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1. Introduction
In this section we introduce the terms and notations that will be used later.

1.1. Banach algebras. Let A be a complex unital Banach algebra with the unit
1 and let @ € A. Denote the spectrum, the spectral radius and the resolvent set
of a by o(a), r(a) and p(a), respectively. The sets of all invertible, nilpotent,
quasinilpotent and idempotent elements in A will be denoted by A~1, Al Aanil
and A°®, respectively.

In Banach algebras, we can use idempotents to represent elements in a matrix
form. Let p,q € A® be arbitrary idempotents. Then an element a € A can be
written as a = pag+pa(l—q)+(1—p)ag+ (1—p)a(l—q). We can use the following
notation: a1; = paq, a2 =pa(l—gq), a1 =(1—plag, ax=(1-pa(l-ygq).

Thus, idempotents p,q € A® determine representation of the element a € A as
the sum such that a;; € pAqg, a2 € pA(1—q),a21 € (1—p)Aqg,aze € (1—p)A(1—q),
which can be written in the following matrix form

0= | P pa(l —q) ] _ |:a11 a12:|
P P

(1 —=p)ag (1 —p)a(l —q) az1 a2

We will also use the representation of an element in the matrix form in the case

p = q. Thus, we represent the element a € A as a = [Z;} a2 ]p, where a1 = pap,

aiz2 = pa(l —p), az; = (1 — p)ap, azz = (1 — p)a(l — p). We will frequently avoid
the index p in [- - -], whenever there is no confusion.
Banach algebras pAp and (1 — p).A(1 — p) have the units. The unit in pAp is p,
.. . i _ 0 _ 0
and the unit in (1 — p)A(1 — p) is 1 — p. Notice that p = [ 0}p’ 1=[% 1_p]p.

1.2. Generalized inverses in Banach algebras. An clement a € A is inner gener-
alized invertible (generalized invertible, inner invertible, relatively regular, regular),
if there exists some b € A such that aba = a holds. In this case b is an inner (gen-
eralized) inverse of a. The set of all such inverses is denoted by a{1}, and the set
of all inner invertible elements in A is denoted by A=AD Ifqe A~1, then a1
is the only inner inverse of a.

An element a € A is outer generalized invertible, if there exists some b € A
satisfying b # 0 and b = bab. Such b is called the outer generalized inverse of a. In
this case ba and 1 — ab are idempotents corresponding to a and b. The set of all
outer generalized invertible elements of A will be denoted with A®).

If b is both inner and outer inverse of a, then b is a reflexive inverse of a.

If aba = a and ¢ = bab, then aca = a and cac = c¢. Thus, inner invertibility im-
plies outer invertibility, and inner invertibility carries more invertibility properties
than the outer invertibility.

Djordjevi¢ and Wei introduced outer generalized inverses with prescribed idem-
potents in [24]

Definition 1.1. [24] Let a € A and p,q € A®. An element b € A satisfying
bab=">b, ba=p, 1—ab=yq,

will be called a (p, ¢)-outer generalized inverse of a, written agg =b.
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The uniqueness of aﬁ% is provided in the following theorem.
Theorem 1.1. [24] Let a € A and p,q € A®. Then the following statements are
equivalent
1) az(f,)l exists;
2) (1 —-q)a=(1—q)ap, and there exists some b € A such that pb =b, bg =0
and ab=1—q.

(2 . L .
Moreover, if az(),t)z exists, then it is unique.

The set of all outer generalized invertible elements of A with prescribed idem-

potents p, g € A* will be denoted with A,(f;.
The generalized Drazin inverse of a € A is the element b € A which satisfies

bab="b, ab=ba, a—a’be AN

If b exists, it is unique and will be denoted by a®. The set A% consists of all a € A
such that a exists. Koliha [35] studied the generalized Drazin inverse in Banach
algebras. Harte gave an alternative definition of a generalized Drazin inverse in a
ring [32].

The Drazin inverse is a special case of the generalized Drazin inverse for which
a — a?b € A", The group inverse is a special case of the Drazin inverse for which
a — a’b € A" is replaced with a = aba. By a# will be denoted the group inverse
of a.

An element p = p? € A is a spectral idempotent of a if

ap = pa € AW at+pe AL

Such an element is unique if it exists and it will be denoted by a™ [30, 33, 35, 36].
Recall that a™ = 1 —aa®. For the theory of generalized inverses and its applications,
we refer the reader to [3,5,22].

Theorem 1.2. 1) An element a € A is generalized Drazin invertible, if and only
if 0 ¢ acco(a).
2) An element a € A is Drazin invertible, if and only if 0 ¢ acco(a) and 0 is
the pole of the resolvent X — (A —a)~ L.

If a is Drazin invertible and (a — a?a®)™ = 0, then the smallest such n is the

Drazin index of a, denoted by ixd(a). If such n does not exist and «a is generalized
Drazin invertible, then ixd(a) = oc.

If A is a the algebra of all bounded linear operators on a Banach space X, then
A € Ais Drazin invertible if and only if asc(A4) < oo and dsc(A) < co. Here asc(A4),
the ascent of A, is the minimal n such that N'(A"T1) = N(A™) (if such n exists),
and dsc(A), the descent of A, is the minimal n such that R(A"!) = R(A"). In
this case, ixd(A) = asc(A4) = dsc(A) = n.

The Drazin inverse is very important in various applied mathematical fields such
as iterative methods, singular differential equations, singular difference equations,
Markov chains and so on. Under specific conditions many authors have studied
representations for the Drazin inverse [11,13,23,34,46,57].
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2. Axiomatic spectrum

In this section we recall the axiomatic spectrum, which is introduced in [43] and
widely investigated in [49, pages 51-58].

Definition 2.1. A non-empty set R (R C .A) is a regularity, provided that the
following holds

1) Ifa € Aand n € N, then a € R if and only if a”™ € R;

2) If a,b,c,d € A are mutually commuting elements and ac + bd = 1, then

abe R < ac€ Randbec R.
Lemma 2.1. If R is a regularity in A, then A~ C R.

Definition 2.2. If R is a regularity in A and a € A, then the R-spectrum of a is
defined as op(a) ={A € C: A —a ¢ R}.

We collect some properties of the regularity that we will use later.

Corollary 2.1. If R is a regularity in A, then
(1) or(a) C o(a) for every a € A;
(2) or(a — A) = ogr(a) — X for every a € A and every X € C.

Definition 2.3. The mapping a — og(a) is upper semicontinuous, if

an,a € A, n11_>rr010 an, = a, A, € or(an), nh_)néo A=A = A€ ogr(a).

The following result holds [49, page 55].

Theorem 2.1. Let R be a regularity in A. The the following statements are equiv-
alent

1) The mapping a — ogr(a) is upper semicontinuous;

2) The mapping a — or(a) is upper semicontinuous and og(a) is closed for
every a € A;

3) R is open in A.

Lemma 2.2. Letp € A®* and let R be a regularity in A. Then

Rp:{aep.Ap:al:[glgp} GR}
P

is the regularity in pAp induced by p.
Proof. Let a = pap € pAp and n € N. Then

a = |@ 0 o — a® 0
1_0171029’ L 01-p|’

Since a1 € R if and only if a} € R, it is obvious that a™ € R, if and only if a} € R,,.
Now, let a, b, ¢, d € pAp mutually commute and ac + bd = p. Again, let

fa © y _[b 0 e 0 g a0
“or-p] o T o1=p T 01=p] T 0 1-p]
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We obviously have

aicy + b1d1 = |:p 0 :| =1.

01-p
P
Hence, a1b; € R if and only if a; € R and b; € R. The last is trivially equivalent
toab € R, if and only if a € R, and b € R,. (]

Definition 2.4. An open regularity R in A is strong, if the following holds
a=c'be = (a€R < bER).

It seems that the notion of strong regularity is not investigated in [43] and [49].
As a corollary, we get the result.

Corollary 2.2. If R is a strong regularity and a = ¢~ ‘be, then or(a) = og(b).

2.1. Schur complement. Let M be a 2 x 2 block matrix M = [2 5], where
AeCm*n BeCm™k CeC» and D € C™*F. If A is invertible, then the Schur
complement of A in M is defined as
S=D-CA'B.
If M is invertible, then S is invertible, too, and M can be decomposed as
M= I, 0][A0]][L, A'B
T |CAT! I 0SS 0 I; ’

where I; is the identity matrix of order ¢. In this case, the inverse of M can be

written as
A1 = [T —ATTB] AT 0 I, 0
21) 0 I 0 S7'||-cAa '
' _[A' 4+ A71BSlCcAT! —ATIBST!
- -S—lcA! -1 :

The result (2.1) is well known as the Banachiewicz—Schur form of M, and it has
been used in dealing with inverses of block matrices.
Let z = [¢ Z]p € A relative to the idempotent p € A. If a € (pAp)~! and the

Schur complement s = d — ca='b € ((1 — p)A(1 — p))~!, then the inverse of = has
the Banachiewicz—Schur form

- {a‘l +a tbs7tea™t —a‘lbs_l}

—s g™t st

3. Bounded operators on Banach and Hilbert spaces

Let £(X,Y) denote the set of all bounded linear operators from X to Y. We
abbreviate £L(X) = L(X, X). For A € L(X,Y) we use R(A) and N(A) to denote
the range and the null-space of A, respectively. The set of all finite rank operators
from X to Y is denoted by F(X,Y). We abbreviate F(X) = F(X, X).

We use G;(X,Y), G.(X,Y) and G(X,Y), respectively, to denote the set of all
left, the set of all right and the set of all invertible operators from £(X,Y). The
abbreviations G;(X), G-(X) and G(X) are clear. Recall that A € G;(X,Y) if and
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only if N (A) = {0} and R(A) is closed and complemented in Y. Also, A € G.(X)
if and only if A/(A) is complemented in X and R(4) =Y.

Two Hilbert spaces, among other things, can be compared by their orthogonal
dimensions. In the case of Banach spaces it seems that the existence of left or right
invertible operators is a useful substitution.

Definition 3.1. If X and Y are Banach spaces, then X can be embedded in Y, if
there exists a left invertible operator W € £(X,Y’). The notation is X <Y.

Also, X XY if and only if there exists right invertible operator J;: Y — X.

If X and Y are Hilbert spaces, then X <Y if and only if dim X < dimY.

We use X’ to denote the dual space of X. If A € L(X,Y), then A’ € L(Y', X')
is the dual operator of A.

3.1. Operator matrices. Let Z be a Banach space, such that Z = X @Y for some
closed and complementary subspaces X and Y. This sum will be also denoted by
Hf] If Z is a Hilbert space, then we always assume that X and Y are closed
and mutually orthogonal subspaces of Z, so in this case Z = X @& Y denotes the
orthogonal sum.

If W is a finite dimensional subspace of a Banach space, then dim W denotes the
dimension of W. If W is infinite dimensional, then we simply write dim W = oo.
However, if X is a Hilbert space and W is a closed subspace of X, then dim W is
the orthogonal dimension of W.

If Z= XY, then every bounded linear operator M € £(Z) can be represented
in the following matrix representation

A B X X
- lep] =B
for some A € L(X),Be L(Y,X),C € L(X,Y) and D € L(Y). On the other hand,
arbitrary operators A, B,C, D (bounded and linear on corresponding subspaces)

give a bounded linear operator M on the space Z.
We will study operators in the following matrix representations

o Mg = [% g], where the operators A and C' are given, and operators T’
and S arbitrary. The notation My gy is taken to be clear that the operator
M s) depends of operators T" and S;
e Mo = [‘6‘ g], where the operators A and B are given, and the operator C
is arbitrary. Also, the notation M is clear.
Specially, if C' = 0 in the operator M¢, we have diagonal operator matrix and
we denote it as My. So, Mo = [4 %].

3.2. Applications to generalized inverses. Let B € L(X,Y) be given. B is
relatively regular (inner invertible) if there exists some D € L(Y,X) such that
BDB = B holds. In this case D is an inner inverse of B. It is well-known that B is
relatively regular, if and only if R(B) and N(B) are closed and complemented in
Y and X, respectively. If DBD = D holds and D # 0, then B is outer invertible,
and D is an outer inverse of B. If B # 0, then it is a corollary of the Hahn—Banach
theorem that there exists some non-zero outer inverse D of B. If D is both inner
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and outer inverse of B, then D is a reflexive inverse of B. Moreover, if D is an
inner inverse of B, then DBD is a reflexive inverse of B.

If D e L(Y, X) is a reflexive inverse of B € £(X,Y), then BD is the projection
from Y onto R(B) parallel to N (D), and DB is the projection from X onto R(D)
parallel to N'(B). On the other hand, if X = U @ N(B) and Y = R(B) & V for
closed subspaces: U of X and V of Y, then B have the matrix form

-39 [da] [

and Bj is invertible. It is easy to see that

_[Byt o] [R(B) U
I B 0 R
is the reflexive inverse of B satisfying R(B) = U and N(D) = V.
It is also obvious that every inner generalized inverse of B has the form

_[Bi! K. [R(B) U
E_[L M] [ v | T NB)°
where K, L, M are arbitrary bounded linear operators on appropriate spaces.
If H, K are Hilbert spaces, and A € £(H, K), then the Moore-Penrose inverse of
A is the unique operator AT € £(K, H) (in the case when it exists) which satisfies

AATA = A, ATAAT = At (AAD)* = AAT, (ATA)" = ATA.

The Moore—Penrose inverse of A € L(H, K) exists if and only if R(A) is closed.
If A € L(H,K) is left (right) invertible, then AT is a left (right) inverse of A.
It is obvious that A and A have the following matrix forms with respect to the
orthogonal decompositions of subspaces

A 0] [RAD] L TRA T [AT 0] [R(A)] L [R(4Y)
a=[00) (Vo) = ) A= o] e - (V)
and A; is invertible.

3.3. Diagonal and triangular operator matrices. If R is a regularity in £(Z2),

then corresponding regularities in £(X) and L(Y) are, accoridng to previous sec-
tion, defined as follows

Rl{Aeﬁ(X):{’gﬂeR}, RQ{BGE(Y):[”(T);}GR}.

Let Z=X®Y, Ac L(X),Be L(Y),C € L(Y,X), and

A0 AC
MO:[OB]’ MC:{OB]

Lemma 3.1. [49, pages 53-54] or(Mo) = or,(A) Uogr,(B).

Lemma 3.2. If R, Ry, Ry are strong regularities, then or(M¢) C or, (A)Uog,(B)
for every C € L(Y, X).
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Proof. Notice that
IolfAcC][I o ALC
1 = n = Mn
O0nl| |0 B]|0 1 0 B
Then or(M¢) = or(M,,). Obviously, lim,,_,., M,, = M. By the continuity of the
R-spectrum, we conclude that or(M¢) C or,(A) Uog,(B). O

4. Semi-Fredholm operators

An operator A € L(X,Y) is upper semi-Fredholm, if N'(A) is finite dimensional,
and R(A) is closed. The set of all such operators is denoted by &, (X,Y).

A € L(X,Y) is lower semi-Fredholm, if R(A) is finite codimensional. It ime-
diatelly follows that R(A) is closed. The set of all such operators is denoted by
d_(X,Y).

The set of Fredholm operators is ®(X,Y) := ¢, (X, Y)NP_(X,Y).

Obviously, Fredholm operators are relatively regular, but semi-Fredholm op-
erators are not necessarily relative regular. If we require relative regularity of
semi-Fredholm operators, then we obtain left and right semi-Fredholm operators

B(X,Y) == 4(X,Y) N L(X,Y),

®,(X,Y):=d_(X,Y)NL(X,Y).

If N(A) is finite dimensional, then nul(A) = dim N (A4). If N(A) is infinite
dimensional, then nul(A) = co. Similarly, if R(A) is finite codimensional, then
def(A) = dimY/R(A). If R(A) is infinite codimensional, then def(A) = oco.

We restore the proof of main results in Fredholm theory using operator matrices.

Theorem 4.1. Let Ac ®_(X,Y) and B€ ®_(Y,Z). Then BAc ®_(X,Y).

Proof. Since def(A) < oo and def(B) < oo, we conclude that there exist: a finite
dimensional subspace Y7 of Y such that Y = R(A) @ Y1, and a finite dimensional
subspace Z; of Z such that Z = R(B) @ Z;. It follows that we have matrix form

of A
A= [/él] tX - {R}({l)} ;

where A;: X — R(A) is onto. The matrix form of B is

=[5 0] [

where By: R(A) — R(B) and By: Y1 — R(B). We have

R(B) = H% %2] m .z e R(A),y e yl}

{le —(’)_ BQy} rxeR(A),y € Yl}
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Since Y; is finite dimensional, we conclude that R(Bz) = By(Y1) is finite dimen-
sional. Thus, def(B;) < dimR(Bs3) < oo.

We see that
_ [Bids] | R(B)
pas [P x - [0).
Using the fact that 4;: X — R(A) is onto, we get
def(BA) = def(B1 A1) + dim Z; = def(By) + def(B) < oo.
It follows that R(BA) is closed. The result is proved. O

Now we state the well-know results.

Lemma 4.1. Let X be a normed space, let M be a closed subspace of X, and let
N be a finite dimensional subspace of X. Then M + N is a closed subspace of X.

Proof. Without loss of generality, we can assume that M NN = {0}. Consider
the quotient normed space Y = X/M, and the natural continuous epimorphism
m: X — Y. Since N is finite dimensional, we get that w(N) is finite dimensional in
Y, so7(N)is closed in Y. From the continuity of = we get that M+N = 7~ 1(7(N))
is closed in X. 0

Theorem 4.2. Let A€ &, (X,Y) and Be€ &, (Y,Z). Then BA € &, (X, Z).

Proof. Since N(A) and NV (B) are finite dimensional, there exist: a closed subspace
X, of X such that X = X; & N(A), and a closed subspace Y7 of Y such that
Y =Y @ N(B). Thus, A has the matrix form

a=[ao i) = L]

where A;: X7 — Y7 and As: X7 — N(B). Also, B has the matrix form

Y;
B=[B 0]: [N(jB)] - Z,
where B;: Y] — Z is one-to-one with closed range.
‘We see that
X
BA=[BiA; 0] : {/\/(114)] - Z.

Let z = [;ﬁ] € [/\/)24)]' We have that x € N(BA) if and only if B;Ajx; = 0.
Since Bj is one-to-one, we conclude that Ajzq; = 0. Hence, N (BA) = N(4;) ®
N(A).

If we take z1 € N (A1) and z; # 0, then it is not possible Asz; = 0. On
the opposite, if Aoz; = 0 then x; € X3 NN (A) = {0}. We conclude that the
restriction As|ara,): N (A1) = N(B) is one-to-one. This means that dim N'(4;) <
dim N (B) < oo. Finally,

dimN(BA) = dim N (4;) + dim N (A) < dim N (B) + dim N (A) < co.
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We have to prove that R(BA) is closed. We already mentioned that N (A;) is
finite dimensional in X;. Hence, there exsits a closed subspace X5 of X such that
X1 = X2 @ N(Ay). Thus, A; has the matrix form

Ay = [A1 0] : {N)((jl)} -1,

where A17: Xo — Y7 is one-to-one. Then, As has the following matrix form
Xo
As = |A A : — N B y
= [Aar 4] [\ | w8)
where Agy: Xo — N(B) and Ass: N (A1) — N(B). Since N (B) is finite dimen-
sional, we get that As; and Ags are both finite rank operators. Moreover, Ags is

one-to-one, but this is not important right now.
We get the matrix form of A as follows

=i s pdo] -+ ]

It follows that
Az A
R(A) = : X A =R R(Aq).
(4) {[A2133+A22y} € Xz,y € N( 1)} ([Azl]) +R(42)

The subspace R(Aszz) is finite dimensional and R(A) is closed. From Lemma 4.1 it
follows that the subspace R( [ﬁ; ]) is closed.

It is easy to see that for dual spaces we have (Y1 ® N (B)) = Y{ ® N (B)’. Thus,
similar holds for the dual operator

Ay’ Y/

|:A21:| = [Alll A/21] : N(lB)’ — X3,
which has a closed range. Now, R( [A}; A} ]) = R(Aly) + R(4%,). The subspace
R(A%,) is finite dimensional. Again, by Theorem 4.1 it follows that R(A4};) is

closed, and consequently, R(A11) is closed.
Finaly, R(BA) = B1(R(A11)) is closed. O

The index of a semi-Fredholm operator A is defined as
ind(A) = nul(A) — def(A).

5. Moore—Penrose and Drazin inverse of two projections on Hilbert space

Throughout this section, H, K will stand for Hilbert spaces. For A € L(H, K)
we use A* to denote the adjoint operator of A.

An operator P € L(H) is an idempotent if P = P2, and P is an orthogonal
projection if P = P?2 = P*,

Generalized and hypergeneralized projections are inroduced in [27].

Definition 5.1. An operator G € L(H) is
1) a generalized projection if G% = G*,
2) a hypergeneralized projection if G? = G1.
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The set of all generalized projecton on H is denoted by GP(H) and set of all
hypergeneralized projecton is denoted by HGP(H).

Notice that if A € L£(H,K) has a closed range and Af is the Moore-Penrose
inverse of A, then AAT is orthogonal projection from K onto R(A), and A A is the
orthogonal projection from H onto R(A*).

An essential property of any P € L(H) is that P is an orthogonal projection if
and only if it is expressible as P = AAT, for some A € L(H).

Operator A € L(H) is EP if AAt = ATA, or, in the other words, if AT = AP =
A# . There are many characterization of EP operators. In this paper, we use results
from [20].

In what follows, A will stand for I — A and P4 will stand for AAT.

Let P,Q € L(H) be orthogonal projectons and R(P) = L. Since H = R(P) &
R(P)* = L @ L*, we have the following representaton of projections P, P,Q,Q €
L(H) with respect to the decomposition of space

[P0l _[Ip0] [L L
p=[o0] [ o] )~ 4]
o ) L L
p=lon] ) 1]
(A B L L

_ [I,-A -B | [L L

@=|"p 1. —D} ' {LL} - [LL]’
with A € £(L) and D € £(L') being Hermitian and non-negative.

We prove the following two theorems, which are known for operators on C"
(see [2]).

Theorem 5.1. Let Q € L(H) be represented as in (5.1), and suppose that R(A),
R(A), R(D), R(D) and R(AA* + BB*) are closed. Then the following holds

1) A= A2+ BB*, or, equivalently, AA = BB*,
2) B=AB+ BD, or, equivalently, B* = B*A + DB*,
3) D= D? + B*B, or, equivalently, DD = B*B.
Proof. Since Q = Q?, we obtain
A B|[A Bl [ A*+BB* AB+BD| [A B
B* D| |B* D|~ |B*A+DB* B'B+D?| |B* D
implying that A = A2 + BB*, B= AB + BD and D = D? + B*B. O
Theorem 5.2. Let Q € L(H) be represented as in (3). Then
1) R(B) C R(A), 4) R(B*) CR(D), 17) A is a contraction,
2) R(B) CR(A), 5) A'B=BD", 8) D is a contraction,
3) R(B*) CR(D), 6) A'B= BDf, 9) A—BD'B* =1, — AA",
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Proof. 1) Since A = A% + BB*, we have R(A) = R(A? + BB*) = R(AA* + BB).
To prove that R(AA*+BB*) = R(A)+R(B), observe operator matrix M = [4 5.

For any x € R(MM™), there exisit y € H such that x = MM*y = M(M*y)
and z € R(M). On the other hand, for z € R(M), there is y € H and x = My.
Besides, MMz = MMMy = My = 2 and MMT = MM*(MM*)t = PR
implying « € R(MM*). Hence, R(M) = R(MM™*) and

R(A) + R(B) = R(M) = R(MM*) = R(AA* + BB*)

and we have R(A) = R(A) + R(B) implying R(B) C R(A).

2) Since A = I — A, from Theorem 5.1 (1), we get A = A% + BB*. The rest of
the proof is analogous to the point (1) of this theorem.

3), 4) Similarly.

5) Since B = AB + BD, we have ATB = AT(AB + BD) = ATAB + ATBD and
using the facts that ATA = Pp(4«) and R(B) C R(A*), we get ATAB = B and
A'B = B + A'BD, or, equivalently B = ATBD. Postmultiplying this equation
by D' and using item (4) of this Theorem, in its equivalent form BD Dt = B, we
obtain (5).

6) Analogously to the previous proof.

7) Since A = A*, from Theorem 5.1 (1), we have that

I, — AA* =1, — (A—- BB*) = A+ BB*,
and the right-hand side is nonnegative as a sum of two nonnegative operators
implying that A is a contraction.
8) This part of the proof is dual to the part (7).

9) From Theorem 5.1 (1), item (6) of this Theorem and the fact that hermitian
operator A commutes with its MP-inverse, it follows that

BD'B* = ATBB* = ATAA=AT(I - A)A=ATA-ATAA=ATA- A
by taking into account that A AT = ATA. Now, we get A — BDTB* =T — At A,
establishing the condition. O

Following the results of Gross and Trenkler for matrices, we will formulate a
few theorems for generalized and hypergeneralized projections on arbitrary Hilbert
space. We start with the result which is very similar to Theorem (1) in [27].

Theorem 5.3. Let G € L(H) be a generalized projection. Then G is a closed
range operator and G* is an orthogonal projection on R(G). Moreover, H has
decomposition H = R(G) ® N(G) and G has the following matriz representaton

G- G1 0|  [R(G) . R(G)
10 0] NG NG|’
where restriction G1 = G|r(q) s unitary on R(G).
Proof. If G is a generalized projection, then G* = (G?)? = (G*)? = (G*)* =
(G*)* = G. From GG*G = G* = G follows that G is a partial isometry implying
that
G® =GG* = Prg), G’ =G"G = Pyg--
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Thus, G? is an orthogonal projection onto R(G) = N(G)*+ = R(G*). Consequently,
R(G) is a closed subset in H as a range of an orthogonal projection on a Hilbert
space. From Lemma (1.2) in [20] we get the following decomposition of the space

H=R(G) NG =R(G) e N(G).

Now, G has the following matrix representation in accordance with this decompo-

sition
_[G1 0] [R(G) R(G)
¢= {o 0] : [N(G)} - L\/(G) !
where G2 = G5, G4 = Gy and G1G} = GGy = G3 = Ig(o). o

Theorem 5.4. Let G,H € GP(H) and H = R(G) ® N(G). Then G and H has
the following representation with respect to decomposition of the space

o-[51 [0 ).

0ol NG| T N(G)
1=l ) i) ~ Vi)

where
Hf = H} +HyHs, Hj = HsH,+HyH3, H} = H Hyo+HyH,y, Hj = HyHy+Hj.
Furthermore, Ho = 0 if and only if Hs = 0.

Proof. Let H = R(G) ® N(G). Then representation of G follows from Theorem
(1) in [27] and let H has representation

_ |H1 He

Then, from
2 H? + HyHz HyHy+ HyHy _ H} Hj
HsH, + HyH;3 H3H2+Hf Hék HZ
conclusion follows directly.
If Hy = 0, then H = H1Hs + HyHy = 0 and H3 = 0. Analogously, H3 = 0
implies Hy = 0. U

-

Theorem 5.5. Let G € L(H) be a hypergeneralized projection. Then G is a closed
range operator and H has decomposition H = R(G) ® N(G). Also, G has the
following matriz representaton with the respect to decomposition of the space

o- (31 8] - )

where restriction G1 = G|r(q) satisfies G3 = Ir -

Proof. If G is a hypergeneralized projecton, then G and G commute and G is
EP. Using Lemma (1.2) in [20], we get the following decomposition of the space
H =R(G)® N(G) and G has the required representation. O
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6. Moore—Penrose and Drazin inverse of two orthogonal projections

We start this secton with theorem which gives matrix representation of the
Moore—Penrose inverse of product, difference and sum of orthogonal projections.

Theorem 6.1. Let orthogonal projections P,Q € L(H) be represented as in (1)
and (2). If the Moore—Penrose inverses of PQ, P — Q and P + Q exist, then the
following holds

1) (PQ)t = {;fl g]: [L] - [L] and R(PQ) = R(A),

A L+ L+
2) (P-Q)f = [ 3% 00 [4] =[] end R(P - Q) =R(A) & R(D),

3) (P+Q)f = [%Q;(}f” QD;{”M : [Lﬂ — [Lﬁ] and R(P + Q) = L ® R(D).

Proof. 1) Using representatons for orthogonal projections P,Q € L(H), the well
known Harte-Mbekhta formula (PQ)" = (PQ)*(PQ(PQ)*)" and Theorem 5.1 1),
we obtain

A 0] [A2+ BB 0]" _[44f 0o
T _
(PQ)! = {B* 0] [ 0 O] T |B*AT 0|
From PQ(PQ)" = Pr(pg), we obtain
A B [AAT 0 AAT 0

T _

or, in the other words, R(PQ) = R(A).
2) Similarly to part 1), we can calculate the Moore—Penrose inverse of P — @Q as

follows
(P-Q)f =P -Q)(P-Q)P-Q))f
[ A4 -B][ 42+BB* -AB+BD]
~ |-B* -D| |-B*A+ DB* B*B+ D?
[ A -B][Al 0] [ AA" —BD!
~ |-B*-D| |0 Df| ~ |-B*A" —DDT|"
For the range of P — ) we have

Prip-g)=(P=Q)(P - Q)
AAA"+BD'B* —ABD'+ BDD'] [AAt 0
- [—B*AAT + DD'B* B*BDf +DDDT} B [ 0 DDT} ’
implying R(P — Q) = R(A) @ R(D).
3) The Moore—Penrose inverse of P + @ has the following representation with
the respect to decomposition of the space

X1 X L L

t_ | X

rrar=[x] ]~ 4]

In order to calculate (P + Q)f, we will use Moore-Penrose equations. From the

first Moore-Penrose equation, (P + Q)(P + Q)" (P + Q) = P + Q, we have
(I+A)X1+BX3)I+A) +(I+A)X, +BXy)B* =1+ A4,
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(I+A)X, +BX3)B+ ((I+A)X,+ BX4)D =B,
(B*X1+DX3)(I+ A)+ (B*Xs + DX4)B* = B,
(B*X, + DX3)B + (B* X + DX4)D = D.
The second Moore-Penrose equation, (P+Q)"(P+Q)(P+Q)" = (P+Q)T, implies
(X1(I+A) + XoB") X1 + (X1B+ X3D) X3 = X1,
(X1(I+A) + XoB") Xy + (X1 B+ XoD) X4y = Xo,
(X3(I + A) + X4B*) X1 + (X3B + X4 D) X3 = X3,
(Xs(I + A) + X4B*) Xy 4 (X3B + X4D) Xy = X4,
while the third and fourth Moore-Penrose equations, ((P + Q)(P + Q)")* = (P +

Q)P +Q) and (P+ Q) (P+Q)) = (P+ Q) (P+Q), give X3 = X;. Further
calculations show that

(I+A)X,+BX; =1, B’ X,+DX; =0,
(I+A)Xs+BXy=0, B*X,+ DX,=DD".

According to Theorem 5.2 2), 3), from B*X; + DX5 = 0 we get DIB*X1+ X, =0,
or equivalently, X3 = —DTB*X;.

From (I + A)X; + BXj = I, and Theorem 5.2 1), we get (2 — AAN X, = I,
ie. Xy = (2l —AA")~! = 1(I+ AA"). Theorem 5.1 3) and B*Xs + DXy = DD'
imply —B*BD' + DXy = DDT. Finally, we have X, = —BD', X3 = —D'B*,
X, =2D" — DD and

_[3(I+AATY —BDf
(P+Q) = [2 —DtB* " 2Dt — DD

In the same way as in the part 2),

Pripro) =P+ Q)P+ Q)T

[ +A)(I +AAY) — BD'B* —(I+A)BD' +2BD! — BDD'
| I1B*(I+AA"-DD'B*  —B*BD'+2DD' — DDD'
[, o

~ |0 DDT|"

which proves that R(P 4+ Q) = L & R(D).

To prove the existence of the Moore—Penrose inverse of PQ, P—Q and P+Q), it is
sufficient to prove that these operators have closed range. Since () is an orthogonal
projection, R(Q) is closed subset of H. Also,

_ _|AB||L| _ |RA)+R(B)
R(Q) = Q(H) = {B* D} [Ll] = {R(B*) +R(D)
because items 1, 3 of Theorem 5.2 state that R(B) C R(A) and R(B*) C R(D).
This implies that R(A) and R(D) are closed subsets of L and Lt respectively. If
R(A) is closed, then for every sequence (z,) C L, z, — x and Az, — y imply
x€Land Ax =y. Now, (I —A)z, »x—yandz—y € L, (I — A)x = x —y which

] = R(A) + R(D),
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proves that R(I — A) is closed. Consequently, R(PQ), R(I —A) and R(I + A) are
closed which completes the proof. O

Similar to Theorem 3.1 in [17], we have the following result.

Theorem 6.2. Let orthogonal projections P,QQ € L(H) be represented as in a
previous part. If the Drazin inverses of PQ, P — @Q and P + Q exist, then P — @
and P + @ are EP operators and the following holds
D AP (AP)B . .
1) (PQ)P = { 0 0 } and ixd(PQ) < ixd(A4) + 1,
2) (P~ Q)P = (P~ Q) andixd(P - Q) <1,
3) (P+Q)P =(P+Q)f and ixd(P+ Q) < 1.

Proof. (1) Theorem 6.1 proves that R(PQ) is closed subset of H. Thus, the Drazin
inverse for this operators exists. According to representations of projections P, Q,
their product PQ and the Drazin inverse (PQ)” can be written in the following
way

A B

PQ = {0 o}’ = Ké ﬁﬂ {Lﬂ - [LLL]'

Equations that describe Drazin inverse are
D p _ |X1AX: X1AXo| | Xy Xa| D
(PPPQPQ)” = [ AR = (B 2] - e,

P@PPo = |4 A0 = [ ] = rarer,

n+1 n+1 n n—1
(pQy i (pg)” = |4 X AT AT ey

Thus, from the first equation we have
X1AX: = X1, XjAXo=X,, X3AX:=X3, X34X,= X4,

from the second equation
X1A=AX;, AX>=X:B, X3A=0, X3B=0,
and the third equation implies
AMTLX, = A" AMHLX, = AnTLB.
It is easy to conclude that X; = AP, X5 = 0, X4 = 0. Equations X;4X, = X,
and AXy; = X1 B give X?B = X,. Finally,
AP (AP)B
D _
To estimate the Drazin index of PQ, suppose that ixd(A) = n. Then
An+2 An+1B AD (AD)2B
n+2 D _
An+1 An—i—lADB
S

n+1 n
{AO AOB} _ gy
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implying that ixd(PQ) < ixd(4) + 1.

2) Since (P - Q)(P-Q)* = (P-Q)*(P - Q) and R(P — Q) = R(A) ®R(D) is
closed, P — @ is EP operator as normal operator with closed range and (P — Q) =
(P —Q)P. Besides,

(P-QPP-QP=P-Q)P-Q(P-Q)=P-Q
and ixd(P — Q) < 1.

3) Similarly to 2), P + Q is EP operator and (P + Q)f = (P + Q)7

ixd(P + Q) < 1. 0

Theorem 6.3. Consider orthogonal projections P,Q € L(H) as in a previous part.
Then the following holds

1) If PQ = QP or PQP = PQ), then

e Kt BRI A

2) If PQP = P, then

(P+Q)" = [%L g} L (P-Q)P = [8 _OD} .

3) If PQP = Q, then
_1

4) If PQP =0, then

I 0 I, 0
proP =¥ pl=rra P =¥ 5 -r-c
Proof. Let
rvar-[ ) (1) (4]
1) If
AB A0 A0] [AB
PQ:[O O]Z[B*O}:QP or PQP:[O 0}:[0 O}ZPQ’

then B = B* =0, I, + A is invertible and (I, + A)~! = I, — %A and according to
Theorem 5.1 3), D = D?. Thus, we can write

Q- [g g} . PrQ- [ILJA g} L (P+Qr = [(ILBA)H g} -
Verifying the equation
[+ 42X, (I + A)>%X.
(P+Q)2(P+Q)D—[ DXy DX, 2}

C[+A0]
_{ 0 D}_P+Q
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we get Xo = X3 =0, DX4 = D. The other two equations,

(P+Q)°(P+Q)(P+Q)” = (P+Q)” and (P+Q)”(P+Q) = (P+Q)(P+Q)",

giVG X4DX4 = X4, X4D = DX4 i.e., X4 =D. Thus,

I;—14 0
prr = .
Formula B
(P-Q)P = [‘5‘ _‘H

follows form Theorem 6.2 2) and the fact that A = A? implies AP = A% = A.
2) If PQP = P, then A = I, and Theorem 5.1 implies B = B* = 0. Then,

I 0
@=[ 1)
and from part 1) of this Theorem we conclude

(P+Q)P = PéL g} L (P-Q)P = {8 _H .

3) From PQP = Q we get B = B* = D = 0 and A = A?. Now, I + A is
invertible and

(P+Q)P =(P+Q) " = {(IL A 8] - {IL ool 8] L (PoQP = {6‘ 8} .

4) If PQP = 0, then A = 0 and since R(B) C R(A), we conclude B = B* = 0.
In this case,

00 I; O
Qz[w], P+Q=[OLD]

implying

I; 0 I 0} O

pror=rra=[r ) r-er-r-a=|¢ 5.

Theorem 6.4. Consider orthogonal projections P,Q € L(H). If (PQ)P ewists,
then (PQ)P = (QP)'(PQ)'(QP)'. Moreover, if PQ = QP, then PQ is the EP
operator and (PQ)P = (PQ)', ixd(PQ) < 1.

Proof. Corollary 5.2 in [37] states that (PQ)' is idempotent for every orthogonal
projections P and ). Thus, we can write

[ro B [+ K*K)™ (I+K*K)"'K*
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Denote by A = (T+K*K)~! and B = (I+K*K)~'K* = AK*. Then PQ = [ &]
and according to Theorem 6.3 (1),

_ (AP (AP)?B] I+ K*'K (I+K*K)*(I+K*K)"'K*
i I _‘{ 0 0 }
_[I+K'K (I+K*K)K*| _ [I+K*K 0] [T K*

o B N )
1 K*1[1 0] [I K*
o o] [K 0) {0 0 } = (QP)'(PQ)'(QP)T,

where we used ((PQ)")* = (PQ)*)' = (QP)T.
If P and Q commute, then PQ is normal operator with closed range which means
it is EP operator (PQ)" = (PQ)P. O

7. Moore—-Penrose and Drazin inverse
of generalized and hypergeneralized projections

Some of the results obtained in the previous section can be extended to gener-
alized and hypergeneralized projections.

Theorem 7.1. Let G,H € L(H) be two generalized or hypergeneralized projec-
tions. If the Moore—Penrose inverse of GH exists, then it has the following matrix
representation

i [(GiHy)*D™' 0

(GH) - [(GlHQ)*Dl 0 )

where D = G1H1(G1H,)* + G1H2(G1Hy)* > 0 is invertible.
Proof. From Theorems 5.3, 5.4 and 5.5, we see that R(G) = R(G1) is closed and
pair of generalized or hypergeneralized projections has matrix form

o[l -]

00 Hs Hy
Then
_ |G1Hy G1H,
GH = { 0 0
and analogously to the proof of Theorem 6.1 1), we obtain mentioned matrix form.
Since R(GH) = R(G}) is closed, the Moore-Penrose (GH)' exists. O

Theorem 7.2. Let G, H € L(H) be two generalized or hypergeneralized projections.
If the Drazin inverse of GH exists, then it has the following matriz representation

(GH)P = |:(G1H1)D ((G1H1)D)2G1H2} .
0 0
Proof. Similarly to the proof of Theorem 6.2 1) and using Theorem 5.5. O

Theorem 7.3. Let G, H € L(H) be two generalized projections. If the appropriate
operators have the Drazin or the Moore—Penrose inverse, then
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1) If GH = HG, then GH is EP and
(GH)" = (GH)? = (GH)" = (GH)* = (GH) ",

—1

(GH)' = {(Gllgl) 8]
2) If GH = HG =0, then G+ H is EP and

(G+H)' =(G+H)”=(GH)"=(G+H)?=(G+H)™",

Gyt oo

0 Hzl]'
3) If GH = HG = H*, then G — H is EP and

(G-H)'=(G-H)P=(GH)" =(G-H)’=(G-H)™",

Gy _OHl)il 8} .

(G+H) = [

-

Proof. 1) It G, H € L(H) are two commuting generalized projections, then from
(GH)* = H*'G* = H*G® = (HG)* = (GH)?
we conclude that GH is also generalized projection, and therefore EP operator.
Checking the Moore-Penrose equations for (GH)?, we see that they hold. From
the uniqueness of the Moore-Penrose inverse follows (GH)? = (GH)" and
(GH)' = (GH)P = (GH).
From GH(GH)! = Pr(Gm), using matrix form of GH, we get G H, (G Hy)T =1,
or equivalently, (G1H;)! = (G1H;)~!. Finally,
(GH)' = (GH)” = (GH)* = (GH)* = (GH)™".

2) If GH = HG = 0, then (G+ H)? =G?*+ H?> = G*+ H* = (G + H)* and
G + H is a generalized projection. The rest of the proof is similar to part 1).

3)If GH = HG = H*, then (G- H)?=G? - H>=G* — H* = (G — H)* and
the rest of the proof is similar to part 1).

Matrix representations are easily obtained by using canonical forms of G and H
given in Theorem 5.4. t

Theorem 7.4. Let G,H € L(H) be two hypergeneralized projections. If the ap-
propriate operators have Drazin or Moore—Penrose inverse, then

1) If GH = HG, then GH is EP and
(GH)' = (GH)P = (GH)* = (GH)™",

(Gllgl)fl 8] .

2) If GH =HG =0, then G+ H is EP and
(G+H) =(G+HP=(G+H)?=(G+H)™!,

= |
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(G + H)f = [Gll 0 ]

0 H;'
3) If GH = HG = H*, then G — H is EP and
(G-H)!=(G-HP=(G-H?=(G-H)!

(G H)' = {(Gl ~ T 8} .

Proof. 1) GH is EP operator and (GH)* = GH, so it is a hypergeneralized pro-
jection. Since (GH)? = (GH), operator GH commutes with its Moore—Penrose
inverse and (GH)" = (GH)P. From GH(GH)' = [[ ] follows (GH)" = (GH)™*
Thus,
(GH)' = (GH)? = (GH)* = (GH)™"
2) If GH = HG = 0, then (G + H)? = (G+ H)' and H; = Hy = H3 = 0 implies

G, 0 Ghoo
H= H) =
G+ [0 HJ7 (GJF ) {0 sz

From (G + H)(G + H)' = Pr(g+m) = Pr(c) + Prem) and

] = [V

H H) = =
(G+H)(G+H) [ 0 HiH] 07

we conclude that G = G7Y, H] = H;' and (G + H)' = (G+ H)™!
3) Similarly to 2). O

8. Invertibility of operator matrices

8.1. Right invertibility of operator matrices Mz s). In the first part of this
section we investigate the right invertibility of the operator Mt g.

Theorem 8.1. Let A € L(X) and C € L(Y,X) be given operators. Then the
following statements are equivalent

1) There exist some T € L(X,Y) and S € L(Y) such that My gy is right
invertible;

2) [A Cl e L(X ®Y,Y) is right invertible and Y < N'([A C)).

Proof. 1) = 2): Suppose that My gy is right invertible for some 7" € L(X,Y)
and S € L(Y). Then there exists a bounded linear operator

pEl B[] e (2[5 =[50
[

It follows that [A ¢ |[£] = Ix, so [A (] is right invertible. On the other hand,
we have [I' S][G] = Iy and [A C][§] = 0, so there exists a left invertible
operator [&]: Y — [{] such that R([§]) CN([A C]). Hence Y < N ([A ().
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2) = 1): Suppose that [A C]:

[{f ] — X is right invertible, and suppose that
Y < N([A C]) holds. Let K = [£]
A

X — B,(] be a bounded right inverse of

A C]. Then [¥] = R(K) & W([A C))) and
(8.1) 4 C] Lﬂ — Ix.

Let L: Y — [{] be a left invertible operator such that R(L) C N([A C]). Then
L=[%]:Y = [¥]. Since R(L) C N([A C]), we get that

F

N([A C)) is complemented in X ®Y and R(L) is complemented in X &Y. From
R(L) Cc N(J[A C)) it follows that R(L) is complemented in N'([A C]). It follows
that there exists a closed subspace W such that N ([A C]) = R(L) ® W. Now we
have X®Y = R(K)®N([A C]) =R(K)®W @R(L). There exists the bounded
left inverse N of L, such that N(N) = R(K) @ W. Such N has the matrix form
N=[T S]:[¥]—Y. Then

(8.2) A C {G] = 0.

(8.3) T s {G] — Iy
From R(K) C N(N) we have

(8.4) T S [f[] 0.

Finally, from (8.1), (8.2), (8.3) and (8.4) it follows that

AC||EG| |[Ix O
TS| |HF| |0 Iy|"
Thus, the proof is completed. U

As a corollary, we obtain the following result for Hilbert space operators, which
is proved in [12, Theorem 1.1].

Corollary 8.1. Let Z = X ®Y be a Hilbert space, where X,Y are closed and
mutually orthogonal. Let A € L(X) and C € L(Y, X) be given operators. Then the
following statements are equivalent

1) There exist some T € L(X,Y) and S € L(Y) such that M) is right
invertible;

2) R(A)+ R(C)=Y and dimY < N([A C]);

3) [A (O] is right invertible operator and dimY < N ([A C)).

Notice that 2) is equivalent to 3) from the following reason: [A (] is right
invertible if and only if R([A C]) =Y on the other hand, it is easy to see that
R([A C])=R(A)+R(C).

Finally, we mention that it seems more difficult to prove the analogous result
considering the left invertibility of Mz gy on the Banach space X @Y.
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8.2. Invertibility of operator matrices M. In this part, we will investigate the
invertibility of operator matrices Mg = [‘6‘ g]
Actually, the invertibility of operators A and B implies the invertibility of oper-

ator M¢ for arbitrary operator C. The following lemma holds.

Lemma 8.1. Let X and Y be Banach spaces. If the operators A € L(X) and
B € L(Y) are invertible, then the operator Mo € L(X @Y) is invertible for every
operator C € L(Y, X).

Proof. Let us prove that operator N = ["r1 _A;,CIBA] is the inverse of operator

0
Mc. Indeed, it holds NM¢ = Ixgy, McN = Ixgy. So, for every operator C' €

LY, X)itis Mg' = [4 7 =47 CP7]. O

Specially, the inverse of operator My = [‘6‘ 103} is the diagonal matrix M e
[Ao 1 B(ll }

It is natural to ask ourselves if the opposite direction holds. More precisely, does
the invertibility of My implies the invertibility of any of operators A and B. In
the case of invertibility of operator Mj, it holds that operator A is invertible if and
only if the operator B is invertible. This property is proved in the next well known
result.

Lemma 8.2. Let X and Y be Banach spaces and let A € L(X), B € L(Y) and
My = [61 %]: [)15] — [gﬂ be operators. If two out of three given operators are
invertible, then the third one is also invertible.

Proof. The proof implies directly from the decompositions N'(My) = N(A) N (B)
and R(My) = R(A) & R(B). O

The main result in the paper [29] gives us necessary and sufficient conditions for
operator matrix Mo to be invertible.

Theorem 8.2. Operator matriz Mc¢ is invertible for some operator C € L(Y, X)
if and only if operators A € L(X) and B € L(Y) satisfy the following conditions:

1) A is left invertible, 2) B is right invertible, 3) X/R(A) = N(B).

Based on this theorem, we will examine equivalent conditions under which the
M operator is injective or surjective.

As the part of the paper [21], we proved next theorem concerning sufficient
conditions for operator M¢c to be injective.

Theorem 8.3. Suppose that A € L(X) and B € L(Y) satisfy the following: A is
left invertible, N'(B) is complemented, and N (B) =X X/R(A). Then there exists
some C € L(Y,X) such that M¢ is injective.

Proof. There exist closed subspaces V of Y and W of X, such that Y = N(B)&V
and X = W@ R(A). Since N (B) < X/R(A), there exists a left invertible operator
Co € LIN(B),W). Define C € L(Y, X) as follows
|Gy 0]  [N(B) w
C_[o 0}‘ [ v |7 R4
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We prove that Mc is injective. Let z = [§] € (X @ Y). From Mcz = 0, we have

AC| |z| |0

0 B||y| 0]
Then, Az + Cy = 0 and By = 0. From the first equation we have Az = —Cly €
R(A) NR(C) € R(A)NW = {0}. Now, we have Ax = Cy = 0. Since A is
injective, we get x = 0. From By = 0, it follows that y € N'(B). Now, we have

Cy = Cpy = 0. Since (Y is left invertible, it is also injective. From Cpy = 0 we
conclude that y = 0. Thus, [zﬂ = [8} and this proves that M¢ is injective. O

As it can be seen from the proof of the previous theorem, the condition N (B) <
X/R(A) can be replaced by a weaker condition. More precisely, assumption that
there exists left invertible operator from N (B) to X/R(A) can be replaced by the
assumption about existence of injective operator.

So, the theorem is then as follows.

Theorem 8.4. Let A € L(X) and B € L(Y) be operators such that following
conditions are satisfied

1) A is left invertible,

2) N(B) is compemented in'Y,

3) There exists an injective operator from N (B) to X/R(A).
Then, the operator M¢ is injective for some operator C € L(Y, X).

Now, it is a question if the opposite direction holds in the previous theorems.
It is not proved the opposite direction, but it holds that two of the conditions
in Theorem 8.3 are actually equivalent to the conditions for left invertibility of
operator M¢. The following theorem from [40] proves this.

Theorem 8.5. Operator M¢ is left invertible for some operator C € L(Y,X) if
and only if operators A € L(X) and B € L(Y') are such that satisfy the following
conditions:

1) A is left invertible, 2) N(B) X X/R(A).

Proof. (<=:) The same as it is in the proof of Theorem 8.3, let operator Cy €
L(N(B),W) be left invertible and let the decomposition X = W @& R(A) holds.
The operator C' € L(Y, X) is defined as

Coy, yeN(B
Cy= 4 G0y yEN(B)

0, ygN(B)
Denote a left inverse of A with A, and left inverse of Cy with Dy. Then, the
operator Do: W — N(B) is surjective and DyCy = In(p). Define the operator
D € L(X,Y) such that

w

R(A)

Let V = Y\W(B). Notice that the restriction operator B: V — R(B) is invert-
ible. Denote with By: R(B) — V the inverse of this restriction. It holds ByB = Iy .

D:[Doo};[ ]ﬁy.
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Let the operator By € L(Y) be defined as follows

By — ) Boy, yER(B)
Y70, yé¢rB)

Let
A 0] [X] L [X
=[5l BB
Then,
_ Al 0 AC _ A1A AlC
NMo = [Dl BJ {0 B} = [DA DC+BlB]'

Since A; is a left inverse of A, then A;A = Ix. Further, we have R(C) C W C
N (A1), so A;C = 0. From the definition of D, we have R(A) C N (D;), which
implies D1 A = 0.

Let y € Y be arbitrary. Then

DyCoy, yeN(B) {y y € N(B)

(D”BlB)y{BoBy, y¢NB) v y¢NB)

which implies D1C + B1B = Iy. Now, it holds

MA me ] _Jix 0] _,
DlA D10+B18 |0 IY o oxer

So, the operator M is left invertible and N is its left inverse.
(=) Let M¢ be left invertible for some C' € L(Y, X). If C' = 0, the statement
trivially holds. Assume that C' is not equal to zero.

v=[4 8] B~

be a left inverse of M. Then

A ¢l [AC]  [AA AC+CiB]  [Ix © _
Dy B,| |0 B| ~ |DiA D:C+BB| |0 Iy| "X&¥V

The equality A;A = Ix proves the left invertibility of A, so we have that there
exists a subspace W C X such that X = W @ R(A). Then, the condition 1) is
proved.

Let Cy: N(B) — X be the restriction of operator C' on N'(B). We will prove
that R(Cy) C W. Let x € R(A) N R(Cy) be arbitrary. Then, there exist zg € X
and yo € N(B) such that z = Azg = Coyo = Cyp. It holds

AC —To| _ —A.’Bo'i‘cyo _ 0
e e e ]

Since the operator M is left invertible, then it is also injective, so the previous
equality implies [ 52 ] = [3], and then # = 0. So, we have R(A) NR(Co) = {0},
which implies that R(Cp) C W.

Now, we look at the equality D1C + B1B = Iy. Let y € N(B) be arbitrary.

Then we have y = In(pyy = D1Cy + B1By = D1Cy = D1Cyy. So, D1Cy = Ix(p)-

=Y,

NMc:{

NMcz{
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It is already proved that R(Cy) C W. Because of that, there exists left invertible
operator from the subspace A (B) to X/R(A), so the condition 2) is also satisfied.
So, the proof is completed. O

Now, we study when operator M is surjective. The result is presented in [40].

Theorem 8.6. Let operators A € L(X) and B € L(Y) be such that the following
conditions are satisfied

1) B is right invertible,
2) R(A) is complemented in X,
3) There exists the surjective operator from N(B) to X/R(A).

Then, the operator M¢ is surjective for some operator C € L(Y, X).

Proof. Since B is right invertible and R(A) is complemented, there exist closed
subspaces V CY and W C X such that Y = N(B) @V and X = W & R(A).

Let Cy € L(N(B),W) be the surjective operator from N (B) to X/R(A). It
holds Co(N(B)) = W. Define the operator operator C € L(Y, X) in the following

=38 [ [h)
Then, we have

0 B||v B(Y)
Since R(C) = Co(N(B)) = W, it holds A(X) + C(Y) = R(A)® W = X. On the
other hand, the operator B is right invertible, so B is surjective and R(B) =Y.
Thus, we have [4 §][¥] =[], which proves that operator Mc is surjective. [

{A C} {X] _ {A(X) +C(Y)} '

9. Generalized invertibility of operator matrices

9.1. Regularity of operator matrices Mc. In this part we investigate relative
regularity of Mc.

Theorem 9.1. Let A € L(X) and B € L(Y) be relatively regular. If N(B) <
X/R(A), then there exists some C € L(Y, X) such that M¢ s relative regular.

Proof. Let Ay € L(X) and By € L(Y') denote reflexive inverses of A and B, respec-
tively. Then Y = R(B;)®N(B) and X = N(A4;) & R(A). Let J: N(B) = N (A1)
be a left invertible mapping and let Ji: N(A;) — N(B) be a left inverse of J.
Define C € L(Y, X) and C; € L(X,Y) in the following way

o= s - )
o-[39) [h) - (6]
Consider the operator N = [2! ] € L(X @Y). Then we find

AA AC ]

NMg = |:01A C.C+ BB
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Since R(C) C N(A4;) and R(4) C N(Cy), we have A;C = 0 and C1A = 0,
respectively. Also, BB is the projection from Y onto R(Bj) parallel to N'(B), and
(1 C is the projection from Y onto N'(B) parallel to R(B;). Hence C1C+B1B =1,
and

_|A1A0
)
Since AA1A = A and A1AA; = Ay, we have
_|AC| [AA0]  |[AALAC|
MoNMe = [0 B} [ 0 I] _{ 0 B} = Mo,
and M¢ is relatively regular. U

We state the following result concerning the Moore—Penrose inverse of M¢.

Theorem 9.2. Let H, K be mutually orthogonal Hilbert spaces and Z = H & K.
If Ae L(H) and B € L(K) both have closed ranges, and if nul(B) = def(A), then
there exists some C € L(K, H) such that M¢ has a closed range, and

At 0 }

b
M _[CTBT

Proof. Recall the notations from the proof of Theorem 9.1, with one assumption:
J is invertible. We have the following

NN {AlA o] [Al 0}{A1AA1 o]N’

0 I Cl Bl Cl Bl
_ AA +CCy OBy
Ml = { BCy BBl] '

Since R(B1) = N(C) and R(Cy) = N(B), it follows that CB; = 0 and C1 B = 0.
Also, AA; is the projection on R(A) parallel to N'(A4;1). Since J is invertible, we
have that CC} is the projection on N'(A;) parallel to R(A). Hence, AA;+CCy = I.
Thus, N is a reflexive inverse of M¢.

Now, we take A; = A" and B; = Bf. Then all previous results hold, with one
more nice property: we have orthogonal decompositions. Precisely, X = N(A;) ®
R(A) = N(A*) ® R(A) and Y = N(B) ® R(B1) = N(B) ® R(B*). Since J is
invertible, we have J; = J~! and consequently C; = CT. The operator N¢ is still
a reflexive inverse of Mc. Furthermore, we have

e[ . e ] ]

Projections NM¢ and Mo N are obviously selfadjoint, so N = Mg} ]

9.2. Generalized invertibility in Banach algebras. Let z = [24] € A relative
to the idempotent u € A. If a € (uwAu) is not invertible but has the outer gen-
eralized inverse with prescribed idempotents p1,q1 € (wAu)®, we can observe the
generalized Schur complement s = d — cal(fl),qlb. Accordingly, we investigate equiv-
alent conditions under which xl(fg has the generalized Banachiewicz—Schur form in
a Banach algebra.
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We use the following auxiliary results.

Lemma 9.1. Let p, q be idempotents in a Banach algebra A. The following stata-
ments are equivalent:
)p+q€eA®, 2)pg=qp=0.

Proof. 1) = 2): Suppose p + g € A*. We have
(p+a)?=p+q=pg+qp=0=pg=—qp.
Since the following holds
pq = p°q* = p(pq)q = p(—qp)q = —pq(pq) = paqp = pgp = —ppq = —pq,

we obtain pg = 0. The analogous proof holds for gp = 0.
2) = 1): Let p,q € A® such that pg = gp = 0. Then

(p+a)?=p*+pa+ap+¢* =p+q,
sop+qe A°. O
If u € A®, then the product of arbitrary elements from algebra u.4u and (1 — u)
A(1 —u) is equal to 0, i.e. for all a € uAu and for all b € (1 —u)A(1 — u), we have
ab=0.
Now, as a corollary of Lemma 9.1, we state the following result.

Lemma 9.2. Let u € A*. If p1 € (uAu)® and ps € ((1 — w)A(l — u))®, then
p =p1+p2 € A is an idempotent.

We also need the following known results in Banach algebra.

Lemma 9.3. [52] [53, Theorem 1.6.15] Let A be a complex unital Banach algebra
with unit 1, and let p be an idempotent of A. If x € pAp, then opap(xz) U {0} =
oa(x), where o 4(x) denotes the spectrum of x in the algebra A, and opap(z) de-
notes the spectrum of x in the algebra pAp.
Lemma 9.4. [10, Lemma 2.4] Let b,q € A9 and let ¢gb = 0. Then q+ b € AWML,
Lemma 9.5. Let b € A? and a € A9,
1) [10, Corollary 3.4] Ifab = 0, then a+b € A% and (a+b)® = 32,720 (b4)"+1am.
2) Ifba =0, then a+b € A? and (a+ b)? =32 a™(b?)"+1.
9.3. (p, q)-outher generalized inverse. The first result gives the additive prop-
erties of the (p, g)-outer generalized inverse.

Theorem 9.3. Let p,q € A® and a,b € ./4,(,2,,)1. If

(9.1) alZb+bPa+1=0,  abl?)+bal?

then a +b € A,(,Q,g and (a + b)gf,)] = aﬁ)] + b,(fg.

Proof. Using the fact that a,b € Ag,)z, Theorem 1.1 and conditions (9.1), we have
(02} + K20+ D)2+ o)

p,q

= oy + PbG + aigbagy + af(1— @) + b7 (1 — @) + bab + pay + B
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= afy + 050 + afbaly + afly + 0% + b2abl) + alf) + )
=a? + ) +a(bal?) + 1) + b2 (1 + ab2)) + a?) + b2
R R
= ap,q bz(fc)z - pbg,)l - pal(fl)l + aPQJ)I + bp%g bz(>2q7
(@l2) + 532 (a+b) = alPa+al)b+bPa + b2b
—p+pa b+pb a—i—p

=p+pla ()b+b(2)a+ 1)

=D,
and also
(a + b)(agfg + b;?g) aag + ba(2 + ab (2) + bbz(f()z

=(1 q)+ba<2>+ab? +(1—¢q)
= (1—q) +bal?)(1—q) +ab?P)(1 - q) + (1 —q)
=(1—q)+ (bal?) + adb(?) + )(1 —q)
=(1-gq).

Thus, we proved (a + b)z(fg = ;2,,)1 + bg()z. O

The following theorem gives us equivalent conditions under which xéz()l has the
generalized Banachiewicz—Schur form in a Banach algebra.

Theorem 9.4. Let x = [? g]u € A relative to the idempotent u € A, p1,q1 €
(wAu)® and pa, g2 € (1—u)A(1—u))® andletp =pi1+ps € A and ¢ = g1 +¢2 € A.
Leta € (u.Au)z(?l),q1 and let s = d—caé,zl),qlb € ((1—u)./él(l—u)),(,i),q2 be the generalized
Schur complement of a in x. Then the following statements are equivalent

1) z e A(Q) and x,(fg =r, where

2 2 2 2 2 2
(9 2) r= al(h),th + al(Jl);QI b31(72),Q2ca1(71)7Q1 _al(Jl);QI bs}gz)ﬂh
: - _ (2 (2) (2)
Sp2,q2Cap1,q1 Spa,q2

2) cap))g,a = ssp,)q, and aayg,b = bsyg,s.

Proof. By Lemma 9.2 we obtain that p and ¢ are idempotents.

Using the assumptions a € (uAu)g),q1 and s € ((1 —uw)A(l — u))g),qm we verify
rer =r.

The equation rz = p is equivalent to the equations

sz(fz)tpc = sé?qz Ca1(721)q1a and aZ(H)‘hb = az(ozl)qlbsj(oi)@s

On the other hand, 1 — zr = ¢ is equivalent to

2 2 2 2 2 2
bséz)lh - aal(al)fh bs](oz)lh and Ca:gl)lh - Sséz)fhcal(?l)’m
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Therefore,  has (p, ¢)-outer generalized inverse if and only if

(2) = 2 (2) (2 p—,2 (2)
8p2,42€ = Sp2,a2 Cpi,q G aphfhb = Opiqy bspzﬂ]zs’

(2 — 402 (2) (2)  _— ¢q(2) (2)
bspz,th - aa’puql bspzyqz’ Cam,th - 88?2711260’1117!11’
which are equivalent to
(2) — ¢q(2) (2) — qa®
Clp g, @ = 58p,y.02C bspz,qzs - aam,qlb' U

As a corollary, we formulate the following result.

Corollary 9.1. Let x = [‘Cl Z] € A relative to the idempotent u € A, p1,q1 €
(wAu)® and pa, g2 € (1—u)A(1—u))® andletp =p1+p2 € A and ¢ = g1 +¢2 € A.
Leta € (’LLA’U,)‘;QI))ql and let s =d — ca,(,Ql),qlb € (1 —u)Al - u))g),qz, The following
stataments are equivalent
2 2 2 2
1) Ca1(71):QI = a1(71);QIb = bsz()z),qz = 51572)#126 =0,

2 2 2 2 2 2 2 2
2) Ca:gl):tha = 55;572)&20’ aaz(h)#hb = b51(72)¢h‘93 az(h)’th b51(72)’Q2 = 5;532),(12“%(71)411 =0.

If one of these conditions is satisfied, then x € ,A,(,Q,Z and

(2) (2) (2) (2) (2) (2)
l‘(2) _ | Gpiiar T Opiian bspqucapl,lh —0apy,q1 bspqu
P,q 2
—Sp2,q2C0p1,q1 Spa,q2

10. Drazin inverse of block matrices

The Drazin inverse plays an important role in Markov chains, singular differential
and difference equations, iterative methods in numerical linear algebra, etc.

Representations for the Drazin inverse of block matrices under certain conditions
where given in the literature [6,7,9,17,18,23,34,46,57].

In [15], a representation for the Drazin inverse of an anti-triangular block matrix
under some conditions was obtained, generalizing in different ways results from
[8,34].

Block anti-triangular matrices arise in numerous applications, ranging form con-
strained optimization problems to solution of differential equations, etc. Deng [16]
presented some formulas for the generalized Drazin inverse of an anti-triangular
operator matrix M = [é ’03 ], acting on a Banach space, with the assumption that
CA?B is invertible.

In this part of the paper, we present the results from [42] where were studied the
equivalent conditions under which the generalized Drazin inverse has the general-
ized Banahievich-Shur form in Banach algebra. Also, several representations were
obtained under different conditions for the generalized Drazin inverse of the anti-
triangular block matrix x = [‘Cl 8]p in Banach algebra A relative to the idempotent
p. Thus, we get the particular cases of results from [14-16].

Hartwig et al. [34] gave expressions for the Drazin inverse of a 2 X 2 block matrix
in the cases when the generalized Schur complement is nonsingular and it is equal
to zero. These results are generalized in [47] under different conditions and the
hypothesis the Schur complement is either nonsingular or zero.
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In [11], Castro-Gonzélez and Martinez-Serrano developed conditions under which
the Drazin inverse of a block matrix having generalized Schur complement group
invertible, can be expressed in terms of a matrix in the Banachiewicz—Schur form
and its powers.

Deng and Wei [17] introduced several explicit representations for the Drazin
inverse of a block—operator matrix with Drazin invertible Schur complement under
different conditions.

Let

(10.1) - [‘; fl} e A

relative to the idempotent p € A, a € (pAp)? and let s = d—cab € ((1—p).A(1—p))?
be the generalized Schur complement of a in x.

In this section, when we say that = is defined as in (10.1), we assume that z
has a representation as in (10.1) relative to the idempotent p € A, a € (p.Ap)d and
s=d—ca% c ((1—p)A(l —p))<.

In the following lemma, we present necessary and sufficient conditions for an
element z = [g 2} of Banach algebra to have the generalized Drazin inverse with
the generalized Banachiewicz—Schur form. We recover result concerning the Drazin
inverse of Hilbert space operators (see [14, Corollary 3]).

Lemma 10.1. Let z be defined as in (10.1), a € (pAp)¥#, and let s = d — ca™b €
((1—p)A(1—p))# be the generalized Schur complement of a in x. Then the following
statements are equivalent

1) z € A% and

)

# 4 a#bs#ca® —atbst
10.2 d_ |?
(10.2) t { —s#cat s#

2) a"bs? = a®bs™, sTca® =s¥ca™ and z=[0. %] e Am

ca™

3) a"b=bs", s"c=ca"™ and z=[J2 %"t € An

Proof. 1) < 2): If the right side of (10.2) is denoted by y, then we obtain

 — aa® — a™bs*ca? a™bs?
y= sTea? ss# |
{a#a — a#bsea™ a#bs“}
yr = .

s*ca”™ s*s

So, xy = yx if and only if a™bs#* = a#bs™ and s"ca¥ = s#ca™, because these
equalities imply (a™bs?”)ca” = a#b(s"ca”) = a#bs*ca™. Further, we can verify
that yry = y. Using s = d — ca™b, a™bs? = a#bs™ and s"ca? = s#ca™, we have

9 —bs*ca™ bs™
rory= ca”™ 0"
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From a#bs™ = a™bs? = (p — aa™)bs? = bs* — aa”bs”, we obtain bs* = a#bs™ +
aa™bs?* which gives ca™bs? = 0 = bs#ca™bs? and
v a2y — |P —bs# L |P bs#
Y=lo1-p|*lo1—p|

Since 7(x — 2*y) = r([} fs_#; [® ]’f:]z) = r(z), we deduce that = — 2%y € A is

equivalent to z € Al 2) & 3): We prove that a™bs* = a#bs™ is equivalent to
a™b = bs™. Indeed, multiplying a™bs?# = a”bs™ from the right side by s and from
the left side by a, respectively, we obtain a™bs*s = 0 and aa®bs™ = 0. Therefore,
bs#s = aa?bs? s = aa™b and
a™b=0b—aa”b=0b—bs*s = bs".

On the other hand, if a™b = bs™, then (a™b)s* = bs™s* = 0 and a™(bs™) =
a#a™b =0, i.c. a"bs# = a#bs”.

In the same manner, we can verify that s™ca? = s#ca™ is equivalent to s™c =
ca™. Hence, the equivalence 2) < 3) holds. O

By Lemma 10.1, the following corollary recovers [4, Theorem 2].

Corollary 10.1. Let = be defined as in (10.1), a € (pAp)¥, and let s = d—ca™b €
(1 — p)A(1 — p))* be the generalized Schur complement of a in x. Then v € A%
and

# a¥ + a#bs*ca® —a#bs?
x =
if and only if a™b=0=0s", and s"c=0=ca™.

Now, we extend the well known result concerning the Drazin inverse of complex
matrices to the generalized Drazin inverse of Banach algebra elements, see [15,
Theorem 3.5].

Theorem 10.1. Let

(10.3) x:{iﬂeA

relative to the idempotent p € A, a € (pAp)? and let s = —ca®b € ((1—p)A(1—p))?.
If
(10.4) sslca™ =0, sslca™a =0, aa’s™c=0, bs"ca™ =0,

then z € A% and
—+oo n
d_ aa™ a™bs™ 0 a"bss? nt2
(10.5) 2% = (T + Zo L"Tca’r 0 } L”caad 0 "
n=

0 aa®bs™
x (1 T [ssdca“ 0 ]) ’

a® + a%bs?cal —abs?

(10.6) r:[ o J }.

where

—Ssca S
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Proof. Applying aa® + a™ = p and ss? + s™ = 1 — p, we have
B [a a? aadb] [aa” a™b

sste 0 s"c¢ 0 ] =t

The equalities aa™ = 0 and (10.4) give uv = 0.
First, we show that u € A% If we write

[ a*a? aadbss? 0 aadbs™| s 4+

| ssteaat 0 sstca™ 0 - 2
we can get ugu; = 0 and u3 = 0. Let A,, = a?a?, By, = aa®bss?, Cu, = ssteaa®
and D,, = 0. Then u; = [g“l gzl] and, by (a?a?)# = a?, A,, € (pAp)¥. Also,
from s = —ca 4, Sy, = Dy, — C’ulAZ‘;’iBu1 = s%s? € ((1 — p)A(1 — p))* and

(s? )# = 5%, Consequently,
AT B, S¥ =0=A%B,, S5, SIC,AY =0=S7C,A]

0 Bulsul]

and [culAgl 0
4 [A# + A¥ B, S¥C, A —Af BmS _
= —S 0 A# S# -

U1

=0 e Al By Lemma 10.1, notice that u; € A% and

Using Lemma 9.51), u € A% and u? = u{ + (ué)?uy = r + r2us.
To prove that v € A observe that

T T T T d
U:{aa abs}_{_{ 0 0}_‘_{ 0 dabss}lzm—i-w-l-vg-

0 0 sca™ 0 sTcaa 0
If z=[% L], then \l — 2z = [)‘pam A(l:;)fn] Therefore

A€ ppap(m) N pa—p)aa—p)(n) = X € p(z),
i.e.
0(2) C opap(m) Uo—_paa—p)(n).

Notice that, by aa™ € (pAp)®™, v; € Al Tt can be verified that v;ve = 0 and
v =0, ie. vy € AM. Now, by Lemma 9.4, v; + vy € A% Using Lemma 9.4
again, from v3 = 0 and v3(v; + v2) = 0, we conclude that v € AL

Applying Lemma 9.52), we deduce that = € A9 and

gt = (1 + Zv”“ ”+2>u = (1 + Zv"“ )"+2)7‘(1 + rug).

Since ugr = ugu‘f = (ugu1)(u$)? = 0, then (u )”+2 = (r + riug)"*? = ¢y 2(1 +
d d ™ d

rug). From r = [ag Sgd]r, we obtain vr = v[ag sgd]r = [s”c;ada %SS |. By

V" = (v +v9)"w, we have v" 1 (ud)" 2 = (v, +v2)n[swcoaad aﬂ%ss ]t (1 + rug).

Applying usr = 0 again, we get (10.5). O

From Theorem 10.1, we get the following consequence.

Corollary 10.2. Let x be defined as in (10.3), a € (pAp)? and let r be defined as
n (10.6).
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1) If ca™ = 0 and the generalized Schur complement s = —ca®b is invertible,
then z € A and

+oo n
d_ aa”™ 0 0a™| pi9
$—T+Z|:OO:| [00]7‘ .
2) If ca™ = 0, a™b = 0 and the generalized Schur complement s = —ca®b is
invertible, then x € A% and
Ll a? + abs~tcad —a¥bs™!
- —s 'cad s71 ’

3) If ca™ = 0, ca™a = 0 and the generalized Schur complement s = —ca®b is
invertible, then x € A% and

“+o00
d _ 0 a™a™b n—+2 00
x —(r—i— 2_0[0 0 r 1+r ca™ ol |-

In the following theorems, we assume that s = —cab is the generalized Drazin
invertible, and we prove representations of the generalized Drazin inverse of anti-
triangular block matrices. Several results from [16] are extended.

Theorem 10.2. Let x be defined as in (10.3), a € (pAp)? and let s = —ca’b €
(1 = p)A(L —p))?. If bea™ = 0 and aa®bs™ = 0, then x € A? and

= aa™ a™b]" 0 0
(10.7) at =" [Caﬂ 0 ] (1 + L”TC 0] r) it

where r be defined as in (10.6).

Proof. We can write

i a%a? aa’b aa™ a"b| "
= |ecaa? 0 cam 0| TYTE

Now, we get yq = 0, by the assumption bca™ = 0.
In order to prove that y € A%, note that
[ a%a? aadbss? 0 aalbs™
Y= |sslcaa? 0 s"caa® 0

[ a%a? aadbss? n 0 0] _ n
| ss%caal 0 sTcaad 0| T LT YD

1192 = 0 and y2 = 0. Using Lemma 10.1, we have y; € A? and y¢ = r. By Lemma
9.52), y € A% and y? = yf + ya(y{)® = 7 + yar®.
Further, we verify that ¢ € A9 Let

_aa”a”b+ 0 0] "
=10 o cam 0| T DT

Thus, we deduce that ¢; € A% and ¢, € A", because aa”™ € (pAp)™™! and ¢Z = 0.
Since q1¢2 = 0, by Lemma 9.4, g € A
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By Lemma 9.52), » € A% and

+o00
2! = Zq = 3 g (L )
n=0
. d . . .
The equality r = [ag Sgd}r give yor = [SQC 8]r implying (10.7). O

Replacing the hypothesis aa?bs™ = 0 with s"caa? = 0 in Theorem 10.2, we get
the following theorem.

Theorem 10.3. Let x be defined as in ( 3), a € (pAp)? and let s = —ca¥b €
(1 —p)A(1 —p))?. If bca™ = 0 and s™caa® =0, then x € A% and

(10.8) 2t = io {iz aﬁb} (1 +r {0 b5 D :

n=0

where r is defined in the same way as in (10.6).

Proof. In the similar way as in the proof of Theorem 10.2, using

a?a®  aa®bss? 0 aa®bs™
y= [ d + 0 0 =Y+ Y2

sstcaa 0
and yoy; = 0, we check this theorem. O
If s = —cab € (1-p)A(1—p))~! and s’ = —s, then s™ = 0 and (s')"! = —s~ L.

As a special case of Theorem 10.2 (or Theorem 10.3) we obtain the following result
which recovers [16, Theorem 3.1] for bounded linear operators on a Banach space.

Corollary 10.3. Let = be defined as in (10.3), a € (pAp)? and let s = ca®b €
(1 =p)A(1 —p))~t. If bea™ =0, then z € A? and

I T oy " d_ .d d dp(o\—1
d_ aa™ a"b|" 41 _ [a% —ab(s")"tea ab(s')”
¢ = 270 [Caﬂ 0 } """, where t = (s")~Lcad (s

d

Sufficient conditions under which the generalized Drazin inverse x“ is represented

by (10.7) or (10.8) are investigated in the following result.

Theorem 10.4. Let = be defined as in (10.3), a € (pAp)? and let s = —cab €
(1 —p)A(1 —p))?. Suppose that aa®bea™ =0 and ca™b = 0.
1) If aa®s™ = 0 and (aa™b = 0 or caa™ = 0), then v € A? and (10.7) is
satisfied.
2) If s"caa® = 0 and (aa™b = 0 or caa™ = 0), then x € A? and (10.8) is
satisfied.

Proof. This result can be proved similarly as Theorem 10.2 and Theorem 10.3,
applying g2¢g1 = 0 when caa™ = 0, and the decomposition

aa™ 0 0a™d
q[ca” 0}*{0 0}

when aa™b = 0. O
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Remark 10.1. In the preceding theorem, if ca® € ((1 — p).A(1 — p))~!, then we
obtain as a particular case [16, Theorem 3.2] for Banach space operator.

The following result is well-known for complex matrices.

Lemma 10.2. Let z be defined as in (10.1), a € (pAp)? and let w = aa®+a?bea? be
such that aw € (pAp)?. If ca™ =0, a™b = 0 and the generalized Schur complement
s =d — ca is equal to 0, then

wo ey
(
)

Proof. Denote by y the right side of (10.9). Then we obtain

_ {(a + bea®)[(aw d] (a+ bea )[(aw)d]%]
(c + dca®)[(aw)??a (c + dca)[(aw)?)?b|

yi = [ [(aw)??(a® +be)  [(aw)?]*(ab + bd) ]
ca®[(aw)?)?(a® + be) cal[(aw)?)?(ab + bd)|

By ca™ = 0 and a™b = 0, we can conclude that a+bca® commutes with aw. Indeed,

(a + bea?) (aw) = (a® 4 bea’a)(aa? + abea?)

= (a® + aabe)a(a + bea?) = (aw)(a + bea?).

Since a + bea®? commutes with aw, it also commutes with (aw)? and we have

(a + bea®)[(aw)??a = [(aw)?)?(a + bea®)a = [(aw)?]?(a® + be).
From s = 0, we get ¢ + dca® = caa + ca’bca® = ca?(a + bea?). Thus,

(c+ dea®)[(aw)?a = ca(a + bea®)[(aw)?a = ca®[(aw)?)*(a® + be).
Also, ab + bd = ab + bcab = (a + bea?)b and we obtain
(a + bea®)[(aw)?)?b = [(aw)?]?(ab + bd)
(¢ + dea®)[(aw)??b = ca®[(aw)?)*(ab + bd).

So, we proved that

o — [(aw)?)?(a + bea®)a  [(aw)?)?(a + bead)b
== [cad[(aw)d]Q(a + bea®)a ca?|(aw)?)?(a + bcad)b] ’
Further, we can verify that yry = y. Indeed, we have
o — | [(aw)2a [(aw)??b
e Lad[(awwa ca[(aw) b ]
o { [(aw)?)?(a + bea? ) [(aw)?)?(a + bead)b
ca®[(aw)?)?(a + beca?)a ca®[(aw)?]?(a + bea?)b

_ [ [(aw)?]*(a + bea?)?a [( w)4*(a + bea? )% }
ca®[(aw)?)*(a + bca?)?a ca?[(aw)?])*(a + bea?)?b|
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The equalities a + bea® = a — a®a® + a?a® + bea® = aa™ + aw and a"w = 0 = wa™
give (a + bca?)? = a?a™ + (aw)?. Therefore,
(aw)?(a + bea?)? = (aw)?(a*a™ + (aw)?)
= [(aw)¥*(aw)a™a® + (aw)?(aw)? = (aw)?(aw)?
and [(aw)*(a + bea?)? = [(aw)9]*(aw)? = [(aw)?]? implying
12 12
9= by cao) =
We obtain

o | (aw)Ta  (aw)™b | _ | p 0] [(aw)a (aw)™b
rTry= cat(aw)™a cat(aw)™b| ~ |ca 0 0 0 |
Notice that, by a + bca® = aa™ + aw, (aw)™(a + bca?) = aa™ + (aw)(aw)™. Since
aa™, (aw)(aw)™ € (pAp)™! and aa™(aw)(aw)™ = 0, by Lemma 9.4, we have that
aa™ + (aw)(aw)™ € (pAp)™! and rpa,((aw)™(a + bea?)) = 0. From

r(x—a’y)=r ([(aagﬂa (a%)ﬂb} Lsd 8D

= (|G ) = (@ + beaty =0,

we deduce that z — 2%y € A9 and prove that ¢ = y. O

In the following theorem, we extend [16, Theorem 3.3 and Theorem 3.4] for
Banach space operators to elements of a Banach algebra.

Theorem 10.5. Let = be defined as in (10.3), a € (pAp)? and let k = aa? +
aabea’ € (pAp)?e. If ca® = 0 and if one of the following conditions holds

1) bea™ = 0;

2) aabca™ =0, aa™b =0 and ca™b = 0;

3) aa¥bca™ =0, caa™ = 0 and ca™b = 0;
then x € A and

+o0 n n+1
d_ aa™ a™b (kM2a (k920
(10.10) = Zo [ca7r 0 ] Lad(k‘d)Qa ca®(k?)%b '

Proof. To prove the part (1) suppose that x = y + ¢, where s and y are defined
as in the proof of Theorem 10.2. It follows that y¢ = 0 and g € A™!. Applying
Lemma 10.2, we conclude that y € A? and

i_|p 0 (k")2a2a? 0] [p ab
Y= leat 0 0 o/loo]"
Since kaa® = k, then k%aa® = k% and

_ [ D% (k)%
y' = Lad(kjd)Qa cad(k‘d)Qb} ’
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Using Lemma 9.52), we conclude that 2 € A? and ¢ = 37 ¢"(y*)"*'. Thus,
(10.10) holds.

The parts (2) and (3) can be checked in the similar manner as in the part (1)
and in the proof of Theorem 10.4. O

If c=0or b=0 in Theorem 10.5, we have k = a?a? € (pAp)? and k¢ = a?. As
a consequence of Theorem 10.5, we obtain the following result.

Corollary 10.4. Let x be defined as in (10.3) and let a € (pAp)?.

d (,d\2
1) Ifc=0, then z € A? and 2% = [‘6 (ao) b]
d
= d d _ a 0
2) Ifb=0, then x € A% and z L(ad)Q 0].

In the following part of this section, we present the results from the paper [41].
The following auxiliary results will be used in the rest of the section.

Lemma 10.3. Let x be defined as in (10.1) and assume that wy = p + a®bs™ca? is
invertible. Then woa?a? is group invertible, (woa?a®)# =a%wy ' and (wa’a®)™ =a™.

Proof. Let us prove that adwg 1'is group inverse of wy La2a?. Indeed,

(woa’a®) (a%wy ') = woaa®wy t = (p + a’bs™ca)aawy !

= (ada + adaadbs”cad)wal = adawowal =a%a
= a%a?a? = (a%wy ') (woa’a?),
(w0a2ad (adwo )(wanad) = wpa?a®a®a®a? = woaa?,
(a%wy ') (woa?a?)(a®wy ) = a%aaatwyt = awy !
implies that (wpa?a®)# = adwo L Spectral idempotent of wpa?a? is equal to
(woa?a®)™ = p — (woa?a®)(a®wy ') = p — aa = a™. O

Lemma 10.4. Let x € A% and u € A be an invertible element. Then u 'zu € A¢
—1,.d

and (v tzu)? = v lzdu.

The following lemma will extend to the generalized Drazin inverse of Banach
algebra elements a well known result concerning the Drazin inverse of Hilbert space
operators.

Lemma 10.5. Let x be defined as in (10.1). Then the following statements are
equivalent

1) x € A and 2? = r, where

d 4 gdpedogd _ o dpd
_|a® 4+ a%bs®ca® —a®bs®|
(10.11) r= _scqd sd )

Thed _ dheT oTand _ od. 7 _ aa™ a”b qnil .
2) a™bs® = a®bs™, s"ca® = s%ca andy—[sca a’b] e Awmil;
3) a"b=bs", s"c=ca"™ and y=[99"5

qnll
ca™ ss™ ] €A
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Proof. 1)<2): We can verify that rzr = r. Since a™bs? = a?bs™ and s"ca? = s¥ca™
imply a™bs?ca® = abs?ca™, by elementary computations, we observe that zr = rz

if and only if a™bs? = a%bs™ and s7ca? = s?ca™. Now, we can obtain
d d
2. |p—a% p a%
e {0 1p]y[() 1p}’

et (B -0

Hence, x — 2%r € A is equivalent to y € A,
2)<3): First, we check that a™bs? = a?bs™ is equivalent to a™b = bs™. If we
multiply the equality a™bs? = a?bs™ from the right side by s and from the left side
by a, respectively, we get a"bs?s = 0 and aa?bs™ = 0. So, bs?s = aabs?s = aa’b
and
a™b=0b—aa®=b—bs?s = bs".

On the other hand, a™b = bs™ gives (a™b)s? = bs™s? = 0 and a?(bs™) = a%a™b = 0.
Hence, a™bs? = a%bs™.

Similarly, we can prove that s™ca? = sca™ is equivalent to s"c = ca™. Thus, we
deduce that 2) < 3). O

Remark 10.2. Using Lemma 10.5, if x is defined as in (10.1) and r is defined as in
(10.6), then x € A# and 27 = r if and only if a € (pAp)#, s € (1 —p)A(1 —p))*#,
a™ = 0 = bs™ and s"c = 0 = ca™. This results is well-known for a complex
matrix [4, Theorem 2] (see also [11, Corollary 2.3]). The expression (10.6) is called
the generalized Banachiewicz—Schur form of z. For more details see [1,4,11, 34].

Now we present a formula for the generalized Drazin inverse of block matrix
2 in (10.1) in terms of the generalized Drazin invertible Schur complement s. We
extend [17, Theorem 7] concerning the Drazin inverse of 2 x 2 block-operator matrix
to more general setting.

Theorem 10.6. Let x be defined as in (10.1). If
(10.12) ca™bss? =0, aa™bss? = 0, ss"c =0, a™bs"c = bs"caat =0,

then x € A and

d_ 0 a™b > nt1 | 0 bs™| |aa™ bs™ "
(10.13) = ([s”c std| " T pr{l+ Z;)r ca™ ds™| |ca™ ds™ ’
where 1 is defined as in (10.6).

Proof. Notice that, by a™ + aa® = p and s™ + ss? =1 —p,

B [aa’r bs”} [azad bss?

ca™ ds™ caa® dssd} =yt

From a%a™ = 0 = s™s%, d = s + ca®b, bs"ca® = (bs™caa?)a? = 0 and (10.12), we
get yz = 0.
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To prove that y € A we observe that

aa”™ a"bs” 0 0 0 aadbs™
y= |: 0 ss™ :| + |:87rca7r Sﬂcadbsﬂ:| + |:SSdC(l7r SdeSﬂ-:| =Y1 T Y2 +y3

Recall that if u = [ )], then A\l —u = [*_ |, " ] and

c1 by —cC1

A € ppap(ar) N pa—paa—p (1) = A€ p(u),

ie., o(u) Copaplal) U.U(l,p)A(l,p)(bl). . .
Since aa™ € (pAp)®™! and ss™ € ((1—p)A(1—p))9il, we deduce that y; € AWM.
By r(s™cabs™) = r(bs™ca?) = r(0) = 0 and

oA(s™ca%bs™) = a(l_p)A(l_p)(s”cadbs”) u{o}

(Lemma 9.3), yo € A9 We can check that 312 = 0 which gives that y; +
ya € A by Lemma 9.4. Also, by Lemma 9.4, y2 = 0 (ie. y3 € A"!) and
(y1 +y2)ys = 0 imply y € A
In order to show that z € A%, we write
[ a?a? aadbssd} [ 0 a"bss?

d s"caa® s™dss

= 21 + 29.
ssteaa® sstdss } ! 2

We can verify that z120 = 0 and z% =0. If 1 = [2’2 gzl }, we note that 4, =

21
a?a’ € (pAp)#, (a?a®)# =a?, S., = D., —C., AZ B., = s’s* € (1-p)A(1-p))*
and (s2s9)# = s?. Using Lemma 10.5, we have z; € A¢ and z{ = r. Further, by
Lemma 9.5, z € A% and 2% = 2§ + 2p(2¢)2.
Applying again Lemma 9.5, we conclude that = € A% and

o0 (o)
= Sy = (e (14 G ).
n=0 n=0

d d
Then rve th d—p=ypla® 0 | —laa® 0 |
en, observe that z{ e 0 e |

a_ | 0 a™b aa® 0 10 a™
22 = \gme smdq| | 0 sst| " T |sTe s7d| "

_ aa® 0 . aa® 0 0 bs™| 0 bs™
Y= 0 sst YT 0 ss?| eam dsT| T |ca™ ds™
yield (10.13). O

The condition of Theorem 10.6 are cumbersome and complicated, but the theo-
rem itself have a number of useful consequences.

By Theorem 10.6, we obtain the following corollary which recovers [11, Theorem
2.5] for the Drazin inverse of complex matrices.

Corollary 10.5. Let x be defined as in (10.1), a € (pAp)* and let s € ((1 —
p)A(l —p))*. If ca™ =0 and bs™ =0, then x € A? and

a_ |p— a™bs#ca# a"bs?| [a# + aFbs#ca? —aFbsH
v sTca# 1—p —s#ca¥ s#
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If we assume that the generalized Schur complement s is invertible in Theorem
10.6, then s™ = 0 and the next corollary which covers [34, Theorem 3.1] follows.

Corollary 10.6. Let z be defined as in (10.1), and let s € (1 —p)A(1 —p))~ L. If
ca™ =0 and aa™b = 0, then x € A% and

¢ (foamd ~ 41| 0 0
! _<[0 0 ntlin 1+Zr? ca"a™ 0| |’

n=0

d, dp.—1_d dy . —1
_ | a“+a®bs” "ca® —a“bs
where 11 = [ g o1 } .

In the following result we introduce the other expression for the generalized
Drazin inverse of  which include an invertible element wo = p + a®bs™ca®.

Theorem 10.7. Let = be defined as in (10.1). If
(10.14) aa™ — a"bs?ca™ =0, s"ca™ =0, ca™b=0,a"bs" =0, ss"c=0=bss"

and wy = p + a®bs™ca? is invertible, then x € A% and

d_ 0 a™b 0 bs™
(10.15) x% = (Lﬂc Sﬂd} r+ 1) wrw (1 +r Laﬂ ast| |

where 1 is defined as in (10.6) and w = [wg 12},]

d
E. . _| P a®b
Proof. First, we observe that u = [sdc (1—p)+sdeatd
dp.d. __d
isu~! = [““ bse “b}.
—s% 1-p

] is invertible in A and its inverse

Let us denote X = uzu~?!

X = [é g] =yzut =

, S0 we have
P ab a b| [p+a%bsic —a’b
stc (1 —p)+ sdcadd| |c d —slc  (1—-p)
_ a— a™bsc+ a¥bs™c a™b + a%bs
T s™c+ stc(a — a™bsbc + a®bs™c) s + sle(a™b+ adbs)|”
The first and the third conditions from (10.14) give us equations caa™ = 0 and

aa™ = 0. The second condition implies s™caa® = s™c.
Applying these equations along with a = aa™ + a?a?, we have

A=a—a"bs?c+ a%bs"c = wpala? + aa™ — a"bse,

B =a"b+ abs,

C =s"c+ stcla —a"bs%c + abs™c) = s™c + scwpa’al,
D = s+ s%c(a™b+ a%bs) = s + s%ca’bs.

From Lemma 10.3, we have woa?a? € (pAp)#, (woa?a®)# = a%wy ' and

(wa?a®)™ = a™. Further,

(aa™ — a™bs%c)?* = (aa™ — a"bsca™)a — aa™bs’c + a"bs ca™bsc = 0
implies (aa™ — a™bs’c) € (pAp)™! C (pAp)9™! and it holds

woa’a®(aa™ — a"bs’c) = 0.
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Applying Lemma 9.52), we conclude that A € (p.Ap)? and

A = (wpa?ah)# + (aa™ — a™bs’e)(woa’a?)#)?
= (p — a"bs*ca’wy Matwy
Since woaa® = aa%wy implies (wpa?a?)(a%wy ) = aa? and it holds a%wy'a™ =
(woa?a)#(wpa?a?)™ = 0, we have
A™ =p— AAY = p — (wpa*a® + aa™ — a™bs’c)(p — a™bs cawy atwy !
=p— woazadadwo_1 — aa’radwo_1 + a’rbsdcadwa1
+ w0a2ada”bsdcadw51adw0_1 + aa”bsdcadwgladwo_1
— a™bs%ca™bs?ca’wy tatwy !
= a™ + a™bs%cawy !
Notice that AA™ = 0. Therefore, A% = A%.
Now,

S =D —CA#B = s+ s%a®bs

— (s™c + s%ewpa®a®) (p — a™bs%ca’wy H)atwy (@b + a’bs)

= 5+ sca®bs — (s"c + scwpata)awy tatbs
= s+ sca%bs — s’rcadwo_ladbs — sdcwoazadadwo_ladbs
=s— s”cadwo_ladbs.

Since
s ((1-pA1—p)? (s"ca®wytabs)? =0, s(s"ca%wy a’bs) =0,
applying Lemma 9.52), we have that S € ((1 — p).A(1 — p))? and
S = s — s"cawy La¥bs?.
Then,
S™ = (1—p)— S8 = 5"+ s™ca’wy *abss?.
The following equations hold
CA™=0, BS™=0, AA™=0, SS™C=0

which implies that X satisfies the conditions (10.12) from Theorem 10.6. Using
this Theorem, we conclude X € A% and

. ([0 4B | [A# 4 A#BSICA* —A#BSY
X —<|:S7TCS7TD:|R+].)R, where R—|: —SdCA# Sd

Then, applying Lemma 10.4 on x = v~ ! Xu we have

2 =y X =yt <{S’90 gﬁg} R+ 1) Ru.
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Observe that

Ru — A% 0] [p+ BSiCA* —BSY] [ p a’b
10 s ~CA* (1 -p)| |sc (1 —p)+slca®d|"
Since
p+ BSICA#* —BSY] [ p a’b
—CA* (1 —=p)| [s%c (1 —p) + slca®d
~[p+ab(s?)?caal + absicaa? —a™bs? — a?bss?
B —sTcatwy ! — stcaa’ (1—1p)
| P ab
st (1 —p) + s%ca’d
~ [p—a™b(s?)%ca™ — a%bsca™ a®bs™ — a™bs?
B —sTcatwy ! + stca™ (1 —p) — s"catwy 'ad|’
we have
R — A# 0] [p—a™b(s?)?ca™ — albsica™ a®bs™ — a™bs?
10 s —sTca%wy ' + stca™ (1 —p) — s"ca%wy ad

A# 0] [p— a%stca™ atbs™
0 s4 stca™ (1-p)

A#* 07 [—a™b(s?)%ca™ —a™bs?
0 S| —sTcatwy 't —sTca’wytad

(a7 0 14 —a%bsica™ albs™
1o s slea™ 0
" (p — a™bscatwy M)atwy ! 0
0 (1 —p) — s™cawy *atb)s?

y —a™b(s%)%ca”™ —a™bs?
—sTcatwyt —s"ca’wy tath

_[4* 0 14 a? + adbsica® —adbs?| [ 0 bs™ n 00
0 s —sdeal s? ca™ ds™ 00
A# 0 0 bs™
=[5 o] (el )

We can write

A# 0] _ [p—a™bs?catwy! 0
0 S~ 0 (1 —p) — s"ca%wy ' abss?
at 0 wgl 0
X
0s'| 0 (1-p)
_ [p—a"bscatwy 0 at 0 w
N 0 (1 —p) — sTca%wy ta?bss?| | 0 s?|

Therefore,
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d,,,—1

a™bstcatw, 0 at 0 w
0 (1 —p) — s"ca%wy tadbss?| | 0 s

0 bs™
(147 [ i)

Denote M = w (14 r[ % b P Notice r[& 9] [“Od Sod] = r. Using the equation

Cdeo (p + a’bscala) = adwo (a® + a®bs?ca)a, we have

d_ -1 0 A™B
' =u ({Sﬂc S"D]R+1)

Ru = p=

» [p — a™bs%cawy 0 1fa® 0] M
I 0 (1 —p) — s"ca’wy 'abss?] [ 0 s
- A™BSYCA* A™BS?
- STCA# (1-p)
y [p — a™bs?cawy * 0 1fa® 0] M
L 0 (1 —p) — s"ca®wy 'abss?] | 0 s
- ix P a™b(sh)?caa® — a"bs cawy ta%bscaat a"bs? 4 a™bstcatwy tarbsst
a s"ca’wy ! (a® + a%bs?ca?)a (1-p)
y [p — a™bs%cawy ! 0 1(a® 0] M
L 0 (1 —p) — s"ca’wy 'abss?] [ 0 s
x| P a™b(s?)?caa® — a"bs cawyt (a® + albsica?)a a”bs + a"bscawy tatbss?
- s™ca’wy (a4 a’bs?ca®)a (1 —p) — s™ca%wy 'a?bss?
d
a® 0
X M
5 2]
It —a"bs%cawy ! a"bs?] [(a® + a’bs?cat)a —a’ibs s a®
- (1+ { s™ca%wy ! 0 —stcaa s? M

o —a"bs%ca® a™bs?] [wy! 0 a 0 ad
- (1 + [ s"ca? 0 0 (1-p) " s?
_(|p+ a%bs?c —ab ] [a? 0
B —s%c  (1-p)] [0 s*
11 0 d™b wo_1 0 a 0] [a? O
tu [s”c s"d]r{ 0 (1-p) "los| |0 s M
_ p+atbsic —a'd 0 a™b
N <T * [ —stc¢  (1—p)| [s7c s7d ror | M
[ |wo 0 a%bs?c —ab 0 a™b
_({0 (l—p)]Jr({—sdc 0 +1 s"c s*d| " wrM
_(|wo O —a%bs™c — dbs"d 0 a™b
=([% a2l + [ ] * [sre ] )
dy m , d d ™
:({p-l-a bs™ ca 0 }_’_{ bs™cal O} {2 Z,rb]r)wrM

0 (1-p)
= (1+ {9 aﬁb} r> wrM.
s"c s"d
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Replacing M, we get (10.15). O

If s € (1 —p)A(1 — p))# in Theorem 10.7, then ss™ = 0 and we recover as a
special case [17, Theorem 9]. If s € ((1 — p)A(1 — p))~! in Theorem 10.7, we get
the following consequence.

Corollary 10.7. Let x be defined as in (10.1), and let s € (1 —p)A(1 —p))~ L. If
aa™ — a™bs 'ca™ = 0 and ca™b = 0, then x € A? and

0a™b 0 0
= (o] o) (on e i])

where 11 is defined as in Corollary 2.2.

We give a representation of 2% in the next theorem under conditions a™b = 0
and s"caa® = 0.

Theorem 10.8. Let x be defined as in (10.1). If a™b = 0 and s"caa® = 0, then
€ A4 and

© dped . m odpom w n
d_z ntl —a®bs®ca™ a®bs aa™ 0
(10.16) v _07" <1+ { shea™ 0 }) [ch sTs|
where 1 is defined as in (10.6).

Proof. By the assumption a™b = 0 and s"caa® = 0, s"ca® = 0 and we can write

_— [aa7T a”b] {aQad aadb] _ [aa’r 0 } {aQad aa®

s"c s™d sste ssd s"c s™s sste sstd

} =y +z.

Now, we obtain that yz = 0 and y € A, because aa™ € (pAp)i™! and ss™ €
(1 = p)A(L —p))ai.
To prove that z € A%, we observe that
a?a?  aa®bss? 0 aas™
ss

sstcaa® ss?dss? dea™ ssdds™

] =21 + 29.
From Lemma 10.5, we have z; € A% and 2¢ = r. Since z22; = 0 and 22 = 0, by
Lemma 9.51), z € A? and 2% = 2§ + (2§)%20 = 7 + r?2s.

Therefore, using Lemma 9.51), z € A? and 2¢ = 377 7" T1(1 + rzo)y™ which
gives (10.16). O

Also we can obtain the following expression for the generalized Drazin inverse
of block matrix x.

Theorem 10.9. Let = be defined as in (10.1). If a™b = 0 = bs™ and s™scaa® = 0,
then x € A and

a _(T0 0 ~ i1 ] 00
(10.17) x({sncsﬂd}TJrl)r(lJrZr warar ol )

n=0

where 1 is defined as in (10.6).
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Proof. In the similar way as in the proof of Theorem 10.6, using the following
decomposition

xr=

[aa” 0 } [a2ad bss?

ca™ ss caa® dss?

[ =y
we verify this result. O

Using Theorem 10.8, we get necessary and sufficient conditions for the existence
and the expression of the group inverse of . The following result recovers [17,
Theorem 12] and [11, Theorem 2.2].

Theorem 10.10. Let x be defined as in (10.1). Suppose that a™b = 0 and s™caa® =
0. Then

x € A% if and only if a € (pAp)*, s € (1 —p)A(1 —p))¥ and s"ca™ = 0.
Furthermore, if a € (pAp)#, s € (1 — p)A(l —p))#, a™b =0 and s™c = 0, then

o [a# + a®bs? ca™ —a#bs#} {p — a?bs?ca” a#bs”}

(10.18) —s*ca? st s*ca”™ 1-p

Proof. If x € A%, by Theorem 10.8, 27 is equal to the right hand side of (10.16).
Since zr? = (zr)r = [agd sgd]r =r, then

_dped . dY T
20# 2 <1+ [ adbs fa a®bs })
sca 0

aat 0 —a%stca™ atbs™ aa™ 0
+ [ 0 ss 1+ stea™ 0 sTc s"s

& _dped . o dp T T n
+Zrn—1(1+[ adbsca abs ]) [aa O} I 4+ L+ L.
n=2

s%ca™ 0 s"c s"s
By the equality x — z2x# =0, we obtain Is = x — I; — I,. Now, notice that

_dphed T AT
x#:r(l—i—{ adbs ca™ a®bs ])

s%ca™ 0
42 <1 n {—addbsdfa“ a%s”}) [afrz” 7(3 ] 2
s%ca 0 sTc s™s

_dped, T dY T
:r(l—i—[ adbs ca™ a®bs })—5—7“2(:6—[1)

s%ca™ 0
dpod . 7 d}, T
—a%bs“ca™ a®bs
_T<1+[ stea™ 0 ])

2 # a?a® + a™bs%ca™ aa®bs™ + bss?
i’ =
caa® + ss?ca™  ca®b + s2s¢

Hence,

_ a?at bs™ + bsst _ a2ad b
| ss%caa® 4+ ss%ca™ d— s+ s2s4| T | ss%e d — s+ s2s¢
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and z22% = z imply a%a? = a, 5?5 = s and ss?c = c¢. So, a € (pAp)*, s €
(1 = p)A(1 — p))* and s"ca™ = ca™ — ca™ = 0.

Assume that a € (pAp)#, s € ((1 — p)A(1 —p))# and s"ca™ = 0. Then s™c =
s"ca™ + s"caa” = 0. Denote by u the right hand side of (10. 18) Using Theorem
10.8, we get that z € A? and 2¢ = u. We can show that zz% = zux = = which

implies that x € A% and z# = u. O

Applying Theorem 10.9, we prove the next result related to the group inverse
x# which is an extension of [17, Theorem 13].

Theorem 10.11. Let x be defined as in (10.1). If a™b = 0 = bs™ and s™scaa = 0.
Then

x € A* if and only if a € (pAp)¥, s € (1 —p)A(1 —p))¥ and s"ca™ = 0.

Furthermore, if a € (pAp)¥, s € (1—p)A(1—p))¥, a™b = 0= bs™ and s"ca™ =0,
then

(1019) o (LSC sgd} "t 1) r <1 +r [Cgﬂ 8}) :

where 1 is defined as in (10.6).

Proof. Let x € A#. Using Theorem 10.9, 27 is equal to the right-hand side of
(10.17). From [ 0« 0]z = [ %~ o], we get

ca”a™ 0

x#x:([sﬂcssd]rﬂ)r(x@w [ ,TgD
~([2 2] ++1) <m e [t g})
~([2 2] ) (m [ S e g])
(18 ) (e S )

(5 ([ 2 )

Observe that z[ 2, 9,]r = x[s”(c)ad 8] = 0 gives
d o0
2 H H#o aaq 0 n+1 0 0
r=x"r" =zx x—m[o Ssd]—i—xzor [ca"a“O'
e

So 30 o1t 0 0] =2 — [ 0] = 2[4 9]. By this equality and the

caa”™ 0
equation rxr = r, we obtain

0 0 - 0 0
# _ n+1
= ([s”c swd} Tt 1) " (1 + Zor La"a7r O})
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([0 o a1 00
- ([s”c swd} T 1) " (1 +MCZT [ca”a” O])

n=0

(8 2 ) (e )
g (EXORC Fpel)

implying

222" = 22 <1 +r {aaﬂ OW})
ca™ ss
. aa? 0 14 —abs?ca™ 0
TP smcad ss? stea™ 0
_ a?a? bss? 14 —a%bsca™ 0
~ |ecaa? dss® stca™ 0

~ [a%a? bss? —aa®bstca™ + bstca™ 0
~ |ecaa® dss® —cabsica™ + dstea™ 0

_ a?a? bss? 0 0] _ a’a? b
o [caad dssd] + [ssdca” 0} o [c s"ca™ d — ss’r} ’
Because z2z# = z, we deduce that a’a? = a, ss™ = 0 and s"ca™ = 0 which yield
a € (pAp)#, s € (1 — p)A(1 —p))* and s"ca™ = 0.

Suppose that a € (pAp)#, s € (1—p)A(1—p))# and s™ca™ = 0. Thus a"a™ =0
for all n > 1. If we denote by v the right-hand side of (10.19), by Theorem 10.9,
z € A% and z?% = v. Since zz%r = zrz = z, then x € A# and z# = v. O

11. Right and left Fredholm operator M r s

In this part of the paper, we are interested in the properties of the right and left
Fredholm operator of type Mz g). For given A and C, we are interested to find T
and S, such that M7 g) is right or left Fredholm operator.

For this purpose we need to review some properties of right and left Fredholm
operators. An operator A € £(X,Y) is right Fredholm, if def(A) = dimY/R(A) <
0o, and N(A) is complemented in X. Notice that if A is right Fredholm, then it
follows that R(A) has to be a closed and complemented subspace of Y. The set of
all right Fredholm operators from X to Y is denoted by ®,.(X,Y). It is well-known
that A € ®,.(X,Y) if and only if there exist B € L(Y, X) and F € F(Y) such that
AB = Iy + F holds.

An operator A € L(X,Y) is left Fredholm, if nul(4) = dimN(A4)
< 00, and R(A) is closed and complemented in Y. The set of all left Fredholm
operators from X to Y is denoted by ®;(X,Y). It is well-known that A € &;(X,Y)
if and only if there exist B € L(Y,X) and F' € F(X) such that BA = Ix + F
holds.
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If Ae 9,.(X,Y) and B € 9,(Y,Z), then BA € ®,.(X,Z). The similar result
holds for the class ®;. The set of Fredholm operators is defined as ®(X,Y) =
. (X,Y)Nd(X,Y).

We formulate the following well-known results.

Lemma 11.1. Let X,Y, Z be Banach spaces and let A € L(X,Y), Be€ L(Y,Z). If
BA € ®(X, Z), then the following holds: A € ®(X,Y) if and only if B € ®(Y, Z).

Lemma 11.2. Let X,Y be Banach spaces, and let A € ¢,.(X,Y), P € F(X,Y).
Then A+ P € ©,.(X,Y). The analogous result holds for classes ®; and ®.

Lemma 11.3. Let My, My and N be the vector subspaces of the vector space X.

Properties of right (left) Fredholm and related operators can be found in [30]
and [49]. For the importance and applications of operator matrices we refer to
[12,19,25,26,29,38,45,56]. Particularly, this paper is related to the research in [12]
and [38], where the left and right invertibility of M gy is considered.

11.1. Right Fredholm operator. Now, we consider right Fredholm properties of
M(T,S).

Theorem 11.1. Let A € L(X) and C € L(Y, X) be given. The following state-
ments are equivalent
)[A Cled. (XY, X)\P(XDY,X), and there exists an operator J €
O (Y, N([A O~ oYV, N(A ).
2) Mi7,6) € 2. (X@Y)\N (X DY) for some T € L(X,Y) and S € L(Y).

Proof. 1) = 2): Suppose that [A Cl € @, (X Y, X))\ ®(X @Y, X). It follows
that M ([A C]) is infinite dimensional. By the assumption, there exists an oper-
ator J € & (Y, N([A C]) ~ DY, N(A C])), so N(J) is finite dimensional and
N([A C))/R(J) is infinite dimensional. The operator J has the form

FE X
J= M Yo M

Since R(J) is closed and complemented in N ([A C]), and N([A C]) is closed
and complemented in X @Y, we obtain that there exist closed subspaces V and W
such that NJA C])=R(J)dV and X@Y =N([A C))eW =R(J)aoV o W.
Notice that V is infinite dimensional.

There exists a closed subspace Y7 such that Y = N(J) & Y;. Now, the reduction
operator J: Y, — R(J) is invertible, so let K;: R(J) — Y; denote its inverse.
Define the operator K € L(X @ Y,Y) in the following way

K= Kz, zeR(J),
0, zeVaeW

Then K € L(X ®Y,Y) is a right Fredholm operator, such that N(K) =V @ W.
The operator K has the matrix form

X

K=I[T §: [Y

|-y
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We also have
(11.1) KJ=[T 8 [g} — Iy - P,

where P is the projection from Y onto the finite dimensional subspace N(J),
parallel to Y.
From R(J) C N([A C]) we get that

(11.2) 4 C] {g} — 0.

Since [A C] € ¢,.(X @Y, X), we have the following decompositions of spaces:
XY =N(A C)@eW and X =R([A C])® U, where U is finite dimensional.
Since the reduction [A  C|: W — R([A () isinvertible, define L, : R([A C]) —
W to be its inverse. Then consider the operator L € £L(X, X @Y), which is defined
as follows

Lo Liz, zeR([A (]
0, zeU.
The operator L has the matrix form
D X
L M X o M
Then L € &)(X, X ®Y), R(L) =W, and

(11.3) A CIL=[A C] [IF)] _Ix—P,

where P, is the projection from X onto the finite dimensional subspace U, parallel
to R([A (). Since N([T' S]) =V & W, we conclude that

(11.4) T 5 {ﬂ — 0.

Finally, from (11.1), (11.2), (11.3) and (11.4), we get that for M = [£C] i N =
[P E] the following holds
[AC|[DE] [Ix 0] [-P 0
MN_{TS} {FG}_[O Iy]+[ 0 PJ'

Since [ 52 _%, ] is finite rank, we conclude that M is right Fredholm. Moreover,

we notice that

NM) =N(A CnN(T S) =V,

R(N):R([?D +R({§D — W aR(J),
XoY=R(J)oVaW

Since V is infinite dimensional, we obtain that both M and N are not Fredholm
operators.

2) = 1): Suppose that there exist some T' € L(X,Y) and S € L(Y) such that
Mgy € ®.(X ©Y) \ ®(X,Y). Then there exist operators N € L(X @ Y) and



58 D. S. DJORDJEVIC, M. Z. KOLUNDZIJA, S. RADOSAVLJEVIC, D. MOSIC

P e F(X@®Y) such that MN = I+ P. The last equality holds in the matrix form

as follows
AC)[DE]_[Lx 0], [P P
TS| |FG| |0 Iy Po1 Py |’
where all P;; are finite rank operators. It also follows that N = [P E] € (X @Y).
In particular, we obtain

A O] {JF)} — Ix + Pu,

so [A (] is right Fredholm. The operator Ix + Py is Fredholm. If we suppose
that [A C] is Fredholm, by Lemma 11.1 it follows that [£] is also Fredholm.

Since R({?ﬁ]):R<{?]>+R<[g])37z({ﬂ>

it follows that [ 2 Z] belongs to ®,(X ®Y), so [ 2 £] is Fredholm. By Lemma 11.1
again, we obtain that [‘741 g] is Fredholm (since I + P is Fredholm from Lemma
11.2). The last statement is not possible, so we obtain that [A (] € @,.(X @
Y, X))\ ®(X &Y, X).

Denote with L = [E] € L(Y,X @ Y). We have [T S|L = Iy + Py, so
Le®d (Y, X®Y)\ ®(Y,X ®Y). Otherwise, if L is Fredholm, then also [2 E] is
Fredholm, so [# ] is Fredholm.

Since we have the following decomposition of space X @Y = N([A C|) e W,
the operator L has the matrix form

_ . N(A )
L= [ K] (Y — [ W } .
From the fact that R(Py2) = R([A C]L)=R([A C][{£]) =[4 Cl(R(K))is a
finite dimensional space and the reduction [A C]: W — R([A () is a bijection,
we obtain that R(K) is a finite dimensional subspace of W.

Since L € &;(V, X ®@Y)\®(Y, X ®Y), we have the following decompositions of
spaces Y = N (L)®U and X &Y = R(L)®U;, where dim N(L) < co and dim U =
00. The reduction operator L: U — R(L) is invertible, so let Ly: R(L) — U be its
inverse.

As it was shown, R(K) is a finite dimensional subspace, so Y1 = Ly (R(K)) have
to be finite dimensional subspace of U and there exists a closed subspace Y5 such
that U = Y] @ Ys.

Now, the operator L has the following matrix form

Y,

A AN

where Y7 is finite dimensional. We obtain that N'(J)=Y; &N (L), so dim N (J) < oo.
From the fact that [T" S]L = Iy + P»; follows that
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Since Iy + Py is Fredholm operator, we have that Li(N([T  S]) N R(L)) is finite
dimensional, so N'([T" S]) NR(L) is also finite dimensional subspace.
Denote with V. =N([A C))NN([T S]) NR(J). Further,

VCN(T S)NRJ)CN(T S))NR(L),

so it follows that dim V' < co. Then, there exists a closed subspace V; such that
N(Mrg) = N([A C)NN(T S]) =V @ Vi. Since N(Mr,g)) is infinite
dimensional, then V; is also infinite dimensional subspace.

Now, applying the Lemma 11.3 on the spaces N'([A C])NN([T" S]), N([A C))
and R(J), we obtain

dimV; = dim(N([A C)NN(T S))/V < dmN (A C))/R(J).

We conclude that dim N ([A  C])/R(J) = .

Lastly, we proved for the operator J: Y — N ([A C]) that dim N (J) < oo and
dimN([A C])/R(J) = cc.
So, there exists the operator J € ®;(Y,N([A C]) \ ®(Y,N([4A C))). O

11.2. Left Fredholm operators. Now, we investigate the left Fredholm properties
of M(r,s). We consider two separate cases according to the dimension of Y.

Theorem 11.2. Let X be infinite dimensional, and let Y be finite dimensional.
For given A € L(X) and C € L(Y, X), the following statements are equivalent

1) Mirs) € QX DY)NP(X DY) for every T € L(X,Y) and every operator
SeLlY);
2) Ae d)(X)\ (X).

Proof. Before the proof of the equivalence, note that

N({‘g 8]) _N(A) e, R([‘g 8}) — R(4) @ {0}.

Since Y is finite dimensional, we have that A € ®;(X) \ ®(X) if and only if
[48]ed(XaY)\O(XaY).

1) = 2): Suppose that M gy is left Fredholm but not Fredholm, for every
T € £(X,Y) and every S € L(Y). We have that [4 ] = [4 5G] + [ % Z5] where
[7OT :g} is finite rank operator. Applying Lemma 11.2, we obtain that [‘8 8] is
left Fredholm operator.

Suppose that [6‘ 8] is Fredholm. Applying Lemma 11.2 to [
that M(r sy has to be Fredholm, which does not hold. Hence, [6‘ 9
but not Fredholm operator, so we have that A € &;(X) \ ®(X).

2) = 1): Suppose that A is left Fredholm but not Fredholm, so the operator
[‘6‘ 8] is also left Fredholm but not Fredholm.

Let T € L(X,Y) and S € L(Y) be arbitrary operators. Then the operator
M 7,s) is a finite-rank perturbation of [ 4 §]. Indeed, [£ S ] = [43]+[2 ], where

[% g} is a finite rank operator because Y is finite dimensional space. Applying

#49] we conclude
] is left Fredholm

Lemma 11.2 to [6‘ 8] we get that M(r g) is left Fredholm operator. If we suppose
that M(r s) is Fredholm, from Lemma 11.2, we conclude that [6‘ 8] have to be
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Fredholm, which does not hold. We obtain that M g is left Fredholm but not
Fredholm operator. O

Theorem 11.3. Let X and Y be infinite dimensional, such that'Y is isomorphic
to Z =X@Y. Let A€ L(X) and C € L(Y,X) be arbitrary. Then M g) €
O XBY)\NDO(XPY) for someT € L(X,Y) and S € L(Y).

Proof. Since Y is isomorphic with Z, then Y = Y] @& Y5, where X is isomorphic
to Y7, and Y is isomorphic to Yz. Let T' € L£(X,Y1) and S € L(Y,Y3) be those
isomorphisms. Then T' € L(X,Y) is left invertible with a left inverse K € L(Y, X)
and N(K) = Ya. Also, S € L(Y,Y3) is left invertible with a left inverse L and

N(L) = Y;. Then
oz 7 5]=15 o)

so Mt ) is left invertible. It follows that Mp g) is left Fredholm for chosen
operators T' and S. Suppose that M g is Fredholm. Since [Ié( on] is Fredholm,
from Lemma 11.1 it follows that N is also Fredholm. However, we notice N'(N) =
X, which is infinite dimensional. Hence, N is not Fredholm. Then M g is not

Fredholm also, i.e. M7 g) € Q(X DY)\ (X DY).
We formulate a corollary for Hilbert space operators.

Corollary 11.1. Let X and Y be infinite dimensional and mutually orthogonal
subspaces of a Hilbert space Z = X &Y. Suppose that dimy Y = dimy Z. Let
A€ L(X) and C € L(Y, X) be arbitrary. Then Mp.g) € &(X ©Y) N (X DY)
for some T € L(X,Y) and S € L(Y).

11.3. Left Browder invertibility of Mc. As part of Fredholm theory, the Brow-
der operators are studied.

An operator T € B(X) is left Browder, if it is left Fredholm with finite ascent.
Analogously, T is right Browder, if it is right Fredholm with finite descent. These
classes of operators are denoted, respectively, by B;(X) and B,.(X). The set of all
Browder operators on X is defined as B(X) = B;(X) N B, (X).

Among left Browder operators, we distinguish one new class of operators as
follows

Bio(X) ={T € Bi(X) : R(T) + N(T#<(T)) is complemented in X}.

Analogously, among right Browder operators we distinguish the following class
of operators

Byo(X) ={T € B.(X) : R(T9(T)) + N'(T) is complemented in X}.

Now, we prove the following result concerning the left Browder invertibility of
M.

Theorem 11.4. Suppose that the following hold: A € Bj.(X), B is relatively
reqular, and N (B) is isomorphic to X/(R(A) + N (A2<(4))). Then there exists
some C € L(Y,X) such that Mc € Bi(Z).
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Proof. Let A € Bj.(X), asc(A) = p, and let W be a closed subspace of X such that
X =R(A) + N(AP) & W. Since N(B) is complemented, then Y = N (B) ¢ V for
a closed subspace V. Since there exists a linear bounded and invertible operator
T: N(B) — W, we can define operator C: Y — X by

c=oo) ['V"]  lrcars )

We prove that Mc is left Fredholm. Let [y] € N(Mc), so it is Az + Cy = 0 and
By = 0. We have Az = —Cy = —Ty € R(A)NW C R(A) + N(4?) n W = {0}.
Since y € N (B) we have Cy = Ty, so x € N(A) and Ty = 0. Since T is invertible,
we have y = 0. It means that [3] € N(4) @ {0}, so N(M¢) € N(A) @ {0}. It
follows that nul(M¢) < nul(4) < co.

Notice that we have obviously N'(A) C N (M¢), so actually we have nul(M¢) =
nul(A4).

Let S be a reflexive inverse of A, let K be a reflexive inverse of B, and let
L= [Tfl 0}. We prove that N = [f IO(] is an inner inverse of M¢o. We have

0 0
ASA+CLA ASC+CLC +CKB
BLA BLC + BKB

Since R(A) € R(A) + N(AP) = N(L), we have LA = 0 which induces BLA = 0
and CLA = 0. From the fact that S is a reflexive inverse of A, we have ASA = A,
and AS is a projection from X on R(A). Since R(C) = W, W NR(A) = {0}
and AS is a projection on R(A), it follows that ASC = 0. Analogously, from the
fact that K is a reflexive inverse of B, we have BK B = B and KB is a projection
from Y on V. Since V = N(C) and R(KB) = V, it holds CKB = 0. We have
that LC = [[8]: [MP] — [MB)], so R(LC) C N(B) and then BLC = 0.
Obviously, CLC = C holds.
It follows that
ASA+CLA ASC+CLC+CKB
BLA BLC + BKB }

Thus M¢ is relatively regular. This induces M¢ € 9;.

Now, we prove that asc(Mcg) < oo. It is enough to prove that N (ML) C
N(ME). Let [§] € N(ME™), then

AP e 4 APCy 4+ AP7'CBy +--- 4+ ACBP 'y + CBPy =0, BPfly=0.
Since BPy € N(B), it follows that APTlx + APCy+ AP~'CBy +---+ ACBP~ly =
—CBPy e R(A)NW C R(A) + N(AP) N W = {0}. Thus
APty 4 APCy + AP7'COBy +--- + ACBP™'y =0, CBPy=0.

From the definition of C' and from B? € N(B), we know that C BPy = T BPy = 0.

Since T is invertible, we conclude that BPy = 0.

From the fact that APz 4+ APCy + AP~'CBy + --- + ACBP~ 'y = 0, we have
that x; = APx + AP~1Cy + AP~2CBy + --- + ACBP~ 2y + CBP~'y € N(A). Then

APy + APT1Cy + AP2CBy 4 -+ ACBP %y — a1 + CB? 'y =0, BPy=0.

MoNMe =

AC
o 5] = e
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Thus BP~ly € N(B). It induces that

APy 4+ AP0y + AP72CBy + - + ACBP 2y — 2y
= OBy e (R(A) + N(A)NW C R(A) + N(A?) n W = {0},

then BP~ly = 0 and APz + AP~ 'Cy + AP~2CBy + --- + ACBP~2y = ;. Since
x1 € N(A), it follows that AP~ 1z + AP~2Cy+ AP~ 3CBy+---+ CBP~2y € N(A?).
Let xo = AP~ 'z + AP=2Cy + AP73CBy + - -- + CBP~2y. Then

APz 4+ APT2Cy + APT3CBy + -+ ACBP 3y — 20+ CBP 2y =0, BP 'y =0.

If we continue this process, we get A%z + ACy — z,—1 + CBy = 0, B%y = 0, where
zp—1 € N(AP71). Then there exists z, € N(AP) such that Az + Cy — z, = 0,
By = 0. Thus Az —z, = —Cy € R(A)+N(A?) N W = {0}. It follows that
z € N(APTY) = N(AP) and y = 0, so [y | € N(MZ). Since N(METYY € N(ME),
we get asc(M¢) < p. O

12. Perturbations of spectra of operator matrices

The spectral theory is an essential part of functional analysis. It has great ap-
plication in several branches of mathematics and physics such as complex analysis,
function theory, matrix theory, differential and integral equations, quantum physics,
control theory, etc. The book [49] is also an important contribution.

Various types of spectra have been studied throughout history. The spectrum for
operator A € L(X) is defined as follows: o(A) = {A € C| A— AI is not invertible}.

The spectrum can also be defined in relation to another set of elements such as
regular, Fredholm, left and right invertible elements, etc. Some of these spectra for
operator A € L(X) are defined as follows

Left spectrum: o(A)={ e C|A-)\ ¢ G(X)}
Right spectrum: o, (A)={AeC|A-X¢G.(X)}
Regular spectrum: 04(A) ={A € C| A— A is not regular}
Essential spectrum: 0e(A)={AeC|A- )X ¢ P(X)}

Left Fredholm spectrum: o1(A)={AeC| A=A ¢ P(X)}
Right Fredholm spectrum:  o,..(A)={ € C|A—- A ¢ ®,.(X)}
Point spectrum: op(A) ={Ae C|A— Al isnot “1-1"}

The spectrum of operator matrices has been studied in the literature, see [12,
19, 25,29, 39,45]. When it comes to operator matrices of type M¢, it is interesting
to observe how the spectrum of these matrices looks like for arbitrary C, and to
find N £(v,x) O where o is one of the mentioned spectrum.

This is the subject of study in [19].

12.1. Perturbation of the essential spectrum. We start with the following
result.
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Lemma 12.1. [31] If T € L(X,Y), S € L(Y,Z), ST € L(X,Z) are relatively
regular, then

N(T) x N(8) x Z/R(ST) = N (ST) x Y/R(T) x Z/R(S).

Definition 12.1. Banach spaces U,V are isomorphic up to a finite dimensional
subspace, if one of the following two statements hold:

1)There exists a bounded below operator J;: U —V such that dim V/J1(U) < 0o, or
2) There exists a bounded below operator Jy: V' — U such that dim U/ J2(V) < oc.

Lemma 12.2. Let X,Y be Banach spaces and let M, N be finite dimensional
spaces. If M®X =2 N@Y, then X andY are isomorphic up to a finite dimensional
subspace. Particulalry, if dim M = dim N, then X 2 Y.

Proof. If at least one of X,Y is finite dimensional, then the result is trivial. Hence,
we suppose that both X and Y are infinite dimensional. Let dim M = m, dim N =
n,and J: M & X — N &Y be a Banach space isomorphism. Let x1,...,z €
X be a system of linearly independent vectors in X, such that Jxi,...,Jx) are
linearly independent modulo Y. We conclude 0 < k& < n. There exists a system
of n — k vectors z1,...,2,_% in N @Y, which are linearly independent modulo
span{Jx1,...,Jap} @Y. We get 0 < n —k < n. Denote by y; = J 1z, for all
i+ 1,...,n —k, in the case when n — k > 0. All vectors y1,...,Yyn_r must be
linearly independent modulo X. In general, we get 0 < n — k < m. There exists a
system of exactly I = m — (n — k) vectors uy, ..., u; which are linearly independent
modulo span{yi, ..., yn—r © X. There exists a Banach space X; such that

span{zy,..., 25} & X1 = X,
M@ X =spanf{y1,...,Yn—r ®span{uy,...,u} ®span{zy,...,zx} & X;.
Let v; = Ju;, i =1,...,1. Vectors vy, ...,v; are linearly independent modulo
span{Jx1,...,Jxp} ®span{z1,..., zn_k}-
Let Y1 = J(X7). Then Y7 is closed, X7 2 Y7 and
N@Y =span{Jxy,...,Jx,} ®span{z1,...,2p_} ®span{vy,..., v} B Y7.
Since span{Jz1,...,Jx} @ span{z1,...,2z,—k} is linearly independent modulo Y,
we conclude
NaY =span{Jzy,...,Jag} ®span{z1,...,2n—k} B Y.
Hence,
~ NaY
~ span{Jxy,...,Jrr} @ span{z1,..., 20k}

= gpan{vy, ..., v} & Y.

We have to add a k-dimensional subspace to X7, to get space which is isomorphic to
X. We have to add an [-dimensional space to Y7 to get a space which is isomorphic
to Y. Since X; = Y, we conclude that X and Y are isomorphic up to a finite
dimensional subspace.

Particularly, if m =n, then k =1,s0 X 2XY. O
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Now, let Z =X @Y be a topological direct sum of closed subspaces X,Y of Z.

Let
AC X X
ve=[o 5] o]+ [v]
Since ®(Z), ®(X) and ®(Y) are strong regularities, we have the result
(VC € ‘C(K X)) oe(MC) - Ue(A) U Ue(B)'

We prove the following result.

Theorem 12.1. Let A € L(X) and B € L(Y) be given and consider the following
statements
1) Mc € ®(Z) for some C € L(Y,X).
2) 2.1) Ae d(X);
22) Be ®,.(Y);
2.3) N(B) and X/R(A) are isomorphic up to a finite dimensional subspace.
Then 1) <= 2).

Proof. 1) = 2): Let M¢ € ®(Z) for some C' € L(Y, X), and denote By = [} %],
Cr = [§9], A1 = [49]. Obviously, Cy is invertible in £(Z). From M¢ =
B.C1A; € (I)(Z) it follows that By, B1C, € ‘I)T(Z), and A1, A1Cq € ‘I)I(Z) Thus
2.1) and 2.2) are proved.

Applying Lemma 12.1 to Mo = (B1C1)A1, we get

N(A) x N(B1C1) x (X DY) /R(M¢c) 2N (M¢g) x X/R(A) x Y/R(B).
Now we apply Lemma 12.1 to B;C and get
N(B) xY/R(B) 2 N(B1Cy) x Y/R(B).

Since def(B) < oo, from Lemma 12.2 we obtain N (B) = N(B;C}). Finally, the
following hold

N(A) x N(B) x Z/R(Mc) 2 N(Mc) x X/R(A) x Y/R(B).

Since N (A), Z/R(Mc¢), N(Mc), Y/R(B) are finite dimensional, we conclude that
N(B) and X/R(A) are isomorphic up to a finite dimensional subspace. Thus 2.3)
is proved.

2) = 1) Suppose that A € ®;(X), B € ¢,(Y) and N(B) and X/R(A) are
isomorphic up to a finite dimensional subspace. There exists closed subspaces U
and V of X and Y, repsectively, such that R(A) U = X and N(B)aV =Y. We
consider two cases.

Case 1. Suppose that there exists a bounded below operator J: N (B) — U, such
that dimU/J(N(B)) < oo. There exists a finite dimensional subspace W of X
such that J(N(B)) @ W = U. We define C € L(Y, X) as follows

o= [oi]- Y- BAR)
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Obviously, R(C) = J(N(B)). Now, R(M¢) = [R(A) ® J(N(B))] ® R(B) and
dim Z/R(M¢) = dim W + def(B) < oo. It also follows that R(M¢) is closed. On
the other hand, if M¢ [y ] =0, then y € N(B) and Az = —Cly, implying z € N'(A)
and y = 0. We get N (M¢c) = N(A), so M¢ € (Z).

Case 2. Assume that there exists a bounded below operator J: U — N (B), such
that dim N (B)/J(U) < oo. There exists a finite dimensional subspace K of N (B)
such that N(B) = J(U) ® K. Let Ji: J(U) — U denote the inverse of the re-
dusction J: U — J(U). Define C € L(Y, X) as follows

e[ 08] [|= ]

Obviously, R(C) = U. We conclude that R(M¢) = X ®R(B), so dim Z/R(M¢) =
def(B) < oo and R(Mc) is closed. Also, N(Mc) = N(A) @ Z, so it follows that
Mc € ®(2). O

We get the following consequence.
Corollary 12.1. For given A € L(X) and B € L(Y) the following holds
() oe(Mcg) = 01c(A) Uo,e(B) UW(A, B),
CeL(X,Y)
where
W(A,B) ={A € C: N(B—)) and X/R(A — \) are not isomorphic
up to a finite dimensional subspace}.

We know which part of the set 0.(A) Uo.(B) can be perturbed out by choosing
a suitable operator C' € L(Y, X).

Theorem 12.2. Assume that there exists an operator A € L(Y,X) such that the
inclusion o.(Mc) C 0.(A) U oe(B) is proper. Then

[0e(A)Uoe(B)] N\ 0e(Mg) C oc.(A) Uoe(B).

Proof. Suppose that [0.(A) N\ 0c(B)] N 0e(Mc). Then A— X ¢ ®(X) and B— X €
®(Y). Since nul(B — A) < oo, by Corollary 12.1 we conclude def(A — ) < oo. It
follows that A ¢ o.(A), and it is in contradiction with the choice of A\. Thus

[0e(A) N\ ge(B)] N\ 0.(C) = 0.
In the same manner we can prove
[0e(B) N 0e(A)] N 0e(Mc) = 0. O
Consider the following classes of operators
Si(X)={T € L(X) :nul(T — A) > def(T — \)

if at least one of these quantities is finite},

S(X)={T € L(X) :nul(T — \) < def(T — \)
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if at least one of these quantities is finite},

Theorem 12.3. If A € S.(X) or B € S_(Y), then for every C € L(Y,X) we
have o.(M¢) = 0.(A) Uoe(B).

Proof. Tt is enough to prove the inclusion D. Suppose that A € [0.(4) U o.(B)] ~
oe(Mc). Then A— X € &)(X), B— X € @,.(Y), and N(B — \) and X/R(A — )
are isomirpshic up to a finite dimensional subspace.

If Ae S;(X), then def(A—A) < nul(A—X) <ooand A— X € &(X). Hence
N (B — )\) must be finite dimensional subspace and B — X € ®(Y).

If Be S_(Y), then nul(B — \) < def(B—)\) < oo and B— X € ®(Y). Then
X/R(A — \) must be finite dimensional and A — )\ € &(X).

In both cases we obtain A—\ € &(X) and B—X € ®(Y), which is in contradiction
with our assumtion A € o.(A) U g.(B). O

12.2. Perturbation of the Weyl and Browder spectrum. We consider the Weyl
spectrum of M¢.

Theorem 12.4. Let A € L(X) and B € L(Y) be given and consider the statements
1) Mc € ¢po(Z) for some C € L(Y,X).
9) Ae®;(X), Bed,(Y), NA)@N(B) = X/R(A) & Y/R(B).

Proof. 1) = 2): Follows from (3.1) and Lemma 2.3.
2) = 1): Let A€ ®,(X), Be P,.(X) and

(12.1) N(A)® N (B) = X/R(A) ® Y/R(B).

There exists closed subspaces U and V such that X = R(A)®U and Y = N (B)®V.
We consider three cases.

Case 1. Let nul(A) = def(B) < oo. From (12.1) it follows that N (B) = X/R(A).
Let J: N(B) — U be an arbitrary isomorphism. Define C' € L(Y, X) as follows

o= 1] )
We get that R(M¢) = X @ R(B),, N(M¢c) = N(A), so M¢ is Weyl.

Case 2. Let nul(A) < def(B) < oco. From (12.1) it follows that there exists a
bounded below operator J: U — N(B), such that dim N (B)/J(U) = def(B) —
nul(A). The reduction J: U — J(U) is invertible, so let Jy: J(U) — U denote its
inverse. There exists a finite dimensional subspace U; such that J(U)®U; = N (B)
and dim Uy = def(B) — nul(A). Define C' € L(Y, X) as

e=[209 [ |~ i)

We get that R(M¢) = X @ R(B) and N (M¢) = N(A) @ Uy, so we conclude that
Me is Weyl.
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Case 3. Let def(B) < nul(A4) < oco. From (12.1) it follows that there exists a
bounded below operator J: N(B) — U such that dim Z/J(N(B)) = nul(4) —
def(B). There exists a finite dimensional space Uy such that J(N(B)) @ Us = U
and dim Uy = nul(A) — def(B). We define C' € L(Y, X) as

o—Joal . ) |
00 R(A)
It follows that R(M¢) = [R(A) @ J(N(B))] @ R(B), N(M¢) = N(A), and we
conclude that M is Weyl. (|

As a corollary we get the following result.

Corollary 12.2. For given A € L(X) and B € L(Y) the following holds

(1 owMc) = 01.(A) Uor(B) UWy(A, B),
CeL(Y,X)

where
Wo(A,B) ={X € C: N(A—X) @N(B) is not isomorphic to
X/R(A=N)@Y/R(B—\)}.

We formulate the result for the Browder spectrum.

Corollary 12.3. Let A € L(X) and B € L(Y) be given. Consider the following
statements

1) Ae 9(X); Be ®.(Y); N(B) and X/R(A) are isomorphic up to a finite
dimensional subspace; A and B are Drazin invertible.

2) Mc € B(Z) for some C € L(Y, X).

Then 1) = 2).
Moreover, if 0 ¢ acc(o(A) Ua(B)), then 1) < 2).

Proof. Follows from Theorem 12.1. O

We have more details concerning the perturbation of the Browder spectrum.

Theorem 12.5. If A€ L(X), B € L(Y), then

(12.2) (1 oo(Mc) C 01e(A) Uore(B) UW(A, B) UWi(A, B),
CeL(y,x)
where W(A, B) is defined in Corollary 12.2 and
Wi(A,B)={\eC: oneof A— X or B— X is not Drazin invertible}.

If acco(A) Uacco(B) =0, then the equality holds in (12.2).
If 0,(A) = 0(A) and 04(B) = o(B), then the equality holds in (12.2).
If 0(A) U o (B) does not have interior points, then the equality holds in (12.2).
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Proof. The result of (12.2) follows immediately from Theorem 3.9. If the assump-
tion acco(A) Uacco(B) = 0 is satisfied, then from Theorem 12.5 it follows that
equaltiy holds in (12.2).

Suppose that 0,(A) = 0(A) and 04(B) = o(B), and

x¢ o () oo(Mo).
CeL(Y,X)

There exists some C € L(Y, X) such that Mc — A € B(Z). From Theorem 12.1
it follows that A — X € ®)(X), B— X € ®,(Y) and X/R(A — )) is isomorphic to
N (B — X) up to a finite dimensional subspace. Let asc(M¢g — \) = dsc(M¢g — ) =
p < 00. Also, A ¢ acc(M¢). Hence, there exists an € > 0 such that if 0 < |[z—\| < €
then z ¢ (Mg — A). For such z the operator M¢ — A is invertible and it is eaasy
to prove that A — X\ — z is left invertible and B — X\ — z is right invertible. It follows
that A ¢ acco,(A) Uaccoy(B) = acco(A) Uacco(B). It follows that A — X and
B — X are Drazin invertible.

Let int(c(A) Uo(B)) = 0. If A ¢ Neegyx) ob(Mc), in the same way as
above we can prove that A ¢ acco,(A) Uaccoy(B). We will prove that A ¢
acco(A)Uacco(B). Since A can not be an interior point of o(A) Uo(B), it follows
that A must be a boundary point of 0(A)Uc(B). If XA € acc o(A), then there exists a
sequence (Zp, ), Tn € 00(A) C 04(A), such that lim,,_,o x, = A. It follows that A €
acco,(A) and this is in contradiction with our previous statement A\ ¢ acc o, (A4) U
accoq(B). We conclude that A ¢ acco(A). Similarly, since 9o (B) C g4(B), we get
A ¢ o(B). Now, it follows that A — A and B — \ are Drazin invertible. O

12.3. Perturbation of the left and right essential spectra. We formulate the
following statement.

Lemma 12.3. For given A € L(X), B € L(Y) and C € L(Y, X), the following
inclusion holds ore(Mc) C 0re(A) sup o,c(B). Particulary, if A € ®,.(X) and B €
®,.(Y), then Mc € ®(Z) for every C € L(Y, X).

The notion of embedded spaces is introduced.

Definition 12.2. Let X and Y be Banach spaces. The space X can be embedded
in Y, and we write X <Y, if there exists a left invertible operator J: X — Y.

The space X can essentially be embedded in Y, denoted by X <Y, if X <Y
and Y/T(X) is infinite dimensional space for every T' € L(X,Y).

Remark 12.1. Obviously, X < Y if and only if there exists a right invertible
operator Jy: Y — X.

If H, K are Hilbert spaces, then H < K if and only if dim H < dim K (and dim H
is the orthogobal dimension of H). Moreover, H < K if and only if dim H < dim K
and K is infinite dimensional.

The main result of this subsection follows.

Theorem 12.6. Let A € L(X) and B € L(Y) be given operators. Consider the
following statements
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1) B € ®.(X) and [A € D,.(X) or (R(A) is closed and complemented in X
and X/R(A) X N(B))].
2) Mg € ,.(Z) for some C € LY, X).
3) Be ®,.(Y) and [A € ®,.(X), or R(A) is not closed, or N(B) < X/R(A)
does not hold).
Then 1) = 2) = 3).

Proof. 1) = 2): Let B € ®.(Y). If A € ®,.(X), we get that Mc € ®,.(Z) for
every C € L(Y, X).

Hence, assume B € @,.(Y), A ¢ ®,.(X), R(A) is closed and complemented
in X and X/R(A) = N(B). There exists a closed subspace U of X such that
R(A)eU = X. Let J: U — N(B) be a left invertible operator and J;: N (B) — U
its left inverse. There exists a closed subspace V of ¥ such that N(B)®V =Y.
Define the operator C' € L(Y, X) in the following way

_[no0] [NB) U
o-[) - )
Then R(M¢) = X & R(B) and def(M¢) = def(B) < co. Hence, M¢ € ®,.(2).

2) = 3): Let M —C € 9,(Z) for some C € L(Y,X). Then R(M¢) C [R(A)+
R(C)@R(B). lf z1,...,x, € X are linearly independent modulo R(A)+R(C), and
if y1,...,Ym are linearly independent modulo R(B), then n + m < def(M¢) < 0.
Hence, def(B) < co and B € ®,.(Y). Thus we have proved the first statement of 3).

Moreover, assume that the second statement in 3) does not hold. Then A ¢
D,.(X), R(A) is closed and N (B) < X/R(A). It follows that X/R(A) is an infinite
dimensional space, and hence X/[R(A) + C(N(B))] is infinite dimensional. Let
Z1y...,2n € X be linearly independent modulo (X @ Y)/R(M¢). Suppose that
there exists complex numbers «y, . .., @y, such that ayz1+- - -+, 2z, = 2 € R(M¢).
Then there exists a vector x € Z such that Moz = x. We can find v € X and
v € Y such that £ = u+ v. Since z = (Au+ Cv) + Bv € X, Au+ Cv € X and
Bv €Y, we get Bv = 0. Thus, ayz1 + -+ + apzn = 2 € R(A) + C(N(B)). This
is in contradiction with the choice of z1, ..., 2z,, SO 21,..., 2, € X must be linearly
independent modulo R(M¢). It follows that Z/R(M¢) is an infinite dimensional
space, so Mo ¢ ®,.(Z). This is in contradiction with our previous assumption
Me € ®,(Z). Thus we have proved that the second statement in 3) holds.

3) = 1): This is obvious. O

As a corollary we get the following result.
Corollary 12.4. Let A€ L(X), B € L(Y) be given. Then
Ore(B) U{X € gpe(A) : R(A — ) is closed and N(B — )\) < X/R(A—)\)}
c (] or(Mc)
CeL(Y,X)
C 0re(B) =U{A € 0,c(A) : R(A — X) is not closed and complemented}

U{A € 0re(A) : X/R(A—X) 2N (B — ) does not hold}.
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Analogously we can prove similar results for the left Fredholm spectrum.

Theorem 12.7. Let A € L(X), B € L(Y) be given operators and consider the
following statements

1) A€ ®(X) and [B € ®(Y), or (R(B) and N(B) are closed and comple-
mented subspaces of Y and N'(B) < X/R(A))].

2) Mc € ®(Z) for some C € L(Y, X).

3) A€ ®(X) and [B € ®(Y), or R(B) is not closed, or R(A)° < N(B)'
does not hold) |.

Then 1) = 2) = 3).
Proof. 1) = 2): If A € &;(X) and B € ®;(Y), then we get that Mc € ®;(2)
for every C' € L(Y, X). Otherwise, let 1) hold and B ¢ ®;(Y). There exist closed
subspace U of X and V,W of Y, such that R(A) ® U = X and N(B)® V =
R(B)®W =Y. Let J: N(B) — U be an arbitrary left invertible operator. There
exists a closed subspace Z such that R(J)@® Z = U. Define C' € L(Y, X) as follows

o~ Y- P47] - -
Then R(M¢) = R(A) ® R(J) ® R(B). From the decomposition

XeY=RA)&R(J)eUaRB)aW

it follows that R(M¢) is closed. Also, it is easy to verify N'(M¢c) = N'(A). Hence,
Mc € &(2).
2) = 3): Suppose that Mo € ®(Z) for some C € L(Y,X). If f € X', we can
take fly = 0. Hence, X ®Y' = X @ Y’. Notice that
A0
M{ = [C/ B/] €. (X' @Y.
We can prove A’ € ®,.(X’), s0 A € &;(X). Thus, the first statement of 3) is proved.

Suppose that the second part of 3) does not hold. Then B ¢ ®;(Y), R(B) is
closed and R(A)° < NM(B)’ holds. Notice that R(A)° = M(A’) and

N(BY 2Y'/N(B)® =Y'/R(B').

Since B ¢ ®;(Y), we know that Y'/R(B’) is infinite dimensional. We can prove
that (X' & Y')/R(M{) is infinite dimensional. Hence, M/, ¢ ®,.(X’' & Y’) and
Mec ¢ @,.(X @Y). Thus, the second statement of 3) is proved.

3) = 1): This is obvious. O

The following result concerning the perturbation of the left Fredholm spectrum
holds.

Corollary 12.5. Let A € L(X), B € L(Y) be given. Then
o1e(A)U{X € 0e(B) : R(B — ) is closed and R(A—\)° < N(B—\)'}

C (] owMc)Cow(A)U{A € 01e(B) : R(B = A) and N (B — X)
CEeL(Y,X) are not closed and complemented}
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U{A € gie(B) : N(B— X)) < X/R(A — X) does not hold}.
Remark 12.2. Notice that the mapping £(Y,X) > T — T' € L(X',Y”) is injec-
tive, but not necessarily surjective.

Finally, we get the result for perturbations of the Fredholm spectrum for Hilbert
space operators. This result can also be obtained from Corollary 12.2.

Corollary 12.6. Let H & K be the orthogonal sum of infinite dimensional Hilbert
spaces. Then

ﬂ oe(M¢g) = 01e(A) U, (B) UWs(A, B),
CeL(K,H)

where

Wy(A,B) = {\ € C:dimN(B — \) # dimR(A — \)*

and at least one of these spaces is infinite dimensional}.

12.4. Perturbation of the left and right spectra. We begin with the following
statement.

Lemma 12.4. Let A € L(X), B € L(Y) be given. Then the inclusion
Jl(Mc) C O'Z(A) U O'Z(B)

holds for every C € L(Y,X). Particularly, if A, B are left invertible, then M¢ is
left invertible for every C € L(Y, X).

For the left invertibility of an operator matrix we can prove the following result.

Theorem 12.8. Let A € L(X), B € L(Y) be given. Consider the following
statements
1) AcG(X), N(B) =< X/R(A) and B is generalized invertible.
2) M¢c € Gi(Z) for some C € L(Y,X).
3) A€ Gi(X) and X/R(A) does not hold.
Then 1) = 2).
Moreover, if H, K are infinite dimensional Hilbert spaces, and Z = H & H 1is the
orthogonal sum, then 2) = 3).

Proof. 1) = 2): Assume that A € G;(X), N(B) <= X/R(A) and B is generalized
invertible. Let By € L£(Y') denote a generalized inverse of B. Then Y = R(B;) &
N(B). Let Ay € L(X) be left inverse of A. Then X = N(A;) ® R(A). Let
J: N(B) = N (A1) be a left invertible mapping and let J;: N(4;) — N (B) denote
a left inverse of J. Hence, N(A1) = R(J) @ N (J1). Define C € L(Y, X) as follows
7o) [N [N
o= {50l [rtm] = [=4]

We have the decomposition
Z=XaY =R(A)®R) DN (J1) dR(B) dN(By).
It follows that R(M¢) = R(A) @ R(J) @ R(B) is closed.



72 D. S. DJORDJEVIC, M. Z. KOLUNDZIJA, S. RADOSAVLJEVIC, D. MOSIC

Define Cy € L(Y, X) in the following way

e [54) [] - (4]

Consider the operator

_|A1 O
N = |:Cl BJ eL(XDY).
Then we have
|44 A C
NMe = [ClA C’1C’—|—B1B] :

Since R(C) C N(4;1) we get AyA = 1. From R(A) C N(C1) we conclude C1 A = 0.
Also, B; B is the projection from Y onto R(Bj) parallel to N (B), and C,C is the
projection from Y onto N(B) parallel to R(B;). Hence, C1C + B1B =TI and N is
the left inverse of M. Thus, 2) is proved.

2) = 3): Let H,K be Hilbert spaces and let M be left invertible. It
immediately follows that A is left invertible. Hence, the first part of 3) is proved.

Suppose that H/R(A) < N(B) holds, i.e. dimR(A)L < dim N (B).

Assume that N(C) N N(B) # {0}. Then for all non-zero vectors z € N(C) N
N(B) we have Mcz = 0. We conclude that M¢ is not one-to-one and Mo ¢
Gi(H & K).

We conclude that N (C) NN (B) = {0}. Hence, C|y(p) is one-to-one. By [28,
Problem 42] it follows that dim C(N(B)) = dim N (B). Hence,

dim C(N(B)) = nul(B) > def(A).

Since R(A) is closed, we get R(A) N C(N(B)) # {0}. We take a non-zero vector
y1 € R(A) N C(N(B)). There exist: some ys € H and a sequence (z,), in N (B)
such that Ays = y; = lim,_, o, Cz,. Obviously, lim,, . z, # 0, so we can assume

that there exists an € > 0 such that for every n we have ||z,|| > e. Notice that

ly2 = znll = V/|ly2]|? + €2. Now,

; Y2 — Zn 1 .
lim |M¢ ’ < lim [|Ays — Cz, — Bz,|| = 0.
oo H ly2 — 2| 2% + € n—oo
It follows that M¢ ¢ G;(H @ K). Thus, the second part of 3) is proved. O

As a corollary we get the following result.

Corollary 12.7. Let A € L(X), B € L(Y) be given. Then the following inclusion
holds

ﬂ o1(M¢c) C 01(A)Uoy(B)U{A € C: N(B—X) = X/R(A— X) does not hold.
CeL(y,x)

If H® K is the orthogonal sum of infinite dimensional Hilbert spaces H and K,
then

(AU eC:dimR(A)T <dmN(B-N}cC [  a(Mc).
CeL(K,H)
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Analogously, we can prove a similar result concerning the right spectrum and
right invertibility of Mc.

Theorem 12.9. Let A € L(X), B € L(Y) be given operators, and consider state-
ments

1) Be G, (Y), X/R(A) 2 N(B), A is generalized invertible.
2) Mc € G.(X®Y) for some C € L(Y, X).
3) BeG,(Y), and N(B) < X/R(A) does not hold.

Then 1) = 2).

If H® K is the orthogonal sum of infinite dimensional Hilbert spaces, then
2) = 3).

Proof. 1) = 2) Let AB; be a right inverse of B, and let A; be a generalized
inverse of A. Then X = R(A) ® N(4;) and Y = N(B) @ R(B1) = R(B) ®
N (Bj1). There exists a left invertible operator J: N(4;) — AN(B) and denote
by Ji: N(B) — N(A;) its left inverse. Define an operator C' € L(Y, X) in the

following way
o=[4 0] [aia) = [ =)

Then R(M¢) = X &Y. Since N(M¢) = N(A), from the decomposition
XoY=NA)oRA)aY

we conclude that N (M¢) is a complemented subspace of X &Y. Hence, M¢ is
right invertible and 2) is proved.

2) = 3): Let H, K be Hilbert spaces and let M¢ be right invertible. It follows
that B € G,(K), so the first part of 3) is proved.

Assume that the second part of 3) is not satisfied, i.e. dimN(B) < dimR(A)*+.
Consider the conjugate operator M¢

A* 0

If N(C*) NN (A*) # 0, then there exists some z € N (C*) NN (A4*) and z # 0.

It follows that Mgz = 0, ME is not left invertible and hence M¢ is not right

invertible.
We conlcude that A (C*) NN (A*) = {0} holds. Then

dim C(N(A%)) = dim N'(A*) > dim NV (B) = dim R(B*)™*.
Since R(B) is closed, we obtain
CN (A7) NR(B) # {0}.

We can prove that M} ¢ G;(H @ K) holds similalry as in the proof of Theorem
12.8. Thus the second part of 3) is proved. ]

As a corollary we get the following result.
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Corollary 12.8. For given A € L(X), B € L(Y) the following inclusion holds

(| or(Mc) Con(B)Uoy(A)U{reC: X/R(A—X) XN (B -\
ceL(y,Xx) does not hold}.

Moreover, if H® K is the orthogonal sum of infinite dimensional Hilbert spaces,
then

or(B)UA € C:dimN (B - \) <dimR(A-N'}c (]  on(Mc).
CeL(K,H)

As a corollary, we get the following main result.

Corollary 12.9. Let H & K be the orthogonal sum of infinite dimensional Hilbert
spaces. For given A € L(H), B € L(K) the following equality holds

(| o(Mc)=o(A) Vo (B)U{A € C:dimN (B — ) # dimR(A — A)*}.
CeL(K,H)

12.5. Special classes of operators. In this subsection we will consider special
classes of operators and related results.

Theorem 12.10. Let H,K be infinite dimensional Hilbert spaces, A € L(H),
B e L(K).

IfAe S (H) and B € S_(K), then for every C € L(K, H) we have oy(M¢c) =
JI(A) UO'I(B).

IfAe S;(H) or Be S_(K), then o(M¢) =0(A)Uo(B).

Proof. Since 0;(A) C o0;(M¢), by Proposition 12.4 it is enough to prove that
o1(B) C 0;(M¢). Suppose that A € oy(B) \ 0;(M¢). From Corollary 12.7 we get
that A — X is left invertible and dim V(B —\) < dimR(A —\)*. Since 4 € S, (X),
we conclude def(A—A) < nul(A—X) = 0. Now nul(N —\) = 0 and def(B—\) = 0.
Hence, A — X and B — X are invertible and M — A must be invertible. Thus, the
equality 0;(M¢) = 0;(A) U 0;(B) is proved.

To prove the second equality, notice that o(M¢) C o(A) U o(B). Let A €
(c(A)Uo(B)) \ o(M¢). From Corollary 12.9 we get that A — X is left invertible,
B — ) is right invertible and nul(B — \) = def(A — \).

If Ae S_(X), then we get

nul(B — A) = def(A— A) <nul(4A— ) =0.

Hence, A— X and B— X are invertible, which is in contradiction with the assumption
A€ o(A)Ua(B).
If Be S_(K), then

def(B — \) = nul(B — \) < def(B — \) = 0.

We also get that A — X and B — X are invertible.
Thus, o(M¢c) = 0(A) Uo(B) for every C € L(K, H). O
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Finally, we consider four block operator matrices. For given A € L(H), B €
L(K) and C € L(K,H), we take T € L(H, K) and

Gr = {? g} € L(HDK).

We prove the following result.

Theorem 12.11. Let A € L(H), B € L(K), C € L(K, H) be given operators, and
let A€ C~\oy(A).
1) If N(C)NN(B — \) # {0}, then A € 0,(Gr) for every T € L(H,K).
2) If R(A — A) NR(C) # {0}, then there exists a rank-one operator T €
L(H,K) such that X € 0,(Gr).
3) If neither 1) nor 2) is satisfied, then A ¢ o,(Gr) for every T € L(H, K).

Proof. To prove 1), suppose that N'(C) NN (B — \) # {0}. There exists a non-zero
vector v € N(C)NN(B — X), so (Gr — A)v = 0 for every T € L(H,K), and
consequently A € o,(Gr).

To prove 2), suppose that R(A—A)NR(C) # {0}. Let us take an arbitrary non-
zero vector z € R(A—X)NR(C). There exists an operator A;: R(A—\) — H such
that A;(A—X) = Iy and (A—X)A; = Ig(a—»). There exist vectors: x1 = A1z € H,
and x4 € K, such that Czo = z. We define a rank-one operator T' € L(H, K), such
that for every x € H we have

T(z) (x,21)(B — N)xa.

IREAE

Taking © = —x1 + x2, we get (Gr — A)xz =0, so X € 0,(Gr).
To prove 3), suppose that neither 1) nor 2) is satisfied. Let 0 # 2 € N (Gr — \)
for some T € L(H,K). Then z =u+v,u € H, v € K, and

(A= XNu+Cv=Tu+ (B—Nwv.

Since R(A — A\) N R(C) = {0}, we get (A —Nu = Cv = 0. Also, u =0, v €
N(C)NN (B —)) and v = 0. The obtained contradiction completes the proof. O
13. The pseudospectrum and the condition spectrum
The pseudospectrum and the condition spectrum were studied in [44, 54, 55].

Definition 13.1. [55] (Pseudospectrum) Let € > 0. The e-pseudospectrum of an
element a € A is defined as

Ac(a) = {z € C | a— z is not invertible or ||(a — 2)'|| > €} .

Definition 13.2. [44] (Condition spectrum) Let 0 < € < 1. The e-condition
spectrum of an element a € A is defined as

oc(a) = {z € C|a— zis not invertible or |[(a — 2) '] - la — 2|| > 1/€} .

The pseudospectrum is used in numerical calculations, while the conditional
spectrum is useful in finding the numerical solution of operator equations. Let
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A € L(X) be linear bounded operator on Banach space X and x,y € X. Consider
the equation

(13.1) Az — Az =y.

It holds

e )\ ¢ o(A) implies that equation (13.1) has a solution,
e \ ¢ o.(A) implies that equation (13.1) has a stable solution.
We generalize the pseudospectrum and the condition spectrum, and we formulate
(p, q)-pseudospectrum and (p, ¢)-condition spectrum as follows

Definition 13.3. ((p, q)-pseudospectrum) Let € > 0. The (p, ¢)—e-pseudospectrum
of an element a € A is defined as

Aa)={zeCla-z¢ AZ) orll(a = 2)Z)] > ¢}

Definition 13.4. ((p,q)-condition spectrum) Let 0 < € < 1. The (p,q) — e
condition spectrum of an element a € A is defined as

Opa-e(@) = {z€Cla—2¢ A or (a—2)Z)| - a— 2] > 1/e} .

Notice that the uniqueness of az(fg allows us to consider the (p, ¢)-pseudospectrum

and (p, ¢)-condition spectrum.

If x = [3 8]u € A relative to the idempotent u € A, then the norm of x can be

define as
2| = max{|lal, [[6]}.

Now, we state an auxiliary result.

Lemma 13.1. Let x = [8 g]u € A relative to the idempotent u € A, p1,q1 €
(wAu)® and p3, g2 € (1—u)A(L-u))® and let p=p1+pz € A and ¢ = q1+q2 € A.
Then x € A,(f,)l if and only if a € (u./élu)j(fl),q1 and b € ((1 —u)A(l — u))g)m. If

x € A;,Q,()I, then
2@ a)e 0
Pq 0 b(2) )
P2,92 w
(2)

Proof. By Lemma 9.2 we obtain that p and ¢ are idempotents. If a € (wAu)p,.q,
and b € ((1 —u)A(l — u))éiqu, by Theorem 9.4, we obtain z € A,(f,)z. Ifze Aéz,t)l,

there exists the element y = [ ;. | € Asuch that y = 2%). The equation yzy = y
is equivalent to equations
ajaa; + cbd = a1, ajac+ cbby =c¢, daay + bibd =d, dac+ bbby = by.
Also, yr = p is equivalent to
aia=py, cb=0, da=0, bb=ps
and 1 — xy = ¢ is equivalent to

u—aay =q;, ac=0, bd=0, (1—u)—>bb =qo.
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The equations ajac + cbby = ¢, ¢b = 0 and ac = 0 imply ¢ = 0. Analogously,
daay + b1bd = d, da = 0 and bd = 0 imply d = 0. Now, we have the equations

aiaa; = a, a1a=pi, U—aar=dq,
bibby = b1, bib=ps, (1—u)—bb =q

proving a; = a,(fl),ql and by = bg),[m. Furthermore, if x € A,(,?Z,, then
(2)
2) _ |%ra O
xp,glalb(Q)] ’ O
p2,92 |,

As a corollary, we have the following result for the invertibility of an element
T = [8 2]71, € A relative to the idempotent u € A .

Lemma 13.2. Let v = [82]u € A relative to the idempotent uw € A. Then
r € A7V if and only if a € (uAu) ™t and b € (1 —u)A(1—u))"t. Ifz € A7L, then

-1 _ 071 0
T = 0 b_l u.

Therefore, for the spectrum of an element x = [g 2}u € A, the following holds
o(xz) =o(a) Uo(b).
We investigate whether the similar property holds for the pseudospectrum and

condition spectrum. We formulate the following results.

Theorem 13.1. Let x = [‘5 g]u € A relative to the idempotent u € A, € > 0,
p1,q1 € (wAw)® and pa,qg2 € (1 — uw)A(l —u))® and let p = p1 + p2 € A and
g=q +q2 € A. Then

Apa)-e(®) = Ap1q1) (@) U Ay g2) ().
Proof. Let z € A g)—c(x). Then  — 2 ¢ .A;fc)] or |[(x — z),(f()]H e Ifx—2z=
[“o" b,z(ol,u)]u ¢ Al(ft)p by Lemma 13.1, we obtain that a — zu ¢ (u.,élu)l(fl),q1 or
b—z(1—u) ¢ ((l—u)A(l—u))f,zz),qz. It implies 2 € A(p, q1)—e(@) or 2 € A(p, g2)—c(b),

a—zu 0

2
80 2 € Apy g)—e(@) UApy g0)—c (D). Iz — 2 = [ bfz(lfu)]u € AI(),;, we have

2
(.%‘ _ Z>(2) — (a - Zu);l),lh 0 @ and
e 0 (b—2(1 = u))ps\as u
2 _ 2 2
(@ = O = max{li(a — z0) Dy [l 16— 2(1 — u) Dy I} > .

By Lemma 13.1, we conclude that
a—zue (AW P and b—z(1 —u) € (1 —u)A(l —u))?

P1,91 P2,q2°
(2)

The assumption max{||(a — zu)g),qlﬂ, [[(b— 2(1 — u))p, s |l} = € implies that ei-
ther ||(a — zu)1(,21)7q1|| > cor ||(b—2(1 - u))g),qzﬂ > ¢ holds. It follows that
2 € Ny g)—e(a) or 2 € A, gy—c(b), 50 2 € Ay, g1)—e(@) U Ay, q.)—e(b). We
have proved Ay ¢)—c (%) C A, q1)—e(@) U A (b).

P2,q2)—€
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Now, let 2z € Ay, q)—e(@) U A, go)—c(b). It follows

a—zué (u.,élu)ézl))q1 or ||(a — zu)g))qlﬂ >€ or

b—z(1—u)¢ ((1—u)Al - u))(Q) or |[(b—z(1— u))(z) | > e

p2,92 Pp2,92

If either a — zu ¢ (u./élu)g),q1 orb—z(1—wu) ¢ ((1—u)Al - u))g),qz, by Lemma
13.1, it follows z — z ¢ A](f;. So, 2 € A(p,g)—(x). On the other hand, if

a—zu € (uAw)P and b— z(1 —u) € ((1 —u)A(l —u))?

P1,91 p2,q27

it holds either [|(a — zu),(fl)ﬂ1 | = eor|(b-—2(1- u))l(,?@” > €. Therefore, ||(z —
)sall = max{||(@ — 2u)q, | 16 = 2(1 = w)§2eu|l} > e This proves that = €
Ap,g)—e(x).  The inclusion Ag, g)—c(@) U A, 00)—e(b) C A g)—c(x) has been
proved. O

Theorem 13.2. Let x = [8 (lﬂu € A relative to the idempotent u € A, 0 < e < 1,
p1.q1 € (wAu)® and p2,g2 € ((1 —u)A(l —u))® and let p = p1 +p2 € A and
g=q1+q2 € A. Then

T (p1.a1) (@) U Oy g0)—e(D) C 0p g)—c(T)-

Proof. Let z € 0(p, 4,)—e(@) U 0(p,.q,)—€(b). These imply

a—zu ¢ (uAu)fl)’q1 or |[(a — zu)z(,zl)’qlﬂ la—zul| = 1/e
or
b—2(1—w) ¢ ((1— w} AL~ )@, or (6= 2(1 —u) @1+ — 21— w)] > 1/e.

If either a — zu ¢ (u./élu),(gzl),q1 orb—z(1—wu) ¢ ((1—u)A(l - u))z(,i),qw by Lemma
13.1, it follows z — z ¢ Ag%. Then, we have z € 0 g)—c(7). On the other hand, if

a—zue (uAuw) P and b—z(1 —u) € (1 —u)A(l —u))?

P1,91 P2,92°
it holds either

I(a = 2w)5 g, || - lla = zull > /e or [[(b—2(1 = w)2 g, Il - b= 2(1 —w)|| > 1/e.

P1,91 D2,92
Without loss of generality, assume that ||(a — zu),(fl),qlﬂ |la = zu|| > 1/e holds.
Therefore,

Iz = 2)§ |l — |
= max{]|(a — zu)P g |, (b — 2(1 —u))P |} - max{[la — zul|, b — 2(1 — u)||}
> |[(a = 20)® || - la = zul| = 1/e.

This proves that z € 0, ¢)—c(7). O

The next example shows that the converse inclusion is not true in the previous
theorem.
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Example 13.1. Let 0 < € < 1, z € C and u € A® such that |Ju] < ﬁ and

(I1T—ull < ﬁ Let z = [(ezgz)“ (e+z)0(1—u)h € A relative to the idempotent u € A.
Then
FAS 0(170)—6(‘%), but z ¢ (U(u,O)—e((€2 + Z)u) U J(l—u,O)—e((€ + Z)(l - u)))

Proof. For idempotents u € A and 1 —u € A, we have ||ul| > 1 and ||1 —u| > 1.
There exists the inverse

as well as inverses

(€ +2)u — zu) 5y = (Eu) 2y = u

3

and
(e 2)(1 =) = 21 = )2, = (e(1 — )Py = (1~ w).

Now, we have

@ = 2)E e — 2I| = max{ /e[, (1 = w)/e][} - max{[|€ull, []e(1 = u)]|}
= llu/e|| - et = u)ll = [1/€*] - [el > 1/e,

but also

2 .
1(2w) 2| - |l€2ul| = ||lu/epsilon?| - [|€*ul| = [[u]]® < 1/e

u7

and

2
(et = u)) 2 oll - lle(t = w)| = (1 = w)/e]| - @ = w)l| = [[1 = u]]” < 1/e.
Therefore,
2 € 0(1,0)—e(x), but 2 & (0(40)—c (€2 + 2)u) Uo(1_y0)—c((e+2)(1 —w))). O
If x € A is invertible, p = 1 and ¢ = 0, then 27! = 331(,2,3.

As corollaries of Theorems 13.1 and 13.2, we formulate the following results for
the pseudospectrum and the condition spectrum.

Theorem 13.3. Let x = [8 g]u € A relative to the idempotent u € A and € > 0.
Then Ac(x) = Ac(a) U Ac(D).

Theorem 13.4. Let x = [82]u € A relative to the idempotent u € A and
0<e<1. Then oc(a)Uo(b) C oc(x).
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