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Abstract. In the past couple of years a rich connection has been
found between the fields of descriptive set theory and distributed com-
puting. Frequently, and less surprisingly, finitary algorithms can be
adopted to the infinite setting, resulting in theorems about infinite,
definable graphs. In this survey, we take a different perspective and
illustrate how results and ideas from descriptive set theory provide
new insights and techniques to the theory of distributed computing.
We focus on the two classical topics from graph theory, verter and
edge colorings. After summarizing the up-to-date results from both
areas, we discuss the adaptation of Marks’ games method to the LO-
CAL model of distributed computing and the development of the
multi-step Vizing’s chain technique, which led to the construction of
the first non-trivial distributed algorithms for Vizing colorings. We
provide a list of related open problems to complement our discussion.
Finally, we describe an efficient deterministic distributed algorithm
for Brooks coloring on graphs of subexponential growth.
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Graph colorings is a fundamental concept in combinatorics and theoretical com-
puter science. Moreover, a myriad of practical problems can be also reformulated
in terms of graphs and their colorability (e.g., scheduling and clustering problems,
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register allocation, etc.'), thus, these concepts have numerous applications beyond
their theoretical usefulness. A basic question about graph colorings asks for the
smallest number of colors needed to color the vertices (or edges) of a given graph
G so that adjacent vertices (or edges) have different colors. In the case of vertex
coloring this number is called the chromatic number of G, denoted by x(G), and
in case of edge coloring it is called the chromatic index of G, denoted by x'(G).
Classical theorems of Brooks and Vizing give an upper bound on x(G) and x/(G),
respectively, in terms of the maximum degree A(G) of the graph G. Colorings
matching these upper bounds can be found in time polynomial in the size of the
graph. In contrast, deciding (in the case of vertex colorings even approximately)
the chromatic number or chromatic index of a graph is an NP-complete problem.

In this survey, we discuss algorithmic aspects of these classical problems from
the perspectives of the LOCA Lmodel of distributed computing and measurable graph
combinatorics. At first glance, these fields may seem to be at the opposite ends of
the spectrum: one focuses on distributed algorithms for large but finite networks,
while the other investigates uncountable graphs, and stems from pure measure
theory and logic. However, the recently discovered formal connections, originated
in the work of Bernshteyn [12] and Elek [50], and the ensuing surge of activity
proved otherwise. In fact, researchers in both areas have very often studied ezactly
the same problems, and, now, there are black-box translations of results from one
field to the other. As we only briefly comment on this beautiful correspondence
in Section 5.2, we refer the reader to the surveys of Bernshteyn [10] and Pikhurko
[107] for more comprehensive treatment.

What phenomenon links these fields? At a high level, in both areas the combi-
natorial core of the questions of interest boils down to the understanding when a
solution to local graph coloring problems can be produced efficiently in a decentral-
ized way. In the seminal paper [12], Bernshteyn proved that efficient distributed
algorithms solving a given coloring problem on finite graphs yield automatically
the existence of such a measurable coloring on measurable graphs. As a conse-
quence, many results from the distributed computing literature immediately yield
new results in the relatively younger field of measurable graph combinatorics. While
this fundamental result follows the typical direction, namely, ideas from theoretical
computer science are used to solve major problems in pure mathematics, it has also
opened the gates for myriads of follow up questions. The most important one for
this survey might be the following:

Can measure theoretic techniques have a direct impact on the evo-
lution of distributed algorithms on finite graphs?

In this paper, we aim to answer this question in the positive. Our goal is to com-
plement the views presented in the survey papers by Bernshteyn [10] and Pikhurko
[107] by describing the flow of ideas from the infinite world to the finite. The
two main results from measurable graph combinatorics and their application in the
theory of distributed computing that we discuss are (a) the determinacy method

! For more on the historical evolution of these problems, and in particular, the amusing history
of the four coloring problem see [122] or https://en.wikipedia.org/wiki/Graph_coloring.
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of Marks for showing the inexistence of Borel vertex colorings, and (b) measur-
able Vizing’s theorem, which proves the existence of measurable edge colorings that
satisfy the Vizing’s bound.

The paper is structured as follows. Sections 2-5 serve as an introduction and
a comparison of graph coloring results in the classical, distributed and measurable
setting. We discuss the adaptation of Marks’ technique to the LOCAL model of
distributed computing in Section 6 and the measurable and distributed analogs
of Vizing’s theorem in Section 7. In Section 8, we describe the efficient dis-
tributed algorithms for Brooks’ coloring for graphs of subexponential growth and,
finally, in Section 9 we finish the survey with a collection of related and fascinating
open problems.

2. Classical results and notation

We start by fixing a standard graph theoretic notation that will be used through-
out the paper. A graph G is a pair (V, E), where V is a set and E C (‘2/) is a set
of unordered pairs of V', in particular, we do not allow multiple edges or loops. We
will also use the notation V(G) for the set of vertices of G and E(G) or just simply
G for the set of edges.

To distinguish finite and countable graphs from the usually uncountable graphs
coming from the measurable context we use GG for the former and G for the latter.
In case G is finite, we set n := |V| and m := |E|. The mazimum degree of G is
denoted by A(G). Throughout the paper we assume that A(G) € N, in fact, most
of the time we treat A(G) as a constant that is fixed in advance and independent
of n. The line graph of a graph G = (V, E), denoted by L(G) is defined as the pair
(E,F), where {e,e'} € Fif ene’ # 0. We write Ng(v) for the set of neighbors of
v €V in G. We set degy(v) = |Ng(v)| and degq (v, A) = [Ng(v) N A|l. We denote
as Bg(v,t) the t-neighborhood of v in G, that is, the restriction of G to vertices
of graph distance at most ¢ from v, that includes additional labeling that might be
defined on G.

Standard conventions are used to denote asymptotics, that is, if f,g: N — N
are functions, we say that f € o(g), f € O(g), f € Q(g9) and f € w(g) if
lim, o f(n)/g(n) = 0, limsup,_,., f(n)/g(n) < oo, g € O(f) and g € o(f),
respectively. Additionally, we write f € O(g) if f € O(g) and g € O(f).

For k € N, we write [k] = {1,...,k}. A wvertex coloring of G (with k € N
colors) or simply k-coloring is a map c¢: V' — [k] such that ¢(v) # c(w) whenever
{v,w} € E. An edge coloring of G (with ¢ € N colors) is a map d: E — [¢] such
that d(e) # d(f) whenever e # f and e f # (. The chromatic number of G,
denoted by x(G), is the minimum %k € N such that there is a vertex coloring of
G with k colors and the chromatic index of G, denoted by x'(G), is the minimum
¢ € N such that there is an edge coloring of G with ¢ colors. Note that we have
X(L(@)) = x'(G) by the definition.

A partial vertex coloring (with k € N colors) is a partial map ¢: V' — [k] that is
a vertex coloring of the graph induced from G on dom(c) C V. We set U, =V ~
dom(c) to denote the set of uncolored vertices. A partial edge coloring d: E — [k]
and the set of uncolored edges Uy is defined analogously.
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2.1. Greedy algorithm. We start with the classical greedy upper bound.

Theorem 2.1 (Greedy coloring). Let G be a graph such that A(G) € N. Then
X(G) < A(G) + 1 and X' (G) < 2A(G) — 1.

The proof of this theorem for vertex colorings is very often presented in the
form of a sequential algorithm. Namely, after enumerating the vertices of a finite
graph G as (v1,...,vv|), we go through the list inductively and color the current
vertex with any of the available colors at this step. This is always possible as we
are allowed to use strictly more colors than is the maximum degree of G. The
argument for x'(G) is analogous after, for example, passing to L(G).

Note that the sequential algorithm runs in time O(m). In case that we treat
A as a constant, which we usually do, the running time is O(n). It is one of the
basic results in the LOCAL model, which is discussed in the next section, that
there is in fact an efficient distributed algorithm producing a greedy coloring, see
Theorem 3.4.

2.2. Brooks' and Vizing's theorems. The greedy upper bound for vertex color-
ings is tight in general. Namely, if n € N and K, is the complete graph on [n]
vertices, then y(K,) = n and A(K,) = n — 1. A classical result of Brooks [28]
states that apart from this situation and the case of odd cycles, A(G) colors are
enough.

Theorem 2.2 (Brooks coloring). Let G be a graph such that A(G) € N and assume
that G does not contain a copy of Ka(c)+1, or an odd cycle in case A(G) = 2. Then
X(G) < A(G).

Brooks coloring can be found in time O(m) as was proved by Skulrattanakulchai
[113], however, and that is one of the main results discussed in this paper, there is
no efficient deterministic distributed algorithm even if we assume that the graphs
that we consider have high girth, i.e., they look locally like trees. Recall that a
classical theorem of Erdés [53], proven by the probabilistic method, states that
there exist graphs of arbitrarily high girth and chromatic number. Recall that
the girth of a graph G is the size of the shortest cycle in G. More related to
our investigation is the same result of Bollobds [19] for A-regular random graphs:
random A regular graphs have girth tending to oo with positive probability as
n — oo and the chromatic number of such graphs is almost surely ©(A/log(A)) as
A — oo. This gives a lower bound on the number of colors needed for any efficient
distributed algorithm on locally tree-like graphs.

In the case of edge colorings the situation is much simpler as was proved by
Vizing [120] and independently by Gupta [77].

Theorem 2.3 (Vizing coloring). Let G be a graph such that A(G) € N. Then
X'(G) € {A(G), A(G) + 1}

The standard proof of Vizing’s theorem, which is based on the augmenting chain
technique, implies immediately that edge coloring with A(G)+1 colors can be found
in time polynomial in m. Currently, the fastest deterministic algorithm for Vizing
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coloring for general graphs due to Sinnamon [112] runs in time O(m+/n), and the
fastest randomized one due to Bhattacharya, Carmon, Costa, Solomon, and Zhang
[18] runs in time O(mn'/3). We refer the reader to [14,15, 18] for more details on
the current development and better bounds under some additional assumptions on
the maximum degree. While it is known that there is no efficient deterministic
distributed algorithm, the existence of a randomized one is one of the main open
problems in the theory of distributed computing, see Section 7 and Problem 9.1.

We formalize the augmenting chain technique as it plays a crucial role both in our
investigation of edge colorings in Section 7 and in our construction of an efficient de-
terministic distributed algorithm for Brooks’ theorem on graphs of subexponential
growth in Section 8.

Definition 2.4 (Augmenting subgraph). Let G = (V, E) be a graph, d: E — [k]
be a partial edge coloring and e € Uy be an uncolored edge. A subgraph H C G
is called augmenting for e (and d) if it is connected, E(H) ~\ {e} C dom(d) and
there is a partial edge coloring d': E — [k] such that dom(d’) = dom(d) U {e} and
d(f) =d(f) for every f € dom(d) \ E(H).

An augmenting subgraph for partial vertex colorings and an uncolored vertex is
defined analogously.

Vizing’s theorem for finite graphs then follows from the fact that there is an
augmenting subgraph for every uncolored edge e € E and any partial edge coloring
of G with A(G) + 1 colors.

In order to produce Vizing coloring by a distributed algorithm, or measurably,
we need to control the size and structure of the augmenting subgraphs. Already
the standard proof of Vizing’s theorem provides some information in this direction,
the augmenting subgraph is of the form fan and alternating path, see Figure 4 in
Section 7. A detailed explanation of the recent progress on this problem is done in
Section 7.3. We finish this section by stating a purely graph-theoretic consequence
of this line of research that was proved by Christiansen [36].

Theorem 2.5 (Small augmenting subgraphs for edge colorings, Christiansen [36]).
Let G be a graph, d: E — [A(G) + 1] be a partial edge coloring and e € Uy be
an uncolored edge. Then there exists an augmenting subgraph H for e such that
|E(H)| € O(A(G)" log(n)).

We remark that up to A factors the bound in the theorem matches the lower
bound of Chang, He, Li, Pettie, and Uitto [33] who found an instance of partial
edge coloring and an uncolored edge such that every augmenting subgraph has size
Q(A(G) log(n/A(G))).

An analogous result for Brooks’ coloring was proved by Panconesi and Srinivasan
[105,106]. Namely, every uncolored vertex in a partially vertex colored graph G
with A(G) > 3 colors is contained in an augmenting path of length bounded by
O(loga(q) (n)). They also demonstrated that this bound is tight. We state this
result formally in Section 8, where we use it in a black-box manner in our con-
struction of an efficient deterministic distributed algorithm for Brooks coloring on
graphs of subexponential growth.
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3. LOCAL model

The definition of the LOCAL model of distributed computing by Linial [91] was
motivated by the desire to understand distributed algorithms in huge networks,
see the book of Barenboim and Elkin [6] for a historical account. As an example,
consider a huge network of wifi routers. Let us think of two routers as connected
by an edge if they are close enough to exchange messages. It is desirable that
such close-by routers communicate with user devices on different channels to avoid
interference. In graph-theoretic language, we want to properly color the underlying
network. Observe that producing the greedy coloring, which was easily solved by
a sequential algorithm in the previous section, remains a highly interesting and
non-trivial problem in the distributed setting, as, ideally, each vertex decides on its
output color after only a few rounds of communication with its neighbors.

The LOCAL model of distributed computing formalizes this setup: we have a
large network, where each vertex knows the size of the network n, and perhaps
some other parameters like the maximum degree A. In the case of randomized
algorithms, each vertex has access to a private random bit string, while in the case
of deterministic algorithms, each vertex is equipped with a unique identifier from
a range polynomial in the size n of the network. In one round, each vertex can
exchange any message with its neighbors and can perform an arbitrary computa-
tion. The goal is to find a solution to a given problem, in our case a vertex or
edge coloring of the network, in as few communication rounds as possible. As the
allowed message size is unbounded, a t-round distributed algorithm can be equiv-
alently described as a function that maps t-neighborhoods to outputs—the output
of a vertex is then simply the output of this function applied to the t-neighborhood
of this vertex. An algorithm is correct if and only if the collection of outputs at all
vertices constitutes a correct solution to the problem.

The theory of distributed algorithms is extremely rich and the landscape of
possible complexities of local graph coloring problems is very well understood. It
should not come as a surprise that vertex and edge colorings play a prominent role
in this endeavor. However, it might not be immediately clear why any non-trivial
problem can be solved by a distributed algorithm.

Before we formalize the definitions, we describe a simple, yet profound, procedure
that is due to Cole and Vishkin [38], which modifies a given vertex coloring of a
graph G with k colors to a vertex coloring with roughly log(k)A(G) colors in one
communication round.

Example 3.1 (Color reduction algorithm, [6, Section 3.5]). Let G = (V, E) be a
graph of maximum degree A € N and ¢: V' — [k] be a vertex coloring. We describe
how to produce a new vertex coloring with (2[log(k)])® colors in one round of
communication having ¢ as an input at every vertex of G.

Let us view the color ¢(v) as a {0, 1}-string of length [log(k)]. Given v € V, we
list for each w € Ng(v) the pair that encodes the position of the minimal bit where
¢(v) and ¢(w) differ together with the value of ¢(v) at that bit. That is, each v is
assigned a string ¢/(v) of at most A(G) many pairs from the set [log(k)] x {0,1}.
We leave as an exercise to verify that ¢ is indeed a proper vertex coloring of G
with (2[log(k)])? colors.
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A more complicated combinatorial argument, which is due to Linial [91], de-
creases the number of colors to 4(A 4 1)2log?(k) in one round of communication,
see Hirvonen and Suomela [79, Section 4.8] or Rozhon [109, Section 2.1.1] for a
detailed explanation.

3.1. Formal definition and basic results. Our main references are the books of
Barenboim and Elkin [6] and of Hirvonen and Suomela [79], and the recent survey
of Rozhon [109].

When talking about distributed algorithms, we always assume that there is a
fixed class of finite graphs on which they operate. Prominent examples of classes
studied in the literature include all finite graphs, graphs of degree bounded by
A € N, acyclic graphs, graphs of bounded neighborhood growth, or graphs that
look locally like a fixed graph, e.g., grid graphs, high girth graphs etc.

In this survey, we work, unless stated otherwise, with the class of graphs of degree
bounded by A € N. In particular, the dependence on A is hidden in the asymptotic
notation.

In the high-level overview, we mentioned that a t-round distributed algorithm
assigns a color to a vertex based on its t-neighborhood and every vertex must
run the same algorithm. In particular, if there are vertices with isomorphic ¢-
neighborhoods, they should receive the same color. In order to make the model
non-trivial, we need to introduce a way how to break symmetries in graphs that are
highly symmetric. In the case of deterministic distributed algorithms this is done
by assigning a unique identifier to each vertex from a range that is polynomial in
the size of V. In other words, when we talk about deterministic distributed algo-
rithms, we always assume that the graph G comes equipped with an adversarial
injective map id: V. — n® where ¢ > 1 is a fixed constant. In the case of ran-
domized distributed algorithms, each vertex generates independently uniformly an
infinite sequence of random bits. Formally, the input graph comes equipped with
an adversarial map i: V — {0, 1}.

Definition 3.2 (Distributed algorithm). A deterministic distributed algorithm A =
(An)n of complexity (¢,), € RY is a function such that for every graph G of
size n and every assignment of unique identifiers id: V' — n® outputs for every
v € V a color
v = A, (Bg(v,ty))

that only depends on the ¢,-neighborhood of v, that is, on Bg(v,t,) together with
id | Bg(v,ty,).

A randomized distributed algorithm is defined analogously by replacing an as-
signment of unique identifiers by an assignment of infinite sequences of random bits.

Note that we implicitly assume that n, the size of the vertex set of G, is part
of the input of A. In particular, the functions in the sequence A = (A,), can
be completely independent. We also remark that under a mild assumption on the
class of graphs under consideration, the constant ¢ > 1 can be freely thought of as
being equal to 1. For instance, it is trivial to check that if there is an algorithm
for ¢ > 1, then there is one for any ¢ > ¢’ > 1, and if the class of graphs is closed
under enlarging the vertex set the same holds for any ¢’ > c.
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As it is always clear from the context whether we talk about deterministic or
randomized algorithms, we suppress the mentioning of unique identifiers or ran-
dom bits and simply say that we apply A on G. We emphasize again that when
constructing distributed algorithms one should think of these assignments as be-
ing given to us by an adversary and our algorithm should perform the given task
successfully for every such assignment in the case of deterministic algorithms, and
with high-probability in case of randomized algorithms.

As our main goal is to discuss graph coloring problems and to keep the notation
simple, we formalize the definition of LOCAL complexity for vertex colorings only.
The definition of LOCAL complexity for edge colorings, or more generally for the
so-called locally checkable labeling (LCL) problems that are discussed in Section 3.2,
can be done completely analogously. We also remind the reader that we implicitly
work with the class of graphs of degree bounded by A € N, but the definition can
be generalized to any class of finite graphs.

Definition 3.3 (LOCAL complexity of graph colorings). The vertex coloring prob-
lem with k € N colors has a deterministic LOCAL complexity (t,)y if there is a
deterministic distributed algorithm A = (A,,),, of complexity (), such that for
every graph G the output coloring

v = A, (Bg(v,t,))

produced by A = (A,), is a vertex coloring of G with k& colors,

The randomized LOCAL complexity is defined analogously, with the main dif-
ference being that we demand that the output coloring is a vertex coloring of G
with & colors with probability at least 1 — 1/n?, where d > 0 is a fixed constant.

Note that the deterministic complexity is an upper bound on the randomized
complexity as interpreting the first |log(n®)| bits as an element of the space of
unique identifiers n¢ gives an injective map with probability at least 1 — % provided
that ¢ > 3.

In Example 3.1, we discussed how to decrease the number of colors of a vertex
coloring in one round of communication. Once we are familiar with this one step
procedure, nothing can stop us from iterating it. For example, if G is a 2-regular

graph and we start with a vertex coloring with k£ = 2222 ~ 2109729 many colors,
then this procedure decreases the number of colors in 4 rounds of communication
as follows

2107 5 17179869184 — 4624 +— 676 — 400.

It is not coincidental that it took us 4 steps to reduce a 4-times iterated exponen-
tial to a reasonably small number. A general argument (using the better bound
discussed after Example 3.1 and treating A as a constant) shows that starting
from vertex coloring with n¢ colors, where ¢ > 0 is a constant, we arrive to a
coloring with O(1) colors after at most O(log*(n)) many communication rounds.?
A particular instance of a starting coloring might be the assignment of unique

2 Recall that log*(n) is defined as the minimum number of times we need to apply log to
decrease n to a value that is at most 2.
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identifiers that is given to us in the setting of deterministic algorithms. Combining
these ideas allows to prove the upper bound in the following fundamental result.
Note that the last step, that is, getting from constant colors to A(G) + 1, can
be done by a simple distributed greedy algorithm by iterating over the constantly
many color classes and simulating the sequential greedy algorithm locally, see again
[79, Section 4.8] and [109, Section 2.1.1] for more details. We also refer the reader
to [6, Section 3.6-3.10] for a more detailed treatment of the dependency on A.

Theorem 3.4 (Distributed Greedy coloring®, Cole-Vishkin [38], Goldberg-Plotk-
in—Shannon [65], Linial [91]). Let A € N.

o There is a deterministic distributed algorithm of complezity O(log™(n)) that
produces a vertex coloring with A+ 1 colors on the class of graphs of degree
bounded by A.

o There is a deterministic distributed algorithm of complezity O(log™(n)) that
produces an edge coloring with 2A —1 colors on the class of graphs of degree
bounded by A.

Moreover, in both cases Q(log™(n)) rounds are necessary.

For the proof of the lower bound, which is originally due to Linial [91], together
with a description of randomized distributed algorithm for these colorings that
work without knowledge of the size of the graph, we refer the reader to the paper
of Holroyd, Schramm and Wilson [80, Sections 1 and 2], where the connection to
random processes, in particular, to finitary factors of iid, is discussed.

In the light of Theorem 3.4, we are compelled to raise the following questions.
Can we decrease the number of colors? Are there similarly efficient distributed
algorithms for Brooks or Vizing colorings? Does randomness give us any advantage?

In order to answer these questions, it is useful to discuss the global picture of
possible LOCAL complexities.

3.2. Global picture of the LOCAL model. The landscape of possible LOCAL
complexities of graph coloring problems where the correctness of a solution can
be checked locally, so-called locally checkable labeling (LCL) problems (see, e.g.,
[109, Section 2.4.2] for a formal definition),* is very well understood. This under-
standing has been a major success of several recent lines of work on local algorithms,
including [2,3,22,27,32,34,35,60-62,64,76,103,110] and many others. For the class
of graphs with degree bounded by A, a clean picture emerges, see Figure 1.°

The two most interesting features of this classification is that (i) there is only
one regime when randomness helps, (ii) there are automatic speed-up results that

3 This is typically referred to as A-+1-coloring, rather than “greedy”.

4 Apart from graph colorings, the class of LCL problems include for instance the perfect match-
ing problem, the sinkless orientation problem and various versions of the unfriendly coloring
problem.

5The picture is slightly simplified, in particular, log(n) and log(log(n)) complexities are only
conjectured [35], the best up-to-date general upper bounds in the corresponding regimes are
O(log?(n)) and O(log?(log(n))).
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often turn a proposed distributed algorithm into a faster one in a completely black-
box manner. In particular, item (ii) automatically answers question of the form, is
there an LCL problem that has (deterministic) LOCAL complexity ©(y/log(n))?

The fundamental result of Bernshteyn [12], mentioned in the introduction, turns
colorings produced by efficient distributed algorithms into measurable colorings.
Here, efficient distributed algorithms refers to the o(log(n)) regime, see Figure 1.
In particular, one needs to specify if randomness is allowed as this is the regime,
where it gives an advantage.

To understand the LOCAL complexities of our graph coloring problems, we need
to locate the corresponding blue dots in Figure 1. We have seen in Theorem 3.4
that the LOCAL complexity of greedy coloring, both deterministic and randomized,
is ©(log™(n)), the class of LCL problems with this LOCAL complexity is sometimes
referred to as the class of symmetry breaking problems.

Deterministic lower bounds (log(n)) for Brooks and strong version of Vizing
coloring are fundamental results in the theory of the LOCAL model. The original
argument uses the round elimination method of Brandt, see [22] for more details.
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FIGURE 1. (Courtesy of Jukka Suomela) The blue dots represent
classes of LCL problems (size of the dots suggest the importance
of the class), that is, every LCL problem, e.g., vertex coloring
with A colors, belongs to one of the dots. Deterministic LOCAL
complezity is given by the projection of the dot to the horizontal
axis and randomized LOCAL complexity is given by the projection
to the diagonal. Light salmon colored areas do not contain any
complexity class of LCL problems, in particular, they represent
the speed-up results.
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In Figure 1, we see that this automatically implies the randomized lower bound
Q(log(log(n))). Rather surprisingly the lower bounds also follow from the ground-
breaking work of Marks [96] in Borel combinatorics by applying Bernshteyn’s cor-
respondence [12]. We remark that Marks’ argument involves infinite games and
one of the deepest results in mathematical logic, the Borel determinacy theorem of
Martin [99]. In Section 6, we show how to adapt Marks’ game technique directly
in the LOCAL model and get an alternative and very simple proof of these funda-
mental lower bounds based on determinacy of finite games. The following theorem
should be compared with Theorem 4.7.

Theorem 3.5 (Distributed lower bounds for colorings, [26,33]). Let A > 3.

o Vertex coloring with A colors on the class of finite graphs of degree bounded
by A that do not contain Ka41 needs Q(log(n)) rounds in the deterministic
LOCAL model.

e FEdge coloring with 2A — 2 colors on the class of finite graphs of degree
bounded by A needs Q(log(n)) rounds in the deterministic LOCAL model.

3.3. Upper bound for Brooks and Vizing colorings. Finding optimal distributed
algorithms for graph colorings and decreasing the number of colors, ideally match-
ing the Brooks and Vizing bounds, has been a major challenge in the theory of
distributed computing. In this section, we give a brief overview of the up-to-date
results. Recall that for simplicity we treat A as a constant, see the survey of Rozhon
[109, Section 1.6] for references, results and open problems in the regime when the
complexity depends on A as well.

The local complexity, both deterministic and randomized, of the greedy vertex
coloring is O(log™(n)) by Theorem 3.4. The first non-trivial result concerning dis-
tributed Brooks colorings, that remained the state of the art for more than two
decades, was achieved by Panconesi and Srinivasan [105,106]. The combinatorial
core of their algorithm is based on the augmenting graph result for Brooks’ the-
orem that is discussed after Theorem 2.5, and yields both a deterministic and a
randomized distributed algorithm of local complexity O(log®(n)).

In the special case of trees of degree bounded by A > 3, Barenboim and Elkin
[5] described a deterministic distributed algorithm of local complexity O(log(n))
and Chang, Kopelowitz and Pettie [34] gave a randomized one of local complex-
ity O(log(log(n))), when A is sufficiently large. Importantly, these upper bounds
exactly match the lower bounds of Brandt, Fischer, Hirvonen, Keller, Lempiéinen,
Rybicki, Suomela and Uitto [26] that were proved for the class of graphs of girth
Q(log(n)), in particular, they also apply to the class of finite trees.

The following are the up-to-date results of Ghaffari, Hirvonen, Kuhn and Maus
[63], see also [54]. Note that these results are only one logarithmic factor away from
the lower bounds.

Theorem 3.6 (Distributed Brooks coloring, [63]). Let A > 3.

(1) Vertex coloring with A colors on the class of finite graphs of degree bounded
by A that do not contain Ka 1 has deterministic local complexity O(log*(n)).
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(2) Vertex coloring with A colors on the class of finite graphs of degree bounded
by A that do mnot contain Kai1 has randomized local complexity

O(log*(log(n))).

For results that concern decreasing the number of colors even further, we refer
the reader to the papers of Bamas and Esperet [4] for matching optimal coloring
and Chung, Pettie, and Su [37] for colorings of graphs of girth at least 3, 4 or 5.

Applying the vertex coloring results to the line graph of a given graph G implies
immediately the same upper bounds for edge colorings of G. Namely, the greedy
edge coloring with 2A — 1 colors have a local complexity ©(log*(n)). Similarly,
the same bounds as in Theorem 3.6 apply to edge colorings with 2A — 2 colors.
Chang, He, Li, Pettie, and Uitto [33] showed that edge coloring with 2A — 2 colors
have a deterministic lower bound Q(log(n)) even when restricted to the class of
finite trees of degree bounded by A. In the same paper [33], the authors developed
a randomized algorithm of local complexity O(poly(log(log(n))) for edge coloring
with A + v/Apoly(log(n)) colors.

Getting closer to the Vizing bound, Su and Vu [115] deviced a randomized dis-
tributed algorithm for edge coloring with A+2 colors of local complexity poly(log(n)).
Finally, Bernshteyn [11] matched the Vizing bound by both deterministic and ran-
domized distributed algorithms of local complexity poly(log(n)). This was subse-
quently improved by Christiansen [36], and Bernstehyn and Dhawan [14] to the
current state of art, see Section 7 for more details.

Theorem 3.7 (Distributed Vizing coloring, [14]). Let A € N.

(1) Edge coloring with A+1 colors on the class of finite graphs of degree bounded
by A has deterministic local complezity O(poly(log(log(n)))log®(n)).

(2) FEdge coloring with A+1 colors on the class of finite graphs of degree bounded
by A has randomized local complexity O(poly(log(log(n)))log?(n)).

4. Measurable combinatorics

Generalizing concepts from finite graph theory to uncountable graphs in the most
straightforward way often results in counter-intuitive behavior: the most spectac-
ular example of this is probably the Banach-Tarski paradox. It states that a three-
dimensional ball of unit volume can be decomposed into finitely many pieces that
can be moved by isometries (distance preserving transformations such as rotations
and translations) to form two three-dimensional balls each of them with unit vol-
ume(!). The graph theoretic problem lurking behind this paradox is the following;:
fix finitely many isometries of R? and then consider a graph where z and y are
connected if there is an isometry that sends = to y. Then our task becomes to find
a perfect matching in the appropriate subgraph of this graph — namely, the bipar-
tite subgraph where one partition contains points of the first ball and the other
contains points of the other two balls. Banach and Tarski have shown that, with a
suitably chosen set of isometries, the Axiom of Choice implies the existence of such
a matching. In contrast, since isometries preserve the Lebesgue measure, the pieces
in the decomposition cannot be Lebesgue measurable. Such observations lead to
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the following heuristic: if we want to use (uncountably) infinite graphs to model
the behavior of large finite graphs, we must impose measurability constraints on
the objects we are investigating.

Recently, results in this direction that lie on the border of combinatorics, logic,
group theory, and ergodic theory led to an emergence of a new field often called
descriptive or measurable combinatorics. The field focuses on the connection be-
tween the discrete and continuous and is largely concerned with the investigation
of graph-theoretic concepts. See [12,40,43,46, 49,56, 66,88, 90,95, 96, 98] for some
of the most important results, and [86,97,107] for surveys.

The usual setup in descriptive combinatorics is that we have a graph with un-
countably many connected components, each being a countable graph of bounded
degree. For example, in case of the Banach-Tarski paradox, the vertices of the
underlying graph are the points of the three balls, edges correspond to isometries,
and the degree of each vertex is bounded by the number of chosen isometries.

Before we formally introduce Borel graphs and their colorings, we illustrate the
subject on a classical -and impossible to omit- example from ergodic theory that
simulates nicely the type of behavior that one should expect when dealing with
measurable sets, and how such behaviors can be dramatically different from the
classical case.

Example 4.1 (Irrational rotations). Let o € [0, 7] be such that ¢ is irrational and
denote by T, the rotation of the circle S' by . Define the graph G, with vertex set
St as follows. We say that z,y € S! form an edge in G, if T,,(z) =y or Ty (y) = .

Observe that G, is 2-regular and, as £ is irrational, acyclic. In particular,
there are uncountably many connectivity components in G, each isomorphic to the
canonical graph on Z. As each of these connectivity components has chromatic
number 2, it follows that x(G,) = 2. In other words, we can write S' = By U By
such that T, (Bo) = B1, Ta(Bo) N By =0 and T, (B1) N By = 0.

A typical question in measurable combinatorics asks if the sets By and B can
be Lebesgue measurable, that is, if the measurable chromatic number of G, is equal
to 2 as well. We demonstrate that this is not possible. Suppose for a contradiction
that By and B; are Lebesgue measurable. Then by the properties above combined
with the fact that T, preserves measure, we conclude that A(By) = A(B1) = 1/2.
By the Lebesgue density point theorem, there is a nonempty open interval U with
the property that A(U \ By) < $A(U). But then as 2a/7 is also irrational, there is
an odd n € N such that A(T72(U)NU) > 2A(U), where T7 denotes the application
of T,, n-times. Note that T2 (By) = By as this holds for every odd n € N. An
easy volume argument in U then implies that By N By = T™(Bg) N By # 0, a
contradiction.

In a stark contrast, a vertex coloring with 3 colors can be achieved with Lebesgue
measurable sets, see Example 4.5.

4.1. Definitions and basic results. The connection between the local and global
structure of the graphs that are studied in measurable combinatorics is formalized
through classical descriptive set theoretic notions, see [84] for introduction to the
subject. Namely, the vertex set of a graph comes equipped with a o-algebra of
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measurable, or definable, subsets. The structure and all the operations on the
graphs that we are interested in, for example, graph colorings or partitions, have
to be measurable with respect to this o-algebra or its powers.

To avoid any pathological behavior, we always assume that the o-algebra turns
the vertex set into a standard Borel space. Formally, a standard Borel space is a
pair (X, B), where X is a set and B is a o-algebra of subsets of X that coincide with
a o-algebra of Borel sets for some complete separable metric on X. Slightly abusing
the notation, we refer to elements of B as Borel sets. By the Borel isomorphism
theorem, all uncountable standard Borel spaces are Borel isomorphic, so one may
safely assume that the vertex set of every Borel graph in this paper is, for example,
the unit interval [0,1] endowed with the c-algebra of Borel sets. If (X,B) is a
standard Borel space, then the product X x X and the set of all unordered pairs
()2() is naturally a standard Borel space.

Definition 4.2. A Borel graph G is a triple (V, E, B), where (V, B) is a standard

Borel space, (V, E) is a graph and E C (%) is a Borel subset of the standard Borel

space (%) of unordered pairs of V.

Borel graphs often appear in the nature. The most relevant examples for our
purposes are so called Schreier graphs of group actions. These are frequently inves-
tigated in the theory of random processes, measured group theory, ergodic theory
and dynamics.

Example 4.3 (The Schreier graph Sch(T', S, X)). Let I be a countable group and
S C T be a generating set of I". Assume that I' ~° X is an action of I" on a set
X. The Schreier graph Sch(T', S, X) of the action is a graph on the set X, where
x # a’ form an edge if there is v € S such that v-z =2" or v -2’ = x.

If (X,B) is a standard Borel space and the action I' ~" X is Borel, meaning
that v-_: X — X is a Borel isomorphism for every v € T', then Sch(I', S, X) is a
Borel graph.

The simplest example of a Schreier graph is the (right) Cayley graph of T' with
respect to S, denoted by Cay(T', S), that is, the Schreier graph that comes from the
right multiplication action of I" on itself. Observe that the graph in Example 4.1 is
of the form Sch(T', S, X), where I' = Z, S = {1} and X = S!.

Note that if S is finite, then the degree of Sch(T', S, X) is bounded by 2|S|. In
particular, the degree is uniformly bounded. Unless explicitly stated otherwise, we
are exclusively concerned with graphs with uniformly bounded degree.

Definition 4.4. Let G = (V| E, B) be a Borel graph. The Borel chromatic number
of G, denoted by xg(G), is the minimal k € N such that there is ¢: V' — [E] that is
a vertex coloring with & colors and ¢=1({i}) € B for every i € [k]. In other words,
there is a partition V' = B U...,UBy into Borel G-independent sets, where X C V
is called G-independent if it does not span any edge in G.

Analogously, we can define the Borel chromatic index of G and denote it as

X5(9)-
Is there an analogue of greedy colorings in the Borel context? As we most of the
time implicitly assume that the underlying vertex set (V, B) is uncountable, it is a
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priori not even clear that there is a countable decomposition V = X; LU X, L. .. into
G-independent Borel sets. Let us remark that the main result of the seminal paper
of Kechris-Solecki-Todor¢evié¢ [88], which initiated the study of Borel chromatic
numbers, was to give a complete characterization of the Borel graphs that admit
such a countable decomposition. In particular, one of their results states that in the
bounded degree case such a decomposition always exists. Compare the following
example with Example 3.1.

Example 4.5 (Countable colorings from finite degrees). Let G = (V, E,B) be a
Borel graph that is locally finite, that is, degg(v) € N for every v € V. By the
Borel isomorphism theorem, we may assume that V = 2N, that is, every v € V
can be represented by an infinite sequence of Os and 1s. The crucial observation
is that for every v € V and a finite set A C V ~ {v}, there is £ € N such that
v | [€] # x| [ for every x € A. Hence, for every v € V we may set ¢/(v) =v | [K],
where k € N is the minimal number that have this property with respect to the
finite set Ng(v). It is a matter of routine work with Boolean operations to check
that the map ¢’: V — 2<N where 2<V is the set of finite sequences of 0s and 1s,
is a Borel map that has the property that ¢/(v) # ¢/(w) for every {v,w} € E. In
particular, composing ¢’ with any bijection between the countable sets 2<N and N
defines a Borel map ¢: V' — N that is a vertex coloring with N colors, that is,

V=[] i

i€N
is a decomposition into Borel G-independent sets.

Example 4.5 serves as a basic symmetry breaking device in the measurable con-
text that allows to simulate local algorithms. It is an interesting philosophical
problem if the computational power of Borel constructions consists merely of trans-
finite iteration of this process possibly on increasing graph powers of the underly-
ing graph.

Similarly as in the proof of the upper bound from Theorem 3.4, it is possible to
modify the countable coloring above into a greedy coloring by simulating locally
the sequential greedy algorithm.

Theorem 4.6 (Borel greedy colorings, [88]). Let G = (V, E,B) be a Borel graph
such that A(G) € N. Then we have xp(G) < A(G) + 1 and x5(G) < 2A(G) — 1.

In a groundbreaking paper [96], Marks proved that the Borel greedy colorings
are optimal even for Borel graphs that are regular and acyclic. The proof uses one
of the deepest theorems in descriptive set theory, the determinacy of two player
games with a Borel pay-off set, proven by Martin [99].

Theorem 4.7 (Borel lower bounds for colorings, [96]). Let A > 2.

(1) There is an acyclic A-regular Borel graph G that does not admit Borel vertex
coloring with A colors.

(2) There is an acyclic A-regular Borel graph G that does not admit Borel edge
coloring with 2A — 2 colors.
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One should compare the above statement with Theorem 3.5. We will discuss the
proof of this result in some detail in Section 6.

4.2. Measure, as the analogue of randomness. In ergodic theory, measured
group theory or the theory of random processes on countable graphs, people study
combinatorial problems on Borel graphs that are equipped with an additional struc-
ture, Borel probability measure that satisfies the mass transport principle. This con-
cept is also known under the names pmp (probability measure preserving) action,
graphing or unimodular random network.

Formally, let G = (V, E, B) be a Borel graph and p be a Borel probability measure
on (V,B). We say that yu satisfies the mass transport principle if

(4.1) /Adegg(LB) dy = /Bdegg(x,A) du

for every A, B € B. That is, counting edges from a set A to B and from B to A is
the same.

Typical examples of Borel graphs that satisfies the mass transport principle are
the Schreier graphs, introduced in Example 4.3, under the additional assumption
that the Borel action preserves a given Borel probability measure p. We comple-
ment this family of examples with examples coming from the theory of random
processes.

Example 4.8 (Examples of mass transport). (a) iid graphings: Let T be a count-
able group and S C I be a finite symmetric generating set of I'. The vertex set of
the iid graphing Gr consists of all maps i: I' — {0,1}Y, and two such maps i # j
form an edge if there is s € S, such that

) =40)

for every v € I'. If we endow the vertex set with the iid power of the coin-flip mea-
sure, we get that almost surely every connectivity component of Gr is isomorphic
to Cay (T, S). It is easy to check that Gr is indeed a graphing.

(b) percolation graph on Z¢ (see [1] for an introduction to the subject): A more
complicated example of a graphing can be described using the notion of site (or ver-
tex) percolation. Consider the iid graphing Gz« and fix p € [0, 1] with the property
that the site percolation on Z¢ contains infinite cluster with positive probability.
Define a subset of the vertex set A to consist of those functions i: Z¢ — {0, 1}
such the the origin belongs to an infinite cluster. Define Gza , to be the graph
induced in A. It can be again easily shown that, after re-normalizing the measure,
Gza p is indeed a graphing. Observe that Gza 1 = Gza.

The mass transport principle translates some of the intuition about finite graphs
into the measurable setup. In the following definition of a measured graph, we work
in bigger generality and do not require any condition on the Borel probability
measure.

Definition 4.9 (Measured graph and measurable chromatic numbers). A measured
graph is a quadruple G = (V, E, B, i), where (V, E, B) is a Borel graph and p is a
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Borel probability measure on (V, B). A measured graph G is called a graphing if p
satisfies the mass transport principle.

The p-measurable chromatic number of G, denoted by x,(G) is the minimal k € N
such that there is a p-null set N € B and a decomposition V = N U By Ul --- LI By
such that B; is a Borel G-independent set for every i € [k]. In other words, the
Borel chromatic number is equal to k£ off of a py-null set.

The p-measurable chromatic index of G is defined analogously and is denoted

by x;,(9).

It follows immediately that x,(G) < xg(G) for every measured graph G =
(V,E, B, 1), where we abuse the notation and define x5(G) to be the Borel chro-
matic number of the underlying Borel graph of (V, E,B) of G. We remark that it
is one of the most intriguing problems in the area to find examples of local graph
coloring problem that could be solved on graphings but not on measured graphs
in general.

Does ignoring events that happen on null sets help with graph colorings, in
particular, can the inequality x,(G) < x5(G) be strict? Does the analogy between
deterministic and randomized algorithms, and Borel and measurable colorings go
deeper? The answer to the first question is clear yes as we demonstrate next. The
answer to the second question is more complicated, see Remark 4.13.

Investigating measurable chromatic numbers on bounded degree Borel graphs
has a rich history that connects the theory of random graphs, graph limits, ran-
dom processes and measured group theory, see the survey of Kechris and Marks
[86, Section 6] for many results in this direction. An illustrative example of this
rich connection is the general lower bound Q(A/log(A)) on measurable chromatic
numbers of acyclic A-regular graphs (where A is large) that follows from the semi-
nal result of Bollobds [19] on the size of maximal independent set in random regular
graphs combined with the theory of local-global convergence developed by Hatami,
Lovéasz and Szegedy [78].

Complementing Theorem 3.6, the measurable analogue of Brooks theorem was
proved by Conley, Marks and Tucker-Drob [42].

Theorem 4.10 (Measurable Brooks coloring, [42]). Let A > 3 and G = (V, E, B, 1)
be a measured graph that does not contain Kay1 as a subgraph and such that A(G) <
A. Then x,(G) < A.

Combining Theorem 4.7 and Theorem 4.10 yields for every A > 3 the existence
of an acyclic A-regular Borel graph G such that x,(G) < A < A+1 = xg(G)
for every Borel probability measure .° Note that this result exactly matches with
Theorem 3.5 and Theorem 3.6 from the theory of distributed computing. While
all four theorems were proven independently, it follows from the correspondence of
Bernshteyn [12] that Theorem 4.7 implies Theorem 3.5, and Theorem 3.6 implies
Theorem 4.10 in a black-box manner.

6n fact, for large A the gap is much bigger as the measurable chromatic number of acyclic
A-regular graphs is bounded by O(A/log(A)) by [12, Theorem 3.9].
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In the case of measurable edge colorings, Cséka, Lippner and Pikhurko [47]
showed that x/,(G) < A+1 for a graphing G = (V, B, E, ;1) that does not contain odd
cycles and proved an upper bound of A+O(v/A) colors for graphings in general. In
a related result, Bernshteyn [9, Theorem 1.3] proved that A+o0(A) colors are enough
(even for the so-called list-coloring version) provided that the graphing factors to
the shift action T' ~ [0, 1] of a finitely generated group I'. Answering a question of
Abért, the first author and Pikhurko [71] proved a measurable version of Vizing’s
theorem for graphings, that is, x},(G) < A+1 for any graphing G = (V, B, i1, E). As
we discuss in Section 7, the technique developed in [71] was applied in the LOCAL
model by Bernshteyn [11] and others [14,36]. Finally, the full measurable analogue
of Vizing’s theorem was derived by the first author [69].

Theorem 4.11 (Measurable Vizing coloring, [69]). Let G = (V, E, B, 1) be a mea-
sured graph. Then x/,(G) < A(G) + 1.

Combining Theorem 4.11 and Theorem 4.7 gives for every A > 3 an example of
an acyclic A-regular Borel graph G such that x},(G) < A+1 < 2A —1 = x(G) for
every Borel probability measure pu.

A Borel version of Vizing’s theorem is possible under additional assumption on
the structure of the graph. Most notably, Bowen and Weilacher [20] showed that
x5(G) < A(G) + 1 under the assumption that G is bipartite and has finite Borel
asymptotic dimension, notion that generalizes the classical notion of asymptotic
dimension introduced by Gromov [75] to the setting of measurable combinatorics
by Conley, Jackson, Marks, Seward and Tucker-Drob [40], and Bernshteyn and
Dhawan showed that xj3(G) < A(G) + 1 under the assumption that G has subex-
ponential neighborhood growth. Stronger results in the special case of free Borel
Z%-actions, that is, Borel edge coloring with 2d colors which is the analogue of
Konig’s line coloring theorem in this setting, were obtained independently around
the same time in [7,31,74,121].

Remark 4.12 (Baire measurable colorings). A topological relazation of Borel col-
orings is formalized using the notion of Baire measurable functions and meager
sets. Similarly to the measurable case, we are interested in coloring a given Borel
graph off of a topologically negligible set for any compatible Polish topology that
generates the underlying standard Borel structure. We refer the reader to the book
of Kechris [84] for basic notions and to the survey of Kechris and Marks [86] for
results in that direction.

Remark 4.13 (Derandomization). As illustrated in Figure 1 and by the distributed
Brooks’ theorem, in the regime o(log(n)) randomness gives an advantage in the
LOCAL model for solving LCL problems on graphs of degree bounded by A > 3.
This behavior might change when we restrict to a smaller class of graphs. For
example, randomness does not help on graphs that look locally like the grid Z¢, see
[27], and the celebrated conjecture of Chang and Pettie [35] would imply the same
for any graph class of subexponential growth.

On the side of measurable combinatorics, Cséka, Grabowski, Mathé, Pikhurko
and Tyros [45] found a Borel version of the Lovdsz Local Lemma for graphs of
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subexponential growth, which when combined with the correspondence of Bern-
shteyn shows that if an LCL problem has randomized LOCAL complexity O(log(n))
then it can be solved in a Borel way on such graphs, see [12, Theorem 2.15]. This
is a particular instance of a derandomization on graphs of subexponential growth,
see also [16,44,117].

Naturally, it is tempting to ask about a higher analogue of derandomization.
That is, for what class of Borel graphs does the classes of LCL problems that
admit measurable and Borel solution coincide? While the answer is positive for
Borel graphs that look locally like Z even if we allow LCL problems with inputs [72],
a counterexample for Borel graphs that look locally like Z? was recently constructed
by Berlow, Bernshteyn, Lyons and Weilacher [8].

A related question asks whether assuming that a given LCL problem can be
solved measurably on all measured graphs of degree at most A implies the existence
of a Borel solution on subexponential growth Borel graphs of degree at most A.
The answer to this question turned out to be negative as well, in a recent work
in progress a counterexample was found by Bowen, the first author and Rozhon.
Namely, it can be shown that the LCL problem that is a union of the sinkless
orientation problem and “mark the line” problem can be solved measurably on
all graphs, but does not admit a Borel solution on graphs that can have growth
arbitrarily close to a linear growth.

5. Summary of coloring results and related topics

For the convenience of the reader, we summarize the results presented in previous
sections in a table. The second column, that is, greedy coloring, refers to both a
vertex coloring with A 4+ 1 colors and an edge coloring with 2A — 1 colors. Note
that while the conjectured LOCAL complexity for Brooks coloring is ©(log(n))
deterministic and ©(log(log(n))) randomized, the randomized LOCAL complexity
of Vizing coloring remains mysterious, see Problem 9.1.

Recall that we treat A as a constant, in particular, O(n) = O(m), where n
and m denote the sizes of the vertex and edge set of a given finite graph G. We
denote as DLOCAL and RLOCAL the deterministic and randomized LOCAL model
respectively.

5.1. Decidability and complexity. Complexity considerations are an important
topic not only in classical graph theory but also in measurable combinatorics and
distributed computing, where they give natural lower bounds on the existence of
measurable solutions or efficient distributed algorithms.

We have seen that the Brooks and Vizing colorings can be constructed by a
polynomial time algorithm. What if we want to find a “true” coloring that would
match the chromatic number or index of a given graph? A classical result of Karp
[83] says that deciding the existence of a vertex coloring with k colors of a given
graph is NP-complete for every k > 3. The situation with chromatic numbers is
more complicated, even approximate computations are known to be hard in various
senses. For example, we have the following.
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Graphs of degree bounded by A

Greedy coloring Brooks coloring Vizing coloring
DLOCAL upper bound  O(log*(n)) [38,65,91] O(log?(n)) [63] poly(log(log(n))) log®(n) [14]
DLOCAL lower bound  (log™(n)) [91] Q(log(n)) [26] Q(log(n)) [26]
RLOCAL upper bound  O(log*(n)) [38,65,91] O(log®(log(n))) [63] poly(log(log(n)))log?(n) [14]
RLOCAL lower bound  Q(log™(n)) [91] Q(log(log(n))) [34]  Q(log(log(n))) [33]
Borel yes [88] no [96] no [96]
measurable yes [88] yes [42] yes [69]
augmenting subgraphs ©(1) O(log(n)) [105] O(log(n)) [33,30]
deterministic O(n) O(n) O(nlog(n))
sequential algorithm [113] [57]
randomized O(n) O(n) O(n)
sequential algorithm [113] [14]

Theorem 5.1 ([125]). For every € > 0 it is NP-hard to decide the chromatic
number up to a factor of n'=¢ of a graph of size n.

Nevertheless, a combination of the remarkable theorems of Emden-Weinert,
Hougardy and Kreuter [52], and Molloy and Reed [102] shows that there is a di-
chotomy for detecting large chromatic numbers via local obstacles, akin to Brooks’
theorem. Let A € N and set ka to be the maximum integer such that (k+1)(k+2) <
A, Le., ka =~ VA — 2.

Theorem 5.2. Let A be large. Then we have the following.

o [52] It is NP-complete problem to check whether x(G) < c for graphs of
degree bounded by A, where 3 <c < A —ka—1,

e [102] There is a linear time deterministic algomthm to check whether x(G) <
¢ for graphs of degree bounded by A, where A — ka < c¢. Moreover, pro-
ducing vertex coloring with ¢ colors, zf it exists, can be done in polynomial
time.

A recent work of Bamas and Esperet [4] showed that the same dichotomy” holds
in the LOCAL model as well. In particular, they showed that in the regime when
c is above the threshold, there is a fast randomized distributed algorithm that
produces vertex coloring with ¢ colors or finds a local obstruction if such coloring
does not exists. On the other hand, they show that if ¢ is below the threshold, then
the LOCAL complexity of any distributed algorithm that produces vertex coloring
with ¢ colors on graphs that have chromatic number equal to ¢ is Q(n). These results
have a complete analogue in measurable combinatorics, see [12, Section 3.A].

For edge colorings, the situation is simpler in the sense that x'(G) € {A(G), A(G)+
1} by Vizing’s theorem. There are known sufficient conditions for x/(G) = A(G).
For example, by Konig’s theorem it is enough if G is bipartite, see the book of
Stiebitz, Scheide, Toft, and Favrholdt [114] for more details in this direction. Holyer
[81], however, showed that distinguishing between the two cases in general is com-
plicated.

7 The threshold in their result is off by 1 compared to Theorem 5.2
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Theorem 5.3 ([81]). For every A > 3. It is NP-complete to decide if a graph G
of maximum degree at most A satisfies X' (G) < A.

In descriptive set theory, complexity of a collection of structures with a given
property, for example, Borel graphs of a given Borel chromatic number, is measured
using the complexity of the set of codes for these structures. These codes can be
identified with real numbers, hence a collection of structures with a given property
can be thought of as a subset of R, and the complexity is measured using the
projective hierarchy of subsets of R, see [84, Section 37] for the definition and
basic properties of projective sets. Roughly speaking, the complexity measures
the number of alternating quantifiers over R that are needed for the definition of
the set. For instance, the standard definition of the set of Borel graphs of Borel
chromatic number at most k € N, that is,

(5.1) {G=(V,E,B):3Borel c: V — [k] such that V{z,y} € E c(z) # c(y)},

can be expressed by first assuming (V, B) = [0, 1] and then encoding the parame-
ters F and ¢ as real numbers. In particular, the set from (5.1) is defined using 3V
quantification over R. Such sets are called 31 sets. The class of X} sets gives a
natural upper bound on the complexity of codes for the existence of graph colorings
on Borel graphs. Analogously to NP-completeness, if both quantifiers 3V in the
definition of a set are necessary, then we say that it is 33-complete. Surprisingly,
there is an analogue of the aforementioned result of Karp in measurable combina-
torics. In fact, the following result implies a strong failure of Brooks’-like theorems
in the Borel context.

Theorem 5.4 ([25,118]). Let k > 3. The set of Borel graphs of Borel chromatic
number at most k is Xl-complete set. This is true even if we restrict to the class
of k-regular acyclic Borel graphs. In contract, Borel graphs admitting a Borel 2-
coloring form a II1 set.

It is worth mentioning that in the past couple of years a number of further
results have been shown concerning descriptive complexity of combinatorial notions,
revealing interesting connections particularly to the complexity theory of constraint
satisfaction problems (CSPs).

Note that graph coloring problems are special cases of homomorphism problems
between relational structures (also called CSPs), for example, a k-coloring of a
graph is just a homomorphism to the complete graph Kj. In the finite world, this
kind of homomorphism problems are well investigated: a major recent breakthrough
is that deciding the existence of a homomorphism to any H is either in P or NP-
complete, [21,29,124]. In fact, a complete algebraic understanding of structures H
for which the homomorphism problem is easy/hard has been reached.

Thornton [116] has initiated a systematic study of the complexity of Borel ho-
momorphism problems of the following sort: given a finite relational structure H,
decide the descriptive of complexity of Borel structures (with the same signature)
that admit a Borel homomorphism to H. Interestingly, if the H homomorphism
problem is known to be NP-complete, then the corresponding Borel collection is
3l-complete. However, recent results of the authors [73] show a stark contrast
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with the finite world: if H corresponds to solving systems of linear equations over
a finite field—this problem is in P in the finite case, by Gaussian elimination—the
Borel problem is still Xi-complete.

A different, wide open question is the investigation of the complexity of hy-
perfinite Borel graphs, see, e.g., [82,85]. Note that establishing that hyperfinite
Borel graphs form a 33 set would yield a negative answer to some of the most
important conjectures concerning this concept. In this direction, the first author
and Higgins [70] have shown that deciding whether a Borel graph has Borel as-
ymptotic dimension 1, which is a strengthening of hyperfiniteness, is 3i-complete.
Further, surprisingly, it turns out [55] that 3i-completeness of hyperfiniteness also
follows from a negative answer to the increasing union conjecture [82], that is, the
statement that hyper-hyperfinite equivalence relations are hyperfinite.

Remark 5.5 (Deciding the Global Picture). It is an exciting question to understand
for what graph classes is the membership question for LCL problems in Figure 1
itself decidable. That is, after we fix a graph class, is there an algorithm that would
take an LCL problem as an input and output its LOCAL complexity? As it is pos-
sible to simulate the halting problem using LCL problems on Z?, the membership
problem is known to be undecidable on graphs that look locally like the grid Z,
whenever d > 1, see [103] and [27].

The same questions can be asked in the context of measurable combinatorics.
That is, after we fix a class of Borel graphs, is there an algorithm that would take
an LCL problem as an input and output whether it can be solved in a Borel way
on every Borel graph in the class? Our current knowledge here is identical with the
one in the LOCAL model. For example, undecidability for LCL problems on Borel
graphs that look locally like Z?, where d > 1, has been independently established
by Gao, Jackson, Krohne and Seward [59].

5.2. Formal connections. In this section we give a brief overview of the formal
connections between distributed computing and measurable combinatorics that
were first discovered in the seminal paper of Bernshteyn [12]. Throughout this
section, we work with a fixed class of finite graphs that approzimate locally a class
of Borel graphs. One should think of the class of finite graphs of degree bounded by
A and the class of Borel graphs of degree bounded by A, or the class of finite trees
and the class of Borel acyclic graphs. Under these mild assumptions, Bernshteyn
[12] proved the following, see Figure 1.

Theorem 5.6. Let I be a graph coloring problem, or an LCL problem in general.

(1) If the deterministic LOCAL complezity of II is o(log(n)), then II admits a
Borel solution.

(2) If the randomized LOCAL complexity of I1 is o(log(n)), then IT admits a
measurable solution.

Note that this result allows a black-box translations of upper bounds from dis-
tributed computing to measurable combinatorics and lower bounds in the opposite
directions. We refer the reader to [12, Section 3] to see some of the striking appli-
cations of Theorem 5.6.
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A natural question arises: can the implications in Theorem 5.6 be reversed?
That is, can the existence of a Borel or a measurable solution imply the existence
of an efficient distributed algorithm? It turns out that in the setting of deter-
ministic distributed algorithms, the right analogue on the descriptive set theory
sides are continuous solutions. Gao, Jackson, Krohne and Seward [59] combina-
torially characterized what LCL problems can be solved in a continuous way on
74, Their result immediately implies that this class coincide with LCL problems
of deterministic LOCAL complexity o(%y/n) on finite graphs that look locally like
74, see [74, Section 7] for a high-level overview of the argument. This was gen-
eralized independently by Bernshteyn [13] and Seward [111] to Cayley graphs of
finitely generated groups, and by Brandt, Chang, Grebik, Grunau, Rozhon and
Vidnyénszky [24] to regular trees.

We refer the reader to [17,23,58,72,74,80,92] for further information about the
relationship between the complexity classes of LCL problems for particular graph
classes and for connections to the theory of random processes, in particular, finitary
factors of iid.

6. Marks’ games

In this section we discuss the adaptation of seminal results of Marks, see Theorem
6.14 and [96], to the LOCAL model. This adaptation has been useful in several
different ways. First, it resulted in new proofs of lower bounds for colorings and
new results for general LCL problems on bounded degree trees in the LOCAL
model. Second, a certain technical difficulty pointed towards introducing the main
novelty to be discussed, namely the homomorphism graph/ID graph technique in
the LOCAL model. Third, a transfer of this technique to descriptive combinatorics
found a number of new applications there.

As discussed in Section 4, Marks has shown that the greedy upper bound for ver-
tex and edge coloring of A-regular graphs is sharp in the Borel context, even in the
case of acyclic graphs. His key idea was to define two player games, where, by strat-
egy stealing arguments, the existence of winning strategies for any of the players
contradicts the existence of Borel colorings. In what follows, we will only describe
these techniques in the case of vertex colorings, nevertheless, they can be used in a
much wider context, to rule out for example matchings or homomorphisms. These
generalizations are often non-trivial and require additional technical work, e.g.,
considering hypergraphs instead of graphs and defining more complicated games,
see [25,96,117].

Let us also mention that the first lower bounds for deterministic vertex colorings
of trees of degree bounded by A were proved in [26], and later Brandt [22] has for-
malized these ideas in his celebrated round elimination method. Roughly speaking,
what the round elimination method does is the following: assuming that a labeling
problem IT on regular trees is solvable by an r-round algorithm, it constructs a new
problem II’ solvable by an r — 1-round algorithm. Now, if IT happens to be a fixed
point of the operation /, then it must be solved by a O-round algorithm showing
that either II is trivial, or the original assumption was false.®

8 See https://github.com /olidennis/round-eliminator for a fully automated computation of II’.
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This method has a striking similarity to Marks’ technique in certain cases. For
example, in the case of so called sinkless orientation problem, which is a fixed point
of /, round elimination essentially produces strategies for the players in the games
similar to what Marks considered. Hence, it would be very tempting to think that
these methods are the same, say, for fixed points of the operation /. This is not
the case in general: there are fixed point LCL problems on trees solvable in the
Borel context but unsolvable in the LOCAL model. Nevertheless, understanding
the exact nature of this connection is still an exciting open problem, see [92].

The adaptation of Marks method will be illustrated by proving the following.

Theorem 6.1. There is no deterministic algorithm of complexity o(log(n)) that
produces a vertex coloring with A colors of acyclic graphs of degree < A.

There are three main ideas in the proof, all of which we will discuss in this
section. As mentioned above, the most important one comes from [96]:

1. Games and strategy stealing to rule out the colorings.

As we will see, executing this idea runs into certain problems with the uniqueness
of the IDs in the LOCAL model and with yielding acyclic graphs in the descriptive
case. Let us also mention that this issue is present in Brandt’s construction, as
well; he overcame it by using probabilistic arguments that do not work in the Borel
context.

In [23] the homomorphism graph/ID graph technique was invented, which works
in both LOCAL and Borel realms.

2. Homomorphism graphs/ID graphs to enforce injectivity.
Subsequently, it became apparent that homomorphism graphs serve as a general
tool to transfer properties of large degree graphs to bounded degree graphs. This

has been widely utilized in [25] in the descriptive case, but not yet in the LO-
CAL model.

3. Formulating transfer principles and using games as voting systems.

Before turning to the proof, let us recall that by Bernshteyn’s correspondence
theorem (Theorem 5.6) inexistence of Borel solutions to a locally checkable problem
automatically implies a corresponding result in the deterministic LOCAL model in
o(log n)-many rounds, so formally, for the below results, we don’t have to spell
out the finitary adaptations. Despite this, we would like to describe them, since it
has been developed in parallel to Bernshteyn’s theorem, moreover, we believe that
there should be models stronger than deterministic LOCAL (see Problem 9.15), for
which these techniques still could be used.

Technical preliminaries. In the rest of this section, Ta will stand for the A-regular
infinite tree and T} for an r-neighborhood Br, (v,) of any (every) vertex v in Ta.
As discussed in Section 3 a deterministic r-round LOCAL algorithm on a fixed
graph is the same as a map from r-neighborhoods with unique IDs of vertices of the
graph. Therefore, sometimes we will consider TX as being rooted in v (which does
not change the isomorphism type of such graphs), and we will evaluate algorithms
on such neighborhoods, yielding a color on the root. Also, we will see that it is
possible to prove lower bounds already from the existence of algorithms that map
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labeled copies of Tx to different colors, hence we could restrict our attention to
only such maps. Moreover, in the case of vertex colorings, it suffices to check the
validity of the algorithm on any pair of adjacent vertices, thus we will typically
construct labelings of Tg“ to derive a contradiction.

It will be also convenient in the first part of our discussion to consider maps
from labeled trees with labelings that are not necessarily injective. This motivates
the following definitions (here “G” comes from generalized).

Definition 6.2. An r-round GLOCAL algorithm (on trees with degrees < A) is
a partial function A, from (isomorphism classes of) such labeled rooted trees of
radius < r to some set 2.7

If G is a labeled tree with A(G) < A, we can run A, on G: at any vertex v of G
we take the labeled isomorphism class of Bg(v,r) and feed it into A,.. This gives
a partial vertex labeling of G.

Definition 6.3. Let F be a collection of finite labeled trees of degrees < A. An
r-round GLOCAL algorithm A, vertex colors F, if for any G € F, if A, is run on
G in the above sense, it yields a vertex coloring of G (in particular, every vertex
must get a color).

6.1. Games. We describe the most straightforward finitary adaptation of the orig-
inal proof of Marks. This, in itself is not suitable to exclude colorings in the LOCAL
model, as the labels come from the set {0,1,2,3}, and hence results only in a less
interesting statement, but still encompasses the main idea. For the sake of simplic-
ity, we will consider labeled Tg“’s with labels € {0,1,2,3}, so that neighboring
vertices must have different labels, i.e., the labeling is injective on the edges. Denote
this collection by EI§+1. This can be viewed as a simplified version of the LOCAL
model, in which the IDs are not unique, and the algorithm does not know the size
of the graph.

Theorem 6.4. Let r be arbitrary. There is no r-round GLOCAL algorithm to
3-color EIT.

Proof. Towards contradiction, assume that such an r-round GLOCAL algorithm A,
exists. For every v € {0,1,2,3} and ¢ € {0,1,2} define the game G(v, ) as follows.
Two players, I and I label with numbers € {0,1,2,3} the r-neighborhood of the
rooted 3-regular tree from the root, according to Figure 2, in rounds, alternatingly.

The root is initially labeled by v. In the nth round I and I label all the vertices
having distance n from the root. In the first round I labels one of the neighbors of
the root, then II labels the other two neighbors. Then I continues with labelling
the unlabelled neighbors of her first move (i.e., her “side”), then I with his, etc.
The only rule which have to be maintained is that neighboring vertices must get
different labels along the game. After r-rounds they label an r-neighborhood of the
root, thus the following winning condition is well defined:

9 Note that in the definition of GLOCAL, we do not require the algorithm to always have an
output. However, in practice, when we say that such an algorithm exists on some graph class, it
necessarily outputs colors on vertices of those graphs. Thus, alternatively, we could require that
A, is defined on every isomorphism class, but only correct on the class of graphs in question.
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I wins in G(v,14) iff A, evaluated on the labeled r-neighborhood
obtained by the end of the game gives a color different from i.
The basic strategy stealing observation is the following.

Lemma 6.4.1. For every v there is an i so that I has no winning strategy in

G(v,1).

Proof. Playing these winning strategies, (0;)iefo0,1,2}, against each other (in the
obvious manner, by “rotating them”, see Figure 3) would yield in a partial labeling
of T3 on which A does not output any color. O

Now, by the pigeonhole principle, there are distinct v, w € {0,1,2,3} and an 4
so that I7 has winning strategies in G(v,7) and G(w, ), denote these by ¢ and 7.
Play o and 7 against each other so that for o we pretend that I’s first move was w,

Y / ] T labels
N

II labels

- 1st
‘ 2nd

FIGURE 2. The game G(v,1)

02

01

FIGURE 3. Strategy stealing
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and for 7 we pretend that it was v in the first round. Then, in the second round we
use the response from 7 as I'’s play for o, and similarly for 7 we use ¢’s response,
etc (see again Figure 3).

This way we get a partial labeling of T *1 extend it in an arbitrary manner to
an element of EIQH. Now, evaluating A, on the central nodes labeled by v and w,
we must obtain the color ¢ at both vertices, since ¢ and 7 are winning strategies,
contradicting that A, correctly solves the 3-coloring problem. O

6.2. Homomorphism graphs. Of course, the key question now is how to use these
ideas to obtain results about the ordinary LOCAL model. The reader can convince
themselves that adding rules to the game in the most naive way (e.g., requiring
one of the players to use injective IDs) ruins the symmetry on which the strategy
stealing arguments rely.

Observe that the above restrictions on the labeling can be stated equivalently
as requiring the labeling to give a homomorphism from 73 to K4, the complete
graph on 4 vertices, and this, restricted injectivity can be maintained throughout
our games. One might replace K4 with any other graph, motivating the following
definition.

Definition 6.5. Let Hom(T'x, H) be the set of labelings of TX that are homomor-
phisms to H.

Now, of course, requiring homomorphisms alone cannot guarantee injectivity.
However, adding edge labeling helps: instead of the A-regular tree consider it
equipped with a proper edge A-coloring and assume that H is equipped with a
A edge labeling (which is typically not a proper coloring). To emphasize that
we consider edge colored version of Ta, we denote it by 7. The next simple
observation is the key.

Proposition 6.6. Assume that ¢: TA — H an edge label preserving homomor-
phism and H is acyclic. Then @ is injective. Similarly, for any k > 0 if the girth
of H is > 2k + 2 then ¢ is injective in every k + 1-neighborhood.

Proof. To see the first statement, note that since its range is acyclic, if ¢ was not
injective then there would be some (u,v) and (v, w) distinct edges in T so that
o(u) = p(w). But as (u,v) and (v, w) are adjacent, their color is different, so the
color of their image must also be different, contradicting ¢(u) = ¢(w). The proof
of the second statement is identical. O

Thus, it is useful to consider the next definition.

Definition 6.7. Assume that the graph H is equipped with a A edge labeling.
Let Hom®(Tx,H) be the set of labelings of By, (v,7) (for any v in T}) that are
homomorphisms to H and preserve edge labels.

A way to view the graph H is as a “set of rules”, or a “game plan”, for the
players in the game, as we will soon see.
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6.3. Transfer principles. Now, we can summarize the intuition which guides us.
We take a suitable graph H, and consider all the possible homomorphism labelings
of the tree TA to H. We would like to prove that there is no “local” coloring rule to
A-color the resulting graphs. Assume that there is such a rule. For each v € V()
we can label the tree in a lot of ways so that the root is labeled by v. Of course, all
these labeled rooted trees get a color, according to the rule. We use the game to
decide the most popular color i, that is, when IT has a winning strategy in G(v, ).
It turns out, that this transfers the original coloring to a coloring of H.
Let us state the transfer principle for the distributed case.

Theorem 6.8 (Transfer principle 1, LOCAL). Let H be a finite graph. TFAE:

(1) H admits a A-coloring.

(2) There exists a 0-round GLOCAL algorithm to A-color Hom(Tx,H), for
all r.

(3) There exist an r and an r-round GLOCAL algorithm to A-color
Hom(Tx™, H).

Proof. To see that (1) implies (2), assume that H admits a A-coloring. Given a
vertex in some element of Hom(Tx,H), it has a label from #. Color the vertex
with the color of its label.

Clearly, (2) = (3), so it suffices to show that (3) implies (1), so assume that
Hom(7y™',H) admits an r-round GLOCAL algorithm .A. For each color i and
vertex v € V(H) consider the game G(v,4) defined as follows: two players build
a neighborhood of a vertex of some element in Hom(7T'5, ), according to Figure
2, where the vertex is labeled by v and the two players have to maintain that the
labeling is a homomorphism to H at every step.

1 wins iff A evaluated on the labeled r-neighborhood obtained by the end of the
game gives a color different from 1. O

Lemma 6.8.1. For every v there is an ¢ so that I has no winning strategy in

G(v,1).

Proof. Playing these winning strategies against each other would yield in a labeling
of TA on which A does not output any color. O

The next lemma finishes the proof of the transfer principle.
Lemma 6.8.2. For av € V(H) let
c(v) = min{i : G(v,1) is won by II}.
Then ¢ is A-coloring of H.

Proof. Assume that this is not the case, i.e., there exists some (v, w) € H so that
¢(v) = ¢(w). Then IT has winning strategies o and 7 in the games G(v,i) and
G(w, 7). Now play o and 7 against each other so that for o we pretend that I’s
first move was w and for 7 we pretend that it was v in the first round. Then in the
second round we use the response from 7 as I’s play for ¢ and similarly for 7 we
use o’s response, etc.
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This way we get a partial labeling of TErl, extend this in an arbitrary manner
to obtain an element of Hom(Tx"',H). Now, evaluating A on the central nodes
labeled by v and w, we must obtain the color ¢ at both vertices, since o and 7 are
winning strategies, contradicting that A solves the A-coloring problem. O

This transfer principle alone is insufficient to get results for the LOCAL model,
since the labelings typically are not injective. To remedy this, we have to consider
edge labeled versions of the homomorphism graphs. For technical reasons (namely,
in order for the players not to get stuck in the game), we assume that the edge
labeling of H is nice, that is, every vertex is adjacent to edges with all possible
colors.

Definition 6.9. Assume that G is a graph equipped with an edge A-labeling e. An
edge labeled A-coloring of G is a map ¢: V(G) — A so that there are no adjacent
vertices v, w with ¢(v) = c(w) = e(v,w). If such a coloring exists, we will say that
the edge labeled chromatic number of G is < A, and denote this fact by Xel(g) < A.

Theorem 6.10 (Transfer principle 2, LOCAL). Let H be a finite graph together
with a nice edge A-labeling. TFAE:
(1) x(H) <A
(2) there is a 0-round GLOCAL algorithm producing a A-edge labeled coloring
of Hom® (T}, H), for every r.
(3) there is anr and an r-round GLOCAL algorithm producing a A-edge labeled
coloring of Hom® (T, ).

Proof. The proof is a straightforward modification of the proof of Theorem 6.8, in
particular, the implications (1) = (2) = (3) follow immediately.

To see that (3) = (1), for any v € H and ¢ < A define the game G(v, ) as in
the proof of Theorem 6.8, with the additional assumption that the edge connecting
the vertex labeled by v and Is first move has to be colored i.

It is easy to check that the arguments in Lemma 6.8.1 and Lemma 6.8.2 still
work, and ¢ is an edge labeled A-coloring of H. O

6.3.1. Back to LOCAL. Now we are ready to go back to the ordinary LOCAL
model, and deduce Theorem 6.1. Let us make a simple observation first.

Claim 6.10.1. Assume that F is a collection of labeled trees of degree < A and
f+ N — N such that for each G € F with |[V(G)| =n

(1) the set of labels has size < n,

(2) if n is large enough, the labeling is injective on every f(n) + l-sized neigh-

borhood of G.

Assume moreover that there is no g € o(f) so that there is a g(n)-round GLOCAL
algorithm to A-color every n-sized G € F.Then there is no o( f)-round deterministic
distributed algorithm to A-color every n-sized G € F.

Proof. If there was such a LOCAL algorithm, by the local injectivity of the labeling,
we could interpret the labels as IDs and run the algorithms on the elements of 7. [
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The following Lemma guarantees the existence of graphs that satisfy simultane-
ously the negation of (1) in Theorem 6.10 and Proposition 6.6. The proof is based
on a probabilistic method.

Lemma 6.10.1. Let f € o(logn). There exists a sequence of nicely A edge labeled
graphs (M) with the following properties:

(1) [V(Hn) < n.

(2) x°(H,) > A.

(3) the girth of H,, is > 2f(n) + 2.

Proof sketch. Such a sequence can be constructed probabilistically, using the con-
figuration model for regular random graphs, see [123]. Namely, on the vertex set
{1,2,...,n} we independently choose A many d-regular random graphs and let H,
to be the union of those, for a large constant d. Note that this gives a canonical
edge labeling of H,, with A colors with the property that every vertex is adjacent
to exactly d edges of each of the colors.

By the results of Bollobds [19] on the independence ratio of random regular
graphs and concentration inequalities of McDiarmid [100] it can be shown that
X (H,) > A asymptotically almost surely as n — oo. Finally, seeing the sample
H,, as a random dA-regular graph, one can use [101, Corollary 1] to show that (3)
is satisfied with positive probability. O

Now we can prove the main theorem on colorings.

Proof of Theorem 6.1. Towards a contradiction, assume that there exists a LO-
CAL A-coloring algorithm for acyclic graphs of degree < A with running time
g € o(logn). We can assume that g is monotone. Let (H,)nen be the sequence
guaranteed by Lemma 6.10.1 for the function f(n) = g(An).

Consider the family of graphs F = (J,, Hom®(Tx",H,), where r, is chosen
minimal so that [V (Tx")| > n. O

Claim 6.10.2. For every graph in Hom®(T'\", H,,) the labeling is injective in every
f(n) 4+ 1-sized neighborhood.

Proof. Indeed, observe that, as the homomorphism defined by the labels has to
preserve edge colors and the girth of H,, is > 2f(n) + 2, it must be injective on
every f(n)+ 1 sized neighborhood by Proposition 6.6.

By the minimality of 7,, we have that |[V(Tx")| < An. Thus, the labeling of
every graph in Hom®(T\",#,,) is injective in every neighborhood of size

fn)+1=g(An)+1=g(V(Tx")]) + 1,

showing that the conditions of Claim 6.10.1 are satisfied. Hence, on the one hand,
there is an o(g)-time GLOCAL algorithm for the A-coloring of F.

On the other hand, r, > clogn, for some ¢ > 0 and, as g € o(logn), for a
large enough n we have g(n) < clogn < r,. Therefore, by assumption, there is
a g(n) < r, round GLOCAL algorithm to A-color Hom®(T'\",H,), which is in
particular an r, — l-round GLOCAL algorithm. By Theorem 6.10 this implies
X (Hn) < A, contradicting the choice of H,,. O
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6.3.2. A localized transfer. As we will see in the descriptive case in the next sec-
tion (Theorem 6.18), even descriptive combinatorial properties can be transferred
through homomorphism graphs. In order to mimic this in the distributed version,
we have to consider “localized” versions of the graph H instead, i.e., instead of a
fixed enumeration, we consider all the possible ID distributions on #.

Definition 6.11. Let Hom(7T%,H!P) be the set of labelings of Tx that are the
pullbacks of IDs (i.e., injective labelings with naturals < |V (#)|) on H through a
homomorphism.

Similarly, if H is equipped with an edge A-labeling, let Hom® (T, #!P) be the
set of labelings of Tx that are the pullbacks of IDs on H through an edge label
preserving homomorphism.

Now we have the following.

Theorem 6.12 (Transfer principle 3, LOCAL). Let H be a finite graph.

(1) If Hom(T™, #'P) has an r-round A-coloring GLOCAL algorithm, then
H has an r-round A-coloring in the LOCAL model.

(2) Assume that H is equipped with a nice edge labeling. If Hom® (T, HIP)
has an r-round GLOCAL algorithm for edge labeled A-coloring, then H has
an r-round edge labeled A-coloring in the LOCAL model.

Proof. The proofs are the same as the proofs of the (3) == (1) implications of
Theorems 6.8 and 6.10. The only thing to observe is that the coloring defined as
in Lemma 6.8.2 in fact only depends on the IDs in an r-round neighborhood of v
in H, hence it is doable in the LOCAL model. O

The downside here that there is no hope for an equivalence in general, as the
existence of a LOCAL algorithm on H can happen for trivial reasons: for example
if H is star-like, with constant round LOCAL algorithm one can access global
information. However, this information is not present on the homomorphism graph,
because of the degree bound.

Remark 6.13. We conjecture that using this transfer principle one can give a proof
of Theorem 6.1 without having to go through Lemma 6.10.1.

6.4. The descriptive case. To close our discussion of Marks’ method, let us men-
tion that statements completely parallel to the ones described in the preceding
section have been shown in the Borel context in [25, 96].

Marks initially proved the following. Consider the group

Fa={(al,...,an: 08 =---=0a4 =1),

that is, Ta is the free product of A-many involutions. Observe that Cay(T'a,.S) is
a A-regular tree, where S = {aq,...,aa}.

Theorem 6.14. Let A > 2. Then there exists a A-regular acyclic Borel graph with
xB(G) = A+ 1. In fact, this holds for the Schreier graph of the free part of the
action of Ta on 272,
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In the proof of this theorem, the players play on the infinite tree, games analo-
gous to the ones described above. Interestingly, the existence of winning strategies
is not at all clear: every acyclic A-regular Borel graph has a p-measurable A-
coloring by the results of Conley-Marks-Tucker-Drob [42] for any Borel measure g,
described above, showing that winning strategies might not exist even for Lebesgue-
measurable sets. However, since the winning conditions in the games are Borel, to
guarantee their existence, one can use Martin’s Borel Determinacy theorem, one of
the cornerstones of descriptive set theory.

The problem of non-injectivity of IDs in the Borel context corresponds to the
players having to end up in the free part of the above action. Marks remedied this by
arguing that there exists a Borel A-color assignment ¢’ of the Schreier graph on the
non-free part, with the property that for no z and i we have ¢/(x) = ¢/(v; - ) = i.
That is, Y% (defined analogously to Definition 6.9) of the not-free part of the
Schreier graphs is < A. So, if there exists a Borel A-coloring of the free part then
X3 (Sch(',252)) < A. Now, we can derive a contradiction similarly to the proof
of Theorem 6.10.

The homomorphism graph can be defined in the Borel context as follows: observe
that if # is a Borel graph, V(#H)"2 is a Borel space on which ' acts by left-shift.

Definition 6.15. Let A be a Borel graph. Let Hom(I'a, ) be the restriction of
Sch(Ta, S, V(H)'2) to the set

{h € V(H)"'» : h is a graph homomorphism from Cay(T'a,S) to V(H)}.

Similarly to Lemma 6.8.2, one can define a coloring on H by using a “voting
system” based on the information about the winning strategies in the games anal-
ogous to the ones discussed above. Since this requires to know which player has a
winning strategy, the resulting coloring will be slightly worse than Borel, namely,
in the class DA]. Moreover, assuming extra set theoretic axioms and considering
a slightly larger class, we can even obtain a full equivalence (below, X, stands for
projective chromatic number):

Theorem 6.16 ([25], transfer principle 1, Borel). Let H be a Borel graph.

(1) Hom(T'a,H) admits a Borel homomorphism into H. Thus, for any n, if
xB(H) < n then xg(Hom(T'a,H)) < n.
(2) If xoa:(H) > A then xp(Hom(I'a, H)) > A.

Assuming suitable large cardinal hypotheses we also have

Xpr(H) > A <= xpr(Hom(Ta, H)) > A.

Finally, observe that Cay(T'a, S) is equipped with a proper edge coloring. Hence,
the edge labeling trick is sufficient to produce acyclic graphs here as well.

Definition 6.17. Assume that the graph #H is equipped with a Borel edge A-
labeling. Let Hom®(T'a, H) be the restriction of Hom(I'a, #) to the set

{h € V(Hom(T'a,H)) : h preserves the edge labels}.

In case H is acyclic, an argument similar to the proof of Proposition 6.6 yields
that each h € Hom(I'a,H) is injective. Using this, one can show the following.
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Theorem 6.18 (Transfer principle 2, Borel). Assume that H is a locally countable
Borel graph and e is a Borel edge A-labeling of H.

(1) Hom®(T'a,H) admits a label preserving Borel homomorphism into H.
Thus, if X4(H) < A then xp(Hom®(Ta,H)) < A.

(2) If H is acyclic then so is Hom®(T'a, H).

(3) If H is acyclic and hyperfinite then so is Hom®(I'a, H).

(4) If XglAi(H) > A then xg(Hom®(T'a,H)) > A.

Assuming suitable large cardinal hypotheses we also have
Xo(H) > A <= & (Hom(Ta, H)) > A.

Since a suitable edge labeled version of H = G (see [25,88]) is hyperfinite and
XglAl (H) > A, Theorem 6.18 yields Theorem 6.14 and can be also used to obtain
1

the results in [39].

7. Versions of Vizing’s theorem

In this section we describe the ideas behind the proof of the measurable version
of Vizing’s theorem and their applications to the LOCAL model of distributed
computing.

The strategy to construct edge colorings both in measurable and distributed
context is to gradually improve a partial coloring using augmenting subgraphs. To
get a feeling about this type of construction in measurable combinatorics, we start
by revisiting the result of Lyons and Nazarov [94], where they produced a perfect
matching on the A-reqular tree as a factor of iid. Their overall approach, that
originated in the work of Nguyen and Onak [104] that was later formalized by Elek
and Lippner [51], turned out to be extremely important not only for edge colorings,
but also for applications that include for example the measurable circle squaring,
or paradoxical decompositions, see [41,66,67].

The argument that Lyons and Nazarov employed to show that the final match-
ing, after the augmenting procedure that might take an infinite number of steps,
is well-defined almost surely is conceptually different than the one for the measur-
able Vizing’s theorem. Namely, their argument uses the fact that the underlying
measured graph, iid on A-regular tree, expands in measure which is a form of global
expansion. Since not every acyclic graphing expands in measure, and interestingly
Kun [89] found examples of A-regular acyclic graphings that do not admit mea-
surable perfect matching, we rely on a different tool in the proof of measurable
Vizing’s theorem: a form of local ezpansion introduced in [71] that was later gen-
eralized in the notion of a multi-step Vizing chain by Bernshteyn [11]. This type
of local expansion have proved to be particularly well-suited for the construction
of distributed algorithms [11,14,36].

After discussing the important ideas behind the result of Lyons and Nazarov
[94] in the next subsection, we formally introduce the concept of multi-step Vizing
chains. In the last part, we summarize the applications that include measurable
Vizing’s theorem and the construction of distributed algorithms of LOCAL com-

plexity poly(log(n)).
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7.1. Perfect matching on regular trees. Recall that a matching in a graph G =
(V, E) is a collection of edges M C F such that for every v € V there is at most one
e € M such that v € e. We denote as Uy the set of unmatched vertices of M, that
is, v € Uy if and only if v € e for every e € M. Vertices that are not unmatched
are covered by M. We say that M is a perfect matching if Up = .

A classical result of Kénig states that a bipartite A-regular graph G satisfies
X' (G) = A. In particular, G admits a perfect matching. Analogues of Koénig’s
theorem in measurable combinatorics are simply false. First, Laczkovich [90] gave
an example of a 2-regular measurably bipartite graphing that does not admit a
measurable perfect matching. Then Marks [96] showed that there are acyclic A-
regular Borel bipartite Borel graphs that do not admit Borel perfect matching for
every A > 3. Finally, Kun [89] strengthened Marks’ result by finding an acyclic
A-regular measurably bipartite graphing that does not admit measurable perfect
matching for every A > 3.

On the positive side, Lyons and Nazarov [94] showed that there is a factor of
iid perfect matching on the A-regular tree, which implies, by the result of Hatami,
Lovész and Szegedy [78], that every acyclic A-regular graphing admits a measurable
matching such that the measure of unmatched vertices is arbitrarily small.

In our exposition of the arguments from [94] we follow the approach of Elek and
Lippner [51]. Basically all measurable constructions that are based on augmenting
subgraph technique use some version of Theorem 7.2 in the background.

Definition 7.1. Let M be a matching in G = (V, E). We say that
P = (v1,vg,...,05) CV

is an (M-)augmenting path if vi,vr, € Upy and {va;,v2,41} € M for every i €
{1,...,k/2 —1}.

Flipping the edges on an augmenting path P = (v1,ve,...,v;) modifies the
matching M to a matching M’ that agrees with M outside of P and such that
{’UQZ‘,l,UQZ‘} € M’ for every i € {1, ey k/2}

Note that the length of every augmenting path P is even and that all vertices of
P are covered after flipping the edges.

We state a version of the result of Elek and Lippner [51], which is suitable in
our context.

Theorem 7.2 (Elek—Lippner [51]). Let G = (V, E,B,u) be a graphing of degree
bounded by A € N, M be a measurable matching in G and k € N. Then there is a
measurable matching M' C E such that

(7.1) p({v €V :3w e Ng(v) {v,w} € M\~ M}) < ku(Unr)
and every M'-augmenting path has length at least k.

Proof sketch. Let G*+1) denote the 2k + 1st power of G, that is, z,y € V form an
edge in G*D if their graph distance in G is at most 2k + 1. It is easy to check
that G(2+1) is a graphing of bounded maximum degree. By a straightforward ap-
plication of Theorem 4.6, there is a sequence (B;)sen of Borel G*+ 1) independent
sets such that {i € N:v € B;} is infinite for every v € V.
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Set My = M and inductively define a sequence of measurable matchings (M;);en
as follows. Suppose that M; has been defined. If possible pick an M;-augmenting
path P, in G of length at most k that starts at v for every v € B;. This assignment
can be done in Borel way. Note that if v # w € B;, then P, and P, are edge
disjoint. In particular, we may define the measurable matching M;,; by flipping
the edges on all of these M;-augmenting paths simultaneously.

We claim that M’ = lim;_,. M; is a well-defined measurable matching that
satisfies the claim of the theorem. Indeed, the limit is well-defined as every edge
is flipped only finitely many times. This follows from the combination of the facts
that every vertex lies on finitely many paths of length at most k& and that once a
vertex is covered by M;, then it is covered by M for every ¢ < j € N. Consequently,
if P is a finite M’-augmenting path starting at v € V', then there is an ig € N such
that P is an M;-augmenting path for every ¢ > iy. In particular, the length of P
has to be at least k, as otherwise it would be flipped for any ¢ > ig such that v € B,;.

Finally, (7.1) follows from the mass transport principle as every vertex from Ujs
is responsible for flipping edges at k-many other vertices. O

Let G = (V, E, B, 1) be an acyclic A-regular graphing and consider the following
process. Start with an empty matching M, and define inductively My from My
using Theorem 7.2 so that every My i-augmenting path has length at least 2k (as
our main application, Theorem 7.4, is for bipartite graphs, we use 2k instead of
just k). This produces a sequence of measurable matchings (M} )ken.

We would like to claim now that that the sequence (M} )ren admits almost surely
a pointwise limit M = limy_,~, M} that is the desired measurable perfect matching.
Recall that the pointwise limit is defined by viewing each M), as its characteristic
function. However, such a limit need not exist as it might be the case that a positive
fraction of edges is flipped in the sequence (My)ren infinitely often.

Observe that a sufficient condition for the pointwise limit M = limy_,, M} to
exist almost surely is if

o0
(7.2) ZQkM(UMk) < o0.

k=0
This follows from a combination of Theorem 7.2 and Borel-Cantelli lemma. Hence,
it is enough to find a condition that guarantees that pu(Uys, ) € o(1/k?). This is the
place where expansion in measure kicks in. To keep things simple, we introduce
the concept of measure expansion for measurably bipartite graphs only.

Definition 7.3. Let n > 0 and G = (V, E, B, 1) be an acyclic A-regular graphing
that admits a measurable bipartition V = A U B. We say that G is an n-expander
if u(Ng(X)) = (1 +n)u(X) for every X C V such that X C A or X C B, and
p(X) < 1/4.

Now we are ready to state a weak version of the result of Lyons and Nazarov [94].

Theorem 7.4 (Lyons—Nazarov [94]). Letn > 0 and G = (V, E, B, u) be an acyclic
A-reqular measurably bipartite graphing that is an n-expander. Then G admits a
measurable perfect matching.
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Proof sketch. It is enough to verify that the sequence of measurable matching
(Mp)ren defined after Theorem 7.2 satisfies u(Upy,) € o(1/k?).

Observe that as G is regular and satisfies the mass transport principle, we have
that p(A) = u(B) = 1/2. In fact, we have u(Up, N A) = p(Ung, N B) for every
k € N. Set X} = Uy, N A and define inductively a sequence of measurable sets
(X7 )een as follows. If £ is even, then set X | = Ng(X}) C B, and if £ is odd, then
set X§, ={veV:Iwe Xy {v,u} € My} C A. Let £ € N be the first (odd)
number such that either u(Xf ) > 1/4 or u(Xf N Uag,,) > 0. This is well-defined
as G is an n-expander.

Observe that for every 0 < j < (o + 1)/2, we have that

(1) u(xh) < M(X§j+1) = M(X§j+2)

as G is a graphing and an n-expander. We define analogously a sequence (Y})sen
and £ € N for Y = Uy, N B. In particular,

u(Un) = n(XE) + p(Yy) < 2(1 4 )~ CmextlobI+072,

We finish the proof by showing that k& < max{fy, ¢} + 1

First observe that if M(Xfo NUys,) > 0, then there are My-augmenting paths of
length £y+1. By symmetry the same holds for YZZ} In particular, if max{¢y, £ }+1 <
2k it must be the case that

w(X5) n(Ye) > 1/4.

But then we conclude that ,u(XZ+1 N Y’Z) > 0 as XfOH,YZ’Z C A uAd) =1/2

and ,u(XfO_H) = ,u(Xé“O) > 1/4. Consequently, this guarantees the existence of Mj-
augmenting paths of length £y + 1+ ¢( + 1. Indeed, consider a concatenation of any
paths from XF¥ to Xé“O_H N Y’fn and from Xé“O_H N YZGC) to Y. Altogether, this shows

k < max{{y, £y} + 1 and the proof is finished. O

Remark 7.5 (Approximate K6nig’s line coloring theorem). It was observed, for
example, by Lyons [93] that the iterative application of these arguments yield a
factor of iid edge coloring with A 4+ 1 colors of the A-regular tree such that one
of the color classes can have arbitrarily small measure. In fact this holds for all
bipartite measured graphs of degree bounded by A, see [68,69,119].

7.2. Multi-step Vizing chains. Our goal is to define the notion of a multi-step
Vizing chain and discuss the connections to local expansion. We start by recalling
some notation from [71].

Let G = (V, E) be a finite (or countable) connected graph and set A = A(G) €
N. For the rest of this section we fix a partial edge coloring d: E — [A + 1]. We
write my(v) for the set of colors missing at v € V, that is, a & mg(v) if there is
an e € dom(d) such that v € e and d(e) = a. Observe that |mg4(v)| > 0 for every
veV.

A chain is a sequence P = (eg,e1,...) C F of edges such that for every i € N
with e;,e,11 € P we have e; Ne;11 # 0. Let I[(P) = |P| denote the the number of
edges in P, we allow [(P) to be infinite. We say that P is edge injective if every
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edge appears at most once in P. If P is a finite chain with the last edge e and @
is a chain with the first edge f and e N f # (), then we write P Q for the chain
that is the concatenation of P and @Q. If a chain R is of the form P @, then we
say that P is a prefix of R, denoted by P C R.

We say that a chain P = (e;);<;(p) is d-shiftable if [(P) > 1, P is edge injective,
eo € Uq and e; € dom(d) for every 1 < j < {(P). A d-shiftable chain P is called
d-proper-shiftable if dp: E — [A + 1], the P-shift of d, defined as

(1) dom(dp) = dom(d) U {eg} {eip)—1} where we put {e;py_1} = 0 if 1(P) = oo,

(2) dp(e;) = d(eiq1) for every i + 1 < I(P),

(3) dp(f) = d(f) for every f € dom(d) \ P;
is a partial edge coloring. Finally, we say that a d-proper-shiftable chain is d-
augmenting if either [(P) = oo or P is finite with mg,(x) N mg,(y) # 0 where
x # y are the vertices of the last edge ¢;(py_; of P.

A fan around x € V starting at e € E is a finite edge injective chain F' =
(€0, €1,...,ex) such that x € e; for every 0 < j < k and eg = e. If we don’t want
to specify x € V and e € E, we simply say that F'is a fan.

The «/B-path starting at © € V, denoted by Py(z, /), is the unique maximal
chain P = (e;);<i(p) such that d(e;) = a (resp. d(e;) = ) for every i < [(P) that is
even (resp. odd). A truncated a/3-path is a prefix of any o/B-path Py(z,«/8). If
we dont want to specify the colors in the path, we simply say that P = Py(z, /)
is an alternating path.

Definition 7.6 (Vizing Chain). Let e € Uy and x € e. A Vizing chain W(z,e) is
a d-proper-shiftable chain of the form W(z,e) = F.” P, g., where F' is a fan at «
starting at e and P is an a,/fB.-path for some o, # . € [A + 1], see Figure 4.

Recall that the standard proof of Vizing’s theorem can be viewed as a sequential
algorithm that at each step finds a Vizing chain W (z, e), for a given uncolored edge
e, that is d-augmenting and improves the current coloring d by passing to dy(4,e)

Pae/ﬁe

FIGURE 4. An example of a Vizing chain W(z,e) = F.™ Py, 3.
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and coloring the last edge of W(x,e). In particular, we get that a d-augmenting
Vizing chain exists for every uncolored edge.

Next, we present a general definition of a multi-step Vizing chain and discuss
some of the properties related to local expansion. The high-level idea is to turn the
algorithm for finding a Vizing chain into a branching process by repeatedly truncat-
ing the alternating path and growing a new Vizing chain after shifting the colors.

Definition 7.7 (Multi-step Vizing chain, [11,36]). Let e € Uy, € e and i € N.
An i-step Vizing chain V(z,e€) is a d-proper-shiftable chain of the form

V(a:,e) = Fl/\Pl/\ L Fi/\Pia

where F is a fan at = starting at e and for every 1 < j < 7 we have that Fj is a
fan and P; is a truncated alternating path, see Figure 5.

The concept was first introduced for ¢ = 2 by the first author and Pikhurko in
[71] and for general i € N by Bernshteyn [11]. Note that while the high-level idea
described before the definition provides some intuition on how to build multi-step
Vizing chains, it is the d-proper shiftable requirement on the chains that makes
the analysis complicated. A successful approach to remedy this issue is to count
the number of non-overlapping multi-step Vizing chains, these might be defined
for example by demanding that P; N Pj; = () for every 1 < j < j' <. A precise
analysis of the number of i-step Vizing chains for various values of i was done in
[11,14,36,71]. In particular, we refer the reader to [14, Section 2 and 5.1] for the
description and analysis of the randomized Multi-Step Vizing Algorithm that finds
a short augmenting subgraph with high-probability.

In the remainder of this section, we discuss the connections to local expansion
to complement the discussion in Section 7.1.

P

Fy

F

" N
yd ”

FIGURE 5. An example of a 3-step Vizing chain. Fans are depicted
by black thick edges, while dotted curly edges indicate how the
alternating paths continue after they get truncated.
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Consider the following problem. Let G be a finite graph and suppose that for
every e € Uy there is no augmenting subgraph of size at most £ > A. In particular,
every (1-step) Vizing chain W (x, e) = F{ P assigned to e € Uy and z € e has size
at least £. What can we say about the fraction of uncolored edges |Ug|/m?

The key property of multi-step Vizing chains, which is essential in all the argu-
ments in [11,14,36,71], is that every edge f € dom(d) belongs to at most poly(A)*-
many distinct i-step Vizing chains. Indeed, detecting an uncolored edge e € Uy
such that f € V(z,e) for some i-step Vizing chain basically boils down to follow-
ing iteratively at most i-many alternating paths starting at f. Importantly, this
bound does not depend on ¢. On the other hand, we expect, at least when i is a
small constant, that the number of i-step Vizing chains that we can grow from a
given e € Uy should be of the order (£/i)®. The heuristic here is that we run the
“branching chain” process i-times and in each step 1 < j < 7 we can truncate the
currently last alternating path, that must have length at least £/i, at almost every
of the first £/i-many edges to create P;.

To derive an estimate on |Ug|/m, we formalize these observations in a double
counting argument assuming for simplicity that ¢ = 1. Define an auxiliary bipartite
graph Hy = Uy U dom(d), where (e, f) forms an edge if there is € e such that
f € W(z,e). By our assumption we have that degy, (e) = £ — 1 for every e € Uy,
and by the discussion in the previous paragraph, we have that degy, (f) < poly(A)
for every f € dom(d). A double counting argument in Hy then yields that

(7.3) (¢ = 1)|Ua| < poly(A)|dom(d)[ < poly(A)m.

In particular, the fraction of uncolored edges is O(1/¢) if we view A as a constant.

We remark that an analogous computation for the perfect matching problem,
assuming that the size of every augmenting path is large, does not give any estimate
on the size of unmatched edges as the degrees in both parts of the analogously
defined auxiliary bipartite graph might be comparable.

7.3. Applications. We start by recalling the remarkable result of Christiansen
Theorem 2.5.

Theorem 7.8 (Christiansen [36]). Let G be a graph, d: E — [A(G)+1] be a partial
edge coloring and e € Uy be an uncolored edge. Then there exists an augmenting
subgraph H for e such that |E(H)| € O(A"log(n)).

The strategy to derive Theorem 7.8 is to fix i,/ € N and count the number
of vertices reachable by i-step Vizing chains with the property that each of its
truncated alternating paths have size at most ¢. This strategy originated in [11],
where Bernshteyn described a randomized algorithm for growing multi-step Vizing
chains and showed that there are many uncolored edges that admit an augmenting
subgraph of size O(log?(n)). We remark that for his analysis, he needed both
parameters to satisfy i, £ € O(log(n)).

The main novelty in the approach of Christiansen is a highly non-trivial argument
that even with ¢ € poly(A) the number of reachable points from every uncolored
edge grows exponentially in ¢ unless one of these chains is d-augmenting. This
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implies, in particular, that after ©(log(n))-steps we either exhaust the whole graph
or find a d-augmenting chain.

In order to derive a fast distributed algorithm for edge colorings based on aug-
menting subgraphs of size Q(log(n)), one needs to show not only that such sub-
graphs exists, but also that they can be assigned to a large portion of the uncolored
edges in an edge disjoint way. Results along this line are essential in all the con-
structions from [11, 14, 36].

We formulate the currently best version of such result that is from [14] and
that combines the idea of multi-step Vizing chains with the entropy compression
method. We remark that the existence of the randomized distributed algorithm
from Theorem 3.7 is a direct consequence of this result, see [14] for more details.

Theorem 7.9 (Many disjoint augmenting subgraphs, Theorem 2.4 in [14]). Let
d: E — [A+ 1] be a partial edge coloring. There exists a randomized distributed
algorithm of LOCAL complezity poly(A)log(n) that outputs a set W C Uy with
expected size B(|W1) = |Uq|/ poly(A) and an assignment of augmenting subgraphs
H. for e € W such that

(1) the graphs H., for e € W, are vertex disjoint,
(2) |E(H.)| < poly(A)log(n).

Next, we turn our attention to applications in measurable combinatorics. Com-
bining the ideas and concepts introduced in the previous parts of this section allows
us to sketch a formal proof of the measurable Vizing’s theorem for graphings.

Theorem 7.10 (Vizing’s theorem for graphings, [71]). Let G = (V, E, B, u) be a
graphing of degree bounded by A € N. Then x'(G) < A+ 1.

Proof sketch. As a first step we pass to a Borel probability measure v on E that
satisfies the mass transport principle on the Borel line graph L(G) and has the
property that p({v: Je € A v € e}) = 0 whenever v(A) = 0 for every measurable
set A C F, see [71, Section 3].

Following the same line of reasoning as in Theorem 7.2, see [71, Section 4],
we construct a sequence of partial measurable edge colorings (d,)nen with the
property that

(a) every d,-augmenting 2-step Vizing chain has length at least ¢,, = 2™,
(b) Ua, 2 Ua,.,,
(©) v({e € Bt dus1(€) # du(e)}) < 86ur(Ua,)

for every n € N.

Define the auxiliary bipartite graphing Hq, = Uy, LI dom(d,) by setting (e, f)
to be an edge if there is a 2-step Vizing chain V(z,e) of length at most ¢, such
that f € V(x,e). The computation in [71, Section 3] confirms the intuition that
degy,, (e) € Q(¢2) for every e € Uy, while the bound degy,, (f) € poly(A) holds
for every f € dom(d,,) by the argument from Section 7.2. As v satisfies the mass
transport principle, we conclude that

v(Uy,) € O(1/£2).
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Combined with the property (c) above, we see that the condition analogous to (7.2)
is satisfied as

> 8 lapu(Ua,) =D 273 /2°" < 0.

n=0 n=0
In particular, d = lim,_,, d, is a well-defined measurable edge coloring of G by
the Borel-Cantelli lemma. O

We finish this section with a discussion about the additional ingredients that are
needed in the proof of the full measurable Vizing’s theorem for general measured
graphs, Theorem 4.11.

It is a standard fact in measurable combinatorics, see for example [87, Chap-
ter 9], that if G = (V, E, B, u) is a measured graph, then we may assume that p
satisfies a weighted version of the mass transport principle. That is, every pair of
points (v,w) € V x V is assigned a value p,(v,w) that measures the ratio of the
infinitesimal mass at w compared to v and satisfies the weighted version of the
equality (4.1). The function p, is known as the Radon-Nikodym cocycle of G (and
1). Mimicking the argument from Theorem 7.10 and replacing the length of the
2-step Vizing chains by their relative weight given by p,, we run into a trouble
when estimating the size of v(Uy,) for every n € N. This is because short chains
might have big weight which works against us in the double counting argument
on Hg,.

The way how to remedy this issue in [69] is to “smooth out” the measure p so
that the value of the Radon—-Nikodym cocycle on every pair of adjacent vertices
{v,w} € E satisfies

(7.4) 1/(2A) < p(v,w) < 2A.

This is roughly done as follows. First, we use Theorem 4.6 to assign in a Borel
way to p-almost every x € V a finite measure k, supported on the (countable)
connectivity component of & with the property that if distg(z,y) = k, then k. (y) =
pu(z,y)/(4A)k. Then we define a new measure v to be the normalization of the
convolution of the collection {k;}sev and p. That is, v(A) is equal, up to re-
normalization, to

priahoer () = [ k) duta)
eV yeA
for every A € B. A direct computation shows that v and u are equivalent and p,
satisfies (7.4).
The estimate in (7.4) allows to compare the size and weight of any, for technical
reasons, 3-step Vizing chain in a way that works in our favor for the double counting
argument. We refer the reader to [69] for more details about the arguments.

8. Brooks’ theorem for subexponential growth graphs

In this section we describe a deterministic distributed algorithm of LOCAL com-
plexity O(log*(n)) that produces Brooks coloring on a class of finite graphs of a
fixed subexponential growth that satisfy the assumptions from Brooks’ theorem.
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This result was likely known to experts in the field but we were unable to find a
reference, or a written proof.

By Bernshteyn’s correspondence [12], Theorem 5.6, this implies that Brooks’
theorem holds in the Borel context for Borel graphs of subexponential growth.
It was communicated to us by Bernshteyn that this result also follows from the
proofs in [42] as the graph induced on the set of the vertices where the described
construction fails has to be of exponential growth. This is in stark contrast to
Theorem 6.14; see also Remark 4.13, which discusses a derandomization perspective
for subexponential growth graphs.

Recall that f: N — N is subexponential if f € o((1+ ¢)™) for every € > 0.

Definition 8.1 (Graphs of subexponential growth). A function f: N — N bounds
the growth of a graph G if for every v € V(G) we have |Bg(z,r)| < f(r). We
denote by IF; the class of graphs of growth bounded by f.

We say that class of graphs F, or a graph G, is of a subexponential growth, if
there is subexponential f: N — N such that F C F;, or G € Fy.

We prove the following.

Theorem 8.2. Let A > 3 and F C Fy be a class of graphs of a subexponential
growth and degree bounded by A that do not contain the complete graph on A+ 1
vertices. Then there is a deterministic distributed algorithm for Brooks coloring on
F of LOCAL complexity O(log"(n)).

As an immediate corollary, we get a Borel version of Brooks theorem.

Remark 8.3. Note that the below theorem also follows from [12, Theorem 2.15]
combined with the distributed upper bound for Brooks’ coloring from [61]: indeed,
by Bernshteyn’s theorem, O(logn) randomized complexity algorithms directly yield
Borel solutions on subexponential growth graphs.

Theorem 8.4 (Borel Brooks coloring for graphs of subexponential growth, [12,42]).
Let G = (V, E, B) be a Borel graph of subexponential growth that does not contain a
complete graph on A(G) + 1 vertices and satisfies A(G) = 3. Then x5(G) < A(G).

Proof. Let f be the subexponential function that bounds the growth of G. Define F
to be the class of finite subgraphs of G and observe that we may apply Theorem 8.2
for F. The rest follows from Theorem 5.6. U

Our approach to prove Theorem 8.2 is identical to the one in [16], where Bern-
shteyn and Dhawan proved an analogous theorem for Vizing coloring. Nevertheless,
we provide the details for completeness. The only difference is that in the place
where they use the result of Christiansen, Theorem 2.5, to bound the size of an aug-
menting subgraph for edge colorings, we use the result of Panconesi and Srinivasan
[105] that we recall next.

Theorem 8.5 (Small augmenting subgraphs for vertex colorings, [105]). Let G
be a finite graph that does not contain a complete graph on A + 1 vertices, where
A > A(G), v € V(G) and ¢ be a partial vertex coloring with A colors such that
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U. = {v}. Then there is an augmenting subgraph for v that is a path of length
O(logn).

Proof of Theorem 8.2. Let f be the subexponential function that bounds the growth
of the graphs from F. It is clearly enough to prove the claim for the inclusion max-
imal class F.

The main observation, see [16, Lemma 3.3], that crucially uses the subexponen-
tial bound on the growth is that we can always find an augmenting subgraph of
constant size.

Proposition 8.6. There exists an R € N so that for every G € F, every partial
vertez coloring ¢ of G with A colors and every vertex v € U, there is an augmenting
subgraph H for v contained in Bg(v, R).

Proof. Let C be a constant so that Theorem 8.5 holds with a path of size C'logn
for each graph of size n. Find some ¢ > 0 with C'log(1l +¢) < 1 and an R large
enough so that f(R) < (1+¢).

Now let ¢ be an arbitrary partial vertex coloring of an element G € F with A
colors and v € U,.. Consider the graph G’ which is the connected component of v
in the graph G restricted to Bg (v, R) N (dom(c) U {v}). Let H be an augmenting
subgraph in G’ for ¢ returned by Theorem 8.5. Then we have

[V(H)| < Clog|V(G")| < Clog |Ba(v, R)| < Clog f(R) < Clog ((1+¢)®) < R.

Recall that an augmenting subgraph is connected by the definition, so, if the size
of H is < R—1, it has to be contained in the ball Bg(v, R — 1). But, then H must
be an augmenting subgraph for ¢ in the entire graph G. O

Now, to prove Theorem 8.2, take any graph G € F. Recall that G*) stands for
the kth power of GG, that is, the graph where two vertices are connected if their
graph distance in G is at most k. Clearly, the graph G(2%+2) has degrees bounded
by A28+2 50, in O(log*n) rounds we can compute a proper vertex coloring of
GCFE+2) with k = A2F+2 41 colors by Theorem 3.4. Enumerate the color classes as
(Ci)igk- Then, in k-many steps inductively, define partial vertex colorings (¢;)igk
as follows: if ¢;_; is defined on UKJ- Cj, for every v € C; by Proposition 8.6 we can
find an augmenting subgraph in Bg (v, R) for ¢;_1 and v. Recolor the vertices using
this graph to obtain c;. Observe that, as the distance between any two elements of
Cjis > 2R+ 2, ¢; will still be a partial vertex coloring. This algorithm terminates
after k-many steps, yielding a vertex coloring with A colors. Finally, observe that
as k and R are constants, the overall complexity of the algorithm remains O(log™ n),
as desired. O

9. Open problems

We finish the survey by listing some exciting open problems that are directly
connected to the results discussed in this survey.
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Edge colorings. We start with a couple of questions about Vizing colorings. The
main problem here concerns the existence of a fast distributed algorithm for Vizing’s
theorem, see also [14, Question 1.9] and [11, Question 1.2].

Problem 9.1. Is the randomized LOCAL complexity of Vizing coloring o(log(n))?

In [36], Christiansen proved a local version of Vizing’s theorem, that is, every
finite graph G admits an edge coloring ¢ with A(G) 4 1 colors with the property
that

cle) < max{dege(v), degg(w)} + 1
for every edge e = {v,w} € E(G). The approach from [36] does not seem to
automatically generalize to the measurable setting.

Problem 9.2. Is there a measurable version of local Vizing’s theorem?

In Remark 4.12, we briefly mentioned the topic of Baire measurable colorings.
Qian and Weilacher [108] showed that A+2 colors are enough for a Baire measurable
edge coloring of a graph of degree bounded by A.

Problem 9.3. Is there a Baire measurable version of Vizing’s theorem?

In Section 7.1, we have seen that there is a factor of iid perfect matching on
the A-regular tree Ta. The following question is still open. Note that Kun’s result
[89] implies that K6nig’s line coloring theorem fails for measurably bipartite acyclic
A-regular measured graphs in general, for every A > 3.

Problem 9.4. Is there a factor of iid edge coloring with A colors on the A-reqular
tree Ta? In other words, does measurable Kénig’s line coloring theorem hold for
the id graph on Ta ?

An intriguing question related to the results in Section 7.1 asks about an optimal
algorithm for perfect matching on the A-regular tree Ta. This can be formalized
using he notion of finitary factors of iid, which provides a strictly finer framework
to measure complexity of LCLs than the one given by the LOCAL model, see
[72,74,80] for the exact definition and related results. On a high-level, finitary
factors of iid are randomized deterministic algorithms that do not know the size of
the graph, hence, the locality into which every vertex needs to look is a random
variable that is almost surely finite. The complexity is measured by the tail decay
of this random variable.

A recent result of Berlow, Bernshteyn, Lyons and Weilacher gives the first ex-
ample of an LCL problem (on Z?) that admits a factor of iid solution but does not
admit a finitary factor of iid solution. It would be nice to show that the perfect
matching problem on Ta has the same property. We remark that by [23], there is
no finitary factor of iid perfect matching on Ta of subexponential tail decay.

Problem 9.5. Is there a finitary factor of iid perfect matching on the A-reqular
tree Th ¢

LCL problems. The class of measured graphs that satisfy the mass transport
principle is much more studied than the class of general measured graphs. It is,
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however, not known if the mass transport principle gives any advantage for solving
LCL problems. To the following problem the discussion at the end of Section 7.3
about Radon-Nikodym cocycles might be relevant.

Problem 9.6 (Question 6.10 in [8]). Is there an LCL problem that could be solved
on measured graphs that satisfy the mass transport principles but not on general
measured graphs? The same question is open on any subclass of measured graphs
that look locally like a fixed graph, e.g., grid, regular tree etc.

A possible candidate to answer Problem 9.6 is the unfriendly coloring problem.
In its most basic form it asks for a coloring of vertices of a graph G with 2 colors
so that every vertex receives a color that is different from the color of at least half
of its neighbors. Conley and Tamuz [44] showed that a measured graph G admits a
measurable unfriendly coloring provided that the Radon-Nikodym cocycle satisfies
1—-1/A < p(z,y) < 14 1/A for every edge {x,y} € G. Note that this is much
stronger than (7.4).

Problem 9.7. Does every measured graph of bounded degree admits a measurable
unfriendly coloring? In fact, it is also open whether every Borel graph of bounded
degree admits a Borel unfriendly coloring.

In Remark 4.13, we discussed versions of derandomization in the context of mea-
surable combinatorics. While the recent counterexamples discussed there answered
in negative most of the basic questions, the following two problems are still open.

Problem 9.8. Let F be a class of graphs of bounded degree and linear growth. Is it
true that an LCL problem on F can be solved measurably on measured graphs that
are locally in ¥ if and only if it can be solved in a Borel way?

The following problem is a special case of the celebrated conjecture of Chang
and Pettie [35].

Problem 9.9. Let F be a class of graphs of bounded degree and of subexponential
growth. Is the LOCAL complexity of the distributed Lovdsz Local Lemma on F
equal to ©(log*(n))? That is, is there a speed-up result from randomized LOCAL
complezity O(log(n)) to deterministic LOCAL complexity O(log™(n)) for F?

Complexity. In Section 5.1, we mentioned in Theorem 5.4 that Brooks’ theorem
strongly fails in the Borel context. In particular, the set of A-regular acylic Borel
graphs that admit a Borel vertex coloring with A colors is as complicated as it gets.
Related is the question about the complexity of edge colorings. Thornton [116]
showed that distinguishing between Borel chromatic index A and A + 1 for Borel
graphs of degree bounded by A is Xi-complete. As the graphs in his construction
are not acyclic and Marks’ result shows that Borel chromatic index of A-regular
acyclic graphs can be anything between A and 2A — 1, it is natural to ask the
following.

Problem 9.10. Is it Xi-complete to distinguish between any k and k + 1 Borel
chromatic index on A-regular acyclic graphs, where A < k < 2A — 27
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As mentioned above, the projective complexity in the Borel context reflects to
some extent the finite experience: deciding Borel 2-colorability of a Borel graph is
strictly simpler than to decide its 3-colorability (see [30,116]). More precisely, the
codes of the collections of Borel graphs that admit a Borel 2-coloring form a IT}
set, while for k-coloring, where k > 3, the corresponding set is 3i-complete, see
also Section 5.1.

Problem 9.11. Let A > 3. Do A-regular acyclic Borel hyperfinite Borel graphs
that have Borel chromatic number at most A form a Xi-complete?

To our knowledge, surprisingly, there are no results about complexity in the
measurable context.

Problem 9.12. Let k > 3 and fiz a Borel measure i on some standard Borel space
X. What is the complexity of the codes'® of locally countable Borel graphs G with
xu(G) <k?

Is there a precise way in which deciding the measurable 2-colorability of an acyclic
bounded degree graphing is easier than to decide its 3-colorability?

The straightforward upper bound for both 2-and 3-colorings in this situation is
31, so it would be extremely interesting if the latter was Xi-hard and the former
was Al

A different complexity related question arises from the fact that all the exam-
ples considered in complexity considerations in [25,118] follow the same pattern:
constructing a family of Borel graphs parametrized by the reals, so that each of
them admits a Borel 3-coloring, but altogether it is hard to decide whether such
a coloring exists. This suggests that there could be a positive result, once one ex-
cludes this type of examples. The following question formalizes the most optimistic
scenario.

Problem 9.13. Assume that G is a A-reqular acyclic Borel graph so that there is
no smooth Borel superequivalence relation*' E of Eg so that G restricted to each E
class admits a Borel A-coloring, for A > 3. Does Marks’ example, i.e., the Schreier
graph of the free part of the left-shift action of Ta on 282, Borel homomorph to G?

Furthermore, the produced examples use non-compactness of the underlying
space in an essential way. Thus, another positive result could be possible when one
restricts to nicer Borel graphs, such as continuous graphs on compact spaces.

Problem 9.14. Assume that G is a compact subshift of the free part of 2I'> that
does not admit a Borel A-coloring, for A > 3. Does Marks’ example Borel homo-
morph to G¢ What is the projective complexity of such subshifts?

Generalizations. One of the most exciting problems is to transfer the full strength
of Martin’s theorem to the finite context. Indeed, excluding deterministic algo-
rithms of complexity o(logn) for A vertex colorings on trees of degree < A only

101y some fixed encoding, where all the codes form a Borel set. This is possible if one discards
a { measure zero set.
11 Gee [85] for the definition.



FROM DESCRIPTIVE TO DISTRIBUTED 309

requires the determinacy of clopen games, the proof of which is straightforward, see
[84, Section 20.B]. In contrast, full Borel Determinacy is one of the most involved
and exciting arguments of classical descriptive set theory.

A key feature that distinguishes the Borel case from the LOCAL model is that
“one can see in an arbitrary distance”. It would be nice to have a version of
the LOCAL model, which incorporates this, but still non-trivial. Let us pose the
following -admittedly vague- problem.

Problem 9.15. Is there a stronger variant of the LOCAL model (e.g., for which all
the LCL problems that are known to admit a Borel solution are efficiently solvable,
see [23,72]) so that 3-coloring of acyclic graphs of degree at most 3 is still not
possible, because of Marks’ method?

More generally, instead of colorings, it is reasonable to consider homomorphism
problems. The following problems are variants of [86, Problem 8.12].

Problem 9.16. Characterize the following families of finite graphs:

(1) Graphs H so that there is a deterministic distributed algorithm of complex-
ity O(log™ n) on the class of trees of degree < A that produces a homomor-
phism to H.

(2) Graphs H so that every A-regular acyclic Borel graph admits a Borel ho-
momorphism to H.

(3) Graphs H so that there is a factor of iid homomorphism to H from Ta.

(4) Graphs H so that every A-reqular acyclic Borel graph equipped with a mea-
sure p admits a Borel homomorphism to H modulo a p null set.

Is membership in any of these families algorithmically undecidable?

Let us mention that undecidability phenomenons are known to be present in the
case of grid graphs, see [59, Section 4.3]. However, it is also conceivable that one
can have a full understanding of the solvability of such homomorphism problems in
the special case of trees, as it is the case in the Baire measurable context, see [23].

It seems that even to prove a negative result in these cases, one would need
to significantly extend the collection of examples H to which there are definable
homomorphisms of the above sort, see [48], as, so far all the examples about which
we are aware of are very close to Ka1.
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