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1. Generalized spectra of operators over C*-algebras

Throughout this paper A always stands for a unital C*-algebras and H 4 denotes
the standard module over A. Moreover, we let B*(H 4) denote the set of all A-
linear, bounded, adjointable operators on H 4. For a € A we may let al be the
operator on Hy given by al(xy,ze,...) = (azy,axs,...). It is straightforward
to check that af is an A-linear operator on H 4. Moreover, al is bounded and
]| = ||e]|. Finally, ol is adjointable and its adjoint is given by (al)* = a*I.

Our starting question is the following: If A is a C*-algebra, then for a € A
could we consider the generalized spectra in A of operators in B*(H 4) by setting
for every F' € B*(H 4)

oA(F) ={a € A| F — ol is not invertible in B*(H)}?

The main topic in this paper will be to obtain generalization of some results
from spectral theory of operators on Hilbert spaces in the setting of generalized
spectra in C*-algebras of operators on Hilbert C*-modules.

We introduce first the following notion:

oA(F) ={a € A| F — al is not invertible in B*(H )},
o (F) = {a € A| ker(F — o) # {0}},
o4(F)={a € A| F — al is bounded below, but not surjective on H 4},

o4 (F)={a € A|Im(F — o) is not closed}.

It is understood that F' € B*(H 4). Recall that not all closed submodules of
H 4 are orthogonally complementable in H 4, which differs from the situation of
Hilbert spaces. It may happen that Im(F — al) @ Im(F — ol)* S Hy4. However,

if Im(F — o) is closed, then Im(F™* — a*I) is closed and we also have
Hp=Im(F — aol) ®ker(F* — o*I) = ker(F — ol) ® Im(F* — a*I)

whenever F' € B%(H 4), which follows from the proof of [10] [11, Theorem 2.3.3].
444
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Therefore, it is more convinient in this setting to work with ¢/4(F) and o7 (F)
for F' € B%(H 4) instead of the residual and the continuous spectrum.
Note that we obviously have

oA (F) = (F)Uo(F)Uoi(F) and o*(F*) = (c(F))".

The challenges which arise are the following:

1) A may be non commutative;

2) If A is a non trivial C*-algebra, then there exists certainly nonzero non-invertible
elements by the Gelfand-Mazur Theorem [8, Chapter VII, Theorem 8.1]. Moreover,
even if a € AN G(A), we do not have in general that |ja~ | = m Therefore,
o (F) may be unbounded. (However, 0**(F) is always closed in .A).

In Section 2 we give description of the generalized spectra of shift operators,
unitary, self-adjoint and normal operators on H 4 and investigate some further
properties of these spectra. Most of the results in this section are generalizations
of the results from [13, Chapter 4].

In Section 3 we consider generalized Fredholm spectra of operators on the stan-
dard Hilbert C*-module. Fredholm theory on Hilbert C*-modules as a generaliza-
tion of Fredholm theory on Hilbert spaces was started by Mishchenko and Fomenko
n [12]. They have introduced the notion of a Fredholm operator on the standard
module and proved that some of the main results from the classical Fredholm the-
ory hold when one considers this generalization, such as the Atkinson theorem,
openness of the set of Fredholm operators etc. In [1-5] we went further in this
direction. We defined semi-Fredholm and semi-Weyl operators on the standard
module and proved generalized versions in this setting of several results from the
classical semi-Fredholm theory on Hilbert spaces. Now, various subclasses of semi-
Fredholm operators on H 4 induce various corresponding generalized spectra in A
of operators in B®(H 4). In Section 3 we investigate several properties of such spec-
tra and the relationship between them, as a continuation of the research presented
in [3] and [5]. Most of the results in this section are generalizations in this setting
of the results from [15, Section 2.2 and Section 2.3].

This paper contains some of the unpublished results from the doctoral disserta-
tion by the author, see [7].

2. Generalized spectra of shift operators,
unitary, self-adjoint and normal operators

We start with the following proposition.

Proposition 2.1. Let A be a unital C*-algebra, {e;}ren denote the standard or-
thonormal basis of Hy and S be the operator defined by Sey, = ex41,k € N, that is
S is a unilateral shift and S*ey11 = ey, for all k € N. If A= L>((0,1), u) where u
is the Lebesgue measure, or if A= C([0,1]), then o*(S) = {a € A | inf|a| < 1},
where in the case when A= L>*((0,1), 1), we set

inf || = inf{C > 0| u(ja|([0,C])) > 0} = sup{K > 0| |a| > K a.e. on [0,1]}.

Moreover, a3'(S) =0 in both cases.
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Proof. We have two cases.

Case 1: In this case we consider A = C([0,1]). Let a € A and suppose that
inf || < 1. Since || is continuous, we may find an open interval (¢1,t2) C (0,1)
such that |a(t)| < 1 —e for all ¢t € (t1,t2), where 0 < € < 1 — inf |a|. We may find
some g € A such that supp g C (¢1,%2) and 0 < g < 1. Consider

zo = (g9,ag,a%,...).

Then, obviously, o, € H4 and ((al — S)eg,z4) = a¥g — a*g = 0. Hence z,, €
Im(al — S)* and x, # 0, which gives that o € *4(S). Therefore,

{a € A|inflal <1} Ca™(S).
Since o4(S) is closed in the norm topolgy in A, it follows that
{a e Alinflal <1} C o(S).

On the other hand, if « € A and inf || > 1, then « is invertible and we have that
sup [t = |la7t|| < 1. Tt follows that o= 1S| < |la t||||S]| < 1, s0o ol — S =
a(I —a~19) is invertible in B*(H 4). Next, suppose that (ol —S)(x) = 0 for some
a € A and x € Hy. This gives the following system of equations coordinatewise:
ar; =0,ax0—x1 = 0,3 —22 = 0,.... Since ax; = 0, we deduce that T1|suppa =
0. However, since axg — x1 = 0, it follows that z1)(suppa)e = also. Hence 1 = 0.
However, then azs = 0 and axrs — x93 = 0. Using the same argument we obtain
that zo = 0. Proceeding inductively, we obtain that x; = 0 for all k, so x = 0.
Since o € A was arbitrary chosen, we conclude that 0';)4(5 ) =0.

Case 2: In this case we consider A = L*°((0,1), ). Let a € A and assume that
inf |a| < 1. This means that u(Ja|=1([0,1 —¢€])) > 0, where 0 < € < 1 — inf |a|. Set
M, = |a]71([0,1 — €]), then xas. # 0. Letting xaz, play the role of the function g
in the previous proof, (which is possible since zo = (Xar, ¥Xa., @2X0r.,---) € Hg
because || < 1 — € on M), we deduce by the same arguments that

oA(S) ={a € A|inf|a| < 1}.

Next, assume that (al — S)(x) = 0 for some o € A and x € Hy. As in the
previous proof we get the system of equations axr; =0, ars —x1 =0, azrg — x2 =
0,.... The first equation gives that z; = 0 a.e. on |a|~1(0, c0), whereas the second
equation gives z; = 0 a.e. on o 1({0}). Hence z; = 0. Proceeding inductively as

in the previous proof, we get = 0, hence 0;,4(5’) is empty also in this case. O

Lemma 2.1. Let A= B(H), T € B(H) and suppose that T is invertible. Then
the equation (T -1 — S)x =y has a solution in H4 for all ey, k € N, if and only if
the sequence (T~1,T~2 ..., T7% ...) belongs to H 4.

Proof. For k = 1, if (T -1 — S)z = ey, then we must have TBy = I, where
x = (By,Bs,...). Hence By = T7!. Next, TBy — By = 0,50 TBy = By = T~}
which gives By = T~2. Proceeding inductively, we obtain that B, = T~F for all k.
So the equation (T'- I — S)x = e; has a solution in H 4 if and only if the sequence
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(T=1,T72,...) belongs to H4. Now, if ("1, 772 ...) € H4, then the sequence

)

z®) in H 4 given by
L) _ 0 if ne{l,....,k—1}
TR for me{kk+1,...}
is the solution of the equation (T'- I — S)x = ey, for each k € N. O

Set 571(S) = {a € 04(S) | Im(al — S) = H4}. We have the following corollary.
Corollary 2.1. Let A be a commutative unital C*-algebra. Then

oA(8) = (AN GA)) U{a e GA)|(a a2, .. a7k .y ¢ Ha} UGH(S).
Proof. Since A is commutative, then the set of right invertible elemnts coincides

with G(A). Hence we can apply the arguments from the proof of Lemma 2.1. O

Corollary 2.2. Let A be a unital C*-algebra. If 14 denotes the unit in A, then
14 € UA(S).

Proof. We obviously have that the sequence (14,14,14,...) = (121, 1;12, 1;‘37 o)
is not an element of H 4. Then we apply the arguments from the proof of Lemma
2.1. O

Example 2.1. We may consider a weighted shift S,, on H4 given by Sy, (x)j+1 =
w;xj, where w = (w1, wy, ... ) is a bounded sequence in A. In this case, if o has a
common right annihilator as w; for some j € N, then the sequence having this right
annihilator in its j-th coordinate and 0 elsewhere belongs to the kernel of al —.5,,.
Hence a € 04(S,,) in this case.

Example 2.2. Let A= L>*((0,1), ). Set
S(f1, far o) = (f1x(0,4)> f2X(0,1) + [1X(3 )5 f3X(0.2) T f2X (3 1)5---)-
Then S has the matrix [4 %] with respect to the decomposition
(Ha - X(0,2)) ® (Ha X1 1))
It follows that
o(S)={ae Alinf{C>0]|pu(la~*([0,C) N (1))} <1}
U{aeA|(a—1)- X(0,2) is not invertible in L>((0,3),p)}

Proposition 2.2. Let o € A. We have
(1) If ol — F is bounded below and F € B*(H.,4), then a € o/3(F) if and only
if a* € 01;4(F*),
(2) If F,D € B*(HA) and D =U*FU for some unitary operator U, then
cA(F) = oX(D), cA(F)=0c}D), o4(F)=04(D) and o/(F)=c4(D).

P P cl rl
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Proof. 1) Suppose first that F' — ol is bounded below and o € ¢/4(F). Then it
follows that Im(F — al) is closed. Hence, by [10] [11, Theorem 2.3. 3] we have
that Hq = Im(F — of) ® Im(F — al)* which gives that Im(F — aI) # {0} as
Im(F—al) # Ha. Since Im(F—al)* = ker(F*—a*I), it follows that a* € o7, A(F).
Conversely, suppose that a* € a;f‘(F *) and that F' — ol is bounded below. Then,
again, Im(F — al) is closed and moreover, Im(F — al)t = ker(F* — a*I) # {0}.
It follows that « € o7} (F). It is straightforward to prove the statement 2. O

Now we are going to describe the generalized spectrum of a unitary operator
on H 4.

Proposition 2.3. Let U € B*(H 4) be unitary. Then
o (U) S {a € Al [|all > 1},
o U)NG(A) S {a e GA) | a™ |, o] = 1}.
Proof. We have al —U = ((aI)U* — 1)U and ||[U*|| = ||U| = 1. O

Consider again the orthonormal basis {ex }xen for Hy4. We may enumerate this
basis by indexes in Z. Then we get orthonormal basis {e;};cz for H4 and we can
consider a bilateral shift operator V' with respect to this basis, i.e. Ver = ep41 all
k € Z, which gives V*e, = ej_1 for all k € Z.

Proposition 2.4. Let V be the bilateral shift operator on H4. Then the following
holds:
(1) If A=C([0,1)), then o*(V) = {f € AT|f]([0,1]) N {1} # 0},
(2) If A= L2((0,1), p), then
ot (V) ={f € Al u(lfI71((1 = &1 +¢))) > 0 Ve > 0}.
In both cases o7 (V) = 0.

Proof. Case 1: In this case we consider A = C([0,1]). Suppose that o € A and
|a(t)| = 1 for some t € [0,1]. Choose a function y € A such that y(t) = 1. If
al —V is surjective, then there exists an @ € H4 such that (ol — V)z = e; - y.
Now, z(t) € ly since € H4. If we let V denote the ordinary bilateral shift on Iy,
we get that a(f)z (t) — V(z(f)) = (1,0,0,...), since y(f) = 1. However, this is not
possible since |a(#)| = 1 (for more details, see [13, Chapter 4, Proposition 19]). We
conclude that al — V can not be surjective, so a € o**(V). On the other hand,
if « € A and |a([0,1]) N {1} = 0, then either |a(t)] > C > 1or |a(t)| < K <1
for all ¢ € [0,1] and some constants C' or K (here we use that || is continuous)
If |a(t)| = C > 1 for all ¢ € [0,1], then « is invertible in A and [|o!|| < & < 1.
Since ||V|| = 1, it follows that a ¢ o(V). If |a(t)| < K < 1 for all t € [0,1], then
lal| < K < 1, so, by Proposition 2.3 it follows then that a ¢ o*(V'). Hence

o (V) ={a € Al lal([0,1]) N {1} # 0}.
Next, if (af —V)a = 0 for some x € H 4, then we must have a(t)z(t) — Vx( )=

0
for all t € [0,1]. This means that x(t) = 0 for all ¢t € [0,1] since o,(V) = 0
by [13, Chapter 4, Proposition 19].



ON GENERALIZED SPECTRA OF OPERATORS ON HILBERT C*-MODULES 449

Case 2: Let now A = L>((0,1), ) and o € A be such that p(|a|™1((1 —€1+
€))) > 0 for all ¢ > 0. If (ol — V)ax = ¢y for some x € Hy, then we must
have axy — xx_1 = 0 for all k¥ # 0 and axg — z_y = 14. For small ¢ > 0 set
M. = [al" (1 = 6,14 6), Mo = la]"}((1 - ¢,1)) and M = |a~}((1,1 + ),
so M. = M7 UM and xa, # 0. From the first equation above we get zj =
a Dz 1 for all k < —1. Moreover, z;, = a *zy for all k£ > 0 a.e. on any
subset of (0,1) on which |a| is bounded below, thus in particular on M.. Hence
TeX M, = xoa*kXME for all £ > 0 where for all & we let OF]’CXMe denote the function
given by
a=k(t) forte M,

0 else.

a Fxar (t) = {

Since x € Hy, it follows that zpx )+ = 0 for all £ < —1 and zkx,,- = 0 for all

k > 0. Setting this into the second equation above, we get QTOXpr+ — T-1Xp- =
XM,, which gives zoxnm, = a‘lxM:r and z_1xXm, = —Xy-- Hence zpxm, =
a~ Dy o for all k > 0 and xa, = —a~ Dy, - for all k < —1. This gives

€

lzk] = (1+ e)_(k"‘l)XMj for all k > 0 and |ag| > (1 — 6)_(k+1)XM; for all k < —1.
Since this holds for all € > 0 and moreover, we have that either x,,- or x,,+ is non-
zero (because s, is non-zero for all € > 0), we get that the infinite sum ), ., x5z,
diverge in A, otherwise || Y, o #f@i| = min { >0 W, Sl =€)k} for
all € > 0, a contradiction. Hence = can not be an element of H 4. We conclude that
eo & Im(al — V), so a € 0A(V) in this case.

On the other hand, if u(Ja| 71 ((1—¢€,1+¢€))) = 0 for o € A and some € > 0, then
we have (0,1) = N7 U N, where

N= =1o|7'((0,1—¢)) and Nt =|a|~*((1+ ¢ +00)).

Since the decomposition H4 = H 4 - Xn+ ®Haxy- clearly reduces the operator
al —V and the restrictions of oI —V on both these submodules are invertible, (as
the restriction of V' to both these submodules acts as a unitary operator on these
submodules), it follows that al — V is invertible, so a & o*(V)). O

Example 2.3. Let {a7,aq,...} be a sequence in a unital C*-algebra A such that
each qy is a unitary element of A. Then the operator V defined by

V($1,1‘2,...) = (0411‘1,0521‘2,...)

is a unitary operator on H4. If A = C([0,1]) or if A = L*>°((0,1), ) and Jy, Jo
are two closed subintervals of (0,1) such that J; N Jy = @), then we may easily find
a function 8 € A such that 8 = a3 on J; and |8(¢)] > 1 for all t € J5. Hence
B8l > 1, but we also have 3 € oA(V) since ker(3I — V) # {0}. Similarly, if
A = B(H) where H is an infinite-dimensional Hilbert space, then we may easily
find two closed suspaces Hy and Hy such that Hy L Hy and T € B(H) satisfying
T\, = a1),, and [T}, || > 1. Hence, again T' € o4(V) and ||T| > 1. So, if V is a
unitary operator on H 4, we do not have in general that

o (V) C{a e Al ol =1}.
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Next we are going to describe and investigate some properties of generalized
spectra of self-adjoint operators on H 4.

Lemma 2.2. Let A be a commutative C*-algebra. If F is a self-adjoint operator
on H 4, then U;;‘(F) is a self-adjoint subset of A, that is o € U;;l(F) if and only if
a* € O';;‘(F).

Proof. Since F' — ol and F — o*I = F* — o*I mutually commute because A is
commutative, we can deduce that ||[(F —al)z|| = [|[(F —a*)z| forallz € Hy. O

Example 2.4. Let A= C([0,1]) or A= L>((0,1), ). If G is the operator on H 4
given by G(f1, f2,...) = (q1.f1,92f2,...), where {g1, g2, ...} is a bounded sequence
of real valued functions in A, then G is a self-adjoint operator. Suppose that there
are two mutually disjoint, closed subintervals J; and J; of (0, 1) such that gy, " #0
and 91y, = 0. Set g = ig;. Then, if we choose a function f in A such that supp
f C Jo, we get that (gI — G)(f,0,0,...) = 0. However, j # g, so we do not have
that a;f‘(G) is included in the set of self-adjoint elements of A.

Example 2.5. Let A = B(H) where H is a separable infinite-dimensional Hilbert
space and let {e;};en be an orthonormal basis for H. If P denotes the orthogonal
projection onto Span{e; }, then the operator P - I is a self-adjoint operator on H 4.
Now, if S is the unilateral shift operator on H with respect to the orthonormal
basis {e;}, then S — P is injective whereas S* — P is not injective because (S* —
P)(e1 +e2) = 0. It follows that (S — P) -1 is an injective operator on H 4, whereas
(S*—=P)-I=((S—P)-I) is not an injective operator on H 4, since (S* — P) -
1(Q,0,0,0,...) = 0, where @ is the orthogonal projection onto Span{e; + e3}.
Hence, if A = B(H), we do not have in general that UI;“(F ) is a self-adjoint subset
of A when F' = F*. It follows that the assumption that A is commutative is indeed
necessary in Lemma 2.2.

Lemma 2.3. Let A be a commutative C*-algebra. If F is a self-adjoint operator
on Hy and a € .A\U;,“(F), then Im(F — o)™ = {0}. Hence, ifa € A and F — ol
is bounded below, then o € A~ o A(F).

Proof. Suppose that o € AN 074 (F). If y € Im(F — al)*, then y € ker(F* —a*I).
By the proof of Lemma 2.2 we obtain that (F — al)y = 0. Since a ¢ o3\ (F)

by the choice of o, we get that y = 0. Thus, Im(F — al)" = {0}, when a €
AN 0;14(F). Suppose next that o € A is such that F'— «al is bounded below. Then
a € .A\J;;l(F), so from the previous arguments we deduce that Im(F —al)t = {0}.
Moreover, since Im(F — o) is then closed and F — ol € B*(H 4), from [10] [11,
Theorem 2.3.3] it follows that Im(F — ) is orthogonally complementable in H 4.
However, since Im(F — al)* = {0}, we must have that Im(F — af) = H4. Hence
F — ol is invertible in B*(H 4), so «a is in A N\ o4(F). O

Corollary 2.3. Let A be a unital commutative C*-algebra and F be a self-adjoint
operator on Hy. If « € A and o — o € G(A), then F — ol is invertible. In this
case,

I(F = al)7H| < 2[|(e — o).
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Proof. If a € A, then, since A is commutative, we get
(z,Fx —alz) — (Fzx — alz,z) = o (z,x) — (z,2)a = (a* — a)(z, ).
From the triangle inequality and the Cauchy-Schwartz inequality for the inner prod-

uct we obtain ||(a — a*){(z, x)|| < 2||z||||Fx — alz||. Since (v — a*) is invertible by
assumption, we get from this inequality

] = [[{z, 2)]| < [I(a = &) H[[I(e = @), 2|
<2 z|||(F = al)z||[(a —a®) 7,
which gives
]
2 [[(a— o)~
for all x € H4. From Lemma 2.3 it follows that F' — ol is invertible. O

Remark 2.1. Let A = C([0,1]) or A = L*°((0,1), ). As we have seen in Example
2.4, the operator gI — G is not invertible, whereas § — § = 2ig; # 0. Therefore, it
is not sufficient only to assume that a — a* # 0, so the requirement that a — a* is
invertible is indeed necessary in Corollary 2.3.

Example 2.6. Let A = M5(C) and T3, T> € A be given by Ty = [2}], T =
[9 ;] Then T; is self-adjoint and Tp — Ty = Qi[? H, so Ty — Ty is invertible.
Now, Th — Ty, = [131 1:;], so det(Th — T3) = 0, which gives that T3 — T% is not
invertible. Hence the operator F' := T3 - I is a self-adjoint operator on H 4, but
F —T,-I=(Ty —1T5)-1 is not invertible. This shows that the assumption that .4

is commutative in Corollary 2.3 is indeed necessary.

< (F = al)z||

For a self-adjoint operator F' on H 4, set

M(F) = sup{[|(Fz,z)| | |[z]| = 1} and m(F) = inf{||(Fz, z)| | [[=]| = 1}.
We have the following corollary.
Corollary 2.4. If A= C([0,1]) and F is a self-adjoint operator on H 4, then

o (F) C{f € A||f1(0,1]) N [m, M] # 0}.
If A=L>((0,1),n) and F is a self-adjoint operator on H 4, then
cAF)C{fe Al p(fI (m — e M +¢))) >0 for all € > 0}.

Proof. Let A= L*((0,1), ), F be aself-adjoint operator on H 4 and « € A be such
that there exists an € = e(«) with the property that u(|a|=t([m — ¢, M + ¢€])) = 0.
Then (0,1) = M; U My, where M; and Ms are Lebesgue measurable, mutually

disjoint subsets of (0, 1) satisfying |a|xnr, = (M +¢€)xar, and |a|xan, < (m—€)Xnn,
a.e. Hence, for all x € H 4, we have

(F —al)z,x) = (F — al)z,z) - xar, + (F — al)z,z) - X,
Now, we have

K(F = al)z, z)[| > [{(F = al)z,z)xum, |
I

2
> |late, z)xan || = [[(Fe, 2) x|
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= llaxan (e, @) x| = [Dxan (F, 2)xar, |

= llaxar, (=, @) x| = [{Fz - X1, 2 - xan) |

> (M + e)|[{x, x)xan | = [I(F (@ - xar,), 2 - xan) |

> (M + e)|[{z, x)xan | = M[(z - xar, 2 - xan) |

= (M + o)z, 2)xan | = MlIxar (z, 2)xan || = €l (2, 2)xan |

(where we have used that

IF )l = 1P |[(F () oI < s 0.

Similarly we obtain

I{(F —al)z,z)|| > [{((F — al)z, z)x, | = [[(Fz, 2)xam | — 1oz, 2)xa |
= [{F(z - xa.), @ - xam) | = |z, w)xam |

= m|(z - Xas, @ - X)) | = (m = {2, 2)xan, | = €[ {2, 2) X s, |

Hence [[{(F — al)z, z)|| > emax{||(z,z)xamn |, [z, 2)xan [} = €|[{z,z)]. Thus,
|(F —aD)z||||z|| = |{(F —al)z,z)| = €||lz||* for all z € H4. Tt follows that F — ol
is bounded below, hence, from Lemma 2.3 we deduce that F' — al is invertible in
B*(H 4). The proof in the case when A = C([0,1]) is similar, but more simple,
because if o € A and |a|([0, 1]) N [m, M] = (), then by the continuity of |a| we must
either have that |a] < m or |a] > M that on the whole interval [0,1]. Moreover,
there exists then an € > 0 such that |a| < m —e€ or |a| > M + ¢ on the whole [0, 1].
Hence we may proceed in the same way as in the above proof. O

Finally, we are going to study the properties of generalized spectra of normal
operators on H 4.

Lemma 2.4. Let A be a commutative unital C*-algebra and F be a normal operator
on Hy, that is FF* = F*F. If ay, a9 € J;,‘l(F) and oy — o is not a zero divisor
in A, then ker(F — ayI) L ker(F — aql).

Proof. Since F' commutes with F* and A is a commutative unital C*-algebra, then
F — asl and F* — a1 mutually commute. Hence ker(F — asl) = ker(F* — a31).
For 1 € ker(F — a1 1) and o € ker(F — agl) = ker(F* — a31), we get

(2, 1) (a1 — @2) = (x2, x1)1 — a{®a, x1) = (T2, Fx1) — (F*22,21) =0

(where we have used that A is commutative, so {9, x1) as = as(xs,x1)). Since
(o1 — a2) s not a zero divisor by assumption, it follows that (za,x1) = 0. O

Example 2.7. Let A = C([0,1]) or A = L*°((0,1), 1) and consider the self-adjoint
operator G from Example 2.4. For any function f in A with the support contained
in Jo, we have (f,0,0,...) € ker GNker(gI — G). However, g =ig; # 0 and f # 0,
but g is not invertible in 4, so it is not sufficient only to assume that a3 — as # 0
and the assumption that a; — aso is not a zero divisor in A is indeed necessary.
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Example 2.8. Let A= B(H) and T € A be a normal and invertible operator. If
H, and H, are two closed subspaces of H such that H = H{&H, and H, # Hj
(that is H; and H are not mutually orthogonal), then T and T'(1—) are elements
of J;;‘(T - I), where 1M stands for the skew projection onto H; along Hs. Moreover,
the operator T - I is normal operator on H4 and 7'M —T'(1 — M) is invertible in .4
because T'M —T(1 — 1) has the matrix [] ] with respect to the decomposition
H = Hi®Hy — T(H,)®T(Hs) = H. However, if P; and P, denote the orthogonal
projections onto H; and Hs, respectively, then, for all 7,

ej-Preker(TN-I-T-I) and ej-Pye€ker(T(1—-N)-1-T-1),

since MP; = P; and (1 —M)P, = Py. Moreover, P; P, # 0. So the assumption that
A is commutative is indeed necessary in Lemma 2.4.

Lemma 2.5. Let A be a commutative C*-algebra and F' be a normal operator on
Hy. Then o/j(F) =0, hence 0 (F) = o7{(F) U o (F).

Proof. Suppose that o € U;‘}(F). Then F — af is bounded below. Again, since
F—al and F*—a*I mutually commute, we get that ker(F —al) = ker(F*—a*I) =
{0}. Next, since Im(F — o) is closed, by [10] [11, Theorem 2.3.3] we have that

Hp=ker(F*—ao*l) @ Im(F — ol) = Im(F — o).
So F — al is surjective, thus invertible, which gives that o7}(F) = 0. O

Example 2.9. Let A = B(H) and S, P be as in Example 2.5. Then P -1 is a
normal operator on H 4 being self-adjoint and (S — P) - I is bounded below on
H 4. Indeed, we have that ||(S — P)z|| > ||z|| for all x € H, hence m(S — P) > 1.
Therefore, since
T*(S — P)*(S — P)T > (m(S — P))*T*T

for all T € B(H), it is not hard to see that (S — P) - I is bounded below on H 4.
However, Im((S — P)-I)* = ker((S* — P)-I) and ker((S* — P)-I) # {0} as we have
seen in Example 2.5. Hence P - I is a normal operator on H4 and S € a;‘}(P I,
which shows that the assumption that 4 is commutative is indeed necessary in
Lemma 2.5. Moreover, this also shows that the assumption that A4 is commutative
is indeed necessary in Lemma 2.3 as well, because S € A ~\ U;;‘(P - I), however,

Im((S — P) - )~ # {0}.

The next lemma is a generalization of [8, Chapter XI, Proposition 1.1]. For
F € B*(H4), set

oA(F)={ac A|F —al isnot bounded below},

o (F)={a € A| F —al is not left invertible in B®(H)},
oA (F)={a € A| F—al is not right invertible in B*(H)}.

T

Lemma 2.6. Let F' € B*(H4). Then the following statements are equivalent.
a) a € AN oM(F).
b) a € AN o\ (F).
c) a* € AN aA(F*).
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d) Im(a*I — F*) = H 4.

Proof. This proof is similar to the proof of [8, Chapter XI, Proposition 1.1]. Indeed,
if F'— ol is bounded below, then Im(F — af) is orthogonally complementable in
H 4 by [10] [11, Theorem 2.3.3]. The operator F' — ol is invertible viewed as an
operator from H4 onto Im(F — «f). This follows by the Banach open mapping
theorem. Hence (F — al)™! € B4(Im(F — ol), Hy4). Let P denote the orthogonal
projection onto Im(F —al), then (F—al)~! P is a left inverse of F —al in B*(H 4).
Next, F' — ol has left inverse if and only if F* — o*I has right inverse in B*(H 4),
so (b) = (¢). Part (¢) = (d) is obvious. Finally, if Im(a*I — F*) = H 4, then
ker(F —al) = Im(F*—a*I)t = {0}. Moreover, from the proof of [10] [11, Theorem
2.3.3] we have that Im(F — o) is closed since Im(F* — a*I) is closed. Therefore,
F — ol is bounded below. O

The next two propositions can be proved in exactly the same way as for oper-
ators on Hilbert spaces, see [13, Chapter 4, Proposition 20] and [13, Chapter 4,
Proposition 21].

Proposition 2.5. For F' € B%(H,), we have that o2\ (F) is a closed subset of A
in the norm topology and o (F) = o;A(F) U o7} (F).

Proof. The statement follows since M®(H 4) is open in B*(H 4) in the norm topol-
ogy. Next, if F'— ol is bounded below, it is easy to see that either ag € U;‘}(F) or
F — agl is invertible. [l

Proposition 2.6. Let A be a commutative C*-algebra. If F' € B*(Hy,), then
0o (F) C oM(F). Moreover, if M is a closed submodule of H 4 invariant with
respect to F and Fy = F},,, then we have 9o (Fy) C o7 (F) and o (Fy) NpA(F) =
o4 (Fy), where pA(F) = A~ o(F).

Proof. Let ag € do*(F). Then there exists a sequence {a, } C Axo*(F) such that
an, — ag in A, hence F' — ap,l — F — agl in the norm. From a well known result
for operators on Banach spaces stated in [13, Chapter 4, Proposition 12], there
exists a subsequence a,, such that ||(F—ay,, I)~t|| — oo as k — oo since F—agl
is not invertible. Hence, there exists a sequence of unit vectors {x} C H4 such
that [|(F — ay, ) tog]| — oo as k — oo. For each k, set yp, = (F — ay,, ) tay,
and vy = ”z—:“ Then we have that

1
I(F" = aol)vg | < [[(@0 = ey ) Tog]| + [ (F = anp Dk < llao = an, || + 57—

lyxll’

which gives that ||(F — agl)v|| — 0, so ap € o;A(F). This shows the first
statement in the proposition. However, then we have that

oA (Fy) C oM (Fy) C o (F) C o(F). O
Example 2.10. We may also consider the operators on H 4 defined by
Wer) = ear and W'(eg) =ear_1 forall ke N.
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Also for these operators we have o(W) = oA (W') = {a € A | inf|a| < 1}
in the case when A = C([0,1]) or when A = L*°((0,1),1). Suppose now that
A =L>((0,1), 1) and consider the operator F' on H 4 given by

F(f1; f2, f3,---) = (X(0,2)/1: X2 1) f1: X0, 1) 2 X (3 1) f2s - )

It follows that F' has the matrix ["‘0’/ V‘a/] with respect to the decomposition

F
Ha=(Ha X(0,1)) ® Ha- xz1)) — (Ha X0,1) ® (Hax11) = Ha.
Therefore, 04 (F) = {a € A | inf|a| < 1}. Next we have that

cr;f‘(W) =, a;:‘(W’) ={a € A| a =1 on some closed subinterval J C [0, 1]}

in the case when A = C([0,1]) and
GAW) = {a € A| p({t € (0,1) | at) = 1}) > 0}

P

in the case when A = L°°((0,1), u). Hence, we get that

oA (F) = fa € Al plft € (0, 5) | aft) = 1)) > 0},

p

Consider next the operators

hen j = 2k hen j =2k —1
Z(e;) = e Wwhen j L keN; Z'(e) = e when j . keN
J 0 else ! 0 else

Then 04(Z) = 04(Z') = {a € A | inf |a| < 1}. This follows since Z = W* and
7' = W'*. Moreover, we have

o (Z) ={a € Al inf|af < 1}

both in the case when A = C([0,1]) and when A = L*°((0, 1), ). In the case when
A= L>((0,1), ) we have that

af(Z/) ={aeAlinfla] <1or u{t €(0,1) ] alt) =1}) > 0}

and in the case when A = C([0,1]), we have that
a{f‘(Z’) ={a e Alinf|a| <1 or a =1 on some closed subinterval J C [0, 1]}.
Let the operator D on H 4 be given by
D(g1,92,93:---) = (91X (0,1) + 92X(2,1), 93X (0,3) + 94X(2,1)---)

when A = L>((0,1), ). Then D = F* and D has the matrix [ %" 9] with respect
to the decomposition H 4 - X(0,1) ® Hy - X(1,1)- It follows that
oA(D)={a € A|inf|a| <1},

a;;‘(D) ={aeAlinfla| <loru({te€(0,3) | a(t)=1}) > 0}.
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3. Generalized Fredholm spectra of operators over C*-algebras
We recall first the following definitions.

Definition 3.1. [9] [11, Definition 2.7.1] Let M be an abelian monoid. Consider the
Cartesian product M x M and its quotient monoid with respect to the equivalence
relation
(m,n) ~ (m',n') & Ip,q: (m,n) + (p,p) = (m’,n') + (¢,9).

This quotient monoid is a group, which is denoted by S(M) and is called the
symmetrization of M. Consider now the additive category P(A) of projective
modules over a unital C*-algebra A and denoted by [M)] the isomorphism class of
an object M from P(A). The set ¢(P(A)) of these classes has the structure of an
Abelian monoid with respect to the operation [M] + [N] = [M @® N]. In this case
the group S(¢(P(A))) is denoted by K (A) or Ky(A) and is called the K-group of
A or the Grothendieck group of the category P(A).

As regards the K-group Ky(A), it is worth mentioning that it is not true in
general that [M] = [N] implies that M = N for two finitely generated Hilbert
modules M, N over A. If K((A) satisfies the property that [N] = [M] implies that
N = M for any two finitely generated, Hilbert modules M, N over A, then Ky(A)
is said to satisfy "the cancellation property”, see [14, Section 6.2].

Definition 3.2. [12], [11, Definition 2.7.4] A (bounded A-linear) operator F': H 4 —
H 4 is called (adjointable) A-Fredholm if
1) it is adjointable;
2) there exists a decomposition of the domain, H 4 = M;@N7, and the range
H4 = My®Ns (where My, Mo, N1, Ny are closed A-modules and N7, Na
have a finite number of generators), such that F' has the matrix form F' =
H;l 122} with respect to these decompositions and F} = ﬂMl My — Moy
is an isomorphism.

Definition 3.3. [12], [11, Definition 2.7.8] Let the conditions of Definition 3.2 hold.
We define the index of F' by index F' = [N;1] — [N2] € K((A).

Next we recall the definition of semi-A-Fredholm and semi-A-Weyl operators
on H A-

Definition 3.4. [1, Definition 2.1] Let F' € B%(H 4). We say that F' is an upper
semi-A-Fredholm operator if there exists a decomposition

Hy= MléNl i} M2®N2 =Hy

with respect to which F has the matrix [%1 194], where Fj is an isomorphism,

My, Ms, Ny, N5 are closed submodules of H 4 and V7 is finitely generated. Similarly,
we say that F' is a lower semi-A-Fredholm operator if all the above conditions hold
except that in this case we assume that No (and not N7) is finitely generated.

Set
MO, (Hy) ={F € B*(H4) | F is upper semi-A-Fredholm},
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MOPO_(Hy) ={F € B*(H4) | F is lower semi-A-Fredholm},
MO(H,) ={F € B*(H,) | F is A-Fredholm operator on H4}.

Next we set MPy(H4) = MP L (HA)UMP_(H,4). Notice that if M, N are two
arbitrary Hilbert modules C*-modules, the definition above could be generalized
to the classes M® (M, N) and MP_(M,N).

Definition 3.5. [1, Definition 5.1] Let F' € M®(H 4).
We say that F' € M® (H4) if there exists a decomposition

HA = M]_EEN]_ i) MQ@NQ - H.A

with respect to which F' has the matrix H;l 124 } , where F7 is an isomorphism, N7, N

are closed, finitely generated and N; < Na, thaut~ is N is isomorphic to a closed
submodule of No. We define similarly the class M®* (H 4), the only difference in
this case is that N < N;. Then we set

M (Hy) = (MPL(HA)) U (M (Ha) \ MD(Hy)),
MO (Hy) = (MPT(Ha)) U (MO_(Ha) \ MO(Ho)).

Further, we define M®((H 4) to be the set of all FF € M®(H 4) for which there
exists an M®-decomposition H 4 = M;®&N; s Ma@Ny = H 4, where Nj 2 Ns.
Definition 3.6. [1, Definition 5.6] Let F' € M®, (H 4).

We say that F' € M@;/(HA) if there exists a decomposition

Hy = M&N, 25 My®Ny = Hy
with respect to which F' = [}81 124], where F) is an isomorphism, N7 is closed,

finitely generated and N7 < N,. Similarly, we define the class M@f/(HA), only in
this case F' € M®_(H 4), N» is finitely generated and No < Nj.
Such operators will be called semi-A-Weyl operators throughout the paper.

Then we introduce the following definition.
Definition 3.7. We set msqe(F) = inf{||a| |a € A, F —al ¢ MP(H4)},
ms(F) =inf{|la| |a € A,F —al ¢ MP4(Hy)},
ms+(F) = nt{la]l | a € A F - a ¢ M®,(H4)},
ms_(F) =inf{||a|| |a € A, F —al ¢ MOP_(H,4)}.
It follows that

mse(F) =max{c20|||a|| <e=F —al € MP(H,)},

ms(F)=max{e 20| |a]| <e=F —al € MP (H,)},

ms_(F)=max{e 20| |la|| <e=F —al € MOP_(H,)},
ms(F)=max{e 20| |ja|| <e=F —al € MPL(H,)}.

From [11, Lemma 2.7.10] and [1, Theorem 4.1] it follows that
msep(F) >0 F e MP(Hy), msi(F)>0& Fe MO (Hy),
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ms_(F)>0& Fe MP_(Hy), ms(F)>0& F e MPL(Hy).
From [1, Corollary 2.11] it follows that
ms4 (F) =ms_(F*), mse(F)=mse(F*), ms(F)=ms(F").
We have the following lemma.

Lemma 3.1. Let F € B*(H4). If ms(F) >0 and ms_(F) > 0, then ms(F) =
ms_(F).

Proof. Since ms, (F) and ms_(F) are strictly positive by assumption, then, by [1,
Corollary 2.4], F € M® (HA) NMP_(Hy4) = MP(Hy). If ms(F) > ms_(F),
then, obviously, there exists an a € A such that ||a| € (ms_(F),msy(F)),
and (F — al) € MP(Hy) ~ MP_(H,). However, if we consider the map
f:00,1] — B%(H4) given by f(t) = F — tal, then f is continuous. Since ||| <
ms4(F), it follows that f([0,1]) C MP(H4) C MPL(H4). By [1, Corollary 4.3]
we deduce that f(1) € M®(H4) since f(0) € MP(H4). However, we have that

fQ)=F—al ¢ M®_(H,). Since MP(H4) C MP_(H,4), we get a contradic-
tion. Thus msy (F) = ms_(F) in this case. Similarly, if ms_(F) > msy(F), we
can show that actually ms_(F) = ms; (F). O

Lemma 3.2. Let F € B*(H4). Then
1) mse(F) = min{ms,(F),ms_(F)},
2) ms(F) = max{ms,(F),ms_(F)}.

Proof. First we prove 1). If 0 = min{ms;(F), ms_(F)}, then either ms(F) =0

or ms_(F) = 0. Suppose that ms, (F) = 0. Then, by the above arguments, since

MO, (Hy) is open, we must have that I’ ¢ M, (Hy). Hence F ¢ MP(Hy),

SO ms<1>( ) = 0. Similarly, if ms_(F) = 0, it follows that msg(F) = 0, since
®_(H4) is open and MP(H 4) C MP_(H 4). Suppose now that

0 < min{ms(F),ms_(F)} = ms(F).

By Lemma 3.1 we have ms, (F) = ms_(F). Applying [1, Corollary 2.4] we easily
deduce that mse(F) = msy (F) = ms_(F).

Next we prove 2). If max{ms(F),ms_(F)} =0, then F ¢ M®, (H4), hence
ms(F) = 0, as in the proof of [15, (2.3.8.2.)]. Suppose that 0 < max{msy (F),
ms_(F)} = msy(F). Obviously, we have that ms(F) > ms,(F). If ms(F) >
msy (F'), then for any r € (msy (F), ms(F)), the set

Cri={F—al |ac Al ] <r}

would intersect both M®(Hy) and MP_(H4) ~ MO (Hy), which are both
open by [1, Theorem 4.1] and [6, Remark 3.3.4]. Hence the sets M®(H4) N C,
and (MP_(H4) ~ MP,(H4)) N C, would form a separation of C,, since C, C
MPL(Hy). Indeed, since r > max{msy(F),ms_(F)}, we can not have that
Cr CMPL(Hy) or Cp € MP_(H,y). On the other hand, since r < ms(F), we
must have that C,, C M®(H 4). Therefore, it follows that C,NM®P, (H 1) # 0 and
CrN(MP_(Hy)~ MD,(Hy)) # (. This is a contradiction since C,. is connected.
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Hence we must have ms(F) = ms4(F). The case when max{ms4(F),ms_(F)} =
ms_(F) can be treated analogously. O

Definition 3.8. Let F' € B*(H 4). We set

Lemma 3.3. Let F € Ba(HA) and suppose that Ko(A) satisfies the cancellation
property. Then o(F) = o (F)U oy AF)Uoi(F).

Proof. Tt suffices to show ” C ”. Suppose that a € o*(F)~ (0 (F)UsA,(F)). Then
Im(F — o) is closed and (F — al) € M®y(H 4). By Theorem [11, Theorem 2.3.3]
the operator F' — al has the matrix [(F_"‘I)l 0] with respect to the decomposition

Ha = ker(F — al)*&ker(F — o) =3 Im(F — oI)&Im(F — al)* = Hy,

where (F' — «al); is an isomorphism by the Banach open mapping theorem. Since
we have (F — al) € M®y(H4), then it holds that
0 = index(F — al) = [ker(F — oI)] — [Im(F — al)*],

so [ker(F—al)] = [Im(F —al)*]. If [ker(F—al)] = 0, then ker(F —al) = {0}, since
Ky(A) satisfies the cancellation property by assumption. By the same reason we
would have Im(F—al)t = {0}, so F—al is then invertible, which is a contradiction,
since a € 04(F). Thus, we must have ker(F — al) # {0}, so a € o;'(F). O

Example 3.1. Let A = B(H), where H is an infinite-dimensional, separable
Hilbert space. If H;j is any infinite-dimensional subspace of H, then there ex-
ists an isometric isomorphism U of H onto H;. Set U to be the operator on A
given by U(F) = JUF for all F € A where J is the inclusion of H; into H. Then
U € B*(A) and moreover, U is an isometry. Put T to be the operator with the
matrix [1 with respect to the decomposition

0 0]
Hi=ILie L, -5 Lie L, = Hy.

Then T' € B*(H 4) and T is bounded below. Moreover,

Im T+ = Span 4{(P,0,0,0,...)},

where P is the orthogonal projection of H onto Hi-. Obviously, T € M®(H 4)
and moreover, T" is bounded below, but T is not surjective, thus not invertible.
Hence

0 € (073(T) N 04, (T)) S (0(T) N (02,(T) Uo7 (T) U o (T))).

This shows that the assumption that Ky(A) satisfies the cancellation property is
indeed necessary in Lemma 3.3.



460 S. G. IVKOVIC

For F' € B%(H 4) we set

M<I>+( )
O_(F)={acA|F—al e MP_(H,)

)={a€A|F—al € MD,(Hyu
)
MB(F)={ac A|F—al € M®(H,)},
) =
) =

2
}

)

MO (F)={a € A|F—al € MPL(H4)},
MOy (F)={a€c A|F—al € MOy(HA)}.
The next two results are generalizations of [8, Chapter XI, Proposition 4.9].

Proposition 3.1. If F € B*(H 4), then the components ofA\(UeAuf(F)ﬂaelf(F))
are either completely contained in one of the sets

MO, (F)~ MB(F), MI_(F)~ Mo(F)

or they are completely contained in MP(F) and in this case index(F — al) is
constant on them.

Proof. Let C' be a component of A (aé“uf(F) N Ugf(F)). Then either C' N
MO (F) # 0 or CNMP_(F) # . Hence we must have that either C C MP_(F)
or C' C M®, (F) because otherwise the sets

CNMP_(F) and CNMPL(F)\ MD_(F))

would form a separation of C', which is a contradiction. Indeed, it follows straight-
forward from [1, Theorem 4.1] and [6, Remark 3.3.4] that the sets M®_(F') and
M (F) ~ MP_(F) are open in the norm topology of A. Assume that C' C
MO (F). If C N MP(F) # 0, then C C M®P(F) because otherwise the sets
MO(F) and MP(F) ~ MP(F) would form a separation of C, since it follows
straightforward from [11, Lemma 2.7.10] and [1, Theorem 4.1] that M®(F') and
MO, (F) N\ MOP(F) are open. So, either C C MP_ (F)\ MP(F) or C C MO(F).
Now, if C' C M®(F), then index(F — o) must be constant on C, since index is
locally constant by [11, Lemma 2.7.10].

The case when C C M®_(F) can be treated similarly. O

Lemma 3.4. Let F € B*(Hy,). If a € doA(F) ~ (a;“uf(F) ﬂoplf( )), then
a € MOy(F).

Proof. Let a € 9o (F) ~ (Ué“uf(F) N oflf(F)). Then o € MPL(F). Since o €
0o (F), each open neighbourhood of « in A intersects M®,(F) non-empty. Since
MO (F) N MP(F) and MP_(F) \ MP(F) are open, it follows that o must be
an element of M®(F). Now, since a € do(F) and MP(F) \ M®((F) is open
(this follows from [6, Lemma 3.4.16], we must have that « € M®q(F). O

Now we consider the following spectra for F' € B*(H 4):
ot (F) ={a€ A| (F —al) ¢ M®, (Ha)},
0lo(F) ={a € A| (F —al) ¢ MO (Ha)},
oA(F)={a€ A|(F —al) ¢ MOt (H,)},
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o (F) ={a € A|(F—al) ¢ MO (H)},
oA (F) ={a € A| (F—al) ¢ MO (Ha)},
04(F) ={a € A|(F —al) ¢ MO (Ha)}.
By [1, Remark 5.8] we have that
MO (Ha) C MO (Hy) and MO (Ha) C MOT(Hy).
pret o e g ) $28 63(F) < e3F) € ) T
Proposition 3.2. Let F € B*(H4). Then
00%4(F) C 0074/(F) C 0074 (F),
9o (F) C Doz (F) C 9oy (F).
Proof. Tt suffices to show that
0074(F) C 00 (F), 805 (F) C ol (F),
007 (F) C oty (F), 9oz (F) C oy(F).

Suppose that a € 9ot (F) \ oA, (F). Then

ea’

’ ’

F—ale M@;’(HA) NMO(Ha) = MO (Ha) N (MO (Ha) N MP(Hy))

= M7 (Ha) ~ MO(H.)

= ML (Ha) N (MP 4 (H) ~ MD(H)),
where in the first equality we apply [1, Proposition 5.7] and in the last equality we
apply the fact that M(IL:,(HA) C M, (H4) by definition. Now, by [1, Theorem
4.1] and [1, Lemma 5.9], we obtain that M(I)I/(HA) \ M®_ (H.,) is open in the
norm topology. As F — ol is in ./\/ltb_T_/ (Ha) N M@;(HA), it follows that « ¢
do7t (F), which is a contradiction. Thus we must have that doZi(F) C o2, (F).
Next suppose that a € do,(F)~ o2 (F). Since M@I/(HA) is open by [1, Lemma
5.9], we must have that o4, (F) is closed, hence F —al € M®(H.) \M@;/(HA).
Now, as M@_T_/(HA) CMP (Hy) €S MO (Hy), we get that

ML (Ha) ~ MOT (Ha) = MO (HA) N (MO (Ha) \ MY (H)),

so by [6, Corollary 3.4.10] and [6, Lemma 3.4.16] we deduce that the set dif-
ference MO (H4) M@;/(HA) is open in the norm topology. It follows that
a ¢ 9o, (F), which is a contradiction. We conclude then that 9o, (F) C oA (F).

ea’ ea’

Similarly we can prove that aaé%(F) C o4/ (F) and 9o, (F) C o4 (F). O

Corollary 3.1. The sets M®T (H4) ~ M®, (H4), MO (Hz) ~ M®T (Hy),
M‘Pf(HA) Mo (Hy) and MO (H ) ~ M@f,(HA) are open.
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Example 3.2. Consider the Hilbert space L%((0,1),u). For every f € C([0,1])
or f € L>((0,1),u) we consider the multiplication operator M; on L?((0,1), u),
ie. Ms(g) =gf for all g € L?((0,1), ). Then M; is well defined, bounded linear
operator on L2((0,1), u), || My]| < || flloo, and M; =My It F € B(L?(0,1), u), then
the operators F' — My, when f runs through C([0,1]) or L>((0,1), i), give rise to
another kind of generalized spectra of F' in C([0, 1]) or in L*°((0, 1), u), respectively.
Many of the results presented in this chapter have their natural analogue in this
setting here. However, we should notice that, since L?((0,1),u) is an ordinary
Hilbert space, we consider now generalized spectra in C([0, 1]) or in L>°((0,1), u)
induced by the corresponding subclasses of the classical semi-Fredholm operators
on L2((0,1), u1).
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