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1. Introduction

Throughout the text, the notation used is a standard one; the letters V , W ,
V1, V2 and so on denote linear (vector) spaces over the field C, unless stated dif-
ferently. Letters A, B, C, X, Y , L, S and so on denote linear operators (linear
transformations) defined in the afore-given vector spaces. The operator I stands
for the identical operator on a fixed space. If an operator L is bounded (continu-
ous), then it is understood that it is defined on the entire space; otherwise, if the
operator L is unbounded, then we emphasize the set of vectors in which it exists
(i.e. its domain), by denoting it DL. The operator L is densely defined in the
normed space V1 if DL = V1, where the closure DL of DL is understood in the
topology induced by the given norm on V1. The set of values which the operator L
attains is called its range (or image), and is denoted as R(L). The set of all linear
operators with their domains being subsets of V1 and their ranges being subsets of
V2 is denoted as L(V1, V2). The set of all bounded linear operators from V1 to V2
is denoted as B(V1, V2). Specially, if V1 is a finite-dimensional vector space over C
or R, with dimV1 = n and V2 is a finite-dimensional vector space with dimV2 = m
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over the same field, then B(V1, V2) = Cm×n or B(V1, V2) = Rm×n, respectively. If
V1 = V2 = V , we then write L(V ), B(V ) and Cn×n, or respectively Rn×n.

Let V be a Banach space and let L ∈ L(V ) be a densely defined linear operator
in V . The set of values λ ∈ C such that (A− λI) does not have a bounded inverse
in B(V ) defines the spectrum of L, denoted as σ(L). The complement of σ(L) in C
defines the resolvent set for L, denoted as ρ(L). The set of vectors u ∈ V such that
Lu = 0 defines the null-space for L, denoted as N (L). The value λ ∈ σ(L), such
that N (L−λI) is nontrivial (i.e. there exists some u ̸= 0 such that Lu = λu) is an
eigenvalue for L and the non-zero u ∈ N (L− λI) is the corresponding eigenvector
for L. The set of all eigenvalues for operator L define its points spectrum, denoted
as σp(L). The value λ ∈ σ(L) is an approximate eigenvalue for L if there exists a
normed sequence (xn)n∈N ⊂ DL such that ∥xn∥ = 1 for every n and

(L− λI)xn → 0, n→ +∞.

In that sense, the set of all approximate eigenvalues for L defines its approximate
point spectrum, denoted as σapp(L). The set of complex numbers λ such that
R(L− λI) is not dense in V denotes the defect spectrum for L,

σd(L) = {λ ∈ C : R(L− λI) ̸= V } ⊂ σ(L).

The set of complex numbers λ such that L− λI is not ”onto” in V represents the
approximate defect spectrum for L,

σδ(L) = {λ ∈ C : R(L− λI) ̸= H} ⊂ σ(L).

Recall that, if the operator L is bounded, then σ(L) is a compact, non-empty subset
of C while ρ(L) is an unbounded (non-empty) subset of C. If the operator L is
unbounded, then it can have an empty spectrum or an empty resolvent set. If L is
a square matrix then σ(L) consists of its eigenvalues. For given Hilbert spaces V
and W , for arbitrary L ∈ L(V,W ), the unique closed (if such exists) L∗ ∈ L(W,V )
which satisfies

⟨Lu, v⟩ = ⟨u, L∗v⟩,
for every u ∈ DL and every v ∈ DL∗ , denotes the Hilbert-conjugate (or adjoint)
operator of the operator L.

1.1. On the equation AX − XB = C. Let V1 and V2 be given Banach spaces.
Equations of the form

(1.1) AX −XB = C

are called Sylvester equations, where, in general, A ∈ L(V2), B ∈ L(V1) and
C ∈ L(V1, V2), are given linear operators. These expressions appear in many differ-
ent branches of mathematics, physics and engineering, see [1,2,6,8,9,20,24,25,30,
33, 36, 38, 39, 41, 44, 45, 50–54, 57] and numerous references therein. Every individ-
ual application of the equation (1.1) requires unique mathematical, physical and
technical assumptions for the spaces V1 and V2, and for the corresponding linear
transformations A, B and C.

From mathematical perspective, it is significant to distinguish several important
cases for these entities. Those are the case when V1 and V2 are finite-dimensional
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vector spaces (and the operators A, B and C are finite scalar matrices), the case
when V1 and V2 are Banach or Hilbert spaces while A, B and C are appropriately
provided bounded (continuous) linear operators, and finally, the case when V1 and
V2 are Banach or Hilbert spaces while the operators A, B and C are unbounded.

The first result concerning solvability of such equations in matrices was estab-
lished by J. J. Sylvester in 1884, hence the name of the equation.

Theorem 1.1. [61]Let A, B and C be matrices of appropriate dimensions. The
equation (1.1) has a unique solution X if and only if σ(A) ∩ σ(B) = ∅.

Proof. (see [6]). The square matrices A : X 7→ AX and B : X 7→ XB commute,
therefore (see [30]) σ(A−B) ⊂ σ(A)− σ(B). Since σ(A) = σ(A) and σ(B) = σ(B),
disjointness of spectra of A and B implies that 0 /∈ σ(A − B). Obviously, the
Sylvester operator S : X 7→ AX −XB is the difference of operators A and B, thus
0 /∈ σ(S) and for every afore-given matrix C there exists a unique X = S−1(C)
such that S(X) = C.

Conversely, assume that for every afore-given matrix C there exists a unique
solution X to (1.1). If there exists a λ ∈ σ(A) ∩ σ(B) then λ̄ ∈ σ(A∗), thus there
exist (non-zero) eigenvectors u and v for B and A∗, respectively, which correspond
to λ and λ̄, respectively. Define Cu := v and let X be a unique solution to the
appropriate Sylvester equation. Then

0 = λ⟨Xu, v⟩ − λ⟨Xu, v⟩ = ⟨Xu, λ̄v⟩ − λ⟨Xu, v⟩
= ⟨Xu,A∗v⟩ − ⟨λXu, v⟩ = ⟨AXu, v⟩ − ⟨XBu, v⟩
= ⟨(AX −XB)u, v⟩ = ⟨Cu, v⟩ = ⟨v, v⟩ = ∥v∥2 > 0,

which is impossible. □

Its extension to bounded linear operators defined on Banach spaces was proved
by Rosenblum in 1956. Notice that only one implication holds, rather than the
equivalence.

Theorem 1.2. [52] Let V1 and V2 be Banach spaces and let A, B and C be bounded
linear operators defined on the appropriate spaces. The equation (1.1) has a unique
solution if σ(A) ∩ σ(B) = ∅.

The proof of this statement provided in [6] relies on the lemma below.

Lemma 1.1. [6] If A and B are commuting bounded linear operators on a Banach
space V , then σ(A− B) ⊂ σ(A)− σ(B).

Proof. Proof of Theorem 1.2 (see [6]). Observe the commuting operators A : X 7→
AX and B : X 7→ XB, where X ∈ B(V1, V2) and A,B ∈ B(B(V1, V2)). Since A and
B are bounded linear operators such that σ(A) ∩ σ(B) = ∅ it follows that

0 /∈ σ(A)− σ(B) ⊃ σ(A− B).

This proves that the Sylvester operator S : X 7→ AX−XB, S = A−B is invertible
in B(B(V1, V2)). Subsequently, for every given C ∈ B(V1, V2) there exists a unique
X ∈ B(V1, V2), given as X = S−1(C), such that S(X) = C. □
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The above mentioned Lemma 1.1 is proved via Gelfand theory for commutative
Banach algebras (see [6,22], and [48]). For a unital complex semisimple commuta-
tive Banach Algebra A, denote by MA the maximal ideal space of A, consisting of
all complex homomorphisms φ : A → C. Recall that MA is a compact Hausdorff
topological space (see [6,14,22,48] and [56]). In that sense, for a ∈ A, the Gelfand
transform of a, denoted as â is the continuous map â : φ 7→ φ(a) fromMA to C and
the range of Gelfand transform at a is precisely the spectrum of a in A (see [22]
or [48]), {â(φ) : φ ∈ MA} = σA(a). Thus, for A ∈ An×n, where A = [ai,j ]n×n,

ai,j ∈ A, the Gelfand transform of A, denoted as Â, is defined as Â := [âi,j ]n×n.

Theorem 1.3. [56, Theorem 1.2.] Let A be a commutative unital complex semisim-
ple Banach algebra. Let A ∈ An×n and B ∈ Am×m be such that

∀ϕ ∈MA, σ(Â) ∩ σ(B̂) = ∅.
Then for every C ∈ An×m, there exists a unique X ∈ An×m such that AX−XB =
C.

However, unlike the matrix case, the converse statement does not hold for Banach
algebras (or bounded linear operators on Banach spaces). It is rather trivial to
provide a counterexample.

Example 1.1. [16, Example 1.1.] Let V1 = V2 be infinite dimensional Banach
spaces and let A = C = 0. Assume that B is onto but is not injective. Then
σ(A) ∩ σ(B) = {0}, while the only solution to the equation AX − XB = C ⇔
XB = 0 is X = 0.

Lemma 1.2. [13, Lemma 1.2.2.] Let A be a noncommutative unital Banach algebra
that is infinite dimensional. Let a, b and c ∈ A such that a = c = 0A and let b be a
left zero divisor, which is not simultaneously a right zero divisor. Then ax−xb = c
has only one solution and that is x = 0A.

Proof. Obviously σ(a) = {0} while 0 ∈ σ(b), since b is a left zero divisor. Further-
more,

ax− xb = c⇔ xb = 0A ⇔ x = 0A. □

From the above discussion, the equation (1.1) is said to be regular whenever A,
B and C are bounded linear operators on the corresponding Banach spaces and
σ(A) ∩ σ(B) = ∅. The equation is said to be singular if it is not regular, i.e.
if σ(A) ∩ σ(B) ̸= ∅. Additionally, there are several results which give a unique
bounded solution to (1.1), while the operators are unbounded, consult [41,46] and
[50]. These results have a huge impact on mathematical physics and quantum
mechanics.

Definition 1.1. [21, Definition 1.1] Let V be a Banach space. The mapping
S : R+

0 → B(V ) is a C0− semigroup (of bounded linear operators) on V if

• S(0) = I;
• S(t+ s) = S(t)S(s), t, s ⩾ 0;
• For every u ∈ V ∥S(t)u− u∥ → 0 when t→ 0 + 0.
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Definition 1.2. [21, Definition 1.2] Let (S(t))t⩾0 be a C0−semigroup on the Ba-
nach space V . A linear operator L, DL ⊂ V and R(L) ⊂ V is the infinitesimal
generator for (S(t))t⩾0 if Lu = limt→0+0 t

−1(S(t)u− u) for every u ∈ DL.

Every C0−semigroup of operators has a unique infinitesimal generator. Neces-
sary and sufficient conditions for the operator L to generate a C0−semigroup of
operators are provided by the famous Hille–Yosida theorem:

Theorem 1.4. [21, Theorem 1.10.] Let L be a linear operator defined on a linear
subspace DL of the Banach space V , w a real number, and M > 0. Then L
generates a strongly continuous semigroup (S(t))t⩾0 that satisfies ∥S(t)∥ ⩽ M ewt

if and only if

(a) L is closed and DL is dense in V ,
(b) every real r > w belongs to the resolvent set of L and for such r and for all

positive integers n, ∥(rI − L)−n∥ ⩽ M
(r−w)n .

Definition 1.3. [21] For the semigroup (S(t))t⩾0 generated by an operator L, the
value w(L) represents the semigroups growth limit, and is provided as

w(L) = inf{λ ∈ R : ∃M > 0 such that ∥S(t)∥ ⩽M eλt, ∀t ⩾ 0}.

If w(L) < 0, then the semigroup (S(t))t⩾0 is called uniformly exponentially stable.

We now proceed to study the equation in its unbounded form

(1.2) AXu−XBu = Cu, u ∈ DB ∩ DC .

Below we recall some results which give a bounded and possibly unique solution to
(1.2).

Theorem 1.5. [41]Let A and −B be generators of C0−semigroups (T (t)) and
(S(t)), t ⩾ 0, on Banach spaces V2 and V1, respectively and let C be an opera-
tor from V1 to V2. Let

Q(t) : DB ⊂ V1 → V2 : Q(t)(f) := T (t)CS(t)(f), t ⩾ 0,

R(t) : DB ⊂ V1 → V2 : R(t)(f) := −
∫ t

0

Q(s)fds, t ⩾ 0.

Assume that:

(1) The weak topology closure of {Q(t)f}t⩾0 contains zero, for every f ∈ DB;
(2) R(t) has a continuous extension to a bounded linear operator, for every

t ⩾ 0 and the family {R(t)}t⩾0 is relatively compact with respect to the
weak topology.

Then the equation (4.1) has a bounded solution. Contrary, if (1.2) has a bounded
solution then R(t) is bounded, for every t ⩾ 0. Furthermore, if for every bounded
linear operator Y from V1 to V2 the operator T (t)Y S(t) converges towards zero
when t → +∞ in the weak (resp. strong, uniform) operator topology, then the
solution X to the equation (1.2) is unique and R(t) converges to X in the weak
(resp. strong, uniform) topology.
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Theorem 1.6. [41] Let w(A) +w(−B) < 0 and assume the family (R(t))t⩾0 from
the Theorem 1.5 to be uniformly exponentially stable. Then the equation (1.2) has
a unique bounded solution.

Remark 1.1. The premise that w(A)+w(−B) < 0 actually contains the assump-
tion σ(A) ∩ σ(B) = ∅. Recall the Hille–Yosida theorem.

However, if σ(A) ∩ σ(B) ̸= ∅, or the operators A and −B do not generate
C0−semigroups, then the previous theorems cannot be applied. This is the reason
why we study the singular Sylvester equation (1.2) with unbounded A, B and C.

1.2. Motivation: solvability without uniqueness. Though the equation (1.1)
has found vast applications in the previously mentioned papers, there are some
drawbacks in assuming that the equation is regular.

When C = 0 the equation is said to be homogeneous. If a homogeneous equation
is regular, then there is only one solution to AX = XB and that is the trivial one
X = 0. However, if we observe the case where σ(A) ∩ σ(B) ̸= ∅ (this also includes
the case when A = B), then finding all nontrivial solutions (if they exist) to the
homogeneous equation is equivalent to finding all X such that AX = XB, or
specially, AX = XA. These are known as the commutator problems, which cannot
be studied in terms of regular Sylvester equations. The expression AX − XB is
often called derivation of A and B.

Example 1.2. Let A and B be bounded but not compact linear operators on
Banach spaces V2 and V1, respectively. Is there a noncompact operator X such
that the derivation AX −XB is a compact operator from V1 to V2? This problem
appears in several research papers, for example see [38] and [39].

Denote by C(V ) the set of all compact operators over a Banach space V . Re-
call that C(V ) is a closed two-sided ideal in B(V ) and B(V )/C(V ) is a nontrivial
quotient operator algebra, called the Calkin algebra. By observing B(V1)/C(V1)
and B(V2)/C(V2), one transforms the initial problem into solving the homoge-

neous Sylvester equation ÂX̂ = X̂B̂ for X̂ ∈ B(V1, V2)/C(V1, V2) (recall that

Â = A + C(V2) and B̂ = B + C(V1)). If σ(Â) ∩ σ(B̂) = ∅, then the only so-

lution is X̂ = 0B(V1,V2)/C(V1,V2), that is, the only solution is the entire class of
compact operators from V1 to V2. Therefore, finding a noncompact X such that

AX − XB is compact requires the premise σ(Â) ∩ σ(B̂) ̸= ∅. This problem was
solved by the author in [14], and Section 3 below gives these results.

More generally, assume that C ̸= 0 and σ(A) ∩ σ(B) ̸= ∅ then one gets the
inhomogeneous singular equation (1.1). Notice that even in the simplest case,
when A = B, the singular equation is not necessarily solvable.

Lemma 1.3. Let A be a unital Banach algebra, with 1 as its unity. Then 1 is not
a commutator in A, meaning that, there are no a, x ∈ A such that ax− xa = 1.

Proof. The proof can be found in numerous books on functional analysis and oper-
ator theory, to name a few, see [19,22,23,27,49,55,63,64,67]. Let a, x ∈ A and let
σ(a), σ(x) denote the spectra of a and x, respectively, in A. Then σ(ax) ∪ {0} =
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σ(xa) ∪ {0}. On the other hand, if ax = 1 + xa, then σ(ax) = σ(1 + xa) =
1 + σ(xa) = {1 + λ : λ ∈ σ(xa)}. Consequently,

σ(xa) ∪ {0} = σ(ax) ∪ {0} = {1 + λ : λ ∈ σ(xa)} ∪ {0}.

The above set equality is impossible for nonempty compact subsets of C. □

However, if we change the nature of the spaces and the given linear operators,
then the commutator equation ax− xa = 1 is indeed solvable:

Example 1.3. Let P be the one-dimensional position operator and let Q be the
one-dimensional momentum operator, obtained by the virtue of the Fourier trans-
form from P . These are essentially self-adjoint (unbounded) linear operators and
σ(P̄ ) = σ(Q̄) = R, see [63] and [65]. Additionally, they satisfy the fundamental
equation of quantum mechanics PQ−QP = h

2πiI, where h is the Planck’s constant

(h = 6.62607004 · 10−34m2kg/s). In terms of Sylvester equations, if A = B = P
then X = Q is a solution to the singular equation AX −XA = I and vice versa.
The spectral overlap σ(Ā) ≡ σ(B̄) = R is obvious, so the above equation is indeed a
singular Sylvester equation with unbounded A and B. This emphasizes the impor-
tance of closed operators and their advantage over the bounded linear operators (in
fact, the entire quantum mechanics is built on this equation). This equation was
studied in [65] and partially in [10]. In Section 4.3 we show the results from [10].

The previous examples show that simply assuming σ(A) ∩ σ(B) ̸= ∅ does not
guarantee neither solvability nor un-solvability of the initial equation (1.1). Thus
more detailed analysis is required in this case. In addition to the already mentioned
problems which favor the singular setting σ(A)∩σ(B) ̸= ∅, below we mention some
applications which only require solvability of the Sylvester equation, discarding
(non)uniqueness of the solution.

Example 1.4 (Roth’s removal rule). Consider the 2× 2 bounded operator matrix[
A C
0 B

]
defined on V2×V1. When is this matrix block-diagonal? The diagonalization

problem is essential in applied operator theory and matrix analysis, as it drastically
simplifies computational procedures, such as computation of the matrix (or oper-
ator) sign function, linear model reductions, invariant subspaces characterization
etc. consult [3, 5, 6, 8, 20,29,30,37,41,45,46,50,51,54,58,59,64].

One way to block-diagonalize the operator matrix
[
A C
0 B

]
is to prove its similarity

to
[
A 0
0 B

]
. Recall that for every Y ∈ B(V1, V2), the operator marix

[
I2 Y
0 I1

]
is invert-

ible in B(V2 × V1), with
[
I2 −Y
0 I1

]
being its inverse. Now if the Sylvester equation

AX −XB = −C is solvable for some (not necessarily unique) X ∈ B(V1, V2), then
the below equality holds[

A C
0 B

]
=

[
I X
0 I

] [
A 0
0 B

] [
I −X
0 I

]
,

that is, the initial operator matrix
[
A C
0 B

]
is similar to the block-diagonal opera-

tor matrix
[
A 0
0 B

]
. Simple application of mathematical induction generalizes this

statement to n-dimensional upper triangular operator matrices, consult [6].
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Example 1.5 (Fréchet derivatives). For the given Banach spaces V1 and V2, let U
be an open subspace of V1 and let x ∈ U such that the ball U(x, t) and point x at
radius t > 0 is contained in U , see [18]. A function f : U → V2 is said to be Fréchet
differentiable at x if there exists a linear operator L ∈ B(V1, V2) defined at point
y ∈ V1 as

Dfx(y) = lim
t→0

f(x+ ty)− f(x)

t
= Ly.

Specially, let V1 = V2 = V be a Banach space, A, B ∈ B(V ) and let f(A) = A2.
Then the Fréchet derivative of f at point A is a linear operator in B(B(V )), defined
at point B as the expression

DfA(B) = lim
t→0

(A+ tB)2 −A2

t
= lim

t→0

A2 + tAB + tBA+ t2B2 −A2

t
= AB +BA.

For a given C ∈ B(V ), observe the abstract linear ODE

(1.3) DfA(B) = C.

When is (1.3) solvable? If there are infinitely many solutions, is there a way of
extracting one particular solution? This was answered in [14] and these results are
shown in Section 3.

More generally, let A be a unital C∗−algebra and let a ∈ A. Define g(a) as
g(a) = a∗a. Direct computation shows that g is Fréchet differentiable at a and at
point x ∈ A it takes the value

Dga(x) = lim
t→0

(a+ tx)∗(a+ tx)− a∗a

t

= lim
t→0

a∗a+ tx∗a+ ta∗x+ t2x∗x− a∗a

t
= x∗a+ a∗x.

Let A be a unital C∗−algebra, a ∈ A and let g(a) = a∗a. When does there exist
an x ∈ A such that Dga(x) = 1A? This was answered in [12] and these results are
demonstrated in Section 5.

For a moment, assume that the singular equation (1.1) is solvable. Since the
Sylvester operator S : X 7→ AX −XB is linear in X, it is trivial to see that the set
of all solutions to (1.1) can be characterized as

{X : AX −XB = C} = Xp + {Xh : AXh = XhB},

where Xp is one particular (fixed) solution to (1.1), while {Xh} are all solutions
to the homogeneous equation AXh = XhB. This will be heavily exploited in the
further text.

2. The singular equation in matrices

In this section we consider the simplest singular case, and that is when V1 and
V2 are finite-dimensional vector spaces over C while A, B and C are scalar matrices
of appropriate dimensions. We revisit some results from [15], with a comment that
some proofs are corrected and more precise.
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At this point we assume that σ(A) ∩ σ(B) ̸= ∅. Denote by σ the spectral
intersection of matrices A and B: {λ1, . . . , λs} =: σ = σ(A) ∩ σ(B).

For more elegant notation, we introduce Ek
B = N (B−λkI) and Ek

A = N (A−λkI)
whenever λk ∈ σ. Different eigenvalues generate linearly independent eigenvectors,
so the spaces Ek

B form a direct sum. Put EB :=
∑s

k=1E
k
B . It is a closed subspace

of V1 and there exists E⊥
B such that V1 = EB ⊕ E⊥

B . With respect to that decom-
position, denote BE := BPEB

, B1 := BPE⊥
B

and C1 := CPE⊥
B
. In that sense, the

upper triangular splitting of the matrix B holds:

(2.1) B =

[
BE B0

0 B11

]
:

[
EB

E⊥
B

]
→

[
EB

E⊥
B

]
, where B1 =

[
B0

B11

]
.

Notice that EB is a B-invariant subspace of V1, that is, B(EB) = EB , and conse-
quently EB ⊂ R(B), while E⊥

B is B11-invariant subspace of V1. Additionally, B11

is a square matrix from B(E⊥
B ).

Lemma 2.1. With respect to the previous notation, if

(2.2) B0 : N (B11 − λIE⊥
B
) → R(BE − λIEB

), for every λ ∈ σ(B11),

then σ(B11) ⊂ σ(B).

Proof. Let λ ∈ σ(B11) be arbitrary. Then for every v ∈ N (B11−λIE⊥
B
) there exists

a vector u ∈ EB such that (BE − λIEB
)(u) = B0v, i.e. BE(−u) = −λIEB

u−B0v.
It is not difficult to see that

B

[
−u
v

]
=

[
BE B0

0 B11

] [
−u
v

]
=

[
BE(−u) +B0v

λv

]
= λ

[
−u
v

]
,

so λ ∈ σ(B), with [−u v]T being the corresponding eigenvector for B. □

Theorem 2.1 (Existence of solutions). [15, Theorem 2.1.] With respect to the
previous notation, let B be such that (2.2) holds. Additionally, if the the condition

(2.3) C : Ek
B → R(A− λkI)

holds for every k = 1, s then there exist infinitely many solutions X to the matrix
equation

(2.4) AX −XB = C.

Proof. Recall notation from the previous paragraph. Respectively, the matrix B
has the uppper triangular decomposition (2.1)

B =

[
BE B0

0 B11

]
:

[
EB

E⊥
B

]
→

[
EB

E⊥
B

]
.

We first conduct analysis on EB . For every k ∈ {1, . . . , s} let Nk ∈ B(Ek
B , E

k
A)

be an arbitrary linear mapping. For every u ∈ Ek
B , by the assumption (2.3), there

exists a unique du ∈ (Ek
A)

⊥ such that (A− λkI)du = Cu. Define

Xk
E(Nk)

: u 7→ Nku+ du, u ∈ Ek
B ,
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which is trivially a solution to AY − Y BE = CPEB
observed on Ek

B : for any
uk ∈ Ek

B we have

AXk
E(Nk)

uk −Xk
E(Nk)

Buk = AXk
E(Nk)

uk − λkX
k
E(Nk)

uk

= (A− λkIV2)X
k
E(Nk)

uk = (A− λkIV2)(Nkuk + duk
) = Cuk.

Adding them together gives XE(N1,...,Ns) :=
∑s

k=1X
k
E(Nk)

, which is well defined

on EB as eigenvectors which correspond to different eigenvalues are linearly inde-
pendent. Direct verification shows that XE(N1,...,Ns) is a solution to AY − Y BE =
CPEB

observed on EB .
Now observe the complemented space E⊥

B . By construction it follows that σ =
σ(BE) and for every µ ∈ σ the eigenspace N (BE−µIEB

) is just a formal projection
of N (B − µI), i.e. N (BE − µIEB

) + 0E⊥
B
= N (B − µI). By the virtue of condition

(2.2), Lemma 2.1 states that σ(B11) ⊂ σ(B), thus for every µ ∈ σ(B11) and for
every corresponding eigenvector u ∈ N (B11 − µIE⊥

B
) there exists a vector v ∈ EB

such that (BE − µIEB
)v = B0u and in that case [−v u]T is an eigenvector for B

which corresponds to µ. Assume that σ(B11) ∩ σ(BE) ̸= ∅ and denote by µ0 their
shared eigenvalue. As previously explained, for every eigenvector u ∈ N (B11 −
µ0IE⊥

B
) there exists a v ∈ EB such that [−v u]T is an element in N (B − µ0I).

However, since µ0 ∈ σ(BE) it follows thatN (B−µ0I) = N (BE−µ0IEB
)+0E⊥

B
, thus

u = 0E⊥
B
which is impossible. Ergo, σ(BE)∩σ(B11) = ∅ and finally σ(B11)∩σ(A) =

∅. Observe the reduced Sylvester equation on E⊥
B

(2.5) AXPE⊥
B
−XB1 = C1 ⇔ AX1 −X1B11 = C1 +XE(N1,...,Ns)B0,

where B11 ∈ B(E⊥
B ), A ∈ B(V2), C1 + XE(N1,...,Ns)B0 ∈ B(E⊥

B , V2) are known

matrices such that σ(B11)∩σ(A) = ∅, while X1 ∈ B(E⊥
B , V2) is the sought solution.

By the Sylvester theorem, there exists a unique X1(N1,...,Ns) ∈ B(E⊥
B , V2) such that

(2.5) holds. Finally, it follows that

(2.6) X =
[
XE(N1,...,Ns) X1(N1,...,Ns)

]
:

[
EB

E⊥
B

]
→ V2

is an infinite family of solutions to the eq. (2.4). □

Remark 2.1. In the paper [15], Theorem 2.1. has a slightly different formulation,
which is inaccurate: it assumes that σ(B11) ⊂ σ(B) by default, and does not have
the additional assumption (2.2). Since in general this is not true, here we include
the assumption (2.2). Additionally, proof of [15, Theorem 2.1.] contains the case
when σ(B11) ∩ σ(A) = {0}, leading to more parametric solutions which require
another solvability condition: N (C1)

⊥ = R(B11). We now know that this case will
never occur, thanks to Lemma 2.1, so this condition is obsolete.

Reading the proof of Theorem 2.1, we notice the following questions:
Question 1.: Is every solution to the equation (2.4) of the form (2.6)?
Question 2.: Under which conditions is the solution to (2.4) unique?
Both of these questions have affirmative answers, which is justified by the anal-

ysis of the following eigen-problem associated with the given Sylvester equation:
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Assume that ∅ ≠ σ = σ(A) ∩ σ(B) and let Nλ ∈ B(Eλ
B , E

λ
A) be arbitrary, for every

λ ∈ σ. Define Nσ :=
∑

λ∈σ Nλ. Find a solution X to the Sylvester equation such
that the following eigen-problem is uniquely solved:

(2.7)

{
AX −XB = C

Xuλ := P(Eλ
A)⊥(A− λI)−1Cuλ +Nλuλ, uλ ∈ Eλ

B , λ ∈ σ.

Theorem 2.2 (Uniqueness of the solution to the eigen-problem). [15, Theorem
2.2.] With respect to the previous notation, assume that (2.2) holds.

(1) If the condition (2.3) holds for every shared eigenvalue λ ∈ σ, then the
solution X depends only on the choice for matrix Nσ, that is, for fixed Nσ,
there exists a unique solution X such that (2.7) holds.

(2) Conversely, for every solution X to (2.4) and for every shared eigenvalue
λ for matrices A and B, there exists a unique quotient class

(A− λI)−1C(N (B − λI))⊕N (A− λI)

such that X is the unique solution to the quotient eigen-problem (2.7).

Proof. Recall notation from proof of Theorem 2.1.
(1) The first statement of the theorem is proved directly. Namely, take V1 =

EB ⊕E⊥
B , B = BE ⊕B1, V2 = EA ⊕E⊥

A , A = AE ⊕A1 like in Theorem 2.1. Then
there exists X = XE ⊕ X1, which is a solution to (2.4). By construction, since
σ(B11) ∩ σ(A) = ∅, there exists a uniquely determined X1 in B(E⊥

B , V2) while X
λ
E

is uniquely determined in the class B(EB/E
λ
B , V2/E

λ
A) for every λ ∈ σ. Varying λ

in σ completes the proof.
(2) Conversely, let X be a solution to the eq. (2.4). Let λ be one of the

shared eigenvalues for A and B and fix u as a corresponding eigenvector for B.
Then XBu = λXu. Hence AXu −XBu = (A − λI)Xu = Cu. Split Xu into the
orthogonal sum Xu = v1+v2, where v1 ∈ N (A−λI) and v2 ∈ (N (A−λI))⊥. Then
v2 is the sought expression PN (A−λI)⊥(A − λI)−1Cu and Xu ∈ v2 + N (A − λI).
Condition (2.3) follows immediately. Repeating the same procedure for every shared
eigenvalue for A and B completes the proof. □

Corollary 2.1 (Number of solutions). [15, Corollary 2.1.] Let Σ be the set of all
Nσ introduced in the eigen-problem associated with given Sylvester equation (2.7),
that is

Σ =

{
Nσ : Nσ =

∑
λ∈σ

Nλ, Nλ ∈ B(Eλ
B , E

λ
A), λ ∈ σ(A) ∩ σ(B) = σ

}
.

Let S be the set of all solutions to (2.4) which satisfy condition (2.2)–(2.3). Then
|Σ| = |S|.

Proof. For fixed Nσ ∈ Σ there exits a unique X ∈ S such that (2.7) holds. Further,
for arbitrary X ∈ S and arbitrary λ ∈ σ there exist quotient classes Eλ

A and Eλ
B

such that (2.7) holds. Define Nλ : Eλ
B → Eλ

A to be bounded. Then Nσ =
∑

λ∈σ Nλ.
It follows that Nσ ∈ Σ. There is a one-to-one surjective correspondence S ↔ Σ. □



THE EQUATION AX − XB = C WITHOUT A UNIQUE SOLUTION 407

Remark 2.2. Due to Corollary 2.1, for fixed Nσ ∈ Σ, the solution X(Nσ) ∈ S can
be referred to as a particular solution.

Corollary 2.2 (Size of a particular solution). [15, Corollary 2.2.] With the assump-
tions and notation from Theorem 2.1, Theorem 2.2 and Corollary 2.1, the norm of
X(Nσ) is given as

∥X(Nσ)∥
2 = ∥XE∥2 + ∥X1∥2

⩽ ∥Nσ∥2 +
s∑

k=1

∥P(Ek
A)⊥(A− λkI)

−1CPEk
B
∥2 + ∥X1∥2,

where equality holds if and only if the sum
∑s

k=0E
k
B is orthogonal.

Proof. Taking the same decomposition as in Theorem 2.1, let X(Nσ) = XE +X1.

Since XE annihilates E⊥
B and X1 annihilates EB , it follows that

∥X(Nσ)∥
2 = ∥XE +X1∥2 = ∥XE∥2 + ∥X1∥2.

By the same argument, taking

∥XE∥2 ⩽ ∥Nσ∥2 +
s∑

k=1

∥P(Ek
A)⊥(A− λkI)

−1CPEk
B
∥2,

where the equality holds if and only if the sum
∑s

k=1E
k
B is orthogonal. □

Recall that the equation (2.4) is said to be homogeneous when C = 0. This
brings our attention to the set of all X, such that AX = XB. The following
corollary speaks about cardinality of such a set.

Corollary 2.3. [16, Corollary 2.4.] Let λ1, . . . , λs be the s different common non-
zero eigenvalues for square matrices A and B. For every k = 1, s, let Ek

B be the
eigenspace for B which corresponds to λk and let Ek

A be the eigenspace for A which
corresponds to λk. For every k = 1, s, put qkB := dimEk

B and qkA := dimEk
A. There

are at least
∏s

k=1

(
qkA

)qkB different non-zero solutions to the homogeneous equation

(2.4), acting from
∑s

k=1E
k
B to

∑s
k=1E

k
A, which are non-zero on every eigenspace

Ek
B , k = 1, s.

3. Generalization to bounded linear operators

In this section we extend Theorem 2.1 to the space of bounded linear operators
over Banach spaces. We now return to the general case, where V1 and V2 are
Banach spaces and A, B and C are accordingly provided bounded linear operators,
such that σ(A) ∩ σ(B) ̸= ∅. Recall Lemma 1.2: if σ(A) ∩ σ(B) = ∅ then the
Sylvester operator S : X 7→ AX −XB is invertible in B(B(V1, V2)) thus for every
C ∈ B(V1, V2) the solution X is uniquely determined as X = S−1(C) ∈ B(V1, V2).
However, our premise allows the possibility that 0 ∈ σ(S), and in that case the
solution X is not uniquely determined (if it exists at all!).

Thus we try to go around this obstacle, by redirecting the problem into the
Banach algebra B(B(V1, V2)). A bounded linear operator J ∈ B(V1, V2) is said
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to be a bounded embedding if it is linear, continuous and one-one. If a bounded
embedding J has a closed range in V2, then it has a bounded inverse which is
defined as J−1 : R(J) → V1, J

−1(Ju) = u, for every u ∈ V1 (bounded inverse
theorem, see [48] or [64]).

Theorem 3.1. [14, Theorem 3.1.] Let V1 and V2 be Banach spaces and let A ∈
B(V2), B ∈ B(V1) and C ∈ B(V1, V2) be given bounded linear operators. Assume
that there exists a bounded embedding J ∈ B(V1, V2) with a closed complemented
range in V2 and denote by Q the projector from V2 onto R(J). Define operators

Ĉ and Ŝ in B(B(V1, V2)) as Ĉ(L) := CJ−1QL and Ŝ(L) := AL − LB, for every
L ∈ B(V1, V2). If the equation

(3.1) ŜX̂ = Ĉ

is solvable in B(B(V1, V2)), then there exists a solution X ∈ B(V1, V2) to (1.1).

Proof. In addition to Ŝ and Ĉ, define the following operators

Â ∈ B(B(V1, V2)), Â(L) := AL, L ∈ B(V1, V2),

B̂ ∈ B(B(V1, V2)), B̂(L) := LB, L ∈ B(V1, V2).
We immediately have

Ŝ(L) = AL− LB = (Â− B̂)(L),

ÂB̂(L) = Â(LB) = ALB = B̂(AL) = B̂Â(L),

for every L ∈ B(V1, V2). Thus Ŝ = Â−B̂, while Â and B̂ commute. Further, notice

that J−1QJ = IV1
. If (3.1) is solved for some X̂ ∈ B(B(V1, V2)) then ŜX̂(L) =

Ĉ(L) for all L ∈ B(V1, V2), thus ŜX̂(J) = Ĉ(J) = C which implies Â(X̂(J)) −
B̂(X̂(J)) = Ĉ(J). Consequently, (1.1) is solved by the operator X̂(J). □

Corollary 3.1. [14, Corollary 3.1.] Let B ∈ B(V1), A ∈ B(V2) and C ∈ B(V1, V2).
If V1 is a closed, complemented subspace of V2 and Q is the corresponding projector
from V2 onto V1, R(Q) = V1, then there exists a solution to (1.1) if eq. (3.1) is

solvable, where Ĉ(L) := CQL for every L ∈ B(V1, V2).

Proof. Let I ∈ B(V2). The mapping I ↾V1
: V1 → V2 is the one-one bounded

embedding of V1 into V2, with a closed and complemented range in V2:
R(I ↾V1

) = V1 = Q(V2). It has a bounded inverse (I ↾V1
)−1 : R(Q) = V1 → V1,

again defined as (I ↾V1)
−1 = I ↾V1 . Thus instead of J from Theorem 3.1 we observe

I ↾V1 , while the rest of the proof is the same. □

In order to solve (3.1) we turn to the generalized inverses (see [19]). Recall that,

if Ŝ = 0, then the equation is solvable if and only if Ĉ = 0 and in that case, every

X̂ is a solution to (3.1). However, recall that, if Ŝ ̸= 0 then it is outer regular i.e.

there exists an outer inverse Ŝ(2) ̸= 0 such that Ŝ(2)ŜŜ(2) = Ŝ(2). Precisely, the

outer inverse Ŝ(2) can be obtained in the following way.

Since Ŝ ̸= 0, it follows that there exists an L ∈ B(V1, V2) such that ŜL = Z ∈
B(V1, V2) and Z ̸= 0. In that sense, observe the Kato decompositions of the space
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B(V1, V2) = span{L}+M and B(V1, V2) = span{Z}+N . The operator Ŝ has the
decomposition

Ŝ =

[
Ŝ11 Ŝ12

0 Ŝ22

]
:

[
span{L}

M

]
→

[
span{Z}

N

]
,

where Ŝ11 is invertible. Respectively, the operator Ŝ(2) can be chosen to be

Ŝ(2) =

[
Ŝ−1
11 0
0 0

] [
span{Z}

N

]
→

[
span{L}

M

]
.

Now observe the equation (3.1). Since Ŝ ̸= 0 there exists an Ŝ(2) ∈ B(B(V1, V2))
such that:

Ŝ(2) =

[
Ŝ−1
1 0
0 0

]
:

[
R

N (Ŝ(2))

]
→

[
R(Ŝ(2))

T

]
,

where B(V1, V2) = R ⊕N (Ŝ(2)) and simultaneously B(V1, V2) = R(Ŝ(2)) ⊕ T . Re-

spectively, the operator Ŝ has the representation

Ŝ =

[
Ŝ1 0
0 NŜ(2)

]
:

[
R(Ŝ(2))

T

]
→

[
R

N (Ŝ(2))

]
.

It follows that ŜŜ(2) = PR.

Proposition 3.1. Assume that Ŝ is outer regular. If there exists an outer inverse

for Ŝ, Ŝ(2), such that R(Ĉ) ⊂ R, where B(V1, V2) = R⊕N (Ŝ(2)), then the equation

(3.1) is solvable, and one of its solutions is X̂ = Ŝ(2)Ĉ.

Normally, such equations are solved via inner inverses, or via Drazin inverse.

However, these inverses require, among other things, closedness of R(Ŝ) and com-

plementedness of N (Ŝ) and R(Ŝ) (see [19]). Since this is effectively not easy to
verify, we turn to the outer inverses, as any non-zero operator is outer-regular.

3.1. Connections to Fredholm theory. Below we generalize Theorem 3.1 to the
case when V1 cannot be embedded into V2. Recall that a bounded linear operator
J ∈ B(V1, V2) is said to be left upper-semi Fredholm if α(J) := dimN (J) is finite
and R(J) is a closed, complemented subspace in V2 (equivalently, J is left invertible
in the Calkin algebra B(V1)/C(V1)), see [68–70]. The set of all left upper-semi
Fredholm operators from V1 to V2 is denoted as Φℓ(V1, V2). Notice that this is a
direct generalization of bounded invertible embeddings from V1 to V2.
Let B ∈ B(V1) be a bounded linear operator and let λ ∈ σ(B) be its Riesz point.
This means that V1 can be decomposed into into a direct sum V1 = EB(λ)⊕FB(λ),
where EB(λ) is a closed, B-invariant subspace of V1 and B − λI is invertible on
EB(λ), while FB(λ) is the finite-dimensional B-invariant subspace of V1, such that
B − λI is nilpotent on FB(λ), see [68–70]. Fact that FB(λ) is a finite-dimensional
B-invariant subspace of V1 implies that BF (λ) := B ↾FB(λ) : FB(λ) → FB(λ) is a
finite square matrix. Recall the core-nilpotent decomposition for the matrix BF (λ):
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there exists an p ∈ N such that FB(λ) = R((BF (λ))
p)⊕N ((BF (λ))

p) and

BF (λ) =

[
BF (λ),1 0

0 BF (λ),2

]
:

[
R((BF (λ))

p)
N ((BF (λ))

p)

]
→

[
R((BF (λ))

p)
N ((BF (λ))

p)

]
,

with BF (λ),1 being invertible while BF (λ),2 being nilpotent with index not greater
than p.

Definition 3.1. [14, Definition 3.1.] Let B ∈ B(V1) and let λ ∈ σ(B) be a Riesz
point of B and let EB(λ) and FB(λ) be the B-invariant subspaces of V1 as described
above. Let operator L ∈ B(V1, V ), for some Banach space V , be given such that
α(L) = dimN (L) < +∞. Then operator L decomposes operator B at point λ in
the Riesz sense if BN := B ↾N (L) has the property that

(3.2) FB(λ) = R∞(BN )⊕N∞(BN ).

Example 3.1. [14, Example 3.1.] Let V1 be an arbitrary Banach space. Let B ∈
B(V1) be a given bounded linear operator and let λ ∈ σ(B) be its Riesz point.
Then FB(λ) is the finite-dimensional B-invariant subspace of V1, which allows the
decomposition described as above FB(λ) = R((BF (λ))

p) ⊕ N ((BF (λ))
p) for some

p ⩾ asc(BF (λ)) = dsc(BF (λ)). Observe the natural quotient mapping (which is
a bounded linear operator) QF : V1 → V1/FB(λ). In that sense, denote by V the
quotient space V1/FB(λ). Then QF is a bounded linear operator from V1 to V , with
N (QF ) being precisely the space FB(λ) = R((BF (λ))

p) ⊕ N ((BF (λ))
p). Further,

BN := B ↾FB(λ) provides a decomposition of FB(λ):

FB(λ) = R((BF (λ))
p)⊕N ((BF (λ))

p) = R∞(BN )⊕N∞(BN ).

By Definition 3.1 we see that QF decomposes the operator B at point λ in the
Riesz sense.

Example 3.2. Let L be any bounded linear operator such that N (L) = FB(λ).
Then B restricted to N (L) is precisely BF (λ) and the core-nilpotent decomposition
applies. Thus, every such L decomposes operator B at point λ in the Reisz sense.
Specially, any left upper-semi Fredholm operator J ∈ Φℓ(V1, V2), such that N (J) =
FB(λ) by default decomposes B at point λ in the Reisz sense.

Lemma 3.1. [14, Lemma 3.1.] Let U be a finite-dimensional subspace of the Banach
space V2 and let A ∈ B(V2). Then there exists either trivial {0V2

} or a finite-
dimensional A-invariant subspace of V2, denoted as FA, such that

FA ⊂ U +R(A ↾U ).

Precisely, in [14] it is shown that the finite-dimensional A-invariant subspace FA

is FA = N∞(A ↾U )⊕R∞(A ↾U ).

Theorem 3.2. [14, Theorem 3.2.] Let B ∈ B(V1) such that λ ∈ σ(B) is a Riesz
point of B and let FB(λ) be the corresponding finite dimensional B-invariant sub-
space of V1. Let FA be the finite-dimensional subspace of V2 defined as

(3.3) FA = R∞(A ↾R(C↾FB(λ)))⊕N∞(A ↾R(C↾FB(λ))).
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Let J ∈ Φℓ(V1, V2) be such that it decomposes B at point λ in the Riesz sense.
If C(FB(λ)) = FA and the finite matrices B ↾FB(λ), C ↾FB(λ) and A ↾FA

satisfy
conditions (2.2)–(2.3), then there exist infinitely many solutions to (1.1) if and
only if

(3.4) AX1 −X1B1 = C1

is solvable on EB(λ), where V1 = FB(λ) ⊕ EB(λ) and B1 = B ↾EB(λ), C1 =
C ↾EB(λ).

Proof. Let J ∈ Φℓ(V1, V2) be a left upper semi-Fredholm operator which decom-
poses B at point λ in the Riesz sense. Recall that FB(λ) allows the decompo-
sition given by (3.2), that is, FB(λ) = N∞(B ↾N (J)) ⊕ R∞(B ↾N (J)). Define
BF (λ) := B ↾FB(λ) and CF (λ) := C ↾FB(λ). Then R(CF (λ)) is a finite-dimensional
subspace of V2 and Lemma 3.1 implies that FA (provided by (3.3)) is anA−invarinat
finite-dimensional subsapce of V2 as well. Consequently AFA

:= A ↾FA
satisfies

AFA
: FA → FA. Observe the finite-dimensional spaces FB(λ) and FA, and the

finite-dimensional matrices defined on them, that is,

BF (λ) ∈ B(FB(λ)), CFB(λ) ∈ B(FB(λ), FA), AFA
∈ B(FA).

If they satisfy conditions (2.2)–(2.3) then there exist infinitely many solutions
XFB(λ) to AFA

XFB(λ) −XFB(λ)BFB(λ) = CFB(λ).
To complete the proof, note that

V1 = N (J)⊕ V11 = N (J)⊕ (FB(λ) ∩ V11)⊕ EB(λ) = FB(λ)⊕ EB(λ),

and each subspace is closed. Let J1 = J ↾V11 and J2 = J1 ↾EB(λ). Since R(J) is
closed and J1 is injective, with R(J) = R(J1), it follows that

R(J1) = J1(FB(λ) ∩ V11)⊕R(J2),

thus R(J2) is closed as well and because J2 is injective, J2 has a bounded inverse
from R(J2) to EB(λ). By assumption, J is a left upper semi-Fredholm operator,
so there exists a bounded projection Q1 from V2 onto R(J) = R(J1). However,
since R(J1 ↾FB(λ)∩V11

) is finite dimensional, it follows that there exists a bounded
projection Q2 from V2 onto R(J2), so J2 is a bounded embedding of EB(λ) into
V2, with a closed range, which is complemented in V2. Further, since V1 = FB(λ)⊕
EB(λ) and λ is a Riesz point for the operator B, it follows that EB(λ) is a closed,
B-invariant subspace of V1. Since J2 is a bounded embedding from EB(λ) to V2
with a closed and complemented range in V2, if the equation (3.4) has a solution
X1 (sufficient conditions for its existence are obtained in Theorem 3.1), then X :=
XFB(λ) ⊕ X1 defined on FB(λ) ⊕ EB(λ) = V1 is a solution to (1.1). Conversely,
assume (1.1) is solvable with a solution X defined on V1, and let all decompositions
provided in the statement of the theorem hold. Decompose V1 = FB(λ) ⊕ EB(λ)
which are B-invariant subspaces of V1. Since the matrices BFB(λ), AFA

and CFB(λ)

satisfy the above-derived relations, it follows that X ↾FB(λ) is one of the solutions to
the matrix equation AFA

XFB(λ)−XFB(λ)BFB(λ) = CFB(λ). On the other hand, the
operator X ↾EB(λ) indeed solves the equation (3.4) and the proof is complete. □
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Remark 3.1. If the space FA from (3.3) is trivial, FA = {0V2
}, then we can

still apply Theorem 3.2 to the homogeneous equation AX = XB. Namely, the
condition C(FB(λ)) = FA = {0V2} as well as conditions (2.3) are indeed satisfied
when C = 0.

Recall that λ ∈ σ(B) is a Riesz point for B if and only if λ ∈ σp(B) and it has
finite geometric multiplicity. If B does not have such an eigenvalue, then we can,
under certain conditions, observe the set of its approximate eigenvalues in a similar
way. The problem of transferring approximate eigenvalues into proper eigenvalues
was firstly studied by Berberian in [4], which was applied to Fredholm theory by
Buoni, Harte and Wickstead in [7] and [28]. In what follows, we briefly recap the
construction from [7], in order to make it applicable to our problem, which is finding
the Riesz points of given operators.

For 1 ⩽ i ⩽ 2, let ℓ∞(Vi) we denote the Banach space of bounded sequences in
Vi, equipped with the supremum norm. Bym(Vi) we denote the subspace of ℓ∞(Vi)
which consists of those bounded sequences in Vi such that each subsequence has a
convergent subsequence, or, equivalently (see [7, p. 310]) every element from the
space m(Vi) is totally bounded. Now introduce P(Vi) = ℓ∞(Vi)/m(Vi), equipped
with the supremum norm. This defines a Banach space, with a norm which is
precisely the measure of non compactness of the given sequence (xn)n∈N ∈ P(Vi) :
∥(xn)n∈N∥ = q((xn)n∈N), where

q((xn)n∈N) = inf{δ ⩾ 0 : (xn)n∈N has a finite δ-net}.

We now proceed to observe bounded linear operators defined on P (V1). For any
(xn)n∈N ∈ ℓ∞(V1) and every bounded operator L ∈ B(V1, V2), one defines an
L∞ ∈ B(ℓ∞(V1), ℓ∞(V2)) as

L∞((xn)n∈N) := (Lxn)n∈N ∈ ℓ∞(V2).

If an operator sends every bounded sequence into a bounded sequence with a con-
vergent subsequence, then that operator is said to be compact (this is one of the
equivalents to the definition of a compact operator. In that sense, if an operator
L ∈ B(V1, V2) is a bounded linear operator which is not a compact operator, then
there exists a bounded but not totally bounded sequence (xn)n∈N ∈ ℓ∞(V1) such
that L∞((xn)n∈N) is a bounded but not a totally bounded sequence in ℓ∞(V2).
This shows that the set of bounded linear operators from P (V1) to P (V2) is in-
duced by those bounded linear operators from V1 to V2 which are not compact.
More precisely, if L ∈ B(V1, V2) is not a compact linear operator then there ex-
ists an (xn)n∈N ∈ P (V1) which is not zero in the quotient space P (V1), such that
L∞((xn)n∈N) ∈ P (V2) is not zero in that quotient space. To make the notation
more consistent, for a given L ∈ B(V1, V2) we denote by P (L) the corresponding
element from B(P (V1), P (V2)), where

P (L)((xn)n∈N) := (L∞((xn)n∈N))/m(V2),

for any (xn)n∈N ∈ P (V1). Notice that upper semi-Fredholm operators play a crucial
role here, because a bounded linear operator is upper semi-Fredholm if and only if
it sends bounded but not totally bounded sequences into bounded but not totally
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bounded sequences [7, Theorem 2]. We state some fundamental results obtained
in [7] and [28].

Theorem 3.3. [7, Theorem 2] If T : V1 → V2 is a bounded linear operator between
Banach spaces V1 and V2, then the following are equivalent:

(a) P (T ) : P(V1) → P(V2) is one-one;
(b) T : V1 → V2 is upper semi-Fredholm;
(c) P (T ) : P(V1) → P(V2) is bounded below.

In analogy to Lx = 0 ⇒ x = 0 whenever L is injective, the implication

TU is compact ⇒ U is compact

defines T as an essentially one-one operator. In analogy to the reverse order law
in dual spaces, the implication

UT is compact ⇒ U is compact

defines T as an essentially dense operator.

Theorem 3.4. [7, Theorem 4] Let T be a bounded operator between two Banach
spaces. Then the following implications hold:

(a) T is left upper semi-Fredholm⇒ T is upper semi-Fredholm ⇒ T is essen-
tially one-one;

(b) T is right lower semi-Fredholm ⇒ T is lower semi-Fredholm ⇒ T is essen-
tially dense.

Applying [7, Theorem 2] stated above, we see that

σapp(L) = σp(P (L)) = σapp(P (L)).

We proceed to generalize the statement from Theorem 3.2.

Theorem 3.5. [14, Theorem 3.5.] Define P(V1), P(V2), P (B), P (C) and P (A) as
described above.
(a) Assume there exists an J ∈ Φℓ(V1, V2). Define the operators P̂ (S) and P̂ (C) in
B(B(P(V1),P(V2))) as

P̂ (S)(P (L)) := P (A)P (L)− P (L)P (B),

P̂ (C)(P (L)) := P (C)P (J)−1PR(P (J))P (L),

for every P (L) ∈ B(P(V1),P(V2)). If the equation P̂ (S)P̂ (X) = P̂ (C) is solvable
in B(B(P(V1),P(V2))), then exists a solution to the quotient equation

(3.5) P (A)P (X)− P (X)P (B) = P (C).

(b) Let λ ∈ σapp(B) such that it is a Riesz point for P (B) and denote by FP (B)(λ)
the corresponding finite-dimensional P (B)-invariant subspace of P(V1). Let FP (A)

be defined as in (3.3) with respect to P (C)(FP (B)(λ)). Assume there exists an

upper semi-Fredholm operator P (φ) ∈ Φℓ(P(V1),P(V2)) which decomposes P (B)
at point λ in the Riesz sense. If P (C)(FP (B)(λ)) = FP (A) and the finite matrices
P (B) ↾FP (B)(λ), P (C) ↾FP (B)(λ) and P (A) ↾FP (A)

satisfy conditions (2.2)–(2.3), then
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there exist infinitely many solutions to (3.5) iff P (A)P (X1)−P (X1)P (B1) = P (C1)
is solvable for P (X1) on P(V12), where P(V1) = FP (B)(λ) ⊕ EP (B)(λ), P (B1) =
P (B) ↾EP (B)(λ) and P (C1) = P (C) ↾EP (B)(λ).

Proof. (a) From the discussion above, operator J defines an injective P (J), with
closed and complemented range in P(V2), so Theorem 3.1 applies to (3.5).

(b) Similarly, all the conditions of Theorem 3.2 hold, so (3.5) has infinitely many
solutions. □

Corollary 3.2. [14, Corollary 3.2.] Let λ ∈ σapp(B) such that λ is a Riesz point of
P (B) and assume that P (φ) ∈ Φ+(P(V1),P(V2)) is an upper semi-Fredholm oper-
ator which decomposes P (B) at point λ in the Riesz sense. Then φ /∈ Φ+(V1, V2).

Proof. Assume that P (φ) is an upper semi-Fredholm operator, which decomposes
P (B) at point λ in the Riesz sense. If φ ∈ Φ+(V1, V2), then (by [7]) P (φ) is one-one,
that is, N (P (φ)) = {0}. But by assumption, P (φ) decomposes P (B) at point λ in
the Riesz sense, so the finite-dimensional part (as in (3.2)) is equal to zero:

FP (B)(λ) = {0}.
Then P (B) − λ is invertible in P(V1), which contradicts the fact that λ ∈

σp(P (B)). □

3.2. Some applications to compact operators. Below we illustrate how our re-
sults answer some questions regarding compact derivations and compact exten-
sions. We emphasize that these results rely heavily on the fact that the appropriate
Sylvester equation is singular (recall Section 1).

Corollary 3.3. [14, Corollary 3.3.] Let A and B be bounded linear operators on
Banach spaces V2 and V1, respectively, such that B has a complemented null-space.
In addition, assume that if N (B) intersects with R(B), then that intersection is
closed and complemented in N (B),

V1 = V12 ⊕N (B), N (B) = N1(B)⊕ (N (B) ∩R(B)).

If there exists a J ∈ B(N1(B),N (A)) ∖ C(N1(B),N (A))1 then there exists an
X ∈ B(V1, V2)∖ C(V1, V2) such that AX −XB ∈ C(V1, V2).

Proof. Let

V1 = V12 ⊕N (B) = V12 ⊕ (N (B) ∩R(B))⊕N1(B).

Notice that B : V1 → R(B) ⊂ V12 ⊕ (N (B) ∩ R(B)). Choose arbitrary K ∈
C(V12 ⊕ (N (B) ∩R(B)), V2). Then

X :=

[
K 0
0 J

]
:

[
V12 ⊕ (N (B) ∩R(B))

N1(B)

]
→

[
K(V12 ⊕ (N (B) ∩R(B)))

N (A)

]
trivially satisfies

AX −XB = AKPV12⊕(N (B)∩R(B)) +AJPN1(B) −KB ∈ C(V1, V2)
and X /∈ C(V1, V2). □

1It suffices to choose J to be a (lower or upper) semi-Fredholm operator.
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When are compact operators L and T equivalent after extension?
Two operators T and L defined on two different Banach spaces V1 and V2 re-

spectively, are said to be equivalent after extension, if they can both be extended
to V1 ⊕ V2, T̃ := T + IV2

, L̃ = IV1
+ L, and in addition satisfy T̃ = UL̃V , for some

bounded and invertible linear operators U and V on V1 ⊕ V2 (see [31,32] and [64]).
Specially, if V1 = {0} or V2 = {0}, then T and L, which are equivalent after ex-
tension, are said to be equivalent after one-sided extension. Note that if T and
L are compact operators which are equivalent after extension, then T̃ and L̃ are
Fredholm operators. Thus it suffices to find an invertible U such that L̃U = UT̃ .
This is now solved by Theorem 3.1, Theorem 3.2, Theorem 3.5, Corollary 3.1 or
Corollary 3.3. A necessary condition is in that case (see below) IL = IT .

Definition 3.2. [31, Definition 2.1.] Let T ∈ B(V1, V2) be a Banach space operator.
For any Banach spaces Z1 and Z2, we define

IT (Z1, Z2) :=
⋃
n∈N

{ n∑
j=1

RjTR
′
j : Rj ∈ B(Y,Z2), R

′
j ∈ B(Z1, X)

}
.

Denote by IT the (proper) class
⋃

Z1,Z2
IT (Z1, Z2), and refer to IT as the operator

ideal generated by T .

Theorem 3.6. [31, Theorem 2.5.] Let T ∈ B(V1) and L ∈ B(V2) be non-zero
compact Banach space operators. If T and L are equivalent after extension, then
IT = IL.

3.3. Estimating the solution set. The previous results guarantee solvability of
(1.1), but characterizing the entire solution set is a rather difficult task. In what
follows we revisit some results obtained in [11], which speak of algebraic and topo-
logical properties of this set. Recall that the solution set can be described as
Xp+ {Xh}, where Xp is one particular solution and {Xh} is the solution set to the
homogeneous Sylvester equation

(3.6) AX −XB = 0.

Since the previous results offer the existence conditions for at least one particular
solution Xp, we proceed to characterize the solution set for the equation (3.6).

In what follows, we fix the Banach spaces V1 and V2 and the bounded linear
operators A ∈ B(V2), B ∈ B(V1) and Z ∈ B(V1, V2) such that Z ̸= 0. Define n−th
power of AZB in B(V1, V2) by

(AZB)n := AnZBn, n ∈ N0.

Put

(3.7) AAZB := {p(AZB) : p ∈ P [C]}.
It can be shown that any complex function f holomorphic in the Cauchy domain

which contains the compact set σ(A) ∪ σ(B) can be obtained as the uniform limit
of polynomials pn, thus

f(AZB) = f(A)Zf(B) = lim
n
pn(A)Zpn(B) = lim

n
pn(AZB).
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Multiplication in AAZB is defined as multiplication of functions,

f(AZB) · g(AZB) = (f · g)(AZB).

Theorem 3.7. [11, Theorem 2.1.] Assume ∥A∥ and ∥B∥ to be smaller than one.
Let n, m ∈ N0 such that 0 ⩽ n < m and let AAXB be provided as in (3.7). Then

(1) The ordered triple (AAZB , ∥ · ∥,+) is a separable Banach subspace of
B(V1, V2). The ordered triple (AAZB ,+, ·) is a commutative algebra with
the unity Z. The ordered quadruple (AAZB , ∥ · ∥,+, ·) is not necessarily a
normed algebra, i.e. the sub-multiplicativity ∥ab∥ ⩽ ∥a∥∥b∥ does not neces-
sarily hold.

(2) The inequality ∥(AZB)m∥ ⩽ ∥(AZB)n∥ holds, where the equality is ob-
tained iff (AZB)k = 0, for some k ∈ {0, . . . , n}.

(3) The series

(3.8)

+∞∑
j=0

(AZB)m·j

converges in AAZB. The operator Z − (AZB)m is invertible in AAZB and
its inverse is given as (3.8).

Recall the commutative multiplication operators A and B defined as A(Z) := AZ
and B(Z) = ZB. The following lemma obviously holds:

Lemma 3.2. [11, Lemma 2.2.] With respect to the previous notation, the algebra

AAZB is isometrically isomorphic to {p(A ◦ B)(Z), p ∈ P [C]}.

For a given L ∈ B(V ), the set [L] represents the set of all operators from B(V )
which commute with L. Consequently, Ln ∈ [L], for every n ∈ N0. Define

[AAZB ] := [A] · AAZB · [B] = {CDE : C ∈ [A], D ∈ AAZB , E ∈ [B]},
BAZB := B(V2) · AAZB · B(V1) = {FGH : F ∈ B(V2), G ∈ AAZB , H ∈ B(V1)}.

Now one takes natural extension of the multiplication from AAZB to [AAZB ] and
BAZB . More precisely, let C1D1E1, C2D2E2 ∈ [AAZB ] and let F1G1H1, F2G2H2 ∈
BAZB . Then

(C1D1E1) · (C2D2E2) := (C1 · C2) · (D1 ·D2) · (E1 · E2),

(F1G1H1) · (F2G2H2) := (F1 · F2) · (G1 ·G2) · (H1 ·H2).

The previous construction allows us to show how large the solution set for (3.6)
really is.

Theorem 3.8. [11, Theorem 3.4] Let A, X and B be provided such that AX = XB.
Then for every Y ∈ AAXB it follows that AY = Y B. In other words, every element
from AAXB is a solution to the homogeneous Sylvester equation (3.6).

Proof. First observe the basis of AAXB : X, AXB, A2XB2,. . . . Given the way A,
B and X are provided, it follows that

A(AnXBn) = A(An−1XBn+1) = (AnXBn)B, n ∈ N,
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so (AXB)n is a solution to (3.6), for every n ∈ N. Further, every finite linear
combination of the basis elements is a solution to (3.6). This proves that pn(AXB)
is a solution to the homogeneous Sylvester equation, for every pn ∈ P [C]. One
should note that, in the bounded-operator case, the set of solutions to the equation
AX − XB = 0 is closed. This is directly verifiable. Nevertheless, let f be a
holomorphic function on some Cauchy domain Ω, σ(A), σ(B) ⊂ Ω, given as the
limit of some complex polynomials f(z) = limn→+∞ pn(z), z ∈ Ω. Then Lemma
3.2 applies, giving f(AXB) = limn→+∞ pn(AXB) and

Af(AXB) = A( lim
n→∞

pn(AXB))

= lim
n→∞

Apn(AXB) = lim
n→∞

(pn(AXB)B) = f(AXB)B,

so AAXB is contained in the set of solutions to the homogeneous Sylvester equa-
tion (3.6). □

Corollary 3.4. [11, Corollary 3.3.] Let A, B and X be provided such that AX =
XB, and let A and B be provided as in Lemma 3.2. Then AAXB is isomorphic to

(3.9) {p(A2)(X) : p ∈ P [C]}

and to

(3.10) {p(B2)(X) : p ∈ P [C]}.

In order for AX = XB to be solvable for a nonzero X, it is required for (3.9) and
(3.10) to be isomorphic to each other.

If {Xi}i∈I is a family of different solutions to the inhomogeneous eq. (1.1), how
do the operator algebras AAXiB behave? We recall the following result from [33]:

Lemma 3.3. [33, Lemma 2.1.] Assume X is a solution to (1.1). Then for any
k ⩾ 1

(3.11) AkX −XBk =

k−1∑
i=0

Ak−1−iCBi.

This lemma shows us that any solution to (1.1) satisfies the corollary below.

Corollary 3.5. [11, Corollary 3.2.] Let A, B, C and X be provided such that (1.1)
holds. Then C ∈ [AAXB ] and for every k ∈ N0,

AkX −XBk ∈ [AACB ].

Proof. The first claim follows directly C = AX−XB ∈ [AAXB ]. When k = 0 then
X −X = 0 ∈ [AACB ]. When k ⩾ 1, then (3.11) applies, and

AkX −XBk = Ak−1C + · · ·+ CBk−1.

Since Aℓ ∈ [A] and Bs ∈ [B], for every s, ℓ ∈ {0, . . . , k − 1}, it follows that every
addend on the right-hand-side is in [AACB ], and so is AkX −XBk. □
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4. Closed operators

In this section we study the initial equation (1.1) under the premise that V1 and
V2 are Banach spaces, while A and B are closed densely defined linear operators
and where C is an arbitrary densely defined linear operator from V1 with values in
V2. We now proceed to study the equation in its unbounded form (1.2). For easier
reference, we are writing it here once again:

(4.1) AXu−XBu = Cu, u ∈ DB ∩ DC .

At this point, we drop the assumption that A and −B generate C0−semigroups
on V1 and V2, respectively. Instead, we assume that A and B are arbitrary closed
operators, which have nonempty point spectra and we assume that

σ(A) ∩ σ(B) = σp(A) ∩ σp(B).

We introduce the notion of weak solutions.

Definition 4.1. [16, Definition 2.1.] Linear operator X is a weak solution to the
equation (4.1) if

(1) DC ∩ DB ̸= ∅
(2) DX ⊂ DB ∩ DC , R(X) ⊂ DA and DX is B-invariant subspace of V1.
(3) for every u ∈ DX AX(u)−XB(u) = C(u).

The weak solution to the equation AX = XB is defined analogously. We start
our analysis with the homogeneous equation and then transform the inhomogeneous
(4.1) into a homogeneous one.

4.1. The homogeneous equation. Let V be an arbitrary vector space over the
field F and let I be an arbitrary index set. Recall that a set of different vectors
{ai}i∈I from V is said to be Hamel or algebraic basis for V if every vector a ∈ V
can be represented as a unique finite linear combination of vectors from {ai}i∈I :

(∀a ∈ V ) (∃!n ∈ N) (∃!a1, . . . , an ∈ {ai}i∈I) (∃!α1, . . . , αn ∈ F ) a =

n∑
k=1

αkak.

It is known that every vector space has a Hamel basis; this is a direct corollary
from the axiom of choice. Uniqueness of the representation of every vector from V
with regards to its Hamel basis {ai}i∈I yields that {ai}i∈I are linearly independent
vectors. Additionally, all Hamel bases of the same vector space have the same
cardinality. Recall that, even if S is an infinite set of vectors, Lin(S) or span(S)
stands a finite linear span of vectors from S.

At this point we assume V1 and V2 to be linear (vector) spaces and A ∈ L(V2),
B ∈ L(V1) to be both one-to-one (injective). We will return to the case of closed
operators in Banach spaces later. We also assume that there exists W < DB < V1
which is a B-invariant subspace of V1. Let U = {ui}i∈I be an algebraic basis of
W . Further, since {ui}i∈I is an algebraic (Hamel) basis for W , it follows that
{B(ui)}i∈I is an algebraic (Hamel) basis for B(W ). The operator B is injective,
so card({ui}i∈I) = card({B(ui)}i∈I). Therefore, there exists a linear bijection
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TW : {B(ui)}i∈I → {ui}i∈I , such that for each i ∈ I there exists a unique j ∈ I so
that TWB(uj) = ui. For every u ∈ U , we define the class of u as

[u] = {(TWB)n(u) : n ∈ Z}.
It is not difficult to see that {[ui] : i ∈ I} forms a partition of U . In that sense,

let [U ] := {[ui] : i ∈ I}. Conversely, for every [u] ∈ [U ], fix one u0 ∈ [u] which is
the generator for its entire equivalence class:

[u0] = {(TWB)n(u0) : n ∈ Z} = [u].

Define ·B : [u]× [u] → [u]:

(∀n,m ∈ Z) (TWB)n(u0) ·B (TWB)m(u0) := (TWB)n+m(u0).

The following result is straightforward.

Lemma 4.1. [16, Lemma 2.1.] Let u ∈ U .
1) If [u] has a finite number of different elements, say k of them, then ([u], ·B)

is isomorphic to (Zk,+k);
2) If [u] has infinitely many different elements, then ([u], ·B) is isomorphic to

(Z,+).

Let Z < DA < V2 be an A-invariant subspace of V2 and let V = {vj}j∈J be
an algebraic basis for Z. Let SZ ∈ L(A(Z), Z) be a bijective linear operator, such
that SZ(V) ⊂ (V). For every v ∈ V, define [v] using SZA, in the analogous way
we defined [u], using TWB, when u ∈ U . On every [v] define ·A using SZA in the
analogous way we defined ·B using TWB on every [u].

Corollary 4.1. [16, Corollary 2.1.] For every v ∈ V, ([v], ·A) is isomorphic to
exactly one of the elements in {(Z,+), (Zk,+k)}.

Remark 4.1. The aforementioned isomorphisms between elements of {([u], ·B),
([v], ·A)} and elements of {(Z,+), (Zk,+k)} will be denoted as ”∼=”.

Theorem 4.1 (The shifted injective homogeneous equation). [16, Theorem 2.1.]
Let V1 and V2 be vector spaces and let B ∈ L(DB , V1), A ∈ L(DA, V2) be one-
to-one linear operators, where DB ⊂ V1 and DA ⊂ V2, and let W ⊂ DB be a
B-invariant subspace of V1 and let Z ⊂ DA be an A− invariant subspace of V2.
Let TW and SZ be provided as in previous discussion. Then there exists a linear
operator X ∈ L(W,Z) which is a weak solution to the equation

(4.2) XTWB = SZAX,

defined on W .

Proof. Let U and V be the algebraic bases for W and Z, respectively, on which
TW and SZ are respectively defined. We define X in the following manner. For
a fixed [u] ∈ [U ], if there exists an v ∈ V such that ([u], ·B) ∼= ([v], ·A), then X
maps one fixed generator u0 ∈ [u] into the generator v0 for [v], and consecutively
X : (TWB)mu0 7→ (SZA)

mv0. If no such ([v], ·A) exists then X([u]) := 0V2
. Either

way, it is directly verifiable that SZA(X(u′)) = X(TWB(u′)) holds for every u′ ∈
[u].
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Now assume the previous procedure was done for every [u] ∈ [U ]. Then for
arbitrary u ∈W decompose the vector u into a finite linear combination of elements
from U

u =

n∑
k=1

αkuk, uk ∈ U , αk ∈ C, k = 1, n, n ∈ N.

Then obviously [X(u) :=
∑n

k=1 αkX(uk). It is clear that X is well defined linear
operator from W to Z and is a solution to (4.2). By construction, we have that
DX = W ⊂ D(TWB), R(X) = Z ⊂ D(SZA) and W is TWB-invariant, so X is
indeed a weak solution. □

Remark 4.2. Note that the solution X is not uniquely determined.

We generalize the previous statement to Banach spaces and closed operators A
and B.

Theorem 4.2 (The homogeneous equation). [16, Theorem 2.3.] Let V1 and V2 be
given Banach spaces, B ∈ L(V1) and A ∈ L(V2) closed operators, such that N (B)
and N (A) are complemented in V1 and V2, respectively. If (σp(B)∩σp(A))∖{0} ≠ ∅
then the homogeneous equation

(4.3) AX −XB = 0

has a non-trivial weak solution.

Proof. The space V1 can be split into a direct sum V1 = N (B)⊕ V ′
1 . Respectively,

for every u ∈ DB there exists a unique u1 ∈ N (B) and a unique u2 ∈ V ′
1 ∩ DB

such that u = u1 + u2. Denote V1(B) := V ′
1 ∩ DB and define B1 : V1(B) → V1

as: B1(u2) := B(u). This way, B1 is one-to-one, so 0 /∈ σp(B1). Note that
σp(B)∖ {0} ≡ σp(B1).

Assume the same thing is done with A and the Banach space V2: V2 = N (A)⊕V ′
2 ,

put V2(A) := DA ∩ V ′
2 and A1 : V2(A) → V2 defined as A1(v2) := A(v), whenever

v ∈ DA and v = v1 + v2, v1 ∈ N (A), and v2 ∈ V2(A). Now A1 is one-to-one
and 0 /∈ σp(A1). Also note that σp(A) ∖ {0} = σp(A1). Now the condition of
the theorem yields that σp(A1) ∩ σp(B1) ̸= ∅. Denote that spectral intersection
by {λi}i∈I , for some index set I, where λi = λj ⇒ i = j. Let ui ∈ D(B1) and
vi ∈ D(A1) such that B1ui = λiui and A1vi = λivi, whenever i ∈ I. It follows
that {ui}i∈I and {vi}i∈I are families of linearly independent vectors. Now put
U := {ui}i∈I and V = {vi}i∈I . Trivially, W := Lin(U) is a B1-invariant subspace
of V1 and Z := Lin(V) is an A1− invariant subspace of V2.

For each i ∈ I define bounded linear operators on Lin(ui) and Lin(vi) respectively
as Ti(u) := λ−1

i u and Si(v) := λ−1
i v. Finally put TW (ui) := Ti(ui) and SZ(vi) :=

Si(vi).
Since Lin(ui) ∩ Lin(uj) = {0} whenever i ̸= j, it follows that TW is a correctly

defined operator on⊕i∈I Lin(ui) (which is an eigenspace for B1 and therefore for B).
Analogously, SZ is correctly defined operator on ⊕i∈I Lin(vi). Now all conditions
of Theorem 4.1 are satisfied, so there exists a linear operator X1 from W to Z such
that X1TWB1 = SZA1X1 holds.
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Further, we see that ([ui], ·B1
) ∼= ([vi], ·A1

) ∼= (Z1,+1) (singletons) for every
i ∈ I. For u ∈W , such that u =

∑n
k=0 αkuk where uk ∈ {ui}i∈I , we have:

SZA1X1(u) = SZA1X1

( n∑
k=1

αkuk

)
=

n∑
k=1

αkSZA1X1(uk)

=

n∑
k=1

αkSZA1(vk) =

n∑
k=1

αkSZ(λkvk) =

n∑
k=1

αkvk =

n∑
k=1

αkX1(uk)

=

n∑
k=1

αkX1TW (λkuk) =

n∑
k=1

αkX1TWB1(uk)

= X1TWB1

( n∑
k=1

αkuk

)
= X1TWB1(u).

Since SZ and TW are injective and act in the same way on the corresponding
spaces, it directly follows that A1X1u = X1B1u. Therefore, X1 ∈ L(W,Z) where
DX = W < DB and R(X) = Z < R(A), so X is a weak solution to the equation
A1X1 = X1B1.

Let N ∈ L(N (B),N (A)) be arbitrary. Put

X =

[
N 0
0 X1

]
:

[
N (B)
W

]
→

[
N (A)
Z

]
.

It follows that X is a weak solution to (4.3). □

Remark 4.3. When constructing injective operators A1 and B1 one encounters
problem of losing the information about the null-spaces of A and B. However, this
property is not as restrictive as it may seem at the first sight. In particular, suppose
that {0} = σp(A)∩σp(B). Then N (B) and N (A) are the corresponding eigenspaces
of B and A, respectively, which correspond to the shared eigenvalue λ = 0. But then
arbitrary operator N ∈ L(N (B),N (A)) (provided in the proof of Theorem 4.2) is
the desired map that maps 0-eigenspace of B into the corresponding 0-eigenspace
of A. In other words, one could simply put X :=

[
N 0
0 0

]
. However, this case is

somewhat irrelevant because both XB and AX vanish on N (B). Nevertheless,
Theorem 4.2 holds even if σp(A) ∩ σp(B) = {0}.

Recall that every closed subspaceM of a given Hilbert space H has a topological
complement N . Furthermore, N can be provided such that M and N form an
orthogonal sum, i.e. H =M ⊕⊥ N .

Corollary 4.2. [16, Corollary 2.2.] Let H1 and H2 be Hilbert spaces, A ∈ L(H2)
and B ∈ L(H1) closed operators. If (σp(A) ∩ σp(B)) ̸= ∅ then the homogeneous
equation (4.3) has a non-trivial weak solution.

The previous theorem gives weak solutions to the equation (1.1), which are
defined on finite linear combinations of the corresponding eigenvectors. In what
follows we extend this result to a summable family of eigenvectors.

Recall that, when solving PDEs and ODEs, one usually uses the Fourier sep-
aration method and then solves the corresponding Sturm–Liuville eigenfunction
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problem. As a result, the solution to the given PDE or ODE is represented as a
superposition of countably-many summable eigenfunctions.

Definition 4.2. Let V be a Banach space over the field F . A Schauder basis is an
ordered sequence {bn}n∈N of elements from V such that for every element v ∈ V
there exists a unique sequence {αn}n∈N of scalars in F such that v =

∑
n∈N αnbn,

where the convergence is understood in the norm topology

lim
n→+∞

∥v −
n∑

k=1

αnbn∥ = 0.

From the uniqueness of the representation of v in {bn}n∈N it follows that {bn}n∈N
is a family of linearly independent vectors. There is no exact criterion which yields
when does a given Banach space have a Schauder basis. However, the necessary
condition is obtained in the following two well-known theorems.

Theorem 4.3. Let V be a Banach space. Then its Hamel (algebraic) basis is either
finite or has the cardinality of at least c (continuum).

Theorem 4.4. Let V be a Banach space and suppose it has a Schauder basis. Then
V must be separable.

Contrary, if the provided Banach space V is separable, it does not imply that it
has a Schauder basis. Counterexample was provided by P. Enflo [35] in 1973. It is
well-known fact that ℓ∞ space does not have a Schauder basis.

We again start with arbitrary linear spaces V1 and V2 and one-to-one operators
B ∈ L(DB , V1), DB ⊂ V1 and A ∈ L(DA, V2), DA ⊂ V2 defined on them. Suppose
there exists a W < DB which is a B-invariant subspace of V1, such that it allows
a Schauder basis W = {wn : n ∈ N}. It is not difficult to see that there exists
a bijective operator T ∈ L(B(W ),W ) such that T (wn) ∈ W, for every n ∈ N,
because B is assumed to be one-to-one. Now for every w ∈ W define

[w] = {(TB)n(w) : n ∈ Z}

and define binary operation ·B on [w] as

(∀n,m ∈ Z)(TB)n(w) ·B (TB)m(w) := (TB)n+m(w).

Lemma 4.1 yields that ([w], ·B) is isomorphic to exactly one element from the set
{(Z,+), (Zk,+k), k ∈ N}.

Analogously, assume there exists a Z < DA which is an A-invariant subspace
of V2, which allows a Schauder basis Z = {zn : n ∈ N} and define the bijective
operator S ∈ L(A(Z), Z) such that for every n ∈ N it follows that S(zn) ∈ Z. For
every z ∈ Z, define [z] = {(ZA)n(z) : n ∈ Z} and define ·A on every class [z] as

(∀n,m ∈ Z)(SA)n(w) ·A (SA)m(w) := (SA)n+m(w).

Lemma 4.1 yields that ([z], ·A) is isomorphic to exactly one element from the set
{(Z,+), (Zk,+k), k ∈ N}.

The following corollaries are immediate consequences of Theorem 4.1 and The-
orem 4.2, respectively.
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Corollary 4.3 (The shifted injective homogeneous equation). [16, Corollary 2.5.]
With regards to the previous notation, there exists X ∈ L(W0, Z) which is a weak
solution to the equation XTB = SAX, defined on

W0 :=

{∑
n∈N

αnwn : wn ∈ W, αn ∈ C, n ∈ N and
∑
n∈N

αnX(wn) converges in Z

}
.

Corollary 4.4 (The homogeneous equation). [16, Corollary 2.6.] Let V1 and V2 be
given Banach spaces, B ∈ L(V1) and A ∈ L(V2) closed operators, such that N (B)
and N (A) are complemented in V1, V2, respectively, i.e. V1 = N (B) ⊕ V ′

1 and
V2 = N (A) ⊕ V ′

2 . If σp(B) ∩ σp(A) ̸= ∅ and the corresponding eigenvectors form
Schauder bases for some S1 < DB ∩ V ′

1 and S2 < DA ∩ V ′
2 , respectively, then the

homogeneous equation AX − XB = 0 has a non-trivial weak solution, defined on
some subset of S1.

4.2. The inhomogeneous equation. In this section we provide weak solutions to
the inhomogeneous Sylvester equation (1.1), i.e. the case where C ̸= 0. The lemma
below illustrates how to reduce the inhomogeneous equation to the homogeneous
one.

Lemma 4.2. [16, Lemma 2.2.] Let V1 and V2 be Banach spaces, B,Ψ1 ∈ L(V1),
A,Ψ2 ∈ L(V2) closed operators and C ∈ L(V1, V2), such that for every u ∈ D(Ψ1)∩
R(Ψ1) ∩ DC we have C(u) ∈ D(Ψ2) and

(4.4) Ψ2C(u)− CΨ1(u) = C(u).

Suppose D(Ψ2)∩DA ̸= ∅ and D(Ψ1)∩DB ̸= ∅. Finally, we require that N (A−Ψ2)
and N (B −Ψ1) have topological complements and

(4.5) (σp(A−Ψ2) ∩ σp(B −Ψ1))∖ {0} ≠ ∅.

Then for every Y ∈ L(D(Y ),R(Y )), D(Y ) = D(Ψ1) ∩ R(Ψ1) ∩ DC , R(Y ) ⊂
D(Ψ2) ∩ DA, which is a weak solution to

(4.6) Ψ2Y − YΨ1 = 0,

the operator X := Y +C is a weak solution to the inhomogeneous Sylvester equation
(1.1) iff it is a weak solution to the homogeneous equation

(4.7) (A−Ψ2)X −X(B −Ψ1) = 0.

Proof. Assume there exists Y such that the equation (4.6) is satisfied. Put X :=
Y + C. By applying Theorem 4.2, we see that (4.5) yields that there exists a
non-trivial weak solution X to the equation (4.7). Finally, we verify that

(A−Ψ2)X −X(B −Ψ1) = 0

⇔ AX −XB = Ψ2X −XΨ1

⇔ AX −XB = Ψ2Y +Ψ2C − YΨ1 − CΨ1 = C. □

Remark 4.4. Such Ψ1 and Ψ2 always exist, e.g. Ψ2 = (α+ 1)I, Ψ1 = αI for any
α ∈ C.
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Let V1 and V2 be Banach spaces, B ∈ L(V1), A ∈ L(V2) closed operators such
that N (B) and N (A) are complemented in V1 and V2, respectively (the com-
plements are denoted respectively by V ′

1 and V ′
2). The projector from V2 to V ′

2

will be denoted as PV ′
2
. Let C ∈ L(V1, V2) be such that DC ∩ DB ̸= ∅ and

C(DC ∩ DB) ⊂ R(A). We assume that (σp(B) ∩ σp(A)) ∖ {0} ≠ ∅ and label
such intersection as σ ≡ (σp(B) ∩ σp(A))∖ {0}.

Theorem 4.5 (The inhomogeneous equation). [16, Theorem 2.4.] With regards to
the previous notation, if σ contains two disjoint families of different non-zero ele-
ments {µj}j∈J ∪{λi}i∈I ⊂ σ, where {µj}j∈J and {λi}i∈I have following properties:

(1) For every j ∈ J let u′j ∈ DB∩DC∩V ′
1 such that Bu′j = µju

′
j and C(u

′
j) = 0.

(2) For every i ∈ I, let ui ∈ DB∩DC∩V ′
1 such that Bui = λiui and C(ui) ̸= 0,

C(ui) ∈ R(A−λiI) and C(ui) is linearly independent with the vectors from
{(A − λkI)

−1PV ′
2
C(uk)}k∈I . We also require that {C(ui)}i∈I are linearly

independent different vectors.

Then there exists a weak solution to the inhomogeneous equation (1.1), defined on

(N (B) ∩ DC)⊕ (Lin({u′j}j∈J))⊕ (Lin({ui}i∈I)).

Remark 4.5. Notice that Lin({u′j}j∈J) ∩ Lin({ui}i∈I) = {0}, where u′j and ui
are eigenvectors for B which correspond to different eigenvalues µj and λi of B.
Therefore, the direct sum Lin({u′j}j∈J) ⊕ Lin({ui}i∈I) exists. We now proceed to
prove the stated theorem.

Proof. Since B and A are closed operators, the corresponding null spaces are closed
subspaces in V1, V2, respectively. The subspaces N (B) and N (A) have topological
complements, so V1 and V2 can be split into direct sums. Let V1 = N (B) ⊕ V ′

1

and V2 = N (A) ⊕ V ′
2 as stated in the theorem. Put V1(B) := V ′

1 ∩ DB and
V2(A) := V ′

2 ∩ DA. Define one-to-one operators B1 ∈ L(V1(B), V1) and A1 ∈
L(V2(A), V2) like in the proof of Theorem 4.2. We now have σp(A1) = σp(A)∖ {0}
and σp(B1) = σp(B)∖ {0}.

Let u ∈ N (B)∩DC . Since C(u) ∈ R(A) = R(A1) there exists a unique v ∈ V2(A)
such that C(u) = A1v = Av. Put N(u) := v. It follows that

(4.8) AN(u)−NB(u) = AN(u) = A(v) = C(u),

for every u ∈ N (B) ∩ DC .
Now observe V ′

1 , V
′
2 and B1 and A1. We define closed one-to-one operators

Ψ
(0)
1 ∈ L(Lin({u′j}j∈J), V1) and Ψ

(0)
2 ∈ L(Lin({v′j}j∈J), V2) such that Ψ

(0)
1 u′j :=

µj

2 u
′
j , Ψ

(0)
2 v′j :=

µj

2 v
′
j , for every j ∈ J . Now {µj

2 }j∈J ⊂ σp(Ψ
(0)
1 ) ∩ σp(Ψ(0)

2 ) ̸= ∅,
and µi = µj ⇒ i = j. Since N (Ψ

(0)
1 ) = 0V1

and N (Ψ
(0)
2 ) = 0V2

, then N (Ψ
(0)
1 ) and

N (Ψ
(0)
2 ) have topological complements in V ′

1 and V ′
2 , respectively. Now Theorem

4.2 implies that there exists a non-trivial weak solution

Y (0) ∈ L(Lin({u′j}j∈J),Lin({v′j}j∈J)),

such that

(4.9) Ψ
(0)
2 Y (0) − Y (0)Ψ

(0)
1 = 0
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holds. Further, for every j ∈ J we have Y (0)(u′j) = v′j (see proof of Theorem 4.2).
Note that

0 /∈ {µj/2}j∈J ⊂ σp(B1 −Ψ
(0)
1 ) ∩ σ(A1 −Ψ

(0)
2 ) ̸= ∅,

and {u′j}j∈J and {v′j}j∈J are the corresponding eigenvectors, respectively. Due to

the assumption 1. of the theorem, C(u′j) = 0, so (Y (0) + C)(u′j) = v′j , for every

j ∈ J . Since B1 −Ψ
(0)
1 is one-to-one on Lin({u′j}j∈J) and A1 −Ψ

(0)
2 is one-to-one

on Lin({v′j}j∈J), we can apply Theorem 4.2 and conclude that Y (0) + C is a weak

solution to the injective equation (A1 − Ψ
(0)
2 )X − X(B1 − Ψ

(0)
1 ) = 0, defined on

Lin({u′j}j∈J). But then for every u′ ∈ Lin({u′j}j∈J),

0 = (A1 −Ψ
(0)
2 )(Y (0) + C)(u′)− (Y (0) + C)(B1 −Ψ

(0)
1 )(u′)

= A1(Y
(0) + C)(u′)−Ψ

(0)
2 Y (0)(u′)−Ψ

(0)
2 C(u′)

− (Y (0) + C)B1(u
′) + Y (0)Ψ

(0)
1 (u′) + CΨ

(0)
1 (u′)

= A1(Y
(0) + C)(u′)− (Y (0) + C)B1(u

′)

− (Ψ
(0)
2 Y (0) − Y (0)Ψ

(0)
1 )(u′)− (Ψ

(0)
2 C − CΨ

(0)
1 )(u′)

= A1(Y
(0) + C)(u′)− (Y (0) + C)B1(u

′)− C(u′),

where we used (4.9) and Ψ
(0)
2 C(u′) − CΨ

(0)
1 (u′) = 0 = C(u′), u′ ∈ Lin({u′j}j∈J).

Put X(0) := C + Y (0).
Condition 2. of the Theorem yields the following. For every i ∈ I, define

Ψ1(ui) :=
1
2B1(ui).

Then σp(Ψ1) ⊃ {λi

2 }i∈I and {ui}i∈I are the corresponding eigenvectors. Also note
that {λi/2}i∈I ⊂ σp(B1 − Ψ1) and ui are the corresponding eigenvectors. Now
define

Ψ2(C(ui)) := (1 + λi/2)C(ui).

Further, since C(ui) ∈ R(A − λiI), there exists a unique vi ∈ V ′
2 ∩ DA such

that vi = (A1 − λiI)
−1(C(ui)), that is, (A1 − λiI)vi = C(ui). Since {C(ui)}i∈I

are linearly independent vectors, it follows that {vi}i∈I are linearly independent
vectors. Define

Ψ2(vi) :=
λi
2
vi + C(ui).

Since {C(ui)}i∈I are linearly independent vectors with regards to {vi}i∈I , we con-
clude that Ψ2 is well defined on Lin({C(ui)}i∈I)⊕ Lin({vi}i∈I). Now

Ψ2(vi − C(ui)) =
λi
2
(vi − C(ui)).

In other words, {λi

2 }i∈I ⊂ σp(Ψ2) and vi−C(ui) are the corresponding eigenvectors.
Also

(A1 −Ψ2)vi = A1(vi)−
λi
2
vi − C(ui) = A1(vi)−

λi
2
vi − (A1 − λiI)vi =

λi
2
vi,
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so {λi/2}i∈I ⊂ σp(A1 −Ψ2) and vi are the corresponding eigenvectors. Now{λi
2

}
i∈I

⊂ σp(A1 −Ψ2) ∩ σp(B1 −Ψ1).

Since N (A1 − Ψ2) = 0V2
and N (B1 − Ψ1) = 0V1

, it follows that N (A1 − Ψ2) and
N (B1 −Ψ1) have topological complements in V ′

2 and V ′
1 , respectively, so (applying

Theorem 4.2) there exists an X(1), which is a weak solution to the equation (4.7),
and it is defined as X(1)(ui) := vi, (see proof of Theorem 4.2). Put

Y (ui) := X(1)(ui)− C(ui) = vi − C(ui).

We verify that (4.6) holds:

Ψ2Y (ui)− YΨ1(ui) = Ψ2(vi − C(ui))− Y
(λi
2
ui

)
=
λi
2
vi + C(ui)−Ψ2(C(ui))−

λi
2
ui +

λi
2
C(ui)

=
(
1 +

λi
2

)
C(ui)−Ψ2(C(ui)) = 0.

Finally, we verify that (4.4) holds:

(4.10) Ψ2C(ui)− CΨ1(ui)− C(ui) =
(
1 +

λi
2

)
C(ui)−

λi
2
C(ui)− C(ui) = 0.

Put X = N ⊕ X(0) ⊕ X(1). Combining observations from (4.8) to (4.10), we see
that X is a weak solution to (1.1), defined on

(N (B) ∩ DC)⊕ (Lin({u′j}j∈J))⊕ (Lin({ui}i∈I)). □

Remark 4.6. Once again, if σp(A)∩σp(B) = {0} then the solution is provided by
the operator N from the equation (4.8).

Corollary 4.5 (The inhomogeneous equation). [16, Corollary 2.7.] Let V1 and V2 be
Banach spaces, B ∈ L(V1), A ∈ L(V2) closed operators such that N (B) and N (A)
are complemented in V1, V2, respectively. In that sense, put V1 = N (B) ⊕ V ′

1 and
V2 = N (A)⊕ V ′

2 . Let C ∈ L(V1, V2) such that DC ∩DB ̸= {0} and C(DC ∩DB) ⊂
R(A). If

{µj}j∈N ∪ {λi}i∈N ⊂ (σp(B) ∩ σp(A))∖ {0}
where {µj}j∈N and {λi}i∈N are disjoint families of different elements with following
properties:

(1) For every j ∈ N let u′j ∈ DB∩DC∩V ′
1 such that Bu′j = µju

′
j and C(u

′
j) = 0.

Assume {u′j}j∈N to form a Schauder basis for some SJ < DB ∩ DC ∩ V ′
1 .

(2) For every i ∈ N let ui ∈ DB ∩ DC ∩ V ′
1 such that Bui = λiui and

{ui}i∈N forms a Schauder basis for some SI < DB ∩ DC ∩ V ′
1 . Assume

that {C(ui)}i∈N are linearly independent different non-zero vectors, which
form a Schauder basis for some SC < R(A) ∩ R(A − λiI), and vectors
{PV ′

2
(A−λiI)−1C(ui)}i∈N to form a Schauder basis for some SV < DA∩V ′

2 ,
such that SC ∩ SV = {0}.

(3) We require SJ ∩ SI = {0}.
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Then there exists a weak solution to the non-homogeneous equation (1.1), defined on
(N (B) ∩ DC)⊕ (SJ)⊕ (SI).

4.3. A special case of self-adjoint operators on Hilbert spaces. As shown by
the previous results from this section, when we observe the unbounded singular
Sylvester equation (4.1) we only obtain weak solutions, which exist on the corre-
sponding eigenspaces of the shared eigenvalues. These results are “good enough”
if we are interested in some nice enough differential operators, like the Sturm–
Liouville operators, where we are only interested in behavior of operators in the
observed eigenfunctions.

In this section we restrict to the case where V1 and V2 are separable Hilbert
spaces and A and B are self-adjoint operators. By doing so, we extend the weak
solutions obtained in the previous section to the largest amenable domains. We
briefly recap some results about self-adjoint operators which are relevant for the
paper, see [22, 42, 48] or [63]. To start, recall that if L is a self-adjoint operator,
then σ(L) = σapp(L) = σc(L) ∪ σp(L), where σc(L) = σapp(L)∖ σp(L).

Theorem 4.6 (Spectral mapping theorem for self-adjoint operators). For a self-
adjoint operator L, densely defined on a separable Hilbert space V , there exists a
unique decomposition of identity, (Eλ : λ ∈ R), consisting of orthogonal projectiors
Eλ, such that

(1) The representation L =
∫ +∞
−∞ λ dEλ holds, where DL consists of those x ∈

V such that the integral
∫ +∞
−∞ λ2 d |Eλx|2 converges.

(2) The function λ 7→ Eλ is strongly continuous from above. Furthermore,
points of discontinuity of the function are precisely the eigenvalues for the
operator L. In that case, if λ0 is an eigenvalue of L, then Eλ0

− Eλ0−0

is the orthogonal projector from V onto the eigenspace Wλ0
of L, which

corresponds to λ0.
(3) The operator L commutes with every Eλ. Furthermore, an operator S

commutes with L if and only if it commutes with every projector Eλ.

Separability of the space V , as well as density of the domain DL play essential
roles in the proof: important consequences follow immediately, which are applied
in this paper as well.

Proposition 4.1. With respect to the previous Theorem, the space V allows an
orthogonal decomposition V =

⊕
n Vn, where Vn is an L-invariant subspace of V ,

such that Ln := L(DL ∩ Vn) is a bounded linear self-adjoint operator on Vn with
DLn

= DL ∩ Vn. In that case, L =
⊕

n Ln.

Proposition 4.2. Let V be a separable Hilbert space and let V =
⊕

n Vn be an
orthogonal sum of mutually orthogonal closed spaces Vn. If (Ln)n is a sequence
of self-adjoint bounded linear operators, Ln ∈ B(Vn), then there exists a unique
self-adjoint operator L densely defined in V , such that every Vn is L-invariant,
and that L restricted to Vn coincides with Ln. The domain DL consists of those
vectors x ∈ V such that the series

∑+∞
n=1 ∥Lnxn∥2 converges, where xn = PVn

x. If
sup{∥Ln∥ : n ∈ N} is finite, then L is a bounded operator.



428 B. D. DJORDJEVIĆ

Once again, we denote ∅ ≠ σ(A) ∩ σ(B) =: σ. Throughout this section, for
simpler notation, we assume that DB ⊂ DC .

We start with the simplest case, and that is when the spectral intersection occurs
at point spectra, that is σ = σp(A) ∩ σp(B), The results obtained in this case are
remarkably similar to those obtained in Theorem 2.1. Recall notation from Section
2: let Eλ

B := N (B−λI) and Eλ
A := N (A−λI) whenever λ ∈ σ. Different eigenvalues

generate mutually orthogonal eigenvectors, so the spaces Eλ
B form an orthogonal

sum. Put EB :=
∑

λE
λ
B . It is a closed subspace of V1 and there exists E⊥

B such
that V1 = EB ⊕ E⊥

B . Take B = BE ⊕ B1 with respect to that decomposition and
denote C0 = CPE⊥

B
.

Theorem 4.7 (The point spectrum case). [10, Theorem 2.1.] For given separable
Hilbert spaces V1 and V2, let A and B be densely defined self-adjoint operators on
V2 and V1 respectively, such that σ(A) ∩ σ(B) = σp(A) ∩ σp(B) = σ. Further, let
C ∈ L(V1, V2) be an arbitrary densely defined linear operator, such that DB ⊂ DC .

(1) If the condition

(4.11) C(N (B − λI)) ⊂ R(A− λI),

holds for every λ ∈ σ, then there exist infinitely many solutions XE to the
equation (4.1), defined on DE{
u ∈ N (B − λI) : λ ∈ σ,

∑
λ∈σ

PN (A−λI)⊥(A− λI)−1Cu converges

}
.

(2) In addition, B1 is a densely defined closed self-adjoint operator as well,
B1 : DB1 → E⊥

B . Assume that DB1 ⊂ DC0 , and that the following implica-
tion holds

0 ∈ σ(A) ∩ σ(B1) ⇒ 0 ∈ σp(A) ∩ σp(B1),

C(N (B1)) ⊂ R(A).(4.12)

Then there exist infinitely many solutions X1 to the eq. (4.1), defined on
(with respect to inclusion) the largest subspace DX1

⊂ E⊥
B .

(3) The solutions X := XE + X1, obtained in parts 1 and 2 of this theorem,
defined on their largest domains (with respect to inclusion) DE +DX1

, are
unique in the quotient class of operators from

(4.13) L(V1/(EB +N (B1)), V2/(EA +N (A))),

defined on the same domain.

Remark 4.7. This theorem is proved in a very similar manner in which Theorem
2.1 was proved. Furthermore, since B is self-adjoint, it follows that both EB and
E⊥

B ∩DB are B-invariant subspaces of V1, thus the functional calculus for BE and
B1 applies. In addition, Statement 3. and expression (4.13) naturally generalize
the characterization of matrix solutions obtained in the eigen-problem (2.7).
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Corollary 4.6 (Number of solutions). [10, Corollary 2.1.] With respect to the
previous notation, let all assumptions from Theorem 4.7 hold. Denote by Σ and Ω
the sets of linear operators such that

Σ =
{
Nσ : Nσ =

⊕
λ∈σNλ, Nλ ∈ L(Eλ

B , E
λ
A), λ ∈ σ

}
,

Ω = {N0 ∈ L(N (B1),N (A))}.

Let S be the set of all solutions to (4.1), which are defined on the largest domains
possible. Then |Ω| · |Σ| = |S|.

Proof. Proof follows directly from Theorem 4.7, because choices for solutions de-
pend solely on Nλ and N0, whenever λ ∈ σ. □

Remark 4.8. Due to Corollary 4.6, the solution X(Nσ+N0) ∈ S, with Nσ ∈ Σ and
N0 ∈ Ω, can be referred to as a particular solution. Similarly to the matrix case,
these particular solutions are highly unstable to small perturbations, because they
depend on the choice of the corresponding eigenvectors.

We now investigate the general case, where the spectral intersection occurs in
the approximate point spectra of A and B. Let L ∈ {A,B}, and assume that
λ ∈ σapp(L), that is, there exists a sequence (xn) ⊂ DL such that ∥xn∥ = 1 while
∥(L− λI)xn∥ → 0 as n→ ∞. The main idea is to construct a set which resembles
an approximate eigenspace with respect to λ, in order to apply the same method
from the previous case.

To start, assume that L is a bounded normal operator on a Hilbert space V .
Then for fixed µ and λ ∈ σapp(L), there exist two normed sequences (xn) and
(yn), such that ∥(L − λI)xn∥ and ∥(L − µI)yn∥ simultaneously tend to zero as n
approaches infinity. Then for every n:

|(µ−λ)⟨xn, yn⟩| = |⟨λxn−Lxn, yn⟩+⟨xn, L∗yn−µ̄yn⟩| ⩽ ∥λxn−Lxn∥+∥Lyn−νyn∥,

which tends to zero as n → +∞. This implies that approximate eigenvectors cor-
responding to different approximate eigenvalues tend to behave in an orthogonal
manner, similarly to the exact eigenvectors corresponding to the actual different
eigenvalues. This motivates the characterization of the approximate point spectrum
of all bounded linear operators L ∈ B(V ), which goes as the following (see [4]). De-
note by ℓ∞(V ) the space of all bounded sequences with values in V , equipped with
the sup−norm. The set of all sequences which converge to zero is denoted by c0(V ).
It follows that c0 is, with respect to the relative topology inherited from ℓ∞(V ),
a proper closed subspace, and defines a quotient space ℓ∞(V )/c0(V ) in a natural

way. What is left is to enclose this space, in a manner that ℓ∞(V )/c0(V ) forms a
complete inner product space, with inner product defined via the generalized limits
(called Banach limits) in ℓ∞(V ) (see [4] for a more detailed construction). For a
sequence (xn)n ∈ ℓ∞(V ), a bounded linear operator L ∈ B(V ) defines a bounded
linear map on ℓ∞(V ) as L′((xn)n) := (Lxn)n ∈ ℓ∞(V ). Furthermore, it follows that
L′(xn) ∈ c0(V ), whenever (xn) ∈ c0(V ). Hence, L′

0 : ℓ∞(V )/c0(V ) → ℓ∞(V )/c0(V )
defines a bounded linear operator, such that L′

0((x)n/c0(V )) := (L′(xn))/c0(V ), for
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every (xn) ∈ ℓ∞(V ). This implies that ∥L∥ = ∥L′
0∥, and that L′

0 extends contin-

uously to the entire space ℓ∞(V )/c0(V ), and that extension is denoted again by
L′
0.

Theorem 4.8. [4, Theorem 1] For every L ∈ B(V ), σapp(L) = σapp(L
′
0) = σp(L

′
0).

Combining the previous discussion with the spectral mapping theorem for self-
adjoint operators (Theorem 4.6), we modify Theorem 4.8 and apply it to our own
problem.

Lemma 4.3. [10, Lemma 2.1.] Let V be a Hilbert space and let L be a densely
defined bounded self-adjoint operator on V . Then there exists L′

0 defined in the
previous manner. For that L′

0 we have σapp(L) = σp(L
′
0) = σapp(L

′
0).

Theorem 4.9 (The general case). [10, Theorem 2.3] Let A ∈ L(V1) and B ∈ L(V2)
be closed densely defined self-adjoint operators on separable Hilbert spaces V1 and
V2, with spectral resolutions of identities

B =

∫ +∞

−∞
µdFµ, V1 = ⊕nV1n, Bn : V1n → V1n is a bounded operator,(4.14)

A =

∫ +∞

−∞
λ dEλ, V2 = ⊕nV2n, An : V2n → V2n is a bounded operator.(4.15)

Assume that σapp(B)∩σapp(A) =: σ ̸= ∅ and let C ∈ L(V1, V2) be arbitrary densely
defined linear operator, such that DB ⊂ DC . For every n, let operators (Bn)

′
0 and

(An)
′
0 be defined as in the previous paragraph and let (Cn)

′
0 be defined accordingly.

If operators (An)
′
0, (Bn)

′
0 and (Cn)

′
0 satisfy conditions (4.11)–(4.12) from Theorem

4.7, then there exist infinitely many solutions to A′
0X

′
0 − X ′

0B
′
0 = C ′

0, defined on

the largest subsets of ℓ∞(V1)/c0(V1) possible.

Proof. The first step is to apply spectral decomposition as in (4.14) and (4.15).
Now if σ = σp(A) ∩ σp(B), then Theorem 4.7 applies. Otherwise, apply Lemma
4.3 to each Bn and An, respectively. Then the problem is transferred to the first
case, that is, the spectral intersection occurs in the point spectra. If the conditions
(4.11)–(4.12) are satisfied, then Theorem 4.7 applies and the proof is complete. □

5. Lyapunov operator equations

Let V1 = V2 = H be a separable Hilbert space. For a (not necessarily bounded)
self-adjoint operator A, when B = −A and C = I we get the symmetric Lyapunov
operator equation

(5.1) AX +XA = I,

which is called symmetric because we are interested in finding symmetric solutions
X. This is a special case of the proper Lyapunov operator equation

(5.2) A∗X +X∗A = I,

where A is an arbitrary closed densely defined linear operator on H.
Similarly to the Sylvester equations, Lyapunov operator equation (5.1) is regular

if there exists a unique bounded, stable, symmetric solution X, and contrary, the
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equation is singular if it is not regular. Obviously, if the self-adjoint operator A
generates a C0−semigroup of operators which is unifromily exponentially stable
(equivalently, if the spectrum of A is negative) then Theorem 1.6 applies and there
exists a unique boundedX which is a solution to (5.1). However, taking the Hilbert-
conjugate of the equation, we get that X∗A+AX∗ = I holds, thus X = X∗. This
logic also applies to a more general Lyapunov operator equation

(5.3) AX +XA∗ = ±I,

where A is an arbitrary closed operator. In this case, if the spectrum of A is
contained in the open left complex half-plane then Re(σ(A)) is bounded from the
right by the imaginary axis. Consequently, A generates a uniformly exponentially
stable C0−semigroup, and Theorem 1.6 states that there exists a unique solution
to (5.3). Taking the Hilbert-conjugate of the equation once again gives X = X∗.

The equation (5.2) cannot explicitly be solved via Theorem 1.6, but the following
decomposition applies (see [12]). If A is a closed operator then A = U |A| is the

polar decomposition for A, where |A| =
√
A∗A and U is a partial isometry. In that

sense, the eq. (5.2) becomes

(5.4) |A|U∗X +X∗U |A| = I.

If the equation |A|Y +Y |A| = I is regular, then there exists a unique solution Y =
1
2 |A|

−1 and consequentlyX from (5.4) is precisely of the formX = UY . Notice that
the eq. |A|Y + Y |A| = I is regular if and only if N (|A|) = {0}. Conveniently, the
polar decomposition A = U |A| uniquely determines U if we requireN (U) = N (|A|).
That being said, since both Y and U are uniquely determined when |A|Y +Y |A| = I
is a regular equation, then so is X from (5.2) when that is a regular equation.

The previous analysis shows that when the equations (5.1) and (5.3) are regular
their solutions are symmetric, and when the equation (5.2) is regular, then its
solution is A−symmetric (meaning that X = UY , where Y a symmetric operator
and U is the partial isometry obtained from the polar decomposition of A). In
fact, this property is crucial for papers which concern regular Lyapunov operator
and matrix equations (see [6, 17, 60, 66]) and consequently, for the papers which
concern Cauchy problems whose solutions are stable in the Lyapunov sense (see
[6,26,34,40,41,43,50,66]). This is exactly what motivates us to investigate behavior
of singular equations (5.1) and (5.2).

We start with obtaining a symmetric solution to (5.1) and then we work our
way up to find A−symmetric solutions to the equation (5.2). We also prove that
some of these results cannot be weakened. Notice that we can find infinitely many
solutions to (5.1) via Theorem 4.7, but this does not guarantee that a single one of
them will be symmetric. In order to find a symmetric solution to (5.1), we impose
a natural assumption for the self-adjoint operator A, which is by far less restrictive
than requiring it to be the infinitesimal generator of a C0−semigroup:

Assumption 1. (A1(L)): Let L be a (not necessarily bounded) self-adjoint oper-
ator on the separable Hilbert space H. The set ∆L := DL2 ∩ R(L) is assumed to
be dense in H, where R(L) is the image of L and DL2 = {u ∈ DL : Lu ∈ DL}.
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Theorem 5.1. [12, Theorem 3.1.] Let A be a self-adjoint operator such that A1(A)
holds. Then there exists a symmetric X : ∆A → H which is a solution to the
Lyapunov operator equation (5.1) on ∆A.

Proof. Let (Pλ)λ∈R be the spectral resolution for the self-adjoint operator A. Since
A and A2 commute on DA3 , it follows that A2 commutes with every Pλ on DA3 as
well. Now let Y be any finite real linear combination of such orthogonal projectors
Pλ (or any real summable family Y =

∑
λ αλPλ of the projections Pλ, where

(αλ)λ ∈ ℓ1(R)). It follows that Y commutes with A on DA. In addition, Y is a
symmetric operator on DA. Denote by Z the operator Z := AY + Y A− I, defined
on DA. It follows that Z∗ = AY ∗ + Y ∗A − I ⊃ AY + Y A − I = Z, thus Z is a
symmetric operator on DA. By construction, Z commutes with A on DA2 .

Case 1. Assume that zero is a regular point for the operator A. Then every pro-
jector Pλ (from the spectral resolution of A) commutes with A−1 and consequently,
so does the operator Y (restricted to R(A) ∩ DA) and finally so does the operator
Z (on DA2 ∩ R(A)). Let X := Y − 1

2A
−1Z be defined on DX = ∆A. Then X is

symmetric on its domain and for every u ∈ ∆A we have

(AX +XA)u =
(
AY − 1

2Z + Y A− 1
2Z

)
u = (I + Z − Z)u = Iu.

Notice that X is in fact X = Y − 1
2A

−1Z = Y − 1
2Y − 1

2Y + 1
2A

−1 = 1
2A

−1. So in
this case, X is additionally bounded and self-adjoint on H.

Case 2. Now assume that zero is an eigenvalue for the operator A. Then N (A) is
a nontrivial closed proper subspace of H and there exists an orthogonal projection
Q0 which maps H onto N (A) parallel with N (A)⊥. It is noteworthy to see that
Q0 = Pλ − Pλ−0 and that we can choose the operator Y to commute with Q0.
Respectively, DA = Q0DA ⊕ (I − Q0)DA and A = 0 ⊕ A1, where 0 = AQ0 and
A1 = A(I−Q0). In that sense, there exists an operator A−1

1 : R(A) → (I−Q0)DA,
defined as

(∀u ∈ DA) (u = u1 ⊕ u2, u1 ∈ N (A), u2 ∈ DA ∩N (A)⊥)

A−1
1 (Au) = A−1

1 Au2 = u2.

This concludes that A−1
1 A is the orthogonal projection I − Q0 observed on DA.

Analogously, for any u ∈ R(A) there exists a v ∈ DA such that Av = u and
v = v1 ⊕ v2, where v1 ∈ N (A) and v2 ∈ DA ∩N (A)⊥. Then

AA−1
1 u = AA−1

1 Av = Av2 = Av = u,

thus proving that AA−1
1 = IR(A). Decompose R(A)∩DA2 into an orthogonal sum

R(A) ∩ DA2 = Q0(R(A) ∩ DA2)⊕ (I −Q0)(R(A) ∩ DA2)

= (N (A) ∩R(A))⊕ (N (A)⊥ ∩R(A) ∩ DA2).

Restricted to N (A)⊥ ∩ R(A) ∩ DA2 , the mapping AA−1
1 is the same as IR(A),

which is on that particular subspace the same as I − Q0. Thus for every u ∈
N (A)⊥ ∩R(A) ∩ DA2 we have

0 = (2Y (I −Q0)− 2(I −Q0)Y )u = (2Y AA−1
1 − 2A−1

1 AY )u
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= (AY A−1
1 + Y AA−1

1 −A−1
1 −A−1

1 AY −A−1
1 AY +A−1

1 )u

= ((AY + Y A− I)A−1
1 −A−1

1 (AY + Y A− I))u

= (ZA−1
1 −A−1

1 Z)u.

Similarly as before, take X1 := Y − 1
2A

−1
1 Z, with its domain DX1

= N (A)⊥ ∩
R(A) ∩ DA2 . Then for every x ∈ DX1 we have

(AX1 +X1A)u =
(
AY − 1

2
AA−1

1 Z + Y A− 1

2
A−1

1 ZA
)
u = (I + Z − Z)u = Iu.

To complete the proof, we conduct a similar methodology on N (A) ∩ R(A). Let
u ∈ N (A) ∩R(A). Then there exists a v ∈ DA such that u = Av and v = v1 ⊕ v2,
where v1 ∈ N (A) and v2 ∈ N (A)⊥. Then

(AX +XA)u = u⇔ AXAv = Av ⇔ AXAv2 = Av2.

Thus we takeX0 := A−1
1 , with its domain DX0

= R(A)∩N (A). ThenX := X1⊕X0

is an operator defined on

DX = (N (A)⊥ ∩R(A) ∩ DA2)⊕ (R(A) ∩N (A)) = ∆A.

To verify that X is indeed symmetric on its domain, take arbitrary u and v ∈ ∆A.
Then u = u1 ⊕ u2 and v = v1 ⊕ v2, where u1, v1 ∈ N (A)⊥ ∩R(A) ∩DA2 while u2,
v2 ∈ N (A) ∩R(A). Then

⟨Xu, v⟩ = ⟨X1u1, (v1 + v2)⟩+ ⟨X0u2, (v1 + v2)⟩

=
〈(
Y − 1

2
A−1

1 Z
)
u1, (v1 + v2)

〉
+ ⟨A−1

1 u2, (v1 + v2)⟩

= ⟨Y u1, v1⟩+ ⟨Y u1, v2⟩ −
1

2
⟨(A−1

1 Z)u1, v1⟩ −
1

2
⟨(A−1

1 Z)u1, v2⟩

+ ⟨A−1
1 u2, v1⟩+ ⟨A−1

1 u2, v2⟩.

Because Y is a symmetric operator, invariant under the decompositionH = N (A)⊕
N (A)⊥ (because it commutes with Q0), it follows that

⟨Y u1, v1⟩+ ⟨Y u1, v2⟩ = ⟨u1, Y v1⟩.

Further, since A−1
1 and Z commute on N (A)⊥ ∩ R(A) ∩ DA2 and Z and A−1

1 are
symmetric on their domains, we have

⟨(A−1
1 Z)u1, v1⟩ = ⟨(ZA−1

1 )u1, v1⟩ = ⟨(A−1
1 )u1, Zv1⟩ = ⟨u1, (A−1

1 Z)v1⟩.

Now recall that R(A−1
1 ) ⊂ N (A)⊥, thus ⟨(A−1

1 Z)u1, v2⟩ = 0 = ⟨A−1
1 u2, v2⟩. Since

u2 ∈ N (A) ∩ R(A), there exists an w ∈ DA such that Aw = Aw1 = u2, where
w = w1 ⊕w2 and w1 ∈ DA ∩N (A)⊥, w2 ∈ N (A). Then A−1

1 u2 = w1. In addition,
v1 ∈ N (A)⊥ ∩ DA2 ∩ R(A), thus there exists a z ∈ DA such that Az = Az1 = v1,
where z = z1 ⊕ z2, z1 ∈ DA ∩N (A)⊥ while z2 ∈ N (A). Then

⟨A−1
1 u2, v1⟩ = ⟨w1, v1⟩ = ⟨w1, Az⟩ = ⟨Aw1, z⟩

= ⟨u2, z⟩ = ⟨u2, z2⟩ = ⟨AA−1
1 u2, z2⟩ = ⟨w1, Az2⟩ = 0.
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This proves that

⟨Xu, v⟩ =
〈
u1,

(
Y − 1

2A
−1
1 Z

)
v1
〉
= ⟨u1, X1v1⟩.

In the same manner, we have

⟨u,Xv⟩ = ⟨X1u1, v1⟩ = ⟨u1, X1v1⟩ = ⟨Xu, v⟩,
because X1 is symmetric by construction on its domain.

Case 3. If zero is in the continuous part of the spectrum of A then A is not a
regular operator, but it is injective from DA onto R(A). In that sense, for every
z ∈ R(A) there exists a unique w ∈ DA such that Aw = z. Notice that the inverse
map z 7→ w is not necessarily bounded, because A is not bounded from below.
Thus we define X pointwise on elements of ∆A: X : z 7→ 1

2w, where z ∈ ∆A and
w ∈ DA is unique such that Aw = z. It follows that X is well defined on ∆A, and
though it is not bounded it is symmetric because A is self-adjoint. □

The assumption A1 is clearly sufficient. Below we show that it is also necessary
when some natural conditions are imposed.

Theorem 5.2. [12, Theorem 3.2.] Let A be a self-adjoint operator and let X be
a densely defined symmetric operator, such that D := DA = DX , R(A) ⊂ D and
R(X) ⊂ D. If X is a solution to (5.1) on D then R(A) is dense in H.

Proof. Assume that (5.1) is solvable for a symmetric X and that R(A) ̸= H. Then

there exists a non-trivial W such that H = R(A) ⊕W and W ⊥ R(A). If there
exists a sequence (wn)n∈N in W ∩ D such that ∥wn∥ = 1 and Awn → 0 when
n→ +∞, then

1 = ⟨wn, wn⟩ = ⟨AXwn, wn⟩︸ ︷︷ ︸
0

+⟨XAwn, wn⟩ = ⟨Awn, Xwn⟩ = ⟨wn, AXwn⟩ = 0

which is impossible. Ergo, A is bounded from below on W ∩ D, injective and
R(A ↾W∩D) is closed in R(A). In that case, for any w ∈W ∩D we have w = Y Aw,
where Y is the inverse for A ↾W∩D, Y : R(A ↾W∩D) → W ∩ D. Let u be arbitrary
from R(A ↾W∩D). Then ∥u∥2 = ⟨AY u, u⟩ = ⟨Y u,Au⟩ = 0, which gives u = 0.
Consequently, A ↾W∩D= 0 ↾W∩D, which is impossible by regularity of A on W . □

The following corollary immediately follows.

Corollary 5.1. [12, Corollary 3.1.] Let A be a bounded self-adjoint operator on H.
The following statements hold:

(a) If R(A) is dense in H then there exists a symmetric solution X to (5.1)
defined on R(A).

(b) There exists a bounded self-adjoint solution X to (5.1) if and only if A is
invertible on H. In that case, the solution X is also invertible on H.

Without loss of generality, if A is a bounded self-adjoint operator, then the
bounded self-adjoint solution X to (5.1) can be chosen to be X = 1

2A
−1. For any

unital C∗−subalgebra A of B(H) which contains A, it follows that 1
2A

−1 ∈ A, thus
Gelfand-Naimark theorem proves the following statement.
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Theorem 5.3. [12, Theorem 3.3.] Let A be a unital C∗−algebra and let a ∈ A be
a self-adjoint element. There exists a self-adjoint x ∈ A such that ax+ xa = 1A if
and only if a is invertible and in that case x is invertible as well.

We now return to the general equation (5.2). Recall the polar decomposition
for A by which we obtained the equation (5.4). If A is a closed densely-defined

operator in H then |A| :=
√
A∗A is a self-adjoint operator which is defined on the

same domain D|A| = DA. In that sense, there exists a partial isometry U such
that A = U |A| and this representation is called the polar decomposition of A. If
we choose N (|A|) = N (U), then the partial isometry U is uniquely determined via
|A|. The following statements immediately follow.

Theorem 5.4. [12, Theorem 3.4.] Let A : DA → H be a closed densely-defined
linear operator on H and A = U |A| be its polar decomposition. The following
statements hold:

(a) If |A| satisfies A1(|A|) then there exists a solution X to (5.2) defined on
∆|A|, such that the decomposition X = US holds, where S is a symmetric
operator on ∆|A| which solves |A|S + S|A| = I.

(b) Conversely, assume that there exists an X defined on DA which solves the
equation (5.2) and in addition allows the decomposition X = US, where S
is a symmetric operator on DA, which solves |A|S + S|A| = I, R(S) ⊂ DA

and R(A) ⊂ DA. Then R(|A|) is dense in H.

Corollary 5.2. [12, Corollary 3.2] Let A be a bounded linear operator on H with
its polar decomposition A = U |A|. The following statements hold:

(a) If R(|A|) is dense in H there exists a solution X to (5.2) defined on R(|A|)
which allows the decomposition X = US where S is a symmetric operator
on R(|A|) which solves |A|S + S|A| = I.

(b) There exists a bounded solution X to (5.2), which allows the decomposition
X = US where S is a self-adjoint operator which solves |A|S + S|A| = I if
and only if A is invertible. In that case, the operator S is also invertible.

If a is an invertible element in a unital C∗−algebra A then |a| :=
√
a∗a is also an

invertible element in A. In that case, a = a|a|−1|a| and a|a|−1 is a unitary element
in A. Thus a = u|a|, where u = a|a|−1 is unitary, is the polar decomposition of a
in A, consult [62].

Theorem 5.5. [12, Theorem 3.5.] Let a ∈ A and |a| =
√
a∗a. The following

statements are equivalent

(a) a is invertible in A.
(b) There exists a self-adjoint solution s ∈ A to |a|s+ s|a| = 1.
(c) There exists a unitary u such that a = u|a| and us solves the equation

(5.5) a∗x+ x∗a = 1A.

If any of these statements hold, the solution x = us to (5.5) is invertible in A.
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5.1. Abstract Cauchy problems. Below we show how Lyapunov operator equa-
tions help study stability of solutions to Abstract Cauchy problems. We start with
the simplest one

(5.6) u′(t) = Au(t), u(0) = u0 ∈ DA

where u ∈ C1([0,+∞),H), u : t 7→ u(t) ∈ DA for every t ⩾ 0, and A is a closed
operator densely defined on the separable Hilbert space H. Recall that any ACP
can be solved in the classical or in the mild sense, see [21]. A function u is a classical
solution to (5.6) if u(0) = u0 and if it identically solves u′(t) = Au(t), t ⩾ 0. A
function u is said to be a mild solution to (5.6) if for every bounded linear functional
ψ ∈ H′ the equality ψ(u(0)− u0) = 0 holds and ψ(u′(t)− Au(t)) = 0 when t ⩾ 0.
Clearly every classical solution is also a mild solution, while the converse does
not hold in general (see [21] or [47]). Applying the Riesz representation lemma
(consult [21, 48] or [63]), it follows that u is a mild solution to (5.6) if for every
w ∈ H one has ⟨u0 − u(0), w⟩ = 0 and ⟨u′(t)−Au(t), w⟩ = 0 when t ⩾ 0.

A basic result in dynamical systems states (see [21, 48] and [63]) that for any
initial u0 ∈ DA, the ACP (5.6) has a unique classical solution given as u(t) = Stu0,
which continuously depends on u0, if and only if the operator A is the infinitesimal
generator of a C0−semigroup (St)t⩾0 on H. This remarkable result tells plenty in-
formation about the operator A itself, about the C0−semigroup (St)t⩾0 and finally,
about the solution u(t) to (5.6). In particular, the solution u(t) = Stu0 satisfies
the upper bound estimate

∥u(t)∥ ⩽ ∥St∥ · ∥u0∥ ⩽M ewt ∥u0∥,

where M ⩾ 1 and w is the semigroup growth limit. Consequently, (see [26, 40, 43,
66]) if σ(A) is contained strictly in the left complex half-plane, then all solutions
to ACP (5.6) are stable in the Lyapunov sense, meaning that ∥u(t)∥ → 0 when
t → +∞, for any given u0 ∈ DA (notice that in this case the operator equation
(5.1), (5.2) and (5.3) are all regular). Conversely, if there exists a λ ∈ σ(A) such that
Reλ > 0, then all solutions to the linear ACP (5.6) are unstable in the Lyapunov
sense, that is ∥u(t)∥ → +∞ when t → +∞ for any initial condition u0 ∈ DA.
For further results regarding C0−semigroups and their applications to differential
and abstract differential equations, consult [6, 21, 26, 34, 40, 43] and [66]. However,
not all ACPs can be solved in this manner: there are abstract Cauchy problems
which do not possess the classical infinitesimal generator for the corresponding
C0−semigroup of operators. An example can be found in [47], where the author
has shown that some functional stochastic differential equations are indeed solvable,
but the corresponding C0−semigroup of expectations does not possess the classical
infinitesimal generator.

At this point we show, by assuming that A is a self-adjoint operator densely
defined on a separable Hilbert space H, that the asymptotic behavior on the unit
sphere of the expression (called the quadratic form)〈

A
u(t)

∥u(t)∥
,
u(t)

∥u(t)∥

〉
when t→ +∞
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gives an asymptotic upper bound for the unstable solution u(t) to ACP (5.6). By
doing so we omit the classical C0−semigroup approach and the requirement that
σ(A) is bounded from the right. Consequently, the operator A need not be the
infinitesimal generator in the classical sense. Theorem 5.6 below is an extension of
a result obtained by Willimas in [66], where he had studied asymptotic behavior of
stable solutions to the ACP (5.6) via regular operator equation (5.1).

The symbol ≲ stands for the asymptotic upper bound of given functions, i. e.
for complex-valued functions f and g defined on [0,+∞), where g(t) ̸= 0 for every
large enough t, by f(t) ≲ g(t) we assume lim supt→+∞ |f(t)/g(t)| ⩽ 1.

Theorem 5.6. [12, Theorem 4.2.] Let A be a self-adjoint operator such that A1(A)
holds. Let u : [0,+∞) → H be a continuously-differentiable function with values
in ∆A which is a solution to (5.6) in the mild or classical sense. If there exists a
non-decreasing real-valued function h : [0,+∞) → R such that

|⟨Au(t), u(t)⟩| ≲ h(t) · ∥u(t)∥2, t→ +∞
then

(5.7) ∥u(t)∥ ≲ et(h(t)+1/2) .

Proof. By Theorem 5.1, there exists an X defined on ∆A which is a symmetric
linear operator and is a solution to Lyapunov operator equation (5.1). Define
f : [0,+∞) → R+ iR+ as

f(t) := ⟨(iI +X)u(t), u(t)⟩ = i∥u(t)∥2 + ⟨Xu(t), u(t)⟩.
It follows that |f(t)| ⩾ | Im(f)(t)| = ∥u(t)∥2. Differentiating f via t gives

f ′(t) = ⟨(iI +X)u′(t), u(t)⟩+ ⟨(iI +X)u(t), u′(t)⟩
= ⟨(iI +X)Au(t), u(t)⟩+ ⟨(iI +X)u(t), Au(t)⟩
= 2i⟨Au(t), u(t)⟩+ ⟨(AX +XA)u(t), u(t)⟩
= 2i⟨Au(t), u(t)⟩+ ∥u(t)∥2.

Let ln be the complex logarithm with a branch cut at (−∞, 0]. Then (ln(f(t)))′ =
f ′(t)/f(t), and

|(ln(f(t)))′| = |f ′(t)|
|f(t)|

⩽ ∥u(t)∥−2
√

4⟨Au(t), u(t)⟩2 + ∥u(t)∥4(5.8)

=

√
4⟨Au(t), u(t)⟩2

∥u(t)∥4
+ 1 ⩽ 2∥u(t)∥−2|⟨Au(t), u(t)⟩|+ 1

≲ 2h(t) + 1 t→ +∞.

On the other hand we have

| ln(f(t))− ln(f(0))| =
∣∣∣∣ ∫ t

0

(ln(f(s)))′ d s

∣∣∣∣ ⩽ ∫ t

0

|(ln(f(s)))′|d s,

consequently,

| ln |f(t)|| ⩽ | ln f(t)− ln f(0)| ⩽
∫ t

0

|(ln(f(s)))′|d s ⩽ t · sup
0⩽s⩽t

|(ln(f(s)))′|
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for every t ⩾ 0, so for sufficiently large t we obtain

(5.9)
| ln |f(t)||

t
≲ 2h(t) + 1.

Combined with the previous assessments (5.8)–(5.9), we get

∥u(t)∥2 ⩽ |f(t)| ≲ et(2h(t)+1), t→ +∞.

or equivalently ∥u(t)∥ ≲ et(h(t)+1/2) . □

Remark 5.1. Since the the function f is defined via scalar product, it really does
not matter if u is a solution to (5.6) in the classical or mild sense.

Example 5.1. [12, Example 4.1.] LetH ∼= L2(R) and let (X(t))t⩾0 be a real-valued
random process with normal distribution:

X(t) : N (t, 1), ρt(x) =
1√
2π

e−(x−t)2/2, x ∈ R.

Define (u(t))(x) := et
2/2 ρt(x), x ∈ R, t ⩾ 0. In that case ∥u(t)∥1 = et

2/2 and

∥u(t)∥2 = 1√
2
√
π
et

2/2, thus u(t) ∈ L2(R) ∩ L1(R) for every t ⩾ 0. Naturally define

u : [0,+∞) → L2(R) as u : t 7→ u(t). We compute that

(u′(t))(x) = ∂t

( 1√
2π

e−x2/2+xt
)
= xu(t)(x) = (Au(t))(x),

therefore A is the sought self-adjoint operator, defined via Af(x) 7→ xf(x), x ∈ R,
f ∈ L2(R), with DA = {f ∈ L2(R) : xf(x) ∈ L2(R)}. In addition we have

⟨Au(t), u(t)⟩L2(R) = et
2 1

2π

∫ +∞

−∞
x e−(x−t)2 dx = t

et
2

2
√
π

= t∥u(t)∥22

so h(t) = t. Theorem 5.6 gives the estimate (5.7): ∥u(t)∥2 ≲ et(t+1/2), which can
be considered fairly precise asymptotically speaking.

Corollary 5.3. [12, Corollary 4.1.] Let (X(t))t⩾0 be a random process over Rn

(n ∈ N) such that each random variable X(t) has its probability density ρt. For
a measurable real-valued function φ ∈ L1(Rn), denote by Mφ the corresponding
self-adjoint multiplication operator in L2(Rn), defined on

DMφ = {f ∈ L2(Rn) : φf ∈ L2(Rn)}.
Let u : [0,+∞) → L2(Rn) be a continuously-differentiable mapping with the set of
values

R(u) = {u(t) : t ∈ [0,+∞)} ⊂ DMφ
2 ∩R(Mφ),

such that ρt = ∥u(t)∥−2
2 u(t)u(t). If there exists a non-decreasing real-valued func-

tion h defined on [0,+∞), such that |E(φ(X(t)))| ≲ h(t), t→ +∞ then the solution
to ACP

(u′(t))(x) = φ(x) · (u(t))(x), x ∈ Rn,

(u(0))(x) = u0(x)

satisfies ∥u(t)∥2 ≲ et(h(t)+1/2), for any initial data u0 in DM2
φ
∩R(Mφ).
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An important generalization of ACP (5.6) is the inhomogeneous ACP of the
form

(5.10)
u′(t) = Au(t) + v(t),

u(0) = u0 ∈ DA

where v, u ∈ C1([0,+∞),H), u : t 7→ u(t) ∈ DA and v : t 7→ v(t) ∈ DA for every
t ⩾ 0, and A is a closed operator densely defined on the separable Hilbert space H.
Classical and mild solutions to (5.10) are defined as they were for ACP (5.6).

One way of homogenizing the (5.10) was done in [41], under the premise that A
was the infinitesimal generator of a C0−semigroup. In that paper, Roth’s removal
rule was applied and the ACP (5.10) was homogenized.

Under similar assumptions as before, we are going to derive an asymptotic upper
growth bound for the solution to (5.10) without the C0−semigroup theory. Again,
we assume that A is a self-adjoint operator and the solution u(t) to (5.10) is unstable
in the Lyapunov sense. Consequently, it is natural to assume that

∥v(t)∥ = o(∥u(t)∥), t→ +∞.

Recall that if zero is a regular point for A, then there exists a bounded inverse
A−1. In that case, notice that the symmetric solution X to (5.1) can be chosen to
be precisely 1

2A
−1, which is bounded and is defined on R(A). This motivates the

following assumtion

Assumption 2. (A2): If X is a symmetric solution to (5.1), we assume that
v(t) from (5.10) is in DX , ∥v(t)∥ = o(∥u(t)∥) and that ∥Xv(t)∥ = o(∥u(t)∥) when
t→ +∞.

Theorem 5.7. [12, Theorem 4.3.] Let A be a self-adjoint linear operator such that
A1(A) holds. Let u, v : [0,+∞) → H be continuously-differentiable functions with
values in ∆A, such that u is a solution to (5.10) (in the weak or classical sense) and
that A2 holds. If there exists a non-decreasing real-valued function h : [0,+∞) → R
such that |⟨Au(t), u(t)⟩| ≲ h(t) · ∥u(t)∥2, t→ +∞, then ∥u(t)∥ ≲ et(h(t)+1/2).

Proof. The proof is pretty much identical to the proof of Theorem 5.6. There
exists an X defined on ∆A, which is a symmetric linear operator and is a solution
to Lyapunov operator equation (5.1). Again, define f : [0,+∞) → R+ iR+ as

f(t) := ⟨(iI +X)u(t), u(t)⟩ = i∥u(t)∥2 + ⟨Xu(t), u(t)⟩.
It follows that

|f(t)| ⩾ | Im(f)(t)| = ∥u(t)∥2.
Differentiating f via t gives

f ′(t) = ⟨(iI +X)u′(t), u(t)⟩+ ⟨(iI +X)u(t), u′(t)⟩
= ⟨(iI +X)(Au(t) + v(t)), u(t)⟩+ ⟨(iI +X)u(t), Au(t) + v(t)⟩
= 2i⟨Au(t), u(t)⟩+ ∥u(t)∥2 + 2iRe⟨v(t), u(t)⟩+ 2Re⟨u(t), Xv(t)⟩.

Let ln be the complex logarithm with a branch cut at (−∞, 0]. Then (ln(f(t)))′ =
f ′(t)/f(t) and
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|(ln(f(t)))′| = |f ′(t)|
|f(t)|

⩽ ∥u(t)∥−2(∥u(t)∥2 + |2Re⟨u(t), Xv(t)⟩|)

+ ∥u(t)∥−2(|2Re⟨u(t), v(t)⟩|+ |2⟨Au(t), u(t)⟩|) ≲ 1 + 2h(t) + o(1), t→ +∞.

The rest of the proof is the same. □
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