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1. Introduction

The theory of generalized inverses is a part of functional analysis and linear
algebra which developed during the XX century. Its very beginnings were about
practical problems on integral operators (Fredholm, 1903.) and differential equa-
tions (Hilbert, 1904. on generalized Green’s function), and later attention was
turned to complex matrix case (Moore, 1920; Penrose, 1955.), Banach and Hilbert
space operators, or even rings with involution, Banach- and C⋆-algebras. For more
on the history of generalized inverses please see [3] and the references therein.

1.1. About the Moore–Penrose generalized inverse. Let X and Y be Banach
spaces, and let L(X,Y ) stand for the set of all bounded linear operators from X
to Y ; we abbreviate L(X,X) as L(X). For A ∈ L(X,Y ) we use R(A) and N (A)
to denote the range and the null-space of A.

An operator B ∈ L(Y,X) is an inner inverse of A ∈ L(X,Y ), if ABA = A holds.
In this case A is inner invertible, or relatively regular. It is well-known that A is
inner invertible if and only if R(A) is closed in Y . If there is some C ∈ L(Y,X),
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C ̸= 0, such that CAC = C, then C is an outer generalized inverse of A, and A is
outer regular. An operator which is both inner and outer generalized inverse of A
is a reflexive generalized inverse of A.

Let H and K denote arbitrary Hilbert spaces. By A∗ we denote the Hilbert-
adjoint operator of given A ∈ L(H,K). Recall that operator A ∈ L(H) is Hermitian
(or selfadjoint) ifA = A∗, and normal if AA∗ = A∗A. Hermitian operatorA ∈ L(H)
is positive if ⟨Ax, x⟩ > 0 for all x ∈ H\{0}.

The fact that a Hilbert space H can be decomposed as a direct sum of two
closed subspaces M and N will be denoted by H = M ⊕ N ; if this direct sum is
orthogonal, we write H = M ⊕⊥ N , and then M is the orthogonal complement of
N (with respect to H), M = N⊥. By PM we denote the orthogonal projection
corresponding to closed subspace M .

The Moore–Penrose inverse can be defined in several equivalent ways (see e.g. [57,
p. 321], or [3, p. 336]).

Definition 1.1 (Moore). If A ∈ L(H,K) is a closed range operator, then A† ∈
L(K,H) is the unique operator satisfying

(M1) AA† = PR(A), (M2) A†A = PR(A∗).

Definition 1.2 (Penrose). The Moore–Penrose inverse of given A ∈ L(H,K) is
the operator A† ∈ L(K,H) (unique when it exists) satisfying the following so-called
Penrose equations

(1) AA†A = A, (2) A†AA† = A†, (3) (AA†)∗ = AA†, (4) (A†A)∗ = A†A.

Definition 1.3 (Desoer-Whalen). If A ∈ L(H,K) is a closed range operator, then
A† ∈ L(K,H) is the unique operator satisfying

(DW1) AA†x = x, x ∈ N (A)⊥, (DW2) A†y = 0, y ∈ R(A)⊥.

Since closed subspaces of a Hilbert space are always complemented, the Moore–
Penrose inverse of A exists if and only if R(A) is closed. Note that for R(A) not
closed, A† is an unbounded, but closed linear operator; we shall not consider this
situation here. For the more general case, when A is a closed densely defined Hilbert
space operator, see e.g. [32]. When the closed-range operator A is invertible, then
its Moore–Penrose inverse A† coincides with its ordinary inverse A−1. In [12] one
can find what happens when the first two equations are slightly altered.

Note that if for given operator A ∈ L(X,Y ) there is some B ∈ L(Y,X) such that
B satisfies Penrose equations θ ⊂ {1, 2, 3, 4}, then we say that B is a θ-inverse of A,
and use the notation B = Aθ for an element and A{θ} for such set of all θ-inverse
of A. For θ = {1} we have an inner inverse A(1) from the set A{1}, for θ = {2}
we have an outer inverse A(2) from the set A{2}, while we use A(1,2) ∈ A{1, 2} for
reflexive generalized inverse case. It is clear that A(1,2,3,4) coincides with A†.

The closed-range operator A is EP (or equal-projection, or range-Hermitian) if
AA† = A†A, or, equivalently, R(A) = R(A∗). If M ∈ L(K) and N ∈ L(H) are
positive (and invertible) operators, and A ∈ L(H,K) is a closed-range operator,
there exists the unique operator B ∈ L(K,H) such that

(1) ABA = A, (2) BAB = B, (3M) (MAB)∗ = MAB, (4N) (NBA)∗ = NBA.
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Such B is denoted by A†
M,N and is known as the weighted Moore–Penrose inverse

of A with respect to the weights M and N . There is one useful result connecting
the ordinary and the weighted Moore–Penrose inverse [29, Theorem 5]

A†
M,N = N−1/2(M1/2AN−1/2)†M1/2.

Properties of the Moore–Penrose inverse. Throughout the survey H,K,H1,
H2,H3,H4 denote arbitrary Hilbert spaces. In the next proposition, a lot of well-
known and important facts and properties concerning the Moore–Penrose inverse
are collected, especially those we are using in the proofs.

Proposition 1.1. Let A ∈ L(H,K) be closed-range operator and let M ∈ L(K)
and N ∈ L(H) be positive definite invertible operators. Then

(1) (A†)† = A, (A∗)† = (A†)∗, (λA)† = λ−1A† for λ ̸= 0;
(2) A∗ = A†AA∗ = A∗AA†, A = AA∗(A∗)† = (A∗)†A∗A;
(3) A† = A∗(AA∗)† = (A∗A)†A∗, (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;
(4) R(A) = R(AA†) = R(AA∗);
(5) R(A†) = R(A∗) = R(A†A) = R(A∗A);
(6) R(I −A†A) = N (A†A) = N (A) = R(A∗)⊥;
(7) R(I −AA†) = N (AA†) = N (A†) = N (A∗) = R(A)⊥.

Hermitian operators have some additional properties.

Proposition 1.2. Let H ∈ L(H) be a Hermitian operator. Then we have

i) H = H2H† = H†H2;
ii) H† = H(H2)† = (H2)†H;
iii) (Hn)† = (H†)n, for any n ∈ N0;
iv) if H2 = H then H† = H.

The important role the Moore–Penrose inverse plays in solving linear equations
can be described by the next proposition [22, Theorem 1.3.2.].

Proposition 1.3. Let A ∈ L(X,Y ) have a closed range and let b ∈ Y . Then
x0 = A†b is the best approximate solution of the linear equation Ax = b. Moreover,
if M is the set of all best approximate solutions of the equation Ax = b, then
x0 = min{||x|| : x ∈ M}.

More on the theory of the generalized inverses an interested reader can find,
for example, in the following books: [3, 6, 7, 22, 25, 35, 57]. For an overview of the
applications of the Moore–Penrose inverse in physics, the reader is referred to [2].

1.2. About the reverse order laws. Let a, b be invertible elements of a semigroup
with a unit. The rule (ab)−1 = b−1a−1 is called the reverse order rule (or reverse
order law, ROL for short) for the ordinary inverse. We will consider the rule
(AB)† = B†A† and closely related results for Hilbert space operators A,B. In
general, even in the complex matrix case, A†A ̸= I or BB† ̸= I, so it is important
to find necessary and sufficient conditions for this ROL (often called ”basic” ROL)
to hold. Theoretically, (AB)† can be written in one of the forms

• (AB)† = B†A†,
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• (AB)† = B†A† +X,
• (AB)† = B†Y A†,

for some operator expressions X and Y depending on A or B. For example, we
may consider X = B†[(I −BB†)(I −A†A)]†A† or Y = (A†ABB†)†.

The reverse order law for the generalized inverse of products is an interesting
class of fundamental problems in the theory of generalized inverses. Together with
reviving the interests for generalized inverses during the 1950s, it started with
considering the conditions when the ROL for a product of two singular complex
matrices A and B

(1.1) (AB)† = B†A†

holds. Greville [24] was the first who gave 1966. necessary and sufficient conditions
for the reverse order law (1.1) to hold. He proved the equivalence

(AB)† = B†A† ⇔ A†ABB∗A∗ = BB∗A∗ ∧BB†A∗AB = A∗AB,

which is further equivalent to

R(A∗AB) ⊂ R(B) ∧R(BB∗A∗) ⊂ R(A∗).

We also should mention the result from 1963. by Arghiriade [1]

(AB)† = B†A† ⇔ A∗ABB∗ is EP matrix.

The reverse order law for triple matrix product, which has the form

(ABC)† = C†B†A†,

(A,B,C are matrices of compatible dimensions) was considered in 1986. by Hartwig
[26], and by Tian [49] in 1992. Note that, even if P and Q are two invertible linear
operators, in general (PAQ)† ̸= Q−1A†P−1. By checking all four Penrose equations
we see that

(PAQ)† = Q−1A†P−1 ⇔ [AA†, P ∗P ] = 0 ∧ [A†A,QQ∗] = 0,

where brackets denote the commutator: [S, T ] = ST −TS. In [50] Tian considered

n matrix product case: (A1A2 . . . An)
† = A†

n . . . A
†
2A

†
1.

The reverse order law for weighted Moore–Penrose inverse of the matrix product

of the form (AB)†M,L = B†
N,LA

†
M,N , was considered in 1998. by Sun and Wei [44],

while the triple product was investigated by Wang [56].
One can consider, so-called, weaker ROLs, for example

(AB)† = B†(A†ABB†)†A†, or (AB)† = B†A† −B†[(I −BB†)(I −A†A)]†A†.

Further, some ROLs are equivalent, although they look quite different

(AB)† = B†A† ⇔ (ABB†)† = BB†A† ∧ (A†AB)† = B†A†A;

(AB)† = B†A† ⇔ (AB)† = B†(A†ABB†)†A† ∧ (A†ABB†)† = BB†A†A.

Some ROLs are identities, for example,

(AB)† = (A†AB)†(ABB†)†,

(AB)† = (A†AB)†(AB(A†AB)†)†.
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Let us explain how some mixed-type ROL can be constructed. We start from
some identity, for example, T = TT †T . Now we have

AB = AA†ABB†B = A(A†ABB†)B.

If we formally apply triple ROL (of the form (PQR)† = R†Q†P †), we have

(1.2) (AB)† = B†(A†ABB†)†A†.

Because of the pure formal application of the triple ROL, the last expression need
not be an identity, so it is important to find the necessary and sufficient conditions
under which it holds.

It appears that Galperin and Waksman [23] were the first who studied the ROL
(1.2) in 1980, followed by Izumino [28] in 1982 for Hilbert space operators. The
paper [15] deals with Hilbert space settings, while the paper [36] further generalizes
those results to the rings with involution.

The reverse order law for other generalized inverses was also investigated, espe-
cially for Drazin inverse1. Again, it was Greville [24] who was the first to show that
(AB)D = BDAD, under the condition that A and B commute. The sufficient and
necessary conditions for the Drazin inverse of the product od 2 and n matrices were
given, subsequently, by H. Tian [45] in 1999, and Wang [56]. Djordjević [19] studied
the reverse order law for the outer generalized inverse with prescribed range and

null-space in the form (AB)
(2)
K,L = B

(2)
T,SA

(2)
M,N . The reverse order law for outer gen-

eralized inverse of the product of n matrices with prescribed range and null-space,
as far as we know, is not investigated yet.

More general reverse order laws were considered, for so-called θ-inverses (θ ⊂
{1, 2, 3, 4}); one should mention the results due to Wei [58, 59], De Pierro and
Wei [11], Wei and Guo [60] and Werner [61,62].

Along with the reverse order laws, the forward order law was also investigated
in the form (AB)† = A†B†. The forward order law appears to be more unnatural,
because it does not hold even for ordinary inverse, except in some special cases,
cf. [8] and the references therein.

1.3. Proving methods. While proving in the complex matrix case highly depends
on the various rank identities (for example, in the papers of Y. Tian) or singular-
value decomposition (for example, in the papers of Baksalarys and Trenkler), in
the Hilbert space settings those methods are inapplicable. Therefore, extending the
results from complex matrix case to infinite dimensional Hilbert spaces settings is
far from trivial (see, for example, Theorem 5.1).

Our method, based on the collection of lemmas, provides us with simpler expres-
sions that can easily be dealt with, unlike the original expressions. The main idea
is the matrix form of the operator according to appropriate orthogonal decomposi-
tions of the Hilbert spaces. The decompositions are chosen such that the operator

1The index of a matrix A ∈ Cn×n is the smallest nonnegative integer such that r(Ak) =

r(Ak+1). For every matrix A ∈ Cn×n of index k there is a unique matrix AD such that

(1k) AkADA = Ak, (2) ADAAD = AD, (5) AAD = ADA, and it is known as Drazin inverse. In
the particular case k = 1 it reduces to the group inverse, usually denoted by A#.
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matrix has as many zeros as possible, or has some other advantages, for example,
the invertibility of some of its entries.

The next two lemmas are well-known, but we prove them on the spot.

Lemma 1.1. Let A ∈ L(H,K). Then A has a closed range if and only if AA∗

(resp. A∗A) has a closed range. In such case, A† = A∗(AA∗)† = (A∗A)†A∗.

Proof. Recall well-known result R(A) is closed iff R(A∗) is closed. Note that
R(AA∗) = A(R(A∗)) ⊆ R(A). Let y ∈ R(A), then there is some x ∈ H1 such
that y = Ax. The space H1 can be decomposed in the orthogonal direct sum
H1 = R(A∗) ⊕ N (A), so for such x there are unique x1 ∈ R(A∗) and x2 ∈ N (A)
such that x = x1 + x2. Hence, we have

y = Ax = A(x1 + x2) = Ax1 ∈ A(R(A∗)) = R(AA∗),

so R(A) ⊆ R(AA∗). Therefore, R(A) = R(AA∗), which means that A† exists iff
(AA∗)† exists.

We have A† = A∗(AA∗)† by the Proposition 1.1. □

Lemma 1.2. Let A ∈ L(H,K) have a closed range. Then A has the matrix decom-
position with respect to the orthogonal decompositions of spaces H = R(A∗)⊕N (A)
and K = R(A)⊕N (A∗)

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =

[
A−1

1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A∗)
N (A)

]
.

Proof. Suppose that operator A has the matrix decomposition with respect to the
orthogonal decompositions of spaces H = R(A∗)⊕N (A) and K = R(A)⊕N (A∗)

A =

[
A1 A2

A3 A4

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

which means

A1 : R(A∗) → R(A∗), A2 : N (A) → R(A),

A3 : R(A∗) → N (A∗), A4 : N (A) → N (A∗).

It must be A2 = 0 and A4 = 0 (because their domain is N (A)), and A3 = 0 because
its range is N (A∗) and we know that R(A) ∩N (A∗) = {0}.

Since A1 is injective (because N (A1) = N (A) ∩ R(A∗) = {0}) and onto, we
conclude that A1 is invertible. Hence indeed

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible.
By checking all four Penrose equations, we see that A† is really of the form as

stated in the Lemma. □
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Lemma 1.3. [21] Let A ∈ L(H,K) have a closed range. Let H1 and H2 be closed
and mutually orthogonal subspaces of H, such that H = H1⊕H2. Let K1 and K2 be
closed and mutually orthogonal subspaces of K, such that K = K1 ⊕ K2. Then the
operator A has the following matrix representations with respect to the orthogonal
sums of subspaces H = H1 ⊕ H2 = R(A∗) ⊕ N (A), and K = R(A) ⊕ N (A∗) =
K1 ⊕K2 :

(a) A =

[
A1 A2

0 0

]
:

[
H1

H2

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 maps R(A) into itself and D > 0. Also,

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.

(b) A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
K1

K2

]
,

where D = A∗
1A1 +A∗

2A2 maps R(A∗) into itself and D > 0. Also,

A† =

[
D−1A∗

1 D−1A∗
2

0 0

]
.

Here Ai denotes different operators in any of these two cases.

Proof. a) Suppose that operator A has the matrix decomposition with respect to
the orthogonal decompositions of spaces H = H1 ⊕H2 and K = R(A)⊕N (A∗)

A =

[
A1 A2

A3 A4

]
:

[
H1

H2

]
→

[
R(A)
N (A∗)

]
.

It must be A3 = 0 and A4 = 0, because their ranges are N (A∗) and we know that
R(A) ∩N (A∗) = {0}; hence

A =

[
A1 A2

0 0

]
:

[
H1

H2

]
→

[
R(A)
N (A∗)

]
.

By using Lemma 1.1 we have (we denote D = A1A
∗
1 +A2A

∗
2)

A† = A∗(AA∗)† =

[
A∗

1 0
A∗

2 0

] [
D 0
0 0

]†
=

[
A∗

1D
−1 A∗

2D
−1

0 0

]
.

It is clear that D maps R(A∗) into itself, and since

⟨Dx, x⟩ = ⟨A1A
∗
1x, x⟩+ ⟨A2A

∗
2x, x⟩ = ∥A∗

1x∥2 + ∥A∗
2x∥2,

for any x ∈ H\{0}, we have D > 0, as required. □

The following result is Proposition 2.1. from [28] (also can be found in [6, p.
127]), and it will be a useful tool for proving the existence of Moore–Penrose inverses
of some terms.

Lemma 1.4. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) have closed ranges. Then
AB has a closed range if and only if A†ABB† has a closed range.
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Let us point out the difference between the following notations. If A,B ∈ L(X),
then [A,B] = AB −BA denotes the commutator of A and B. On the other hand,
if U ∈ L(X,Z) and V ∈ L(Y,Z), then [U V ] :

[
X
Y

]
→ Z denotes the matrix form

of the corresponding operator.

Lemma 1.5. [21, Lemma 2.1] Let H,K be Hilbert spaces, let C ∈ L(H,K) have a
closed range, and let D ∈ L(K) be Hermitian and invertible. Then R(DC) = R(C)
if and only if [D,CC†] = 0.

Proof. (⇒) : We consider the orthogonal decompositions H = R(C∗)⊕N (C) and
K = R(C)⊕N (C∗). Then the operators C and D have the corresponding matrix
forms as follows

C =

[
C1 0
0 0

]
:

[
R(C∗)
N (C)

]
→

[
R(C)
N (C∗)

]
,

where C1 is invertible, and

D =

[
D1 D2

D3 D4

]
:

[
R(C)
N (C∗)

]
→

[
R(C)
N (C∗)

]
,

where D3 = D∗
2 . It follows that

DC =

[
D1C1 0
D3C1 0

]
:

[
R(C∗)
N (C)

]
→

[
R(C)
N (C∗

]
.

Hence, R(DC) = R(C) implies D3 = 0 and D2 = 0, so D =
[
D1 0
0 D4

]
. Since

D is Hermitian and invertible, we obtain that D1 and D4 are also Hermitian and

invertible. Since C† =
[
C−1

1 0
0 0

]
, we obtain that DCC† = CC†D holds.

(⇐) : If D is invertible and DCC† = CC†D, then

R(DC) = R(DCC†) = R(CC†D) = R(CC†) = R(C). □

We shall also use the following result, which is given in [10] for complex matrices
case and here is extended to the bounded linear Hilbert space operators.

Lemma 1.6. Let Hi, i = 1, 4, be arbitrary Hilbert spaces, and let C ∈ L(H1,H2),
X ∈ L(H2,H3), and B ∈ L(H3,H4) be closed range operators such that BXC is
closed range. Then

(1.3) C(BXC)†B = X†

if and only if

(1.4) R(B∗BX) = R(X) and N (XCC∗) = N (X).

Proof. We consider the following orthogonal decompositions

H1 = R(C∗)⊕N (C), H2 = R(X∗)⊕N (X),

H3 = R(X)⊕N (X∗), H4 = R(B)⊕N (B∗);

then the operators have the following matrix forms

C =

[
C1 0
C2 0

]
, X =

[
X1 0
0 0

]
, B =

[
B1 B2

0 0

]
,
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where X1 is invertible, and D = B1B
∗
1 +B2B

∗
2 and E = C∗

1C1 +C∗
2C2 are positive

invertible operators.
Now, eq. 1.3 is equivalent to the following four equations

C1(B1X1C1)
†B1 = X−1

1 ,(1.5)

C1(B1X1C1)
†B2 = 0,(1.6)

C2(B1X1C1)
†B1 = 0,(1.7)

C2(B1X1C1)
†B2 = 0.(1.8)

If we multiply (1.5) and (1.6) from the right by B∗
1 and B∗

2 , respectively, and add
them, we have C1(B1X1C1)

†D = X−1
1 B∗

1 . If we multiply (1.7) and (1.8) from the
right by B∗

1 and B∗
2 , respectively, and add them, we obtain

(1.9) C2(B1X1C1)
† = 0,

because D is invertible. If we multiply (1.6) and (1.8) from the left by C∗
1 and C∗

2

respectively, and add them, we obtain

(1.10) (B1X1C1)
†B2 = 0,

because E is invertible.
Recall well-known fact

(1.11) PQ = 0 ⇔ R(Q) ⊂ N (P ),

which we will use in the proof. If we apply this and Proposition 1.1, part (5), to
(1.9) we have: R(C∗

1X
∗
1B

∗
1) = R((B1X1C1)

†) ⊂ N (C2), which is equivalent to

(1.12) C2C
∗
1X

∗
1B

∗
1 = 0.

Also, if we apply (1.11) and Proposition 1.1, part (7), to (1.10) we have

R(B2) ⊂ N ((B1X1C1)
†) = N (C∗

1X
∗
1B

∗
1),

which is equivalent to

(1.13) C∗
1X

∗
1B

∗
1B2 = 0.

From (1.12) and (1.13) it is rather easy to obtain (1.6)–(1.8), only property 3
from Proposition 1.1 is used

C1(B1X1C1)
†B2 = C1(C

∗
1X

∗
1B

∗
1B1X1C1)

†C∗
1X

∗
1B

∗
1B2 = 0,

C2(B1X1C1)
†B1 = C2C

∗
1X

∗
1B

∗
1(B1X1C1C

∗
1X

∗
1B

∗
1)

†B1 = 0,

C2(B1X1C1)
†B2 = C2C

∗
1X

∗
1B

∗
1(B1X1C1C

∗
1X

∗
1B

∗
1)

†B2 = 0.

Therefore, (1.3) is equivalent to (1.5), (1.12) and (1.13).
Now we consider the condition (1.4). In what follows we use the following ob-

servation

(1.14) T onto ⇒ TT ∗ invertible and T † is the right inverse of T i.e. TT † = I.

With our decompositions, the first expression in (1.4) is equivalent to

R
([

B∗
1B1X1 0

B∗
2B1X1 0

])
= R

([
X1 0
0 0

])
.
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Since

R
([

B∗
1B1X1 0

B∗
2B1X1 0

])
= (B∗

1B1X1)R(X∗)⊕ (B∗
2B1X1)R(X∗)

= (B∗
1B1)R(X)⊕ (B∗

2B1)R(X)

= R(B∗
1B1X1)⊕R(B∗

2B1X1)

= R(X) = R(X1),

it must be R(B∗
1B1X1) = R(X1) and R(B∗

2B1X1) = {0}. The latter is equivalent
to B∗

2B1 = 0, while the former is because of (1.14) equivalent to B∗
1B1 be onto,

which is further equivalent to (B∗
1B1)

† is right inverse of B∗
1B1, i.e.

IR(X) = B∗
1B1(B

∗
1B1)

† = B∗
1(B

∗
1)

† = (B†
1B1)

∗ = B†
1B1.

In a similar way, second expression in (1.4) is equivalent to (we used well-known
fact R(T ∗)⊥ = N (T ))

R
([

C1C
∗
1X

∗
1 0

C2C
∗
1X

∗
1 0

])
= R

([
X∗

1 0
0 0

])
.

Since

R
([

C1C
∗
1X

∗
1 0

C2C
∗
1X

∗
1 0

])
= (C1C

∗
1X

∗
1 )R(X)⊕ (C2C

∗
1X

∗
1 )R(X)

= (C1C
∗
1 )R(X∗)⊕ (C2C

∗
1 )R(X∗)

= R(C1C
∗
1X

∗
1 )⊕R(C2C

∗
1X

∗
1 )

= R(X∗) = R(X∗
1 ),

it must be R(C1C
∗
1X

∗
1 ) = R(X∗

1 ) and R(C2C
∗
1X

∗
1 ) = {0}. The latter is equivalent

to C∗
2C1 = 0, while the former is because of (1.14) equivalent to C1C

∗
1 be onto,

which is further equivalent to (C1C
∗
1 )

† is right inverse of C1C
∗
1 , i.e.

IR(X∗) = C1C
∗
1 (C1C

∗
1 )

† = C1C
†
1 .

Hence, (1.4) is equivalent to B†
1B1 = IR(X), B

∗
2B1 = 0, C1C

†
1 = IR(X∗), C

∗
2C1 = 0.

(⇐:) We show that B†
1B1 = IR(X), B∗

2B1 = 0, C1C
†
1 = IR(X∗), C∗

2C1 = 0
imply (1.5)–(1.8).

From B∗
2B1 = 0 and C∗

2C1 = 0 we immediately have (1.12) and (1.13), hence
(1.6)–(1.8). Let us show that (1.5) holds as well

C1(B1X1C1)
†B1 = X−1

1 X1C1(B1X1C1)
†B1X1X

−1
1

= X−1
1 B†

1B1X1C1(B1X1C1)
†B1X1C1C

†
1X

−1
1

= X−1
1 B†

1B1X1C1C
†
1X

−1
1

= X−1
1 X1X

−1
1

= X−1
1 .

(⇒:) From C1(B1X1C1)
†B1 = X−1

1 we have

X−1
1 = C1(B1X1C1)

†B1 = C1C
†
1C1(B1X1C1)

†B1B
†
1B1 = C1C

†
1X

−1
1 B†

1B1,
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from where we conclude that C1C
†
1 = IR(X∗) and B†

1B1 = IR(X).
Let us prove that (1.12) and (1.13) imply C∗

2C1 = 0 and B∗
2B1 = 0, respectively.

We use already proven fact (1.5) implies C1C
†
1 = IR(X∗) and B†

1B1 = IR(X)

B1X1C1C
∗
2 = 0 ⇒ B†

1B1X1C1C
∗
2 = 0 ⇒ X1C1C

∗
2 = 0 ⇒ C1C

∗
2 = 0,

B∗
2B1X1C1 = 0 ⇒ B∗

2B1X1C1C
†
1 = 0 ⇒ B∗

2B1X1 = 0 ⇒ B∗
2B1 = 0. □

2. Reverse order law for the Moore–Penrose inverse

In this section we present some results concerning the reverse order law for the
Moore–Penrose inverse. Direct motivation were some results for complex matrix
case, published in 2004 by Tian [46]. They are generalized to the Hilbert space
settings and published in 2010 in [21].

Theorem 2.1. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A,B,AB have
closed ranges. Then the following statements are equivalent:

(a) ABB†A†AB = AB;
(b) B†A†ABB†A† = B†A†;
(c) A†ABB† = BB†A†A;
(d) A†ABB† is an idempotent;
(e) BB†A†A is an idempotent;
(f) B†(A†ABB†)†A† = B†A†;
(g) (A†ABB†)† = BB†A†A.

Notice that A†ABB† has a closed range, according to Lemma 1.4. Moreover,
A∗ABB∗ also has a closed range

R(B∗A∗A) = B∗(R(A∗A)) = B∗(R(A∗)) = R((AB)∗)

is closed, so

R(A∗ABB∗) = A∗A(R(BB∗)) = A∗A(R(B)) = R(A∗AB) = R((B∗A∗A)∗)

is closed.

Proof. Using Lemma 1.2 we conclude that the operator B has the following matrix
form

B =

[
B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =

[
B−1

1 0
0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
.

From Lemma 1.3 it follows that the operator A has the following matrix form

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
.

where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.
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Notice the following

BB† =

[
I 0
0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(B)
N (B∗)

]
,

AA† =

[
I 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A)
N (A∗)

]
,

and

A†A =

[
A∗

1D
−1A1 A∗

1D
−1A2

A∗
2D

−1A1 A∗
2D

−1A2

]
:

[
R(B)
N (B∗)

]
→

[
R(B)
N (B∗)

]
.

We obtain

A†ABB† =

[
A∗

1D
−1A1 0

A∗
2D

−1A1 0

]
, BB†A†A =

[
A∗

1D
−1A1 A∗

1D
−1A2

0 0

]
.

Consider the following chain of equivalencies, which is related to the statement
of (a)

ABB†A†AB = AB ⇔
[
A1 A2

0 0

] [
A∗

1D
−1A1 A∗

1D
−1A2

0 0

] [
B1 0
0 0

]
=

[
A1B1 0
0 0

]
⇔

[
A1A

∗
1D

−1A1B1 0
0 0

]
=

[
A1B1 0
0 0

]

(2.1) ⇔ A1A
∗
1D

−1A1 = A1.

Consequently, the statement (a) is equivalent to (2.1).
Notice that (2.1) is equivalent to

(2.2) A∗
1D

−1A1A
∗
1 = A∗

1.

We consider also the statement (b)

B†A†ABB†A† = B†A†

⇔
[
B−1

1 0
0 0

] [
A∗

1D
−1A1 0

A∗
2D

−1A1 0

] [
A∗

1D
−1 0

A∗
2D

−1 0

]
=

[
B−1

1 0
0 0

] [
A∗

1D
−1 0

A∗
2D

−1 0

]
⇔

[
B−1

1 A∗
1D

−1A1A
∗
1D

−1 0
0 0

]
=

[
B−1

1 A∗
1D

−1 0
0 0

]
⇔ B−1

1 A∗
1D

−1A1A
∗
1D

−1 = B−1
1 A∗

1D
−1 ⇔ (2.2).

Thus, (a)⇔(2.1)⇔(2.2)⇔(b).
In the case of statement (c) we have

A†ABB† = BB†A†A ⇔
[
A∗

1D
−1A1 0

A∗
2D

−1A1 0

]
=

[
A∗

1D
−1A1 A∗

1D
−1A2

0 0

]

(2.3) ⇔ A∗
1D

−1A2 = 0 ⇔ A∗
2D

−1A1 = 0.
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Thus, if (c) holds, i.e. A∗
2D

−1A1 = 0, then it is obvious that A2A
∗
2D

−1A1 = 0, so
(2.1) also holds because of

(A1A
∗
1 +A2A

∗
2)D

−1 = IR(A) ⇒ A1A
∗
1D

−1A1 +A2A
∗
2D

−1A1 = A1

⇔ A1A
∗
1D

−1A1 = A1.

On the other hand, suppose that (2.1) holds. Then A2A
∗
2D

−1A1 = 0, and we have

A2A
∗
2D

−1A1 = 0 ⇒ R(D−1A1) ⊂ N (A2A
∗
2) = N (A∗

2) ⇒ A∗
2D

−1A1 = 0,

so (2.3) is satisfied. Consequently, (c) also holds. We have just proved (c)⇔(2.3)⇔
(2.1)⇔(a).

A straightforward computation shows that (d) is equivalent to

(2.4)
A∗

1D
−1A1A

∗
1D

−1A1 = A∗
1D

−1A1

A∗
2D

−1A1A
∗
1D

−1A1 = A∗
2D

−1A1

If the statement (2.1) holds, then obviously (2.4) is satisfied. On the other hand,
suppose that (2.4) holds. Then multiply the first equation of (2.4) by A1 from the
left side, and multiply the second equation of (2.4) by A2 from the left side. The
sum of these two new equations leads to the equation (2.1).

Notice that (e) is also equivalent to (2.4). Consequently, (d)⇔(2.4)⇔(2.2)⇔(e).
In order to establish (f), we proceed as follows. Let Q = A†ABB†. From Lemma

1.4 we know that Q has a closed range. We use the formula Q† = Q∗(QQ∗)† =
(Q∗Q)†Q∗. Hence,

(A†ABB†)† = (BB†A†AA†ABB†)†BB†A†A = (BB†A†ABB†)†BB†A†A

=

[
A∗

1D
−1A1 0
0 0

]† [
A∗

1D
−1A1 A∗

1D
−1A2

0 0

]
=

[
(A∗

1D
−1A1)

† 0
0 0

] [
A∗

1D
−1A1 A∗

1D
−1A2

0 0

]
=

[
(A∗

1D
−1A1)

†A∗
1D

−1A1 (A∗
1D

−1A1)
†A∗

1D
−1A2

0 0

]
.

We get

B†(A†ABB†)†A† −B†A† = 0 ⇔
[
B−1

1 (A∗
1D

−1A1)
†A∗

1D
−1 −B−1

1 A∗
1D

−1 0
0 0

]
= 0

(2.5) ⇔ (A∗
1D

−1A1)
†A∗

1 = A∗
1.

We need to prove (2.1)⇔(2.5). Let P = A∗
1D

−1A1. Obviously, P ∗ = P .

(2.1)⇒(2.5): It is clear that P 2 = A∗
1D

−1A1A
∗
1D

−1A1 = A∗
1D

−1A1 = P , so P is
an orthogonal projector, hence P † = P . Therefore

(A∗
1D

−1A1)
†A∗

1 = A∗
1D

−1A1A
∗
1 = A∗

1.
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(2.5)⇒(2.1): In this case we have

A1A
∗
1D

−1A1 = A1(A
∗
1D

−1A1)
†A∗

1D
−1((A∗

1D
−1A1)

†A∗
1)

∗

= A1(A
∗
1D

−1A1)
†A∗

1D
−1A1(A

∗
1D

−1A1)
†

= A1(A
∗
1D

−1A1)
† = A1.

We have just proved (f)⇔(2.1)⇔(a).
To prove (g)⇔(f), we use the fact that is already proved for (f), i.e. for

(A†ABB†)†. Thus, we have

(A†ABB†)† −BB†A†A = 0 ⇔

{
(A∗

1D
−1A1)

†A∗
1D

−1A1 = A∗
1D

−1A1,

(A∗
1D

−1A1)
†A∗

1D
−1A2 = A∗

1D
−1A2.

It is easy to conclude that (g)⇔(f). □

Now we prove the following result.

Theorem 2.2. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A,B,AB have
closed ranges. Then the following statements hold:

(a) AB(AB)† = ABB†A† ⇔ A∗AB = BB†A∗AB ⇔ R(A∗AB) ⊆ R(B) ⇔
B†A† ∈ (AB){1, 2, 3};

(b) (AB)†AB = B†A†AB ⇔ ABB∗ = ABB∗A†A ⇔ R(BB∗A∗) ⊆ R(A∗) ⇔
B†A† ∈ (AB){1, 2, 4};

(c) The following statements are equivalent
(1) (AB)† = B†A†;
(2) AB(AB)† = ABB†A† and (AB)†AB = B†A†AB;
(3) A∗AB = BB†A∗AB and ABB∗ = ABB∗A†A;
(4) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗).

Proof. The operators A and B have the same matrix representations as in the
previous theorem. The following products will be useful

AB =

[
A1B1 0
0 0

]
, (AB)† =

[
(A1B1)

† 0
0 0

]
, B†A† =

[
B−1

1 A∗
1D

−1 0
0 0

]
.

We find the equivalent expressions for our statements in terms of A1, A2 and B1.

(a) 1. AB(AB)† = ABB†A† ⇔ A1B1(A1B1)
† = A1A

∗
1D

−1. Here
A1B1(A1B1)

† is Hermitian, so [A1A
∗
1, D

−1] = 0.
2. A∗AB = BB†A∗AB ⇔ A∗

2A1 = 0.
3. Notice that R(A∗AB) ⊆ R(B) if and only if BB†A∗AB = A∗AB, so

2 ⇔ 3.
4. If we check the Penrose equations, we see: B†A† ∈ (AB){1, 2, 3} ⇔

A1A
∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0.
Now, we prove the following: 1 ⇔ 2, 4 ⇒ 2 and 1 ⇒ 4.
We prove 1 ⇔ 2. Notice that

A1B1(A1B1)
† = A1A

∗
1D

−1 ⇔ (A1B1)
† = (A1B1)

†A1A
∗
1D

−1.



232 N. Č. DINČIĆ AND D. S. DJORDJEVIĆ

Now, there is a chain of equivalences

(A1B1)
† = (A1B1)

†A1A
∗
1D

−1

⇔ (A1B1)
†(A1A

∗
1 +A2A

∗
2) = (A1B1)

†A1A
∗
1

⇔ (A1B1)
†A2A

∗
2 = 0 ⇔ R(A2A

∗
2) ⊂ N ((A1B1)

†)

⇔ R(A2) ⊂ N ((A1B1)
∗) ⇔ B∗

1A
∗
1A2 = 0 ⇔ A∗

1A2 = 0,

Therefore, we have just proved that 1 ⇔ 2.
Let us prove 1 ⇒ 4. If we multiply A1B1(A1B1)

† = A1A
∗
1D

−1 by A1B1

from the right hand side, we get A1A
∗
1D

−1A1 = A1. Thus, 4 holds.
Finally, we prove 4 ⇒ 2. If A1A

∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0,
then A1A

∗
1A1 = DA1 = A1A

∗
1A1 + A2A

∗
2A1, implying that A2A

∗
2A1 = 0.

Hence, R(A1) ⊂ N (A2A
∗
2) = N (A∗

2), so A∗
2A1 = 0. Thus, 2 holds.

Notice that the equivalence 3 ⇔ 4 is proved in [22], also.
(b) 1. (AB)†AB = B†A†AB ⇔ (A1B1)

†A1B1 = B−1
1 A∗

1D
−1A1B1. More-

over, (A1B1)
†A1B1 is Hermitian, so [B1B

∗
1 , A

∗
1D

−1A1] = 0.
2. ABB∗ = ABB∗A†A ⇔ A1B1B

∗
1A

∗
1D

−1A1 = A1B1B
∗
1 and

A1B1B
∗
1A

∗
1D

−1A2 = 0.
3. Notice that R(BB∗A∗) ⊂ R(A∗) if and only if A†ABB∗A∗ = BB∗A∗,

which is equivalent to ABB∗A†A = ABB∗. Hence, 2⇔3.
4. From the Penrose equations we see that: B†A† ∈ (AB){1, 2, 4} ⇔

A1A
∗
1D

−1A1 = A1 and [B1B
∗
1 , A

∗
1D

−1A1] = 0.

We prove 1 ⇒ 4 ⇒ 2 ⇒ 1.
Suppose that 1 holds. If we multiply (A1B1)

†A1B1 = B−1
1 A∗

1D
−1A1B1 by A1B1

from the left hand side, we obtain A1 = A1A
∗
1D

−1A1. Furthermore, it is clear that
[B1B

∗
1 , A

∗
1D

−1A1] = 0 holds. Therefore, 1 ⇒ 4.
Let 4 hold. Obviously, A1B1B

∗
1A

∗
1D

−1A1 = A1A
∗
1D

−1A1B1B
∗
1 = A1B1B

∗
1 .

Thus, the first equality of 2 holds. The second equality of 2 also holds, since
A∗

1D
−1A2 = 0 ⇔ A1A

∗
1D

−1A1 = A1, which is shown in the proof of the Theorem
2.1. Here we use again [B1B

∗
1 , A

∗
1D

−1A1] = 0. Consequently, 4 ⇒ 2.
In order to prove that 2 ⇒ 1, we multiply A1B1B

∗
1A

∗
1D

−1A1 = A1B1B
∗
1 by

(A1B1)
† from the left side. It follows that B∗

1A
∗
1D

−1A1 = (A1B1)
†A1B1B

∗
1 ,

so (A1B1)
†A1B1 = B∗

1A
∗
1D

−1A1(B
∗
1)

−1 which is equivalent to (A1B1)
†A1B1 =

B−1
1 A∗

1D
−1A1B1. Hence, 2 ⇒ 1.

Notice that 3 ⇔ 4 is also proved in [22].
Finally, part (c) follows from parts (a) and (b). □

We also prove the following result.

Theorem 2.3. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A,B,AB have
closed ranges. Then we have:

(a) AB(AB)†A = ABB† ⇔ A∗ABB† = BB†A∗A ⇔ R(A∗AB) ⊆ R(B) ⇔
B†A† ∈ (AB){1, 2, 3};

(b) B(AB)†AB = A†AB ⇔ A†ABB∗ = BB∗A†A ⇔ R(BB∗A∗) ⊆ R(A∗) ⇔
B†A† ∈ (AB){1, 2, 4};
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(c) The following three statements are equivalent
(1) (AB)† = B†A†;
(2) AB(AB)†A = ABB† and B(AB)†AB = A†AB;
(3) A∗ABB† = BB†A∗A and A†ABB∗ = BB∗A†A.

Proof. The operators A and B have the same matrix representations as in the
previous theorem. First, we find equivalent expressions, in the terms of A1, A2 and
B1, for our assumptions.

(a) 1. AB(AB)†A = ABB† ⇔ A1B1(A1B1)
†A1 = A1 ∧ A1B1(A1B1)

†A2 =
0. The first equality on the right side of the equivalence always holds,
so: AB(AB)†A = ABB† ⇔ A1B1(A1B1)

†A2 = 0.
2. A∗ABB† = BB†A∗A ⇔ A∗

1A2 = 0.
3. R(A∗AB) ⊂ R(B) ⇔ BB†A∗AB = A∗AB ⇔ A∗

2A1 = 0 (see the
proof of Theorem 2.2, the part (a) 2 and 3).

4. B†A† ∈ (AB){1, 2, 3} ⇔ A1A
∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0 (see
Theorem 2.2 (a) 4.).

To prove that 1 ⇔ 2, we see that

A1B1(A1B1)
†A2 = 0

⇔ R(A2) ⊂ N ((A1B1)(A1B1)
†) = N ((A1B1)

†)

= N ((A1B1)
∗) = N (B∗

1A
∗
1) = N (A∗

1)

⇔ A∗
1A2 = 0.

Now, we prove that 2 ⇔ 4. If [A1A
∗
1, D

−1] = 0, then A1A
∗
1D

−1A1 =
A1 ⇔ A1A

∗
1A1 = DA1 ⇔ A2A

∗
2A1 = 0 ⇔ A∗

1A2A
∗
2 = 0 ⇔ R(A2A

∗
2) ⊂

N (A∗
1) ⇔ R(A2) ⊂ N (A∗

1) ⇔ A∗
1A2 = 0. On the other hand, if A∗

1A2 = 0,
then A1A

∗
1D = A1A

∗
1A1A

∗
1 is Hermitian, so A1A

∗
1 commutes with D. This

implies [A1A
∗
1, D

−1] = 0 and A1A
∗
1D

−1A1 = A1.
From Theorem 2.2 we know that 3 ⇔ 4.

(b) 1. B(AB)†AB = A†AB ⇔ B1(A1B1)
†A1 = A∗

1D
−1A1 ∧A∗

2D
−1A1 = 0.

2. A†ABB∗ = BB∗A†A ⇔ [B1B
∗
1 , A

∗
1D

−1A1] = 0 and A∗
1D

−1A2 = 0.
3. R(BB∗A∗) ⊆ R(A∗) ⇔ A1B1B

∗
1A

∗
1D

−1A2 = 0∧A1B1B
∗
1A

∗
1D

−1A1 =
A1B1B

∗
1 (Theorem 2.2 (b), parts 2 and 3).

4. B†A† ∈ (AB){1, 2, 4} ⇔ A1A
∗
1D

−1A1 = A1 and [B1B
∗
1 , A

∗
1D

−1A1]
= 0 (Theorem 2.2 (b) part 4).

1 ⇒ 4 : We multiply the expression B1(A1B1)
†A1 = A∗

1D
−1A1 by

A1 from the left side, and by B1 from the right side, and thus obtain
A1A

∗
1D

−1A1 = A1. Also, we obtain that (A1B1)
†A1B1 = B−1

1 A∗
1D

−1A1B1

is Hermitian, so A∗
1D

−1A1B1B
∗
1 is Hermitian, hence [B1B

∗
1 , A

∗
1D

−1A1] = 0.
4 ⇒ 1 : If 4 holds, then it is easy to see that B−1

1 A∗
1D

−1A1B1(A1B1)
† is

the Moore–Penrose inverse of A1B1 (check the Penrose equations). This im-
plies B1(A1B1)

†A1 = A∗
1D

−1A1. Now, we obtain that A1 = A1A
∗
1D

−1A1.
From (A1A

∗
1 + A2A

∗
2)D

−1A1 = A1 it follows that A2A
∗
2D

−1A1 = 0, so
R(D−1A1) ⊂ N (A2A

∗
2) = N (A∗

2), and A∗
2D

−1A1 = 0.
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2 ⇒ 3 : If 2 holds, then A1B1B
∗
1A

∗
1D

−1A2 = 0 is trivially satisfied.
Moreover, A1B1B

∗
1A

∗
1D

−1A1 = A1B1B
∗
1 is equivalent to A1A

∗
1D

−1A1 =
A1, which follows from A∗

1D
−1A2 = 0.

3 ⇒ 2 : From the proof of Theorem 2.2, part (b) 4, it follows that
[B1B

∗
1 , A

∗
1D

−1A1] = 0. Now, as usual, we get that A2A
∗
2D

−1A1 = 0, so
A∗

1D
−1A2 = 0.

2 ⇔ 4 : Obvious.

Part (c) follows from parts (a) and (b). □

Remark that some of the results from Theorem 2.2 and 2.3 can be found in [20].
We also prove the following result.

Theorem 2.4. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A,B,AB have
closed ranges. The following statements hold.

(a) (ABB†)† = BB†A† ⇔ B†(ABB†)† = B†A† ⇔ R(A∗AB) ⊆ R(B).
(b) (A†AB)† = B†A†A ⇔ (A†AB)†A† = B†A† ⇔ R(BB∗A∗) ⊆ R(A∗).
(c) The following three statements are equivalent

(1) (AB)† = B†A†;
(2) (ABB†)† = BB†A† and (A†AB)† = B†A†A;
(3) B†(ABB†)† = B†A† and (A†AB)†A† = B†A†.

Notice that ABB† and A†AB have closed ranges. This is explained in further
proof.

Proof. The operators A and B have the same matrix representations as in the
previous theorem.

(a) Notice that R(ABB†) = R(AB) is closed, so there exists (ABB†)†.

1. (ABB†)† = BB†A† ⇔ A†
1 = A∗

1D
−1 (the existence of A†

1 follows from
the assumptions).

2. B†(ABB†)† = B†A† ⇔ A†
1 = A∗

1D
−1, so 1 ⇔ 2.

3. R(A∗AB) ⊆ R(B) ⇔ A1A
∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0 (see
Theorem 2.2, (a) parts 3 and 4).

1 ⇒ 3 : If A†
1 = A∗

1D
−1, then A†

1D = A∗
1 and A1A

†
1 = A1A

∗
1D

−1 is

Hermitian, so [A1A
∗
1, D

−1] = 0. Moreover, A1A
†
1A2A

∗
2 = 0. We conclude

R(A2A
∗
2) ⊂ N (A1A

†
1) = N (A∗

1), so A∗
1A2A

∗
2 = 0 and A∗

2A1 = 0. Now,
(A1A

∗
1 +A2A

∗
2)A1 = A1A

∗
1A1, so A1 = D−1A1A

∗
1A1 = A1A

∗
1D

−1A1.
3 ⇒ 1 : If 3 holds, then it is easy to see that A∗

1D
−1 is the Moore–Penrose

inverse of A1 (check the Penrose equations).
(b) We see that R((A†AB)∗) = R(B∗A†A) = R(B∗A∗) = R((AB)∗) is closed,

so (A†AB)† exists. Notice that

B†A†A =

[
B−1

1 A∗
1D

−1A1 B−1
1 A∗

1D
−1A2

0 0

]
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and A†AB =
[A∗

1D
−1A1B1 0

A∗
2D

−1A1B1 0

]
. Using the formula T † = (T ∗T )†T ∗, we obtain

that (A†AB)† is[
(B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1 (B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A2

0 0

]
.

1. (A†AB)† = B†A†A ⇔ (B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1 =
B−1

1 A∗
1D

−1A1 and (B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A2 = B−1
1 A∗

1D
−1A2.

2. (A†AB)†A† = B†A† ⇔ B1(B
∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1 = A∗

1.
3. R(BB∗A∗) ⊂ R(A∗) ⇔ A1A

∗
1D

−1A1 = A1 ∧ [B1B
∗
1 , A

∗
1D

−1A1] = 0.
1 ⇒ 2 : We multiply the first equality of 1 by A∗

1 from the right side,
and we multiply the second equality of 1 by A∗

2 from the right side.
By summing the obtained equalities we obtain 2.
2 ⇒ 1 : This is obvious.
2 ⇒ 3 : If we multiply B1(B

∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1 = A∗

1 from the left
by B∗

1A
∗
1D

−1A1, and byD−1A1B1 from right side, we get A∗
1D

−1A1 =
A∗

1D
−1A1A

∗
1D

−1A1. Now, A∗
1D

−1A1 is the orthogonal projection onto
a subspace of R(A∗

1), so it follows that A1A
∗
1D

−1A1 = A1.
Since (B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1B1 = B−1
1 A∗

1D
−1A1B1 is Her-

mitian, we obtain [B1B
∗
1 , A

∗
1D

−1A1] = 0.
3 ⇒ 2 : Using the formula T † = (T ∗T )†T ∗, we have

(B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1/2 = (D−1/2A1B1)
†,

which means that

B1(B
∗
1A

∗
1D

−1/2D−1/2A1B1)
†B∗

1A
∗
1 = B1(D

−1/2A1B1)
†D1/2.

We wish to show that 3 implies B1(D
−1/2A1B1)

†D1/2 = A∗
1. This

means that we will show (D−1/2A1B1)
† = B−1

1 A∗
1D

−1/2, by proving
that the last expression satisfies all four Penrose equations provided
that the conditions from 3 are valid. Hence,

D−1/2A1B1B
−1
1 A∗

1D
−1/2D−1/2A1B1 = D−1/2A1A

∗
1D

−1A1B1

= D−1/2A1B1,

B−1
1 A∗

1D
−1/2D−1/2A1B1B

−1
1 A∗

1D
−1/2 = B−1

1 A∗
1D

−1A1A
∗
1D

−1/2

= B−1
1 A∗

1D
−1/2,

D−1/2A1B1B
−1
1 A∗

1D
−1/2 = D−1/2A1A

∗
1D

−1/2 is Hermitian,

B−1
1 A∗

1D
−1/2D−1/2A1B1 = B−1

1 A∗
1D

−1A1B1 is Hermitian,

since [B1B
∗
1 , A

∗
1D

−1A1] = 0.

(c) Follows from (a) and (b). □

Theorem 2.5. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A,B,AB have
closed ranges. Then we have

(a) B† = (AB)†A ⇔ R(B) = R(A∗AB).
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(b) A† = B(AB)† ⇔ R(A∗) = R(BB∗A∗).

Proof. The conclusions follow from Lemma 1.6 if we take a) X := B, B := A, C :=
I; b) X := A, C := B, B := I. Remark that in [21] the proof was different. □

Finally, we prove the following results.

Theorem 2.6. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A,B,AB have
closed ranges. Then we have

(a) (AB)† = (A†AB)†A† ⇔ R(AA∗AB) = R(AB);
(b) (AB)† = B†(ABB†)† ⇔ R(B∗B(AB)∗) = R((AB)∗).

Remark that A†AB and ABB† have closed ranges.

Proof. (a) Notice that

R((A†AB)∗) = R(B∗A†A) = B∗R(A†A) = B∗R(A∗) = R((AB)∗)

is closed, so R(A†AB) is closed. First, let we see how our conditions look
like in the terms of their components.
1. Let us denote T = A†AB. We find T † as follows

T † = (T ∗T )†T ∗

=

[
(B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1 (B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A2

0 0

]
.

Now, it is easy to see that (AB)† = (A†AB)†A† is equivalent with

(A1B1)
† = (B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1 = (D−1/2A1B1)
†D−1/2.

2. It is obvious that AA∗AB =
[
DA1B1 0

0 0

]
, so 2 holds if and only if

R(DA1B1) = R(A1B1).
1 ⇒ 2 : The third Penrose equation for (A1B1)

† = (D−1/2A1B1)
†D−1/2 im-

plies that A1B1(D
−1/2A1B1)

†D−1/2 is Hermitian, so we have the following
equivalences

A1B1(D
−1/2A1B1)

†D−1/2 is Hermitian

⇔ D−1/2A1B1(D
−1/2A1B1)

†D−1 is Hermitian

⇔ [D,D−1/2A1B1(D
−1/2A1B1)

†] = 0

⇔ D1/2A1B1(D
−1/2A1B1)

† = D−1/2A1B1(D
−1/2A1B1)

†D

⇔ DA1B1(D
−1/2A1B1)

† = A1B1(D
−1/2A1B1)

†D.

Now,

R(DA1B1) = R(DA1B1(A1B1)
†) = R(A1B1(A1B1)

†D) = R(A1B1).

2 ⇒ 1 : If R(DA1B1) = R(A1B1), then we apply Lemma 1.5 to ob-
tain [D,A1B1(A1B1)

†] = 0. Now, from the previous implication, it fol-
lows that A1B1(D

−1/2A1B1)
†D−1/2 is Hermitian. Notice that the operator

(D−1/2A1B1)
†D−1/2A1B1 is an orthogonal projection onto

R((A1B1)
∗D−1/2) ⊂ R((A1B1)

∗),



SURVEY ON THE ROLS FOR THE MP INVERSE OF HILBERT SPACE OPERATORS 237

so A1B1(D
−1/2A1B1)

†D−1/2A1B1 = A1B1. Finally, it is not difficult to
verify that (A1B1)

† = (D−1/2A1B1)
†D−1/2 holds.

(b) According to (a), we have the following equivalences

(AB)† = (A†AB)†A† ⇔ R(AA∗AB) = R(AB)

(B∗A∗)† = (A∗)†(B∗A†A)† ⇔ R(AA∗AB) = R(A)

(now take A′ = B∗ and B′ = A∗)

(A′B′)† = B′†(ABB′†)† ⇔ R(BB′∗B′∗A′∗) = R(B′∗A′∗). □

We remark that those results are further generalized to the C∗-star algebras
settings e.g. in the papers [37] and [63].

3. Basic reverse order law and its equivalencies

Recall that basic ROL for the Moore–Penrose inverse of closed-range operators
A ∈ L(H2,H3), B ∈ L(H1,H2) is the expression (AB)† = B†A†.

As mentioned in the Introduction, we have the following classical results

(AB)† = B†A† ⇔ A†ABB∗A∗ = BB∗A∗ ∧BB†A∗AB = A∗AB [24]

⇔ R(A∗AB) ⊂ R(B) ∧R(BB∗A∗) ⊂ R(A∗)

⇔ A∗ABB∗ is Hermitian range matrix [1]

We should mention the paper of Tian [48] from 2007, which is generalized and
extended for the Hilbert space operator case in our paper [16] from 2012. Those
results are presented in this section.

3.0.1. Auxiliary results. It is well-known that Hermitian operators and the
Moore–Penrose inverse agree very well, which can be exploited for obtaining par-
ticularly useful forms for some operator expressions.

Lemma 3.1. Let H be a Hermitian bounded linear operator with a closed range.
Then (∀n ∈ N) (Hn)† = (H†)n.

Proof. For n = 1 we actually have a well-known identity for Moore–Penrose inverse.
For other values of n, it is easy to check all four Penrose equations, using the fact
that H = H†H2 = H2H†, which follows from Proposition 1.1 for any Hermitian
operator H. □

Remark 3.1. The Hermitian operator H ∈ L(H) is closed-range if and only if
0 /∈ acc(σ(H)), i.e. 0 is not accumulation point of spectrum σ(H) of operator H.
According to the spectral mapping theorem, if Hermitian operator H is closed-
range, then Hn is also closed-range for arbitrary positive integer n. This remark
justifies the existence of the Moore–Penrose inverse through this section.

Remark 3.2. According to the Lemma 3.1, if an operator T has the form T =[
⋆ ⋆
0 0

]
, where ”⋆” denotes arbitrary component, then

((T ∗T )†)n = (T †(T †)∗)n = T †((T †)∗T †)n−1(T ∗)† = T †((TT ∗)†)n−1(T †)∗,
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where TT ∗ has the following form (”inv.” means some invertible operator)

TT ∗ =

[
inv. 0
0 0

]
,

which provides us with simplified computations.
Similarly, if an operator S has the form: S =

[
⋆ 0
⋆ 0

]
, then

((SS∗)†)n = ((S†)∗S†)n = (S†)∗(S†(S†)∗)n−1S† = (S∗)†((S∗S)†)n−1S†,

where S∗S has the simple form S∗S =
[
inv. 0
0 0

]
. Those facts will be often used in

the proof of our main result.

Proposition 3.1. For closed-range operator A ∈ L(H,K) and any m ∈ N we have

(a) ((AA∗)†)m(AA∗)m = ((A∗)†A†)m(AA∗)m = AA†;
(b) (AA∗)m((AA∗)†)m = (AA∗)m((A∗)†A†)m = AA†;
(c) ((A∗A)†)m(A∗A)m = (A†(A∗)†)m(A∗A)m = A†A;
(d) (A∗A)m((A∗A)†)m = (A∗A)m(A†(A∗)†)m = A†A.

Proof. Let us prove statement a). The case m = 1 is, by Proposition 1.1, true. For
m ⩾ 2 we have

((AA∗)†)m(AA∗)m = ((AA∗)†)m−1(AA∗)†AA∗(AA∗)m−1

= ((AA∗)†)m−1(A∗)†A∗(AA∗)m−1

= ((AA∗)†)m−1(AA∗)m−1 = . . .

= (AA∗)†AA∗ = (A∗)†A∗ = (AA†)∗ = AA†.

In a completely analogous way, other three statements can be proved. □

3.0.2. Main result. We present 14 equivalent conditions to the basic ROL.

Theorem 3.1. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be bounded linear operators,
such that A, B and AB have closed ranges. The following statements are equivalent

(a) (AB)† = B†A†;
(b) (AB)† = B†A†ABB†A†;
(c) ((A†)∗B)† = B†A∗;
(d) (A(B†)∗)† = B∗A†;
(e) (ABB†)† = BB†A† and (A†AB)† = B†A†A;
(f) (AB)† = B†(A†ABB†)†A† and (A†ABB†)† = BB†A†A;
(g) (AB)† = (A†AB)†A† and (A†AB)† = B†A†A;
(h) (AB)† = B†(ABB†)† and (AAB†)† = BB†A†;
(i) (AB)† = (A∗AB)†A∗ and (A∗AB)† = B†(A∗A)†;
(j) (AB)† = B∗(ABB∗)† and (ABB∗)† = (BB∗)†A†;
(k) (AB)† = B∗(A∗ABB∗)†A∗ and (A∗ABB∗)† = (BB∗)†(A∗A)†;
(l) (AB)† = B∗B(AA∗ABB∗B)†AA∗ and

(AA∗ABB∗B)† = (BB∗B)†(AA∗A)†;
(m) (AB)† = B∗BB∗((A∗A)2(BB∗)2)†A∗AA∗ and

((A∗A)2(BB∗)2)† = ((BB∗)2)†((A∗A)2)†;
(n) {B(1,3)A(1,3)} ⊆ {(AB)(1,3)} and {B(1,4)A(1,4)} ⊆ {(AB)(1,4)}.
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Proof. Let us say something about the existence of the Moore–Penrose inverse
of various terms appearing in the formulas above. The existence of (A†ABB†)†

follows immediately from Lemma 1.4. It is easy to see the existence of ((A†)∗B)†

and (A(B†)∗)†. We have

R(B∗A∗A) = B∗(R(A∗A)) = B∗(R(A∗)) = R((AB)∗)

is closed, which implies the existence of (A∗AB)†, (A†AB)† and also of (A∗ABB∗)†,
because of

R(A∗ABB∗) = A∗A(R(BB∗)) = A∗A(R(B)) = R(A∗AB) = R((B∗A∗A)∗).

In a completely analogous way, one can prove the existence of expressions (ABB†)†

and (ABB∗)†.
Note that if A and B are closed-range operators, their product AB need not to

be; more on this issue can be found on [4–6, 28]. In this paper we will not further
investigate this problem, so in our results throughout this paper we always consider
the case when AB is a closed-range operator.

First, we enlist some parts of the proof regardless of the decomposition we will
use later.

(a)⇔(n): This is already proven in [22, Corollary 6.2.4].
(a)⇔(e): Already proven in [21, Theorem 2.4.c)].
(f)–(m)⇒(a): Those implications are proven on the same way: the second part of

the statement is replaced onto the first one, and common identities (see Proposition
1.1 and Lemma 3.1) are applied if necessary. As a result, we yield statement (a).
For illustration, we will present two specific cases:

(j)⇒(a): (AB)† = B∗(ABB∗)† = B∗(BB∗)†A† = B†A†.
(m)⇒(a): Here we will use Lemma 3.1 for n = 2.

(AB)† = B∗BB∗((A∗A)2(BB∗)2)† = B∗BB∗((BB∗)2)†((A∗A)2)†A∗AA∗

= B∗BB∗(BB∗)†(BB∗)†(A∗A)†(A∗A)†A∗AA∗

= B∗BB†(BB∗)†(A∗A)†A†AA∗ = B∗(BB∗)†(A∗A)†A∗ = B†A†.

Let us continue the proof.
(a)⇒(b): B†A† = (AB)† = (AB)†AB(AB)† = B†A†ABB†A†.
(a)⇒(g): (AB)† = B†A† = B†A†AA† = (A†AB)†A†, according to the already

proven statement (e).
(a)⇒(h): (AB)† = B†A† = B†BB†A† = B†(A†BB†)†, according to the already

proven statement (e).
For the rest of the proof, we will use the following operator decompositions.
Using Lemma 1.2, we conclude that the operator B has the following matrix

form

B =

[
B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =

[
B−1

1 0
0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
,
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From Lemma 1.3 also follows that the operator A has the following matrix form

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
:

[
R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
.

(a)⇔(c)⇔(d): Easy computations shows that statements (a), (c) and (d) are
equivalent to: (A1B1)

† = B−1
1 A∗

1D
−1, (D−1A1B1)

† = B−1
1 A∗

1 and (A1(B
∗
1)

−1)† =
B∗

1A
∗
1D

−1, respectively. Each of them is further equivalent to the following

A1A
∗
1D

−1A1 = A1, [A1A
∗
1, D

−1] = 0, [B1B
∗
1 , A

∗
1D

−1A1] = 0.

Proving the statements: (a)⇒(f) and (a)⇒(i)–(j) are very similar, so we will show
it only on the case (a)⇒(i). Using the decomposition described above, it is easy to
conclude that (i) becomes

(A1B1)
† = (D1/2A1B1)

†D1/2,

(D1/2A1B1)
†D−1/2Ai = B−1

1 A∗
1D

−2Ai, i = 1, 2.

Now we will show that (a) implies the first statement, by checking all four Penrose
equations. For the first and the second equation, it is clear. Let us check the third
and fourth.

(III) D1/2A1B1(A1B1)
†D−1/2 = D1/2A1B1B

−1
1 A∗

1D
−1D−1/2

= D1/2A1A
∗
1D

−1D−1/2,

which is, under the premise (a), Hermitian.

(IV ) (A1B1)
†D−1/2D1/2A1B1 = B−1

1 A∗
1D

−1D−1/2D1/2A1B1

= B−1
1 A∗

1D
−1A1B1,

For the sake of completeness, we enlist the equivalent forms for (f) and (j)

(f) : (A1B1)
† = B−1

1 (D−1/2A1)
†D−1/2,

(D−1/2A1)
†D−1/2Ai = A∗

1D
−1Ai, i = 1, 2;

and

(j) : (A1B1)
† = B∗

1(A1B1B
∗
1)

†,

(D1/2A1B1)
†D−1/2Ai = (B1B

∗
1)

−1A∗
1D

−1, i = 1, 2.

The proof that (a)⇒(k)–(m) will be omitted here, because it will be found later,
in Theorem 3.2, for more general case.

Now, it remains only part:
(b) ⇒ (a) : If we use matrix forms for the operators A and B as before in the

proof, it actually remains to prove that

(A1B1)
† = B−1

1 A∗
1D

−1A1A
∗
1D

−1 ⇒ (A1B1)
† = B−1

1 A∗
1D

−1.



SURVEY ON THE ROLS FOR THE MP INVERSE OF HILBERT SPACE OPERATORS 241

Let us denoteW = A∗
1D

−1A1. For the expression (A1B1)
† = B−1

1 A∗
1D

−1A1A
∗
1D

−1,
proper Penrose equations are the following

(1) A1 = A1W
2;

(2) W 3A∗
1 = WA∗

1;
(3) [A1WA∗

1, D
−1] = 0;

(4) [B1B
∗
1 ,W

2] = 0.

On the other side, Penrose equations for (A1B1)
† = B−1

1 A∗
1D

−1 are the following

(1) A1 = A1W ;
(2) WA∗

1 = A∗
1;

(3) [A1A
∗
1, D

−1] = 0;
(4) [B1B

∗
1 ,W ] = 0,

The operator W is Hermitian, moreover-it is positive (W = T ∗T , where T =
D−1/2A1), hence I +W is invertible, so we have

A1 = A1W
2 ⇔ A1(I −W 2) = 0 ⇔ A1(I −W )(I +W ) = 0

⇒ A1(I −W ) = 0,

which means A1 = A1W.
By using this fact, we proved (b)⇒(a), and therefore the proof is completed. □

The next theorem presents one possible way for generalization of some statements
from the previous theorem.

Theorem 3.2. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be bounded linear operators,
such that A, B and AB have closed ranges. Let m and n be arbitrary nonnegative
integers. The following statements are equivalent

(a) (AB)† = B†A†;
(l’) (AB)† = (B∗B)n((AA∗)mAB(B∗B)n)†(AA∗)m and

((AA∗)mAB(B∗B)n)† = (B(B∗B)n)†((AA∗)mA∗)†;
(m’) (AB)† = B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ and

((A∗A)m+1(BB∗)n+1)† = ((BB∗)†)n+1((A∗A)†)m+1.

Proof. First, we show the existence of the operators ((A∗A)m+1(BB∗)n+1)† and
((AA∗)mAB(B∗B)n)†. By Lemma 1.4, if P and Q are closed-range operators,
then PQ is closed-range if and only if P †PQQ† is closed range. Let we put P =
(A∗A)m, Q = (BB∗)n. They are closed-range as a powers of Hermitian closed-range
operators A∗A and BB∗. Let us compute P †PQQ†

P †PQQ† = ((A∗A)m)†(A∗A)m(BB∗)n((BB∗)n)†

= ((A∗A)†)m(A∗A)m(BB∗)n((BB∗)†)n = A†ABB†,

which is a closed-range operator because of Lemma 1.4. Thus, we proved that
(A∗A)m+1(BB∗)n+1 has closed range, which implies the existence of its Moore–
Penrose inverse.
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Let us now put P = (AA∗)mA, Q = B(B∗B)n. By computing P †PQQ†

P †PQQ† = ((AA∗)mA)†(AA∗)mAB(B∗B)n(B(B∗B)n)†

= A†((A∗)†A†)m(AA∗)mAB(B∗B)n(B†(B∗)†)nB† = A†ABB†,

we conclude using Lemma 1.4 that it is a closed range operator, which implies
(AA∗)mAB(B∗B)n has a closed range, and because of that the Moore–Penrose
inverse.

We made preparations, and now the proof starts.

(l′) ⇒ (a) : (AB)† = (B∗B)n((AA∗)mAB(B∗B)n)†(AA∗)m

= (B∗B)n(B(B∗B)n)†((AA∗)mA)†(AA∗)m

= (B∗B)n((B∗B)†)nB†A†((AA∗)†)m(AA∗)m = B†A†,

where we used the following fact: if H is hermitian, then H2H† = H = H†H2

(a) ⇒ (l′) : Using the decompositions

A =

[
A1 A2

0 0

]
, B =

[
B1 0
0 0

]
,

the implication becomes

(A1B1)
† = B−1

1 A∗
1D

−1 ⇒

{
(A1B1)

† = (B∗
1B1)

n(DmA1B1(B
∗
1B1)

n)†Dm,

(DmA1B1(B
∗
1B1)

n)† = (B∗
1B1)

−nB−1
1 A∗

1D
−(m+1).

We can easily prove that (DmA1B1(B
∗
1B1)

n)† = (B∗
1B1)

−n(A1B1)
†D−m, by imme-

diately checking four Penrose equations under the premise (A1B1)
† = B−1

1 A∗
1D

−1.
The second part is now clear

(DmA1B1(B
∗
1B1)

n)† = (B1B
∗
1)

−n(A1B1)
†D−m = (B∗

1B1)
−lB−1

1 A∗
1D

−(m+1),

so we completed this part of the proof.
(m′) ⇒ (a) :

(AB)† = B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗

= (B∗B)nB∗((BB∗)†)n+1((A∗A)†)m+1A∗(AA∗)m

= (B∗B)nB∗(BB∗)†((BB∗)†)n((A∗A)†)m(A∗A)†A∗(AA∗)m

= (B∗B)n−1B∗BB†((BB∗)†)n((A∗A)†)mA†AA∗(AA∗)m−1

= (B∗B)n−1B∗((BB∗)†)n((A∗A)†)mA∗(AA∗)m−1

= . . .

= B∗(BB∗)†(A∗A)†A∗ = B†A†.

(a) ⇒ (m′) : Here we also use the following decompositions

A =

[
A1 A2

0 0

]
,

[
B1 0
0 0

]
,

but in the calculation there are some steps that should be explained.
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Let us denote T = (A∗A)m+1(BB∗)n+1. It is easier to compute in the following
way

T = A∗(AA∗)mAB(B∗B)nB∗ =

[
A∗

1D
mA1(B1B

∗
1)

n+1 0
A∗

2D
mA1(B1B

∗
1)

n+1 0

]
;

now,

T † =

[
(Dm+1/2A1(B1B

∗
1)

n+1)†D−1/2A1 (Dm+1/2A1(B1B
∗
1)

n+1)†D−1/2A2

0 0

]
.

Remains to find ((A∗A)†)m+1. It can be computed on this way

(A∗A)† = A†(A†)∗ =

[
A∗

1D
−1A1 A∗

1D
−1A2

A∗
2D

−1A1 A∗
2D

−1A2

]
.

It is easy to prove by induction that for arbitrary nonnegative integer k

((A∗A)†)k =

[
A∗

1D
−(k+1)A1 A∗

1D
−(k+1)A2

A∗
2D

−(k+1)A1 A∗
2D

−(k+1)A2

]
.

Also, it is clear

(A∗A)k+1 = A∗(AA∗)kA =

[
A∗

1D
kA1 A∗

1D
kA2

A∗
2D

kA1 A∗
2D

kA2

]
.

Now, we have all necessary terms for computing (m′) in the terms of A1, A2 and
B1. Thus, we should prove that (A1B1)

† = B−1
1 A∗

1D
−1 implies{

(A1B1)
† = B∗

1(B1B
∗
1)

n(Dm+1/2A1B1B
∗
1(B1B

∗
1)

n)†Dm+1/2,

(Dm+1/2A1(B1B
∗
1)

n+1)†D−1/2Ai = (B∗
1B1)

−(n+1)A∗
1D

−(m+2)Ai, i = 1, 2.

We can prove the first part is true by checking all four Penrose equations for

(Dm+1/2A1B1B
∗
1(B1B

∗
1)

n)† = (B1B
∗
1)

−n(B∗
1)

−1(A1B1)
†D−(m+1/2),

under the premise (A1B1)
† = B−1

1 A∗
1D

−1.
Now, the second part

(Dm+1/2A1(B1B
∗
1)

n+1)†D−1/2Ai

= (B1B
∗
1)

−n(B∗
1)

−1(A1B1)
†D−(m+1/2)D−1/2Ai

= (B1B
∗
1)

−n(B∗
1)

−1B−1
1 A∗

1D
−1D−(m+1/2)D−1/2Ai

= (B1B
∗
1)

−(n+1)A∗
1D

−(m+2)Ai. □

Remark 3.3. If we put m = n = 0 in statement (m′), it becomes (k) from the
Theorem 3.1, if m = 1, n = 1 it becomes (m). Also if we put m = n = 1 in (l′), it
becomes (l).

The next result is the immediate corollary of the Theorem 3.1 and Theorem 3.2.

Corollary 3.1. Let A ∈ L(H1,H2) has a closed range. The following statements
are equivalent
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(a) (A2)† = (A†)2, namely, A is a bi-dagger2;
(b) ((A†)∗A)† = A†A∗;
(c) (A(A†)∗)† = A∗A†;
(d) (A2A†)† = A(A†)2 and (A†A2)† = (A†)2A;
(e) (A2)† = A†(A†A2A†)†A† and (A†A2A†)† = A(A†)2A;
(f) (A2)† = (A†A2)†A† and (A†A2)† = (A†)2A;
(g) (A2)† = A†(A2A†)† and (A2A†)† = A(A†)2;
(h) (A2)† = (A∗A2)†A∗ and (A∗A2)† = A†(A∗A)†;
(i) (A2)† = A∗(A2A∗)† and (A2A∗)† = (AA∗)†A†;
(j) (A2)† = A∗(A∗A2A∗)†A∗ and (A∗A2A∗)† = (AA∗)†(A∗A)†;
(k) (A2)† = A∗A(AA∗A2A∗A)†AA∗ and (AA∗A2A∗A)† = (AA∗A)†(AA∗A)†;
(l) (A2)† = A∗AA∗((A∗A)2(AA∗)2)†A∗AA∗ and

((A∗A)2(AA∗)2)† = ((AA∗)2)†((A∗A)2)†;
(m) (A2)† = (A∗A)n((AA∗)mA2(A∗A)n)†(AA∗)m and

((AA∗)mA2(A∗A)n)† = (A(A∗A)n)†((AA∗)mA∗)†;
(n) (A2)† = A∗(AA∗)n((A∗A)m+1(AA∗)n+1)†(A∗A)mA∗ and

((A∗A)m+1(AA∗)n+1)† = ((AA∗)†)n+1((A∗A)†)m+1.

For the sake of completeness, we shall repeat some results already proven in [21]
as the (c)-parts of the Theorems 2.2, 2.3 and 2.4.

Theorem 3.3. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be bounded linear operators,
such that A, B and AB have closed ranges. The following statements are equivalent

(a) (AB)† = B†A†;
(b1) AB(AB)† = ABB†A† and (AB)†AB = B†A†AB;
(b2) A∗AB = BB†A∗AB and ABB∗ = ABB∗A†A;
(b3) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗);
(c1) AB(AB)†A = ABB† and A†AB = B(AB)†AB;
(c2) [A∗A,BB†] = 0 and [A†A,BB∗] = 0;
(d1) (ABB†)† = BB†A† and (A†AB)† = B†A†A;
(d2) B†(ABB†)† = B†A† and (A†AB)† = B†A†.

The following theorem establishes the connection between the basic reverse order
law (AB)† = B†A† and mixed-type reverse order law (AB)† = B†(A†ABB†)†A†.
This mixed-type reverse order law, thoroughly considered in the paper [15], is
presented in the sixth section.

Theorem 3.4. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be such that A, B and AB
have closed ranges. Then (AB)† = B†A† if and only if (AB)† = B†(A†ABB†)†A†,
and AB satisfies any one of the following conditions

(a) ABB†A†AB = AB;
(b) B†A†ABB†A† = B†A†;
(c) [A†A,BB†] = 0;

2Matrix A is bi-dagger if (A†)2 = (A2)†, without any particular requirements, because the

Moore–Penrose inverse for matrices always exists. On the other side, closed-range operator A is
bi-dagger if A2 is closed-range operator and (A†)2 = (A2)† holds.
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(d) A†ABB† is an idempotent;
(e) BB†A†A is an idempotent;
(f) B†(A†ABB†)†A† = B†A†;
(g) (A†ABB†)† = BB†A†A.

Proof. Statements (a)−(g) are mutually equivalent, as it is proved in [21, Theorem
2.1.]. From this result and from the statement (f), Theorem 3.1, the conclusion is
easy to obtain. □

Remark that the results from this section were further studied in [30,52–54].

4. Identities concerning the reverse order law
for the Moore–Penrose inverse

As mentioned in the Introduction, some reverse order laws are actually the iden-
tities. The motivation was mainly the paper [55] dealing with complex matrix case,
as well as the classic paper [9]. Those results are generalized in the paper [17], and
they are presented in this section.

Throughout some proofs, we need the following auxiliary result.

Lemma 4.1. Let P ∈ L(H2,H3), Q ∈ L(H3,H4) and R ∈ L(H1,H2) be operators
such that P , Q, QP , PR have closed ranges.

(a) If Q is invertible, then (P (QP )†)† = QPP †.
(b) If R is invertible, then ((PR)†P )† = P †PR.

Proof. For (a) we verify that the operators A = P (QP )† and B = QPP † satisfy
the Penrose equations

ABA = P (QP )†QPP †P (QP )† = P (QP )†QP (QP )† = P (QP )† = A,

BAB = QPP †P (QP )†QPP † = QP (QP )†QPP † = QPP † = B,

AB = P (QP )†QPP † = Q−1QP (QP )†QPP † = Q−1QPP † = PP † is Hermitian,

BA = QPP †P (QP )† = QP (QP )† is Hermitian.

Equation (b) is verified in a similar manner. Notice that from (a) and (b) we
conclude that P (QP )† and (PR)†P have closed ranges. □

Now we can prove some results concerning the mixed-type reverse-order law for
the Moore–Penrose inverse of a product of two and three Hilbert space operators
with closed ranges.

Theorem 4.1. Let A ∈ L(H3,H4), B ∈ L(H2,H3) and C ∈ L(H1,H2) be the
operators, such that A, B, C, AB, ABC have closed ranges. Then the following
hold

(a) (AB)† = (A†AB)†(ABB†)†;
(b) (AB)† = [(A†)∗B]†(B†A†)∗[A(B†)∗]†;
(c) (ABC)† = (A†ABC)†B(ABCC†)†;
(d) (ABC)† = [(AB)†ABC]†B†[ABC(BC)†]†;
(e) (ABC)† = [(ABB†)†ABC]†B[ABC(B†BC)†]†;
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(f) (ABC)† = [(A†)∗BC]†(A†)∗B(C†)∗[AB(C†)∗]†;
(g) (ABC)† = {[A(B†)∗]†ABC}†B∗BB∗{ABC[(B†)∗C]†}†;
(h) (ABC)† = {[(AB)†]∗C}†[(AB)†]∗B†[(BC)†]∗{A[(BC)†]∗}†.

Proof. According to the Lemmas 1.3 and 1.4, it is easy to conclude that operators
A, B and C have the following matrix representations with the respect to the
appropriate decompositions of spaces

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
:

[
R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
.

Moreover,

B =

[
B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =

[
B−1

1 0
0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
.

Finally,

C =

[
C1 0
C2 0

]
:

[
R(C∗)
N (C)

]
→

[
R(B∗)
N (B)

]
,

where E = C∗
1C1 + C∗

2C2 is invertible and positive in L(R(C∗)). Then

C† =

[
E−1C∗

1 E−1C∗
2

0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(C∗)
N (C)

]
.

(a): Notice that R(A†AB) = A†A(R(B)) = A†A(R(BB†)) = R(A†ABB†) is
closed according to Lemma 1.4. Also, R(B∗A∗) is closed. Again, from Lemma 1.4
and R((ABB†)∗) = R((B∗)†B∗A∗) = R((B∗)†B∗A∗(A∗)†) = R((A†ABB†)∗), it
follows that R(ABB†) is closed. Now, using matrix forms of A and B, we have

ABB† =

[
A1 0
0 0

]
, (ABB†)† =

[
A†

1 0
0 0

]
, A†AB =

[
A∗

1D
−1A1B1 0

A∗
2D

−1A1B1 0

]
,

(A†AB)† = ((A†AB)∗(A†AB))†(A†AB)∗

=

[
(B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1 (B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A2

0 0

]
.

Therefore, (AB)† = (A†AB)†(ABB†)† is equivalent to

(A1B1)
† = (B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1A
†
1,

which is further equivalent to

(A1B1)
† = (D−1/2A1B1)

†D−1/2A1A
†
1.
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The last equality follows by checking Penrose equations; as a sample we check the
second one

(A1B1)
†A1B1(A1B1)

†=(D−1/2A1B1)
†D−1/2A1A

†
1A1B1(D

−1/2A1B1)
†D−1/2A1A

†
1

=(D−1/2A1B1)
†D−1/2A1A

†
1 = (A1B1)

†.

(b): Notice that R(((A†)∗B)∗) = R(B∗A†) = R(B∗A∗) = R((AB)∗) is closed,
soR((A†)∗B) is closed. Also,R(A(B†)∗) = R(A((B∗B)†B∗)∗) = R(AB(B∗B)†) =
AB(R((B∗B)†)) = AB(R(B∗)) = A(R(B)) = R(AB) is closed. Again, using
matrix forms of A and B, we have that (AB)† = [(A†)∗B]†(B†A†)∗[A(B†)∗]† is
equivalent to the following

(A1B1)
† = (D−1A1B1)

†D−1A1(B
−1
1 )∗(A1(B

−1
1 )∗)†.

The last equality can easily be proved by checking the Penrose equations.
(c): Note that R((A†ABC)∗)=(BC)∗(R(A†A))=(BC)∗(R(A∗))=R((ABC)∗)

is closed. Also, R(ABCC†) = AB(R(CC†) = AB(R(C)) = R(ABC) is closed.
Now we show that (ABC)† = (A†ABC)†B(ABCC†)†. First we compute factors
appearing on the right side. Denote

T = A†ABC =

[
A∗

1D
−1A1B1C1 0

A∗
2D

−1A1B1C1 0

]
.

Now,

T † = (T ∗T )†T ∗ =

[
XA1 XA2

0 0

]
,

where X = (C∗
1B

∗
1A

∗
1D

−1A1B1C1)
†C∗

1B
∗
1A

∗
1D

−1. Let

S = ABCC† =

[
A1B1C1E

−1C∗
1 A1B1C1E

−1C∗
2

0 0

]
.

It is easy to find

S† = S∗(SS∗)† =

[
C1E

−1C∗
1B

∗
1A

∗
1(A1B1C1E

−1C∗
1B

∗
1A

∗
1)

† 0
C2E

−1C∗
1B

∗
1A

∗
1(A1B1C1E

−1C∗
1B

∗
1A

∗
1)

† 0

]
.

Therefore, the statement (c) is equivalent to

(A1B1C1)
† = (C∗

1B
∗
1A

∗
1D

−1A1B1C1)
†C∗

1B
∗
1A

∗
1D

−1A1

×B1C1E
−1C∗

1B
∗
1A

∗
1(A1B1C1E

−1C∗
1B

∗
1A

∗
1)

†,

i.e.

(A1B1C1)
† = (D−1/2A1B1C1)

†D−1/2A1B1C1E
−1/2(A1B1C1E

−1/2)†.

This formula can be proved in an analogous way as in (a).
(f): Notice thatR(((A†)∗BC)∗)=(BC)∗(R(A†))=(BC)∗(R(A∗))=R((ABC)∗)

is closed, so R((A†)∗BC) is closed. Also,

R(AB(C†)∗) = AB(R((C†)∗)) = AB(R(C)) = R(ABC)

is closed. An easy computation shows that

(ABC)† = [(A†)∗BC]†(A†)∗B(C†)∗[AB(C†)∗]†
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is equivalent to

(A1B1C1)
† = (D−1A1B1C1)

†D−1A1B1C1E
−1(A1B1C1E

−1)†.

This equality follows a standard argument.
So far we have proved four identities. Now we use (c), to show that (d), (e) and

(g) are satisfied. Also, we use (f) to prove that (h) holds.
(d): An easy computation shows that (d) is equivalent to the following

(A1B1C1)
† = [(A1B1)

†A1B1C1]
†B−1

1 [A1B1C1(B1C1)
†]†.

If we put: A′ = A1B1, B
′ = B−1

1 , C ′ = B1C1, then (d) becomes already proven
identity (c) for operators A′, B′, C ′. For completeness, notice that the following
operator ranges are closed

R(A′) = R(AB), R(B′) = R(B∗), R(C ′) = R(BC),

R(A′B′) = R(A), R(B′C ′) = R(C), R(A′B′C ′) = R(ABC).

(e): An easy computation shows that (e) is equivalent to the following

(A1B1C1)
† = [A†

1A1B1C1]
†B1[A1B1C1C

†
1 ]

†.

The last identity is proved in (c).
(g): An easy computation shows that

(ABC)† = {[A(B†)∗]†ABC}†B∗BB∗{ABC[(B†)∗C]†}†

is equivalent to the following

(A1B1C1)
† = {[A1(B

∗
1)

−1]†A1B1C1}†B∗
1B1B

∗
1{A1B1C1[(B

∗
1)

−1C1]
†}†.

We put: A′′ := A1(B
∗
1)

−1, B′′ := B∗
1B1B

∗
1 , C ′′ := (B∗

1)
−1C1. Now we have that

the following operator ranges are closed

R(A′′) = A1(R((B∗
1)

−1)) = R(AB), R(B′′) = R(B∗),

R(C ′′) = R(BC), R(A′′B′′) = R(A1B1B
∗
1) = R(AB),

R((B′′C ′′)∗) = R((B∗BC)∗) = C∗(R(B∗B)) = R((BC)∗),

R(A′′B′′C ′′) = R(ABC).

So, conditions of identity (c) are satisfied. Hence, (g) follows from (c).
(h): An easy computation shows that (h) is equivalent to the following

(A1B1C1)
† = {[(A1B1)

†]∗C1}†[(A1B1)
†]∗B−1

1 [(B1C1)
†]∗{A1[(B1C1)

†]∗}†.

If we put: A′′′ := A1B1, B′′′ := B−1
1 , C ′′′ := B1C1, then (h) becomes already

proven identity (f). For the completeness, notice that the following operator ranges
are closed

R(A′′′) = R(AB), R(B′′′) = R(B∗), R(C ′′′) = R(BC),

R(A′′′B′′′) = R(A), R(B′′′C ′′′) = R(C), R(A′′′B′′′C ′′′) = R(ABC). □
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Remark 4.1. The existence of the Moore–Penrose inverses of various operators in
the previous theorem, follows from the closedness of operator ranges R(A), R(B),
R(C), R(AB), R(BC), R(ABC). This fact is important, and it is explained in
detail. The same is true for the rest of the theorems.

The next two corollaries are immediate consequences of Theorem 4.1 (a).

Corollary 4.1. Let A ∈ L(H2,H3), B ∈ L(H1,H2) be operators, such that A, B,
AB have closed ranges. If A†AB = B and ABB† = A, then (AB)† = B†A†.

Corollary 4.2. If P and Q be two orthogonal projectors (i.e. P 2 = P = P ∗ and
Q2 = Q = Q∗), then (PQ)† is an idempotent.

Moreover, all other corollaries from [55] are also true with some slight changes
in their formulations.

If U, V are operators acting on the same space, recall that [U, V ] = UV − V U is
the usual notation for their commutator.

Theorem 4.2. Let A ∈ L(H2,H3), B ∈ L(H1,H2) be operators, such that A, B,
AB have closed ranges. Let M ∈ L(H3) and N ∈ L(H1) be positive and invertible
operators. Then the weighted Moore–Penrose inverse of AB with respect to M and
N satisfies the following two identities

(a) (AB)†M,N = (A†AB)†I,N (ABB†)†M,I ;

(b) (AB)†M,N = [(A†
M,I)

∗B]†M−1,N (B†
I,NA†

M,I)
∗[A(B†

I,N )∗]†M,N−1 .

Proof. By using well-known relation A†
M,N = N−1/2(M1/2AN−1/2)†M1/2, it is

easy to obtain that (a) is equivalent to

(4.1) (M1/2ABN−1/2)† = (A†ABN−1/2)†(M1/2ABB†)†.

Let Ã = M1/2A, B̃ = BN−1/2. We prove that (M−1/2Ã)† = Ã†M1/2. The last

statement holds if and only if M−1/2ÃÃ†M1/2 is Hermitian, which is equivalent
to [M, ÃÃ†] = 0. Using Lemma 1.5, the last expression is equivalent to R(MÃ) =

R(Ã), which is valid, because of the invertibility of the Hermitian operator M .

Analogously we prove that (B̃N1/2)† = N−1/2B̃†. Now, (4.1) becomes

(ÃB̃)† = (Ã†ÃB̃)†(ÃB̃B̃†)†,

which is already proven identity in Theorem 4.1 (a).
Analogously, we prove statement (b). □

Theorem 4.3. Let A ∈ L(H3,H4), B ∈ L(H2,H3), C ∈ L(H1,H2) be operators,
such that A, B, C, AB, BC, ABC have closed ranges. Let M ∈ L(H4) and
N ∈ L(H1) be positive and invertible operators. Then the weighted Moore–Penrose
inverse of ABC with respect to M and N satisfies the following identities

(a) (ABC)†M,N = (A†ABC)†I,NB(ABCC†)†M,I ;

(b) (ABC)†M,N = ((AB)†ABC)†I,NB†(ABC(BC)†)†M,I ;

(c) (ABC)†M,N = ((ABB†)†ABC)†I,NB(ABC(B†BC)†)†M,I ;

(d) (ABC)†M,N = [(A†
M,I)

∗BC]†M−1,N (A†
M,I)

∗B(C†
I,N )∗[AB(C†

I,N )∗]†M,N−1 ;
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(e) (ABC)†M,N = {[A(B†)∗]†ABC}†I,NB∗BB∗{ABC[(B†)∗C]†}†M,I ;

(f) (ABC)†M,N = {[(AB)†M,I ]
∗C}†M−1,N [(AB)†M,I ]

∗B†[(BC)†I,N ]∗

× {A[(BC)†I,N ]∗}†M,N−1 .

Proof. The proof in all cases is similar to the proof of Theorem 4.2. First, we
transform all weighted Moore–Penrose inverses to the ordinary ones, then we put:

Ã = M1/2A, B̃ = B, C̃ = CN−1/2, and apply Lemma 1.5. After that, all cases
reduce to already-proven identities from Theorem 4.1. □

Some more general identities can also be derived from previous theorems.

Theorem 4.4. Let A ∈ L(H2,H3), B ∈ L(H1,H2) be operators, such that A, B,
AB have closed ranges. Let M ∈ L(H3), N ∈ L(H1) and P ∈ L(H2) be positive
and invertible operators. Then the weighted Moore–Penrose inverse of AB with
respect to M and N satisfies the following identity

(AB)†M,N = (A†
I,PAB)†P,N (ABB†

P,I)
†
M,P .

Proof. The proof is similar to the proof of Theorem 4.2. First, we transform all
weighted Moore–Penrose inverses to the ordinary ones, which gives

(M1/2ABN−1/2)† = [(AP−1/2)†ABN−1/2]†[M1/2AB(P 1/2B)†]†.

If we put: Ã = M1/2AP−1/2, B̃ = P 1/2BN−1/2, and then apply Lemma 1.5, this
statement reduces to the already-proven identity from Theorem 4.1 (a). □

The following theorem can be proven similarly.

Theorem 4.5. Let A ∈ L(H3,H4), B ∈ L(H2,H3), C ∈ L(H1,H2) be operators,
such that A, B, C, AB, BC, ABC have closed ranges. Let M ∈ L(H4), N ∈
L(H1), P ∈ L(H2), Q ∈ L(H3) be positive and invertible operators. Then the
weighted Moore–Penrose inverse of ABC with respect to M and N satisfies the
following identities

(a) (ABC)†M,N = (A†
I,PABC)†P,NB(ABCC†

Q,I)
†
M,Q;

(b) (ABC)†M,N = ((AB)†I,QABC)†Q,NB†
P,Q(ABC(BC)†P,I)

†
M,P ;

(c) (ABC)†M,N = ((ABB†
P,I)

†
M,PABC)†P,NB(ABC(B†

I,QBC)†Q,N )†M,Q.

Now, we return to one classic matrix identity from [9]. Our next theorem shows
that the result from [9] holds for bounded linear Hilbert space operators.

Theorem 4.6. Let A ∈ L(H2,H3), B ∈ L(H1,H2) be operators such that A, B,
AB have closed ranges. Then (AB)† = (A†AB)†(AB(A†AB)†)†.

Proof. Using a method described in Theorem 4.1 (and decompositions and matrix
forms for A andB) we conclude that (AB)† = (A†AB)†(AB(A†AB)†)† is equivalent
to the following (D is positive and invertible as in Lemma 1.3)

(A1B1)
† = (D−1/2A1B1)

†(A1B1(D
−1/2A1B1)

†)†,

which is, by Lemma 4.1, further equivalent to

(A1B1)
† = (D−1/2A1B1)

†D−1/2A1B1(A1B1)
†.
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We check directly all four Penrose equations, so we have the proof. □

We mention that results from this section are further investigated e.g. in [8].

5. Hartwig’s triple reverse order law revisited

The classical result of Hartwig [26] deals with the triple reverse order law of the
form

(5.1) (ABC)† = C†B†A†,

where A, B, C are complex matrices of appropriate dimensions. Hartwig estab-
lished several equivalent conditions such that (5.1) holds, offering a very general
proof of the main result. However, one implication in [26] is not valid in infinite di-
mensional Hilbert spaces, and thus we find it interesting to extend Hartwig’s proof
in this direction. The results presented in this section were published in 2014.
in [18].

Lemma 5.1. Let A ∈ L(H,K) be closed range operator and let PM be orthogonal
projection from K to closed subspace R(M) ⊂ R(A). Then A∗PMA has a closed
range.

Proof. According to Lemma 1.2 and Lemma 1.3, operators A and PM have the
following forms

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
R(M)
N (M)

]
,

PM =

[
I 0
0 0

]
:

[
R(M)
N (M)

]
→

[
R(M)
N (M)

]
.

It is obvious that A∗PMA = (PMA)∗PMA, and by using Lemma 1.1 it is enough
to prove that PMA is a closed range operator. From the form of PMA

PMA =

[
I 0
0 0

] [
A1 0
A2 0

]
=

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(M)
N (M)

]
,

we have R(PMA) = R(A1) = A1(R(A∗)), which is closed because A1 is onto.
Indeed, let us suppose A1 is not onto; this means there is some y ∈ R(M)\R(A1).
Because of R(M) ⊂ R(A), there is some x ∈ R(A∗) such that y = A1x + A2x,
provided that A2x ̸= 0. Therefore, R(M) ∋ y − A1x = A2x ∈ N (M), and sum
R(M) ⊕ N (M) is direct, so A2x = 0, which is contradiction. Therefore, A1 is
onto. □

Let A ∈ L(H3,H4), B ∈ L(H2,H3) and C ∈ L(H1,H2) be bounded linear
operators with closed ranges. We use notations in the same way as in [26]

M = ABC, X = C†B†A†, E = A†A, F = CC†, P = EBF, Q = FB†E.

Recall that K ∈ L(H) is EP, if K has a closed range and KK† = K†K.
The main result is the following theorem.

Theorem 5.1. Let A,B,C be closed-range operators such that ABC also has a
closed range. The following statements are equivalent
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(a) (ABC)† = C†B†A†;
(b) PQP = P, QPQ = Q, and both A∗APQ, QPCC∗ are Hermitian;
(c) PQP = P, QPQ = Q, and both A∗APQ, QPCC∗ are EP;
(d) PQP = P, R(A∗AP ) = R(Q∗), R(CC∗P ∗) = R(Q);
(e) (PQ)2 = PQ, R(A∗AP ) = R(Q∗), R(CC∗P ∗) = R(Q).

Remark 5.1. In [26] Hartwig made the following remark

The results of Theorem 1 can be extended to a regular ring R,
with involution (·)∗ and unit 1 for which ab = 1 ⇒ ba = 1 and
a∗a = 0 ⇒ a = 0 hold.

Since for bounded linear operators on infinite dimensional Hilbert spaces the impli-
cation AB = I ⇒ BA = I does not hold, we find it important to finish this proof
in more general settings.

Proof. The proof given by Hartwig stays valid for (a)⇔(b), (b)⇒(c), (c)⇒(d) and
(d)⇒(e). The only case which does not hold in general is actually the implication
(e)⇒(b), which involves properties of the matrix rank. Thus, this part of the proof
is not applicable to operators on infinite dimensional Hilbert space.

To complete the proof, we will prove (e)⇒(a) in a different way, using properties
of operator matrices.

Using Lemma 1.2 we conclude that the operator C has the following matrix form

C =

[
C1 0
0 0

]
:

[
R(C∗)
N (C)

]
→

[
R(C)
N (C∗)

]
,

where C1 is invertible. Then

C† =

[
C−1

1 0
0 0

]
:

[
R(C)
N (C∗)

]
→

[
R(C∗)
N (C)

]
.

From Lemma 1.3 it follows that the operator B has the following matrix form

B =

[
B1 B2

0 0

]
:

[
R(C)
N (C∗)

]
→

[
R(B)
N (B∗)

]
,

where G = B1B
∗
1 +B2B

∗
2 is invertible and positive in L(R(B)). Then

B† =

[
B∗

1G
−1 0

B∗
2G

−1 0

]
.

From Lemma 1.3 it also follows that the operator A has the following matrix
form

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.
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Let us find the expressions for the operators M , X, E, F , P and Q. It is easy
to find that

M = ABC =

[
A1B1C1 0

0 0

]
=

[
M1 0
0 0

]
, M1 = A1B1C1;

X = C†B†A† =

[
C−1

1 B∗
1G

−1A∗
1D

−1 0
0 0

]
=

[
X1 0
0 0

]
,

X1 = C−1
1 B∗

1G
−1A∗

1D
−1;

E = A†A =

[
A∗

1D
−1A1 A∗

1D
−1A2

A∗
2D

−1A1 A∗
2D

−1A2

]
; F = CC† =

[
I 0
0 0

]
;

P = EBF =

[
A∗

1D
−1A1B1 0

A∗
2D

−1A1B1 0

]
=

[
A∗

1D
−1M1C

−1
1 0

A∗
2D

−1M1C
−1
1 0

]
;

Q = FB†E =

[
B∗

1G
−1A∗

1D
−1A1 B∗

1G
−1A∗

1D
−1A2

0 0

]
=

[
C1X1A1 C1X1A2

0 0

]
.

It will be convenient to compute here matrix forms for some expressions appear-
ing in the rest of the proof

PQ =

[
A∗

1D
−1M1X1A1 A∗

1D
−1M1X1A2

A∗
2D

−1M1X1A1 A∗
2D

−1M1X1A2

]
;

QP =

[
C1X1M1C

−1
1 0

0 0

]
;

A∗AP =

[
A∗

1M1C
−1
1 0

A∗
2M1C

−1
1 0

]
;

CC∗P ∗ =

[
C1M

∗
1D

−1A1 C1M
∗
1D

−1A2

0 0

]
;

(PQ)2 =

[
A∗

1D
−1M1X1M1X1A1 A∗

1D
−1M1X1M1X1A2

A∗
2D

−1M1X1M1X1A1 A∗
2D

−1M1X1M1X1A2

]
.

Now, we will find equivalent expressions for the conditions (a) and (e) in the
terms of the components of the operators A, B and C.

(a) : This is equivalent to (A1B1C1)
† = C−1

1 B∗
1G

−1A∗
1D

−1, or M†
1 = X1.

(e): This is equivalent to the following three expressions

(e.1) ⇔ A∗
iD

−1(M1X1)
2Aj = A∗

iD
−1M1X1Aj , for all i, j ∈ {1, 2};

(e.2) ⇔ R
([

A∗
1M1C

−1
1 0

A∗
2M1C

−1
1 0

])
= R

([
A∗

1X
∗
1C

∗
1 0

A∗
2X

∗
1C

∗
1 0

])
;

(e.3) ⇔ R
([

C1M
∗
1D

−1A1 C1M
∗
1D

−1A2

0 0

])
= R

([
C1X1A1 C1X1A2

0 0

])
.

Recall that we prove the implication (e)⇒(a).
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Now, if we premultiply (e.1) by Ai, and use summation over i = 1, 2 we yield
(M1X1)

2Aj = M1X1Aj , for j = 1, 2. If we now postmultiply the last expression
by A∗

j and add them, we have (M1X1)
2 = M1X1. Therefore

(e.1) ⇒ (M1X1)
2 = M1X1.

On the other hand, (e.2) is equivalent to: R(A∗
iM1C

−1
1 ) = R(A∗

iX
∗
1C

∗
1 ), i = 1, 2.

Again, if Ai acts on both sides, and we add them, we obtain R(M1C
−1
1 ) =

R(X∗
1C

∗
1 ). Hence, we haveR(M1) = R(X∗

1 ), which impliesM1M
†
1 = X†

1X1. There-
fore,

(e.2) ⇒ M1M
†
1 = X†

1X1.

Let us now write (e.3) as

N
([

A∗
1D

−1M1C
∗
1 0

A∗
2D

−1M1C
∗
1 0

])
= N

([
A∗

1X
∗
1C

∗
1 0

A∗
2X

∗
1C

∗
1 0

])
.

Notice that

N
([

A∗
1D

−1M1C
∗
1 0

A∗
2D

−1M1C
∗
1 0

])
=

{[
u1

u2

]
:

[
A∗

1D
−1M1C

∗
1 0

A∗
2D

−1M1C
∗
1 0

] [
u1

u2

]
=

[
0
0

]}
,

and we conclude

N
([

A∗
1D

−1M1C
∗
1 0

A∗
2D

−1M1C
∗
1 0

])
=

(
N (A∗

1D
−1M1C

∗
1 ) ∩N (A∗

2D
−1M1C

∗
1 )
)
⊕N (C∗),

which is further equal (easy to see) to N (M1C
∗
1 )⊕N (C∗).

With a little effort, we find

N
([

A∗
1X

∗
1C

∗
1 0

A∗
2X

∗
1C

∗
1 0

])
=

(
N (A∗

1X
∗
1C

∗
1 ) ∩N (A∗

2X
∗
1C

∗
1 )
)
⊕N (C∗)

= N (X∗
1C

∗
1 )⊕N (C∗).

Hence, condition (e.3) implies N (M1C
∗
1 ) = N (X∗

1C
∗
1 ), which is the same as

R(C1M
∗
1 ) = R(C1X1), or R(M∗

1 ) = R(X1), or even further: M†
1M1 = X1X

†
1 .

Since we intend to prove (e)⇒(a), it is enough to prove the following implication{
(M1X1)

2 = M1X1, M1M
†
1 = X†

1X1, M†
1M1 = X1X

†
1

}
⇒ M†

1 = X1.

The following completes the proof

M1 = M1X1X
†
1 = M1X1X

†
1X1X

†
1 = M1X1M1M

†
1X

†
1

= M1X1M1X1X
†
1M

†
1X

†
1 = M1X1X

†
1M

†
1X

†
1

= M1M
†
1X

†
1 = X†

1X1X
†
1 = X†

1 .

For the sake of completeness, we remark that operators A∗APQ and QPCC∗

from part (c) of our Theorem have closed ranges. It immediately follows from
Lemma 5.1 because

A∗APQ = A∗MM†A = A∗PR(M)A, QPCC∗ = CM†MC∗ = CPR(M)C
∗. □

Remark that the results from this section were further studied e.g. in [31,34,40,
53,64,65].
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6. Mixed-type reverse order law (AB)† = B†(A†ABB†)†A†

and its equivalencies

Many necessary and sufficient condition for (AB)† = B†A† to hold were given
in the literature. In the paper of Tian [48], one can find the following important
relation

(AB)† = B†A† ⇔ (AB)† = B†(A†ABB†)†A† ∧ (A†ABB†)† = BB†A†A.

Therefore, it is necessary to seek various equivalent conditions for the expression

(AB)† = B†(A†ABB†)†A†

to satisfy. Results presented in this section are from the paper [15] of Dinčić,
Djordjević and Mosić, and it represents the generalization of results from [51] to
infinite dimensional settings.

We need the following two auxiliary results, which are proven in [33] in the
setting of C∗-algebras.

Let A be a unital C∗–algebra with the unit 1, and let us denote by P(A) the set
of all projections, i.e. P(A) = {p ∈ A : p2 = p = p∗}.

Lemma 6.1. [33] Let p, q ∈ P(A). The following statements are equivalent

(a) pq is Moore–Penrose invertible;
(b) qp is Moore–Penrose invertible;
(c) (1− p)(1− q) is Moore–Penrose invertible;
(d) (1− q)(1− p) is Moore–Penrose invertible.

Lemma 6.2. [33] Let p, q ∈ P(A). If pq is Moore–Penrose invertible, then

(qp)† = pq − p[(1− p)(1− q)]†q.

We shall use these results in the case of A = L(H).
Our main result presents 27 equivalent conditions to the mixed-type reverse

order law we are considering here.

Theorem 6.1. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be operators such that A,
B and AB have closed ranges. The following statements are equivalent

(a1) (AB)† = B†(A†ABB†)†A†;
(a2) (AB)† = B∗(A∗ABB∗)†A∗;
(a3) (AB)† = B†A† −B†((I −BB†)(I −A†A))†A†;
(b1) ((A†)∗B)† = B†(A†ABB†)†A∗;
(b2) ((A†)∗B)† = B∗((A∗A)†BB∗)†A†;
(b3) ((A†)∗B)† = B†A∗ −B†((I −BB†)(I −A†A))†A∗;
(c1) (A(B†)∗)† = B∗(A†ABB†)†A†;
(c2) (A(B†)∗)† = B†(A∗A(BB∗)†)†A∗;
(c3) (A(B†)∗)† = B∗A† −B∗((I −BB†)(I −A†A))†A†;
(d1) (B†A†)† = A(BB†A†A)†B;
(d2) (B†A†)† = (A†)∗((BB∗)†(A∗A)†)†(B†)∗;
(d3) (B†A†)† = AB −A((I −A†A)(I −BB†))†B;
(e1) (A†AB)†A† = B†(ABB†)†;
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(e2) (A†AB)†A∗ = B†((A†)∗BB†)†;
(e3) (A†A(B†)∗)†A† = B∗(ABB†)†;
(e4) (BB†A†)†B = A(B†A†A)†;
(e5) (A∗AB)†A∗ = B∗(ABB∗)†;
(e6) ((A∗A)†B)†A† = B∗((A†)∗BB∗)†;
(e7) (A∗A(B†)∗)†A∗ = B†(A(BB∗)†)†;
(e8) B†((A∗)†(BB∗)†)† = ((A∗A)†(B∗)†)†A†;
(e9) (AA∗ABB∗B)† = B†(A∗ABB∗)†A†;
(f1) (A†AB)† = B†(A†ABB†)† and (ABB†)† = (A†ABB†)†A†;
(f2) (A†AB)† = B∗(A†ABB∗)† and (ABB†)† = (A∗ABB†)†A∗;
(f3) (A†AB)† = B†A†A−B†((I −BB†)(I −A†A))†A†A and

(ABB†)† = BB†A† −BB†((I −BB†)(I −A†A))†A†;
(g1) R((AB)†) = R(B†(A†ABB†)A†) and

R(((AB)†)∗) = R((B†(A†ABB†)A†)∗);
(g2) R((AB)†) = R(B†A†) and R((B∗A∗)†) = R((A∗)†(B∗)†);
(g3) R(AA∗AB) = R(AB) and R(B∗B(AB)∗) = R((AB)∗).

Proof. The existence of various terms appearing in the statements of the theo-
rem follows mainly from the Lemma 1.4, and from some properties of the kernel
and range of operators (see Proposition 1.1). The existence of the Moore–Penrose
inverse of the products like (I −BB†)(I −A†A) follows from Lemma 6.1.

Using Lemma 1.2, we conclude that the operator B has the following matrix
form

B =

[
B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =

[
B−1

1 0
0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
.

From Lemma 1.3 also follows that the operator A has the following matrix form

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
:

[
R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
.

First we find an equivalent form for the statement (a1). We have

S = A†ABB† =

[
A∗

1D
−1A1 0

A∗
2D

−1A1 0

]
,

and consequently

S† = (S∗S)†S∗ =

[
(A∗

1D
−1A1)

†A∗
1D

−1A1 (A∗
1D

−1A1)
†A∗

1D
−1A2

0 0

]
.
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It follows that

B†S†A† =

[
B−1

1 (A∗
1D

−1A1)
†A∗

1D
−1 0

0 0

]
.

Therefore,

(AB)† = B†(A†ABB†)†B†

is equivalent to

(A1B1)
† = B−1

1 (A∗
1D

−1A1)
†A∗

1D
−1 = B−1

1 (D−1/2A1)
†D−1/2.

By checking the Penrose equations, the last formula holds if and only if

(6.1) [B1B
∗
1 , (D

−1/2A1)
†D−1/2A1] = 0 and [D,D−1/2A1(D

−1/2A1)
†] = 0.

Hence, the statement (a1) is equivalent to (6.1).
Let us now find some more equivalent statements to the condition (a1). Using

Lemma 1.5, we get that (6.1) is equivalent to

R(DA1) = R(A1) and R(B1B
∗
1A

∗
1) = R(A∗

1).

or

R(DA1) = R(A1) and N (A1B1B
∗
1) = N (A1),

If we apply Lemma 1.6, for X = A1B1, C = B−1
1 , B = D−1/2, the equality

(A1B1)
† = B−1

1 (D−1/2A1)
†D−1/2

is equivalent to

R(D−1A1B1) = R(A1B1) and N (A1B1(B
∗
1B1)

−1) = N (A1B1),

or

R(D−1A1B1) = R(A1B1) and R((B∗
1B1)

−1(A1B1)
∗) = R((A1B1)

∗).

Now, we find an equivalent statement to (g3). Conditions

R(AA∗AB) = R(AB) and R(B∗B(AB)∗) = R((AB)∗)

are equivalent to

R(DA1B1) = R(A1B1) and R(B∗
1B1(A1B1)

∗) = R((A1B1)
∗)

which is equivalent to (6.1). Hence, (g3) is equivalent to (a1).
Analogously, the equivalencies: (b1)⇔(g3),(c1)⇔(g3) and (d1)⇔(g3) can be

proved.
Let us now prove, for example, (c2)⇔(g3). Using above notations, and

T = A∗A(BB∗)† =

[
A∗

1A1(B1B
∗
1)

−1 0
A∗

2A1(B1B
∗
1)

−1 0

]
,

it is easy to see that

T † = (T ∗T )†T ∗

=

[
(D1/2A1(B1B

∗
1)

−1)†D−1/2A1 (D1/2A1(B1B
∗
1)

−1)†D−1/2A2

0 0

]
.

Now, (A(B†)∗)† = B†(A∗A(BB∗)†)†A∗ if and only if
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(A1(B
∗
1)

−1)† = B−1
1 (D1/2A1(B1B

∗
1)

−1)†D1/2.

Applying Lemma 1.6, for X = A1(B
∗
1)

−1, C = B−1
1 , B = D1/2, the last equality is

equivalent to

R(DA1(B
∗
1)

−1) = R(A1(B
∗
1)

−1) and N (A1(B
∗
1)

−1B−1
1 (B∗

1)
−1) = N (A1(B

∗
1)

−1),

i.e.

R(DA1B1) = R(A1B1) and R(B−1
1 A∗

1) = R((A1B1)
∗),

so we have just proved that (c2) is equivalent to (g3).
Analogously, we prove the equivalencies (a2)⇔(g3),(b2)⇔(g3) and (d2)⇔(g3).
In proving equivalencies including e-statements, there are no other techniques

besides those we have already shown in the previous part of the proof.
The table of proper statements is given below as some kind of summary overview,

and also for the sake of completeness

(a1) (A1B1)
† = B−1

1 (D−1/2A1)
†D−1/2;

(a2) (A1B1)
† = B∗

1(D
1/2A1B1B

∗
1)

†D1/2;
(b1) (D−1A1B1)

† = B−1
1 (D−1/2A1)

†D1/2;

(b2) (D−1A1B1)
† = B∗

1(D
−3/2A1B1B

∗
1)

†D−1/2;
(c1) (A1(B

∗
1)

−1)† = B∗
1(D

−1/2A1)
†D−1/2;

(c2) (A1(B
∗
1)

−1)† = B−1
1 (D1/2A1(B1B

∗
1)

−1)†D1/2;

(d1) (B−1
1 A∗

1D
−1)† = D1/2(A∗

1D
−1/2)†B1;

(d2) (B−1
1 A∗

1D
−1)† = D−1/2((B1B

∗
1)

−1A∗
1D

−3/2)†(B∗
1)

−1;

(e1) (D−1/2A1B1)
†D−1/2 = B−1

1 A†
1;

(e2) (D−1/2A1B1)
†D−1/2 = B−1

1 (D−1A1)
†D−1;

(e3) (D−1/2A1(B
∗
1)

−1)† = B∗
1A

†
1D

1/2;

(e4) (B−1
1 A∗

1D
−1/2)† = D−1/2(A∗

1D
−1)†B1;

(e5) (D1/2A1B1)
† = B∗

1(A1B1B
∗
1)

†D−1/2;
(e6) (D−1A1B1B

∗
1)

† = (B∗
1)

−1(D−3/2A1B1)
†D−1/2;

(e7) (D1/2A1(B
∗
1)

−1)† = B−1
1 (A1(B1B

∗
1)

−1)†D−1/2;

(e8) (D−1A1(B1B
∗
1)

−1)† = B1(D
−3/2A1(B

∗
1)

−1)†D−1/2;
(e9) (DA1B1B

∗
1B1)

† = B−1
1 (D1/2A1B1B

∗
1)

†D−1/2.

Each of those statements is equivalent to

R(DαA1B1) = R(A1B1) and N (A1B1(B
∗
1B1)

β) = N (A1B1),

for some α, β ∈ {−1, 1}. More precisely, we have:

α β statement
1 1 a2, d1, e3, e6
1 −1 b1, c2, e1, e8

−1 1 b2, c1, e4, e5
−1 −1 a1, d2, e2, e7, e9

Using Lemma 1.5, we have

R(DαA1B1) = R(A1B1) ⇔ [Dα, A1B1(A1B1)
†] = 0 ⇔ [D,A1B1(A1B1)

†] = 0,
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and

N (A1B1(B
∗
1B1)

β) = N (A1B1) ⇔ R((B∗
1B1)

β(A1B1)
∗) = R((A1B1)

∗)

⇔ [(B∗
1B1)

β , (A1B1)
∗((A1B1)

∗)†] = 0

⇔ [(B∗
1B1)

β , (A1B1)
†A1B1] = 0

⇔ [B∗
1B1, (A1B1)

†A1B1] = 0,

which means that each statement mentioned in the table above is equivalent to (g3).
Now, we prove the equivalencies (x3) ⇔ (x1), where x ∈ {a, b, c, d, f}. First, we

prove (a3)⇔(a1)

(a3) ⇔ (AB)† = B†A† −B†[(I −BB†)(I −A†A)]†A†.

Using Lemma 6.2, for P = BB† and Q = A†A, we have

(6.2) (A†ABB†)† = BB†A†A−BB†[(I −BB†)(I −A†A)]†A†A.

If we premultiply this expression by B† and postmultiply it by A†, we obtain

B†(A†ABB†)†A† = B†A† −B†[(I −BB†)(I −A†A)]†A† = (AB)†,

and we have the proof.
Analogously, way we can prove that (b3)⇔(b1) and (c3)⇔(c1); the part (d3)⇔

(d1) is very similar-the difference is in taking Q = BB† and P = A†A.
Let us now prove (f3)⇔(f1)

(f3.1) ⇔ (A†AB)† = B†A†A−B†((I −BB†)(I −A†A))†A†A.

If we premultiply (6.2) by B†, we have

B†(A†ABB†)† = B†A†A−B†((I −BB†)(I −A†A))†A†A = (A†AB)†,

i.e. part (f1.1). Also,

(f3.2) ⇔ (ABB†)† = BB†A† −BB†((I −BB†)(I −A†A))†A†.

If we postmultiply (6.2) by A†, we have

(A†ABB†)†A† = BB†A† −BB†((I −BB†)(I −A†A))†A† = (ABB†)†,

i.e. part (f1.2). We have finished this part of the proof.
Let us now see what are the equivalent of statements (f1) and (f2).
A simple computation shows that (f1) is equivalent to the following two state-

ments

(D−1/2A1B1)
†D−1/2Ai = B−1

1 (D−1/2A1)
†D−1/2Ai, i = 1, 2;(6.3)

A†
1 = (D−1/2A1)

†D−1/2.(6.4)

Suppose that (f1) holds; if we substitute (6.4) in (6.3), then postmultiply each
of modified equations (6.3) by A∗

i , and add them, we get

(D−1/2A1B1)
† = B−1

1 A†
1D

1/2,

which holds if and only if

[D,A1A
†
1] = 0 and [B1B

∗
1 , A

†
1A1] = 0,
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which is, by Lemma 1.5, equivalent to

R(DA1) = R(A1) and R(B1B
∗
1A

∗
1) = R(A∗

1),

i.e. we get the statement (a1). It is not difficult to see that the reverse implication
also holds.

An easy computation shows that (f2) is equivalent to the following two state-
ments

(D−1/2A1B1)
†D−1/2Ai = B∗

1(D
−1/2A1B1B

∗
1)

†D−1/2Ai, i = 1, 2;(6.5)

A†
1 = (D−1/2A1)

†D−1/2.(6.6)

Suppose that (f2) holds; if we postmultiply each equation of (6.5) by A∗
i , and add

them, we obtain (D−1/2A1B1)
† = B∗

1(D
−1/2A1B1B

∗
1)

†, which holds, by Lemma
1.6, if and only if N (A1B1B

∗
1B1) = N (A1B1). As in the previous part of the

proof, (6.6) is equivalent to R(DA1) = R(A1). So, we have the part (f2)⇒(a1).
The reverse implication can easily be obtained.

Let us now see what are the equivalent statements of (g1) and (g2).
First, (g1)

R(B†(A†ABB†)A†) = R((AB)†) = R((AB)∗)

⇔ R(B∗
1A

∗
1) = R(B−1

1 (D−1/2A1)
†D−1/2) = R(B−1

1 (D−1/2A1)
†)

⇔ B1R(B∗
1A

∗
1)=R(B1B

∗
1A

∗
1)=R((D−1/2A1)

†) = R((D−1/2A1)
∗) = R(A∗

1),

so we actually have R(B1B
∗
1A

∗
1) = R(A∗

1). The second condition: R(((AB)†)∗) =
R((B†(A†ABB†)A†)∗) becomes

N (B†(A†ABB†)†A†) = N ((AB)†) = N ((AB)∗)

⇔ N (A∗
1) = N (B∗

1A
∗
1) = N (B−1

1 (D−1/2A1)
†D−1/2) = N ((D−1/2A1)

†D−1/2)

⇔ R(A1) = R(D−1/2(A∗
1D

−1/2)†)

⇔ D1/2R(A1) = R(D1/2A1) = R((A∗
1D

−1/2)†) = R((A∗
1D

−1/2)∗) = R(D−1/2A1)

so we have: R(DA1) = R(A1). Those two things are equivalent to the (a1), so we
have just proved (g1)⇔(a1).

Now, (g2)

R(B†A†) = R((AB)†) = R((AB)∗)

⇔ R(B∗
1A

∗
1) = R(B∗

1A
∗
1D

−1) = R(B−1
1 A∗

1)

⇔ B1R(B∗
1A

∗
1) = R(B1B

∗
1A

∗
1) = R(A∗

1),
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and

R((B∗A∗)†) = R((A∗)†(B∗)†)

⇔ N ((AB)†) = N (B†A†) = N ((AB)∗)

⇔ N (B∗
1A

∗
1) = N (B−1

1 A∗
1D

−1)

⇔ N (A∗
1) = N (A∗

1D
−1)

⇔ R(A1) = R(D−1A1),

which together are equivalent to (a1), so we have just proved (g2)⇔(a1). □

Now we formulate analogous result for the weighted Moore–Penrose inverse.

Theorem 6.2. Let A ∈ L(H2,H3) and B ∈ L(H1,H2) be operators such that A,
B and AB have closed ranges. Suppose M ∈ L(H3) and N ∈ L(H1) are positive
definite invertible operators. The following statements are equivalent

(a1) (AB)†M,N = B†
I,N (A†

M,IABB†
I,N )†A†

M,I ;

(a2) (AB)†M,N = N−1B∗(A∗MABN−1B∗)†A∗M ;

(a3) (AB)†M,N = B†
I,NA†

M,I −B†
I,N ((I −BB†

I,N )(I −A†
M,IA))†A†

M,I ;

(b1) ((A∗)†I,M−1B)†M−1,N = B†
I,N (A†

M,IABB†
I,N )†A∗;

(b2) ((A∗)†I,M−1B)†M−1,N = N−1B∗((A∗MA)†(BN−1B∗))†A†
M,IM

−1;

(b3) ((A∗)†I,M−1B)†M−1,N = B†
I,NA∗ −B†

I,N ((I −BB†
I,N )(I −A†

M,IA))†A∗;

(c1) (A(B∗)†N−1,I)
†
M,N−1 = B∗(A†

M,IABB†
I,N )†A†

M,I ;

(c2) (A(B∗)†N−1,I)
†
M,N−1 = NB†

I,N ((A∗MA)(BN−1B∗)†)†A∗M ;

(c3) (A(B∗)†N−1,I)
†
M,N−1 = B∗A†

M,I −B∗((I −BB†
I,N )(I −A†

M,IA))†A†
M,I ;

(d1) (B†
I,NA†

M,I)
†
N,M = A(BB†

I,NA†
M,IA)†B;

(d2) (B†
I,NA†

M,I)
†
N,M = M−1(A∗)†I,M−1((BN−1B∗)†(A∗MA)†)†(B∗)†N−1,IN ;

(d3) (B†
I,NA†

M,I)
†
N,M = AB −A((I −A†

M,IA)(I −BB†
I,N ))†B;

(e1) (A†
M,IAB)†I,NA†

M,I = B†
I,N (ABB†

I,N )†M,I ;

(e2) (A†
M,IAB)†I,NA∗ = B†

I,N ((A∗)†I,M−1BB†
I,N )†M−1,I ;

(e3) (A†
M,IA(B∗)†N−1,I)

†
I,N−1A

†
M,I = B∗(ABB†

I,N )†M,I ;

(e4) (BB†
I,NA†

M,I)
†
I,MB = A(B†

I,NA†
M,IA)†N,I ;

(e5) N(A∗MAB)†I,NA∗M = B∗(ABN−1B∗)†M,I ;

(e6) N((A∗MA)†B)†I,NA†
M,I = B∗((A∗)†I,M−1BN−1B∗)†M−1,IM ;

(e7) (A∗MA(B∗)†N−1,I)
†
I,N−1A

∗M = NB†
I,N (A(BN−1B∗)†)†M,I ;

(e8) NB†
I,N ((A∗)†I,M−1(BN−1B∗)†)†M−1,IM = ((A∗MA)†(B∗)†N−1,I)

†
I,N−1A

†
M,I

(e9) (AA∗MABN−1B∗B)†M,N = B†
I,N (A∗MABN−1B∗)†A†

M,I ;

(f1) (A†
M,IAB)†I,N = B†

I,N (A†
M,IABB†

I,N )† and

(ABB†
I,N )†M,I = (A†

M,IABB†
I,N )†A†

M,I ;
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(f2) (A†
M,IAB)†I,N = N−1B∗(A†

M,IABN−1B∗)† and

(ABB†
I,N )†M,I = (A∗MABB†

I,N )†A∗M ;

(f3) (A†
M,IAB)†I,N = B†

I,NA†
M,IA−B†

I,N ((I−BB†
I,N )(I−A†

M,IA))†A†
M,IA and

(ABB†
I,N )†M,I = BB†

I,NA†
M,I −BB†

I,N ((I −BB†
I,N )(I −A†

M,IA))†A†
M,I ;

(g1) R((AB)†M,N ) = R(B†
I,N (A†

M,IABB†
I,N )†A†

M,I) and

R(((AB)†M,N )∗) = R((B†
I,N (A†

M,IABB†
I,N )†A†

M,I)
∗);

(g2) R((AB)†M,N ) = R(B†
I,NA†

M,I) and

R((B∗A∗)†N−1,M−1) = R((A∗)†I,M−1(B
∗)†N−1,I);

(g3) R(AA∗MAB) = R(AB) and R((ABN−1B∗B)∗) = R((AB)∗).

Proof. Using the basic relation between ordinary and weighted Moore–Penrose in-

verse A†
M,N = N−1/2(M1/2AN−1/2)†M1/2, and the substitutions Ã = M1/2A,

B̃ = BN−1/2, all statements from this theorem reduce to the statements of the
already-proven Theorem 6.1. For example, let us prove (e6)⇔(g2). For (e6) we
have the following chain of equivalencies

N((A∗MA)†B)†I,NA†
M,I = B∗((A∗)†I,M−1BN−1B∗)†M−1,IM

⇔ N1/2((A∗MA)†BN−1/2)†(M1/2A)†M1/2 = B∗((A∗M−1/2)†BN−1B∗)†M1/2

⇔ ((Ã∗Ã)†B̃)†Ã† = B̃∗((Ã∗)†B̃B̃∗)†,

which is actually (e6) from Theorem 6.1.
On the other side, (g2) becomes

(g2.1) ⇔ R((AB)†M,N ) = R(B†
I,NA†

M,I)

⇔ R(N−1/2(M1/2ABN−1/2)†M1/2) = R(N−1/2(BN−1/2)†(M1/2A)†M1/2)

⇔ R(N−1/2(ÃB̃)†M1/2) = R(N−1/2B̃†Ã†M1/2)

⇔ R(N−1/2(ÃB̃)†) = R(N−1/2B̃†Ã†)

⇔ R((ÃB̃)†) = R(B̃†Ã†),

and

(g2.2) ⇔ R((B∗A∗)†N−1,M−1) = R((A∗)†I,M−1(B
∗)†N−1,I)

⇔ R(M1/2(N−1/2B∗A∗M1/2)†N−1/2)

= R(M1/2(A∗M1/2)†(N−1/2B∗)†N−1/2)

⇔ R(M1/2(B̃∗Ã∗)†N−1/2) = R(M1/2(Ã∗)†(B̃∗)†N−1/2)

⇔ R(M1/2(B̃∗Ã∗)†) = R(M1/2(Ã∗)†(B̃∗)†)

⇔ R((B̃∗Ã∗)†) = R((Ã∗)†(B̃∗)†),

which means we have (g2) from Theorem 6.1. Since we have Theorem 6.1 already
proven, the proof of this theorem follows immediately. □
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We remark that results presented in this section are further generalized in [38]
for elements of C∗- algebras and in [39] for elements from a ring with an involution
[53,54].

7. Mixed-type reverse order law, ternary powers and functional calculus

This section mainly consists of the results from a recent paper [13]. This paper
is directly motivated by [14], whose results generalized those from Tian’s paper [47]
from complex matrix case to infinite dimensional Hilbert spaces settings, using
operator matrices. In this paper further significant generalizations are done by
using the ternary powers and ternary polynomials of bounded operators between
different Hilbert spaces and the Borel functional calculus for bounded Hermitian
operators.

7.1. Ternary powers and ternary polynomials. The definition of the ternary
powers and ternary polynomials used in the paper is slightly different from one
presented in [27, page 167]. We also go one step further by defining negative
ternary powers.

Definition 7.1. Let A be a ternary algebra in the sense of Hestenes [27]. For
A ∈ A and k ∈ N0, the element A(k) defined recursively as

(7.1) A(0) = A, A(k) = A(k−1)A∗A = AA∗A(k−1),

is called k-th ternary power of A. To any algebraic polynomial

p(λ) = p0 + p1λ+ · · ·+ pnλ
n

corresponds the unique element

(7.2) tp(A) = p0A
(0) + p1A

(1) + · · ·+ pnA
(n),

which originates from p(λ) when one replace λk, k = 0, n, by the k-th ternary power
A(k) of A. The function of A, defined by (7.2) is ternary polynomial in A. For any
element A the class of all elements given by ternary polynomials of A is denoted
by T (A).

We are interested in the case when A = Cm×n or A = L(H,K).

Remark 7.1. In this section only generalized inverses we are dealing with are
Moore–Penrose and weighted Moore–Penrose inverses, so the expression A(k) means
k-th ternary power, not the generalized inverse of A which satisfies the k-th Penrose
equation (k = 1, 4).

The next definition is a more operative form of the Definition 7.1.

Definition 7.2. Let A ∈ L(H,K) and k ∈ N0. The k-th ternary power of A is
given by A(k) = (AA∗)kA = A(A∗A)k.

Remark 7.2. Note that the relation (7.1) can be written as

A(0) = A, A(k) = A(A∗)(k−1)A, k ∈ N,
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and also in a more symmetric form as

A(0) = A, A(1) = AA∗A, A(k+2) = AA∗A(k)A∗A, k ∈ N.

Moreover, it is easy to prove that

(7.3) A(k) = (AA∗)pA(k−p−q)(A∗A)q, p, q ∈ N, p+ q ⩽ k.

Let A ∈ L(H,K) be a closed-range operator. It is not hard to see that the set
T (A) = {tp(A) : p ∈ C[λ]} is a unital algebra (unit is A(0) ≡ A) with the product
(denoted by ◦) defined by

(7.4) tp(A) ◦ tq(A) := tp(A)A†tq(A).

According to the Definition 7.2, the ternary polynomial (7.2) can be rewritten
in two equivalent ways as

tp(A) =

n∑
k=0

pkA
(k) =

{
A
∑n

k=0 pk(A
∗A)k = Ap(A∗A),∑n

k=0 pk(AA∗)k A = p(AA∗)A.

Now (7.4) becomes

tp(A) ◦ tq(A) = tp(A)A†tq(A) = A · (pq)(A∗A) = (pq)(AA∗) ·A = tp·q(A).

Particularly, A(k) ◦A(ℓ) = A(ℓ) ◦A(k) = A(k+ℓ). The mapping γA : C[λ] → T (A) ⊂
L(H,K), which makes the correspondence between λk and the ternary power A(k)

for k ∈ N0 is linear homomorphism (in the sense γA(p · q) = γA(p) ◦ γA(q) for any
p, q ∈ C[λ]) such that γA(1) = A(0) = A and γA(t) = A(1), and it gives the ternary
polynomial calculus. For example, for some polynomial p(λ) = a0 + a1λ + a2λ

2 ∈
C[λ] we have

γA(p) = γA(a0 + a1λ+ a2λ
2) = a0γA(1) + a1γA(λ) + a2γA(λ · λ)

= a0γA(1) + a1γA(λ) + a2(γA(λ) ◦ γA(λ))

= a0A
(0) + a1A

(1) + a2(A
(1) ◦A(1)) = a0A

(0) + a1A
(1) + a2A

(2) = tp(A).

We will define negative ternary powers of A as follows.

Definition 7.3. Let A ∈ L(H,K) be a closed-range operator and k ∈ N. The k-th
negative ternary power of A is given by A(−k) := ((AA∗)†)kA = A((A∗A)†)k.

According to the Lemma 1.1, the closedness of the range of A is enough for the
existence of (AA∗)† and (A∗A)†, so the definition is correct.

We should remark that the inductive definition of the ternary power given by
(7.1) actually holds for all integers k. Because of the following chain of equivalencies

A(k) = A(k−1)A∗A ⇔ A(k)A† = A(k−1)A∗ ⇔ A(k)(A∗A)† = A(k−1),

one can derive another useful relation between subsequent ternary powers

(7.5) A(k−1) = A(k)(A∗A)† = (AA∗)†A(k), k ∈ Z.

It is clear that relation (7.1) is more suitable for generating positive ternary powers,
while the relation (7.5) is more suitable for negative ones.
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Remark 7.3. Note that the relation (7.5) can be written in a more symmetric
form A(k) = (AA∗)†A(k+2)(A∗A)†. It is easy to prove that

(7.6) A(k) = ((AA∗)†)pA(k+p+q)((A∗A)†)q, p, q ∈ N.

The formulae (7.3) and (7.6) can be further combined and generalized.

Example 7.1. We enlist some ternary powers of the given operator A ∈ L(H,K)

. . . , A(−2) = (A∗)†A†(A∗)†, A(−1) = (A†)∗, A(0) = A, A(1) = AA∗A, . . .

Recall that for negative ternary powers we must ensure that operator A has a closed
range.

Theorem 7.1. For closed-range operator T ∈ L(H,K) and k ∈ Z the operator
T (k) has closed range.

Proof. We use the mathematical induction method. For k = 0 operator T (0) = T
has a closed range by the statement of the Theorem. For k = 1 we have T (1) =
T (T ∗T ) and the Lemma 1.4 gives T †TT ∗T (T ∗T )† = T ∗(T ∗)† = (T †T )∗ = T †T,
and since R(T †T ) = R(T ∗) is closed subspace, the range of T (1) is closed. Suppose
that the range of T (k) is closed, and let us prove the closedness of the range of
T (k+1). By the Lemma 1.4, for T (k+1) = (TT ∗)T (k), one have

(TT ∗)†TT ∗T (k)(T (k))† = (T ∗)†T ∗T (k)(T (k))† = TT †T (k)(T (k))† = T (k)(T (k))†,

which, by the induction hypothesis, has the closed range (because R(BB†) = R(B)
for some closed-range bounded linear operator B).

We now prove the Theorem for negative ternary powers T (−k) = ((TT ∗)†)kT ,
again by Lemma 1.4 and Lemma 1.2

(((TT ∗)†)k)†((TT ∗)†)kTT † = (TT ∗)k((TT ∗)†)kTT ∗(TT ∗)†

= TT ∗(TT ∗)†TT ∗(TT ∗)† = TT ∗(TT ∗)† = TT †,

which is a closed-range operator. Therefore, we completed the proof. □

Remark 7.4. We emphasize that for some closed-range operator T ∈ L(H) it may
happen that for some k ∈ N the operator T k does not have a closed range (see
e.g. [6, p. 123]).

Some properties of ternary powers are collected in the following theorem.

Theorem 7.2. Let A ∈ L(H,K) (we request that A is with a closed range when
dealing with the Moore–Penrose inverses and negative ternary powers!) and k ∈ Z.
Then we have

(1) (A∗)(k) = (A(k))∗, AA†A(k) = A(k)A†A = A(k);
(2) A(k)A∗ = (AA∗)k+1, A∗A(k) = (A∗A)k+1, k ∈ N0;
(3) A(−k)A∗ = ((AA∗)†)k−1, A∗A(−k) = ((A∗A)†)k−1, k ∈ N0;
(4) A∗A(k)A∗ = (A∗)(k+1), A∗A(−k)A∗ = (A∗)(−k+1), k ∈ N0;
(5) A(k)A† = (AA∗)k, A†A(k) = (A∗A)k, for k ∈ N0;
(6) A(−k)A† = ((AA∗)†)k, A†A(−k) = ((A∗A)†)k, for k ∈ N0;
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(7) (A∗)(k)A(k) = (A∗A)2k+1, (A∗)(−k)A(−k) = ((A∗A)2k−1)†, k ∈ N0;
A(k)(A∗)(k) = (AA∗)2k+1, A(−k)(A∗)(−k) = ((AA∗)2k−1)†, k ∈ N0;

(8) A(k)(A(k))∗A = A(2k+1), (A(k))∗A(k)A∗ = (A(2k+1))∗;
(9) A(k)(A(k))† = AA†, (A(k))†A(k) = A†A;
(10) (A(k))† = (A†)(k);

A is invertible, then (A(k))−1 = (A−1)(k) = A−1(AA∗)−k = (A∗A)−kA−1;
(11) A(k) ◦A(ℓ) = A(k+ℓ) for any ℓ ∈ Z. Particularly, A(k) ◦A(−k) = A(0) = A.
(12) A(−k) = ((A∗)†)(k−1), A(k) = ((A∗)†)(−(k+1)).
(13) (A(m))(n) = A(m+n+2mn) = (A(n))(m), m, n ∈ Z. Particularly, (A(m))(n) =

A(0) ⇔ m = n = 0 ∨m = n = −1;
(14) A(k) = (A(0))(k), A(−k) = (A(−1))(k−1), (A(−m))(−n) = (A(m−1))(n−1).

Proof. 1. Obvious from the definition.
2. A(k)A∗ = (AA∗)kAA∗ = (AA∗)(k+1), the second part can be proved on

analogous way.
3. A(−k)A∗ = ((AA∗)†)kAA∗ = (AA∗)(k−1), the second part can be proved

on analogous way.
4. By using definition and part 3, we have A∗A(k)A∗ = A∗(AA∗)k = (A∗)(k)

and A∗A(−k)A∗ = A∗(AA∗)(k−1) = (A∗)(k−1)

5. By part 2 and Lemma 1.2, A(k)A† = A(k)A∗(AA∗)† = (AA∗)k+1AA∗ =
(AA∗)k; the second part can be proved on analogous way.

6. A(−k)A† = ((AA∗)†)kAA† = ((AA∗)†)kAA∗(AA∗)† = ((AA∗)†)k, the sec-
ond part can be proved in an analogous way.

7. By the definitions of ternary powers,

(A∗)(k)A(k) = (A∗A)kA∗A(A∗A)k = (A∗A)2k+1,

(A∗)(−k)A(−k) = ((A∗A)†)kA∗A((A∗A)†)k = ((A∗A)†)2k−1.

The second part follows when we replace A with A∗.
8. From part 7: A(k)(A(k))∗A = (AA∗)(2k+1)A = A(2k+1); for positive and

A(−k)(A(−k))∗A = ((AA∗)†)(2k−1)A = A(−(2k−1)) = A(−2k+1) for negative
k; the second part is just a conjugate transpose of the first.

9. Note that, by the Theorem 7.1, there exist (A(k))†. By part 7

A(k)(A(k))† = A(k)(A(k))∗(A(k)(A(k))∗)† = (AA∗)2k+1((AA∗)2k+1)†

= (AA∗)2k+1((AA∗)†)2k+1 = AA∗(AA∗)† = AA†;

(A(−k))†A(−k) = ((A(−k))∗A(−k))†(A(−k))∗A(−k)

= (((A∗A)†)2k−1)†((A∗A)†)2k−1 = (A∗A)2k−1((A∗A)†)2k−1

= A∗A(A∗A)† = A∗(A†)∗ = A†A;

The relations A(−k)(A(−k))† and (A(k))†A(k) can be proven analogously.
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10. We prove positive and negative ternary powers cases separately, by using
Lemma 1.2.

(A(k))† = ((A(k))∗A(k))†(A(k))∗ = ((A∗)(k)A(k))†(A∗)(k)

= ((A∗A)2k+1)†(A∗A)kA∗ = ((A∗A)†)2k+1(A∗A)kA∗

= ((A∗A)†)k+1A∗ = ((A∗A)†)k(A∗A)†A∗

= ((A∗A)†)kA† = (A†(A†)∗)kA† = (A†)(k), k ∈ N0;

(A(−k))† = ((A(−k))∗A(−k))†(A(−k))∗ = ((A∗)(−k)A(−k))†(A∗)(−k)

= (((A∗A)†)2k−1)†((A∗A)†)kA∗ = (A∗A)2k−1((A∗A)†)kA∗

= (A∗A)k−1A∗AA† = (A∗A)kA† = (A†)(−k), k ∈ N0.

We used: (A†)(−k) =
(
(A†(A†)∗)†

)k
A† = (((A∗A)†)†)kA† = (A∗A)kA†.

11. We have A(k) ◦ A(ℓ) = (AA∗)kAA†A(A∗A)ℓ = (AA∗)k(AA∗)ℓA = A(k+ℓ),
for k, ℓ ∈ N0. Also

A(k) ◦A(−ℓ) = (AA∗)kAA†A((A∗A)†)ℓ = (AA∗)kA((A∗A)†)ℓ

= (AA∗)k((AA∗)†)ℓA =

{
(AA∗)k−ℓA, k ⩾ ℓ,

((AA∗)†)ℓ−kA, k ⩽ ℓ,
= A(k−ℓ).

A(−k) ◦A(−ℓ) = ((AA∗)†)kAA†A((A∗A)†)ℓ = ((AA∗)†)k+ℓA = A(−k−ℓ),

where we used the fact A(A∗A)† = (A∗)† = (AA∗)†A.
12.

A(−k) = ((AA∗)†)kAA∗(A∗)† = ((AA∗)†)k−1(A∗)†

= ((A∗)†A†)k−1(A∗)† = ((A∗)†)(k−1).

((A∗)†)(−k−1) = (((A∗)†A†)†)k+1(A∗)† = (AA∗)k+1(AA∗)†A

= (AA∗)kA = A(k).

13. We prove separately cases for positive and negative ternary powers; here
m,n ∈ N0. Part 7 is often used, and part 12 also.

(A(m))(n) = (A(m)(A∗)(m))nA(m) =
(
(AA∗)2m+1

)n
(AA∗)mA

= (AA∗)(2m+1)n+mA = A(m+n+2mn);

(A(m))(−n) = ((A(m)(A∗)(m))†)nA(m) =
(
((AA∗)2m+1)†

)n
A(m)

= ((AA∗)†)(2m+1)n(AA∗)mA = ((AA∗)†)(2mn+n−m)A

= A(−(−m+n+2mn)) = A(m+(−n)+2m(−n));
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(A(−m))(n) =
(
A(−m)(A∗)(−m)

)n

A(−m)

=
(
((AA∗)2m−1)†

)n
((AA∗)†)mA = ((AA∗)†)2mn−n+mA

= A(−m+n−2mn) = A((−m)+n+2(−m)n);

(A(−m))(−n) = (((A(−m))∗)†)(n−1) = (((((A∗)†)(m−1))∗)†)(n−1)

= (A(m−1))(n−1) = A2(m−1)(n−1)+m−1+n−1

= A2mn−m−n = A(−m)+(−n)+2(−m)(−n);

14. It follows from 13. □

Remark 7.5. Another importance of ternary powers is the fact that the Moore–
Penrose inverse can be expressed via some ternary polynomial. For the complex
matrix case we have: A† = tp(A

∗), for more details please see [3, page 250], and the
references therein. For the closed-range Hilbert space operator T we have (Euler–
Knopp method!)

T † = lim
n→∞

Sn(T ), Sn(T ) =

n∑
k=0

α(I − αT ∗T )kT ∗, 0 < α < ||T ||2,

so T † is actually the strong limit of ternary polynomials in T ∗; see e.g. [25, pp.
64–65], or [6, p. 42].

If the operator matrix for A is given by Lemma 1.2, for all k ∈ N0 we have

(7.7) A(k) =

[
A

(k)
1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A
(k)
1 is invertible. Then

(7.8) (A(k))† =

[
(A

(k)
1 )−1 0
0 0

]
=

[
(A−1

1 )(k) 0
0 0

]
.

For some ternary polynomial we have

tp(A) =

[
tp(A1) 0

0 0

]
=

[
p(A1A

∗
1)A1 0

0 0

]
=

[
A1p(A

∗
1A1) 0

0 0

]
.

Note that by using the operator matrices (7.7) and (7.8) one can easily prove
the Theorem 7.2 under the assumption that A has a closed range. The reason why
it is done in an algebraic way, without using the operator matrices, is to provide
the possibility for generalization to rings with involutions and C∗-algebras.

The relation between ternary powers and partial isometries is natural, and it is
presented in the next proposition.

Proposition 7.1. Let A ∈ L(H,K) be a close-range operator. Then A is partial
isometry iff A(k) = A(k+1) for some (all) k ∈ Z.
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Proof. If A† = A∗, then

A(k) = A(k+1)(A∗A)† = A(k+1)A†(A†)∗ = A(k+1)A†A = A(k+1).

Conversely,

0 = A(k+1) −A(k) = (AA∗)k(AA∗A−A) ⇒ 0 = A(1) −A(0),

i.e. A = AA∗A, which means A is partial isometry. □

7.2. The mixed-type ROLs for ternary powers. Recall that throughout the rest
of the sectionHk, k = 1, 4, denote arbitrary Hilbert spaces, and Ak ∈ L(Hk+1,Hk),
k = 1, 2, 3, denote bounded linear operators. Also, let M = A1A2A3.

Theorem 7.3. Let the operators A1, A3, M and (A
(k)
1 )†M(A

(ℓ)
3 )†, k, ℓ ∈ N0, have

closed ranges. Then the following statements are equivalent

(a) M† = (A
(ℓ)
3 )†((A

(k)
1 )†M(A

(ℓ)
3 )†)†(A

(k)
1 )†;

(b) R(A
(k)
1 (A

(k)
1 )∗M) = R(M) and R((A

(ℓ)
3 )∗A

(ℓ)
3 M∗) = R(M∗).

Proof. According to Theorem 7.1, closedness of the ranges of A1 and A3 implies

closedness of the range of A
(k)
1 and A

(ℓ)
3 for any k, ℓ ∈ Z.

Suppose, by using Lemma 1.2, that the operators A1 and A3 have the following
matrix forms

Ak =

[
Ak1 0
0 0

]
:

[
R(A∗

k)
N (Ak)

]
→

[
R(Ak)
N (A∗

k)

]
, k = 1 or 3,

where A11 and A31 are invertible. Then

A†
k =

[
A−1

k1 0
0 0

]
:

[
R(Ak)
N (A∗

k)

]
→

[
R(A∗

k)
N (Ak)

]
, k = 1 or 3.

According to such space decompositions, it follows that operator A2 has the fol-
lowing matrix form for some bounded linear operators A21 : R(A3) → R(A∗

1),
A22 : N (A∗

3) → R(A∗
1), A23 : R(A3) → N (A1) and A24 : N (A∗

3) → N (A1)

A2 =

[
A21 A22

A23 A24

]
:

[
R(A3)
N (A∗

3)

]
→

[
R(A∗

1)
N (A1)

]
.

Also, we use the notation M1 = A11A21A31, so the matrix form of M is

M =

[
M1 0
0 0

]
.

Now, (a) is equivalent to

M†
1 = (A−1

31 )
(ℓ)((A−1

11 )
(k)M1(A

−1
31 )

(ℓ))†(A−1
11 )

(k).

By checking the Penrose equations, we see this is equivalent to

(A−1
11 )

(k)M1M
†
1A

(k)
11 , A

(ℓ)
31M

†
1M1(A

−1
31 )

(ℓ)

to be Hermitian, which means

[A
(k)
11 (A

(k)
11 )∗,M1M

†
1 ] = 0, [(A

(ℓ)
31 )

∗A
(ℓ)
31 ,M

†
1M1] = 0.
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On the other hand, conditions (b) are equivalent to

R(A
(k)
11 (A

(k)
11 )∗M1) = R(M1), R((A

(ℓ)
31 )

∗A
(ℓ)
31M

∗
1 ) = R(M∗

1 ).

By Lemma 1.5, we have the proof. □

Remark 7.6. The condition b) can be written in more condensed form as

R(A
(2k+1)
1 A2A3) = R(A1A2A3), R((A∗

3)
(2ℓ+1)A∗

2A
∗
1) = R(A∗

3A
∗
2A

∗
1).

Corollary 7.1. Suppose A ∈ L(H2,H3), B ∈ L(H1,H2) and AB are closed-range
operators. The following statements are equivalent

a) (AB)† = B†(A†ABB†)†A†,
b) R(AA∗AB) = R(AB) ∧R(B∗BB∗A∗) = R(B∗A∗),
c) (AB)† = (A†AB)†A† ∧ (AB)† = B†(ABB†)†.

Proof. a)⇔b): It follows from the Theorem 7.3 when we put A2 = I and k = ℓ = 0.
b)⇔c): It follows from the Theorem 7.3 when we put A3 = I for the first part,

A1 = I for the second part, and k = ℓ = 0. Remark that this result is a part
of [21, Theorem 2.6]. □

As a corollaries of Theorem 7.3 one can obtain following two corollaries for
k = ℓ = 0 and k = ℓ = 1, respectively.

Corollary 7.2. [14, Theorem 2.1]Let A1, A3, M , A†
1MA†

3 have closed ranges.
Then the following statements are equivalent

(a) M† = A†
3(A

†
1MA†

3)
†A†

1;
(b) R(A1A

∗
1M) = R(M) and R(A∗

3A3M
∗) = R(M∗).

Corollary 7.3. [14, Theorem 2.5] Let A1, A3, M , (A1A
∗
1A1)

†M(A3A
∗
3A3)

† have
closed ranges. Then the following statements are equivalent.

(a) M† = (A3A
∗
3A3)

†((A1A
∗
1A1)

†M(A3A
∗
3A3)

†)†(A1A
∗
1A1)

†;
(b) R((A1A

∗
1)

3M) = R(M) and R((A∗
3A3)

3M∗) = R(M∗).

Proposition 7.2. Under the assumptions of Corollary 7.3, with H1 = H2, the
following statements are equivalent (k is a non-negative integer)

(a) M† = (A3A
∗
3A3)

†[((A1A
∗
1A1)

†)kM(A3A
∗
3A3)

†]†((A1A
∗
1A1)

†)k,
(a) R((A1A

∗
1)

3kM) = R(M) and R((A∗
3A3)

3M∗) = R(M∗).

Proposition 7.3. Under the conditions of Corollary 7.3, with H3 = H4, the fol-
lowing statements are equivalent (ℓ is a non-negative integer)

(a) M† = ((A3A
∗
3A3)

†)ℓ[(A1A
∗
1A1)

†M((A3A
∗
3A3)

†)ℓ]†(A1A
∗
1A1)

†,
(b) R((A1A

∗
1)

3M) = R(M) and R((A∗
3A3)

3ℓM∗) = R(M∗).

Remark 7.7. The previous two propositions were incorrectly stated as Proposi-
tions 2.3 and 2.4 in [14]. Additional hypothesis H1 = H2 for the first, and H3 = H4

for the second one, should be added.

Theorem 7.4. Let the operators M and (A
(k)
1 )∗M(A

(ℓ)
3 )∗, k, ℓ ∈ N0, have closed

ranges. Then the following statements are equivalent
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(a) M† = (A
(ℓ)
3 )∗

(
(A

(k)
1 )∗M(A

(ℓ)
3 )∗

)†
(A

(k)
1 )∗;

(b) R(A
(k)
1 (A

(k)
1 )∗M) = R(M) and R((A

(ℓ)
3 )∗A

(ℓ)
3 M∗) = R(M∗).

Proof. Suppose, by using Lemma 1.2, that the operators A1 and A3 have the fol-
lowing matrix forms (remark that W means the closure of some subspace W )

Ak =

[
Ak1 0
0 0

]
:

[
R(A∗

k)
N (Ak)

]
→

[
R(Ak)
N (A∗

k)

]
, k = 1 or 3,

where A11 and A31 are invertible.
According to such space decompositions, it follows that operator A2 has the

following matrix form

A2 =

[
A21 A22

A23 A24

]
:

[
R(A3)
N (A∗

3)

]
→

[
R(A∗

1)
N (A1)

]
.

Also, we use the notation M1 = A11A21A31, so the matrix form of M is

M =

[
M1 0
0 0

]
.

Now, (a) is equivalent to the following

M†
1 = (A∗

31)
(ℓ)((A∗

11)
(k)M1(A

∗
31)

(ℓ))†(A∗
11)

(k).

By checking the Penrose equations, we see this is equivalent to

(A∗
11)

(k)M1M
†
1 ((A

∗
11)

(k))−1, ((A∗
31)

(ℓ))−1M†
1M1(A

∗
31)

(ℓ)

to be Hermitian, which means

[A
(k)
11 (A

(k)
11 )∗,M1M

†
1 ] = 0, [(A

(ℓ)
31 )

∗A
(ℓ)
31 ,M

†
1M1] = 0.

On the other hand, conditions (b) are equivalent to

R(A
(k)
11 (A

(k)
11 )∗M1) = R(M1), R((A

(ℓ)
31 )

∗A
(ℓ)
31M

∗
1 ) = R(M∗

1 ).

By Lemma 1.5, we have the proof. □

Remark 7.8. The statement b) in both theorems is the very same one, therefore
statements a) are equivalent. Note the difference in the requirements for the range
closedness in those two theorems.

As a corollary, we can obtain the following well-known result.

Corollary 7.4. Let A ∈ L(H,K) be closed-range operator, M ∈ L(K) and N ∈
L(H) Hermitian positive definite operators. Then we have

A† = A†
M,N ⇔ R(MA) = R(A) ∧R(N−1A∗) = R(A∗).

Proof. If we put A1 := M1/2, A2 := M−1/2AN1/2, A3 := N−1/2 and k = ℓ = 0 in
the Theorem 7.4, we have the proof. □

As a corollaries of Theorem 7.4 one can obtain following two corollaries for
k = ℓ = 0 and k = ℓ = 1, respectively.
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Corollary 7.5. [14, Theorem 2.2]Let A1, A3,M,A∗
1MA∗

3 have closed ranges. Then
the following statements are equivalent

(a) M† = A∗
3(A

∗
1MA∗

3)
†A∗

1;
(b) R(A1A

∗
1M) = R(M) and R(A∗

3A3M
∗) = R(M∗).

Corollary 7.6. [14, Theorem 2.6] Let A1, A3, M , (A1A
∗
1A1)

∗M(A3A
∗
3A3)

∗ have
closed ranges. Then the following statements are equivalent

(a) M† = (A3A
∗
3A3)

∗((A1A
∗
1A1)

∗M(A3A
∗
3A3)

∗)†(A1A
∗
1A1)

∗;
(b) R((A∗

1A1A
∗
1)

2M) = R(M) and R((A∗
3A3)

3M∗) = R(M∗).

Proposition 7.4. Under the assumptions of Corollary 7.6, with H3 = H4, the
following statements are equivalent (k is a non-negative integer)

(a) M† = (A3A
∗
3A3)

∗[((A1A
∗
1A1)

∗)kM(A3A
∗
3A3)

∗]†((A1A
∗
1A1)

∗)k,
(b) R((A1A

∗
1)

3kM) = R(M) and R((A∗
3A3)

3M∗) = R(M∗).

Proposition 7.5. Under the conditions of Corollary 7.6, with H1 = H2, the fol-
lowing statements are equivalent (ℓ is a non-negative integer)

(a) M† = ((A3A
∗
3A3)

∗)ℓ[(A1A
∗
1A1)

∗M((A3A
∗
3A3)

∗)ℓ]†(A1A
∗
1A1)

∗,
(b) R((A1A

∗
1)

3M) = R(M) and R((A∗
3A3)

3ℓM∗) = R(M∗).

Remark 7.9. The previous two propositions were incorrectly stated as Proposi-
tions 2.5 and 2.6 in [14]. Additional hypothesis H3 = H4 for the first, and H1 = H2

for the second one, should be added.

Remark 7.10. Because of part 12. from Theorem 7.2, we have (A(−k))∗ =
(A†)(k−1) and (A(−k))† = (A∗)(k−1), so two previous theorems, 7.3 and 7.4, are
actually equivalent under the condition that operator A is closed-range.

7.3. The mixed-type ROLs for bounded self-adjoint operators and Borel func-
tions. Recall that function f : X → Y between the topological spaces X and Y is
Borel if f−1(A) is Borel set for any open set A ⊂ Y . Particularly, every continuous
mapping is a Borel function; see e.g. [42] for further properties.

The Borel functional calculus for self-adjoint operators is a well-known topic in
the operator theory, see e.g. [41]. Recall that any self-adjoint operator has the
unique Borel functional calculus.

Theorem 7.5. Let f and g be two bounded complex-valued Borel functions on the
real line such that

(7.9) (∀λ ∈ σ(A11A
∗
11)) f(λ) ̸= 0, (∀λ ∈ σ(A∗

31A31)) g(λ) ̸= 0,

where A11 = A1|R(A∗
1)
: R(A∗

1) → R(A1), A31 = A3|R(A∗
3)
: R(A∗

3) → R(A3). Sup-

pose that the operators A1, A3,M and f(A1A
∗
1)Mg(A∗

3A3) have closed ranges. Then
the following statements are equivalent

(a) M† = g(A∗
3A3)(f(A1A

∗
1)Mg(A∗

3A3))
†f(A1A

∗
1);

(b) R(f(A1A
∗
1)

∗f(A1A
∗
1)M) = R(M) and R(g(A∗

3A3)g(A
∗
3A3)

∗M∗)=R(M∗).
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Proof. Remark that by the Borel functional calculus for the Hermitian operators
the operators

f(A1A
∗
1) =

[
f(A11A

∗
11) 0

0 0

]
and g(A∗

3A3) =

[
g(A∗

31A31) 0
0 0

]
are well defined. Also, note that σ(A11A

∗
11) ⊂ (0, ||A1||2) and σ(A∗

31A31) ⊂
(0, ||A3||2) because A11A

∗
11 and A∗

31A31 are positive operators.
Suppose, by using Lemma 1.2, that the operators A1 and A3 have the following

matrix forms

Ak =

[
Ak1 0
0 0

]
:

[
R(A∗

k)
N (Ak)

]
→

[
R(Ak)
N (A∗

k)

]
, k = 1 or 3,

where A11 and A31 are invertible. According to such space decompositions, it
follows that operator A2 has the following matrix form

A2 =

[
A21 A22

A23 A24

]
:

[
R(A3)
N (A∗

3)

]
→

[
R(A∗

1)
N (A1)

]
.

Also, we use the notation M1 = A11A21A31, so the matrix form of M is

M =

[
M1 0
0 0

]
.

Now, (a) is equivalent to the following

M†
1 = g(A∗

31A31)(f(A11A
∗
11)M1g(A

∗
31A31))

†f(A11A
∗
11).

Note that condition (7.9) ensures the invertibility of the operators f(A11A
∗
11) and

g(A∗
31A31), according to the spectral mapping theorem (there holds only inclusion,

not the equality). Indeed, σ(g(A∗
31A31)) ⊂ g(σ(A∗

31A31)) and 0 /∈ g(σ(A∗
31A31))

imply 0 /∈ σ(g(A∗
31A31)). The analogous fact holds for f(A11A

∗
11).

Direct calculations show this is equivalent to the following

f(A11A
∗
11)M1M

†
1f(A11A

∗
11)

−1, g(A∗
31A31)

−1M†
1M1g(A

∗
31A31)

should be Hermitian, which is equivalent to

[f(A11A
∗
11)

∗f(A11A
∗
11),M1M

†
1 ] = 0, [g(A∗

31A31)g(A
∗
31A31)

∗,M†
1M1] = 0.

On the other hand, the conditions (b) are equivalent to conjunction

R(f(A11A
∗
11)

∗f(A11A
∗
11)M1) = R(M1),

R(g(A∗
31A31)g(A

∗
31A31)

∗M∗
1 ) = R(M∗

1 ).

By Lemma 1.5, we have the proof. □

As a corollaries of Theorem 4.1 we can obtain Theorem 2.4 (for f(x) = g(x) = x),
Proposition 2.2 (for f(x) = xk, g(x) = xℓ), Theorem 2.8 (for f(x) = g(x) = x2)
and Proposition 2.8 (for f(x) = x2k, g(x) = x2ℓ) from [14].

Corollary 7.7. Let A1, A3, M , A1A
∗
1MA∗

3A3 have closed ranges. Then the fol-
lowing statements are equivalent

(a) M† = A∗
3A3(A1A

∗
1MA∗

3A3)
†A1A

∗
1;

(b) R((A1A
∗
1)

2M) = R(M) and R((A∗
3A3)

2M∗) = R(M∗).
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Corollary 7.8. Under the assumptions of Corollary 7.7, the following statements
are equivalent (k and ℓ are non-negative integers)

(a) M† = (A∗
3A3)

ℓ[(A1A
∗
1)

kM(A∗
3A3)

ℓ]†(A1A
∗
1)

k,
(b) R((A1A

∗
1)

2kM) = R(M) and R((A∗
3A3)

2ℓM∗) = R(M∗).

Corollary 7.9. Let A1, A3, M , (A1A
∗
1)

2M(A∗
3A3)

2 have closed ranges. Then the
following statements are equivalent

(a) M† = (A∗
3A3)

2((A1A
∗
1)

2M(A∗
3A3)

2)†(A1A
∗
1)

2;
(b) R((A1A

∗
1)

4M) = R(M) and R((A∗
3A3)

4M∗) = R(M∗).

Corollary 7.10. Under the assumptions of the Corollary 7.9, the following state-
ments are equivalent (k and ℓ are non-negative integers)

(a) M† = ((A∗
3A3)

∗)2ℓ(((A1A
∗
1)

∗)2kM((A∗
3A3)

∗)2ℓ)†((A1A
∗
1)

∗)2k,
(b) R((A1A

∗
1)

4kM) = R(M) and R((A∗
3A3)

4ℓM∗) = R(M∗).

Theorem 7.6. Let f and g be two bounded complex-valued Borel functions on the
real line such that

(∀λ ∈ σ((A11A
∗
11)

−1)) f(λ) ̸= 0, (∀λ ∈ σ((A∗
31A31)

−1)) g(λ) ̸= 0,

where A11 = A1|R(A∗
1)
: R(A∗

1) → R(A1), A31 = A3|R(A∗
3)
: R(A∗

3) → R(A3). Sup-

pose that the operators A1, A3, M and f((A1A
∗
1)

†)Mg((A∗
3A3)

†) have closed ranges.
Then the following statements are equivalent

(a) M† = g((A∗
3A3)

†)(f((A1A
∗
1)

†)Mg((A∗
3A3)

†))†f((A1A
∗
1)

†);
(b) R(f(A1A

∗
1)

∗f(A1A
∗
1)M) = R(M) and R(g(A∗

3A3)g(A
∗
3A3)

∗M∗) = R(M∗)

The proof of this theorem is very similar to that of Theorem 7.5.
As the corollaries of Theorem 7.6 one can obtain Theorem 2.3 (for f(x) = g(x) =

x), Proposition 2.1 (for f(x) = xk, g(x) = xℓ), Theorem 2.7 (for f(x) = g(x) = x2)
and Proposition 2.7 (for f(x) = x2k, g(x) = x2ℓ) from [14].

Corollary 7.11. Let A1, A3,M, (A1A
∗
1)

†M(A∗
3A3)

† have closed ranges. Then the
following statements are equivalent

(a) M† = (A∗
3A3)

†[(A1A
∗
1)

†M(A∗
3A3)

†]†(A1A
∗
1)

†;
(b) R((A1A

∗
1)

2M) = R(M) and R((A∗
3A3)

2M∗) = R(M∗).

Proposition 7.6. Under the assumptions of Proposition 7.11, the following state-
ments are equivalent (k and ℓ are non-negative integers)

(a) M† = ((A∗
3A3)

†)ℓ[((A1A
∗
1)

†)kM((A∗
3A3)

†)ℓ]†((A1A
∗
1)

†)k;
(b) R((A1A

∗
1)

2kM) = R(M) and R((A∗
3A3)

2ℓM∗) = R(M∗).

Corollary 7.12. Let A1, A3, M , ((A1A
∗
1)

2)†M((A∗
3A3)

2)† have closed ranges.
Then the following statements are equivalent

(a) M† = ((A∗
3A3)

†)2[((A1A
∗
1)

2)†M(A∗
3A3)

2)†]†((A1A
∗
1)

†)2;
(b) R((A1A

∗
1)

4M) = R(M) and R((D3)
4M∗) = R(M∗).

Proposition 7.7. Under the assumptions of Corollary 7.12, the following state-
ments are equivalent (k and ℓ are non-negative integers)

(a) M† = ((A∗
3A3)

†)2ℓ[((A1A
∗
1)

2k)†M(A∗
3A3)

2ℓ)†]†((A1A
∗
1)

†)2k,
(b) R((A1A

∗
1)

4kM) = R(M) and R((A∗
3A3)

4ℓM∗) = R(M∗).
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7.3.1. Some equivalencies. In what follows we present some equivalencies es-
tablished between the ROLs considered in the previous section. The results are
unpublished, and they are significant generalizations of those from [47] and [14].

Theorem 7.7. The following statements are equivalent (provided that we apply the
Moore–Penrose inverse to closed range operators and k, ℓ ∈ N0)

(a) M† = (A
(ℓ)
3 )†((A

(k)
1 )†M(A

(ℓ)
3 )†)†(A

(k)
1 )†;

(b) M† = (A
(ℓ)
3 )∗((A

(k)
1 )∗M(A

(ℓ)
3 )∗)†(A

(k)
1 )∗;

(c) (A
(ℓ)
3 )†((A

(k)
1 )†M(A

(ℓ)
3 )†)†(A

(k)
1 )†

= ((A∗
3A3)

†)2ℓ+1(((A1A
∗
1)

†)2k+1M((A∗
3A3)

†)2ℓ+1)†((A1A
∗
1)

†)2k+1;

(d) (A
(ℓ)
3 )∗((A

(k)
1 )†M(A

(ℓ)
3 )†)†(A

(k)
1 )∗ = (A∗

3A3)
2ℓ+1M†(A1A

∗
1)

2k+1;

(e) (A
(ℓ)
3 )∗((A

(k)
1 )∗M(A

(ℓ)
3 )∗)†(A

(k)
1 )∗

= (A∗
3A3)

2ℓ+1((A1A
∗
1)

2k+1M(A∗
3A3)

2ℓ+1)†(A1A
∗
1)

2k+1;

(f) R(A
(k)
1 (A

(k)
1 )∗M) = R(M) and R((A

(ℓ)
3 )∗A

(ℓ)
3 M∗) = R(M∗).

Proof. Part (a)⇔(f): follows from Theorem 7.3, while (b)⇔(f) follows from Theo-
rem 7.4.

Suppose, by using Lemma 1.2, that the operators A1 and A3 have the following
matrix forms (remark that W means the closure of some subspace W )

Ak =

[
Ak1 0
0 0

]
:

[
R(A∗

k)
N (Ak)

]
→

[
R(Ak)
N (A∗

k)

]
, k = 1 or 3,

where A11 and A31 are invertible. According to such space decompositions, it
follows that operator A2 has the following matrix form

A2 =

[
A21 A22

A23 A24

]
:

[
R(A3)
N (A∗

3)

]
→

[
R(A∗

1)
N (A1)

]
.

Also, we use the notation M1 = A11A21A31, so the matrix form of M is

M =

[
M1 0
0 0

]
.

Then

A
(k)
1 =

[
A

(k)
11 0
0 0

]
, A

(ℓ)
3 =

[
A

(ℓ)
31 0
0 0

]
,

Now we can express those statements in a more convenient form

(c) ⇔ (A
(ℓ)
31 )

†((A
(k)
11 )†M1(A

(ℓ)
31 )

†)†(A
(k)
11 )†

= ((A∗
31A31)

†)2ℓ+1(((A11A
∗
11)

†)2k+1M1((A
∗
31A31)

†)2ℓ+1)†((A11A
∗
11)

†)2k+1,

(d) ⇔ (A
(ℓ)
31 )

∗((A
(k)
11 )−1M1(A

(ℓ)
31 )

−1)†(A
(k)
11 )∗ = (A∗

31A31)
2ℓ+1M†

1 (A11A
∗
11)

2k+1;

(e) ⇔ (A
(ℓ)
31 )

∗((A
(k)
11 )∗M1(A

(ℓ)
31 )

∗)†(A
(k)
11 )∗

= (A∗
31A31)

2ℓ+1((A11A
∗
11)

2k+1M1(A
∗
31A31)

2ℓ+1)†(A11A
∗
11)

2k+1
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By checking the Penrose equations (and using Lemma 1.5) we conclude that all
three statements are equivalent to

R(A
(k)
11 (A

(k)
11 )∗M1) = R(M1) ∧R((A

(ℓ)
31 )

∗A
(ℓ)
31M

∗
1 ) = R(M∗

1 ),

i.e. to (f).
Remark that during the proof, an obvious fact

R(PQ) = R(SQ) ⇔ R(P ) = R(S)

if Q is invertible, is used. □

Theorem 7.8. The following statements are equivalent (provided that we apply the
Moore–Penrose inverse to closed range operators)

(a) M† = g((A∗
3A3)

†)(f((A1A
∗
1)

†)Mg((A∗
3A3)

†))†f((A1A
∗
1)

†);
(b) M† = g(A∗

3A3)(f(A1A
∗
1)Mg(A∗

3A3))
†f(A1A

∗
1);

(c) g((A∗
3A3)

†)A∗
3(A

∗
1f((A1A

∗
1)

†)Mg((A∗
3A3)

†)A∗
3)

†A∗
1f((A1A

∗
1)

†)
= A∗

3(A
∗
1MA∗

3)
†A∗

1;
(d) R(f(A1A

∗
1)

∗f(A1A
∗
1)M) = R(M) ∧R(g(A∗

3A3)g(A
∗
3A3)

∗M∗) = R(M∗).

Proof. From Theorems 7.6 and 7.5 it follows that (a)⇔(b)⇔(d). Using the method
described in those two theorems, we easily conclude that (we abbreviate G :=
g((A∗

31A31)
−1) and F := f((A11A

∗
11)

−1))

(c) ⇔ GA∗
31(A

∗
11FM1GA∗

31)
†A∗

11F = A∗
31(A

∗
11M1A

∗
31)

†A∗
11,

i.e.
(A∗

11FM1GA∗
31)

† = (A∗
31)

−1G−1A∗
31(A

∗
11M1A

∗
31)

†A∗
11F

−1(A∗
11)

−1.

Note that F and G are invertible, as in the proof of Theorem 7.6. Now, the third
Penrose equation becomes

A∗
11FM1GA∗

31(A
∗
31)

−1G−1A∗
31(A

∗
11M1A

∗
31)

†A∗
11F

−1(A∗
11)

−1

= A∗
11FM1A

∗
31(A

∗
11M1A

∗
31)

†A∗
11F

−1(A∗
11)

−1

= A∗
11F (A∗

11)
−1A∗

11M1A
∗
31(A

∗
11M1A

∗
31)

†A∗
11F

−1(A∗
11)

−1

= A−1
11 (F

−1)∗A11A
∗
11M1A

∗
31(A

∗
11M1A

∗
31)

†A−1
11 F

∗A11,

which is, by Lemma 1.5, equivalent to

R(A−1
11 F

∗A11A
∗
11F (A∗

11)
−1A∗

11M1A
∗
31) = R(A∗

11M1A
∗
31).

By using the fact that F = f((A11A
∗
11)

−1) commutes with A11A
∗
11, we easily find

that
R(F ∗FM1) = R(M1).

By using the fourth Penrose equation, we obtain the other range equality. There-
fore, we conclude that (c)⇔(d). □

Theorem 7.9. The following statements are equivalent (provided that we apply the
Moore–Penrose inverse to closed range operators)

(a) M† = (A
(ℓ)
3 )†((A

(k)
1 )†M(A

(ℓ)
3 )†)†(A

(k)
1 )†;

(b) M† = (A
(ℓ)
3 )∗((A

(k)
1 )∗M(A

(ℓ)
3 )∗)†(A

(k)
1 )∗;
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(c) A†
3(A

†
1MA†

3)
†A†

1 = A†
3A

(ℓ)
3 (A

(k)
1 A†

1MA†
3A

(ℓ)
3 )†A

(k)
1 A†

1;

(d) (A†
1MA†

3)
† = A

(ℓ)
3 (A

(k)
1 A†

1MA†
3A

(ℓ)
3 )†A

(k)
1 ;

(e) R(A
(k)
1 (A

(k)
1 )∗M) = R(M) ∧R((A

(ℓ)
3 )∗A

(ℓ)
3 M∗) = R(M∗).

Proof. From Theorems 7.5 and 7.6 it follows that (a)⇔(b)⇔(e). Since A11 and
A31 are invertible, we have (c)⇔(d). Let us now prove part d). Using the method
described in those two theorems, we easily conclude that

(A−1
31 )

(ℓ)(A−1
11 M1A

−1
31 )

†(A−1
11 )

(k) = (A
(k)
11 A−1

11 M1A
−1
31 A

(ℓ)
31 )

†.

From the third Penrose equation we have

A
(k)
11 A−1

11 M1A
−1
31 A

(ℓ)
31 (A

−1
31 )

(ℓ)(A−1
11 M1A

−1
31 )

†(A−1
11 )

(k)

= A
(k)
11 A−1

11 M1A
−1
31 (A

−1
11 M1A

−1
31 )

†(A−1
11 )

(k)

= (A
(k)
11 A−1

11 M1A
−1
31 (A

−1
11 M1A

−1
31 )

†(A−1
11 )

(k))∗

= ((A∗
11)

−1)(k)A−1
11 M1A

−1
31 (A

−1
11 M1A

−1
31 )

†(A∗
11)

(k),

which is, by Lemma 1.5, equivalent to

R((A∗
11)

(k)A
(k)
11 A−1

11 M1A
−1
31 ) = R(A−1

11 M1A
−1
31 ).

Since

(A∗
11)

(k)A
(k)
11 A−1

11 = (A∗
11A11)

2k+1A−1
11 = A−1

11 A11A
∗
11(A11A

∗
11)

2k

= A−1
11 (A11A

∗
11)

2k = A−1
11 A

(k)
11 (A∗

11)
(k),

we have

R(A−1
11 A

(k)
11 (A∗

11)
(k)M1A

−1
31 ) = R(A−1

11 M1A
−1
31 ),

from where it follows R(A
(k)
11 (A∗

11)
(k)M1) = R(M1).

In a similar way, one can prove the other range equality. □

Theorem 7.10. The following statements are equivalent (provided that we apply
the Moore–Penrose inverse to closed range operators)

(a) M† = g((A∗
3A3)

†)(f((A1A
∗
1)

†)M(g(A∗
3A3)

†))†f((A1A
∗
1)

†);
(b) M† = g(A∗

3A3)(f(A1A
∗
1)Mg(A∗

3A3))
†f(A1A

∗
1);

(c) R(f(A1A
∗
1)

∗f(A1A
∗
1)M) = R(M) ∧R(g(A∗

3A3)g(A
∗
3A3)

∗M∗) = R(M∗).

Proof. From Theorems 7.5 and 7.6 it follows that (a)⇔(b)⇔(c). □

Remark that those results are further investigated in e.g. [43, 54,63].
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[55] Y. Tian, S. Cheng, Some identities for Moore–Penrose inverses of matrix products, Linear

Multilinear Algebra 52(6) (2004), 405–420.

[56] G. Wang, The reverse order law for the Drazin inverses of multiple matrix products, Linear
Algebra Appl. 348 (2002), 265–272.

[57] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press,
Beijing–New York, 2018.

[58] Y. Wei, Equivalent conditions for generalized inverse of products, Linear Algebra Appl. 266

(1997), 347–363.
[59] M. Wei, Reverse order laws for generalized inverses of multiple matrix products, Linear

Algebra Appl. 293 (1999), 273–288.

[60] M. Wei, W. Guo, Reverse order laws for least squares g-inverses and minimum norm g-
inverses of products of two matrices, Linear Algebra Appl. 342 (2002), 117–132.

[61] H. J. Werner, G-inverses of matrix products, in: S. Schach, G. Trenkler, eds., Data Analysis

and Statistical Inference, Verlag Josef Eul, 1992, 531–546.
[62] H. J. Werner, When is B−A− a generalized inverse of AB?, Linear Algebra Appl. 210 (1994),

255–263.

[63] L. Wang, S. S. Zhang, X.X. Zhang, J. L. Chen, Mixed-type reverse order law for Moore–
Penrose inverse of products of three elements in ring with involution, Filomat 28(10) (2014),

1997–2008.
[64] Z. Xiong, Y. Qin, Triple reverse order law for Moore–Penrose inverse of operator product,

J. Comput. Anal. Appl. 23(8) (2017), 1347–1358.

[65] Q. Xu, C. Song, G. Wang, Multiplicative perturbations of matrices and the generalized triple
reverse order law for the Moore–Penrose inverse, Linear Algebra Appl. 530 (2017), 366–383.


