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A NOTE ON MATRIX TRANSFORMATIONS
AND SOME CLASSES OF OPERATORS

Abstract. The idea of this paper is to interest readers in sequence
spaces and matrix transformations as the starting point for possible
applications in operator theory. In this paper we give survey of the
known results on the so–called classical sequence spaces - the sets
ℓ∞, c and c0 of bounded, convergent and null sequences. We consider
their basic properties, β-duals and the characterizations of matrix
transformations between them. After that, we establish some results
related to general linear operators from the space c into each of the
classical spaces. Furthermore, we characterize the classes of compact
operators between them, applying two approaches for that purpose -
the Hausdorff measure of noncompactness and Sargent’s results [20].
Presented results together with all the other known results about
compactness, will close some gaps in the existing literature. All these
results are collected in the same place and can be a useful start for
further research. We also preesnted some possible ideas for further
work in the area of doubly stochastic operators.
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1. Sequence spaces, matrix transformations and bounded linear operators

The theory of sequence spaces and the characterizations of matrix transforma-
tions between them play an eminent role in modern summability theory. We will
see that matrix transformations between sequences spaces of a fairly general class
can be considered as bounded linear operators.

1.1. Introduction into FK and BK theory. The theory of FK and BK spaces
plays an important role in the characterization of matrix transformations between
sequence spaces and arises from Fréchet spaces that are continuously embedded in
the space ω of all complex sequences x = (xk)

∞
k=0. Hence we start with the basic

notations, definitions and results.
It is well-known that ω is a Fréchet space, that is, a complete linear metric space

with its metric defined by

d(x, y) =

∞∑
k=0

1

2k
· |xk − yk|
1 + |xk − yk|

, for all x, y ∈ ω.

An FK space X is a Fréchet sequence space with continuous coordianates
Pk : X → C defined by Pk(x) = xk (x ∈ X) for all k. Since convergence and
coordinatewise convergence are equivalent in ω, and FK space is a complete linear
metric sequence space with the property that convergence implies coordinatewise

200
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convergence; a BK space is normed FK space. We say that X has AK, or that
X is an AK space, if x[m] =

∑m
k=0 xke

(k) → x (m → ∞) for every sequence
x = (xk)

∞
k=0 ∈ X.

Let e be the sequence with ek = 1 (k = 0, 1, 2, . . . ). By e(n) (n = 0, 1 . . .) we

denote the sequence (e
(n)
k )∞k=0 defined by

e
(n)
k =

{
0 (k ̸= n)

1 (k = n).

If X and Y are normed spaces, then, as usual, B(X,Y ) denotes the space of all
bounded linear operators L : X → Y , which is a Banach space with the operator
norm defined by ∥L∥ = {∥L(x)∥ | ∥x∥ = 1}, whenever Y is a Banach space. We
write X∗ = B(X,C) for the space of all continuous linear functionals f on X with
the norm of f defined by ∥f∥ = sup{|f(x)| | ∥x∥ = 1}.

Let A = (ank)
∞
n,k=0 be an infinite matrix of complex entries and An = (ank)

∞
k=0

denote the sequence in the nth row of A. We write

Anx =

∞∑
k=0

ankxk and Ax = (Anx)
∞
n=0 (provided all the series converge).

If X and Y are subsets of ω, then (X,Y ) denotes the class of all matrices that map
X into Y , that is, A ∈ (X,Y ) if and only if the series Anx converge for all x ∈ X
and for all n, and Ax ∈ Y for all x ∈ X.

Theorem 1.1. [10, Corollary 1.15.], [22, Corollary 4.2.3] Let X be a Fréchet space,
Y an FK space, f : X → Y a linear map and Pn : Y → C (n ∈ N0) be the nth

coordinate. If each map Pn ◦ f : X → C is continuous, so is f : X → Y .

We denote the set of all finite sequences by ϕ.

Theorem 1.2. [10, Remark 1.16.] Let X ⊃ ϕ be an FK space. If the series∑∞
k=0 akxk converges for each x ∈ X, then the linear functional fa : X → C de-

fined by

fa(x) =

∞∑
k=0

akxk for all x ∈ X,

is continuous.

The next theorem is very important and fundamental in the theory of matrix
transformations.

Theorem 1.3. [10, Theorem 1.17.], [22, Theorem 4.2.8.] Any matrix map between
FK spaces is continuous.

Proof. Let X and Y be FK spaces, A ∈ (X,Y ) and the map fA : X → Y be defined
by fA(x) = Ax for all x ∈ X. By Theorem 1.2, the maps Pn ◦ fA : X → C are
continuous for all n; hence, by Theorem 1.1, fA : X → Y is continuous. □

The following result is also of great importance in our research and frequently
used; its first part is a restatement of Theorem 1.3.
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Theorem 1.4. [10, Theorem 1.23], [4, Theorem 1.9.], [22, Theorem 4.2.8] (i) Let
X and Y be FK spaces. Then we have (X,Y ) ⊂ B(X,Y ), that is, every A ∈ (X,Y )
defines a linear operator LA ∈ B(X,Y ) where LA(x) = Ax (x ∈ X).
(ii) Let X and Y be BK spaces and X have AK. Then B(X,Y ) ⊂ (X,Y ), that is,
every L ∈ B(X,Y ) can be represented by a matrix A ∈ (X,Y ) such that L(x) = Ax
for all x ∈ X.

1.2. β-duals. An important role in the characterization of matrix transformations
is played by β-duals. They are special case of multiplier spaces.

Definition 1.1. Let X and Y be subsets of ω. The set

M(X,Y ) = {a ∈ ω | ax = (akxk)
∞
k=0 ∈ Y for all x ∈ X}

is called the multiplier space of X and Y . If we denote the set of all convergent
series by cs, the multiplier space Xβ = M(X, cs) is called the β-dual of X, that is,

Xβ =

{
a ∈ ω |

∞∑
k=0

akxk converges for all x ∈ X

}
.

Now, it is clear that

A ∈ (X,Y ) if and only if An ∈ Xβ for all n and Ax ∈ Y for all x ∈ X.

The readers are referred to [9, 10,22] for more detailed studies.
The multiplier spaces, and in particular, the β-dials of BK spaces again are BK

spaces.

Theorem 1.5. [22, Theorem 4.3.15.], [10, Theorem 1.30., Corollary 1.31.] Let
(X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be BK spaces, X ⊃ ϕ and Z = M(X,Y ). Then, Z is a
BK space with ∥ · ∥, defined by ∥z∥ = sup {∥xz∥Y | ∥x∥X = 1} for all z ∈ Z. If X
is a BK space, then Xβ is also BK space with respect to ∥ · ∥β defined by

∥a∥β = sup

{
sup
n

∣∣∣∣ n∑
k=0

akxk

∣∣∣∣ | ∥x∥X = 1

}
.

The following result establishes a relation between the β–and continous duals of
FK spaces; its first part contains Theorem 1.2.

Theorem 1.6. [22, Theorem 7.2.9.], [10, Theorem 1.34.] Let X ⊃ ϕ be BK space.
Then Xβ ⊂ X∗, that is, there is a linear one-to-one map T : Xβ → X∗. If X has
AK, then T is onto.

1.3. Some classical sequence spaces and matrix transformations between
them. Now we consider the sets of all bounded, convergent and null sequences,
denoted by ℓ∞, c and c0, respectively, that is,

ℓ∞ = {x ∈ ω | sup
k

|xk| < ∞},

c = {x ∈ ω | lim
k→∞

xk = ξ for some ξ ∈ C},

c0 = {x ∈ ω | lim
k→∞

xk = 0}.
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These sequence spaces were the subject of research in many papers. Also, many
new sequence spaces arise from various concepts of summability and the classical
sequence spaces. Here we consider the sets of all bounded, convergent and null
sequences and try to get the reader interested in this research area. A large number
of valuable papers can be found for further reading.

We recall the definition of a Schauder basis.

Definition 1.2. A Schauder basis of a linear metric space X is a sequence b =
(bn)

∞
n=0 of vectors such that for each x ∈ X there is a unique sequence of scalars

λ = (λn)
∞
n=0 with x =

∑∞
n=0 λnbn.

Let X be BK space. Then we write

∥a∥∗ = ∥a∥∗X = sup

{∣∣∣∣ ∞∑
k=0

akxk

∣∣∣∣ | ∥x∥ = 1

}
and observe that the expression on the left hand side exists and is finite if a ∈ Xβ

by Theorem 1.6.
Now we list some basic known properties of the classical sequence spaces.

Remark 1.1. (i) The spaces ℓ∞, c and c0 are BK spaces with their natural norm
∥x∥ = supk|xk|; c and c0 are closed subspaces of ℓ∞; c0 has AK, every sequence
x = (xk)

∞
k=0 has a unique representation

x = ξe+

∞∑
k=0

(xk − ξ)e(k) where ξ = lim
k→∞

xk,

but ℓ∞ has no Schauder basis.
(ii) We have cβ0 = cβ = ℓβ∞ = ℓ1 where ℓ1 is defined by ℓ1 = {x ∈ ω |

∑∞
k=0 |xk| <

∞}. By [10, Theorem 1.29.], we have ∥a∥∗c = ∥a∥∗c0 = ∥a∥∗ℓ∞ = ∥a∥1 for all a ∈ ℓβ∞,

where ∥a∥1 =
∑∞

k=0 |ak|.
The following general results will be useful for the characterization of matrix

transformations between c, c0 and ℓ∞.

Theorem 1.7. (i) Let X be a BK space. Then A ∈ (X, ℓ∞), if and only if
∥A∥∗(X,ℓ∞) = supn ∥An∥∗X < ∞; moreover, if A ∈ (X,Y ) then ∥LA∥ =

∥A∥∗(X,ℓ∞) [10, Theorem 1.23.].

(ii) Let X and Y be FK spaces, X have AK and Y1 be a closed FK space in
Y . Then A ∈ (X,Y1) if and only if A ∈ (X,Y ) and Ae(k) ∈ Y1 for all
k [22, 8.3.6.].

Theorem 1.8. [22, 8.3.7.] Let X be an FK space and X1 = X ⊕ e. Then A ∈
(X1, Y ) if and only if A ∈ (X,Y ) and Ae ∈ Y .

We do not need the following result in this paper, but it is of great importance
in the theory of matrix transformations.

Theorem 1.9. [22, Theorem 8.3.9.] Let X and Z be BK spaces with AK and
Y = Zβ. Then (X,Y ) = (Xββ , Y ) and

A ∈ (X,Y ) if and only if AT ∈ (Z,Xβ).
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The space ℓ∞ has no Schauder basis and some classes of matrix transformations
on it, such as the classes (ℓ∞, c) and (ℓ∞, c0), cannot be characterized by using the
FK space theory.

Theorem 1.10 (Schur). [9, Theorem 6, p. 169] We have A ∈ (ℓ∞, c) if and only if

(a)
∑∞

k=0 |ank| converges uniformly in n;
(b) there exists limn→∞ ank for each fixed k.

Corollary 1.1. A ∈ (ℓ∞, c0) if and only if

(a)
∑∞

k=0 |ank| converges uniformly in n;
(b) limn→∞ ank = 0 for each fixed k.

Remark 1.2. We remark that the conditions in Corollary 1.1 can be replaced by

lim
n→∞

∞∑
k=0

|ank| = 0 [21, 21. (21.1)].

Now, the characterizations of matrix transformations between ℓ∞, c and c0 and
can be given.

Theorem 1.11. The necessary and sufficient conditions for A ∈ (X,Y ) when
X,Y ∈ {c, c0, ℓ∞} can be read from the following table:

ℓ∞ c0 c
c Theorem 1.10 (a), (b) 2. 4.
c0 Corollary 1.1 (a), (b) 3. 5.
ℓ∞ 1. 1. 1.

To From

where
1. (1∗) where (1∗) supn

∑∞
k=0 |ank| < ∞;

2. (1∗) and (2∗) where (2∗) limn→∞ ank = αk for each k;

3. (1∗) and (3∗) where (3∗) limn→∞ ank = 0;

4. (1∗) and (2∗) and (4∗) where (4∗) limn→∞
∑∞

k=0 ank = α;

5. (1∗) and (3∗) and (5∗) where (5∗) limn→∞
∑∞

k=0 ank = 0 .

Proof. The proof is a direct consequence of the previous theorems. The condition
in 1. for the characterization of the classes (ℓ∞, ℓ∞), (c, ℓ∞) and (c0, ℓ∞) follows
from Theorem 1.7 (i) and Remark 1.1 (ii). Since c0 and c are closed subspaces
of ℓ∞, and c0 has AK, the conditions in 3. and 5. for the characterization of
the classes (c0, c0) and (c0, c) follow from 1. and Theorem 1.7 (ii). Finally, since
c = c0 ⊕ e, the conditions for the characterization of the classes (c, c0) and (c, c) in
2. and 4. follow from 3. and 5. and Theorem 1.8. □

We note that the conditions in Theorem 1.11 4. for the characterization of the
class (c, c) are those of the famous Toeplitz theorem. The following result gives
different, but equivalent conditions for the characterization of the class (c, c).

Theorem 1.12 (Kojima–Schur). [9, Theorem 4, p. 166] We have A ∈ (c, c) if and
only if
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(a) supn
∑∞

k=0 |ank| < ∞;
(b) for each p, there exists limn→∞

∑∞
k=p ank = ap.

1.4. Representation of some bounded linear operators. In the previous sub-
section we characterized matrix transformations between the sequence spaces ℓ∞,
c and c0. If X,Y ∈ {ℓ∞, c, c0}, then, by Theorem 1.4 (i), every A ∈ (X,Y ) defines
an operator LA ∈ B(X,Y ) where LA(x) = Ax (x ∈ X). Also, since c0 is BK space
with AK, by Theorem 1.4 (ii), every operator L ∈ B(c0, Y ) can be represented by
a matrix A ∈ (c0, Y ) where L(x) = Ax (x ∈ c0).

We are interested in the representation of the general operators L ∈ B(c, Y )
when Y is any of the spaces ℓ∞, c or c0. In [11, 12], the authors considered the
sequence spaces c and c0 and linear operators and matrices between them. Here
add one more result to the existing ones.

Theorem 1.13. (a) We have L ∈ B(c, ℓ∞) if and only if there exist a matrix
A ∈ (c0, ℓ∞) and a sequence b ∈ ℓ∞ such that

(1.1) L(x) = b · lim
k→∞

xk +Ax for all x ∈ c.

(b) We have L ∈ B(c, c) if and only if there exist a matrix A ∈ (c0, c) and a
sequence b ∈ ℓ∞ for which the limit

(1.2) lim
n→∞

(
bn +

∞∑
k=0

ank

)
= β exists

such that (1.1) holds.
(c) We have L ∈ B(c, c0) if and only if there exist a matrix A ∈ (c0, c0) and a
sequence b ∈ ℓ∞ with

lim
n→∞

(
bn +

∞∑
k=0

ank

)
= 0

such that (1.1) holds.

Proof. (a) First we assume L ∈ B(c, ℓ∞) and write Ln = Pn ◦ L for n = 0, 1, . . .
where each Pn is defined by Pn(x) = xn for every sequence x = (xk)

∞
k=0. Since c

is a BK space, we have Ln ∈ c∗ for each n, and it follows from the well–known
representation of continuous linear functionals on c [9, Theorem 8., p. 109] that

Ln(x) = bn lim
k→∞

xk +Anx for all x ∈ c,

An = (ank)
∞
k=0 = (Ln(e

(k)))∞k=0 ∈ ℓ1 and bn = Ln(e)−
∞∑
k=0

Ln(e
(k)) for all n.

This yields (1.1). Also since L(x(0)) = Ax(0) for all x(0) ∈ c0, we have A ∈
(c0, ℓ∞) = (ℓ∞, ℓ∞) by Theorem 1.111. and it follows from (1.1) that b = L(e) −
Ae ∈ ℓ∞.
Conversely, we assume that A ∈ (c0, ℓ∞), b ∈ ℓ∞ and (1.1) is satisfied. Then,
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A ∈ (ℓ∞, ℓ∞) ⊂ (c, ℓ∞), and so LA ∈ B(c, ℓ∞) where LA(x) = Ax for all x ∈ c. It
follows from b ∈ ℓ∞ and (1.1) that

∥L(x)∥ = sup |Ln(x)| = sup
∣∣bn lim

k→∞
xk +Anx

∣∣
⩽ sup

(
|bn| · ∥x∥+

∞∑
k=0

|ank| · |xk|
)

= sup

(
|bn|+

∞∑
k=0

|ank|
)
· ∥x∥,

that is, L ∈ B(c, ℓ∞).
(b) We assume L ∈ B(c, c). Then it follows that L ∈ B(c, ℓ∞) and so, by Part

(a), there exist b ∈ ℓ∞ and A ∈ (c0, ℓ∞) such that (1.1) holds. It follows from (1.1)
and L(e(k)) ∈ c for all k that there exist complex numbers αk such that

lim
n→∞

ank = αk;

this and A ∈ (c0, ℓ∞) imply A ∈ (c0, c) (see Theorem 1.11). Furthermore, L(e) ∈ c
implies that (1.2) holds.
Conversely, we assume that there exist a matrix A ∈ (c0, c) and a sequence b ∈ ℓ∞
with (1.2) such that (1.1) holds. Then we have L ∈ B(c, ℓ∞) by Part (a). Let x ∈ c
be given. Then there are x(0) ∈ c0 and ξ ∈ C such that x = x(0) + ξ · e. Then we
have for all n by (1.1)

Ln(x) = bnξ +

∞∑
k=0

ankxk = bnξ +

∞∑
k=0

ank(x
(0)
k + ξ) = ξ

(
bn +

∞∑
k=0

ank

)
+Anx

(0).

Since A ∈ (c0, c), limn→∞ Anx
(0) exists, and we obtain by (1.2) limn→∞ Ln(x) =

ξβ + limn Anx
(0), and so L(x) ∈ c. This shows L ∈ B(c, c).

(c) The proof of Part (c) is exactly the same as that of Part (b) with β = αk = 0
for all k. □

We close this section with the estimates of the norm of some bounded linear
operators between ℓ∞, c and c0.

By Remark 1.1 and by Theorem 1.7, we have that if A ∈ (X,Y ) for X,Y ∈
{ℓ∞, c, c0}, then the operator LA with LA(x) = Ax has the norm

(1.3) ∥LA∥ = sup
n

∥An∥∗X = sup
n

∞∑
k=0

|ank|.

In the case of a general operator L ∈ B(c, c), the situation is different. The
following theorem describes this.

Theorem 1.14. [5, Teorema 3.19.] Every operator L ∈ B(c, c) can be represented
by a matrix B =(bnk)

∞
n=0,k=−1 such that the following conditions hold

L(x) =

(
bn,−1ξ +

∞∑
k=0

bnkxk

)∞

n=0

where ξ = lim
k→∞

xk,

lim
n→∞

bnk = βk exists for each k = 0, 1, . . . ,(1.4)
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lim
n→∞

∞∑
k=−1

bnk = β,(1.5)

∥L∥ = sup
n

∞∑
k=−1

|bnk| < ∞.(1.6)

We also have

lim
n→∞

(L(x))n = ξ · β +

∞∑
k=0

βk(xk − ξ) =

(
β −

∞∑
k=0

βk

)
ξ +

∞∑
k=0

βkxk for all x ∈ c.

If we use notation of Theorem 1.13, we have that if L ∈ B(c, c), then

∥L∥ = sup
n

(
|bn|+

∞∑
k=0

|ank|
)
.

This is the same as the norm defined in (1.6). We note the difference between the
norm of the matrix operator LA ∈ (c, c) defined in (1.3) and the norm of the general
bounded operator L ∈ B(c, c).

2. Compact operators

Here we will give necessary and sufficient conditions for our operators to be
compact. For that purpose we will use two different methods - the application of
the Hausdorff measure of noncompactness and the results by Sargent in [20]. The
first method is based on a result by Goldenštein, Gohberg and Markus and can
be applied when the final sequence spaces have a Schauder basis. This technique
has been used in many papers and different kinds of sequence spaces were treated
[6–8,12–17]. When the final space is ℓ∞ which has no Schauder basis then we apply
a result by Sargent and close some existing gaps in the research.

2.1. Introduction. Let X and Y be Banach spaces and L be a linear operator
from X to Y . We say that L is a compact operator if its domain is all of X and for
every bounded sequence (xn)

∞
n=0 in X, the sequence (L(xn))

∞
n=0 has a convergent

subsequence in Y . We denote the class of such operators by K(X,Y ). For further
reading see [10,18,19].

Definition 2.1. [10, Definition 2.10] Let (X, d) be a metric space, Q be a bounded
subset of X and K(x, r) = {y ∈ X | d(x, y) < r}. Then the Hausdorff measure of
noncompactness of Q, denoted by χ(Q), is defined by

χ(Q) = inf

{
ϵ > 0 | Q ⊂

n⋃
i=1

K(xi, ri), xi ∈ X, ri < ϵ (i = 1, . . . , n), n ∈ N0

}
.

Some properties are given below.
If Q, Q1 and Q2 are bounded subsets of the metric space (X, d), then we have [10,

Lemma 2.11]

χ(Q) = 0 if and only if Q is a totally bounded set,

χ(Q) = χ(Q),
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Q1 ⊂ Q2 implies χ(Q1) ⩽ χ(Q2).

If Q, Q1 and Q2 are bounded subsets of the normed space X, then we have [10,
Theorem 2.12]

χ(Q1 +Q2) ⩽ χ(Q1) + χ(Q2),

χ(Q+ x) = χ(Q) (x ∈ X),

χ(λQ) = |λ|χ(Q) for all λ ∈ C.

Definition 2.2. [10, Definition 2.24] Let X and Y be Banach spaces and χ1

and χ2 be Hausdorff measures on X and Y . Then the operator L : X → Y is
called (χ1, χ2)-bounded if L(Q) is a bounded subset of Y for every bounded subset
Q of X and there exists a positive constant K such that χ2(L(Q)) ⩽ Kχ1(Q)
for every bounded subset Q of X. If an operator L is (χ1, χ2)-bounded then the
number∥L∥(χ1,χ2) = inf{K > 0 | χ2(L(Q)) ⩽ Kχ1(Q) for all bounded Q ⊂ X} is
called (χ1, χ2)- measure of noncompactness of L. In particular, if χ1 = χ2 = χ,
then we write ∥L∥(χ,χ) = ∥L∥χ.

The next result is most useful for our characterizations of compact operators.

Theorem 2.1. [10, Theorem 2.25] Let X and Y be Banach spaces, L ∈ B(X,Y ),
SX = {x ∈ X | ∥x∥ = 1} and B̄X = {x ∈ X | ∥x∥ ⩽ 1} denote the unit sphere
and closed unit ball in X. Then the Hausdorff measure of noncompactness of L is
given by ∥L∥χ = χ(L(B̄X))) = χ(L(SX)).

The following properties are also interesting and useful for us. If X and Y are
Banach spaces and L ∈ B(X,Y ) then

L is a compact if and only if ∥L∥χ = 0 [10, Corollary 2.26 (2.58)],

∥L∥χ ⩽ ∥L∥ [10, Corollary 2.26 (2.59)].

The fundamental result for the application of the Hausdorff measure of noncom-
pactness is the next theorem.

Theorem 2.2 (Goldenštein, Gohberg, Markus). [10, Theorem 2.23] Let X be a
Banach space with a Schauder basis (e1, e2, . . . ), Q be a bounded subset of X, and
Pn : X → X be the projector onto the linear span of {e1, e2, . . . , en}. Then we have

1

a
lim sup
n→∞

(
sup
x∈Q

∥(I − Pn)(x)∥
)
⩽ χ(Q) ⩽ lim sup

n→∞

(
sup
x∈Q

∥(I − Pn)(x)∥
)
,

where a = lim supn→∞ ∥I − Pn∥.

In particular, if X = c, then a = 2 in the previous theorem.

Theorem 2.3. [19, Theorem 2.8.], [10, Theorem 2.15] Let Q be a bounded subset
of the normed space X, where ℓp (1 ⩽ p < ∞) or c0. If Pn : X → X is the operator
defined by Pn(x) = (x0, x1, . . . , xn, 0, 0 . . .) for x = (xk)

∞
k=0 ∈ X, then

χ(Q) = lim
n→∞

(
sup
x∈Q

∥(I − Pn)(x)∥
)
.
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2.2. The Hausdorff measure of noncompactness and operators between ℓ∞,
c and c0. After having introduced the necessary notations and general results, we
consider the classes of compact operators between the spaces of bounded, conver-
gent and null sequences.

We start with an estimate for the Hausdorff measure of noncompactness of a
bounded linear operator from an arbitrary BK space with AK into c.

Theorem 2.4. [6, Theorem 3.4] Let X be a BK space with AK. Then every oper-
ator L ∈ B(X, c) can be represented by an infinite complex matrix A = (ank)

∞
n,k=0

such that (L(x))n = Anx =
∑∞

k=0 ankxk for all n and all x ∈ X. The Hausdorff
measure of noncompactness of L satisfies

(2.1)
1

2
· lim sup

r→∞

(
sup
n⩾r

∥An − α∥∗X
)
⩽ ∥L∥χ ⩽ lim sup

r→∞

(
sup
n⩾r

∥An − α∥∗X
)

where

(2.2) αk = lim
k→∞

ank for every k and α = (αk)
∞
k=0.

Proof. We write ∥ · ∥∗ = ∥ · ∥∗X and ∥A∥ = ∥A∥∗(X,ℓ∞), for short. The first part is by

Theorem 1.4 (ii). We also observe that obviously a ⩽ 2. Furthermore A ∈ (X, c)
implies ∥A∥ = ∥A∥∗(X,ℓ∞) = supn ∥An∥∗ < ∞ by Theorem 1.7 (i). Since X has AK,

we have e(k) ∈ X, hence Ae(k) ∈ c for all k, that is, the limits αk in (2.2) exist for
all k. Now we show

(2.3) α ∈ Xβ .

Let x ∈ X be given. Since X has AK, there is a positive constant K such that
∥x[m]∥ ⩽ K∥x∥ for all m ∈ N0, and it follows that∣∣∣∣ m∑

k=0

ankxk

∣∣∣∣ = ∣∣Anx
[m]

∣∣ ⩽ K ∥An∥∗ ∥x∥ ⩽ K ∥A∥∗ ∥x∥ for all m and all n,

hence by (2.2)∣∣∣∣ m∑
k=0

αkxk

∣∣∣∣ = lim
n→∞

∣∣∣∣ m∑
k=0

ankxk

∣∣∣∣ ⩽ K ∥A∥∗ ∥x∥ for all m.

Therefore (αkxk)
∞
k=0 ∈ bs, and since x ∈ X was arbitrary, we conclude α ∈ Xγ .

Since X has AK, we have α ∈ Xγ = Xβ [22, Theorem 7.2.7], so (2.3) holds. Also
α ∈ Xβ implies ∥α∥∗ < ∞ by [22, Theorem 7.2.9]. Now we show

(2.4) lim
n→∞

Anx =

∞∑
k=0

αkxk for all x ∈ X.

Let x ∈ X and ε > 0 be given. Since X has AK, there is a non–negative integer
k0 such that

(2.5) ∥x− x[k0]∥ <
ε

2(∥A∥∗ + ∥α∥∗ + 1)
.
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Also it follows from (2.2) that there is a non–negative integer n0 such that

(2.6)

∣∣∣∣ k0∑
k=0

(ank − αk)xk

∣∣∣∣ < ε

2
for all n ⩾ n0.

Let n ⩾ n0 be given. Then it follows from (2.5) and (2.6) that∣∣∣∣Anx−
∞∑
k=0

αkxk

∣∣∣∣ ⩽ ∣∣∣∣ k0∑
k=0

(ank − αk)xk

∣∣∣∣+ ∣∣∣∣ ∞∑
k=k0+1

(ank − αk)xk

∣∣∣∣
<

ε

2
+ ∥An − α∥∗ ∥x− x[k0]∥ <

ε

2
+

ε

2
= ε.

Since x ∈ X was arbitrary, (2.4) follows. Now we show (2.1). Let y = (yn)
∞
n=0 ∈ c

be given. Then the sequence y has a unique representation y = η · e+
∑∞

n=0(yn −
η)e(n) with η = limn→∞ yn, and we obtain (I − Pr)(y) =

∑∞
n=r+1(yn − η)e(n) for

all r = −1, 0, 1, . . . . Writing yn = Anx (n = 0, 1, . . . ) and B = (bnk)
∞
n,k=0 for the

matrix with bnk = ank − αk for all n and k, we obtain by (2.4)

∥(I − Pr)(Ax)∥ = sup
n⩾r+1

|yn − η| = sup
n⩾r+1

∣∣∣∣Anx−
∞∑
k=0

αkxk

∣∣∣∣ = sup
n⩾r+1

|Bnx|,

whence supx∈SX
∥(I − Pr)(Ax)∥ = supn⩾r+1 ∥Bn∥∗ for all r. Now the inequalities

in (2.1) follow from Theorems 2.1 and 2.2. □

If we put X = c0, which is a BK space with AK, in the previous theorem, we
obtain the next result.

Corollary 2.1. If L ∈ B(c0, c), then

1

2
· lim sup

r→∞

(
sup
n⩾r

∞∑
k=0

|ank − αk|
)

⩽ ∥L∥χ ⩽ lim sup
r→∞

(
sup
n⩾r

∞∑
k=0

|ank − αk|
)
,

where A ∈ (c0, c) is the matrix that represents L by Theorem 1.4 (ii), and L is
compact if and only if

lim
r→∞

(
sup
n⩾r

∞∑
k=0

|ank − αk|
)

= 0.

The previous theorem does not cover the case X = c, but the next one does.

Theorem 2.5. [5, Theorem 3.21], [12, Theorem 1] Let L ∈ B(c, c). Then we have

1

2
lim sup
n→∞

(∣∣∣∣bn,−1 − β +

∞∑
k=0

βk

∣∣∣∣ + ∞∑
k=0

|bnk − βk|
)

⩽ ∥L∥χ ⩽ lim sup
n→∞

(∣∣∣∣bn,−1 − β +

∞∑
k=0

βk

∣∣∣∣ + ∞∑
k=0

|bnk − βk|
)
,

where bnk=b
(n)
k =Ln(e

k)) for n = 0, 1, . . . ; k ⩾ 0 and b
(n)
−1 = Ln(e)−

∑∞
k=0 Ln(e

(k));
β and βk (k = 0, 1, . . . ) are given in (1.5) and (1.4).



FROM MATRIX TRANSFORMATIONS TO OPERATORS 211

Using the fact that L ∈ B(c, c) is compact if and only if ∥L∥χ = 0, we obtain
the following characterization for compact operators in B(c, c) from Theorem 2.5.

Corollary 2.2. If L ∈ B(c, c), then L is compact if and only if

lim
n→∞

(∣∣∣∣bn,−1 − β +

∞∑
k=0

βk

∣∣∣∣ + ∞∑
k=0

|bnk − βk|
)

= 0.

Now, instead of the general bounded operators on c, we consider the matrix
operators LA where A ∈ (c, c). If we put bn,−1 = 0 for n = 0, 1, . . . and bnk = ank
for n, k = 0, 1, . . . in Theorem 2.5, we get the next corollary.

Corollary 2.3. [5, Corollary 3.22] Let A ∈ (c, c) and LA(x) = Ax for each x ∈ c.
Then we have

1

2
lim sup
n→∞

(∣∣∣∣ ∞∑
k=0

αk − α

∣∣∣∣ + ∞∑
k=0

|ank − αk|
)

⩽ ∥LA∥χ ⩽ lim sup
n→∞

(∣∣∣∣ ∞∑
k=0

αk − α

∣∣∣∣ + ∞∑
k=0

|ank − αk|
)
,

where αk = limn→∞ ank for k = 0, 1, . . . and α = limn→∞
∑∞

k=0 ank, and A is
compact if and only if

lim
n→∞

(∣∣∣∣ ∞∑
k=0

αk − α

∣∣∣∣ + ∞∑
k=0

|ank − αk|
)

= 0.

Theorem 2.6. If A ∈ (c, c0), or A ∈ (c0, c0), then

∥LA∥χ = lim sup
r→∞

(
sup
n⩾r

∞∑
k=0

|ank|
)

and A is compact if and only if

lim
r→∞

(
sup
n⩾r

∞∑
k=0

|ank|
)

= 0.

Proof. In the proof, we use the same technique as in the proofs in many papers
with the final space c0. We write K = {x ∈ X | ∥x∥ ⩽ 1}, where X ∈ {c, c0}. We
have that

∥LA∥χ = χ(AK) = lim
r→∞

[
sup
x∈K

∥(I − Pr)(Ax)∥
]

where Pr : c0 → c0 (r = 0, 1, . . .) is the projector such that
Pr(x) = (x0, x1, . . . , xr, 0, 0 . . .) for x = (xk)k ∈ c0. It is known that ∥I − Pr∥ = 1
for all r. Let A(r) = (ānk)n,k be the infinite matrix with

ānk =

{
0 if 0 ⩽ n ⩽ r

ank if r < n
.
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Now, we have that A(r) ∈ (X, c0) and

sup
x∈K

∥(I − Pr)(Ax)∥ = ∥LA(r)
∥ = lim sup

r→∞

(
sup
n⩾r

∞∑
k=0

|ank|
)
. □

Finally, let the final space Y be ℓ∞.

Theorem 2.7. Let X be any of spaces c, c0 or ℓ∞. If A ∈ (X, ℓ∞), then

0 ⩽ ∥LA∥χ ⩽ lim sup
r→∞

(
sup
n⩾r

∞∑
k=0

|ank|
)

and A is compact if

lim
r→∞

(
sup
n⩾r

∞∑
k=0

|ank|
)

= 0.

Proof. We define the projector Pr : ℓ∞ → ℓ∞ (r = 0, 1, . . .) by
Pr(x) = (x0, x1, . . . , xr, 0, 0 . . .) for x = (xk)k ∈ ℓ∞.
Since AK ⊂ Pr(AK) + (I − Pr)(AK), applying the properties of χ, we obtain

χ(AK) ⩽ χ(Pr(AK)) + χ((I − Pr)(AK))

= χ((I − Pr)(AK)) ⩽ sup
x∈K

∥(I − Pr)Ax∥ = ∥LA(r)
∥.

Now, the conclusion is clear. □

As we have seen, in the cases where the final space is ℓ∞, we have only been able
to give sufficient conditions for the compactness of an operator. Hence, the char-
acterization of compact matrix operators in the class (X, ℓ∞) is not complete yet.

A characterization of compact operators on ℓ∞ can be found in [1, Lemma 4.1(a)].
We will use a result by Sargent [20] and complete the characterization, where it

is possible.

2.3. A Result by Sargent in the Case Y = ℓ∞. In this subsection we will ”im-
prove” the results related to the compactness of operators in the classes (X, ℓ∞)
whereX is one of the spaces c, c0 or ℓ∞. This will be achieved by applying Sargent’s
results.

As usual, let Ai denote the sequence of elements in the i-th row of the matrix A

and A
(n)
i denote the sequence whose first n coordinates coincide with those of Ai.

Necessary and sufficient conditions for compactness of matrix operator LA as-
sociated with matrix A from the class (X, ℓ∞) for X ∈ {c, c0, ℓ∞} can be found
in [20, p. 85] and we list them below.

Theorem 2.8. (i) [20, p. 85, (b)] Let A ∈ (ℓ∞, ℓ∞). Then LA is compact if
and only if

sup
i

∥Ai∥1 < ∞,(2.7)

lim
n→∞

(
sup
i

∥Ai −A
(n)
i ∥1

)
= 0.(2.8)
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(ii) [20, p. 85, (f)] Let A ∈ (c0, ℓ∞). Then LA is compact if and only if condi-
tions (2.7) and (2.8) hold.

(iii) [20, p. 85, (g)] Let A ∈ (c, ℓ∞). Then LA is compact if and only if condition
(2.8) holds.

As we know (c, ℓ∞) = (c0, ℓ∞) = (ℓ∞, ℓ∞) and the condition (1.) from Theorem
1.11 is actually the condition (2.7). Hence, if we suppose that A ∈ (c, ℓ∞) =
(c0, ℓ∞) = (ℓ∞, ℓ∞), the condition (2.7) is redundant and the theorem can be
stated in the following way.

Theorem 2.9. Let X be one of the spaces c, c0 or ℓ∞ and A ∈ (X, ℓ∞). Then LA

is compact if and only if

lim
n→∞

(
sup
i

∞∑
k=n+1

|aik|
)

= 0.

Thus we have given necessary and sufficient conditions for the compactness
of matrix operators in the mentioned classes, even when the final space has no
Schauder basis, that is, in our case ℓ∞.

3. Matrix transformations and doubly stochastic operators

In this section we will extend the theory of matrix transformations and infinite
matrices to doubly stochastic operators considering the classical sequence spaces
mentioned above. The idea is to make the relation with the research from [3].
Maybe this can be the start point to extend the results and connect them with
the results from [2]. First, let us recall that a square matrix is said to be doubly
stochastic if its elements are non-negative and all row sums and column sums
are equal to one [2]. In the case of infinite dimensional matrix, we say that A =
(ank)

∞
n,k=0 is doubly stochastic if its entries are non negative and all row and column

sums are one, that is:

(3.1)

∞∑
n=0

ank = 1 for all k and

∞∑
k=0

ank = 1 for all n.

Also, recall the next definition.

Definition 3.1. [3] An operator D0 : ℓ1 → ℓ1 is called a doubly stochastic operator
on ℓ1 if it is positive, i.e. D0f ⩾ 0 for each non-negative f ∈ ℓ1, and

∀n ∈ N,
∞∑

m=1

D0en(m) = 1, ∀m ∈ N,
∞∑

n=1

D0en(m) = 1,

where en ∈ ℓ∞ denotes the sequence en(j) = 0 for all j ̸= n and en(n) = 0. (Here
we cite the original notation from the definition but it is clear that en is the same
as e(n) used above).

The set ℓ1, the set of absolute convergent series is one more classical sequence

space and well known result which will be useful in further lines is: ℓβ∞ = cβ = cβ0 =
ℓ1. Also, let us recall that A ∈ (ℓ1, ℓ1) if and only if supk

∑∞
n=0 |ank| < ∞ [10,18,21].
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Let A = (ank)
∞
n,k=0 be infinite doubly stochastic matrix.

That means that ank ⩾ 0 for all n, k and (3.1) holds. Further, it is clear that
supk

∑∞
n=0 |ank| < ∞ and we can conclude that every infinite doubly stochastic

matrix actually represents matrix transformation from the class (ℓ1, ℓ1) and by
Theorem 1.4 defines bounded linear operator LA.

Is this operator doubly stochastic operator on ℓ1 in the sense of definition (3.1)?
It is clear that for all non-negative x ∈ ℓ1 we have that Ax = LAx and LAx =

(Anx)n = (
∑∞

k=0 ankxk)n is non-negative. Since

LAe
(n) = Ae(n) = (Aie

(n))i =

( ∞∑
k=0

aike
(n)
k

)
i

= (ain)i = (a1n, a2n, a3n, . . . )

it is clear that ∑
m

LAe
(n)(m) =

∑
m

(Ae(n))m =
∑
m

amn = 1,∑
n

LAe
(n)(m) =

∑
n

(Ae(n))m =
∑
n

amn = 1

where we write LAe
(n)(m) and (Ae(n))m for appropriate m-th coordinates.

Hence, every doubly stochastic matrix defines doubly stochastic operator on ℓ1
in the sense of Definition 3.1. The next question is: does the opposite holds, that
is, if we have doubly stochastic operator on ℓ1 in the sense of Definition 3.1, can
we find infinite doubly stochastic matrix such that they coincide on the space ℓ1?

Since the sequence space ℓ1 is AK space, it is clear by Theorem 1.4 that
B(ℓ1, ℓ1) ⊆ (ℓ1, ℓ1). It remains to show that the appropriate infinite matrix de-
termined with the doubly stochastic operator is doubly stochastic matrix.

Let LA be doubly stochastic operator on ℓ1. That means that LAx ⩾ 0 for all
x ⩾ 0, x ∈ ℓ1 (x ⩾ 0 if and only if xk ⩾ 0 for all k). Also, we know by Theorem
1.4 that we can find infinite matrix A such that LAx = Ax for all x ∈ ℓ1. What is
the form of the entries of A and is A doubly stochastic matrix?

Since ℓ1 is AK space, using Schauder basis, every x ∈ ℓ1 can be represented as
x =

∑∞
k=0 xke

(k). Now, from

LAx =

∞∑
k=0

xkLA(e
(k)) =

( ∞∑
k=0

xkLA(e
(k)(n))

)
n

= Ax =

( ∞∑
k=0

ankxk

)
n

follows that A = (ank)
∞
n,k=0 is matrix with entries ank = LA(e

(k)(n)). LA is doubly
stochastic operator and the following hold:

∞∑
k=0

LA(e
(k)(n)) =

∞∑
k=0

ank = 1 and

∞∑
n=0

LA(e
(k)(n)) =

∞∑
n=0

ank = 1.

This means that the matrix A is doubly stochastic matrix from the class (ℓ1, ℓ1).
As in [3], but this time using the theory of matrix transformations, we have

shown that every doubly stochastic matrix on ℓ1 defines doubly stochastic operator
and the opposite holds, too. The only restriction was the sign of the entries of
matrix A!
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We continue with the application of the theory of matrix transformations in this
area but on the space ℓ∞. We have the big difference because the space ℓ∞ is not
AK space and important inclusion from Theorem 1.4 does not hold - it is true that
(ℓ∞, ℓ∞) ⊂ B(ℓ∞, ℓ∞) but the opposite does not hold. Because of that we will
use some properties of β-duals and the characterization of certain class of matrix
transformations. Since we consider BK spaces, definition [2, Definition 1.2] (for
I = N) related to adjoint operator can not be used here.

Let us introduce new definition which can be useful. We will consider the trans-
pose matrix instead of the adjoint operator. It is not the same but here this
approach can give nice relation.

Definition 3.2. A bounded linear operator LA : ℓ∞ → ℓ∞ determined with infinite
matrix A is called doubly stochastic operator if operator LB : ℓ1 → ℓ1 is doubly
stochastic operator where B = AT .

Let A = (ank)
∞
n,k=0 be arbitrary infinite doubly stochastic matrix. It is clear

that A ∈ (ℓ∞, ℓ∞) (A ∈ (ℓ∞, ℓ∞) if and only if supn
∑∞

k=0 |ank| < ∞) determines
bounded linear matrix operator LA such that Ax = LAx for all x ∈ ℓ∞. Is LA

doubly stochastic operator?
We put X = Y = ℓ1 and Z = ℓ∞ and apply Theorem 1.9. We obtain that

A ∈ (ℓ1, ℓ1) if and only if AT ∈ (ℓ∞, ℓβ1 ) = (ℓ∞, ℓ∞),

that is
A ∈ (ℓ∞, ℓ∞) if and only if AT ∈ (ℓ1, ℓ1).

Put B = AT . According to the results related to ℓ1, we conclude that LB is doubly
stochastic operator on ℓ1 and further, by our new definition, LA is doubly stochastic
operator on ℓ∞.

Now, let us suppose that we have doubly stochastic operator LA on ℓ∞ deter-
mined with infinite matrix A ∈ (ℓ∞, ℓ∞). It is clear that for B = AT operator
LB : ℓ1 → ℓ1 is doubly stochastic operator. Then, B is doubly stochastic matrix
and A also.

But, here we must emphasize that the assumption about determination of oper-
ator with matrix is important. Actually, since ℓ∞ is not AK space, the inclusion
B(ℓ∞, ℓ∞) ⊂ (ℓ∞, ℓ∞) does not hold generally and we are not sure that every
bounded linear operator on ℓ∞, even doubly stochastic, can be represented with
infinite matrix. Hence we must give the assumption that we consider matrix oper-
ator on ℓ∞.
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