Every chain ⟨[Fi]∼ : i ∈ I⟩ in the order (βN/=∼

, |̃ ) has the least upper bound [GU ]∼ and the greatest lower bound [GL]∼.
(b)

⋃
i∈I(Fi ∩ U) = GU ∩ U and

⋂
i∈I(Fi ∩ U) = GL ∩ U .

The least upper bound [GU ]∼ is obtained by GU = limi→W Fi for any ultrafilter
W containing all final segments of I, and the greatest lower bound in a similar way,
using W containing all initial segments of I. The obtained =∼-equivalence classes
do not depend on the particular W used.

Throughout the text, N will denote the set of all natural numbers (without zero)
and ω = N ∪ {0}. Also, P is the set of primes and Pexp := {pn : p ∈ P ∧ n ∈ N}.
For P ∈ P̄ we will denote P ↾ P = {A ∈ P : A ⊆ P}.

3. The nonstandard method

To understand βN better it is often useful to parallelly consider a nonstandard
extension ∗N of N. There are several ways to define such extensions, producing
models of various richness. For most of our purposes it will suffice to consider
objects from a superstructure V (X) containing N, an approach introduced in [20]
and described in detail in [2]. So let X be a set of atoms containing a copy of N (the
elements of which we will nevertheless identify with natural numbers). One defines:
V0(X) = X, Vn+1(X) = Vn(X) ∪ P (Vn(X)) for n ∈ ω and V (X) =

⋃
n<ω Vn(X).

A nonstandard extension is a superstructure V (Y ) such that X ⊆ Y , along with
a star-map ∗ : V (X) → V (Y ), taking every x ∈ V (X) into its star-counterpart ∗x,
which is not onto and satisfies the following important condition.

The Transfer Principle. For every bounded formula φ and all a1, a2, . . . , an ∈
V (X),

(3.1) V (X) |= φ(a1, a2, . . . , an) if and only if V (Y ) |= φ(∗a1,
∗a2, . . . ,

∗an).

A bounded formula is a first-order formula in which all quantifiers are bounded:
of the form (∀x ∈ y) or (∃x ∈ y). Note that all relations and functions on N, on
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P (N) etc. are actually elements of V (X), so they can be considered as values of
free variables in φ on the left-hand side of (3.1), and they are replaced with their
star-counterparts on the right-hand side.

Example 3.1. (a) Since (∀x ∈ N)1 ⩽ x, by Transfer we have (∀x ∈ ∗N)∗1 ∗⩽ x.
Analogously, Transfer implies that the elements ∗n for n ∈ N constitute a proper
initial part of ∗N. Therefore they are identified with natural numbers, just like
principal ultrafilters are. Hence ∗⩽ agrees with ⩽ on N.

The values of free parameters of the first formula are 1 ∈ V0(X), N ∈ V1(X)
and the relation ⩽∈ V3(X); in the second formula they are all replaced by their
star-counterparts. It is common, however, to omit the star sign in front of the
standard relation and operation simbols, such as ⩽, to make the formulas more
readable. In fact, we can safely assume the ∗= and ∗∈ to really be the equality
and set membership, see [11] for an analysis of this issue.

(b) Since (∀x, y ∈ N)(x | y ⇔ (∃k ∈ N)y = kx), by Transfer we get (∀x, y ∈
∗N)(x ∗| y ⇔ (∃k ∈ ∗N)y = kx). In the case of divisibility relation we will disregard
the rule from (a) and write ∗| for its extension. Again, this relation ∗| agrees
with the usual divisibility on N.

Recall that, for p ∈ P and n, k ∈ N, pk ∥ n means that k = max{l ∈ N : pl | n};
we say that pk is an exact divisor of n. Likewise, for p ∈ ∗P, x, k ∈ ∗N, pk ∗∥ x
means that k = max{l ∈ ∗N : pl ∗| x}.

(c) Let ⟨pn : n ∈ N⟩ be the increasing enumeration of P. Then its nonstandard
extension ⟨pn : n ∈ ∗N⟩ is the increasing enumeration of ∗P, the set of nonstandard
primes.

a ∈ V (Y ) is internal if it belongs to ∗x for some x ∈ V (X). To obtain a richer
∗N, one can also require V (Y ) to satisfy κ-saturation for some infinite cardinal
κ; this means that every family F of internal sets with |F | < κ which has a
finite intersection property also has a nonempty intersection. For our purposes c+-
saturation will suffice, and such extensions exist in ZFC. Therefore we will make
this assumption whenever needed. All these and many other aspects of nonstandard
models were described in many books, of which we recommend [10] and [7].

A proof of the following folklore fact can be found in [23, Theorem 2.5].

Proposition 3.2. Let ⟨pn : n ∈ ∗N⟩ be the increasing enumeration of ∗P as in
Example 3.1(c).

(a) For every z ∈ ∗N and every internal sequence ⟨h(n) : n ⩽ z⟩ there is unique

x ∈ ∗N such that p
h(n)
n

∗∥ x for n ⩽ z and pn
∗∤ x for n > z; we denote this element

by
∏

n⩽z p
h(n)
n .

(b) Every x ∈ ∗N can be uniquely represented as
∏

n⩽z p
h(n)
n for some z ∈ ∗N and

some internal sequence ⟨h(n) : n ⩽ z⟩ such that h(z) > 0.

The connection between nonstandard natural numbers and ultrafilters on N was
described in [16]. Here we change some of our notation from previous papers to
one with a more model-theoretic flavour, as suggested in [8]. For every x ∈ ∗N, the
family {A ⊆ N : x ∈ ∗A} is an ultrafilter F ; we will write x |= F or F = tp(x/N)
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and say that x is a generator of F . In a c+-saturated nonstandard extension the
set of generators µ(F) := {x ∈ ∗N : x |= F} is nonempty for every F ∈ βN. Also,
if F = {Fi : i ∈ I} is a family of ultrafilters, let µ(F ) =

⋃
i∈I µ(Fi).

As noticed in [17], the mapping x 7→ tp(x/N) is interchangeable with the exten-
sions of a function f : N → N in the following sense: for every x ∈ ∗N,
(3.2) tp(∗f(x)/N) = f̃(tp(x/N)).

If x |= F and y |= G, then the pair (x, y) is a generator of an ultrafilter on N×N.
However, this ultrafilter does not need to be the tensor product

F ⊗ G := {A ⊆ N× N : {m ∈ N : {n ∈ N : (m,n) ∈ A} ∈ G} ∈ F}.
Definition 3.3. If x |= F , y |= G and (x, y) |= F ⊗G, then (x, y) is called a tensor
pair.

Tensor pairs were used informally by Puritz, and subsequently named and stud-
ied in detail by Di Nasso in [6]. In [15] Luperi Baglini generalized the notion to
tensor k-tuples, and gave many equivalent conditions.

Since any bijection φ : N×N → N yields a homeomorphism φ̃ : β(N×N) → βN,
we can apply the analogue of (3.2) to the multiplication or the addition function
f : N×N → N; in this way we get that, if (x, y) is a tensor pair, then tp(x · y/N) =
F · G and tp(x+ y/N) = F + G.
Theorem 3.4 ([6, Theorem 11.5.12]). For every x ∈ ∗N∖N and every G ∈ βN∖N,
there are y, y′ ∈ µ(G) such that (x, y) and (y′, x) are tensor pairs.

Theorem 3.5 ([19, Theorem 3.4]). (x, y) ∈ ∗N× ∗N is a tensor pair if and only if,
for every f : N → N, either ∗f(y) ∈ N or ∗f(y) > x.

By Lemma 2.5, every chain in (βN/ =∼, |̃ ) has the smallest upper bound and
the greatest lower bound. As the next result shows, well-ordered chains in this
order can be reflected in chains in (∗N, ∗| ).
Theorem 3.6 ([24, Lemma 4.4]). Let V (Y ) be c+-saturated. For any well-ordered

strictly increasing |̃ -chain ⟨Gξ : ξ < γ⟩ there is a ∗| -chain ⟨xξ : ξ < γ⟩ such that
xξ |= Gξ for ξ < γ.

There are several arguments suggesting that |̃ might be “the right” way to
extend the divisibility relation to βN. One is the fact that it is the same as the
canonical extension from [18]. Another is the following theorem, saying that the

|̃ -divisibility of ultrafilters reflects the ∗| -divisibility on ∗N.
Theorem 3.7 ([24, Theorem 3.4]). For every c+-saturated extension and every two
ultrafilters F ,G ∈ βN the following conditions are equivalent:

(i) F |̃ G;
(ii) there are x |= F and y |= G such that x ∗| y;
(iii) for every x |= F there is y |= G such that x ∗| y;
(iv) for every y |= G there is x |= F such that x ∗| y.

Another argument is that a significant part of (βN/ =∼, |̃ ) resembles (N, |) in
many ways, and we will consider this resemblance in the next section.
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4. The lower part L

For n ∈ ω denote Ln = {a1a2 . . . an : a1, a2, . . . , an ∈ P}. Thus, L̄0 = L0 = {1}
and L1 = P. We will see that L :=

⋃
n<ω Ln, “the lower half” of (βN/ =∼, |̃ ), is

divided into levels L̄n resembling the levels Ln in the order (N, |).

Definition 4.1. An ultrafilter P ∈ βN∖ {1} is prime if it is |̃ -divisible only by 1
and itself.

Theorem 4.2 ([22, Theorem 2.3]). P ∈ βN is prime if and only if P ∈ P̄.

Theorem 4.3 ([24, Theorem 2.2]). If P ∈ P̄ and F ,G ∈ βN, then P |̃ F ·G implies

P |̃ F or P |̃ G.

In βN it is not possible to factorize each ultrafilter into primes. However, it is
possible to establish its fragmentation into some basic ingredients. Our goal now

is to describe how the place of an ultrafilter in the |̃ -hierarchy depends on these
ingredients. Unlike divisibility in N, it will not suffice to use only prime ultrafilters
as basic, but also their powers. Before we define what these powers are in general,
let us first consider L, where only finite powers appear.

If fn : N → N is defined by fn(m) = mn, for P ∈ P̄ let us denote f̃n(P) by Pn.
However, there are also ultrafilters (such as P · P) with only one prime divisor P
which are different from powers of P. For this reason we need some more definitions.

Definition 4.4. For A,B,Ai ⊆ N and n ∈ N, let:

An = {an : a ∈ A}
A1A2 . . . An = {a1a2 . . . an : ai ∈ Ai for 1 ⩽ i ⩽ n ∧ gcd(ai, aj) = 1 for i ̸= j}

A(n) = A ·A · · · · ·A︸ ︷︷ ︸
n

.

We call ultrafilters of the form Pk for some P ∈ P̄ and k ∈ N basic. Let B be the
set of all basic ultrafilters, and let A be the set of all functions α : B → ω with
finite support (i.e. such that supp(α) := {Pk ∈ B : α(Pk) ̸= 0} is finite); we call
functions α ∈ A patterns.

Example 4.5. More easy applications of the Transfer principle show that, for
A,B ∈ P (N), k ∈ N and f : N → N: (a) ∗(Ak) = (∗A)k; (b) ∗(AB) = ∗A∗B and (c)
∗(f [A]) = ∗f [∗A]. We will use these properties extensively in the rest of the paper.

We will abuse notation and write α = {(Pk1
1 ,m1), (Pk2

2 ,m2), . . . , (Pkn
n ,mn)} if

α(Pk) = 0 for Pk ∈ B∖{Pki
i : 1 ⩽ i ⩽ n} (allowing also some of themi to be zeros).

Now we want to adjoin to each F ∈ βN a pattern and identify the upward closed
sets belonging to F which are determined by its pattern. They will be exactly the
upward-closures of the sets described in the following definition.

Definition 4.6. Let α = {(Pk1
1 ,m1), (Pk2

2 ,m2), . . . , (Pkn
n ,mn)} ∈ A (Pi ∈ P̄).

With Fα we denote the family of all sets
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(Ak1
1 )(m1)(Ak2

2 )(m2) . . . (Akn
n )(mn)

=

{ n∏
i=1

mi∏
j=1

pki
i,j : pi,j ∈ Ai for all i, j ∧ all pi,j are distinct

}
such that: (i) Ai ∈ Pi ↾ P, (ii) Ai = Aj if Pi = Pj and Ai ∩Aj = ∅ otherwise.

Example 4.7. (a) For α = {(Pk, 1)}, the only ultrafilter containing Fα is Pk itself.
(b) For α = {(P, 1), (Q, 1)}, the ultrafilters containing the family Fα = {AB :

A ∈ P ↾ P∧B ∈ Q ↾ P∧A∩B = ∅} are exactly those divisible only by 1,P,Q and
themselves. One such ultrafilter is P · Q, and another (usually different) is Q · P.
This will be generalized in Theorem 4.12.

(c) If α = {(P, 2)}, then Fα = {A(2) : A ∈ P ↾ P}. Ultrafilters containing Fα

are divisible only by 1,P and themselves. An example is P · P, which is distinct
from P2.

(d) Finally, if α = {(P2, 1), (P, 2), (Q, 1)}, the corresponding ultrafilters con-
tain sets of the form A2A(2)B for disjoint A ∈ P, B ∈ Q. We will see in what

follows that such ultrafilters belong to the fifth level of the |̃ -hierarchy. Their
only divisors on the first level are P and Q. Their divisors on the second level
are P2, some ultrafilters with pattern {(P, 2)} as in (c), and some ultrafilters with
pattern {(P, 1), (Q, 1)}. They also have divisors on levels 3 and 4, described in a
similar manner.

Definition 4.8. If α = {(Pk1
1 ,m1), (Pk2

2 ,m2), . . . , (Pkn
n ,mn)} ∈ A (Pi ∈ P̄), we

denote σ(α) =
∑n

i=1 kimi.

In [22] a proof of the special case n = 4 of the following theorem was given,
containing all the essential ingredients. We now give a complete proof.

Theorem 4.9 ([22, Theorem 5.5]). The set L̄n (for n ∈ N) consists precisely of
ultrafilters containing Fα for some α ∈ A such that σ(α) = n.

Proof. If σ(α) = n, from Definition 4.6 it is clear that any set (Ak1
1 )(m1)(Ak2

2 )(m2)

. . . (Akn
n )(mn) ∈ Fα is a subset of Ln, so any ultrafilter containing sets from Fα also

contains Ln.
Now let Xn be the family of all functions φ : N → ω such that

∑
k∈N kφ(k) = n.

Clearly, for each φ ∈ Xn the support suppφ := {k ∈ N : φ(k) ̸= 0} is finite. Thus,

Ln =
⋃

φ∈Xn

∏
k∈suppφ

(Pk)(φ(k)).

Since every Xn is finite, each F ∈ L̄n contains Q :=
∏

k∈suppφ(Pk)(φ(k)) for some

φ ∈ Xn. We define functions fk,j : Q → P for k ∈ suppφ and 1 ⩽ j ⩽ φ(k) as
follows: if x =

∏
k∈suppφ(p

k
k,1p

k
k,2 . . . p

k
k,φ(k)) ∈ Q, where pk,1 < pk,2 < · · · < pk,φ(k),

let fk,j(x) = pk,j . Then f̃k,j(F) is an ultrafilter in P̄; denote it by Pk,j . For Qk ∈ B
define α(Qk) = |{j ⩽ φ(k) : Pk,j = Q}|.

To prove that F ⊇ Fα, let B := (Ak1
1 )(m1)(Ak2

2 )(m2) . . . (Akn
n )(mn) ∈ Fα be as in

Definition 4.6. For each l = 1, 2, . . . , n there are ml indices j1 < j2 < · · · < jml
such
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that Al ∈ Pkl,j1 = Pkl,j2 = · · · = Pkl,jml
. Then, for r = 1, 2, . . . ,ml, f̃kl,jr (F) =

Pkl,jr so fkl,jr
−1[Al] ∈ F . The intersection of these sets (for all l = 1, 2, . . . , n and

all r = 1, 2, . . . ,ml) is a subset of B (more precisely, this intersection consists of

those elements
∏

k∈suppφ

∏φ(k)
j=1 pkk,j ∈ B for which, if pk,1 < pk,2 < · · · < pk,φ(k),

then exactly pk,j1 , pk,j2 , . . . , pk,jml
belong to Al), and hence B ∈ F . □

For distinct patterns α and β, there are disjoint sets X ∈ Fα and Y ∈ Fβ . There-
fore, each ultrafilter can contain at most one family of the form Fα; by Theorem 4.9
every F ∈ L really does contain one. Denote the corresponding pattern by αF .

Note also that, for p ∈ P: (1) αF (p
k) ⩽ 1 for all k ∈ N and (2) αF (p

k) = 1
for at most one value of k. Namely, if F = pkplG, then F would actually be
divisible by pk+l.

Now let us prove a nonstandard characterization of ultrafilters containing Fα,
which will later be used to generalize the notion of a pattern from L to the whole βN.

Theorem 4.10. Let F ∈ L and αF = {(Pk1
1 ,m1), (Pk2

2 ,m2), . . . , (Pkn
n ,mn)}. The

generators of F are precisely x ∈ ∗N of the form

x =
n∏

i=1

mi∏
j=1

pki
i,j ,

where pi,j |= Pi for all i, j and all pi,j are distinct.

Proof. Take any B := (Ak1
1 )(m1)(Ak2

2 )(m2) . . . (Akn
n )(mn) ∈ FαF as in Definition 4.6.

Every generator x of F belongs to ∗B = (∗Ak1
1 )(m1)(∗Ak2

2 )(m2) . . . (∗Akn
n )(mn) (see

Example 4.5), so it must be of the form x =
∏n

i=1

∏mi

j=1 p
ki
i,j , where pi,j ∈ ∗Ai for

all i, j and all pi,j are distinct.
Since this is true for any set B as above, and the sets Ai corresponding to distinct

prime ultrafilters must be disjoint, it follows that pi,j ∈ ∗Ai for all Ai ∈ Pi, so pi,j
is a generator of Pi.

In the other direction, if x is as in the formulation, then pi,j |= Pi implies
pi,j ∈ ∗Ai, so x ∈ ∗B for all B ∈ FαF . □

Define an operation on A as follows. For p ∈ P denote temporarily by exppα

the (unique) k ∈ N such that α(pk) = 1 if it exists, and exppα = 0 otherwise. For
α, β ∈ A let expp(α⊕ β) = exppα+ exppβ if p ∈ P, and

(α⊕ β)(Pk) = α(Pk) + β(Pk) if P ∈ P̄ ∖ P and k ∈ N.

The following is a slight generalization of [22, Theorem 5.14], with a simplified
proof.

Lemma 4.11. For any F ,G ∈ L:

(4.1) αF·G = αF ⊕ αG .

Proof. Let F = mF ′ and G = nG′ for some N-free ultrafilters F ′ and G′. Clearly,
the exponent of any p ∈ P in F ·G is obtained by adding exponents of p in m and n.
It remains to check the result for F ′ · G′. Let x |= F ′ and y |= G′ be such that (x, y)
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is a tensor pair (see Theorem 3.4). Applying Theorem 3.5 to functions of the form
fk(p

a1
1 pa2

2 . . . pas
s ) = pk for p1 < p2 < · · · < ps (returning the k-th smallest prime if

it exists, and 1 otherwise), we conclude that every prime factor of y is greater than
any prime factor of x. Since x · y |= F ′ · G′, (4.1) follows by Theorem 4.10. □

Theorem 4.12. Let α = {(Pk1
1 ,m1), (Pk2

2 ,m2), . . . , (Pkn
n ,mn)} ∈ A and F is a

product of

Pk1
1 ,Pk1

1 , . . . ,Pk1
1︸ ︷︷ ︸

m1

, . . . ,Pkn
n ,Pkn

n , . . . ,Pkn
n︸ ︷︷ ︸

mn

in any order. Then αF = α, so F ⊇ Fα.

Proof. For the special case α = {(Pk, 1)} the theorem is trivially true. The general
case then follows using Lemma 4.11: if F is a product of ultrafilters, then the
pattern of F is obtained by applying the operation ⊕ to patterns of factors. □

5. Levels, patterns and =∼-classes in L

To begin with, the ultrafilters in L are completely determined by their =∼-
equivalence class.

Theorem 5.1 ([22, Corollary 5.10]). |[F ]∼| = 1 for all ultrafilters F ∈ L.

Let us now turn to the question: how many ultrafilters with the same pattern
are there? Since, for every α ∈ A, the family {F ∈ βN : Fα ⊆ F} is closed in βN,
it must be either finite or of cardinality 2c (see [29, Theorem 3.3]).

Let P ∈ P̄ ∖ P and α = {(P, 2)}. In [22, Theorem 3.6], we proved that there is
a unique ultrafilter F ⊇ Fα if and only if P is Ramsey. Let us generalize this a
little bit.

Definition 5.2. F ∈ βN∖N is n-Ramsey if n is the smallest natural number such
that ω → [F ]2n+1,⩽n: for every coloring c : [N]2 → n + 1 of pairs of elements of N
there is A ∈ F such that |c[[A]2]| ⩽ n.

F is Ramsey if it is 1-Ramsey. F is weakly Ramsey if it is n-Ramsey for some
n > 1.

Theorem 5.3. Let P ∈ P̄ ∖ P, α = {(P, 2)} and n ∈ N. There are exactly n
ultrafilters F ⊇ Fα if and only if P is n-Ramsey.

Proof. Assume that P is n-Ramsey. Then there is a coloring c : [P]2 → {0, 1, . . . , n−
1} such that, for every A ∈ P ↾ P, [A]2 intersects every c−1[{i}]. Hence every
A(2) intersects every Si := {ab : c({a, b}) = i}. This means that, for every i <
n, Fα ∪ {Si} has the finite intersection property. Thus there are ultrafilters Fi

containing Fα ∪ {Si} respectively, and thus being distinct from each other.
Now assume that there are n+1 distinct ultrafilters F0,F1, . . . ,Fn ⊇ Fα. Then

there is a partition {S0, S1, . . . , Sn} of L2 such that Si ∈ Fi for every i ⩽ n. Define
a coloring of [P]2 as follows: let c({a1, a2}) = i if a1a2 ∈ Si. Since P is n-Ramsey,
there is a set A ∈ P such that some i /∈ c[[A]2]. This means that A(2) ∩ Si = ∅, so
α can not be the pattern of Fi. □
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The next two results show that the case of 2c-many ultrafilters of the same
pattern is also possible.

Theorem 5.4 ([22, Theorem 3.13]). Assume CH. Then there is P ∈ P̄ ∖ P such
that for every n ⩾ 2 there are 2c ultrafilters F such that αF = {(P, n)}.

By Theorem 5.3, the result for n = 2 does not require CH: it suffices to take P
not to be weakly Ramsey.

Theorem 5.5 ([22, Theorem 4.5]). For every P ∈ P̄ ∖ P there is an ultrafilter
Q ∈ P̄ ∖ P such that there are 2c ultrafilters F with αF = {(P, 1), (Q, 1)}.

Theorem 5.6 ([22, Theorem 4.4]). Let P,Q ∈ P̄ ∖ P. If there is unique F such
that αF = {(P, 1), (Q, 1)} then both P and Q are P-points.

Limits of ultrafilters were first considered in the context of divisibility in order
to help the understanding of ultrafilters outside L. We conclude this section with
several examples of behavior of elements of L under limits. We also include a
version of sum of ultrafilters:

Definition 5.7. For F ,Gn,K ∈ βN, we write K =
∑

n→F Gn if: A ∈ K whenever
{n ∈ N : A/n ∈ Gn} ∈ F .

We remark that Frolik’s definition of a sum in [9] is equivalent to the modern
definition of a limit of ultrafilters. Also, a sum is nowadays sometimes defined in
a similar manner as ours, but producing an ultrafilter on N × N as result. The
version we use can, however, be obtained from limits as follows:

∑
n→F Gn =

{A ⊆ N : {n ∈ N : A ∈ nGn} ∈ F} = limn→F (nGn). The product F · G from
(2.1) can also be written as this kind of sum: if Gn = G for all n ∈ N, then∑

n→F G = limn→F (nG) = (limn→F n)G = F · G, since multiplication by G from
the right is continuous.

Example 5.8. Let {Gn : n ∈ N} ⊆ βN, H = limn→F Gn and K =
∑

n→F Gn.
Then:

(a) F |̃ K: for every A ∈ F ∩ U and every n ∈ A, A/n = N ∈ Gn, so {n ∈ N :
A/n ∈ Gn} ⊇ A ∈ F and A ∈ K.

H |̃ K: if A ∈ H ∩ U , then A ⊆ A/n for every n ∈ N, so {n ∈ N : A ∈ Gn} ∈ F
implies {n ∈ N : A/n ∈ Gn} ∈ F , i.e. A ∈ K.

(b) Let F ∈ L̄m and Gn ∈ L̄k for all n ∈ N. Lk ∈ Gn for all n ∈ N implies
{n ∈ N : Lk ∈ Gn} = N ∈ F , so Lk ∈ H and H ∈ L̄k as well.

K ∈ L̄m+k: for every n ∈ Lm, Lm+k/n = Lk. Hence, {n ∈ N : Lm+k/n ∈ Gn} ⊇
Lm ∈ F , so Lm+k ∈ K.

6. Generalized patterns

In this section we use the characterization of generators obtained in Theorem 4.10
to generalize patterns of ultrafilters. First we need to generalize basic classes to
include infinite “powers” of prime ultrafilters.
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Definition 6.1. Let P ∈ P̄∖P. The relation ≈P on µ(P)×∗N is defined as follows:

(p, x) ≈P (q, y) if and only if tp(px/N) =∼ tp(qy/N).
≈P is an equivalence relation, so let

EP = {[(p, x)]≈P : (p, x) ∈ µ(P)× ∗N}
be the set of its equivalence classes. For any p ∈ µ(P) and u ∈ EP let up := {x ∈
∗N : (p, x) ∈ u}.

Families of ultrafilters of the form Pu := {tp(px/N) : (p, x) ∈ u} for some P ∈ P̄
and u ∈ EP will be called basic.

By B we denote the set of all basic classes.

Of course, this B expands the family B from Definition 4.4. For k ∈ N we identify
the class [(p, k)]≈P with k. In general, if Pu = {Pk} is a singleton, we identify Pu

with Pk and write α(Pk) instead of α(Pu).

Lemma 6.2 ([27, Lemma 2.5]). Let P ∈ P̄ and u ∈ EP .
(a) All elements of µ(Pu) are of the form px for some (p, x) ∈ u.
(b) For every p ∈ µ(P) the set up is nonempty and convex: if x, y ∈ up and

x < z < y, then z ∈ up as well.
(c) Each up is either a singleton or a union of galaxies.

It is easy to see that if, for some p |= P, up is a singleton, then Pu is a singleton,
so uq is also a singleton for all q |= P. In this case we say that the basic class Pu is
of the first kind, and if up is a union of galaxies for all p |= P, we will say that Pu

is of the second kind. It is shown in [27] that there are basic classes of both kinds
outside L. Note that classes of the first kind give us more examples of singleton
=∼-equivalence classes (recall that in L all classes are singletons by Theorem 5.1).

Definition 6.3. On EP we define the relation:

u ≺P v if and only if u ̸= v and for some p ∈ µ(P) and some x, y ∈ ∗N
holds (p, x) ∈ u, (p, y) ∈ v and x < y.

We write u ⪯P v if u ≺P v or u = v.

As shown in [23, Example 4.5], for p ∈ P the order (Ep,≺p) is isomorphic to
ω + 1: there is only one “infinite” basic class. Things are different for P ∈ P̄ ∖ P.
Lemma 6.4 ([27, Lemma 2.7]). For every P ∈ P̄ ∖ P:

(a) ≺P is a strict linear order.
(b) Every increasing sequence in (EP ,≺P) has a supremum and every decreas-

ing sequence has an infimum.
(c) The order (EP ,≺P) contains a copy of (R, <).

In particular, every EP has a maximum, with the corresponding basic class de-
noted by Pmax.

In [27] we asked whether the orders (EP ,≺P) are isomorphic for all P ∈ P̄∖P. In
a forthcoming paper it will be shown that the answer to this question is independent
of ZFC.

Let us now apply these generalized primes to answer Question 4.3 from [24].
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Theorem 6.5. There is F /∈ L such that the =∼-equivalence class [F ]∼ ∈ βN/ =∼

can not be represented as a limit of a |̃ -increasing chain.

Proof. Let Pu = {F} be a basic class of the first kind such that F /∈ L. Assume

there is a |̃ -increasing chain ⟨[Gξ]∼ : ξ < γ⟩ whose limit is [F ]∼. (If the chain were
not well-ordered, we could extract a well-ordered cofinal subchain and work with
it instead.) This means, by Lemma 2.5, that F = limξ→W Gξ for some ultrafilter
W on γ. By Theorem 3.6, if we work with a c+-saturated nonstandard extension,
we can find a ∗| -chain ⟨xξ : ξ ⩽ γ⟩ such that xξ |= Gξ for ξ < γ and xγ |= F .
By Lemma 6.2, xγ = pzγ for some p ∈ ∗P and some zγ ∈ ∗N. Hence there is an
increasing sequence ⟨zξ : ξ ⩽ γ⟩ such that xξ = pzξ for all ξ < γ. However, since
Pu is of the first kind, pzγ is the only power of p which is a generator of F , so pzγ−1

is also an upper bound of ⟨xξ : ξ < γ⟩. Thus, [tp(pzγ−1/N)]∼ is an upper bound of
⟨[Gξ]∼ : ξ < γ⟩ strictly smaller than [F ]∼, a contradiction. □

For the rest of this section we need to work with a nonstandard extension which
is not only c+-saturated, but in which all the sets {x ∈ N : x ⩽ z} for z ∈ ∗N ∖ N
also have the same cardinality. We denote

∞ = |{x ∈ N : x ⩽ z}|.

By [4, Corollary 2.3], this condition is true in extensions satisfying a forcing-like
axiom ∆1, introduced there. Models satisfying both c+-saturation and ∆1 can be
constructed in ZFC; let us denote this joint assumption with ∆1+SAT.

Definition 6.6. For u, v ∈ EP and x ∈ N, we denote

D[u,v]
x := {(p, k) : u ⪯P [(p, k)]≈P ⪯P v ∧ pk ∗∥ x}.

Under ∆1+SAT, for any basic class Pu, every generator of any ultrafilter F
has the same amount of ingredients from µ(Pu), and the only possible infinite

“quantity” of such ingredients is ∞. In fact, by [27, Theorem 3.2], each set D
[u,v]
x

is either finite or has cardinality ∞.
This allows the following generalization of patterns; another change that happens

when we move outside L (beside adding higher powers of P) is that ultrafilters can
be divisible by the same basic class infinitely many times.

Definition 6.7. Denote N∞ = ω ∪ {∞}. Let A be the set of all functions α : B →
N∞. Elements α ∈ A are called patterns.

For any x =
∏

n⩽z p
h(n)
n ∈ ∗N as in Proposition 3.2, define αx ∈ A as follows: for

each basic Pu ∈ B, let αx(Pu) = |D[u,u]
x |.

We introduce a preorder on the family of all patterns.

Definition 6.8. Let (A,⩽) be a linear order. Let also a = ⟨am : m ∈ A⟩ and
b = ⟨bm : m ∈ A⟩ be two sequences in N∞. We say that a dominates b if, for every
l ∈ A: ∑

m⩾l

am ⩾
∑
m⩾l

bm.
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For α, β ∈ A we define: α ⪯ β if ⟨β(Pu) : u ∈ EP⟩ dominates ⟨α(Pu) : u ∈ EP⟩
for every P ∈ P̄. If α ⪯ β and β ⪯ α, we write α ≈ β.

Theorem 6.9 ([27, Lemma 3.10]). Assume ∆1 + SAT. If x ∗| y, then αx ⪯ αy.

Theorem 6.10 ([27, Theorem 3.11]). Assume ∆1 + SAT. For any F ∈ βN and
any two x, y ∈ µ(F) holds αx = αy.

Thus, using a nonstandard extension satisfying ∆1+SAT, just like in L one can
define αF := αx for F ∈ βN and any x |= F . By the theorem above, this definition
does not depend on the choice of the generator x. The following corollary ensues.

Corollary 6.11. (a) If F |̃ G, then αF ⪯ αG.
(b) If F =∼ G, then αF ≈ αG.

In Definition 4.6 we introduced the family Fα of sets that must belong to all
ultrafilters from L of a given pattern α. To generalize it to all ultrafilters in βN we
need to consider a larger collection of upward-closed sets.

Definition 6.12. Let α ∈ A, P ∈ P̄ and A ∈ P ↾ P.
For any h : A → N let

Ah = {m ∈ N : (∃p ∈ A)ph(p) | m}.

For u ∈ EP , an (A,Pu)-set is any set of the form Ah such that for some/every

(p, x) ∈ u holds px ∈ ∗Ah.
An (A,Pw)-set for some w ⪰P u which is not an (A,Pv)-set for any v ≺P u will

be called an (A,P⪰u)-set.
An (α,A,P)-set is any finite product of (A,Pu)-sets for various u ∈ EP , such that

for any fixed u, if
∑

w⪰Pu α(Pw) = n ∈ N, then there are at most n (A,P⪰u)-sets
in the product.

An α-set is any finite product C1C2 . . . Ck of (α,Ai,Pi)-sets Ci, with Ai ∈ Pi,
Pi ̸= Pj and Ai ∩Aj = ∅ for i ̸= j.

Finally, Fα is the intersection of U with the filter generated by the family of all
α-sets.

Now, if σ(α) ∈ N (see Definition 4.9), for any set B belonging to Fα in the sense
of Definition 4.6, it is easy to see that B ↑ is an Fα-set in the sense of Definition 6.12.

Theorem 6.13 ([27, Theorem 4.3]). For every F ∈ βN, FαF ⊆ F ∩ U .

One can prove that, if we narrow U to the family U ′ =
⋃

α∈A Fα, then FαF =
F∩U ′. However, the inclusion in the previous theorem can be strict; in other words
the pattern αF does not necessarily determine the =∼-equivalence class of F . For
example, if P ∈ P̄ is not Ramsey, by Theorem 5.3 there are =∼-nonequivalent
ultrafilters with the same pattern {(P, 2)}.

The pattern of an ultrafilter can not be just any function from B to N∞; it must
satisfy an additional condition that we call U-closedness. Namely, on B we can
define a topology with Ā (for A ∈ U) as base sets. (Note that, if F ,G ∈ Pu, then
F ∈ Ā holds if and only if G ∈ Ā).
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Definition 6.14. A pattern α is U-closed if, whenever
∑

w⪰Qu α(Qw) is finite,

then there is a neighborhood Ā of Qu in which there are no basic classes Pv such
that α(Pv) > 0 other than Qw for w ⪰Q u.

The family of all U -closed patterns is denoted Acl.

Theorem 6.15 ([27, Theorem 3.9]). For every F ∈ βN, αF ∈ Acl.

Example 6.16. Recall that with MAX we denoted the |̃ -greatest class. By [23,

Lemma 4.6], F ∈ MAX if and only if m |̃ F for all m ∈ N. Hence, F ∈ MAX if
and only if αF (p

max) = 1 for all p ∈ P. By U-closedness it follows that for such F
actually αF (Pmax) = ∞ for every P ∈ P̄.

This enables us to conclude that Corollary 6.11 can not be strengthened: F =∼ G
does not imply αF = αG . Namely, take any x ∈ µ(MAX). Define a =

∏
p∈∗P,p∗|x p;

this is well-defined by Proposition 3.2. Now let y = ax and, for any prime p not
dividing x, z = py. Clearly, y, z ∈ µ(MAX) as well, since they are divisible by x.
However, if P = tp(p/N), then αy(P) = 0 and αz(P) = 1.

Theorem 6.17 ([27, Theorem 4.4]). For patterns α, β ∈ Acl, the following condi-
tions are equivalent:

(i) α ⪯ β;
(ii) Fα ⊆ Fβ.

Theorem 6.18 ([27, Theorem 4.7]). Let β ∈ Acl and F ∈ βN.
(a) If αF ⪯ β, then there is G ∈ βN such that αG ≈ β and F |̃ G.
(b) If β ⪯ αF , then there is G ∈ βN such that αG ≈ β and G |̃ F .

In [28] we will show that from these assumptions one can not prove that there
is G ∈ βN as in the theorem such that αG = β (instead of αG ≈ β). We will also
provide adequate stronger conditions that guarantee the existence of such G.

7. Congruence modulo an ultrafilter

After considering divisibility, the next natural relation to try to extend to ultra-
filters is congruence. For this, instead of βN, we work with βZ = βN∪β(−N)∪{0},
where −A = {−a : a ∈ A}, −F = {−A : A ∈ F} and β(−N) = {−F : F ∈ βN}.
On βZ we can, beside addition and multiplication, also use subtraction, defined
either as F −G = F +(−G) or as the extension of minus on Z using (2.1); this can
be done even though − is not associative.

In fact, congruence of ultrafilters modulo m ∈ N was mentioned briefly in [12].

There, ≡m is the kernel relation of the homomorphism h̃m obtained as the extension
of hm : Z → {0, 1, . . . ,m − 1} defined by: hm(n) is the remainder of n modulo m.
Another way to do this is to use the same idea as in Definition 2.1: F ≡m G if and
only if (∀A ∈ F){n ∈ Z : (∃a ∈ A)a ≡m n} ∈ G. Fortunately, these two definitions

are equivalent. Several results on the relationship of ≡m with |̃ can be found in
[25, Section 2].

For congurence modulo a nonprincipal ultrafilter, however, the task is not so easy.
In [25] we proposed two extensions, both in accordance with the above definition
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of ≡m for m ∈ N. The first one again uses the idea from Definition 2.1, this time
not fixing m but thinking of x ≡m y as a relation between m and the pair (x, y).

Definition 7.1. For M ∈ βN and F ,G ∈ βZ, F ≡M G if and only if for every
A ∈ M the set {(x, y) ∈ Z×Z : (∃m ∈ A)x ≡m y} belongs to the ultrafilter F ⊗G.

Theorem 7.2 ([25, Lemma 4.2 and Theorem 4.5]). For all M ∈ βN and F ,G ∈ βZ,
the following conditions are equivalent:

(i) F ≡M G;
(ii) M |̃ F − G;
(iii) in some c+-saturated nonstandard extension holds

(7.1) (∀m ∈ µ(M))(∃x ∈ µ(F))(∃y ∈ µ(G))((x, y) is a tensor pair ∧m ∗| x− y)

(iv) in every c+-saturated nonstandard extension holds (7.1).

Unfortunately, ≡M is not an equivalence relation for all M. It is reflexive, but
it is shown in [8, Corollary 2.6 and Theorem 2.3] that it need not be symmetric
and transitive.

The definition of the second type of extension, called strong congruence, orig-
inally used iterated hyperextensions. In [8] an equivalent condition was proposed
that does not require such advanced machinery.

Definition 7.3. For M ∈ βN and F ,G ∈ βZ, F ≡s
M G if and only if in some

nonstandard extension

(∃m ∈ µ(M))(∃x ∈ µ(F))(∃y ∈ µ(G))((m,x, y) is a tensor triple ∧m ∗| x− y).

What makes this definition convenient is the following observation.

Proposition 7.4. F ≡s
M G implies that in every nonstandard extension,

(∀m ∈ µ(M))(∀x ∈ µ(F))(∀y ∈ µ(G))((m,x, y) is a tensor triple ⇒ m ∗| x− y).

Proof. Let m ∈ µ(M), x ∈ µ(F) and y ∈ µ(G) be such that m ∗| x−y. This means
that, if we define A = {(n, a, b) ∈ N × Z × Z : n | a − b}, then (m,x, y) ∈ ∗A.
If (m,x, y) is a tensor triple, then (m,x, y) |= M ⊗ F ⊗ G, so it follows that
A ∈ M⊗F ⊗ G. Now if m′ ∈ µ(M), x′ ∈ µ(F) and y′ ∈ µ(G) are elements of any
nonstandard extension such that (m′, x′, y′) is a tensor triple, we get (m′, x′, y′) ∈
∗A as well. □

This relation is an equivalence relation, in fact a congruence with respect to both
addition and multiplication.

Theorem 7.5 ([25, Theorem 5.7]). Let M ∈ βN. ≡s
M is compatible with operations

+ and · on βZ:
(a) F1 ≡s

M F2 and G1 ≡s
M G2 imply F1 + G1 ≡s

M F2 + G2;
(b) F1 ≡s

M F2 and G1 ≡s
M G2 imply F1 · G1 ≡s

M F2 · G2.

On the other hand, this relation has another drawback: there are ultrafilters M
such that M ≡s

M 0 is not true.
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Definition 7.6. Let F ,G ∈ βN. The strong divisibility relation is defined by:
F |s G if G ≡F 0.

Let also D(G) = {n ∈ N : n |̃ G}.
Lemma 7.7 ([8, Remark 1.4 and Theorem 3.10]). The following conditions are
equivalent:

(i) F |s G;
(ii) (∃x ∈ µ(F))(∃y ∈ µ(G))((x, y) is a tensor pair ∧ x ∗| y);
(iii) (∀x ∈ µ(F))(∀y ∈ µ(G))((x, y) is a tensor pair ⇒ x ∗| y);
(iv) D(G) ∈ F .

Thus, the strong divisibility relation is too strong: not only it is not reflexive,
but it only depends on divisors from N, so N-free ultrafilters do not have any strong
divisors at all.

To make any of the two introduced congruence relations useful, it is important
to establish for which ultrafilters M they behave nicely. It turned out that in both
cases the answer to this problem is the same.

Definition 7.8. F is self-divisible if D(F) ∈ F .

Thus, F is self-divisible if F ≡s
F 0.

Theorem 7.9 ([8, Theorem 3.10]). For any F ∈ βN the following conditions are
equivalent:

(1) F is self-divisible;
(2) the relations ≡F and ≡s

F coincide;
(3) ≡F is an equivalence relation;
(4) for every a, b |= F there is c |= F such that c ∗| gcd(a, b).

Many more equivalent conditions are listed in [8, Theorem 6.7]. Another one
using patterns (as in Definition 6.7) was proved in [27].

8. Other divisibility-like relations

|̃ was only one of several extensions of the divisibility proposed in [21]. Although
others do not have so many properties reflecting the properties of | on N, they are
interesting in other ways.

Definition 8.1. Let F ,G,H ∈ βN.
(a) G is left-divisible by F (F |L G) if there is H ∈ βN such that G = H · F .
(b) G is right-divisible by F (F |R G) if there is H ∈ βN such that G = F · H.
(c) G is mid-divisible by F (F |M G) if there areH,K ∈ βN such that G = H·F·K.

In semigroup theory |L, |R and |M are usually called Green preorders; for example
F |L G means that the principal left ideal G · βN is included in F · βN. |R is the
analogue for principal right ideals, and |M , the transitive closure of |L ∪ |R, the
analogue for two-sided ideals.

It was shown in [21] that |̃ is the maximal continuous extension of divisibility,

meaning that the “pre-image” {G ∈ βN : G |̃ F} of any singleton {F} is closed. |R
was also proved to be continuous.
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There is another preorder on βN which is, strictly speaking, not a divisibility
relation, but is nicely intertwined between these relations.

Definition 8.2. For A,B ∈ P (N), A is finitely embeddable in B (A ⩽fe B) if for
every finite F ⊆ A there is k ∈ N such that kF ⊆ B.

For F ,G ∈ βN, F is finitely embeddable in G (F ⩽fe G) if for every B ∈ G there
is A ∈ F such that A ⩽fe B.

A similar relation, based on addition instead of multiplication, was considered
earlier in [1,5,13]. A general study of finite embeddability relations was carried out
by Luperi Baglini in [14]. It turned out that ⩽fe lies between some of the above
mentioned divisibility relations.

Theorem 8.3 ([26, Theorem 2.8]).

|L

|R

⊂

⊂
|M ⊂ ⩽fe ⊂ |̃

Also, by [26, Lemma 2.3], ⩽fe coincides with each of the divisibility relations
when divisibility by m ∈ N is concerned. The connection from Theorem 8.3 makes

it possible to better understand the ⩽fe-hierarchy by considering the (weaker) |̃ -
hierarchy, and vice versa. For more about this connection we address the reader
to [26].

9. Final remarks

The organization of L into levels makes it much easier to work with. The order
(∗N, ∗| ) is also organized into levels, which can be seen by considering the extension
∗lev of the function lev : N → N defined by lev(pa1

1 pa2
2 . . . pak

k ) = a1+a2+· · ·+ak, see

[23, Lemma 2.6]. If one tried to do the same for ultrafilters, a function l̃ev : βN →
βN would be obtained. However, as mentioned in Section 6, the orders (EP ,≺P)
need not be isomorphic for different P ∈ P̄ ∖ P, and they would have to be if

their members belonged to corresponding levels of the |̃ -hierarchy. Hence it is
not possible to define a system of levels in the whole βN, not even of non-well-
ordered type.

The question: which ultrafilters have immediate predecessors, and which can

be written as limits of |̃ -increasing chains, will be addressed in [28]. A general
result on the exact number of immediate predecessors or successors still seems to
be out of reach.
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