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1. Introduction

Given an abstract group homomorphism f between topological groups G and
H, one wonders whether f is continuous. In other words, does respect for the
algebraic structure imply respect for the topological structure? It is fairly easy
to give examples where this fails. For example, if we consider the group of real
numbers R as a vector space over the field Q, we pick (by the axiom of choice) a
basis for R, and then project to one of the coordinates. This gives a homomorphism
from R to Q, both having the natural topologies, which is not continuous (since R
is connected and Q is not).

For another example, we take G to be the group of order two to the power
of the natural numbers. We give G the product topology, with each coordinate
group being discrete. Let U be a nonprincipal ultrafilter on the natural numbers,
and take H to be the group of order two (under the discrete topology). Define a
homomorphism from G to H by taking a sequence to the number 1 if and only if
the sequence represents an element in the ultrafilter. This homomorphism is not
continuous since each open neightborhood of identity in G includes elements which
are not in the kernel.

Despite these examples, there are hypotheses on the groups G and H which
force a homomorphism to be continuous. For example, it was shown by Dudley in
1961 [9] that if the topology on G is completely metrizable or locally compact and
H is a free (abelian) group then a homomorphism is necessarily continuous. With
similar hypotheses on G one can have H be torsion-free hyperbolic, Baumslag-
Solitar, the Thompson group F , or a great many other groups and the conclusion
still holds [6], and much can be said even when H is acylindrically hyperbolic [2] or

178



WHY THE CONE GROUPS CAN BE ISOMORPHIC 179

has small torsion subgroups [15]. The beautiful theory surrounding ample generics,
developed by Kechris and Rosendal [13], allows one to have G be the symmetric
group on the natural numbers and H to be any Polish group and again an arbitrary
homomorphism is continuous.

Automatic continuity questions arise also in algebraic topology. If X and Y are
path connected spaces and f : π1(X,x) → π1(Y, y) is an abstract homomorphism,
then one can ask whether there is a continuous function c : X → Y such that
f is the induced homomorphism c∗. Typically one restricts attention to X and Y
which are Peano continua—path connected, locally path connected compact metric
spaces. A striking result in this regard is due to Kent, who showed that if X and Y
are planar (i.e. ⊆ R2) or one-dimensional Peano continua then their fundamental
groups are abstractly isomorphic if and only if the spaces are homotopy equivalent
[14, Theorem 1.2]. In other words, isomorphism of fundamental groups holds in this
situation precisely when there are continuous functions c1 : X → Y and c2 : Y → X
with c2◦c1 and c1◦c2 being homotopic to the identity map on the appropriate space.

In this survey, we’ll sketch out why this result is essentially the strongest possible,
presenting a weakened version of Theorem A found in the paper [5]. Particularly
we’ll show that the Griffiths space GS2 (Figure 2) and the analogue GS3, having
three cones instead of two, have isomorphic fundamental group. These are Peano
continua, subspaces of R3, are two dimensional and almost look like manifolds
with boundary. It is clear that no continuous function c from one space to the
other can induce an isomorphism. For example, if c : GS3 → GS2 is a continuous
function then the loops in at least two of the cones in GS3 will have to eventually
map into one of the cones in GS2, so c∗ will have uncountable kernel. On the
other hand, if c : GS2 → GS3 is continuous then one of the cones of GS3 will have
small loopss which are not mapped onto by c, and thus the index of the image
of c∗ will be uncountable. The construction of our abstract isomorphism is highly
nonconstructive, and in fact what is truly shown in [5] is that π1(GS2) is isomorphic
to π1(GSκ) where κ is a cardinal 2 ⩽ κ ⩽ 2ℵ0 .

In Sections 2 and 3 we present background and the main idea for the proof. In
Section 4 we give some of technical lemmas leading to the isomorphism (Theorem
4.5). In Section 5 we indicate two additional results, whose proofs follow the same
ideas, which have appeared in preprints.

2. The earring group and cone groups

We require a combinatorial characterization of the fundamental group of the
Griffiths space. This uses a description of the fundamental group of the infinite
earring, pictured in Figure 2. The infinite earring E , also known as the Hawaiian
earring, is the union E =

⋃
n∈ω Cn where Cn is the circle centered at ( 1

n+1 , 0) ∈ R2

of radius 1
n+1 , with topology inherited from R2. The space E is compact, path

connected, locally path connected. The fundamental group of E has a combinatorial
description which resembles that of a free group (naturally, given the resemblance
which E has to a bouquet of circles). However, this group is famously not free
[12]. Our review of this group will be brief; the interested reader can find more
information in [3].
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Figure 1. The Griffith space GS2

Figure 2. The infinite earring E

Let A = {a±1
n }n∈ω be a countably infinite set with formal inverses (this is the

set of letters). A word is a function from a countable totally ordered set W̄ to
the set A such that for each a ∈ A the set {i ∈ W̄ | W (i) = a} is finite. For
example one has the word W : ω → A given by n 7→ an, which one can “write”
as a0a1a2 . . . . More exotically one can have a word with domain Q. We consider
two words W and U to be the same, and write W ≡ U , if there exists an order
isomorphism ι : W̄ → Ū such that for all i ∈ W̄ , W (i) = U(ι(i)). When words are
finite, the ≡ equivalence agrees with the usual syntactic notion that the two words
read the same, letter-for-letter. Let E denote the empty word; that is, the word
with empty domain.
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Each word W has an inverse which we will denote W−1, which is given by taking
W−1 to be the set W̄ under the reverse order and letting W−1(i) = (W (i))−1.
Given two words W0 and W1 we form their concatenation W0W1 by taking the
domain W0W1 to be the disjoint union W0 ⊔W1 which is ordered to extend the
orders of W0 and W1 and places elements of W0 below those of W1. The function
W0W1 is the following

W0W1(i) =

{
W0(i) if i ∈W0,

W1(i) if i ∈W1.

Importantly there is also a notion of infinite concatenation. Given a nonempty
word W we let ∥W∥ = 1

1+k where k is the minimal subscript among the letters

in the image of W ; if W ≡ E is the empty word then ∥W∥ = 0. Suppose that
{Wλ}λ∈Λ is a collection of words indexed by a totally ordered set Λ and that for
any real ϵ > 0 the set {λ ∈ Λ | ∥Wλ∥ ⩾ ϵ} is finite. One forms the concatenation
W ≡

∏
λ∈Λ Wλ by giving it the domain

⊔
λ∈Λ Wλ ordered in the natural way and

letting W (i) = Wλ(i) where i ∈Wλ. It is easy to check that this function is indeed
a word, and if each word Wλ is nonempty we know the index Λ is countable.

We are nearly ready to form the words into a group. For n ∈ ω and word
W let pn(W ) be the word given by the finite restriction W ↾ {i ∈ W̄ | W (i) ∈
{a±1

m }0⩽m⩽n}. Write W ∼ U if for all n ∈ ω the words pn(W ) and pn(U) are equal
as words in the free group F (a0, . . . , an). For example,

(2.1) a0a1a2 . . . . . . a
−1
2 a−1

1 a−1
0 ∼ E

Writing [W ] for the ∼ equivalence class of the word W , we obtain a group opera-
tion on the ∼ equivalence classes of words by defining [W0][W1] := [W0W1]. The
identity element of the group is the equivalence class [E] and the inverse is natural:
[W ]−1 = [W−1].

The group obtained is of cardinality 2ℵ0 . One can imagine the isomorphism
between this group and the fundamental group of the infinite earring by taking
for i ∈ ω a loop li : [0, 1] → E going counter-clockwise around the i-th circle Ci

in E . For a word W we realize a loop LW by reading off the word W , and where
the output is ai (respectively a−1

i ) we then go around the loop li (respectively

around the reverse loop l−1
i ). The map which takes an equivalence class [W ] and

assigns to it the homotopy class of the loop LW gives an isomorphism. Of course
we are leaving out many details regarding parametrization and what is truly meant
by “reading off” the word; also, the proof that this map is well-defined and an
isomorphism requires work. The interested reader can find details in [3, §2.1].

As in a free group, we would prefer that the group elements be words instead
of equivalence classes of words. We say a word W is reduced if whenever we write
a concatenation W ≡ W0W1W2 with W1 ∼ E we have W1 ≡ E. This definition
is clearly an extension of that in free groups, and many of the same results can
be obtained.
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Lemma 2.1. [10, Theorem 1.4, Corollary 1.7] For each word W there exists a
unique up to ≡ reduced word W0 with W ∼W0. Moreover if W and U are reduced
there exist unique words W0,W1, U0, U1 such that

(1) W ≡W0W1;
(2) U ≡ U0U1;
(3) W1 ≡ U−1

0 ;
(4) W0U1 is reduced.

One can obtain the reduced form of a word W via a (possibly infinite, compli-
cated) process of pairing up elements of W̄ whose outputs are inverse letters, and
each point between elements in a pair also must be paired with a point between that
pair. The reduced form of W is obtained by taking a maximal such cancellation
scheme and restricting W to the set of points in W̄ which do not appear in the
scheme. It is a nontrivial fact that, up to ≡, the word obtained does not depend on
the maximal cancellation scheme which was used. In the benign example in (2.1)
we take W to be the word on the left and pair the min(W̄ ) with max(W̄ ), pair
min(W̄ ∖ {min(W̄ ),max(W̄ )}) with max(W̄ ∖ {min(W̄ ),max(W̄ )}), etc. As seen
in Lemma 2.1, obtaining the reduced form of the product of two reduced words
utilizes a similar uncomplicated cancellation scheme.

Having understood the earring group, we are ready to give a clean combinatorial
description of the cone groups. We define words, reduced words, and the function
∥ · ∥ on the alphabet {a±1

n }n∈ω ∪ {b±1
n }n∈ω in the same way as above (a word is a

finite-to-one function from a countable totally ordered set to the alphabet, etc.). Let
Reda,b denote the group of reduced words under the alphabet {a±1

n }n∈ω∪{b±1
n }n∈ω.

Let Reda denote the group of reduced words in the original alphabet {a±1
n }n∈ω and

Redb denote the group of reduced words in the alphabet {b±1
n }n∈ω. Both of Reda

and Redb are subgroups of Reda,b. We point out that Lemma 2.1 still holds in each
of these new settings.

The group Reda,b is isomorphic to the fundamental group of the space obtained
by taking two copies of the infinite earring and identifying at the interesting points.
Incidentally, this space is homeomorphic to the earring, but we want the two ear-
rings for defining the double cone group. One can view the Griffiths space GS2 as
the space obtained by taking these conjoined two earrings, putting a topological
cone over one earring, and then putting a topological cone over the other. The
conjoined earrings at the “base” of GS2 generate the fundamental group; more pre-
cisely, the inclusion map of the base into GS2 induces a surjective homomorphism
on fundamental groups. Note that any loop which remains in one of the earrings is
nulhomotopic, since that earring has a topological cone above it. In fact, that ob-
servation precisely characterizes the fundamental group of GS2: by an application
of the Seifert-van Kampen Theorem it is easy to see that the fundamental group
of GS2 is isomorphic to Reda,b /⟨⟨Reda ∪Redb⟩⟩.

For example, the word
a0a1a2 . . . b0b1b2 . . .

represents the identity element in Reda,b /⟨⟨Reda ∪Redb⟩⟩, but the word

a0b0a1b1 . . .
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does not. Thus, elements of the group Reda,b /⟨⟨Reda ∪Redb⟩⟩ are rather slippery
objects because we can delete (sometimes in-)finitely many letters without changing
the group element.

We close this section by defining Redc,d,e to be the group of reduced words in the
alphabet {c±1

n }n∈ω ∪ {d±1
n }n∈ω ∪ {e±1

n }n∈ω. By the same reasoning as before, the
quotient Redc,d,e /⟨⟨Redc ∪Redd ∪Rede⟩⟩ is isomorphic to the fundamental group
of the space GS3 obtained by identifying three copies of the infinite earring at their
interesting points and placing a cone over each earring.

3. COI Triples: The building blocks of an isomorphism

Now that we have seen the combinatorial descriptions of π1(GS2) and π1(GS3)
in Section 2, we can forget about spaces and focus instead on the combinatorics of
infinite words.

3.1. Decomposition into pure subwords. We’ll start with a straightforward con-
cept.

Definition 3.1. We say that a word W ∈ Reda,b is a-pure (respectively b-pure)
if W ∈ Reda (resp. W ∈ Redb). Generally a word in Reda,b is pure if it is a-pure
or b-pure. For U ∈ Redc,d,e we say it is c-pure, d-pure, e-pure and pure in the
comparable way.

For a word W ∈ Reda,b we give a canonical way in which to write W as a
concatenation of nonempty pure words. This is done by selecting (if W is not
empty) an element i ∈ W̄ and taking Ii ⊆ W̄ to be the maximal interval such that
i ∈ Ii and W ↾ Ii is pure. Clearly for j ∈ Ii we obtain Ij = Ii under this process.
This decomposition of W̄ into nonempty, pairwise disjoint intervals is ordered in
the natural way. Write ind(W ) for this ordered set, which can be considered the
index of the concatenation. Now we can write our word as a concatenation W ≡∏

I∈ind(W ) W ↾ I, where each subword W ↾ I is a nonempty pure subword of W

which has been made “as large as possible.” For brevity, we will generally write
instead W ≡p

∏
λ∈ind(W ) Wλ to express that this decomposition of W is in the

canonical way. The decomposition of U ∈ Redc,d,e is given and denoted similarly:
U ≡p

∏
λ∈ind(U) Uλ. For the empty word we consider that ind(E) = ∅.

We next give a special definition for those subwords of a word which respect this
decomposition.

Definition 3.2. We say W0 is a p-chunk of W ≡p

∏
λ∈ind(W ) Wλ if there exists an

interval I ⊆ ind(W ) such that W0 ≡
∏

λ∈I Wλ. We shall also denote this word by
W ↾p I (note that we may also write W0 ≡p

∏
λ∈I Wλ). Write p-chunk(W ) for the

set of all p-chunks of W .

One can imagine that a p-chunk as a subword which respects the pure subwords.
Note that it can easily be the case that ind(W ) is order isomorphic to the rationals
Q, so p-chunk(W ) can be of size 2ℵ0 .

Definition 3.3. A subgroup G of Reda,b, or of Redc,d,e, is p-fine if for each W ∈ G
we have p-chunk(W ) ⊆ G.
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Lemma 3.4. If X ⊆ Reda,b then the subgroup generated by
⋃

W∈X p-chunk(W )
in Reda,b is p-fine, and is the smallest p-fine subgroup which includes the set X .
Similarly for X ⊆ Redc,d,e.

This lemma requires a bit of work to prove. One can give a full description
of the elements of this subgroup, using Lemma 2.1 . The elements are precisely
those words W ≡p

∏
λ∈ind(W ) Wλ for which there is a finite collection of intervals

I0, . . . , Ij in ind(W ) with ind(W ) =
⊔j

i=0 Ii and for 0 ⩽ i ⩽ j we have

(1) Ii = {λ} is a singleton and Wλ is a product of pure elements (and inverses)
in

⋃
W∈X p-chunk(W ); or

(2)
∏

λ∈Ii
Wλ is a p-chunk, or the inverse of a p-chunk, of an element in X .

Definition 3.5. For X ⊆ Reda,b, or X ⊆ Redc,d,e, we write Pfine(X ) for the
minimal p-fine subgroup including X .

3.2. Close subsets, coi triples.

Definition 3.6. If Λ is a totally ordered set we say that a subset Λ0 ⊆ Λ is close
in Λ if for each infinite interval I ⊆ Λ we have Λ0 ∩ I ̸= ∅.

For example, a subset of Q is close provided it is dense. A subset of ω is close if
it is unbounded.

Definition 3.7. A close order isomorphism (abbreviated coi) between two totally
ordered sets Λ and Θ is an order isomorphism ι : Λ0 → Θ0 with Λ0 close in Λ and
Θ0 close in Θ.

From a coi ι : Λ0 → Θ0 between Λ and Θ we get a (not necessarily one-to-one)
correspondence between the intervals in Λ and those in Θ. More specifically if I ⊆ Λ
is an interval then we let ι(I) denote the smallest interval in Θ which includes the
set ι(I ∩ Λ0). Similarly from an interval J ⊆ Θ we get an interval ι−1(J) ⊆ Λ.
The correspondence allows some forgetfulness: given an interval I ⊆ Λ we have
that ι−1(ι(I)) is a subinterval in I (it is precisely the smallest interval in I which
includes the set I ∩ Λ0), and I ∖ ι−1(ι(I)) is finite.

Definition 3.8. A coi triple is an ordered triple (W, ι, U) such that

(1) W ∈ Reda,b;
(2) U ∈ Redc,d,e; and
(3) ι is a close order isomorphism between ind(W ) and ind(U).

We let

ℶa,b : Reda,b → Reda,b /⟨⟨Reda ∪Redb⟩⟩
and

ℶc,d,e : Redc,d,e /⟨⟨Redc ∪Redd ∪Rede⟩⟩
denote the quotient maps. The following mouthful of a definition delineates the
tool that we use to construct our isomorphism.

Definition 3.9. A collection {(Wx, ιx, Ux)}x∈X of coi triples is coherent if
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(1) for any x, x′ ∈ X, intervals I ⊆ ind(Wx) and I ′ ⊆ ind(Wx′), and i ∈ {−1, 1}
if

Wx ↾p I ≡ (Wx′ ↾ I ′)i

then

ℶc,d,e(Ux ↾p ιx(I)) = ℶc,d,e((Ux′ ↾p ιx′(I ′))i)

and
(2) for any x, x′ ∈ X, intervals J ⊆ ind(Ux) and J ′ ⊆ ind(Ux′), and j ∈ {−1, 1}

if

Ux ↾p J ≡ (Ux′ ↾ J ′)j

then

ℶa,b(Wx ↾p ι−1
x (J)) = ℶa,b((Wx′ ↾p ι−1

x′ (J
′))j).

The definition essentially says that, up to deletion of finitely many p-chunks,
the collection tells a compatible algebraic “story” on the p-chunks of the words
appearing in the coi triples. Conditions (1) and (2) give the definition a very
symmetric flavor, and this gets used to prove Theorem 3.10 below.

We point out that given a collection of coi triples it is a very serious matter to
check that it is coherent. This is even the case if the collection has only one coi
triple in it. For example suppose we have a collection of cardinality one, {(W, ι, U)},
and ind(W ) is of order type Q. There are 2ℵ0 intervals in ind(W ), and to see if the
collection is coherent we must check that if W ↾p I is equivalent to W ↾p I ′, or to
its inverse, then the appropriate words determined in Redc,d,e are equal under the
quotient ℶc,d,e. We must also check this among all of the intervals J, J ′ ⊆ ind(U).
The reader can imagine how tedious this becomes when the collection contains more
than one element.

Nevertheless, insofar as one can manage to produce a large coherent collection
they are rewarded with an isomorphism (see [5, Proposition 3.16] ).

Theorem 3.10. Suppose {(Wx, ιx, Ux)}x∈X is a coherent collection of coi triples.
Then there exist homomorphisms ϕ0 : Pfine({Wx}x∈X) → ℶc,d,e(Pfine({Ux}x∈X))
and ϕ1 : Pfine({Ux}x∈X) → ℶa,b(Pfine({Wx}x∈X)) such that for all x ∈ X,
ϕ0(Wx) = ℶc,d,e(Ux) and ϕ1(Ux) = ℶa,b(Wx). If in addition Pfine({Wx}x∈X) =
Reda,b and Pfine({Ux}x∈X) = Redc,d,e, the homomorphism ϕ0 descends to an iso-
morphism

Φ: Reda,b /⟨⟨Reda ∪Redb⟩⟩ → Redc,d,e /⟨⟨Redc ∪Redd ∪Rede⟩⟩

and ϕ1 descends to Φ−1.

In [5, Proposition 3.16] it was claimed that from a coherent {(Wx, ιx, Ux)}x∈X

one obtains an isomorphism Φ: ℶa,b(Pfine({Wx}x∈X)) → ℶc,d,e(Pfine({Ux}x∈X))
(without assuming Pfine({Wx}x∈X) = Reda,b and Pfine({Ux}x∈X) = Redc,d,e).
This requires an argument that, if N is the normal subgroup of Pfine({Wx}x∈X)
normally generated by the set Pfine({Wx}x∈X) ∩ (Reda ∪Redb), and M is the
normal subgroup of Reda,b normally generated by Reda ∪Redb, the equality

N = M ∩ Pfine({Wx}x∈X)
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holds. In case X has cardinality less than 2ℵ0 , [5, Proposition 3.16] is correct
simply because we show that the collection can be extended to a larger one whose
p-fine subgroups are respectively Reda,b and Redc,d,e. We simply make the more
conservative Theorem 3.10 given above and this is sufficient for the task.

Theorem 3.10 is proved very carefully using the decomposition mentioned in
Lemma 3.4. One defines a homomorphism in the most straighforward way imag-
inable, works out the details to show that it is well-defined and that it is a bi-
jection. An essential fact used is that in the images of ℶa,b and ℶc,d,e one can
add or delete pure p-chunks without changing the group element. Now the game
is clear. We obtain the desired isomorphism if we succeed in constructing a co-
herent coi collection {(Wx, ιx, Ux)}x∈X such that Pfine({Wx}x∈X) = Reda,b and
Pfine({Ux}x∈X) = Redc,d,e.

It is well to return to the example when the collection, {(W, ι, U)}, has only one
element and ind(W ) is of order type Q. If this collection is coherent, then using the
work done in Theorem 3.10 one obtains homomorphisms ϕ0 : Pfine({Wx}x∈X) →
ℶc,d,e(Pfine({Ux}x∈X)) and ϕ1 : Pfine({Ux}x∈X) → ℶa,b(Pfine({Wx}x∈X)), each
have domain of cardinality 2ℵ0 . This once again illustrates the amount of informa-
tion that one coi triple can encode. It also illustrates a potential pitfall that one
must overcome. It may be that in the course of constructing a coherent coi collec-
tion we accidentally make Pfine({Ux}x∈X) = Redc,d,e while Pfine({Wx}x∈X) is still
a proper subgroup of Reda,b, or vice versa. So, we might exhaust one side without
having exhausted the other. Of course another potential difficulty could simply be
that we produce a coherent coi collection {(Wx, ιx, Ux)}x∈X and we fail to make
either Pfine({Wx}x∈X) or Pfine({Ux}x∈X) large enough because our ingenuity in
extending a coherent collection runs out.

We surmount all challenges by ensuring that the collection has cardinality strictly
smaller than 2ℵ0 at each stage of the induction. Diagonalization arguments show
that it is always possible to add one more coi triple to the collection.

4. Adding another coi triple to a small collection

We have seen that it may be difficult to enlarge a coherent collection of coi triples.
We show how this is done, proving the main theorem. Lemmas 4.1, 4.2, 4.3, 4.4
coorrespond with Lemma 3.18 and Propositions 3.20, 3.21, 3.23 of [5], respectively.

A useful warmup result is the following.

Lemma 4.1. Suppose that {(Wx, ιx, Ux)}x∈X is a coherent collection of coi triples
and ϵ > 0.

(a) If W ∈ Pfine({Wx}x∈X) then there exists a U ∈ Redc,d,e with ∥U∥ < ϵ and
a close order isomorphism ι such that {(Wx, ιx, Ux)}x∈X ∪ {(W, ι, U)} is
coherent.

(b) If U ∈ Pfine({Ux}x∈X) then there exists a W ∈ Reda,b with ∥W∥ < ϵ and
a close order isomorphism ι such that {(Wx, ιx, Ux)}x∈X ∪ {(W, ι, U)} is
coherent.

This lemma is proved using the description of elements in Pfine(·) used in Lemma
3.4. If W ∈ Pfine({Wx}x∈X) then we can write W as a finite concatenation
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of words W ≡ W0 . . .Wj , where each Wi is (1) pure, or (2) an element of
(
⋃

x∈X p-chunk(Wx)) ∪ (
⋃

x∈X p-chunk(W−1
x )). For a Wi of type (2) we can write

Wi ≡p (Wxi
↾p Ii)

αi with Ii ⊆ ind(Wxi
) an interval and αi ∈ {±1}, and we care-

fully modify the word Uxi ↾p ιxi(Ii) at finitely many elements in ιxi(Ii) to obtain

a word U ′
i ∈ Redc,d,e with |U ′

i | < ϵ. Now the coi ιxi can be restricted to give a
coi ιi from ind(Wi) to ind((U ′

i)
αi). If Wi is of type (1) then we take U ′

i to be the
empty word. The desired word U is given by U1 . . . Uj , where Ui is either U ′

i or
is U ′

iVi (where Vi is pure and |Vi| < ϵ) as needed in order to ensure that U is a
reduced word. The coi ι is the union of the ιi considered in type (2). The check
that {(Wx, ιx, Ux)}x∈X∪{(W, ι, U)} is coherent is straightforward but tedious. The
proof of (b) is essentially the same, but using the inverses of the coi.

There was no requirement in the previous lemma that the collection of coi triples
was smaller than 2ℵ0 , but this becomes essential in what follows. The next lemma
says that if W ∈ Reda,b is written as an ω type concatenation of words which are
already in Pfine({Wx}x∈X), then we can coherently extend the coi collection so
that W also is in the generated p-fine group.

Lemma 4.2. Assume {(Wx, ιx, Ux)}x∈X is a coherent collection of coi triples with
|X| < 2ℵ0 .

(a) Suppose W ∈ Reda,b is such that ind(W ) =
⊔

n∈ω In with each In ̸= ∅
an interval in ind(W ) and elements of In are below elements of Im when
n < m. Suppose further that W ↾p In ∈ Pfine({Wx}x∈X) for all n ∈ ω
but W /∈ Pfine({Wx}x∈X). Then there exists U ∈ Redc,d,e and coi ι from
ind(W ) to ind(U) such that {(Wx, ιx, Ux)}x∈X ∪ {(W, ι, U)} is coherent.

(b) Suppose U ∈ Redc,d,e is such that ind(U) =
⊔

n∈ω Jn with each Jn ̸= ∅
an interval in ind(U) and elements of Jn are below elements of Jm when
n < m. Suppose further that U ↾p Jn ∈ Pfine({Ux}x∈X) for all n ∈ ω but
U /∈ Pfine({Ux}x∈X). Then there exists W ∈ Reda,b and coi ι from ind(W )
to ind(U) such that {(Wx, ιx, Ux)}x∈X ∪ {(W, ι, U)} is coherent.

This lemma is proved by iterative use of Lemma 4.1. We extend to a coherent
collection {(Wx, ιx, Ux)}x∈X ∪ {(W ↾p I0, ι0, U

′
0)}, then to a coherent collection

{(Wx, ιx, Ux)}x∈X ∪ {(W ↾p I0, ι0, U
′
0), (W ↾p I1, ι1, U

′
1)}, etc. so that ∥U ′

k∥ < 1
k

and each ιk has nonempty domain (this latter condition can be easily added). The
requirement that ∥U ′

k∥ < 1
k makes it so that the concatenation which we define

later is in fact a word. It is clear that the collection {(Wx, ιx, Ux)}x∈X ∪ {(W ↾
Ik, ιk, U

′
k)}k∈ω is coherent, as an increasing union of coherent collections. The word

U is given as a concatenation U ≡ U0U1U2 . . . where Uk ≡ U ′
kVk with ∥Vk∥ < 1

k .
The interstitial words Vk have 1 ⩽ | ind(Vk)| ⩽ 2 and some p-chunk of Vk is not in
Pfine({Ux}x∈x ∪{Uk}k∈ω) (the ability to do this is guaranteed by the fact that the
collection is of size < 2ℵ0). Each Vk also ensures that U is a reduced word (i.e. it
interrupts any cancellation that might otherwise occur between U ′

k and U ′
k+1). The

coi ι is the union of the ιk. The check that the extension is coherent is even more
tedious than in Lemma 4.1; the fact that each Vk has a p-chunk which is not an
element in Pfine({Ux}x∈x ∪ {Uk}k∈ω) ensures that part (2) of Definition 3.9 holds.

Next we switch from ω type concatenation to Q type.
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Lemma 4.3. Assume {(Wx, ιx, Ux)}x∈X is a coherent collection of coi triples with
|X| < 2ℵ0 .

(a) Suppose W ∈ Reda,b is such that ind(W ) =
⊔

q∈Q Iq with each Iq ̸= ∅
an interval in ind(W ) and elements of Iq are below elements of Iq′ when
q < q′. Suppose further that W ↾p Iq ∈ Pfine({Wx}x∈X) for all q ∈ Q
and W ↾p I /∈ Pfine({Wx}x∈X) implies that I ⊆ Iq for some q ∈ Q.
Then there exists U ∈ Redc,d,e and coi ι from ind(W ) to ind(U) such that
{(Wx, ιx, Ux)}x∈X ∪ {(W, ι, U)} is coherent.

(b) Suppose U ∈ Redc,d,e is such that ind(U) =
⊔

q∈Q Jq with each Jq ̸= ∅ an

interval in ind(U) and elements of Jq are below elements of Jq′ when q < q′.
Suppose further that U ↾p Iq ∈ Pfine({Ux}x∈X) for all q ∈ Q and U ↾p J ∈
Pfine({Ux}x∈X) implies that J ⊆ Jq for some q ∈ Q. Then there exists
W ∈ Reda,b and coi ι from ind(W ) to ind(U) such that {(Wx, ιx, Ux)}x∈X∪
{(W, ι, U)} is coherent.

To prove this lemma, we write down a list {Wk}k∈ω of words in Pfine({Wx}x∈X)
such that for each q ∈ Q there is a unique k ∈ ω such that W ↾p Iq ≡Wk or W ↾p≡
W−1

k . Now as in Lemma 4.2 we use Lemma 4.1 to extend to a coherent collection
{(Wx, ιx, Ux)}x∈X ∪ {(Wk, ιk, U

′
k)}k∈ω such that ∥U ′

k∥ < min{ 1k , ∥U
′
k−1∥} and the

domain of ιk is nonempty. Again, we are requiring ∥U ′
k∥ < min{ 1k , ∥U

′
k−1∥} so that

a concatenation defined later will indeed be a word. Next we select pure words Vk,0

and Vk,1 so that ∥Vk,0∥ = ∥Vk,1∥ = ∥Wk∥ and Vk,j /∈ Pfine({Ux}x∈X ∪ {U ′
k}k∈ω)

when j = 0, 1. We also require that Vk,0U
′
kVk,1 is a reduced word.

The word U ∈ Redc,d,e is given by

U ≡
∏
q∈Q

(Vkq,0U
′
kq
Vkq,1)

αq

where kq ∈ ω and αq ∈ {±1} are such thatW ↾p Iq ≡W
αq

kq
(note that the only word

which is ≡ to its own inverse is the empty word, so αq is well-defined). One must
check that U is in fact a reduced word. To this end, one imagines a cancellation
scheme on U and modifies it in such a way that it pulls back to a cancellation
scheme on W , giving a contradiction.

The coi ι from ind(W ) to ind(U) is produced by gluing together the coi ιkq which

go from W
αq

kq
to (U ′

kq
)αq . Coherence of {(Wx, ιx, Ux)}x∈X ∪ {(W, ι, U)} is checked

very carefully. The use of Vk,0 and Vk,1 for k ∈ ω aids us in checking part (2) of
Definition 3.9.

It turns out that the extension lemmas proven so far are already sufficient to
give us the general induction below.

Lemma 4.4. Assume {(Wx, ιx, Ux)}x∈X is a coherent collection of coi triples with
|X| < 2ℵ0 .

(1) If W ∈ Reda,b then there exists a U ∈ Redc,d,e and coi ι such that

{(Wx, ιx, Ux)}x∈X ∪ (W, ι, U)

is coherent.
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(2) If U ∈ Redc,d,e then there exists W ∈ Reda,b and coi ι such that

{(Wx, ιx, Ux)}x∈X ∪ (W, ι, U)

is coherent.

Of course if W ≡ E then there is little work to do, so we assume W is not empty.
One begins by adding for each i ∈ ind(W ) a rather trivial coi triple (W ↾p {i}, ιi, E),
where ιi is the empty function, to the collection {(Wx, ιx, Ux)}x∈X . This enlarged
collection {(Wx, ιx, Ux)}x∈X0

is coherent. Next we look at the collection I0 of
intervals I in ind(W ) such that W ↾p I ∈ Pfine({Wx}x∈X0

). Because of the initial
enlargement we have each singleton {i}, i ∈ ind(W ), is an element of I0. If for some
I in this collection there is some ω sequence I = I0 ⊆ I1 ⊆ . . . for which each Ik ∈ I0
but

⋃
k∈ω Ik /∈ I0 then we use Lemma 4.2, perhaps once in the forward and once in

the backward direction, to enlarge to a collection {(Wx, ιx, Ux)}x∈X1 such that the
now larger I1 has

⋃
k∈ω Ik as an element. We keep doing this until it is not possible

to do so anymore. By employing bookkeeping at each implementation of this, one
sees that this can only be done countably often, so there is some α < ℵ1 such that
the collection {(Wx, ιx, Ux)}x∈Xα

cannot be enlarged in this manner. Note that
this collection is of size < 2ℵ0 . This collection Iα is such that each i ∈ ind(W ) is an
element of a unique maximal I ∈ Iα. Also, the collectionM of maximal elements
in Iα is such that if I, I ′ ∈M have I∩I ′ ̸= ∅ then I = I ′ (otherwise W ↾p I∪I ′ is a
concatenation of two elements of Pfine({Wx}x∈Xα

)). Ordering the elements ofM
through comparing their elements, by the same reasoning if I < I ′ are inM then
there exists I ′′ ∈ M with I < I ′′ < I ′. Thus M is a nonempty, countable, dense
ordered set. If M is a singleton, then we can apply Lemma 4.1 to immediately
obtain the desired ι and U . Else, M is order isomorphic to Q ∪ L where L ⊆
{−∞,∞}. Use Lemma 4.3 to make a larger collection {(Wx, ιx, Ux)}x∈X′ so that
W ↾p

⋃
{Iq}q∈Q ∈ Pfine({Wx}x∈X′), and so W is a finite concatenation of (at most

three) elements of Pfine({Wx}x∈X′) and applying Lemma 4.1 we obtain U and ι.
Now we can easily prove the main theorem.

Theorem 4.5. π1(GS2) ≃ π1(GS3).

Take ≺a,b to be a well-order on Reda,b such that each W has fewer than 2ℵ0

elements below it, and take ≺c,d,e similarly for Redc,d,e. By Lemma 4.4 induc-
tively define a coherent collection {(Wγ , ιγ , Uγ)}γ<2ℵ0 so that for an even ordi-
nal γ (i.e. γ = β + 2m with β limit and m ∈ ω) Wγ is the ≺a,b-minimal
element of Reda,b ∖{Wδ}δ<γ , and similarly Uγ is the ≺c,d,e-minimal element of
Redc,d,e ∖{Uδ}δ<γ for odd γ. Now apply Theorem 3.10.

5. Further applications

The techniques above yield more results. The harmonic archipelago HA [1] is a
subspace of R3 which is formed by starting with a topological disc, selecting a point
on the boundary, and raising hills of height 1 whose bases shrink in diameter and
converge to the distinguished point on the boundary (see Figure 5). This space looks
in many ways like a disc, and the space obtained by removing the distinguished
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Figure 3. The harmonic archipelago HA

point is homeomorphic to a disc minus a boundary point. To see that π1(HA) is
nontrivial, take a loop which traverses the boundary and notice that any attempt
to nulhomotopy this loop would require moving over infinitely many of the hills,
and this violates the continuity of a homotopy. In fact, the fundamental group is
uncountable.

Cannon and Conner conjectured that the group π1(HA) is isomorphic to π1(GS2).
In the arXiv version of [5] it is shown that this is indeed true. The proof uses a
combinatorial description of π1(HA) provided in [7]. One can make a compara-
ble description of pure words and prove comparable extension results for ω and Q
concatenations as given above.

As another application, suppose that {Hn}n∈ω is a countable collection of groups.
The elements of the inverse limit of the free products lim←−∗

m
n=0Hn can be consid-

ered as infinite countable words, and the subgroup consisting of those words which
utilize elements in Hn only finitely often for each n we call ⊛n∈ω Hn. The free
product ∗n∈ωHn is the subgroup of ⊛n∈ω Hn consisting of finite words. If each Hn

is isomorphic to Z the group ⊛n∈ω Hn is isomorphic to the fundamental group of
the earring. There is a natural notion of reduced word for elements in ⊛n∈ω Hn.

The group ⊛n∈ω Hn/⟨⟨∗n∈ωHn⟩⟩ has a similar feel to the groups that we have
been discussing—elements are represented by infinite words and one can make
finite deletions in these words without changing the group element. In [4] it is
shown, by the appropriate modificaions to the techniques, that if each Hn has no
involutions and 2 ⩽ |Hn| ⩽ 2ℵ0 then ⊛n∈ω Hn/⟨⟨∗n∈ωHn⟩⟩ is also isomorphic to
π1(GS2). This corrects and generalizes a result in [7]. It is not known whether
the requirement that the groups be involution-free is essential. One of the main
hurdles in this particular modification is ensuring that a constructed word in a ω
or Q concatenation is reduced.
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