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1. Generalized spectra of operators over C∗-algebras

Throughout this paper A always stands for a unital C∗-algebras and HA denotes
the standard module over A. Moreover, we let Ba(HA) denote the set of all A-
linear, bounded, adjointable operators on HA. For α ∈ A we may let αI be the
operator on HA given by αI(x1, x2, . . . ) = (αx1, αx2, . . . ). It is straightforward
to check that αI is an A-linear operator on HA. Moreover, αI is bounded and
∥αI∥ = ∥α∥. Finally, αI is adjointable and its adjoint is given by (αI)∗ = α∗I.

Our starting question is the following: If A is a C∗-algebra, then for α ∈ A
could we consider the generalized spectra in A of operators in Ba(HA) by setting
for every F ∈ Ba(HA)

σA(F ) = {α ∈ A | F − αI is not invertible in Ba(HA)}?

The main topic in this paper will be to obtain generalization of some results
from spectral theory of operators on Hilbert spaces in the setting of generalized
spectra in C∗-algebras of operators on Hilbert C∗-modules.

We introduce first the following notion:
σA(F ) = {α ∈ A | F − αI is not invertible in Ba(HA)},
σA
p (F ) = {α ∈ A | ker(F − αI) ̸= {0}},

σA
rl(F ) = {α ∈ A | F − αI is bounded below, but not surjective on HA},

σA
cl (F ) = {α ∈ A | Im(F − αI) is not closed}.
It is understood that F ∈ Ba(HA). Recall that not all closed submodules of

HA are orthogonally complementable in HA, which differs from the situation of
Hilbert spaces. It may happen that Im(F − αI) ⊕ Im(F − αI)⊥ ⫋ HA. However,
if Im(F − αI) is closed, then Im(F ∗ − α∗I) is closed and we also have

HA = Im(F − αI)⊕ ker(F ∗ − α∗I) = ker(F − αI)⊕ Im(F ∗ − α∗I)

whenever F ∈ Ba(HA), which follows from the proof of [10] [11, Theorem 2.3.3].
444
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Therefore, it is more convinient in this setting to work with σA
rl(F ) and σA

cl (F )
for F ∈ Ba(HA) instead of the residual and the continuous spectrum.

Note that we obviously have

σA(F ) = σA
p (F ) ∪ σA

rl(F ) ∪ σA
cl (F ) and σA(F ∗) = (σA(F ))∗.

The challenges which arise are the following:
1) A may be non commutative;
2) If A is a non trivial C∗-algebra, then there exists certainly nonzero non-invertible
elements by the Gelfand-Mazur Theorem [8, Chapter VII, Theorem 8.1]. Moreover,
even if α ∈ A ∩ G(A), we do not have in general that ∥α−1∥ = 1

∥α∥ . Therefore,

σA(F ) may be unbounded. (However, σA(F ) is always closed in A).
In Section 2 we give description of the generalized spectra of shift operators,

unitary, self-adjoint and normal operators on HA and investigate some further
properties of these spectra. Most of the results in this section are generalizations
of the results from [13, Chapter 4].

In Section 3 we consider generalized Fredholm spectra of operators on the stan-
dard Hilbert C∗-module. Fredholm theory on Hilbert C∗-modules as a generaliza-
tion of Fredholm theory on Hilbert spaces was started by Mishchenko and Fomenko
in [12]. They have introduced the notion of a Fredholm operator on the standard
module and proved that some of the main results from the classical Fredholm the-
ory hold when one considers this generalization, such as the Atkinson theorem,
openness of the set of Fredholm operators etc. In [1–5] we went further in this
direction. We defined semi-Fredholm and semi-Weyl operators on the standard
module and proved generalized versions in this setting of several results from the
classical semi-Fredholm theory on Hilbert spaces. Now, various subclasses of semi-
Fredholm operators on HA induce various corresponding generalized spectra in A
of operators in Ba(HA). In Section 3 we investigate several properties of such spec-
tra and the relationship between them, as a continuation of the research presented
in [3] and [5]. Most of the results in this section are generalizations in this setting
of the results from [15, Section 2.2 and Section 2.3].

This paper contains some of the unpublished results from the doctoral disserta-
tion by the author, see [7].

2. Generalized spectra of shift operators,
unitary, self-adjoint and normal operators

We start with the following proposition.

Proposition 2.1. Let A be a unital C∗-algebra, {ek}k∈N denote the standard or-
thonormal basis of HA and S be the operator defined by Sek = ek+1, k ∈ N, that is
S is a unilateral shift and S∗ek+1 = ek for all k ∈ N. If A = L∞((0, 1), µ) where µ
is the Lebesgue measure, or if A = C([0, 1]), then σA(S) = {α ∈ A | inf |α| ⩽ 1},
where in the case when A = L∞((0, 1), µ), we set

inf |α| = inf{C > 0 | µ(|α|−1([0, C])) > 0} = sup{K > 0 | |α| > K a.e. on [0, 1]}.

Moreover, σA
p (S) = ∅ in both cases.
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Proof. We have two cases.
Case 1: In this case we consider A = C([0, 1]). Let α ∈ A and suppose that
inf |α| < 1. Since |α| is continuous, we may find an open interval (t1, t2) ⊆ (0, 1)
such that |α(t)| < 1− ϵ for all t ∈ (t1, t2), where 0 < ϵ < 1− inf |α|. We may find
some g ∈ A such that supp g ⊆ (t1, t2) and 0 ⩽ g ⩽ 1. Consider

xα = (g, ᾱg, ᾱ2g, . . . ).

Then, obviously, xα ∈ HA and ⟨(αI − S)ek, xα⟩ = ᾱkg − ᾱkg = 0. Hence xα ∈
Im(αI − S)⊥ and xα ̸= 0, which gives that α ∈ σA(S). Therefore,

{α ∈ A | inf |α| < 1} ⊆ σA(S).

Since σA(S) is closed in the norm topolgy in A, it follows that

{α ∈ A | inf |α| ⩽ 1} ⊆ σA(S).

On the other hand, if α ∈ A and inf |α| > 1, then α is invertible and we have that
sup |α−1| = ∥α−1∥ < 1. It follows that ∥α−1S∥ ⩽ ∥α−1∥∥S∥ < 1, so αI − S =
α(I −α−1S) is invertible in Ba(HA). Next, suppose that (αI −S)(x) = 0 for some
α ∈ A and x ∈ HA. This gives the following system of equations coordinatewise:
αx1 = 0, αx2−x1 = 0, αx3−x2 = 0, . . . . Since αx1 = 0, we deduce that x1|suppα =
0. However, since αx2 − x1 = 0, it follows that x1|(suppα)c = also. Hence x1 = 0.
However, then αx2 = 0 and αx3 − x2 = 0. Using the same argument we obtain
that x2 = 0. Proceeding inductively, we obtain that xk = 0 for all k, so x = 0.
Since α ∈ A was arbitrary chosen, we conclude that σA

p (S) = ∅.
Case 2: In this case we consider A = L∞((0, 1), µ). Let α ∈ A and assume that
inf |α| < 1. This means that µ(|α|−1([0, 1− ϵ])) > 0, where 0 < ϵ < 1− inf |α|. Set
Mϵ = |α|−1([0, 1 − ϵ]), then χMϵ

̸= 0. Letting χMϵ
play the role of the function g

in the previous proof, (which is possible since xα = (χMϵ , ᾱχMϵ , ᾱ
2χMϵ , . . . ) ∈ HA

because |α| ⩽ 1− ϵ on Mϵ), we deduce by the same arguments that

σA(S) = {α ∈ A | inf |α| ⩽ 1}.

Next, assume that (αI − S)(x) = 0 for some α ∈ A and x ∈ HA. As in the
previous proof we get the system of equations αx1 = 0, αx2 − x1 = 0, αx3 − x2 =
0, . . . . The first equation gives that x1 = 0 a.e. on |α|−1(0,∞), whereas the second
equation gives x1 = 0 a.e. on α−1({0}). Hence x1 = 0. Proceeding inductively as
in the previous proof, we get x = 0, hence σA

p (S) is empty also in this case. □

Lemma 2.1. Let A = B(H), T ∈ B(H) and suppose that T is invertible. Then
the equation (T · I − S)x = y has a solution in HA for all ek, k ∈ N, if and only if
the sequence (T−1, T−2, . . . , T−k, . . . ) belongs to HA.

Proof. For k = 1, if (T · I − S)x = e1, then we must have TB1 = I, where
x = (B1, B2, . . . ). Hence B1 = T−1. Next, TB2 − B1 = 0, so TB2 = B1 = T−1

which gives B2 = T−2. Proceeding inductively, we obtain that Bk = T−k for all k.
So the equation (T · I − S)x = e1 has a solution in HA if and only if the sequence
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(T−1, T−2, . . . ) belongs to HA. Now, if (T−1, T−2, . . . ) ∈ HA, then the sequence
x(k) in HA given by

x(k)
n =

{
0 if n ∈ {1, . . . , k − 1}
T−(n−k+1) for n ∈ {k, k + 1, . . . }

is the solution of the equation (T · I − S)x = ek for each k ∈ N. □

Set σ̃A
cl (S) = {α ∈ σA

cl (S) | Im(αI − S) = HA}. We have the following corollary.

Corollary 2.1. Let A be a commutative unital C∗-algebra. Then

σA(S) = (A∖G(A)) ∪ {α ∈ G(A)|(α−1, α−2, . . . , α−k, . . . ) /∈ HA} ∪ σ̃A
cl (S).

Proof. Since A is commutative, then the set of right invertible elemnts coincides
with G(A). Hence we can apply the arguments from the proof of Lemma 2.1. □

Corollary 2.2. Let A be a unital C∗-algebra. If 1A denotes the unit in A, then
1A ∈ σA(S).

Proof. We obviously have that the sequence (1A, 1A, 1A, . . . ) = (1−1
A , 1−2

A , 1−3
A , . . . )

is not an element of HA. Then we apply the arguments from the proof of Lemma
2.1. □

Example 2.1. We may consider a weighted shift Sw on HA given by Sw(x)j+1 =
wjxj , where w = (w1, w2, . . . ) is a bounded sequence in A. In this case, if α has a
common right annihilator as wj for some j ∈ N, then the sequence having this right
annihilator in its j-th coordinate and 0 elsewhere belongs to the kernel of αI −Sw.
Hence α ∈ σA(Sw) in this case.

Example 2.2. Let A = L∞((0, 1), µ). Set

S̃(f1, f2, . . . ) = (f1χ(0, 12 )
, f2χ(0, 12 )

+ f1χ( 1
2 ,1)

, f3χ(0, 12 )
+ f2χ( 1

2 ,1)
, . . . ).

Then S̃ has the matrix
[
1 0
0 S

]
with respect to the decomposition

(HA · χ(0, 12 )
)⊕ (HA · χ( 1

2 ,1)
).

It follows that

σA(S̃) =
{
α ∈ A | inf

{
C > 0 | µ

(
|α|−1([0, C]) ∩

(
1
2 , 1

))}
⩽ 1

}
∪
{
α ∈ A | (α− 1) · χ(0, 12 )

is not invertible in L∞((
0, 1

2

)
, µ

)}
.

Proposition 2.2. Let α ∈ A. We have

(1) If αI − F is bounded below and F ∈ Ba(HA), then α ∈ σA
rl(F ) if and only

if α∗ ∈ σA
p (F ∗),

(2) If F,D ∈ Ba(HA) and D = U∗FU for some unitary operator U , then

σA(F ) = σA(D), σA
p (F ) = σA

p (D), σA
cl (F ) = σA

cl (D) and σA
rl(F ) = σA

rl(D).
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Proof. 1) Suppose first that F − αI is bounded below and α ∈ σA
rl(F ). Then it

follows that Im(F − αI) is closed. Hence, by [10] [11, Theorem 2.3.3] we have
that HA = Im(F − αI) ⊕ Im(F − αI)⊥ which gives that Im(F − αI)⊥ ̸= {0} as
Im(F−αI) ̸= HA. Since Im(F−αI)⊥ = ker(F ∗−α∗I), it follows that α∗ ∈ σA

p (F ∗).

Conversely, suppose that α∗ ∈ σA
p (F ∗) and that F − αI is bounded below. Then,

again, Im(F − αI) is closed and moreover, Im(F − αI)⊥ = ker(F ∗ − α∗I) ̸= {0}.
It follows that α ∈ σA

rl(F ). It is straightforward to prove the statement 2. □

Now we are going to describe the generalized spectrum of a unitary operator
on HA.

Proposition 2.3. Let U ∈ Ba(HA) be unitary. Then

σA(U) ⊆ {α ∈ A | ∥α∥ ⩾ 1},
σA(U) ∩G(A) ⊆ {α ∈ G(A) | ∥α−1∥, ∥α∥ ⩾ 1}.

Proof. We have αI − U = ((αI)U∗ − I)U and ∥U∗∥ = ∥U∥ = 1. □

Consider again the orthonormal basis {ek}k∈N for HA. We may enumerate this
basis by indexes in Z. Then we get orthonormal basis {ej}j∈Z for HA and we can
consider a bilateral shift operator V with respect to this basis, i.e. V ek = ek+1 all
k ∈ Z, which gives V ∗ek = ek−1 for all k ∈ Z.

Proposition 2.4. Let V be the bilateral shift operator on HA. Then the following
holds:

(1) If A = C([0, 1]), then σA(V ) = {f ∈ A | |f |([0, 1]) ∩ {1} ≠ ∅},
(2) If A = L∞((0, 1), µ), then

σA(V ) = {f ∈ A | µ(|f |−1((1− ϵ, 1 + ϵ))) > 0 ∀ϵ > 0}.
In both cases σA

p (V ) = ∅.

Proof. Case 1: In this case we consider A = C([0, 1]). Suppose that α ∈ A and
|α(t̃)| = 1 for some t̃ ∈ [0, 1]. Choose a function y ∈ A such that y(t̃) = 1. If
αI − V is surjective, then there exists an x ∈ HA such that (αI − V )x = e1 · y.
Now, x(t̃) ∈ l2 since x ∈ HA. If we let Ṽ denote the ordinary bilateral shift on l2,

we get that α(t̃)x(t̃) − Ṽ (x(t̃)) = (1, 0, 0, . . . ), since y(t̃) = 1. However, this is not
possible since |α(t̃)| = 1 (for more details, see [13, Chapter 4, Proposition 19]). We
conclude that αI − V can not be surjective, so α ∈ σA(V ). On the other hand,
if α ∈ A and |α|([0, 1]) ∩ {1} = ∅, then either |α(t)| ⩾ C > 1 or |α(t)| ⩽ K < 1
for all t ∈ [0, 1] and some constants C or K (here we use that |α| is continuous).
If |α(t)| ⩾ C > 1 for all t ∈ [0, 1], then α is invertible in A and ∥α−1∥ ⩽ 1

C < 1.

Since ∥V ∥ = 1, it follows that α /∈ σA(V ). If |α(t)| ⩽ K < 1 for all t ∈ [0, 1], then
∥α∥ ⩽ K < 1, so, by Proposition 2.3 it follows then that α /∈ σA(V ). Hence

σA(V ) = {α ∈ A | |α|([0, 1]) ∩ {1} ≠ ∅}.
Next, if (αI−V )x = 0 for some x ∈ HA, then we must have α(t)x(t)− Ṽ x(t) = 0

for all t ∈ [0, 1]. This means that x(t) = 0 for all t ∈ [0, 1] since σp(Ṽ ) = ∅
by [13, Chapter 4, Proposition 19].
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Case 2: Let now A = L∞((0, 1), µ) and α ∈ A be such that µ(|α|−1((1 − ϵ, 1 +
ϵ))) > 0 for all ϵ > 0. If (αI − V )x = e0 for some x ∈ HA, then we must
have αxk − xk−1 = 0 for all k ̸= 0 and αx0 − x−1 = 1A. For small ϵ > 0 set
Mϵ = |α|−1((1 − ϵ, 1 + ϵ)), M−

ϵ = |α|−1((1 − ϵ, 1)) and M+
ϵ = |α|−1((1, 1 + ϵ)),

so Mϵ = M−
ϵ ∪ M+

ϵ and χMϵ
̸= 0. From the first equation above we get xk =

α−(k+1)x−1 for all k ⩽ −1. Moreover, xk = α−kx0 for all k ⩾ 0 a.e. on any
subset of (0, 1) on which |α| is bounded below, thus in particular on Mϵ. Hence
xkχMϵ

= x0α
−kχMϵ

for all k ⩾ 0 where for all k we let α−kχMϵ
denote the function

given by

α−kχMϵ
(t) =

{
α−k(t) for t ∈ Mϵ,

0 else.

Since x ∈ HA, it follows that xkχM+
ϵ

= 0 for all k ⩽ −1 and xkχM−
ϵ

= 0 for all
k ⩾ 0. Setting this into the second equation above, we get αx0χM+

ϵ
− x−1χM−

ϵ
=

χMϵ , which gives x0χMϵ = α−1χM+
ϵ

and x−1χMϵ = −χM−
ϵ
. Hence xkχMϵ =

α−(k+1)χM+
ϵ

for all k ⩾ 0 and xkχMϵ
= −α−(k+1)χM−

ϵ
for all k ⩽ −1. This gives

|xk| ⩾ (1 + ϵ)−(k+1)χM+
ϵ

for all k ⩾ 0 and |xk| ⩾ (1− ϵ)−(k+1)χM−
ϵ

for all k ⩽ −1.
Since this holds for all ϵ > 0 and moreover, we have that either χM−

ϵ
or χM+

ϵ
is non-

zero (because χMϵ
is non-zero for all ϵ > 0), we get that the infinite sum

∑
k∈Z x

∗
kxk

diverge in A, otherwise ∥
∑

k∈Z x
∗
kxk∥ ⩾ min

{∑∞
k=0

1
(1+ϵ)k+1 ,

∑∞
k=0(1 − ϵ)k

}
for

all ϵ > 0, a contradiction. Hence x can not be an element of HA. We conclude that
e0 /∈ Im(αI − V ), so α ∈ σA(V ) in this case.

On the other hand, if µ(|α|−1((1− ϵ, 1+ ϵ))) = 0 for α ∈ A and some ϵ > 0, then
we have (0, 1) = N−

ϵ ∪N+
ϵ , where

N−
ϵ = |α|−1((0, 1− ϵ)) and N+

ϵ = |α|−1((1 + ϵ,+∞)).

Since the decomposition HA = HA · χN+
ϵ
⊕HA · χN−

ϵ
clearly reduces the operator

αI −V and the restrictions of αI −V on both these submodules are invertible, (as
the restriction of V to both these submodules acts as a unitary operator on these
submodules), it follows that αI − V is invertible, so α /∈ σA(V ). □

Example 2.3. Let {α1, α2, . . . } be a sequence in a unital C∗-algebra A such that
each αk is a unitary element of A. Then the operator V defined by

V (x1, x2, . . . ) = (α1x1, α2x2, . . . )

is a unitary operator on HA. If A = C([0, 1]) or if A = L∞((0, 1), µ) and J1, J2
are two closed subintervals of (0, 1) such that J1 ∩ J2 = ∅, then we may easily find
a function β ∈ A such that β = α1 on J1 and |β(t)| > 1 for all t ∈ J2. Hence
∥β∥ > 1, but we also have β ∈ σA(V ) since ker(βI − V ) ̸= {0}. Similarly, if
A = B(H) where H is an infinite-dimensional Hilbert space, then we may easily
find two closed suspaces H1 and H2 such that H1 ⊥ H2 and T ∈ B(H) satisfying
T|H1

= α1|H1
and ∥T|H2

∥ > 1. Hence, again T ∈ σA(V ) and ∥T∥ > 1. So, if V is a
unitary operator on HA, we do not have in general that

σA(V ) ⊆ {α ∈ A | ∥α∥ = 1}.
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Next we are going to describe and investigate some properties of generalized
spectra of self-adjoint operators on HA.

Lemma 2.2. Let A be a commutative C∗-algebra. If F is a self-adjoint operator
on HA, then σA

p (F ) is a self-adjoint subset of A, that is α ∈ σA
p (F ) if and only if

α∗ ∈ σA
p (F ).

Proof. Since F − αI and F − α∗I = F ∗ − α∗I mutually commute because A is
commutative, we can deduce that ∥(F −αI)x∥ = ∥(F −α∗I)x∥ for all x ∈ HA. □

Example 2.4. Let A = C([0, 1]) or A = L∞((0, 1), µ). If G is the operator on HA
given by G(f1, f2, . . . ) = (g1f1, g2f2, . . . ), where {g1, g2, . . . } is a bounded sequence
of real valued functions in A, then G is a self-adjoint operator. Suppose that there
are two mutually disjoint, closed subintervals J1 and J2 of (0, 1) such that g1|J1

̸= 0

and g1|J2
= 0. Set g̃ = ig1. Then, if we choose a function f in A such that supp

f ⊆ J2, we get that (g̃I − G)(f, 0, 0, . . . ) = 0. However, g̃ ̸= g̃, so we do not have
that σA

p (G) is included in the set of self-adjoint elements of A.

Example 2.5. Let A = B(H) where H is a separable infinite-dimensional Hilbert
space and let {ej}j∈N be an orthonormal basis for H. If P denotes the orthogonal
projection onto Span{e1}, then the operator P · I is a self-adjoint operator on HA.
Now, if S is the unilateral shift operator on H with respect to the orthonormal
basis {ej}, then S − P is injective whereas S∗ − P is not injective because (S∗ −
P )(e1 + e2) = 0. It follows that (S−P ) · I is an injective operator on HA, whereas
(S∗ − P ) · I = ((S − P ) · I)∗ is not an injective operator on HA, since (S∗ − P ) ·
I(Q, 0, 0, 0, . . . ) = 0, where Q is the orthogonal projection onto Span{e1 + e2}.
Hence, if A = B(H), we do not have in general that σA

p (F ) is a self-adjoint subset
of A when F = F ∗. It follows that the assumption that A is commutative is indeed
necessary in Lemma 2.2.

Lemma 2.3. Let A be a commutative C∗-algebra. If F is a self-adjoint operator

on HA and α ∈ A∖σA
p (F ), then Im(F − αI)

⊥
= {0}. Hence, if α ∈ A and F −αI

is bounded below, then α ∈ A∖ σA(F ).

Proof. Suppose that α ∈ A∖σA
p (F ). If y ∈ Im(F − αI)

⊥
, then y ∈ ker(F ∗−α∗I).

By the proof of Lemma 2.2 we obtain that (F − αI)y = 0. Since α /∈ σA
p (F )

by the choice of α, we get that y = 0. Thus, Im(F − αI)
⊥

= {0}, when α ∈
A∖σA

p (F ). Suppose next that α ∈ A is such that F −αI is bounded below. Then

α ∈ A∖σA
p (F ), so from the previous arguments we deduce that Im(F−αI)⊥ = {0}.

Moreover, since Im(F − αI) is then closed and F − αI ∈ Ba(HA), from [10] [11,
Theorem 2.3.3] it follows that Im(F − αI) is orthogonally complementable in HA.
However, since Im(F − αI)⊥ = {0}, we must have that Im(F − αI) = HA. Hence
F − αI is invertible in Ba(HA), so α is in A∖ σA(F ). □

Corollary 2.3. Let A be a unital commutative C∗-algebra and F be a self-adjoint
operator on HA. If α ∈ A and α − α∗ ∈ G(A), then F − αI is invertible. In this
case,

∥(F − αI)−1∥ ⩽ 2∥(α− α∗)−1∥.
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Proof. If α ∈ A, then, since A is commutative, we get

⟨x, Fx− αIx⟩ − ⟨Fx− αIx, x⟩ = α∗⟨x, x⟩ − ⟨x, x⟩α = (α∗ − α)⟨x, x⟩.
From the triangle inequality and the Cauchy-Schwartz inequality for the inner prod-
uct we obtain ∥(α− α∗)⟨x, x⟩∥ ⩽ 2∥x∥∥Fx− αIx∥. Since (α− α∗) is invertible by
assumption, we get from this inequality

∥x∥2 = ∥⟨x, x⟩∥ ⩽ ∥(α− α∗)−1∥∥(α− α∗)⟨x, x⟩∥
⩽ 2 · ∥x∥∥(F − αI)x∥∥(α− α∗)−1∥,

which gives
∥x∥

2 · ∥(α− α∗)−1∥
⩽ ∥(F − αI)x∥

for all x ∈ HA. From Lemma 2.3 it follows that F − αI is invertible. □

Remark 2.1. Let A = C([0, 1]) or A = L∞((0, 1), µ). As we have seen in Example
2.4, the operator g̃I −G is not invertible, whereas g̃ − g̃ = 2ig1 ̸= 0. Therefore, it
is not sufficient only to assume that α− α∗ ̸= 0, so the requirement that a− a∗ is
invertible is indeed necessary in Corollary 2.3.

Example 2.6. Let A = M2(C) and T1, T2 ∈ A be given by T1 =
[
2 1
1 0

]
, T2 =[

0 i
i i

]
. Then T1 is self-adjoint and T2 − T ∗

2 = 2i
[
0 1
1 1

]
, so T2 − T ∗

2 is invertible.

Now, T1 − T2 =
[

2 1−i
1−i −i

]
, so det(T1 − T2) = 0, which gives that T1 − T2 is not

invertible. Hence the operator F := T1 · I is a self-adjoint operator on HA, but
F − T2 · I = (T1 − T2) · I is not invertible. This shows that the assumption that A
is commutative in Corollary 2.3 is indeed necessary.

For a self-adjoint operator F on HA, set

M(F ) = sup{∥⟨Fx, x⟩∥ | ∥x∥ = 1} and m(F ) = inf{∥⟨Fx, x⟩∥ | ∥x∥ = 1}.
We have the following corollary.

Corollary 2.4. If A = C([0, 1]) and F is a self-adjoint operator on HA, then

σA(F ) ⊆ {f ∈ A | |f |([0, 1]) ∩ [m,M ] ̸= ∅}.
If A = L∞((0, 1), µ) and F is a self-adjoint operator on HA, then

σA(F ) ⊆ {f ∈ A | µ(|f |−1([m− ϵ,M + ϵ])) > 0 for all ϵ > 0}.

Proof. LetA = L∞((0, 1), µ), F be a self-adjoint operator onHA and α ∈ A be such
that there exists an ϵ = ϵ(α) with the property that µ(|α|−1([m− ϵ,M + ϵ])) = 0.
Then (0, 1) = M1 ∪ M2, where M1 and M2 are Lebesgue measurable, mutually
disjoint subsets of (0, 1) satisfying |α|χM1 ⩾ (M + ϵ)χM1 and |α|χM2 ⩽ (m− ϵ)χM2

a.e. Hence, for all x ∈ HA, we have

⟨(F − αI)x, x⟩ = ⟨(F − αI)x, x⟩ · χM1
+ ⟨(F − αI)x, x⟩ · χM2

.

Now, we have

∥⟨(F − αI)x, x⟩∥ ⩾ ∥⟨(F − αI)x, x⟩χM1∥
⩾ ∥ᾱ⟨x, x⟩χM1∥ − ∥⟨Fx, x⟩χM1∥
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= ∥ᾱχM1
⟨x, x⟩χM1

∥ − ∥χM1
⟨Fx, x⟩χM1

∥
= ∥ᾱχM1

⟨x, x⟩χM1
∥ − ∥⟨Fx · χ1, x · χM1

⟩∥
⩾ (M + ϵ)∥⟨x, x⟩χM1∥ − ∥⟨F (x · χM1), x · χM1⟩∥
⩾ (M + ϵ)∥⟨x, x⟩χM1∥ −M∥⟨x · χM1 , x · χM1⟩∥
= (M + ϵ)∥⟨x, x⟩χM1

∥ −M∥χM1
⟨x, x⟩χM1

∥ = ϵ∥⟨x, x⟩χM1
∥

(where we have used that

∥⟨Fy, y⟩∥ = ∥y∥2
∥∥∥〈F( y

∥y∥

)
,

y

∥y∥

〉∥∥∥ ⩽ ∥⟨y, y⟩∥M).

Similarly we obtain

∥⟨(F − αI)x, x⟩∥ ⩾ ∥⟨(F − αI)x, x⟩χM2∥ ⩾ ∥⟨Fx, x⟩χM2∥ − ∥ᾱ⟨x, x⟩χM2∥
= ∥⟨F (x · χM2), x · χM2⟩∥ − ∥ᾱ⟨x, x⟩χM2∥
⩾ m∥⟨x · χM2

, x · χM2
⟩∥ − (m− ϵ)∥⟨x, x⟩χM2

∥ = ϵ∥⟨x, x⟩χM2
∥.

Hence ∥⟨(F − αI)x, x⟩∥ ⩾ ϵmax{∥⟨x, x⟩χM2∥, ∥⟨x, x⟩χM1∥} = ϵ∥⟨x, x⟩∥. Thus,
∥(F −αI)x∥∥x∥ ⩾ ∥⟨(F −αI)x, x⟩∥ ⩾ ϵ∥x∥2 for all x ∈ HA. It follows that F −αI
is bounded below, hence, from Lemma 2.3 we deduce that F − αI is invertible in
Ba(HA). The proof in the case when A = C([0, 1]) is similar, but more simple,
because if α ∈ A and |α|([0, 1])∩ [m,M ] = ∅, then by the continuity of |α| we must
either have that |α| < m or |α| > M that on the whole interval [0, 1]. Moreover,
there exists then an ϵ > 0 such that |α| ⩽ m− ϵ or |α| ⩾ M + ϵ on the whole [0, 1].
Hence we may proceed in the same way as in the above proof. □

Finally, we are going to study the properties of generalized spectra of normal
operators on HA.

Lemma 2.4. Let A be a commutative unital C∗-algebra and F be a normal operator
on HA, that is FF ∗ = F ∗F . If α1, α2 ∈ σA

p (F ) and α1 − α2 is not a zero divisor
in A, then ker(F − α1I) ⊥ ker(F − α2I).

Proof. Since F commutes with F ∗ and A is a commutative unital C∗-algebra, then
F − α2I and F ∗ − α∗

2I mutually commute. Hence ker(F − α2I) = ker(F ∗ − α∗
2I).

For x1 ∈ ker(F − α1I) and x2 ∈ ker(F − α2I) = ker(F ∗ − α∗
2I), we get

⟨x2, x1⟩(α1 − α2) = ⟨x2, x1⟩α1 − α2⟨x2, x1⟩ = ⟨x2, Fx1⟩ − ⟨F ∗x2, x1⟩ = 0

(where we have used that A is commutative, so ⟨x2, x1⟩ α2 = α2⟨x2, x1⟩). Since
(α1 − α2) is not a zero divisor by assumption, it follows that ⟨x2, x1⟩ = 0. □

Example 2.7. Let A = C([0, 1]) or A = L∞((0, 1), µ) and consider the self-adjoint
operator G from Example 2.4. For any function f in A with the support contained
in J2, we have (f, 0, 0, . . . ) ∈ kerG∩ ker(g̃I −G). However, g̃ = ig1 ̸= 0 and f ̸= 0,
but g̃ is not invertible in A, so it is not sufficient only to assume that α1 − α2 ̸= 0
and the assumption that α1 − α2 is not a zero divisor in A is indeed necessary.
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Example 2.8. Let A = B(H) and T ∈ A be a normal and invertible operator. If
H1 and H2 are two closed subspaces of H such that H = H1⊕̃H2 and H1 ̸= H⊥

2

(that isH1 andH2 are not mutually orthogonal), then T⊓ and T (1−⊓) are elements
of σA

p (T · I), where ⊓ stands for the skew projection onto H1 along H2. Moreover,
the operator T · I is normal operator on HA and T ⊓ −T (1− ⊓) is invertible in A
because T ⊓ −T (1− ⊓) has the matrix

[
T 0
0 −T

]
with respect to the decomposition

H = H1⊕̃H2 → T (H1)⊕̃T (H2) = H. However, if P1 and P2 denote the orthogonal
projections onto H1 and H2, respectively, then, for all j,

ej · P1 ∈ ker(T ⊓ ·I − T · I) and ej · P2 ∈ ker(T (1− ⊓) · I − T · I),
since ⊓P1 = P1 and (1− ⊓)P2 = P2. Moreover, P1P2 ̸= 0. So the assumption that
A is commutative is indeed necessary in Lemma 2.4.

Lemma 2.5. Let A be a commutative C∗-algebra and F be a normal operator on
HA. Then σA

rl(F ) = ∅, hence σA(F ) = σA
p (F ) ∪ σA

cl (F ).

Proof. Suppose that α ∈ σA
rl(F ). Then F − αI is bounded below. Again, since

F−αI and F ∗−α∗I mutually commute, we get that ker(F−αI) = ker(F ∗−α∗I) =
{0}. Next, since Im(F − αI) is closed, by [10] [11, Theorem 2.3.3] we have that

HA = ker(F ∗ − α∗I)⊕ Im(F − αI) = Im(F − αI).

So F − αI is surjective, thus invertible, which gives that σA
rl(F ) = ∅. □

Example 2.9. Let A = B(H) and S, P be as in Example 2.5. Then P · I is a
normal operator on HA being self-adjoint and (S − P ) · I is bounded below on
HA. Indeed, we have that ∥(S − P )x∥ ⩾ ∥x∥ for all x ∈ H, hence m(S − P ) ⩾ 1.
Therefore, since

T ∗(S − P )∗(S − P )T ⩾ (m(S − P ))2T ∗T

for all T ∈ B(H), it is not hard to see that (S − P ) · I is bounded below on HA.
However, Im((S−P ) ·I)⊥ = ker((S∗−P ) ·I) and ker((S∗−P ) ·I) ̸= {0} as we have
seen in Example 2.5. Hence P · I is a normal operator on HA and S ∈ σA

rl(P · I),
which shows that the assumption that A is commutative is indeed necessary in
Lemma 2.5. Moreover, this also shows that the assumption that A is commutative
is indeed necessary in Lemma 2.3 as well, because S ∈ A ∖ σA

p (P · I), however,
Im((S − P ) · I)⊥ ̸= {0}.

The next lemma is a generalization of [8, Chapter XI, Proposition 1.1]. For
F ∈ Ba(HA), set

σA
a (F ) = {α ∈ A | F − αI is not bounded below},

σA
l (F ) = {α ∈ A | F − αI is not left invertible in Ba(HA)},

σA
r (F ) = {α ∈ A | F − αI is not right invertible in Ba(HA)}.

Lemma 2.6. Let F ∈ Ba(HA). Then the following statements are equivalent.

a) α ∈ A∖ σA
a (F ).

b) α ∈ A∖ σA
l (F ).

c) α∗ ∈ A∖ σA
r (F ∗).
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d) Im(α∗I − F ∗) = HA.

Proof. This proof is similar to the proof of [8, Chapter XI, Proposition 1.1]. Indeed,
if F − αI is bounded below, then Im(F − αI) is orthogonally complementable in
HA by [10] [11, Theorem 2.3.3]. The operator F − αI is invertible viewed as an
operator from HA onto Im(F − αI). This follows by the Banach open mapping
theorem. Hence (F − αI)−1 ∈ Ba(Im(F − αI), HA). Let P denote the orthogonal
projection onto Im(F−αI), then (F−αI)−1P is a left inverse of F−αI in Ba(HA).
Next, F − αI has left inverse if and only if F ∗ − α∗I has right inverse in Ba(HA),
so (b) ⇒ (c). Part (c) ⇒ (d) is obvious. Finally, if Im(α∗I − F ∗) = HA, then
ker(F−αI) = Im(F ∗−α∗I)⊥ = {0}. Moreover, from the proof of [10] [11, Theorem
2.3.3] we have that Im(F − αI) is closed since Im(F ∗ − α∗I) is closed. Therefore,
F − αI is bounded below. □

The next two propositions can be proved in exactly the same way as for oper-
ators on Hilbert spaces, see [13, Chapter 4, Proposition 20] and [13, Chapter 4,
Proposition 21].

Proposition 2.5. For F ∈ Ba(HA), we have that σA
a (F ) is a closed subset of A

in the norm topology and σA(F ) = σA
a (F ) ∪ σA

rl(F ).

Proof. The statement follows since Ma(HA) is open in Ba(HA) in the norm topol-
ogy. Next, if F −α0I is bounded below, it is easy to see that either α0 ∈ σA

rl(F ) or
F − α0I is invertible. □

Proposition 2.6. Let A be a commutative C∗-algebra. If F ∈ Ba(HA), then
∂σA(F ) ⊆ σA

a (F ). Moreover, if M is a closed submodule of HA invariant with
respect to F and F0 = F|M , then we have ∂σA(F0) ⊆ σA

a (F ) and σA(F0)∩ρA(F ) =

σA
rl(F0), where ρA(F ) = A∖ σA(F ).

Proof. Let α0 ∈ ∂σA(F ). Then there exists a sequence {αn} ⊆ A∖σA(F ) such that
αn → α0 in A, hence F −αnI −→ F −α0I in the norm. From a well known result
for operators on Banach spaces stated in [13, Chapter 4, Proposition 12], there
exists a subsequence αnk

such that ∥(F−αnk
I)−1∥ −→ ∞ as k −→ ∞ since F−α0I

is not invertible. Hence, there exists a sequence of unit vectors {xk} ⊆ HA such
that ∥(F − αnk

I)−1xk∥ −→ ∞ as k 7−→ ∞. For each k, set yk = (F − αnk
I)−1xk

and vk = yk

∥yk∥ . Then we have that

∥(F − α0I)vk∥ ⩽ ∥(α0 − αnk
)Ivk∥+ ∥(F − αnkI)vk∥ ⩽ ∥α0 − αnk

∥+ 1

∥yk∥
,

which gives that ∥(F − α0I)vk∥ −→ 0, so α0 ∈ σA
a (F ). This shows the first

statement in the proposition. However, then we have that

∂σA(F0) ⊆ σA
a (F0) ⊆ σA

a (F ) ⊆ σA(F ). □

Example 2.10. We may also consider the operators on HA defined by

W (ek) = e2k and W ′(ek) = e2k−1 for all k ∈ N.
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Also for these operators we have σA(W ) = σA(W ′) = {α ∈ A | inf |α| ⩽ 1}
in the case when A = C([0, 1]) or when A = L∞((0, 1), µ). Suppose now that
A = L∞((0, 1), µ) and consider the operator F on HA given by

F (f1, f2, f3, . . . ) = (χ(0, 12 )
f1, χ( 1

2 ,1)
f1, χ(0, 12 )

f2, χ( 1
2 ,1)

f2, . . . ).

It follows that F has the matrix
[
W ′ 0
0 W

]
with respect to the decomposition

HA = (HA · χ(0, 12 )
)⊕ (HA · χ( 1

2 ,1)
)

F−→ (HA · χ(0, 12 )
)⊕ (HA · χ( 1

2 ,1)
) = HA.

Therefore, σA(F ) = {α ∈ A | inf |α| ⩽ 1}. Next we have that

σA
p (W ) = ∅, σA

p (W ′) = {α ∈ A | α = 1 on some closed subinterval J ⊆ [0, 1]}

in the case when A = C([0, 1]) and

σA
p (W ′) = {α ∈ A | µ({t ∈ (0, 1) | α(t) = 1}) > 0}

in the case when A = L∞((0, 1), µ). Hence, we get that

σA
p (F ) = {α ∈ A | µ({t ∈ (0,

1

2
) | α(t) = 1}) > 0}.

Consider next the operators

Z(ej) =

{
ek when j = 2k

0 else
, k ∈ N; Z ′(ej) =

{
ek when j = 2k − 1

0 else
, k ∈ N

Then σA(Z) = σA(Z ′) = {α ∈ A | inf |α| ⩽ 1}. This follows since Z = W ∗ and
Z ′ = W ′∗. Moreover, we have

σA
p (Z) = {α ∈ A | inf |α| < 1}

both in the case when A = C([0, 1]) and when A = L∞((0, 1), µ). In the case when
A = L∞((0, 1), µ) we have that

σA
p (Z ′) = {α ∈ A | inf |α| < 1 or µ({t ∈ (0, 1) | α(t) = 1}) > 0}

and in the case when A = C([0, 1]), we have that

σA
p (Z ′) = {α ∈ A | inf |α| < 1 or α = 1 on some closed subinterval J ⊆ [0, 1]}.

Let the operator D on HA be given by

D(g1, g2, g3, . . . ) = (g1χ(0, 12 )
+ g2χ( 1

2 ,1)
, g3χ(0, 12 )

+ g4χ( 1
2 ,1)

, . . . )

when A = L∞((0, 1), µ). Then D = F ∗ and D has the matrix
[
Z′ 0
0 Z

]
with respect

to the decomposition HA · χ(0, 12 )
⊕HA · χ( 1

2 ,1)
. It follows that

σA(D) = {α ∈ A | inf |α| ⩽ 1},
σA
p (D) =

{
α ∈ A | inf |α| < 1 or µ

({
t ∈

(
0, 1

2

)
| α(t) = 1

})
> 0

}
.
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3. Generalized Fredholm spectra of operators over C∗-algebras

We recall first the following definitions.

Definition 3.1. [9] [11, Definition 2.7.1] LetM be an abelian monoid. Consider the
Cartesian product M ×M and its quotient monoid with respect to the equivalence
relation

(m,n) ∼ (m′, n′) ⇔ ∃p, q : (m,n) + (p, p) = (m′, n′) + (q, q).

This quotient monoid is a group, which is denoted by S(M) and is called the
symmetrization of M . Consider now the additive category P(A) of projective
modules over a unital C∗-algebra A and denoted by [M] the isomorphism class of
an object M from P(A). The set ϕ(P(A)) of these classes has the structure of an
Abelian monoid with respect to the operation [M] + [N ] = [M⊕N ]. In this case
the group S(ϕ(P(A))) is denoted by K(A) or K0(A) and is called the K-group of
A or the Grothendieck group of the category P(A).

As regards the K-group K0(A), it is worth mentioning that it is not true in
general that [M ] = [N ] implies that M ∼= N for two finitely generated Hilbert
modules M,N over A. If K0(A) satisfies the property that [N ] = [M ] implies that
N ∼= M for any two finitely generated, Hilbert modules M,N over A, then K0(A)
is said to satisfy ”the cancellation property”, see [14, Section 6.2].

Definition 3.2. [12], [11, Definition 2.7.4] A (boundedA-linear) operator F : HA→
HA is called (adjointable) A-Fredholm if

1) it is adjointable;
2) there exists a decomposition of the domain, HA = M1⊕̃N1, and the range

HA = M2⊕̃N2 (where M1,M2,N1,N2 are closed A-modules and N1,N2

have a finite number of generators), such that F has the matrix form F =[
F1 0
0 F2

]
with respect to these decompositions and F1 = F|M1

: M1 → M2

is an isomorphism.

Definition 3.3. [12], [11, Definition 2.7.8] Let the conditions of Definition 3.2 hold.
We define the index of F by indexF = [N1]− [N2] ∈ K0(A).

Next we recall the definition of semi-A-Fredholm and semi-A-Weyl operators
on HA.

Definition 3.4. [1, Definition 2.1] Let F ∈ Ba(HA). We say that F is an upper
semi-A-Fredholm operator if there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix
[
F1 0
0 F4

]
, where F1 is an isomorphism,

M1,M2, N1, N2 are closed submodules ofHA andN1 is finitely generated. Similarly,
we say that F is a lower semi-A-Fredholm operator if all the above conditions hold
except that in this case we assume that N2 (and not N1) is finitely generated.

Set

MΦ+(HA) = {F ∈ Ba(HA) | F is upper semi-A-Fredholm},
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MΦ−(HA) = {F ∈ Ba(HA) | F is lower semi-A-Fredholm},
MΦ(HA) = {F ∈ Ba(HA) | F is A-Fredholm operator on HA}.

Next we set MΦ±(HA) = MΦ+(HA)∪MΦ−(HA). Notice that if M,N are two
arbitrary Hilbert modules C∗-modules, the definition above could be generalized
to the classes MΦ+(M,N) and MΦ−(M,N).

Definition 3.5. [1, Definition 5.1] Let F ∈ MΦ(HA).

We say that F ∈ M̃Φ−
+(HA) if there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix
[
F1 0
0 F4

]
, where F1 is an isomorphism, N1, N2

are closed, finitely generated and N1 ⪯ N2, that is N1 is isomorphic to a closed
submodule of N2. We define similarly the class M̃Φ+

−(HA), the only difference in
this case is that N2 ⪯ N1. Then we set

MΦ−
+(HA) = (M̃Φ−

+(HA)) ∪ (MΦ+(HA)∖MΦ(HA)),

MΦ+
−(HA) = (M̃Φ+

−(HA)) ∪ (MΦ−(HA)∖MΦ(HA)).

Further, we define MΦ0(HA) to be the set of all F ∈ MΦ(HA) for which there

exists an MΦ-decomposition HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA, where N1

∼= N2.

Definition 3.6. [1, Definition 5.6] Let F ∈ MΦ+(HA).

We say that F ∈ MΦ−
+
′
(HA) if there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F =
[
F1 0
0 F4

]
, where F1 is an isomorphism, N1 is closed,

finitely generated and N1 ⪯ N2. Similarly, we define the class MΦ+
−
′
(HA), only in

this case F ∈ MΦ−(HA), N2 is finitely generated and N2 ⪯ N1.
Such operators will be called semi-A-Weyl operators throughout the paper.

Then we introduce the following definition.

Definition 3.7. We set msΦ(F ) = inf{∥α∥ | α ∈ A, F − αI /∈ MΦ(HA)},
ms(F ) = inf{∥α∥ | α ∈ A, F − αI /∈ MΦ±(HA)},

ms+(F ) = inf{∥α∥ | α ∈ A, F − αI /∈ MΦ+(HA)},
ms−(F ) = inf{∥α∥ | α ∈ A, F − αI /∈ MΦ−(HA)}.

It follows that

msΦ(F ) = max{ϵ ⩾ 0 | ∥α∥ < ϵ ⇒ F − αI ∈ MΦ(HA)},
ms+(F ) = max{ϵ ⩾ 0 | ∥α∥ < ϵ ⇒ F − αI ∈ MΦ+(HA)},
ms−(F ) = max{ϵ ⩾ 0 | ∥α∥ < ϵ ⇒ F − αI ∈ MΦ−(HA)},
ms(F ) = max{ϵ ⩾ 0 | ∥α∥ < ϵ ⇒ F − αI ∈ MΦ±(HA)}.

From [11, Lemma 2.7.10] and [1, Theorem 4.1] it follows that

msΦ(F ) > 0 ⇔ F ∈ MΦ(HA), ms+(F ) > 0 ⇔ F ∈ MΦ+(HA),
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ms−(F ) > 0 ⇔ F ∈ MΦ−(HA), ms(F ) > 0 ⇔ F ∈ MΦ±(HA).

From [1, Corollary 2.11] it follows that

ms+(F ) = ms−(F
∗), msΦ(F ) = msΦ(F

∗), ms(F ) = ms(F ∗).

We have the following lemma.

Lemma 3.1. Let F ∈ Ba(HA). If ms+(F ) > 0 and ms−(F ) > 0, then ms+(F ) =
ms−(F ).

Proof. Since ms+(F ) and ms−(F ) are strictly positive by assumption, then, by [1,
Corollary 2.4], F ∈ MΦ+(HA) ∩MΦ−(HA) = MΦ(HA). If ms+(F ) > ms−(F ),
then, obviously, there exists an α ∈ A such that ∥α∥ ∈ (ms−(F ),ms+(F )),
and (F − αI) ∈ MΦ+(HA) ∖ MΦ−(HA). However, if we consider the map
f : [0, 1] → Ba(HA) given by f(t) = F − tαI, then f is continuous. Since ∥α∥ <
ms+(F ), it follows that f([0, 1]) ⊆ MΦ+(HA) ⊆ MΦ±(HA). By [1, Corollary 4.3]
we deduce that f(1) ∈ MΦ(HA) since f(0) ∈ MΦ(HA). However, we have that
f(1) = F − αI /∈ MΦ−(HA). Since MΦ(HA) ⊆ MΦ−(HA), we get a contradic-
tion. Thus, ms+(F ) = ms−(F ) in this case. Similarly, if ms−(F ) ⩾ ms+(F ), we
can show that actually ms−(F ) = ms+(F ). □

Lemma 3.2. Let F ∈ Ba(HA). Then

1) msΦ(F ) = min{ms+(F ),ms−(F )},
2) ms(F ) = max{ms+(F ),ms−(F )}.

Proof. First we prove 1). If 0 = min{ms+(F ),ms−(F )}, then either ms+(F ) = 0
or ms−(F ) = 0. Suppose that ms+(F ) = 0. Then, by the above arguments, since
MΦ+(HA) is open, we must have that F /∈ MΦ+(HA). Hence F /∈ MΦ(HA),
so msΦ(F ) = 0. Similarly, if ms−(F ) = 0, it follows that msΦ(F ) = 0, since
MΦ−(HA) is open and MΦ(HA) ⊆ MΦ−(HA). Suppose now that

0 < min{ms+(F ),ms−(F )} = ms+(F ).

By Lemma 3.1 we have ms+(F ) = ms−(F ). Applying [1, Corollary 2.4] we easily
deduce that msΦ(F ) = ms+(F ) = ms−(F ).

Next we prove 2). If max{ms+(F ),ms−(F )} = 0, then F /∈ MΦ±(HA), hence
ms(F ) = 0, as in the proof of [15, (2.3.8.2.)]. Suppose that 0 < max{ms+(F ),
ms−(F )} = ms+(F ). Obviously, we have that ms(F ) ⩾ ms+(F ). If ms(F ) >
ms+(F ), then for any r ∈ (ms+(F ),ms(F )), the set

Cr := {F − αI | α ∈ A | ∥α∥ ⩽ r}

would intersect both MΦ+(HA) and MΦ−(HA) ∖ MΦ+(HA), which are both
open by [1, Theorem 4.1] and [6, Remark 3.3.4]. Hence the sets MΦ+(HA) ∩ Cr

and (MΦ−(HA) ∖ MΦ+(HA)) ∩ Cr would form a separation of Cr, since Cr ⊆
MΦ±(HA). Indeed, since r > max{ms+(F ),ms−(F )}, we can not have that
Cr ⊆ MΦ+(HA) or Cr ⊆ MΦ−(HA). On the other hand, since r < ms(F ), we
must have that Cr ⊆ MΦ±(HA). Therefore, it follows that Cr∩MΦ+(HA) ̸= ∅ and
Cr ∩ (MΦ−(HA)∖MΦ+(HA)) ̸= ∅. This is a contradiction since Cr is connected.
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Hence we must have ms(F ) = ms+(F ). The case when max{ms+(F ),ms−(F )} =
ms−(F ) can be treated analogously. □

Definition 3.8. Let F ∈ Ba(HA). We set

σA
ew(F ) = {α ∈ A | (F − αI) /∈ MΦ0(HA)},

σA
euf (F ) = {α ∈ A | (F − αI) /∈ MΦ+(HA)},
σA
elf (F ) = {α ∈ A | (F − αI) /∈ MΦ−(HA)},
σA
ek(F ) = {α ∈ A | (F − αI) /∈ MΦ±(HA)},

σA
ef (F ) = {α ∈ A | (F − αI) /∈ MΦ(HA)}.

Lemma 3.3. Let F ∈ Ba(HA) and suppose that K0(A) satisfies the cancellation
property. Then σA(F ) = σA

ew(F ) ∪ σA
p (F ) ∪ σA

cl (F ).

Proof. It suffices to show ” ⊆ ”. Suppose that α ∈ σA(F )∖(σA
cl (F )∪σA

ew(F )). Then
Im(F − αI) is closed and (F − αI) ∈ MΦ0(HA). By Theorem [11, Theorem 2.3.3]

the operator F −αI has the matrix
[
(F−αI)1 0

0 0

]
with respect to the decomposition

HA = ker(F − αI)⊥⊕̃ ker(F − αI)
F−αI−→ Im(F − αI)⊕̃ Im(F − αI)⊥ = HA,

where (F − αI)1 is an isomorphism by the Banach open mapping theorem. Since
we have (F − αI) ∈ MΦ0(HA), then it holds that

0 = index(F − αI) = [ker(F − αI)]− [Im(F − αI)⊥],

so [ker(F−αI)] = [Im(F−αI)⊥]. If [ker(F−αI)] = 0, then ker(F−αI) = {0}, since
K0(A) satisfies the cancellation property by assumption. By the same reason we
would have Im(F−αI)⊥ = {0}, so F−αI is then invertible, which is a contradiction,
since α ∈ σA(F ). Thus, we must have ker(F − αI) ̸= {0}, so α ∈ σA

p (F ). □

Example 3.1. Let A = B(H), where H is an infinite-dimensional, separable
Hilbert space. If H1 is any infinite-dimensional subspace of H, then there ex-
ists an isometric isomorphism U of H onto H1. Set Ũ to be the operator on A
given by Ũ(F ) = JUF for all F ∈ A where J is the inclusion of H1 into H. Then

Ũ ∈ Ba(A) and moreover, Ũ is an isometry. Put T to be the operator with the
matrix

[
1 0
0 Ũ

]
with respect to the decomposition

HA = L⊥
1 ⊕ L1

T−→ L⊥
1 ⊕ L1 = HA.

Then T ∈ Ba(HA) and T is bounded below. Moreover,

ImT⊥ = SpanA{(P, 0, 0, 0, . . . )},
where P is the orthogonal projection of H onto H⊥

1 . Obviously, T ∈ MΦ0(HA)
and moreover, T is bounded below, but T is not surjective, thus not invertible.
Hence

0 ∈ (σA
rl(T )∖ σA

ew(T )) ⊆ (σA(T )∖ (σA
ew(T ) ∪ σA

p (T ) ∪ σA
cl (T ))).

This shows that the assumption that K0(A) satisfies the cancellation property is
indeed necessary in Lemma 3.3.
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For F ∈ Ba(HA) we set

MΦ+(F ) = {α ∈ A | F − αI ∈ MΦ+(HA)},
MΦ−(F ) = {α ∈ A | F − αI ∈ MΦ−(HA)},
MΦ(F ) = {α ∈ A | F − αI ∈ MΦ(HA)},

MΦ±(F ) = {α ∈ A | F − αI ∈ MΦ±(HA)},
MΦ0(F ) = {α ∈ A | F − αI ∈ MΦ0(HA)}.

The next two results are generalizations of [8, Chapter XI, Proposition 4.9].

Proposition 3.1. If F ∈ Ba(HA), then the components of A∖(σA
e uf (F )∩σA

e lf (F ))
are either completely contained in one of the sets

MΦ+(F )∖MΦ(F ), MΦ−(F )∖MΦ(F )

or they are completely contained in MΦ(F ) and in this case index(F − αI) is
constant on them.

Proof. Let C be a component of A ∖ (σA
e uf (F ) ∩ σA

e lf (F )). Then either C ∩
MΦ+(F ) ̸= ∅ or C∩MΦ−(F ) ̸= ∅. Hence we must have that either C ⊆ MΦ−(F )
or C ⊆ MΦ+(F ) because otherwise the sets

C ∩MΦ−(F ) and C ∩ (MΦ+(F )∖MΦ−(F ))

would form a separation of C, which is a contradiction. Indeed, it follows straight-
forward from [1, Theorem 4.1] and [6, Remark 3.3.4] that the sets MΦ−(F ) and
MΦ+(F ) ∖ MΦ−(F ) are open in the norm topology of A. Assume that C ⊆
MΦ+(F ). If C ∩ MΦ(F ) ̸= ∅, then C ⊆ MΦ(F ) because otherwise the sets
MΦ(F ) and MΦ+(F ) ∖ MΦ(F ) would form a separation of C, since it follows
straightforward from [11, Lemma 2.7.10] and [1, Theorem 4.1] that MΦ(F ) and
MΦ+(F )∖MΦ(F ) are open. So, either C ⊆ MΦ+(F )∖MΦ(F ) or C ⊆ MΦ(F ).
Now, if C ⊆ MΦ(F ), then index(F − αI) must be constant on C, since index is
locally constant by [11, Lemma 2.7.10].

The case when C ⊆ MΦ−(F ) can be treated similarly. □

Lemma 3.4. Let F ∈ Ba(HA). If α ∈ ∂σA(F ) ∖ (σA
e uf (F ) ∩ σA

e lf (F )), then

α ∈ MΦ0(F ).

Proof. Let α ∈ ∂σA(F ) ∖ (σA
e uf (F ) ∩ σA

e lf (F )). Then α ∈ MΦ±(F ). Since α ∈
∂σA(F ), each open neighbourhood of α in A intersects MΦ0(F ) non-empty. Since
MΦ+(F ) ∖MΦ(F ) and MΦ−(F ) ∖MΦ(F ) are open, it follows that α must be
an element of MΦ(F ). Now, since α ∈ ∂σA(F ) and MΦ(F ) ∖ MΦ0(F ) is open
(this follows from [6, Lemma 3.4.16], we must have that α ∈ MΦ0(F ). □

Now we consider the following spectra for F ∈ Ba(HA):

σA
eã(F ) = {α ∈ A | (F − αI) /∈ M̃Φ

−
+(HA)},

σA
ea(F ) = {α ∈ A | (F − αI) /∈ MΦ−

+(HA)},

σA
eb̃
(F ) = {α ∈ A | (F − αI) /∈ MΦ̃+

−(HA)},
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σA
eb(F ) = {α ∈ A | (F − αI) /∈ MΦ+

−(HA)},

σA
ea′(F ) = {α ∈ A | (F − αI) /∈ MΦ−′

+ (HA)},

σA
eb′(F ) = {α ∈ A | (F − αI) /∈ MΦ+′

− (HA)}.

By [1, Remark 5.8] we have that

MΦ−′

+ (HA) ⊆ MΦ−
+(HA) and MΦ+′

− (HA) ⊆ MΦ+
−(HA).

Hence, we get σA
ea(F ) ⊆ σA

ea′(F ) ⊆ σA
eã(F ) and σA

eb(F ) ⊆ σA
eb′(F ) ⊆ σA

eb̃
(F ). We

present the following proposition.

Proposition 3.2. Let F ∈ Ba(HA). Then

∂σA
eã(F ) ⊆ ∂σA

ea′(F ) ⊆ ∂σA
ea(F ),

∂σA
eb̃
(F ) ⊆ ∂σA

eb′(F ) ⊆ ∂σA
eb(F ).

Proof. It suffices to show that

∂σA
eã(F ) ⊆ σA

ea′(F ), ∂σA
ea′(F ) ⊆ σA

ea(F ),

∂σA
eb̃
(F ) ⊆ σA

eb′(F ), ∂σA
eb′(F ) ⊆ σA

eb(F ).

Suppose that α ∈ ∂σA
eã(F )∖ σA

ea′(F ). Then

F − αI ∈ MΦ−′

+ (HA)∖ M̃Φ
−
+(HA) = MΦ−′

+ (HA)∖ (MΦ−′

+ (HA) ∩MΦ(HA))

= MΦ−′

+ (HA)∖MΦ(HA)

= MΦ−′

+ (HA) ∩ (MΦ+(HA)∖MΦ(HA)),

where in the first equality we apply [1, Proposition 5.7] and in the last equality we

apply the fact that MΦ−′

+ (HA) ⊆ MΦ+(HA) by definition. Now, by [1, Theorem

4.1] and [1, Lemma 5.9], we obtain that MΦ−′

+ (HA) ∖ M̃Φ
−
+(HA) is open in the

norm topology. As F − αI is in MΦ−′

+ (HA) ∖ M̃Φ
−
+(HA), it follows that α /∈

∂σA
eã(F ), which is a contradiction. Thus we must have that ∂σA

eã(F ) ⊆ σA
ea′(F ).

Next suppose that α ∈ ∂σA
ea′(F )∖σA

ea(F ). Since MΦ−′

+ (HA) is open by [1, Lemma

5.9], we must have that σA
ea′(F ) is closed, hence F−αI ∈ MΦ−

+(HA)∖MΦ−′

+ (HA).

Now, as MΦ−′

+ (HA) ⊆ MΦ−
+(HA) ⊆ MΦ+(HA), we get that

MΦ−
+(HA)∖MΦ−′

+ (HA) = MΦ−
+(HA) ∩ (MΦ+(HA)∖MΦ−′

+ (HA)),

so by [6, Corollary 3.4.10] and [6, Lemma 3.4.16] we deduce that the set dif-

ference MΦ−
+(HA) ∖ MΦ−′

+ (HA) is open in the norm topology. It follows that

α /∈ ∂σA
ea′(F ), which is a contradiction. We conclude then that ∂σA

ea′(F ) ⊆ σA
ea(F ).

Similarly we can prove that ∂σA
eb̃
(F ) ⊆ σA

eb′(F ) and ∂σA
eb′(F ) ⊆ σA

eb(F ). □

Corollary 3.1. The sets MΦ−′

+ (HA) ∖ M̃Φ
−
+(HA), MΦ−

+(HA) ∖ MΦ−′

+ (HA),

MΦ+′

− (HA)∖ M̃Φ
+′

− (HA) and MΦ+
−(HA)∖MΦ+′

− (HA) are open.
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Example 3.2. Consider the Hilbert space L2((0, 1), µ). For every f ∈ C([0, 1])
or f ∈ L∞((0, 1), µ) we consider the multiplication operator Mf on L2((0, 1), µ),
i.e. Mf (g) = gf for all g ∈ L2((0, 1), µ). Then Mf is well defined, bounded linear
operator on L2((0, 1), µ), ∥Mf∥ ⩽ ∥f∥∞, andM∗

f = Mf̄ . If F ∈ B(L2(0, 1), µ), then

the operators F −Mf , when f runs through C([0, 1]) or L∞((0, 1), µ), give rise to
another kind of generalized spectra of F in C([0, 1]) or in L∞((0, 1), µ), respectively.
Many of the results presented in this chapter have their natural analogue in this
setting here. However, we should notice that, since L2((0, 1), µ) is an ordinary
Hilbert space, we consider now generalized spectra in C([0, 1]) or in L∞((0, 1), µ)
induced by the corresponding subclasses of the classical semi-Fredholm operators
on L2((0, 1), µ).
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