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1. Introduction

L space araised naturally in the investigation of the following topological basis
problem.

Question 1.1. Which class of topological spaces has a 3-element basis? Or more
specifically, what uncountable regular space contains no subspace homeomorphic
to an uncountable subspace of reals, Sorgenfrey space or discrete space?

Then Todorcevic proved the following partial positive result in [26].

e (Todorcevic) Assume PFA. A regular space contains no uncountable dis-
crete subspace iff it is hereditarily Lindelof.

Topological spaces in this paper are all regular Hausdorff.

A space is hereditarily Lindeldf (or HL) if every subspace is Lindel6f and a space
is Lindeldf if every open cover has a countable subcover.

Another topological property that is closely related to the topological basis prob-
lem is hereditary separability. A space is hereditarily separable (or HS) if every
subspace is separable.

A natural attempt to construct a counterexample to the topological basis prob-
lem is to construct a space distinguishing HL and HS since none of the 3 funda-
mental spaces distinguishes HL and HS (see [28]). More precisely, an S space or an
L space is a counterexample to the topological basis problem.
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A space is an S space if it is HS but not HL. A space is an L space if it is HL
but not HS.

The investigation of S and L spaces has a long history and has its own indepen-
dent interest. A natural consistent example of an L space is a Suslin line. Then
Rudin constructed in [20] an S space from a Suslin tree.

After that, S and L spaces with various properties were constructed from CH,
{ and by forcing. Then Todorcevic’s above result proves that S space does not
exist under PFA. So S space can not be a counterexample to the topological basis
problem.

For L spaces, various L spaces with additional properties were ruled out, e.g.,
strong L spaces [11] and first countable L spaces [25].

A space is strong S (L) space if all of its finite powers are S (L) spaces.

Then Moore constructed in [12] an L space and showed that the topological basis
problem has a negative answer in the class of all regular spaces.

Moore’s construction is based on Todorcevic’s technique of minimal walks intro-
duced in [27] which is a powerful tool in ZFC construction and has many applica-
tions (see [29]). Then Moore’s discovery of the lower trace function leads to the
ingenious construction of an L space.

It is natural to expect a positive answer to Question 1.1 in some restricted nice
subclass, in the more specific sense if some fundamental space is not in the subclass.
For example, positive results in specific subclasses are proved under PFA in [3] and
[16]. Then the following question arise naturally.

Question 1.2. Which class of topological spaces contains no L space?

L spaces also arise naturally in different contexts other than the topological basis
problem, e.g., in the context of cardinal functions (see [8]).

The paper is organized as follows. Section 2 reviews the minimal walk method.
Section 3 reviews earlier results and Moore’s L space construction. Section 4 reviews
constructions of L spaces with additional algebraic structure. Section 5 reviews
combinatorial properties of osc introduced in [12] which plays essential roles in con-
structing L spaces. Section 6 reviews two longstanding open problems on L space.

2. The minimal walk method

In this section, we introduce the minimal walk method introduced by Todorcevic
in [27] (see also [29]). Most definitions and notations originate in [27] and [29] except
for the lower trace function L which originates in [12]. For the following sections,
we assume that readers are familiar with the combinatorial properties of osc in [12]
and [17].

Definition 2.1. (1) [X]* is the set of all subsets of X of size k. Moreover,
if X is a set of ordinals, k < w and b € [X]*, then b(0),b(1),...,b(k — 1)
is the increasing enumeration of b and throughout this paper, we will use
(6(0),...,b(k — 1)) to denote b.

(2) Suppose that a, b are both finite sets of ordinals but neither is an ordinal.
Say a < b if maxa < minb.



478 YINHE PENG AND LIUZHEN WU

Definition 2.2. A C-sequence (or a ladder system) is a sequence (Cy : o < wq)
such that Cyo41 = {a} and C, is a cofinal subset of « of order type w for limit a’s.

Roughly speaking, the minimal walk from S towards a smaller ordinal « is
the sequence 8 = By > 1 > --- > B, = a such that for each i < n, f;41 =
min(Cpg, \ «). Here the weight of the step from f; to a is |Cs, N a].

Definition 2.3 ([27]). For a C-sequence (Cy, : o < wy), the mazimal weight of the
walk is the function o1 : [w1]? — w, defined recursively by

o1(a, B) = max{|Cg Nal, 01(a, min(Cs \ a)) }

with boundary value o1(a, @) =0. g15: 8 — w is defined by g15(a) = 01(e, B) for
a < p.

Intuitively, the function p; is the function constructed from the C-sequence which
records the maximal weight of all steps in one walk.
We also need the following splitting function.

Definition 2.4. For a < f < w1, A, 8) = min({€ < a: 01(§, ) # 01(§,8)} U
{a}).

The following two trace functions will be needed.

Definition 2.5 ([29]). For a given C-sequence, the upper trace Tr: [wq]? — [w1]<¥
is recursively defined for a < 8 < wy as follows:

e Tr(a,0) = {a};

o Tr(a,8) = (Tr(e, min(Cps \ «)) U{8}).
Definition 2.6 ([12]). For a given C-sequence, the lower trace L: [wi]? — [w1]<¥

is recursively defined for a < 8 < w; as follows:
o L(a,a) =1
o L(a, ) = (L(a, min(Cs \ @) U{max(Cpg N)}) \ max(Cg N ).
We recall the following properties of these functions:

Definition 2.7. A function a: [w1]?> — w (or a sequence {ag : B < w;) where
ag: B — w) is coherent if for any o < 8 < wi, {€ < a:a(§,a) # a(§, B)} is finite.

Fact 2.8 ([27]). 01 is coherent and pig is finite-to-one for all 5.

Fact 2.9 ([12]). (1) For limit ordinal 8 > 0, lim,_,g min L(c, 8) = .
(2) For o < B <, if L(B,7) < L(c, B8), then L(a,y) = L(e, B) U L(3,7).

The oscillation of two finite functions is well-known. Suppose that s and ¢ are
two functions defined on a common finite set of ordinals F. Osc(s,t; F) is the set
of all £ in F' ~ {min F'} such that s(§7) < ¢({7) and s(&) > t(&£) where £ is the
greatest element of F less than &.

The osc map is then induced from the functions ¢, and L.

Definition 2.10 ([12]). For a < 8 < wy, Osc(a, B) denotes Osc(g14, 015; L(a, 5))
and osc(a, 8) = | Osc(a, )| denotes the cardinality of Osc(a, 3).
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We will also need Kronecker’s Theorem.

Kronecker’s Theorem ([10]). Let A be a real m x n matriz and assume that
{ze Q" : ATzc Q") = {0}. Then for any e > 0, for any bg, ...,b,_1 € R, there
exist po, ... ,Pm—1 € Z, q € Z™ such that |A;q — p; — b;| < € for all i < m where A;
is the ith row of A.

3. Earlier results and Moore’s L space

3.1. Earlier results. There are many consistent earlier results before Moore’s first
ZFC construction of an L space (see, e.g., [7,21]). In this section, we review part
of them.

Kunen proved that the existence of strong L spaces does not follow from ZFC.

Theorem 3.1 ([11]). Assume MA,,. There are no strong S or L spaces.

In [6], Hajnal and Juhdsz constructed strong S and L spaces from CH. They
then constructed strong S and L groups from CH in [6]. In [30], Zenor proved that
there is a strong S space iff there is a strong L space.

Szentmiklossy proved the consistency of no first countable L spaces.

Theorem 3.2 ([25]). Assume MA,,. There are no first countable L spaces.

Above theorem generalizes an earlier result in [4] that there are no compact L
spaces since HL spaces are point G5 and character coincides with pseudo-character
for compact spaces. Of course, the first consistent example of an L space—a Suslin
line—is first countable. And its compactification is compact L.

Hajnal and Juhész consistently constructed an L space with large weight.

Theorem 3.3 ([5]). It is consistent that there is an L space whose weight is greater
than 2%.

Since HL spaces have size < 2%, an L space with large weight must have large
character.

3.2. Moore’s L space. In this subsection, we recall Moore’s L space construction
and several properties of the L space.

The following combinatorial property of osc (see Definition 2.10) is the key to
construct an L space.

Proposition 3.4 ([12]). For every & C [w1]* and # C [w1]' which are uncountable
families of pairwise disjoint sets and everyn < w, there are a in & and b, (m < n)
in B such that for alli < k,j <1, and m <n: a < b, and

osc(a(i), bm (5)) = osc(a(i), bo(j)) + m.
Fix a rationally independent set
{za ET:a<w;} where T={z€C:|z|] =1}.
Definition 3.5 ([12]). .Z = {wg: f < w1} C T** where

zgsc(a’B)H ta<f
wg(a) = ) ca> B



480 YINHE PENG AND LIUZHEN WU

For X € [wq]“r, ZLx ={wpg [x: B € X}.
Theorem 3.6 ([12]). .Z is an L space.
In fact, Moore’s L space has additional structure.
Proposition 3.7 ([12]). {wg [o: @ < S < w1} is an Aronszajn tree.

The following result is a consequence of above proposition.
o ([12]) £? contains an uncountable discrete subset.
The first author generalized above result to the following.
e ([15]) £? contains an uncountable closed discrete subset.
Repovs and Zdomskyy proved that the semigroup generated by .Z is an L space.
o ([19]) The semigroup sgrp(.Z’) generated by . is an L space.
Above result can not be generalized to group since by Proposition 3.7, {w,, 1) —
Wq, (0) : @ < wi} is discrete for sufficiently separated aq’s in [wi]? with w,_ 1) [a=

waa(()) Fow
We list several additional properties of .# obtained in [12].

Theorem 3.8 ([12]). (1) If & C [wi1] is uncountable pairwise disjoint, B €
[w1]“t and (U; : i < k) is a sequence of open neighborhoods in T, then there
are a € &/ and € B such that maxa < § and for alli < k, wg(a(i)) € U;.
(2) Every X € [Z]“* is dense above some a < wy, i.e., for every a € [wy ~a]<¥
and every sequence (U; : i < k) of open neighborhoods in T, there exists
z € X such that x(a(i)) € U; for all i < k.
(3) FEwvery continuous image of a subspace of £ is countable.

With a further investigation of the osc function, Moore discovered the following
property.

Lemma 3.9 ([13]). For every 8 < v < ws, there is M < co such that whenever
a < B, |osc(a, B) — osc(a,y)| < M.

Applying above property, Moore constructed an L space whose square has an
additional structure.

Theorem 3.10 ([13]). There is an L space whose square has a o-discrete dense
subset.

Due to Z’s Aronszajn property by Proposition 3.7, Todorcevic and the first
author connected .2 with OCA (introduced in [28]).

For a topological space X, OCAx is the assertion that if [X]? = KqU K; is a
partition such that K is open, then either there is an uncountable 0-homogeneous
set, or X is a countable union of 1-homogeneous sets.

OCA x can be viewed as a simple test question of topological basis problem. We
list several results on OCAx.

e ([28]) Assume PFA. If X? is hereditarily Lindelsf, then OCA x holds.
e ([16]) Assume MA,,,. Suppose X is submetrizable and has size w;. If
OCA x holds, then X contains no uncountable discrete subset.
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A space X is submetrizable if X has a weaker metric topology. And it turns out
that submetrizability is necessary in above result [16]. More precisely, .£™ is not
submetrizable, has size w; and contains an uncountable discrete subset when n > 2

while OCA &~ holds.
Theorem 3.11 ([16]). Assume PFA. OCA on holds for every n < w.

The L space problem is closely related to strong negative partition relations on
w1. Moore’s construction gives a strong coloring on wj.

o ([26]) w1 — (w1, (finwi;wi))? is the assertion that if c: [wy]? — 2, then
either there is an uncountable 0-homogeneous subset or there are uncount-
able pairwise disjoint &7 C [w;]<* and uncountable B C w; such that for

all a € & and 8 € B with maxa < 3, there is « € a with ¢(«, 8) = 1.

w1 = (w1, (w;finwy))?

pairwise disjoint & C [w1]

It is proved in [26] that PFA implies w; — (w1, (w1; finwi))? which in turn implies
the non-existence of S spaces. Then Moore’s construction induces a strong coloring
witnessing the failure of w; — (w1, (inwy;wy))?.

Theorem 3.12 ([12]). wi A (w1, (inwy;wy))?.

is similarly defined by replacing < by A C w; and B by
<w

4. L spaces with algebraic structure

In this section, we introduce L spaces with algebraic structure. The constructions
rely on further investigation of Moore’s osc function.

The semigroup generated by Moore’s . is an L space by [19]. But the group
generated by . is not HL by Proposition 3.7.

Then we constructed an L group in [17]. A topological group is an L group if
the underlying space is an L space.

First we fix a rationally independent set of reals {0, : & < w;} with the following
additional property,

o for every n < w, every (z; € spang({fe : £ < w1}) : i < n) with increasing
heights' and every {¢; € Q ~ {0} :i <n}, 3., L sin % # 0.

Then the L group is defined as follows where frac(z) is the fraction part of x.
Definition 4.1. Denote f(z) = 1sin L for 2 € R \ {0}.
(1) & ={wj: B <wi} where
() = f(frac(fy 0sc(a, B) +05)) a<p
0 ta > B

We view ¢’ as a subspace of R*!, equipped with the product topology.
(2) grp(-Z’) is the topological subgroup of (R¥*, +) generated by .£’, where +
is the coordinatewise addition operation.

Theorem 4.2 ([17]). grp(-¢”’) is an L group.

IThe height of = € spang({0¢ : £ < wi}) is the least o < w1 such that z € spang({0¢ : £ < a}).
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Since grp(-¢’) is HL, £’ can not have an Aronszajn structure. In fact, £’ is
submetrizable. To see this, note that by our additional requirement on 6,’s, the
projection of £ to the first coordinate, wj — wj(0), is one-to-one.

Similar as Moore’s L space, the L group grp(-#”’) has the following properties.

Theorem 4.3 ([17]). (1) If o C [wi1]* and B C [w1]' are uncountable families
of pairwise disjoint sets, (n; : j <1) is a sequence of non-zero integers and
(U; CR:i < k) is a sequence of non-empty open sets, then there are a € o/
and b € & such that 3, _, njw,’)(j)(a(i)) e U; for alli < k.
(2) Every X € [grp(Z7)]¥* is dense above some a < wy.

Then by [16, Theorem 2], under PFA (or MA,,), OCAg (¢ fails. But by
[16, Corollary 3], the first assertion of OCA, ()2 holds for some kinds of open
sets under PFA.

Now we compare above L space .’ with Moore’s L space .. First, we view
Moore’s L space in the following way.

o ¥ ={ws: B <wi} where

wla) = {frac(%(osc(a,ﬁ) +1) :a<p
’ 0 = fl.

The +1 after osc(a, 5) in above definition is not important (see [13] for a modi-
fication). The f is not important for .#’. The role of f is to guarantee that the
generated group is HL. So if we ignore +1 in definition of . and f in definition
of &', w,’g is a modification of wg by adding an interruption fg at each coordinate
< B and £’ can be viewed as refining the topology of .Z by adding the topology
of reals. More precisely,
e X = {rg: B <wi} is homeomorphic to X' = {x; : B < w1} where z5(0) =
0p, v5(a) = frac(fa(osc(a, B) + 1)) for 0 < a < B, zp(a) = j3(a) = 0 for
a > B and zj(a) = frac(f, osc(a, B) + 0) for a < 3.

This also indicates that f is necessary to guarantee HL of grp(¢”’) since grp(X)
and hence grp(X’) is not HL. In fact, f is used to determine a major element of
> j<m Wy, (a)—the j* such that frac(f, osc(a, Bj+) + 03,.) is close to 0. This
also is the reason to have the interruption +03, e.g., in the case wj(a) — wj (@)
with osc(a, 8) = osc(a, 8), f(frac(f, osc(a, 8))) — f(frac(f, osc(a, 5))) = 0 while
f(frac(fq osc(a, B) + 03)) — f(frac(0, osc(a, 8') + 03/)) still has a major part.

Several topological properties of grp(.#’)? are also investigated in [17].

e ([17]) grp(-£’)? contains an uncountable closed discrete subset. grp(.#”’)?
is neither normal nor weakly paracompact.

It turns out that the above idea can be generalized to control nth power of an
L space/group for fixed n < w.

Theorem 4.4 ([17]). For every positive integer n, there is a topological group G
such that G™ is an L group while G is neither normal nor weakly paracompact.
Moreover, G™t1 contains an uncountable closed discrete subset.
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Note that we can not expect an L group whose all finite powers are HL since
such group does not exist under MA,,, by [11].

The proof also induces strong colorings on w;. We first recall some definition
from [24] and its generalization.

e ([24]) Pro(w1,0,0) asserts that there is a function c: [w;]?> — 6 such that
whenever we are given n < o, an uncountable pairwise disjoint &7 C [w]™
and a function h: n x n — 6, then there are a < b in &/ such that
c(a(i),b(4)) = h(i,j) for every i,j < n.

e Prg(wi,0,(0;m)) asserts that there is a function c: [wi]?> — € such that
whenever we are given n < o, m < 1, two uncountable pairwise disjoint
o C lw1]", B C [wi]™ and a function h: n x m — 0, then there are a € &/
and b € & such that a < b and c(a(i),b(j)) = h(i,j) for every i < n,j < m.

Pro(wy,w, o) (Pro(wr,w, (o3n))) is equivalent to Pro(wy,wr, o) (Pro(wi,ws, (0;1)))
(see the beginning of Section 4 in [27]). But we do not know if Pro(wy,w,w) is
equivalent to Pro(wi,2,w). MA,,, implies = Pro(wi,2,w). But we do not know if
- Pro(w1, 2,w) implies, e.g., t > w; (see [28, 1.5]).

Question 4.5. Does t = w;y imply Pro(wy,2,w)?

Pro(wi, 2, (w;2)) implies w1 4 (wi, (inwi;wi))?. Moore actually proved
Pro(ws,w, (w;2)) in [12].
Our construction for higher powers shows the following.

Theorem 4.6 ([17]). Pro(wy,w, (w;n)) holds for every 2 < n < w. In particular,
Pro(wi,w,n) holds for every 2 < n < w.

This is optimal since MA,,, implies = Prg(wy, 2,w).

One might expect that some strengthened algebraic property may reject L spaces.
For example, stronger algebraic property makes differences for the metrization of
pseudo-compact spaces. Shakhmatov [22] proved that every pesudo-compact sub-
space of a topological field is metrizable. But the situation for topological groups is
different since every completely regular space can be embedded into a topological
group—R".

However, we show that this is not the case for L spaces by constructing an L
field. A topological field is a field endowed with a topology with respect to which all
algebraic operations are continuous. A topological field is an L field if the underline
space is an L space.

We first fix a function g: (0,1] — C such that

g(z) = a for x € [§,1];

e for any integer n > 3, g is a linear function on [n%rl, 113
e for any positive integer n, g(%) = p + qi for some rational number p, g;

e for any positive integer n, g[(0, %]] is dense in C.

Then we fix an algebraically independent set of reals {6,,6/, : & < w;} with the
following property,
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e forevery | < w, every b € [w]! and every pair of polynomials P(zg,...2_1),
Q(20, ... 2—1) with rational coefficients,

P(0y(0) + Oyt - - - Oba—1) + 04 _1%)
Q(Gb(o) + 92(0)1', e 70b(l—1) + 9;)(1_1)1')

¢R

provided that ggﬂiﬁ is not a constant.

The L field is defined as follows.
Definition 4.7. (1) £" = {wj: B <wi} where

g(frac(0, 0sc(a, B) +03)) :a<f
wi(a) =< b5 ra=4
95 + 0’61 Ta > f.

We view £ as a subspace of C¥*, equipped with the product topology.

(2) field(-£") is the topological field generated by £, where the addition +
and multiplication - are coordinatewise addition and coordinatewise multi-
plication.

Theorem 4.8 ([18]). (1) field(Z") is an L field.
(2) Every X € [field(.L")]“" is dense above some o < wy.
(3) field(.£")? contains an uncountable closed discrete subset.
(4) field(L"")? is neither normal nor weakly paracompact.

A similar result about L vector space is also proved in [18]. A topological vector
space is a vector space endowed with a topology with respect to which the vector
operations are continuous. Here we consider vector spaces over R. A topological
vector space is an L vector space if the underline space is an L space.

Theorem 4.9 ([18]). There is an L vector space whose square is neither normal
nor weakly paracompact.

5. Combinatorial properties of osc

Moore’s method may have potential to construct more spaces with various prop-
erties. This probably relies on the discovery of combinatorial properties of osc. In
this section, we recall its properties and indicate its connection to corresponding
constructions.

The first combinatorial property is [12, Theorem 4.3] (Proposition 3.4 above).
For n,a,b as in Proposition 3.4,

Zosc(a(i) ,bm (0))+1 _ Zostl:(a(i),bo (0))+1

a(é) a(é) * Zq(s)-

So in order to find m with wy, y(a(i)) € U; for all i < k for Theorem 3.8 (1), it
suffices to require in advance that for appropriate € > 0,
{(z2(0)> "+ za(k—1)) : m < n} is e-dense in T*.

Say a set is e-dense if it meets every ball of radius e.
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Now, for a given uncountable pairwise disjoint & C [wl]k, apply Kronecker’s

Theorem to find &/’ € [&/]“* and n such that every a € &/’ satisfies the e-dense
condition.

The key combinatorial property of osc to construct an L group in [17] is the
following.

Proposition 5.1 ([17]). For uncountable families of pairwise disjoint sets of C

[wi]* and B C [w1]!, there are o' € [A|1, B' € [B]** and {(cij 11 < k,j <) €
ZF*U such that for every a € &' and every b € A', if a < b, then

osc(a(i),b(j)) = osc(a(i), b(0)) + c;j for alli < k,j < L.

Note that c; o = 0 for every ¢ < k in above proposition. To simplify the notation,
we use the following function defined on R \ Z:

f*(z) = f(frac(z)) where f(x) = ésm%

For a € &',b € %' as in above proposition and a sequence of non-zero integers
(nj:j <l
> iy (a(d) = D nf* (Gag 0sclali), b(j)) + Ous)
j<l g<l
= 1 f* (Baga) 05c(ali), b(0) + bagiycij + Oo(s)
i<l
=D i f (@ 4 bagiycij + Ob()
i<l

where x = 0,(;) osc(a(i), b(0)).
Now we view Zj<l nj [*(x 4 Oq(s)cij + Ob(j)) as a function with variable z. As x
approaches —0y(q) from the right,

D 0@+ bagiycis + 0uii) = Y 15 f (—0b(0) + Oai)Cis + Oo(s)
0<j<l 0<j<l

and f*(x + 0y(0)) ranges over R. In particular, for every non-empty open U C R,
there is x € (—0y(0), —0y(0) + €) such that

D nif* (@ + Oagiycis + Oyy) € U
i<l
And the collection of such z is open.
So in order to have 3, _, njw,’)(j)(a(i)) € U,, it suffices to find x such that

. Zj<l nj f*(x + 040y cij + b)) € Us (as analyzed above);
e frac(f,(;) osc(a(i), b(0))) is close enough to frac(z) (as in Moore’s construc-
tion).

Another property of osc which is dual to that of Proposition 5.1 is the following.
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Proposition 5.2 ([17]). For every X € [w1]*? and every {c;; : i < k,j <) € ZF*!
such that c;o = 0 whenever i < k, there are uncountable pairwise disjoint families
o C [X]*¥ and % C [X]' such that for every a € o/ and b € B, if a < b, then

osc(a(i),b(j)) = osc(a(i), b(0)) + ¢;; for alli < k,j <.

The behaviors of Proposition 5.1 and Proposition 5.2 are different when we take
one pairwise disjoint family instead of two.

Proposition 5.3 ([17]). For every uncountable family of pairwise disjoint sets

o C [w1]*, there are o' € [/]“1 and (c;j : i,j < k) € WF** such that for any a,b
m ', if a <b, then

osc(a(i),b(y)) = osc(a(i), b(i)) + c;j for alli,j < k.

Unlike Proposition 5.1, ¢; ;’s in above proposition are non-negative. This means
that for each i < k, osc(a(4),b(4)) is the smallest among osc(a(i),b(j))’s (see Ob-
servation after [18, Corollary 5.3] for an explanation).

Proposition 5.4 ([18]). The following statement is independent of ZFC.

e For every X € [w1]*1, every k < w and every (c;j : i,j < k) € w*** such
that c;; = 0 for i < k, there is an uncountable pairwise disjoint family
o C [X)¥ such that for all a,b € o, if a < b, then

osc(a(i),b(j)) = osc(a(i), b(i)) + cij for alli,j < k.

There is an easy way to determine for what (c;; : 4,7 < k) € w*** can we find
o/ to satisfy the conclusion of above proposition.

Lemma 5.5 ([18]). For a given X € [w1]“' and (c;j : i,j < k) € w*** such that
cii = 0 whenever i < k, the following statements are equivalent.

(1) For every uncountable pairwise disjoint family o/ C [X]*, there are a < b
in .o/ andi,j <k such that

osc(a(i), b(j)) # osc(a(i), b(i)) + cij-
(2) There is a club E such that for every § € E and every a € [X \ 8%, there
are i,7 < k such that
| Osc(01a(i), 01a(5); L(6, a(4)))] # cij-
(3) There is an uncountable set A C wy such that for every 6 € A and every
a € [X N 6], there are i,j < k such that
| Osc(01a(i)s 01a(4): L(6: a(§)))] # cij-

Consequently, for X € [w1]“* and k < w, let Cx(X) be the collection of all
patterns (¢;; : ¢,j < k) € wk** that can be realized inside X, in the sense that
for some uncountable family &7 C [X]* of pairwise disjoint sets, osc(a(i),b(j)) =
osc(a(i), b(i))+c;; whenever a < barein o/ and ¢, j < k. Fix a countable elementary
submodel M < H(ws) containing the C-sequence and X. Then

Cr(X) = {{] Osc(014(i)s 01a(j); LM Nw1,a(y)))] 14,5 < k) ra e [X N M}k}
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6. L spaces with other structures

In this section, we review two longstanding open problems concerning L spaces.

6.1. Symmetrizable L spaces. The concept symmetric traces back to Nemytskii
and Aleksandrov (see [1]). For aset X, amapping d: X xX — [0, 00) is a symmetric
if for any x,y € X,

o d(z,y)=0iff x = y;

o d(z,y) = d(y, ).
A symmetric is a weakening of metric by omitting triangle inequality. The topology
generated by a symmetric d is as follows: U is open iff for every x € U, there exists
e > 0 with B(z,e) C U where B(z,¢e) = {y : d(z,y) < €}. A topological space is
symmetrizable if its topology can be generated by a symmetric.

It is well-known that for a metric space, the four properties are equivalent: sep-
arable, Lindeldf, HS, HL. Does any equivalence hold in the class of symmetrizable
spaces?

First, separability does not imply any other property, e.g., AUw for an uncount-
able almost disjoint family A C [w]¥ with topology generated by {{n}, {a}Ua~m :
n,m<w,a € A}.

Then, Nedev [14] proved that for symmetrizable spaces, HS implies HL and
Lindelof is equivalent to HL.

In 1966, Arkhangel’skii posted the following question (see [23]): is every Lindelof
symmetrizable space separable? Note that a counterexample must be an L space
by Nedev’s result. Then Shakhmotov consistently constructed a counterexample.

It is still open if there is a ZFC counterexample.

Question 6.1. Is there a symmetrizable L space?

It is worth mentioning that Balogh, Burke and Davis proved the following re-
sults in [2].
e In ZFC, there is a Hausdorff non-regular symmetrizable space which is HL
and not separable.
e There is no left separated Lindel6f symmetrizable space of uncountable
cardinality.

Although every L space has a left separated L subspace, symmetrizability is not
closed under taking subspaces. It seems likely that a new method of constructing
L spaces is needed.

6.2. Cardinal function. Cardinal function is one of the most useful and important
concepts in set-theoretic topology. We mainly consider hd and hL here. See [8] for
more concepts and results on cardinal functions.
For a topological space X,
e d(X)=min{|S|: S C X,S = X} +w is the density of X;
o hd(X) =sup{d(Y):Y C X} is the hereditary density of X;
e L(X) = min{k: every open cover of X has a subcover of cardinality < x}+w
is the Lindelof degree;
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o hIL(X) =sup{L(Y) :Y C X} is the hereditary Lindel6f degree.

e w(X)=min{|%B|: £ is a base for X} + w is the weight of X.
We recall several related results for a regular space X.

(Pospisil) [X| < 227,

w(X) < 24X,

(De Groot) | X| < 2M(X),
o w(X) < 2Xl 22"

So for HS space X, | X| < 22" and for HL space X, w(X) < 22°.

Is the upper bound optimal? In [5] and [6], Hajnal and Juh&sz consistently
constructed examples of S spaces of size 22 and L spaces of weight 22”. Then
Juhész and Shelah [9] consistently constructed such examples with 2¢ and 2%
arbitrarily large.

On the other hand, Todorcevic [26] proved that under PFA, |X| < 2% for HS
space (or space without uncountable discrete subset). But we do not have any
analogous result on HL spaces. Note that by results listed above, if an HL space
has weight > 2%, then it is not separable and has character > 2“. The following
question is still open.

Question 6.2. Is there an L space with character (or equivalently, weight) > 2«7

Again, it seems likely that a new method of constructing L spaces is needed.
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