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Abstract. The paper presents the basic elements and results of the 
latest theory of collision between bodies in rolling. The theory is based 
on the newly introduced hypothesis of conservation of the sum of the 
angular momentum of the motions (the sum of kinetic moments) of 
the bodies in rolling after the collision in relation to the collision and 
it defines the collision coefficient using the angular rolling velocities 
immediately after and immediately before the collision. Analytical 
expressions are derived for the outgoing angular velocities of each body 
immediately after the collision as a function of the axial moments of 
inertia of the mass of each body for corresponding instantaneous axis of 
rolling, the collision coefficient and the angular velocities of each body 
immediately before the collision. It is shown how the rolling directions 
of the body are determined immediately after the collision for different 
types of collisions. It is shown that the basis of research on projects in 
basic sciences, led by the author of this paper, obtained a large number 
of scientific results that were published in journals, one master’s thesis 
(2010), two doctoral dissertations (1996 and 2011), two monographs, 
one preprint, while one monograph is in preparation for printing. Each 
of these titles contains the keyword “vibro-impact system”. The paper 
provides an overview of individual works. The Master of Science thesis 
and both doctorates are based on the classical theory of bodies colliding 
in translational motion, rectilinear and curvilinear, smooth or rough, 
while the latest results relate to the dynamics of vibro-impact body 
systems in rolling along curvilinear paths in a stationary or rotating 
vertical plane around a vertical axis at a constant angular velocity. A new 
methodology for investigating the dynamics of vibro-impact systems 



with successive collisions between bodies in rolling using the method 
of phase trajectory portraits in the phase plane has been defined. The 
list of literature provides the most significant works of the author of this 
paper who is also a supervisor and a research mentor of undergraduates 
and doctoral students.
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1. Preface

The author gained the first knowledge about the dynamics of collisions from the 
lecture of Professor Dr. Ing. Dipl. Math.Danilo P. Rašković,  as well as from his textbook 
Dynamics [69-71], during her studies of mechanical engineering at the Mechanical 
Engineering Department of the Technical Faculty in Niš. Later, the author received 
the first university textbook on Theoretical Mechanics published in Serbian in 
1880, according to J. Weisbach, which was written by academician Ljubomir Klerić. 
Academician Ljubomir Klerić taught mechanics at the Belgrade Great School which 
later grew into the University of Belgrade and he was also the founder of the Serbian 
School of Mechanics and Mechanical Engineering.

Both textbooks, Rašković’s and Klerić’s, meticulously present the well-known 
classical theory of body collisions in translational motion, and are highly useful 
resources for the education of graduate engineers in mechanical engineering and 
mining, as well as other technical faculties.

Later, at the European and world congresses of mechanics, after getting acquainted 
with Professor Frantisek Peterka from Prague and his scientific results in the field of 
dynamics of vibro-impact systems [58-65], she became interested in this scientific 
field. She also studied Russian literature. But she did not do research in this area 
until she was contacted by Mr. Sc. Slavka Mitić who, under the author’s supervision, 
completed and successfully defended her master’s thesis in the scientific field of 
nonlinear oscillations using asymptotic methods of nonlinear mechanics by Krilov-
Bogolyuboc-Mitropolski, expressing a desire for a doctoral thesis under the author’s 
mentorship. The author of this paper and the head of the three Projects (Oscillations 
of the Special Elements and Systems [P.1], Basic Scientific Found of Region Niš (1981-
1986), Stochastic Processes in Dynamical Systems-Applications on the Mechanical 
Engineering Systems [P.2], Basic Scientific Found of Region Niš (1986-1989) and 
Nonlinear Deterministic and Stochastic Processes with Applications in Mechanical 
Engineering Systems [P.3], Ministry of Science and Technology  Republic of Serbia, 
(1990-1995)), then suggested the topic in the field of dynamics and stability of vibro-
impact systems. This was at the beginning of the tenth decade of the last century, 
and she conducted research within the project  Sub-Project 04M03A [P.5] which was 
led by Professor Katica (Stevanović) Hedrih. When Slavka Mitić (2. 1. 1950, Lušcа 
Palanка, Sanski most, BIH- 20. 7. 2012, Niš) defended her doctorate [54], her mentor 
suggested using her doctorate to form a monograph [55], which the mentor edited 
and reviewed, so that the first monograph on vibro-impact systems in the Serbian 
language was published.

In the last two project cycles, periods 2000-2010 and 2011-2019, projects [P.4-P.9], 
coordinated at the Mathematical Institute of SANU and led by the author of this paper, 
a member of the research team was also Srdjan Jović, teaching assistant at the Faculty 
of Technical Sciences in Kosovska Mitrovica, along with numerous researchers from 
different faculties and scientific institutes in Serbia.

At that time, several scientific articles [11, 13, 20] by the author and the project 
leader were published, dealing with the topic of moving heavy material points along 
rough curved lines in a stationary or rotating vertical plane around a vertical axis at a 
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constant angular velocity. Vibro-impact systems were the primary interest of Srdjan 
Jović, which the project leader proposed as a theme of the project investigation. The 
dynamics of vibro-impact systems of heavy bodies (heavy material points) moving 
translational along rough curvilinear paths and examining the change of energy and 
kinetic parameters in the conditions of Coulomb friction force and phase method, 
based on previously published articles on the movement of a heavy material point 
along rough curvilinear paths was proposed for research to Srdjan Jović.

The agreement was reached to first formulate the research topic of a master of 
science thesis, and then the topic for the preparation of a doctorate. These research 
topics were worked on very intensively under the mentorship of the author of this 
article in the period from 2009 to 2011 with constant consultations on Tuesdays and 
Wednesdays at MI SANU, so that the quickly achieved results formed a master’s thesis 
and a doctorate, which Srdjan Jović quickly formulated and successfully defended 
before the respective committees, in which the author of this paper and the head 
of research on the indicated topics was the president, and the official mentor was a 
professor from the Faculty of Technical Sciences in Kosovska Mitrovica, because it 
was prescribed by law. Later, based on these results, she co-authored one preprint 
monograph and another monograph published under the title Dynamics of Vibro-
Impact Systems [36, 46]. Before the completion of the doctorate, during the research 
phases, a number of co-authored papers [33-35, 46] were published in journals 
based on the obtained research results.

As “scientific children grow up” and “find their own ways” in some other areas 
of research, and with some other researchers, this project, in which Srdjan Jović 
achieved his titles of Magister of Science [48] and Doctor of Science [47], was left 
without researchers on the topic of dynamics of vibro-impact systems.

The author of this review paper, as well as the project leader, has continued 
research on the planned research topic for five years, since the end of the research 
on the topic of dynamics of vibro-impact systems, when the project cycle continued 
in the period 2015-2019. The continuation of the research on the topic of Dynamics 
of Vibro-impact Systems, in the period from 2015 to the end of the project cycle 
2019, was very fruitful for the author of this paper. As none of her colleagues or 
researchers, to whom she suggested to research together on this topic, showed 
any interest (for example, a personal invitation was sent to S.J., PhD, then to B.G., 
PhD, and to other younger researchers), she continued independent work on this 
research topic. Thus, the original scientific results appeared, which were published 
in a series of one-author articles in prestigious scientific journals, Springer’s 
Proceedings, proceedings of various scientific conferences, which verified significant 
scientific results under the following key titles: Theory of body collision in rolling; 
Generalized rolling pendulum along curvilinear trajectories; Rolling the ball on 
curved surfaces and coordinate surfaces of curvilinear coordinate systems; Phase 
portraits of generalized rolling pendulums; Theorems of bifurcation and triggers of 
coupled singularities; Methodology for studying the nonlinear dynamics of vibro-
impact systems with bodies in rolling, using the phase plane method (see References 
[6-12], [14-19] and [24, 25] ).
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2. Introduction

Material (mechanical) systems whose motion is repeated in equal or different 
time intervals are called vibrational (oscillatory) systems, or oscillators for short. 
In mechanics, the notion of collision is more general than the notion of impact, 
so together (combined) impact and collision, we write collision [29, 31], for short; 
impact and collision are phenomena of nonlinear nature and with alternation and 
discontinuity of vector and scalar kinetic parameters of the system.

Systems in which vibrational (oscillatory) movements and impacts (or impacts 
and collisions, or only collisions) occur and appear are called vibro-impact systems. 
These are nonlinear discrete dynamical systems in which vibro-shock effects occur.

In the technical aspects of engineering practice, vibro-impact actions often occur 
and are widely applied [46, 72-74]. Therefore, appropriate theoretical, numerical 
and experimental investigations of nonlinear dynamics of vibro-impact systems are 
of special importance.

The first research on vibro-shock action dates back to the 1930s, and a newer 
wave of interest in the dynamics of vibro-impact systems emerged at the end of the 
last (20th) century and intensified with the development of bifurcation theory [1, 
4, 5, 7-15, 21, 26] and the interpretation of chaotic regimes. The most significant 
scientific results that  improved the knowledge about the dynamics of vibro-impact 
systems were published in [34, 36-39, 42-46, 66-69, 72-74], out of which we single 
out the authentic works of Frantisek Peterka [69, 67], Dimentberg M.F. and Menyailov 
A.I., Foole S. and Bishop S., Lieber P. and Jensen, D., Luo G.W. and Xie J.H., Nordmark 
A.B., Pavlovskaia E. and Wiercigroch M. (for details see lists of References in [43-
45] and in [51, 42]), Katica (Stevanović) Hedrih [11, 12, 17-19, 21-25, 29-31, 34-
39, 42-49] and associates Slavka Mitić [54-57], Srđan Jović [47-49] and others; The 
authors of these papers used different methods to find solutions to the set tasks of 
the dynamics of vibro-impact systems, most often starting from the general stereo-
mechanical theory of impact (collision). The latest works are based on research 
conducted numerically and experimentally on the basis of analytical methods.

Here we will point out the results of Serbian researchers Slavka Mitić (2. 1. 1950, 
Lušcа Palanка, Sanski most, BIH- 20. 7. 2012, Niš) [54-55] and Srđan Jović [47-49], 
who did research on projects of the Ministry of Science of the Republic of Serbia 
under the supervision of project leader Katica (Stevanović) Hedrih (see the list of 
Projects [P.1-P.9]).

The following parts of this paper present the latest authentic author results of 
Katica (Stevanović) Hedrih, which were obtained and published in the last five years 
of research within the project and topics: Phenomena of nonlinear dynamics of 
generalized rolling pendulums [14, 16-19] and Nonlinear dynamics and phenomena 
in vibro-impact systems with bodies in rolling [19-25].

According to the research program on the project Nonlinear Deterministic and 
Stochastic Processes with Applications in Mechanical Engineering Systems [P.3], 
financially supported by the Ministry of Science and Technology of the Republic of 
Serbia, (1990-1995) realized through Mechanical Engineering Faculty University of 
Nis, the research topic was “Deterministic and stochastic processes in vibro-impact 
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systems”. Slavka Mitić (2. 1. 1950, Lušcа Palanка, Sanski most, BIH- 20. 7. 2012, Niš) 
participated as a researcher under the mentorship of the project leader Hedrih 
(Stevanović), KR., and on the basis of the obtained research results she formed 
her doctoral dissertation under the title “Stability of deterministic and stochastic 
processes in vibro-impact systems”, which she successfully defended in 1994. 

Later in 2006, at the suggestion of the mentor and on the basis of the content 
of the grant, she formed a monograph under the title “Vibro-impact systems”[54], 
edited and reviewed by her mentor Hedrih (Stevanović) K.R. This monograph 
was also the first monograph in the Serbian language on vibro-impact systems. 
This monograph used the classical theory of body collisions in translational 
motion.

Among the published papers based on the obtained research results on the subject 
of the project, on this occasion we single out the co-authored paper [56]. The paper 
was published in the Journal Acta Technica CSAV (Ceskoslovensk Akademie Ved) in 
the Czech Republic in 1997, and previously presented at the European Conference 
on Nonlinear oscillations - ENOC Prague 1996.

In the paper [56] written by Mitić, S. and Hedrih (Stevanović), K.R., nonlinear 
oscillations of the torsion oscillator with impact masses were described. This paper 
dealt with nonlinear oscillations of the torsion oscillator with reciprocal rigidly 
connected impact masses. It was assumed that two impulses occurred at one interval 
of the disturbing torsion moment. The asymptotic Krilow-Bogolyubov-Mitropolski 
method was applied, along with the stereo-mechanical impact theory for the 
inclusion of impact conditions, to the determination of the primary approximation 
of the torsion system nonlinear oscillations. Phase trajectories were drawn on the 
basis of the numerical results. The mathematical model of the vibro-impact system 
was written in the form of an autonomous nonlinear system of the first order 
differential equations. The integral curves and the phase trajectories were obtained 
by means of the Runge-Kutta method, of the Turbo-Pascal program and with the aid 
of the computer.

As parts of research programs of two projects [P.8] and [P.9]: “Theoretical and Applied 
Mechanics of the Rigid and Solid Bodies. Mechanics of Materials”, (2006–2010), and 
“Dynamics of hybrid systems with complex structures. Mechanics of materials”, (2011-
2019), under the mentorship of the project leader Hedrih (Stevanović), K.R., Srdjan 
Jović researched the dynamics of vibro-impact systems, and based on the research 
results he formed a master of science thesis [48] and a doctoral dissertation [47], which 
he successfully defended at the Faculty of Technical Sciences in Kosovska Mitrovica. 
By law, an official mentor was appointed from that faculty. The titles of the master’s 
thesis and doctorate were: “Energy analysis of vibro-impact system dynamics” [48], [in 
Serbian], Magister of Science Thesis, 2009, and “Energy analysis of vibro-impact system 
dynamics with curvilinear paths and no ideal constraints” [47], [in Serbian], Doctoral 
Degree Thesis, 2011. We will not show the contents of this master of science thesis 
and doctoral dissertation here, because the titles speak eloquently enough about their 
orientations. We will note that the results of a series of published works of the project 
leader on the dynamics of a heavy material point along rough curved lines [11, 12] 
and the dynamics of vibro-impact systems of heavy material points in translational 
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motion along different rough curved lines and in successive collisions were used as 
basis of the advanced research (see References [34-39] by Hedrih (Stevanović), K.R. 
and other). Phase portraits and portraits of constant mechanical energy curves were 
used by Srdjan Jović (see References [47, 48]).

A large number of co-authored articles (see References [34-39]) were published, 
some of which were published in prestigious world-famous journals. Additionally, 
the obtained results related to their contents were presented at numerous 
prestigious scientific conferences. Based on the research results of these projects, 
the results of published co-authored papers [11, 34-39] as well as master’s theses of 
sciences [48] and doctorate [47] created with three parts, one preprint [39] under 
the title: „Vibro-impact system dynamics” present an analysis of the dynamics of 
one class of vibro-impact systems based on oscillators along curvilinear routes and 
stationary non-ideal constraints, (309 pages long, 30 copies). Additionally, there 
was one monograph of the same name [49], which was cataloged in the National 
Library of Serbia, preprint (30 copies) and a published monograph (100 copies with 
categorization) composed of three parts, the contents of which will be presented in 
the continuation of this work.

The preprint [39] and the monograph [40]: „Vibro-impact system dynamics” 
contain a focused analysis of the dynamics of one class of vibro-impact systems 
based on oscillators with two heavy mass particles translator moving along the 
same rough curvilinear routes in a stationary or rotating vertical plane around a 
vertical axis at constant angular velocity and in successive collisions.

This book (both the preprint and the monograph form) posed an original 
methodology of the dynamics analysis of one class of vibro-impact systems based on 
the phase trajectory method. It used phase trajectory portraits of two oscillators each 
with one heavy mass particle translatory moving along the same curvilinear rough 
route in a vertical stationary or rotating plane about a vertical axis at a constant 
angular velocity and in successive collisions.   This book was compiled as a result of 
selection, systematization and application of new and authentic research results in 
each part, which the authors attained through their research work within scientific 
research projects (see [P.8] project ОИ144002 (2006-2010) and [P.9] project 
ОИ174001 (2011-2016)). Modern information technology (commercial software 
tools – software package programs MathCad, MatLab, Wolfram Mathematica) was 
used for graphic visualization of vibro-impact system dynamics. Some of those 
results were previously published by the renowned scientific journals with the 
highest scientific reputation worldwide. Some of these are [34-39].

The book [39, 49] was divided into three parts and written in such a way that the 
parts could be used independently.

The abstract of the first part, authored by Hedrih (Stevanović) K.R., with the 
title of “The basis of the impact and collision theory, the chosen methods of analysis of 
nonlinear system dynamics and the material point movement along the curved rough 
line” is in the following content: This part outlines the theoretical basis for researching 
vibro-impact system dynamics with curvilinear translatory motion and stationary 
non-ideal constraints. The first chapter of this part presents the theoretical basis 
of the impact and collision dynamics based on the theory which was established 
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by Isaac Newton. The second chapter outlines the basic methods upon which the 
methodology for researching vibro-impact system dynamics is established in the 
remaining chapters of this part. The third chapter of this part presents the original 
results of the author [11, 13, 20] on the heavy material point movement along the 
rough arbitrary curvilinear route as well as a circle, parabola, cycloid and ellipse. 
This chapter represents the theoretical basis for a choice of vibro-impact system 
dynamics model which is studied in the following two parts on the vibro-impact 
dynamics with two mass particles in translatory motions and successive collisions. 
The final fourth chapter of this first part presents examples which are a result of 
joint research, supported by Srdjan Jović [34-39].

The abstract of the second part, co-authored by Vladimir М. Raičević and Srdjan 
V. Jović with the title “Analysis of the vibro-impact system dynamics based on the 
autonomous oscillator with curvilinear routes and stationary non-ideal bonds” is in 
the following content: This part of the monograph is based on theoretical results 
presented in the first part [11], and shows the research results of the properties of 
autonomous vibro-impact dynamics with a large number (four) of approximation 
models of nonlinear dynamics of the real systems with one or more (two, three) 
degrees of freedom of vibro-impact free oscillations. The system is abstracted to the 
material point model which moves freely and translatory along the rough curved 
line, in a vertical plane, fitted with the elongation limiters of the material point 
movement. For the purpose of studying the dynamics of the vibro-impact system 
dynamic models, authors use the concepts of the impact theory presented in the 
first part of this monograph, nonlinear dynamics methods presented in the second 
chapter and the results of the material point translatory movement along the rough 
curved line [11] presented in the third chapter of the first part of the monograph, 
which are theoretical bases for studying the autonomous nonlinear dynamics 
models and vibro-impact dynamics phenomena. Modern information technology is 
also used (software tools – software package programs MathCad, CorelDraw) for 
graphic visualization of the vibro-impact dynamics. Most of the results presented in 
this part are taken from the published papers [34-39, 44, 45] of all three authors of 
this monograph, as well as from the PhD dissertation [48] of Srdjan Jović.

The abstract of the third part, authored by Srdjan V. Jović, with the title of “Analysis 
of the vibro-impact system dynamics based on the forced oscillator with curvilinear 
routes and stationary non-ideal bonds” is in the following content [47, 48]:

This part of the monograph presents the research results of the properties 
of forced vibro-impact dynamics with a large number (seven) of approximation 
models of nonlinear dynamics of real systems with one or more (two) degrees 
of freedom of vibro-impact forced oscillation.  All study models of the system 
consist of one or more heavy slides moving along the curvilinear rough line, with 
the middle line having the shape of a curve in a vertical plane. The line is fitted 
with the limiters of heavy mass translatory movement. The system is abstracted 
to the material point model (the pellets) which move forcefully along the rough 
curved line, in a vertical plane, fitted with the elongation limiters of the material 
point translatory movement, while the material points are exposed to the effect of 
the outside forces. For the purpose of studying the dynamics of the vibro-impact 
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system dynamic models, authors use the impact theory presented in the first 
part of this monograph, nonlinear dynamics methods presented in the second 
chapter and the results of material point movement along the rough curved line 
presented in the third chapter [111] of the first part of the monograph, which 
are the theoretical basis for studying the non autonomous nonlinear dynamics 
model and vibro-impact dynamics phenomena. Modern information technology 
is also used (software tools – software package programs MathCad, CorelDraw) 
for graphic visualization of the vibro-impact dynamics. All the results presented 
in this part of the monograph are the results of independent, authentic research 
of Srdjan Jović [44, 45] under the supervision of project leader, within the theme 
projects ON144002 [P8] and ON 174001 [P.8] financed by the Ministry of Science 
of the Republic of Serbia.

3. Central collision of two rolling balls: Theory and examples
 

This part of the paper focuses on central collision [15, 17, 19, 26-31] of 
two rolling rigid and heavy smooth balls and using elements of mathematical 
phenomenology and phenomenological mapping [27, 28, 66-68] to obtain 
corresponding post collision and outgoing angular velocities of the balls and 
to apply these results for investigation in vibro-impact dynamics of two rolling 
balls along a circular trace or curvilinear route in a stationary or rotating vertical 
plane. This task is fully accomplished and the obtained results are original 
and new. Original plans of component impact velocities and angular velocity 
of each of two different rolling balls in central collision and corresponding 
outgoing angular velocities are presented. The use of elements of mathematical 
phenomenology by Petroviċ [66-68], especially mathematical analogy between 
kinetic parameters of collision of two bodies in translatory motion and collision of 
two rolling different size balls, new original expressions of two outgoing angular 
velocities for each of rolling balls after collision are defined. New hypothesis of 
conservation of the sum of angular momentum for instantaneous axes of rolling 
of two bodies in rolling before and after collision of two axisymmetric bodies is 
introduced [15, 17, 19, 26-28, 30-32]. 

Using this new and original result, vibro-impact dynamics of two rolling different 
heavy balls on the circle trace in a vertical plane in a period of series of successive 
collisions is investigated. Using a series of the elliptic integrals, new nonlinear 
equations for obtaining angles of balls positions at positions of collisions are 
defined. Branches of phase trajectories of the balls in vibro-impact dynamics are 
theoretically presented [15, 17, 19].

The theory of impact dynamics of systems as well as vibro-impact dynamics 
is an important research task nowadays. This is the reason and motivation for 
our research as the presentation of the theory of the collision of two rolling, 
rigid, homogeneous and heavy, smooth balls with different radii and different 
masses.
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3.1. Short history  

“In connection with the game of billiards .... there are various dynamic tasks, 
whose solutions are contained in this event. I think that people who know 
Theoretical mechanics, and even students of polytechnics, with interest 
familiarize themselves with explanations of all the original phenomenon 
that can be observed from the time of movement of billiard balls”.

Gaspard-Gustave de Coriolis, 

Mathematical theory of billiards game.
G. Coriolis (1990). Théorie mathématique des effets du jeu de billard; suivi 
des deux célèbres  mémoires publiés en 1832 et 1835 dans le Journal de 
l’École Polytechnique: Sur le principe des forces vives dans les mouvements 
relatifs des machines & Sur les équations du mouvement relatif des 
systèmes de corps (Originally published by Carilian-Goeury, 1835 ed.). 
Éditions Jacques Gabay. ISBN 2-87647-081-0 [50-52].

In 1668, the Royal Scientific Society in London launched a call for a solution to the 
problem of impact and collision dynamics, and for that call, the well-known scientists 
Wallis (John Wallis, 1616-1703, Mechanica sive de mote-1688) and Huygens (Christian 
Huygens - De motu corporum ex percussione) submitted their papers. Wallis and Huygens 
used the results of the collision, submitted them to the Royal Society and added their 
generalizations. Using their work, Isaac Newton laid down the fundamental foundations 
of the Theory of Impact [30, 70, 72], which is still unsurpassed today [30]. (see Figure 1.). 
Even before Newton, Wallis and Huygens, there was research into the dynamics of impact. 
Thus, for example, collision problems were addressed by Galileo Galilei, who came to the 
realization that the impact force was infinitely large in relation to the pressure forces, 
but did not reach and learn about the relation of the impact impulses and the amount of 
movement. Today’s knowledge of collision dynamics is not much more advanced than 
this collision theory, which was founded by Newton, Wallis and Huygens. In connection 
with this competition of the Royal Scientific Society and submitted papers, it was evident 
that papers contained the first set of basics of collision theory. The name also mentions 
Sir Christopher Michael Wren (20 October 1632 - 25 February 1723), who was also the 
president of the Royal Scientific Society (see Figure 2.).

The dynamics of rolling ball collisions occur in many engineering systems, 
and especially in the dynamics of roller bearings. Even today, no general theory 
of rolling ball collisions has been given. Some recent results by the author of 
this paper present new and original results [15, 17, 19, 26-31] in support of the 
classical theory of rolling ball collisions. These results are presented in the first 
part of this article.

In the game of billiards, collisions of rolling equal balls occur. The complexities 
of billiard dynamics and billiard models and the possibility of observing and noting 
the complex phenomena and phenomena of collision dynamics were pointed out 
by Coriolis (Gaspard-Gustave de Coriolis; Paris, May 21, 1792 - Paris, September 
19, 1843) and to illustrate this we cite the following quotation (see References 
[50-52]):
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‘’In connection with the game of billiards ...... different dynamic tasks occur, the solutions of 
which are contained in this event. I think that people, who know theoretical mechanics, and 
even students of the Polytechnic Schools, are interested in learning about the explanations 
of all the original phenomena, which can be observed with the movement of billiard balls. ‘’

The elements of the dynamics of billiards [50-52], [30] are coupled into a complex 
system, whose dynamics are different from the phenomena observed in the dynamics of the 
system. Starting from the geometric basis for switching to the theory of impact and collisions 
between two or a few numbers of the balls, it is possible to see that impacts and collisions are 
in the center of this dynamics. Shown are the plans of translational and angular velocities of 
rolling of one ball before and after the impact, and also the two balls colliding. Rolling balls 
are the main elements in numerous mechanical engineering systems.

Figure 1. From left to right scientists: Sir Christopher Michael Wren (20 October 
1632 - 25 February 1723), John Wallis (1616-1703), Christiaan Huygens (14 April 
1629 - 8 July 1695) and Gaspard-Gustave de Coriolis, (Paris, May 21, 1792 - Paris, 
September 19, 1843).

Figure 2. Scientists, authors of the original ideas of Theoretical and Applied 
Mechanics: Galileo Galilei (Paris, February 15, 1564 - Florence, January 8, 
1642) and author of an authentic and significant work: “Discorsi e dimostrazioni 
matematiche intorno a due nuove scienze attinenti alla meccanica e i movimenti 
locali” 1638 (left) and Sir Isaac Newton, (Lincolnshire, December 25, 1642 
- London, March 20, 1726/7) (right) author of Basic Collision Theory and 
Works: Mathematical Principles of Natural Philosophy (Lat. Philosophiae 
Naturalis Principia Mathematica), published in 1687.
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3.2. Collision of two bodies in translatory motion. Let us start with the 
largely known classical theory [70] of central collision between two bodies, with mass 

1m  and  2m , in translatory motion and with translatory velocities ( )01 tv  and ( )02 tv  
at the moment before collision between them. These velocities we denote as arrival, or 
impact or pre-impact velocities at the moment 0t  (see Figure 3.). 

At this moment 0t  of the central collision start between these bodies, the contact 
of these two bodies is at point P , in which both bodies possess the common tangent 
plane–plane of contact (touch). In the theory of central collision, it is proposed that 
collision takes a very shorth period of time ( )τ+00 ,tt , and that τ  tends to zero. 
After this short period bodies in collision separate and are in an outgoing kinetic 
state by post-impact-outgoing velocities  ( )τ+01 tv  and ( )τ+02 tv .

On the basis of hypothesis of conservation of linear momentum (impulse) of 
motion, the following relation is valid [70]:

( ) ( ) ( ) ( )ττ +++=+ 022011022011 tvmtvmtvmtvm 
			   (1)

and the coefficient of the restitution of body central collision is:
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and presents the ratio between the difference of translatory velocities in post-collision 
and pre-collision kinetic states, defined by Newton’s classical theory of impact.

Post-central-collision – outgoing body translator velocities are in the form [67]: 
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Impuls (linear momentum) of collision in this case is:
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As it is known from the classical literature [70], the coefficient of the restitution 
of body collision depends on the kind of collision:  1* for the pure no elastic (plastic) 
collision, the coefficient of restitution is equal to zero- 0=k ;  2* for the pure ideal 
elastic collision, the coefficient of restitution is equal to unit, 1=k ; and 3* for the 
arbitrary case between ideal plastic and ideal elastic collision, the coefficient of 
restitution is in the interval between zero and unit, 0 < 0=k < 1.

From the comparison between outgoing (post-collision) velocities with no elastic 
collision of two translatory bodies in the pre-collision state, we can point out the 
following conclusions:
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* in the case of pure plastic collision of two bodies, 0=k , outgoing (post-
collision) velocities are equal one to other;
* in the case of ideal elastic collision of two bodies in translator motions, 1=k , 
outgoing (post-collision) velocity of the body with largest pre-collision impact 
velocity is smaller, and outgoing (post-collision) velocity of the body with 
smaller pre-collision impact velocity is larger; in this case, the ideal elastic 
impact, 1=k , if both pre-collision impact velocities of the bodies are of equal 
intensity, ( ) ( )0201 tvtv = , and opposite direction, then both outgoing velocities 
of the both bodies are of equal intensity, ( ) ( )0201 tvtv = , and opposite direction, 
independent of the body masses.
* In the case of no elastic collision between bodies, 10 << k , if condition

( ) ( ) 0022011 =+ tvmtvm , or ( )
( )01

02

2

1

tv
tv

m
m

−==  is satisfied, outgoing (post-collision) 
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opposite direction, then both outgoing velocities of the both bodies are of equal intensity 
     0201 tvtv  and opposite direction, independent of the body masses. 
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3.3. Kinematics of collision of two rolling balls along a horizontal trace 

 
3.3.1. Possible impact points at one ball for different kinds of the impacts and compo-

nent velocities. 
Let us start with the analysis of the elements of kinematics of two rolling balls 

in the state of pre-collision between them. We consider two heavy smooth balls with 
different masses, and different radii, 1r  and 2r , each in rolling kinetic state with mo-

mentary angular velocity, 1,P


 and 2,P


, along corresponding straight trace of rolling, 
which are linear. Momentary axes of each rolling line lie in a horizontal plane and are 
orthogonal to the rolling trace in each moment passing through point P  (see Figure 4) 
or for first and second rolling ball through point 1P  as in point 2P   (see Figure 5. a* and 

b*, and also c* and d*) or Figure 6. These points 1P  and 2P are points of touch between 
rolling trace and corresponding rolling ball, and these points move along trace together 
with momentary axis of ball’s rolling.  

If momentary angular velocities, 1,P


 and 2,P


, of the rolling balls and corre-
sponding axes of rolling the first and the second heavy ball are known, and also the radi-
uses of balls and mass densities of balls, then the dynamics of each ball is fully deter-
mined.  Therefore, the investigation of the heavy balls dynamics is a simple task for 
obtaining all kinetic parameters of balls. 

Let us consider possible component impact velocities in point T  at spherical sur-
face as a possible point of touch (contact) in a kinetic state of collision between two 
rolling balls. If we talk about the collision of two equal dimensions (equal radiuses) of 
the rolling balls all possible points iT , .....3,2,1i of central or skew collision between 

 and 
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rolling trace and corresponding rolling ball, and these points move along trace together 
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If momentary angular velocities, 1,P
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 and 2,P
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, of the rolling balls and corre-
sponding axes of rolling the first and the second heavy ball are known, and also the radi-
uses of balls and mass densities of balls, then the dynamics of each ball is fully deter-
mined.  Therefore, the investigation of the heavy balls dynamics is a simple task for 
obtaining all kinetic parameters of balls. 

Let us consider possible component impact velocities in point T  at spherical sur-
face as a possible point of touch (contact) in a kinetic state of collision between two 
rolling balls. If we talk about the collision of two equal dimensions (equal radiuses) of 
the rolling balls all possible points iT , .....3,2,1i of central or skew collision between 

.

Figure 3.  Central collision between two bodies, with mass 1m and 2m in 
translatory motion (a* and b*) and with translatory pre-impact velocities

( )01 tv and ( )02 tv (c*) and with outgoing post-impact velocities ( )τ+01 tv and
( )τ+02 tv  (c* and d*).

3.3. Kinematics of collision of two rolling balls along a horizontal trace
3.3.1. Possible impact points at one ball for different kinds of the impacts and 
component velocities. Let us start with the analysis of the elements of kinematics 
of two rolling balls in the state of pre-collision between them. We consider two 
heavy smooth balls with different masses, and different radii, 1r  and 2r , each 

d*

b*

c*

a*
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in rolling kinetic state with momentary angular velocity, 1,Pω


 and 2,Pω


, along 
corresponding straight trace of rolling, which are linear. Momentary axes of each 
rolling line lie in a horizontal plane and are orthogonal to the rolling trace in each 
moment passing through point 2P  (see Figure 4) or for first and second rolling 
ball through point 2P  as in point 2P   (see Figure 5. a* and b*, and also c* and 
d*) or Figure 6. These points 1P  and 1,Pω


are points of touch between rolling trace 

and corresponding rolling ball, and these points move along trace together with 
momentary axis of ball’s rolling. 

If momentary angular velocities, 1,Pω


 and 2,Pω


, of the rolling balls and 
corresponding axes of rolling the first and the second heavy ball are known, and 
also the radiuses of balls and mass densities of balls, then the dynamics of each ball 
is fully determined.  Therefore, the investigation of the heavy balls dynamics is a 
simple task for obtaining all kinetic parameters of balls.

Let us consider possible component impact velocities in point T at spherical 
surface as a possible point of touch (contact) in a kinetic state of collision between 
two rolling balls. If we talk about the collision of two equal dimensions (equal 
radiuses) of the rolling balls all possible points iT , .....3,2,1=i of central or skew 
collision between balls are at a circle passing through a mass center of both balls 
and the balls’ common tangent plane through this point of balls collision is vertical. 
Taking into account that trajectories of mass centers of both rolling balls are 
horizontal and straight lines parallel to a rolling trace, then both mass centers move 
translatory with velocities  translatorCv ,


  or translatorCv ,1,


 and translatorCv ,2,


 (Figure 4). 
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Figure 4. Plan of component impact velocities of impact points of a ball for 
the different types of collisions of two equal rolling balls 

For the case of equal balls in collision (Figure 4), each impact velocity impactTv ,


of impact at pre-collision state has two components, one horizontal equal to 
translatorCtranslatorT vv ,,


=  and one vertical component rollingv ,T


of self rotation 

with angular velocity PC ωω


=  around a central axis parallel to instantaneous 
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(momentary) axis of a ball rolling along the trail. This rolling component of impact 
velocity is dependent on the types of collision. If collision of balls is central with 
same line as a trace rolling both balls, then rolling component rollingTv ,0


of impact 

velocity of point 0T  is with maximal intensity and with intensity equal to a 
product between the ball radius R  and the intensity of angular velocity PC ωω =  
of self rotation. In the case of rolling balls in skew collision between balls, impact 
points are at the point  T  or T   (see Figure 4) and with angular velocities not 
parallel, and balls’ rolling traces are with intersection, or parallel, then points T  
or T   of the collision of rolling balls are at the distance defined by αcosR  to the 

              
     

Figure 5. Plans of the impact velocities of possible points of collision of 
two rolling heavy balls with different radiuses: a* and c* for the first rolling 
smaller ball and b* and d* for the second biggest rolling ball.
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self rotation central axis of ball, where  α   is the angle between trace rolling of 
corresponding ball and normal to the common tangent plane.  Thus, the intensity 
of the rolling component of arrival velocity is equal to the product between the 
orthogonal distance αcosR   and intensity of angular velocity PC ωω =  of self 
rotation. Outgoing components of the impact velocity of the impact point 0T  in central 
collision of the equal rolling balls are corresponding intensities and with opposite 
directions in vertical and in horizontal planes, for ideal elastic collision. After analysis of 
the post collision motion for this case we see that it is simple, taking into consideration 
only that collisions appear in rolling balls with corresponding angular velocities of rolling.  

3.3.2. Possible impact points at two balls for different kinds of collisions and component 
velocities. In the case of rolling balls with different dimensions (size) and masses and 
axial mass inertia moments for instantaneous axis of rolling, the kinematical plan of 
component velocities in collision are presented in Figures 5 and 6.

In Figure 5, the kinematical plans of the impact velocities of possible points 
of collision of two rolling heavy balls with different radiuses: a* and c* for the first 
smaller rolling ball and b* and d* for the second bigger rolling ball are presented [30].

Figure 6. Plans of the impact velocities of possible points at corresponding 
circles at the same height of balls in central collision of two rolling heavy balls 
with different radiuses: left for the first smaller ball and right for the second 
bigger ball.

In Figure 6, plans of the impact velocities of possible points at corresponding circles 
at the same height of balls in central collision of two rolling heavy balls with different 
radiuses: left for the first smaller ball and right for the second bigger ball are presented. 

From the listed plans of the component velocities, we can see that in the case of 
central collision of the rolling different dimension balls, the collision point is 0T  at 
both spherical surfaces. At the smaller ball, this point 0T  of central ball collision is 
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higher to its mass center and at the bigger ball, this point 0T  is lower to the mass 
center of the ball. The tangent plane of central collision is passing through point 0T , 
and is orthogonal to the radii of both balls from point 0T  to the corresponding ball 
center, 1C and 2C .

In Figures 5, 6 and 7, the possible points of impacts at balls with different size 
for different types of collision with corresponding kinematic plans of velocities are 
presented, but this part focuses on central collisions of two rolling rigid smooth 
balls along the starting trace (Figures 5, 6 and 7) and circle trace (Figures 9 and 
10). In Figures 5, 6 and 7, plans of the component impact and outgoing velocities at 
point 0T  of central collision of two rolling heavy balls with different radiuses are 
presented. 

Figure 7. Plans of the component impact and outgoing velocities at the point 
of central collision of two rolling heavy balls with different radiuses

After a similar analysis of the presented kinematic plans of arrival and outgoing 
component velocities, as in the previous case, all conclusions from the given 
Figures 5, 6 and 7 directed us to a general central conclusion, that the collision 
of the two rolling balls is simpler to investigate in analogy with the well-known 
classical theory and results of kinetic, kinematic and dynamic parameters of 
collision between two bodies in translatory motion. See the next subchapter for 
detail about an elementary logical analogy between two simple motions, each with 
one degree of freedom. Basic 
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3.4. Basic assumptions of the theory of collision dynamics in non-
slip rolling bodies. From the previous kinetic analysis and the conclusions 
we have drawn and proved, it follows that to consider the dynamics of collisions 
of axisymmetric rigid bodies with one plane of symmetry, which are in non-slip 
rolling, we must start with incoming angular velocities and rolling paths. Then, the 
axial moment of inertia of rolling body masses for the instantaneous axes of rolling 
should be included by introducing analogous assumptions, as well as for the case 
of analogous dynamics of impact and collisions of bodies in translational motions 
determined by the translational velocities and corresponding masses (see Reference 
[70, 30]).

The theory of collision dynamics (and in the special case of impact) is based on the 
following assumptions:

1* The contact time τ  of two bodies in a collision is very short;
2* The impact forces udF


ud

 and the corresponding impact moments udM


ud of the 

forces are variable and of high intensity, of the order of magnitude 
τ
1

, and of short

duration during the contact time τ  of two bodies in the collision and during the 
collision they have attack points at the contact points in the collision;
3* The change of angular momentum of motion of the material two bodies in 
rolling for the corresponding rolling axes during the collision is finite.
4* The impulse (linear momentum) and angular momentum of ‘’ordinary 
forces’’ compared to the impulse (linear momentum) and angular momentum of 
instantaneous collision forces are much smaller and can be neglected.

3.5. An elementary logical analogy. In the examples of the simplest dynamics 
of rigid bodies with one degree of freedom of movement, we will present an 
elementary logical analogy, which should be easily understood. Why do we begin 
with this article, which should be popular but at the same time contain the results of 
a high scientific domain?

It is well known that the most fundamental breakthroughs in science, which have 
become a lasting scientific heritage, are in fact elementary learning, which, in the 
integration of knowledge and conceptual processes, grows into complex scientific 
disciplines. The aim and answer of the question posed is to show that starting from 
the simplest dynamics of rigid bodies, translation and rolling, and then determining 
the elementary logical analogy among these dynamics and abstraction to the model 
of these dynamics, one can move to qualitative and mathematical analogies.

Therefore, by abstracting the disparate parameters of the dynamics of two real systems, 
one can come up with a theoretical model, a unique mathematical model with the same 
elements of mathematical phenomenology. We can use the knowledge of the properties of 
one model to convey it in the knowledge of the properties of the other, logically analogous.

Using logical, structural, qualitative and mathematical analogies [27, 28, 66-68] 
in both directions, we aim to obtain new original results of the theory of body-
collision in rolling. We base the new results on the well-known theory of collision 
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between bodies in translation. The unsurpassed theory of collision between bodies 
in translational moving has been formulated by world-renowned scientists Isaac 
Newton, John Wallis, and Christiaan Huygens.

Consequently, let us start with a logical analogy between the dynamics of the 
body systems shown in Figure 8a * and b *.

Figure 8a* shows two rigid bodies that can move along an ideally smooth 
horizontal surface in one direction, so that their median plane is always vertical. 
It is a planar, translational motion of a rigid body with one degree of freedom of 
movement, so we can consider it as a material point of concentrated mass in the 
mess center. Such a body is exposed to the effect of five constraints (links): two 
translations are prevented (one in the vertical direction and one in the direction 
perpendicular to the plane of plane motion) and three rotations around three 
orthogonal directions (around the direction of the body translation, around the 
vertical direction and around the direction perpendicular to the previous two).

The kinetic parameters of the motion translation of the rigid body model from 
Figure 8a* are: km , 2,1=k , masses, 1Cv  and 2Cv  the velocities of body translation, 
which are the connected vectors for the mass centers of these bodies  1C  and 1C . 
We suppose that each of the bodies is loaded by one external force with intensity kF
, 2,1=k , with a direction collinear with velocity and an attack point at the center of 
mass of the corresponding body affected.

On the basis of the theorem on the change of the linear momentum of motion (or 
quantity of motion), we construct the ordinary differential equation of translational 
dynamics of one and the other body in the form:  

                                                                                                                                              (6)

The change in the linear momentum of body motion theorem states that this 
change in time equals the sum of active and reactive forces. The linear momentum of 
motion in the translation of a rigid body or the impulse of the translational motion of a 
body is the product between the mass of the body and the velocity 

The latest theory of body collisions in rolling and the dynamics of vibro-impact systems… 
95 

consider it as a material point of concentrated mass in the mess center. Such a body is 
exposed to the effect of five constraints (links): two translations are prevented (one in 
the vertical direction and one in the direction perpendicular to the plane of plane motion) 
and three rotations around three orthogonal directions (around the direction of the body 
translation, around the vertical direction and around the direction perpendicular to the 
previous two). 

The kinetic parameters of the motion translation of the rigid body model from Figure 
8. a* are: km , 2,1k , masses, 1Cv


 and 2Cv


 the velocities of body translation, which 

are the connected vectors for the mass centers of these bodies  1C  and 1C . We suppose 

that each of the bodies is loaded by one external force with intensity kF , 2,1k , with a 
direction collinear with velocity and an attack point at the center of mass of the corre-
sponding body affected. 

On the basis of the theorem on the change of the linear momentum of motion (or 
quantity of motion), we construct the ordinary differential equation of translational dy-
namics of one and the other body in the form:   

   kCkk Fvm  , 2,1k                                   (6) 
The change in the linear momentum of body motion theorem states that this change in 

time equals the sum of active and reactive forces. The linear momentum of motion in the 
translation of a rigid body or the impulse of the translational motion of a body is the 
product between the mass of the body and the velocity Ckv , 2,1k of the center of 

mass: Ckkk vm 
K , 2,1k . 

 

a*

 

1m  

2x  

2m  11 Cvx 
 

1C  

22 Cvx 
 

2C  

1x      b*

 

2PJ  

2P


 

1C  2C  

1P


 

1PJ  

2P  1P  

 
Figure 8. Models of the two simplest dynamics of material bodies, each with one de-

gree of freedom of movement: a * translatory dynamics of a rigid body and b* rolling 
without slipping of a rigid body (with a form of a homogeneous disk, a homogeneous 
sphere or homogeneous with one axis and one plane of symmetry). 

 
 
Figure 8 b * shows two bodies which roll without sliding straight along a linear path 

(guide, trace) through a circular plane contour of the body, a circular shape with a corre-
sponding center at a point, 1C  and 2C , respectively. These rolling bodies may be spher-
ical balls, cylinders, disks, but also other shapes, having one axis of symmetry and one 
plane of symmetry in which there is a contour of the shape of a circle, by which the legs 
are expected to roll. 

Such bodies, which roll without sliding, have one degree of freedom of movement. 
Since each free body has six degrees of freedom of movement, this means that five mo-
tion constraints, three translation constraints and two rotations are imposed on the mo-
tion of these bodies from Figure 8. b*, that is, five bonds are imposed on each of the 
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Figure 8. Models of the two simplest dynamics of material bodies, each with 
one degree of freedom of movement: a * translatory dynamics of a rigid body 
and b* rolling without slipping of a rigid body (with a form of a homogeneous 
disk, a homogeneous sphere or homogeneous with one axis and one plane of 
symmetry).

Figure 8 b * shows two bodies which roll without sliding straight along a linear 
path (guide, trace) through a circular plane contour of the body, a circular shape 
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tion constraints, three translation constraints and two rotations are imposed on the mo-
tion of these bodies from Figure 8. b*, that is, five bonds are imposed on each of the 
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with a corresponding center at a point, 1C  and 2C , respectively. These rolling 
bodies may be spherical balls, cylinders, disks, but also other shapes, having one 
axis of symmetry and one plane of symmetry in which there is a contour of the shape 
of a circle, by which the legs are expected to roll.

Such bodies, which roll without sliding, have one degree of freedom of movement. 
Since each free body has six degrees of freedom of movement, this means that five 
motion constraints, three translation constraints and two rotations are imposed on 
the motion of these bodies from Figure 8b*, that is, five bonds are imposed on each 
of the bodies. The first limitation is that the median plane of symmetry of the body, 
in which the center of mass of the body, is at all times in the plane of contour of 
rolling. This produces the constraints of one translation perpendicular to that rolling 
plane, and of two rotations about two orthogonal axes in that plane of rolling. The 
connection with the non-slip rolling route prevented one translation in the direction 
of the rolling route and one translation directly on the rolling route. All these 
together represent five links and constraints, leaving only one degree of freedom of 
movement, which is rolling around the current instantaneous axis of rolling.

Therefore, we direct our further consideration to that class of bodies which roll 
without slipping. Figure 8b * shows two rigid bodies which roll without sliding at 
angular velocities 1Pω


 and 2Pω


, at the corresponding instantaneous axes of rolling, 

passing through the points, 1P  or 2P  respectively, of the contact of the bodies in 
rolling and the track on which they are rolling, which are directed orthogonally to 
the plane of the rolling. The axial moments of inertia of the masses of the body in 
rolling for the instantaneous axes of rolling are 1PJ  and 2PJ . Kinetic parameters 
of the rolling dynamics of each body are the instantaneous angular velocities of 
rolling 1Pω


 and 2Pω


, which are related to the instantaneous axes of rolling. These 

axes move translationally along the rolling path, and the axial moments of inertia of 
the mass of the body and for the corresponding instantaneous rolling axis, for the 
observed body class, 1PJ  and 2PJ  do not change during the rolling dynamics.

Based on the theorem on the change of angular momentum (or kinetic 
momentum) for the instantaneous axis of rolling without sliding, we construct the 
ordinary differential equation of the dynamics of rolling of one and the other body, 
in the form:					            					   
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path, and the axial moments of inertia of the mass of the body and for the corresponding 
instantaneous rolling axis, for the observed body class, 1PJ  and 2PJ  do not change 
during the rolling dynamics. 

Based on the theorem on the change of angular momentum (or kinetic momentum) 
for the instantaneous axis of rolling without sliding, we construct the ordinary differen-
tial equation of the dynamics of rolling of one and the other body, in the form: 

PkPkPk MJ ,  2,1k                               (7) 
By comparing kinetic elements of two previous analyses of the dynamics of the bod-

ies on two systems, one in translation and another in rolling without sliding from Figure 
8. a * and b *, we establish a logical, and at the same time, qualitative analogy and phe-
nomenological mapping of the kinetic parameters of these models of two different dy-
namics, each with one degree of freedom. The mathematical analogy follows in the next 
section. 

3.5. Dynamics of the central collision of two rolling balls along a horizontal trace  

 
Let us start with the application of mathematical analogy of the classical theory of 

dynamics of collision to the dynamics of the collision between two rolling balls, with 
mass 1m  and 2m , and axial mass inertia moments  1PJ  and 2PJ  for corresponding 
momentary axis of the rotation in rolling along trace with pre-impact (arrival) angular 
velocities    01,1 tPimpactP 


  and  02,2 tPimpactP 


 . Mass centers 1C and 2C of 

the balls move translatory with pre-impact (arrival) velocities  01.1 tvv CimpactC


  and 

 02.2 tvv CimpactC


 . Angular velocities  01,1 tPimpactP 


  and  02,2 tPimpactP 


  

					     (7)

By comparing kinetic elements of two previous analyses of the dynamics of the bodies on 
two systems, one in translation and another in rolling without sliding from Figure 8a * and 
b *, we establish a logical, and at the same time, qualitative analogy and phenomenological 
mapping of the kinetic parameters of these models of two different dynamics, each with 
one degree of freedom. The mathematical analogy follows in the next section.

3.6. Dynamics of the central collision of two rolling balls along a 
horizontal trace. Let us start with the application of mathematical analogy of the 
classical theory of dynamics of collision to the dynamics of the collision between two 
rolling balls, with mass 1m  and 2m , and axial mass inertia moments  1PJ  and 2PJ  for 

PkPkPk M=ωJ
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corresponding momentary axis of the rotation in rolling along trace with pre-impact 
(arrival) angular velocities ( )01,1 tPimpactP ωω


=  and ( )02,2 tPimpactP ωω


= . Mass 

centers 1C and  2C of the balls move translatory with pre-impact (arrival) velocities 
( )01.1 tvv CimpactC


=  and ( )02.2 tvv CimpactC


= . Angular velocities ( )01,1 tPimpactP ωω


=  

and ( )02,2 tPimpactP ωω


=  we denote as arrival, or impact or pre-impact angular 
velocities at the moment 0t  (see Figures 5, 6, 7 and 8). At this moment 0t  of the 
collision start between these rolling balls, the contact of these two balls is at point      
T  , in which both balls possess common tangent plane – the plane of contact 
(touch). In the theory of collision, it is proposed that collision takes a very short 
period ( )τ+00 ,tt , and that τ  tends to zero. After this short period τ  bodies – 
two rolling balls in collision separate, outgoing by post-impact-outgoing angular 
velocities  ( )τωω += 01,1 tPoutgoingP


 and ( )τωω += 02,2 tPoutgoingP


. Mass centers 

1C and 2C  of the balls move translatory with post-impact (outgoing) translatory 
velocities ( )τ+= 01.1 tvv CoutgoingC


 and ( )τ+= 02.2 tvv CoutgoingC


. These translatory 

velocities are possible to express, each by its corresponding outgoing post-collision 
angular velocity and radius of the corresponding ball.

Elements of mathematical phenomenology [27, 28, 66-68] and phenomenological 
mappings [64] between rolling balls and translatory bodies (balls), which are analogous 
dynamical systems with elements in impact (similar as electro-mechanical analogy 
between an electrical oscillator with one degree of freedom and a mechanical oscillator 
with one degree of freedom). Translatory motion of a body (ball) and rolling motion 
of a ball are analogous motions, and each with one degree of freedom. The analogies 
between mass and axial mass inertia moment for the rolling momentary axis and also 
translatory velocity and angular velocity around the momentary axis of rolling follow 
from the comparison of their mathematical description by ordinary differential equations 
of corresponding motion – translatory and rolling kinetic states. This is a visible and 
simple explanation presented in the previous subchapter.

Taking into account that translatory motion of two bodies in central collision 
is a simpler motion of two bodies, defined by corresponding inertia properties 
expressed by mass, 1m  and 2m , of each body, and also by corresponding translatory 
pre-impact velocities, ( )01 tv  and ( )02 tv  at the moment before collision and by post-
impact-outgoing translatory velocities  ( )τ+01 tv  and  ( )τ+02 tv it is possible to 
establish an analogy with the collision between two rolling balls. Explanation is in 
the following form.

Additionally, rolling balls along a horizontal strength trace is a simple rotation 
motion defined only by inertia properties in the axial ball mass inertia moments  

1PJ  and 2PJ   for the corresponding momentary axis of rotation in rolling along 
a trace with pre-impact (arrival)  angular velocities ( )01,1 tPimpactP ωω


=  and 

( )02,2 tPimpactP ωω


=  and corresponding outgoing post-impact-outgoing angular 
velocities  ( )τωω += 01,1 tPoutgoingP


 and ( )τωω += 02,2 tPoutgoingP


.

Using Petroviċ’s theory of elements of mathematical phenomenology and 
phenomenological mappings [27, 28, 66-68] in parts of qualitative and mathematical 
analogies, we can indicate a qualitative and mathematical analogy between the system 
of the translatory dynamics and central collision (impact) dynamics of two bodies in 

12
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translatory motion pre-impact and post impact dynamics phenomena and the system of 
the rolling two ball dynamics and central collision (impact) dynamics of two rolling balls 
in rolling motion, without slipping, pre-impact and post impact dynamics phenomena.

On the basis of these indicated qualitative and mathematical analogies, it is 
possible to list analogous kinetic parameters of these systems.

The axial mass inertia moments 1PJ  and 2PJ  for the corresponding 
momentary axis of rotation in rolling, without slipping along trace are analogous 
to the corresponding bodies with masses  1m  and 2m  of two bodies in collision in 
translatory motion.

Pre-impact (arrival) angular velocities ( )01,1 tPimpactP ωω


=  and ( )02,2 tPimpactP ωω


=  
of the rolling balls around the corresponding momentary axis are analogous to 
corresponding translatory pre-impact velocities, ( )01 tv  and ( )02 tv  of two bodies 
at the moment before collision.

Post-impact-outgoing angular velocities ( )τωω += 01,1 tPoutgoingP


 and 
( )τωω += 02,2 tPoutgoingP


 of the rolling balls are analogous to the corresponding 

post-impact-outgoing translatory velocities  ( )τ+01 tv  and ( )τ+02 tv  of two 
bodies in translatory motion to collision.

On the basis of Petroviċ’s theory [63-65] and qualitative and mathematical 
analogies considered in the previous section, it is possible to formulate the 
analogous hypothesis  of conservation of the sum of angular momentums (moment 
of impulse for the corresponding momentary axis) of the impact dynamics of two 
rolling balls in pre-collision and post-collision motion; this is achieved on the basis 
of the hypothesis of conservation of the sum of linear momentum (impulse) (1) of 
the impact dynamics of two bodies in translatory motion pre-collision and post-
collision, in the following relation:	
	 ( ) ( ) ( ) ( )τωτωωω +++=+ 022011022011 tttt PPPPPPPP

 JJJJ 	 (8)

and analogous with (2), the coefficient of the restitution of rolling balls collision is 
in the form:
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as the ratio between the difference of angular velocities of rolling balls post-collision 
and pre-collision kinetic states.

Equation (8) is stating an important kinetic parameter of the system of two 
colliding rolling balls as a sum of angular momentum (sum of the moment of impulse 
of each of the colliding rolling balls for the corresponding momentary axis of rolling) 
of the colliding and rolling balls before – pre-collision and after – post-collision 
kinetic state of the system in analogy with and on the same level as equation (1) of 
the sum of linear momentum (impulse) for two colliding bodies (balls) in translatory 
motion, pre-collision and post-collision of bodies in translatory motion. 

The restitution coefficient k  expressed by (2) is determined by Newton’s classical 
theory of impact dynamics of rigid bodies, as the ratio between the difference of the 
translatory velocity components after and before the impact for the case of central 
collision between two bodies (balls) in translatory motion after and before collision. 



The Latest Theory of Body Collisions in Rolling and the Dynamics of Vibro-Impact Systems...98

In the present paper the coefficient of the restitution k by expression (9) is introduced by 
angular velocities after and before collision of the two rolling balls.  It is in mathematical 
and qualitative analogy to the basis of the theory of Elements of mathematical 
phenomenology and Phenomenological mappings [53-65] founded by Mihailo 
Petrović (Serbian scientist and one of three doctoral students of Julius Henri Poincaré) 
using analogous kinetic elements of translatory motion of two balls and of the rotation 
motion of two rolling balls, each of them with one degree of freedom.

Additionally, in analogy with the expressions (3)-(4) of post-collision – outgoing 
body translatory velocities, it is possible to write expressions of post-collision – 
outgoing rolling balls angular velocities in the following forms: 

	

									         (10)

	
									         (11)

Previously obtained expressions (10) and (11) of  post-collision – outgoing rolling balls 
angular velocities are new and original results obtained on the basis of Petrović’s theory 
of elements of mathematical phenomenology (see Reference [63-65]). Additionally, 
expression (8) for the hypothesis of conservation of the sum of angular momentums 
(moment of impulse for corresponding momentary axis) of impact dynamics of two 
rolling balls pre-collision and post-collision motion is a newly introduced relation in 
impact dynamics as well as expression (9) for the coefficient of restitution in collision 
of two rolling balls with different size and in central collision. All these results are 
analytical and present a basis for applications in other kinds of collisions.   

In analogy of expression (5) of the impulses (linear momentum) of collision 
two bodies in pre-collision and post-collision translatory motions, it is possible 
to compose analogous expressions of the moment of impulses (kinetic moment, 
angular momentum) of collision of two rolling balls in pre-collision and post-
collision dynamics, in the following form:            									       
									         (12)

As it is known from classical literature, in analogy with the coefficient of the 
restitution of two bodies colliding in translatory motion [70], the coefficient of 
collision of two rolling balls also depends on kinds of collisions:  1* for pure no 
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elastic (plastic) collision coefficient of collision is equal to zero- 0=k ;  2* for pure 
ideal elastic collision coefficient of collision is equal to unit, ; and 3* for an 
arbitrary case between ideal plastic and ideal elastic collision coefficient of collision 
is in interval between zero and unique, 10 << k . From the comparison between 
outgoing (post-collision) angular velocities in no elastic collision of two rolling balls 
in the pre-collision state, we can point out the following conclusions:

* in the case of pure plastic collision of two rolling balls, 1=k , outgoing (post-
collision) angular velocities are equal one to another;
* in the case of ideal elastic collision of two rolling balls, 1=k , outgoing (post-
collision) angular velocities of the rolling balls are: outgoing (post-collision) 
angular velocity of the rolling ball with the largest pre-collision impact angular 
velocity is smaller, and  outgoing (post-collision) angular velocity of the rolling 
ball with smaller pre-collision impact angular velocity is larger; in this case, ideal 
elastic collision without slipping, for 1=k , if both pre-collision impact angular 
velocities of the rolling balls are equal, then, both outgoing (post-collision) 
angular velocities of the both balls are equal and independent of the balls axial 
inertia moments. 
* In the case of no elastic collision between rolling balls, 10 << k , if condition
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The kinetic energy of the rolling balls in the pre-collision kinetic state is in the form:
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and kinetic energy of these rolling balls after collision (in the post-collision kinetic 
state) is:

	                           							       (14)

a* In the case of arbitrary coefficient of restitution, 10 << k , of collision, the rate 
of decreasing kinetic energy in comparison between the pre-collision and post-
collision kinetic state of the rolling balls is equal:
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b* For an ideal plastic collision, 0=k , the rate of the kinetic energy decreasing 
in comparison between pre-collision and post-collision kinetic state of the rolling 
balls is equal:
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c* In the case of ideal elastic collision, 1=k , between rolling balls with no change 
of kinetic energy in comparison to pre-collision and post-collision kinetic states of 
rolling balls and is equal to zero: 

Table 1. Mathematical and qualitative analogies between kinetic 
parameters of two system in central collision dynamics: the collision 
of two bodies in translatory motion and collision of two rolling balls
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( ) ( ) 000, =−+=∆ tEtEE kkelastk τ . 					     (17)

In this case of ideal elastic impact, low kinetic energy conservation is valid.
In Table 1, mathematical and qualitative analogies between kinetic parameters 

of two systems in central collision dynamics are presented.  In the left column, the 
kinetic parameters for collision of two bodies in translatory motion and in the right 
column, analogous kinetic parameters of collision of two rolling balls are presented.

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* 
of the kinetic energy decreasing in comparison, kinetic energy of two rolling balls 
in the pre-collision of kinetic state and the post-collision kinetic state of the balls in 
collision present Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes 
fondamentaux de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of 
two rolling balls in kinetic states pre- and post collision (in arrival and outgoing kinetic 
states): “In the  collision of two rolling balls in rolling motion for the arbitrary coefficient 
of the restitution, 10 << k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“. 
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For 
1

1 r
R

=λ  and 
1

2
2 r

r
=λ  ratio of the axial mass inertia moments is: 

5
2

5

2

1

5

2

1

2

1 λ
ρ
ρ

=















=

r
r

P

P

J
J

. For a different ratio between axial mass inertia moments, balls’ 
outgoing angular velocities around instantaneous axis at post collision kinetic state 
between balls are:
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In Table 1, mathematical and qualitative analogies between kinetic parameters of two 
systems in central collision dynamics are presented.  In the left column, the kinetic pa-
rameters for collision of two bodies in translatory motion and in the right column, analo-
gous kinetic parameters of collision of two rolling balls are presented. 

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* of the 
kinetic energy decreasing in comparison, kinetic energy of two rolling balls in the pre-
collision of kinetic state and the post-collision kinetic state of the balls in collision pre-
sent Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes fondamentaux 
de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of two rolling 
balls in kinetic states pre- and post collision (in arrival and outgoing kinetic states): “In 
the  collision of two rolling balls in rolling motion for the arbitrary coefficient of the 
restitution, 10  k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“.  
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In Table 1, mathematical and qualitative analogies between kinetic parameters of two 
systems in central collision dynamics are presented.  In the left column, the kinetic pa-
rameters for collision of two bodies in translatory motion and in the right column, analo-
gous kinetic parameters of collision of two rolling balls are presented. 

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* of the 
kinetic energy decreasing in comparison, kinetic energy of two rolling balls in the pre-
collision of kinetic state and the post-collision kinetic state of the balls in collision pre-
sent Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes fondamentaux 
de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of two rolling 
balls in kinetic states pre- and post collision (in arrival and outgoing kinetic states): “In 
the  collision of two rolling balls in rolling motion for the arbitrary coefficient of the 
restitution, 10  k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“.  
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In Table 1, mathematical and qualitative analogies between kinetic parameters of two 
systems in central collision dynamics are presented.  In the left column, the kinetic pa-
rameters for collision of two bodies in translatory motion and in the right column, analo-
gous kinetic parameters of collision of two rolling balls are presented. 

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* of the 
kinetic energy decreasing in comparison, kinetic energy of two rolling balls in the pre-
collision of kinetic state and the post-collision kinetic state of the balls in collision pre-
sent Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes fondamentaux 
de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of two rolling 
balls in kinetic states pre- and post collision (in arrival and outgoing kinetic states): “In 
the  collision of two rolling balls in rolling motion for the arbitrary coefficient of the 
restitution, 10  k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“.  
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In Table 1, mathematical and qualitative analogies between kinetic parameters of two 
systems in central collision dynamics are presented.  In the left column, the kinetic pa-
rameters for collision of two bodies in translatory motion and in the right column, analo-
gous kinetic parameters of collision of two rolling balls are presented. 

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* of the 
kinetic energy decreasing in comparison, kinetic energy of two rolling balls in the pre-
collision of kinetic state and the post-collision kinetic state of the balls in collision pre-
sent Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes fondamentaux 
de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of two rolling 
balls in kinetic states pre- and post collision (in arrival and outgoing kinetic states): “In 
the  collision of two rolling balls in rolling motion for the arbitrary coefficient of the 
restitution, 10  k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“.  
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c*                                                         ;    		

3.7. Elementary approach for determination of expressions of intensity 
of outgoing angular velocities in the centrally centric collision of two 
bodies in the rolling, without sliding, immediately after the collision. We 
look at two axisymmetric rigid bodies with one central plane of symmetry, centrally 
colliding, and making contact at one point of collision, or two balls of different radii, 
or two disks of different radii, axial moments of inertia of masses of bodies for the 
corresponding instantaneous axes of rolling 1PJ  and 2PJ . These axial moments of 
inertia of masses do not change for the axial rolling axes in motion.

The bodies are in a non-slip rolling position at the moment 0t  and have angular 
velocities ( )01 tPω


 and ( )02 tPω


 at an instant 0t  before entering the collision 

configuration and are referred to as incoming (inlet or impact) angular velocities. At 
the moment 0t  of the start of the collision, the two bodies will touch at one contact 
point P  where both bodies have a tangential plane in common. We assume that 
the collision lasts briefly over an interval ( )τ+00 ,tt  of time, which lasts for a short 
time τ  (and realistically tends to zero). After this collision of short-term contact, the 
bodies are separated by angular velocities ( )τω +01 tP


 and ( )τω +02 tP


, which we 

call the outgoing angular velocities. This is necessary to determine the intensities of 
these outgoing angular velocities, ( )τω +01 tP


 and ( )τω +02 tP


, and we have already 

determined the paths of outgoing rolling velocities and the directions of rolling and 
directions of those outgoing velocity, velocities immediately after the collision.

Imagine that, at the point P  of contact of two bodies in a state (configuration) 
of collision, we have drawn a tangential plane and it’s normal n . This tangential 
plane is called the touch tangent plane, and the direction of that normal to the touch 
plane determines the direction of the collision. Since the centers 1C  and 2C  of mass 
of the bodies in collision are at this normal, and if the incoming rolling traces of the 
bodies are at that normal, the collision is called a centric (central) collision, and if 
not, the collision is skew or oblique eccentric. When the incoming angular velocities 

( )01 tPω


 and ( )02 tPω


 of both bodies in the collision are collinear with the tangent 
plane, that is, direct with the direction of the collision, then it is a true (directional) 
collision of the rolling bodies, otherwise it is a skew collision of two rolling bodies.

3.7.1. Hypothesis of conservation of sum of angular momentum for the instantaneous 
axes of rolling of two bodies in rolling before and after the collision of two axisymmetric 
bodies. At the time of the collision, both bodies, which roll immediately before the 
collision, come into contact at one point, or line-derivatives. In the collision event 
[67], although we have made the assumption of models of rigid, axisymmetric bodies 
with a central plane of symmetry, during the collision they deform locally, in the local 
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In Table 1, mathematical and qualitative analogies between kinetic parameters of two 
systems in central collision dynamics are presented.  In the left column, the kinetic pa-
rameters for collision of two bodies in translatory motion and in the right column, analo-
gous kinetic parameters of collision of two rolling balls are presented. 

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* of the 
kinetic energy decreasing in comparison, kinetic energy of two rolling balls in the pre-
collision of kinetic state and the post-collision kinetic state of the balls in collision pre-
sent Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes fondamentaux 
de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of two rolling 
balls in kinetic states pre- and post collision (in arrival and outgoing kinetic states): “In 
the  collision of two rolling balls in rolling motion for the arbitrary coefficient of the 
restitution, 10  k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“.  
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In Table 1, mathematical and qualitative analogies between kinetic parameters of two 
systems in central collision dynamics are presented.  In the left column, the kinetic pa-
rameters for collision of two bodies in translatory motion and in the right column, analo-
gous kinetic parameters of collision of two rolling balls are presented. 

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c* of the 
kinetic energy decreasing in comparison, kinetic energy of two rolling balls in the pre-
collision of kinetic state and the post-collision kinetic state of the balls in collision pre-
sent Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes fondamentaux 
de l’équilibre et de mouvement - 1803),  dealing with the kinetic energy of two rolling 
balls in kinetic states pre- and post collision (in arrival and outgoing kinetic states): “In 
the  collision of two rolling balls in rolling motion for the arbitrary coefficient of the 
restitution, 10  k , the loss of kinetic energy decreasing during collision is 
proportional to the loss of angular velocities“.  
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3.6. Elementary approach for determination of expressions of intensity of 
outgoing angular velocities in the centrally centric collision of two bodies in 
the rolling, without sliding, immediately after the collision 

 
We look at two axisymmetric rigid bodies with one central plane of symmetry, cen-

trally colliding, and making contact at one point of collision, or two balls of different 
radii, or two disks of different radii, axial moments of inertia of masses of bodies for the 
corresponding instantaneous axes of rolling 1PJ  and 2PJ . These axial moments of 
inertia of masses do not change for the axial rolling axes in motion. 

The bodies are in a non-slip rolling position at the moment 0t  and have angular ve-

locities  01 tP


 and  02 tP


 at an instant 0t  before entering the collision configura-
tion and are referred to as incoming (inlet or impact) angular velocities. At the moment 

0t  of the start of the collision, the two bodies will touch at one contact point P  where 
both bodies have a tangential plane in common. We assume that the collision lasts brief-
ly over an interval  00 ,tt  of time, which lasts for a short time   (and realistically 
tends to zero). After this collision of short-term contact, the bodies are separated by an-
gular velocities   01 tP


 and   02 tP


, which we call the outgoing angular 

velocities. This is necessary to determine the intensities of these outgoing angular ve-
locities,   01 tP


 and   02 tP


, and we have already determined the paths of 

outgoing rolling velocities and the directions of rolling and directions of those outgoing 
velocity, velocities immediately after the collision. 

Imagine that, at the point P  of contact of two bodies in a state (configuration) of col-
lision, we have drawn a tangential plane and it’s normal n . This tangential plane is 
called the touch tangent plane, and the direction of that normal to the touch plane deter-
mines the direction of the collision. Since the centers 1C   and 2C  of mass of the bodies 
in collision are at this normal, and if the incoming rolling traces of the bodies are at that 
normal, the collision is called a centric (central) collision, and if not, the collision is 
skew or oblique eccentric. When the incoming angular velocities  01 tP


 and  02 tP


 

of both bodies in the collision are collinear with the tangent plane, that is, direct with the 
direction of the collision, then it is a true (directional) collision of the rolling bodies, 
otherwise it is a skew collision of two rolling bodies. 



Katica R. (Stevanović) Hedrih 103

contact area. If the contact of the bodies in the collision is at the point of contact 
(for example, the contact of the spherical surfaces of the balls in the collision, or 
the rotation ellipsoids), deformation occurs in the immediate vicinity of the contact 
point. And this deformation lasts until the projections of the angular velocities of 
rotation of the body in the collision in the direction of the collision (the normal on 
the tangent equal to both bodies in the contact point of the collision) are equal. 
Additionally, the projections of the relative angular velocities of the rolling motion 
around the instantaneous axes of rolling of the body in the collision, one relative 
to the other, towards the collision direction became zero. From that moment, zero 
projections of relative angular velocities in the direction of the collision begin to 
restore the state of the body as it was before the collision until the moment when 
the bodies separate from each other. During this time the projection of the relative 
velocities of the bodies in the collision of one relative to the other begins to increase 
and continues until the bodies have, in the part in contact, their original shape. Then 
there is a moment when we consider that the bodies have practically separated and 
that there is a period of time after the collision. Therefore, the collision period can be 
divided into two parts: τ ′  the compression period in the tangential direction to the 
body at the point of contact, and τ ′′  the restitution period in the tangential direction 
to the body at the point of contact in the collision, with the total short-time duration 

τττ ′′+′=  of the collision.
Since external active forces and moments of forces of finite intensities have 

impulses of forces equal to zero, and couplings have kinetic moments equal to zero 
and, at infinitesimal intervals of time, we consider that two material rigid bodies, 
which roll with the incoming angular velocities and in collision, are considered as 
one system. Therefore, the hypothesis of the conservation of the sum of angular 
momentum (kinetic momentum) for the instantaneous axes of rolling of each body 
- the movement before and after the collision, can be applied to the dynamics of the 
same to in the form:

      ( ) ( ) ( ) ( )τωτωωω +++=+ 022011022011 tttt PPPPPPPP
 JJJJ .	             (8.a)

This hypothesis about the conservation of the sum of the angular momentum of 
motion by rolling in a collision of two bodies, which is analogous to the hypothesis 
of the conservation of the sum of the linear momentum (1) of motion of two bodies 
in a collision and in translational motion (see References [1, 10, 12, 24, 25, 28, 29]).

3.7.2. Coefficient of restitution or collision of two axisymmetric rolling bodies with 
one central plane of symmetry. When the incoming angular velocities ( )01 tPω


 and 

( )02 tPω


 of rolling and the axial moments of inertia of mass 1PJ  and 2PJ  for the 
instantaneous axes of rolling of each of the bodies in a collision are known, the 
previous hypothesis relation (8) and (8a) of the sum of the angular momentum of 
motion for the instantaneous axes of rolling, before and after the collision, is not 
sufficient to determine two unknown outgoing angular velocities ( )τω +01 tP


 and 

( )τω +02 tP


, after the collision of two bodies, which roll just before and after the 
collision. We need another relation, an equation, which we will set from the very 
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properties of the body in a collision. As we have already described the collision 
and the contact process of two bodies, in the period of solid body compression, the 
angular velocity ( )01 tPω


 of the first body will decrease by ( ) CPP t ωω


−01    , and the 

second increases by     ( )02 tPCP ωω


− , where CPω


   the angular velocity of both bodies 
in the collision is at the end of the compression at the local environment of the 
contact point of the bodies in the collision. As both bodies are deformed in the local 
area around the point of joint contact in the collision, it is apparent that, during the 
restitution period, the deformations of the body will not be immediately lost and that 
the angular velocity ( )01 tPω


 of the first body will decrease by ( )( )02 tk PCP ωω


−  

another angular velocity and the angular velocity ( )02 tPω


 of the second body 
will increase for size  ( )( )02 tk PCP ωω


− , where k  is the sum coefficient. Based 

on this analysis we can state that the outgoing angular velocities ( )τω +01 tP


 and 
( )τω +02 tP


 of the bodies that were in the collision are outgoing

						                                                , 	 (18)          
					   
								                    . 	 (19)

Subtracting these previous relations (18) - (19) we obtain

						          . 			   (20)

The ratio k  of the relative angular velocities of rolling of the axisymmetric bodies 
after and before the collision is

		                               				     		  (9.a)

and is called the collision coefficient, or the coefficient of restitution, or the coefficient 
of establishment of rolling bodies in a collision.

This coefficient k  is also newly introduced and represents a new definition 
of the collision coefficient, or the coefficient of restitution or the coefficient of 
establishment of rolling bodies in a collision. This new definition (9a) is derived by 
the author of this paper.
With the introduction of this new refinement of the collision coefficient, we have generalized 
Newton’s definition from the theory of collision between rigid bodies in translatory motion 
to the theory of collision between rigid bodies in rolling motion without sliding by using 
the difference of rolling angular velocities both after and before the collision. If a kinetic 
state can be defined by one angular velocity around the instantaneous axis of the rolling for 
each of the bodies, in attempting to define the dynamics of the collision, we implement our 
definition of the coefficient k  of restitution over the ratio of the relative angular velocities 
of the rolling bodies after and before the collision.

3.7.3. Intensity of outgoing angular velocities of two bodies rolling after a collision. In 
order to determine the intensities of the outgoing angular velocities of the rolling of two 
bodies after a collision, ( )τω +01 tP


 and ( )τω +02 tP


, it is sufficient to eliminate from the 

previous relations (8a) - (9a) the unknown angular velocities of both bodies, CPω


, in the 
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collision at the end of the compression at the local environment of the point of contact 
of the bodies in the collision. Consequently, it is important to solve the relations by 
unknown outgoing angular velocities, so for the outgoing angular velocities, ( )τω +01 tP


 

and ( )τω +02 tP


, after the collision of the balls, we get the following expressions:
 		            	                   
 									         (10.a)
			                            
  

									       
									         (11.a)

By determining these intensities of the outgoing angular velocities ( )τω +01 tP


 
and ( )τω +02 tP


 of the rolling of the balls (axisymmetric bodies each with a central 

plane of symmetry) after the collision, we have solved the complete problem of the 
theory of collision of axisymmetric bodies in rolling without slipping (see References 
[1, 10, 12, 24, 25, 28, 29]). These expressions (8a), (9a), (10a) and (11a) are reached, 
also, in the form (8), (9), (10) and (11) by a logical, qualitative and mathematical 
analogy, starting from the theory of collisions of bodies in translational motion, as 
shown in the previous chapter 3.6.

4. Vibro-impact dynamics of multiple collisions of two different rolling 
heavy balls along a circle trace in a vertical plane

In References [37, 45], the phase trajectory portrait of the vibro-impact forced dynamics of 
two heavy mass particles motions along a rough circle is investigated, and also the vibro-
impact of a heavy mass particle moving along a rough circle with two impact limiters was 
considered and studied. In References [34-39, 44-49] a series of mass particle motion along 
smooth or rough curvilinear lines are studied, followed by the presentation of results. 

The following part examines the vibro-impact dynamics of multiple successive 
collisions of two rolling heavy balls along a circle trace in a vertical plane and 
presents the obtained results. 

In Figure 9, a model of two heavy homogeneous rolling balls, with radiuses 1r  and 
2r , along a circle, with radius R , in a vertical plane is presented. Let us start with the 

theory of dynamics of collision between these two rolling balls, with mass 1m  and 
2m , and axial mass inertia moments  1PJ  and 2PJ   for the corresponding momentary 

axis of rotation in rolling along a curvilinear trace in the form of a circular line in a 
vertical plane, with pre-impact (arrival)  angular velocities   ( )01,1 tPimpactP ωω


=  and 

( )02,2 tPimpactP ωω


= . Mass centers 1C and 2C of the balls move translatory along 
the two circles, with radius 1rR −  and 2rR − , respectively, and with pre-impact 
(arrival) velocities ( )01.1 tvv CimpactC


=  and ( )02.2 tvv CimpactC


= . The angular velocities 

( )01,1 tPimpactP ωω


=  and ( )02,2 tPimpactP ωω


=  we denote as arrival, or impact or pre-
collision angular velocities at the moment 0t  (see Figure 10). At this moment 0t  of 
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the start of the collision between these rolling balls, the contact of these two balls is at 
point 12T , in which both balls possess the common tangent plane – plane of contact 
(touch). In the theory of the collision, it is proposed that collision takes a very short 
period of time ( )τ+00 ,tt , and that τ  tends to zero. After this short period τ bodies 
- two rolling balls in collision separate, outgoing  by post-collision-outgoing angular 
velocities  ( )τωω += 01,1 tPoutgoingP


 and ( )τωω += 02,2 tPoutgoingP


 . Mass centers 

1C and 2C  of the balls move translatory with post-collision (outgoing) translatory 
velocities ( )τ+= 01.1 tvv CoutgoingC


 and ( )τ+= 02.2 tvv CoutgoingC


. These translatory 

velocities are possible to express, each by the corresponding angular velocity and 
radius of the corresponding ball [26].

Taking into account that translatory motion along an ideal curvilinear line of 
two bodies in central collision (as the collision of two mass particles moving along a 
curvilinear line) is a simpler motion of two mass particles, defined by corresponding 
inertia properties expressed by mass, 1m  and 2m , of each body and also by a  
corresponding translatory pre-impact velocity,  ( )01 tv  and ( )02 tv  at the moment 
before collision and by post-impact-outgoing translator velocities  ( )τ+01 tv  and 
( )τ+02 tv  is possible to compare with the collision of two rolling balls along a 

curvilinear line. Explanation is similar to the one in the case when the pre- and post-
collision traces are straight lines, presented in the previous part 3.5.

Figure 9. Mechanical system of collision of two heavy rolling balls along a 
circular trace in a vertical plane

Additionally, the rolling balls along curvilinear circle lines-traces is a simple 
rotation motion defined only by inertia properties in the axial mass inertia 
moments 1PJ  and 2PJ   for corresponding momentary axis of rotation in rolling 
along curvilinear circle traces with pre-impact (arrival)  angular velocities   

( )01,1 tPimpactP ωω


=  and ( )02,2 tPimpactP ωω


=  and corresponding outgoing post-impact-
outgoing angular velocities  ( )τωω += 01,1 tPoutgoingP


 and ( )τωω += 02,2 tPoutgoingP


. 

Nevertheless, for the rolling motion between two collisions we must assume 

12
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that balls are in the rolling dynamics under the conservative force caused by the 
gravitational field, which contains the balls and the circle. But it is only necessary 
to take this into account during the motion of the balls between two collisions, and 
to obtain pre-collision angular velocities as angular velocities at end of the previous 
interval of rolling each of the balls in the gravitational field.

4.1. Kinetic parameters of a rolling heavy ball motion along a 
circle in a vertical plane. Let us consider the rolling dynamics of one heavy 
smooth ball (first) along a curvilinear circle line trace in a vertical plane and in the 
gravitational field (rolling pendulum in References [14, 66-68]). For that reason, the 
kinetic and potential energies are expressed by the central angle 1ϕ with respect to 
the circle center 0C   (see Figure 9, and Reference [26, 69,]):

       ( ) 2
1

2
1111, 2

1 ϕκ rRm −=kE ;    ( )( )111111, cos1 ϕ−−== rRgmghm CpE 	 (21)

where the translatory velocity of the ball mass center 1Cv  and the angular velocity 
around the central axis 1Cω


 and the angular velocity of the body rolling around the 

momentary axis 1Pω


 are in the following relations:

       ( ) 1111111 CPC rrrRv ωωϕ ==−=   					     (22)

       

( )
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1

1
1

1
11 1 ϕϕωω 

r
rR

r
R

PC
−

=



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


−== 					     (23)

 
Additionally, the first ball axial mass inertia moment 1PJ  for the instantaneous 

axis of rolling and the coefficient of rolling 1κ  of the first rolling ball along a circular 
line in a vertical plane are:

       








+= 2

1
1

1
11 r

m
mP

CJJ     and   11 2
1

2
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2
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1
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r
i

rm
CCJκ 				    (24)

 
For that reason, it is necessary to obtain the corresponding ordinary nonlinear 

differential equations of rolling each of balls along a curvilinear line in a vertical 
plane in the gravitational field.

The ordinary nonlinear differential equation of the first ball rolling along a 
curvilinear circular line in a vertical plane in the gravitational field is:

	 ( ) 0sin 1
11

1 =
−

+ ϕ
κ

ϕ
rR

g
 					     (25)

The integral of the energy of the first ball in the rolling dynamics along a circular 
trace in the gravitational field is:

       ( ) ( )( ) constCrRgmrRmp ==−−+−=+= 1111
2
1

2
1111,1,1 cos1

2
1 ϕϕκ EEE k 	(26)

and it presents an expression of total mechanical energy of the rolling ball at 
arbitrary moments and arbitrary positions on the circle trace.  The total mechanical 

gh
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energy of the first rolling ball along a circular trace at the initial moment is:

       ( ) ( )( ) constCrRgmrRmp ==−−+−=+= 10,111
2

0,1
2

1110,1,0,1,0,1 cos1
2
1 ϕϕκ EEE k

	
(27)

where ( )010,1 ϕϕ  =  and ( )010,1 ϕϕ  =  are the initial values of the generalized angular 
coordinate and generalized angular velocity.

The first integral of the ordinary nonlinear differential equation (25) of the 
rolling dynamics of the first ball along a curvilinear circle line is possible to obtain 
from the integral of energy (26)-(27) in the following form:

       ( )( ) ( ) ( )0,1
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2
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2
1 cos12cos12 ϕ
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κ
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−
+=−

−
+

rR
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 		  (28)

or in the form:

       ( ) ( )0,11
11

2
0,1

2
1 coscos2 ϕϕ

κ
ϕϕ −

−
+=

rR
g

 				    (29)

The previous non-linear equation (29) presents the equation of the phase 
trajectory in the phase plane ( )11,ϕϕ  , the curves of the constant total mechanical 
energy of the rolling ball between two collisions are also visible, and the total 
mechanical energy in this interval is constant, but depends on initial conditions, 

( )010,1 ϕϕ =  and ( )010,1 ϕϕ  = , in each of the intervals between two successive 
collisions. After each collision of the balls, the set of angular velocities of rolling balls 
are outgoing angular velocities as post-impact or post-collision angular velocities of 
rolling balls as the initial velocities for dynamics in the next post-collision interval of 
the corresponding period of rolling.

For that reason, the expression of the momentary angular velocity of rolling balls 
is necessary to be expressed by means of the independent generalized coordinate   

1ϕ  in the following form:

( ) ( )0,11
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2
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The angular velocity of the first rolling ball is the function of the initial central 
angular velocity  ( ) 1,01 0 ϕϕ  =  in relation to the circle center 0C  and generalized 
coordinate 1,,1 impactϕ  of position at circle where first collision appears:
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(31)

and for the next impact angular velocity of each of the rolling balls depends on the 
outgoing angular velocity in the previous collision of the balls and the coordinate 

1,1impactϕ  of position where the next collision appears:

      ( )
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Using previous expressions for the description of the dynamics of the first rolling ball 
along the same circular trace in a vertical plane, for the second rolling ball, kinetic and 
potential energies are expressed by the central angle 2ϕ , and are in the following forms:

            
( ) 2

2
2

2222, 2
1 ϕκ rRm −=kE  and  ( )( )222122, cos1 ϕ−−== rRgmghm CpE     (33)

where the velocity of the second ball mass center 2Cv  and the second ball angular 
velocity around the central axis 2Cω


 and angular velocity about the momentary axis 

of rolling 2Pω


 are in the following relations:

        ( ) 2222222 CPC rrrRv ωωϕ ==−=  and ( )
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(34)

and the second ball axial mass inertia moment for the instantaneous axis of rolling 
and the coefficient of the rolling of the second rolling ball along a circular trace in a 
vertical plane are in the following forms:
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The ordinary non-linear differential equation describing the dynamics of the 
second ball rolling is:

       
( ) 0sin 2

22
2 =

−
+ ϕ
κ

ϕ
rR

g
 						      (36)

The integral of energy of the second ball rolling along the circle in the gravitational field is:

      ( ) ( )( ) constCrRgmrRmp ==−−+−=+= 2222
2
2

2
2222,2,2 cos1

2
1 ϕϕκ EEE k

 	 (37)

and presents the expression of total mechanical energy of the second rolling ball at 
an arbitrary moment and arbitrary position on the circle trace.  The total mechanical 
energy of the second rolling ball along the same circle trace at the initial moment is:

      ( ) ( )( ) constCrRgmrRmp ==−−+−=+= 20,222
2

0,2
2

2220,2,0,2,0,2 cos1
2
1 ϕϕκ EEE k

	 (38)

where ( )020,2 ϕϕ =  and ( )020,2 ϕϕ  =  are the initial values of the generalized 
angular coordinate and generalized angular velocity.

The first integral of the ordinary nonlinear differential equation (36) of the 
rolling dynamics of the second ball along the curvilinear circle line is possible to 
obtain from the integral of energy (37)-(38) in the following form:

( )( ) ( ) ( )0,2
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2
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2 cos12cos12 ϕ
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or in the form:
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 				    (40)
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This previous nonlinear equation (40) presents the equation of the phase trajectory in 
a phase plane ( )22 ,ϕϕ   and it is also visible that there are curves of constant energy of the 
second rolling ball between two collisions and that total mechanical energy in this interval 
is constant, but depends on the initial conditions  ( )020,2 ϕϕ =  and ( )020,2 ϕϕ  =  in 
each of the interval between two successive collisions. After each collision of the balls, 
angular velocities of the rolling balls are the outgoing angular velocities as post-impact 
angular velocities of the rolling balls as a set of initial velocities for dynamics in the next 
post-collision interval of the corresponding period of rolling of the balls.

For that reason, the expression of the momentary angular velocity of the rolling 
ball is necessary to express by means of an independent generalized angle coordinate 

2ϕ  in the following form:
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2
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The angular velocity of the second ball rolling along an instantaneous axis is the 
function of the initial central angular velocity ( ) 2,02 0 ϕϕ  =  with respect to the circle 
center 0C  and the angle coordinate 1,,2 impactϕ  of the position where the second 
collision appears:
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and for the next impact-collision angular velocity of the second ball rolling depends 
on the outgoing angular velocity in the previous collision of the second balls and 
coordinate 1,,2 impactϕ  of position where the next (second) collision appears:

      ( )
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Central angle coordinates of the positions of the balls in the state of collisions are 
in the following relation: βϕϕ += kimpactkimpact ,,1,,2 , where angle  depends on the 
geometrical parameters of the circle line radius R , and of the radiuses of both balls 

1r  and 2r  , and it is defined by the expression in the form (see Figure 10):

( ) ( ) ( )
( )( )
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λλλ
λλλλβ

rRrR
rrrRrR 	 (44)

where 
1

2
2 r

r
=λ  and 

1

2
2 r

r
=λ .	

4.2. Non-linear vibro-impact dynamics and phase trajectories with 
successive central collisions of two heavy smooth balls rolling along a 
circular trace in a vertical plane. Let us consider the vibro-impact dynamics of two 
heavy balls rolling along a circle in a vertical plane. Using the ordinary nonlinear differential 
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equations (25) and (36), and the equations (29) and (40) of the phase trajectory of two separate 
rolling balls along circle line (obtained in 4.1), we can consider the dynamics of two rolling 
balls in vibro-impact dynamics along a circular trace in a vertical plane, taking into account 
that these equations are valid for the nonlinear dynamics of the both balls between two 
successive collisions of these balls.  

4.2.1 Solution for governing nonlinear differential equations with respect to time duration 
of the rolling balls at a circular line. For each interval of the non-linear dynamics of balls, 
between two collisions, the initial conditions must take into account the position of the 
corresponding impact and post-collision outgoing angular velocity of the corresponding 
ball. We take the measure of time from zero at each next interval between two successive 
collisions.  Also, it is necessary to obtain the time for each next collision in relation to the 
initial moment of motion, or from the starting interval of motion post-previous-collision.

For that reason, let us introduce the following denotations:
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(46)

then equations (29) and (40) of the phase trajectory of each of the rolling heavy balls 
along a circular line in a vertical plane are expressed in the following forms: 

      ( )0,11
2
1

2
0,11 coscos ϕϕωϕϕ −+=    and  ( )0,22

2
2

2
0,22 coscos ϕϕωϕϕ −+=  		  (47)

Figure 10. Plan of angular velocities and component velocities in pre- and post-
collision of two rolling heavy balls along a circular trace in a vertical plane
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The first ordinary nonlinear differential equation from (25) is possible to solve 
with respect to time t , and for that reason we must introduce in the first integral (29) 
the following trigonometric relation: 

2
sin21cos 12

1
ϕϕ −=  and after transformation, 

the time t  of duration of rolling a ball along a circular trace between two ball 
positions ( )010,1 ϕϕ =  and ( )t11 ϕϕ = , on the circle line , is expressed by an integral 
in the form:
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or in the form:
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The next transformation of the previous expression of the integral is by 
introducing relations: 

2
sinsin 1ϕθ ==u  and 






= 0,10,1 2

1sin ϕu , that previous integral 

for obtaining the time t of duration of rolling a ball along a circle between two ball 
positions ( )010,1 ϕϕ =  and ( )t11 ϕϕ = , on the circle line ,  turns the following form:
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The next transformation of the previous expression of the integral is by introducing 
relations: 
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The obtained integral in the expression (50) for the time t  of duration of rolling a ball 
along a circle between two ball positions  010,1    and  t11    on the circular 
line, is a normal elliptic integral, known as Legandre’s elliptic integral of the first kind 
(see Reference by Rašković [67] and Mitrinović, Djoković [57]). 

Using the development of terms of functions in the previous integral (50) in series:  
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where: 
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then it is not difficult to obtain the approximate values of the integral (50) in the follow-
ing form: 

					     (50)
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then it is not difficult to obtain the approximate values of the integral (50) in the 
following form:
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									         (54)

The previously obtained expression (54) is an approximate value and presents 
the time t  duration of the first ball rolling along a circular line between two ball 
positions ( )t11 ϕϕ =  and ( )t11 ϕϕ =  on the circular line, from the initial position

1ϕ  of the ball to the arbitrary position 1ϕ  on the curvilinear circle trace, where 
1,0ϕ is a coordinate angle at the initial position of the first ball initial at moment.
In the analogy with the previously obtained approximate value (54) of the time

1ϕ  duration of the first ball rolling from the initial position to the arbitrary position 
1ϕ  on the curvilinear circle line, for the expression of an approximate value of the 

time t  duration of the second ball rolling from the initial position ( )022,0 ϕϕ =  to the 
arbitrary position ( )t2ϕ  on the curvilinear circular line, we obtain:

	                                                                                               

									         (55)

4.2.2. Non-linear system dynamics in the interval from the initial position to the first 
collision of balls. For obtaining the coordinates of balls’ positions in the configuration 
of the first collision between rolling heavy balls at a circular line in a vertical plane, 
it is necessary to obtain time 1,impactt  of the first collision at which both balls are in 
the configuration of the first collision. We propose that the mass center 1,,1 impactC of 
the first ball is in the position defined by the angle coordinate ( ) 1,,11,1 impactimpactt ϕϕ =
, then the coordinate of the mass center 1,,2 impactC  of the second ball is defined by the 
angle coordinate: ( ) ( ) βϕϕ += 1,11,2 ompactimpacr tt , where the angle β  is defined by the 
expression (44). Using the approximate expressions (54) and (55) for time 1,impactt
duration of balls’ motion from the corresponding initial positions, 0,1ϕ  and 0,2ϕ , to 
the positions  1,,1 impactϕ  and 1,,2 impactϕ , of the first collision between rolling balls  we 
can write the following:
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									         (56)
	          

									         (57)

Taking into account that both balls start from the initial positions, 0,1ϕ  and 0,2ϕ , 
we must arrive at the configuration of the first position of the first collision, defined 
by the coordinates  1,,1 impactϕ  and 1,,2 impactϕ , show that the expressions (56) and 
(57) are equal, first to one another, and then as result is a nonlinear transcendent 
equation with respect to the unknown angle coordinate ( ) 1,,11,1 impactimpactt ϕϕ =  of the 
mass center position of the first ball at the position of the first collision between 
balls. This task of finding the first real root of this transcendental equation is not 
possible to solve analytically and it is necessary to use certain numerical methods 
and commercial software tools.  In this paper, we deal with ideas and analytical 
approaches to the defined task of vibro-impact dynamics. We propose that we have 
the first real root of this transcendental equation obtained numerically.

Furthermore, we suppose that we have the angle coordinate ( ) 1,,11,1 impactimpactt ϕϕ =  of 
the mass center 
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Furthermore, we suppose that we have the angle coordinate   1,,11,1 impactimpactt    of 

the mass center 1,,1 impactC of the first ball at the position of the first collision between 

balls, and also the angle coordinate       1,11,2 ompactimpacr tt  of the mass center 

1,,2 impactC of the second ball at the position of the first collision between balls, then it is 

possible to compose the pre-first collision impact angular velocities 1,,1 impactP   and 

1,,2 impactP  of the both heavy rolling balls using the expressions (32) and (43), in the 
following forms: 

           0,11,,1
2
1

2
0,111,.111,,1 coscos11   impactimpactimpactP               (58) 

           0,21,,1
2
2

2
0,221,,221,,2 coscos11   impactimpactimpactP        (59) 

For obtaining the post-first-collision outgoing angular velocities 
  1,,11,1 outgoingPuP t    and   1,,202 outgoingPP t   of the rolling balls along a 

circular line, at the same position of the first collision between balls, determined by the 
generalized coordinates 1,,1 impact  and 1,,2 impact , we use the expressions (10) and (11) 
and we obtain the following expressions: 
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or in developed forms: 
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For  obtaining the kinetic parameters of the rolling balls in the form of pre-collision 
and post-collision angular velocities and the angle coordinate of the ball position at a 
series of successive collisions between balls we must use the approach similar to the one 
presented in this part. 

of the first ball at the position of the first collision between 
balls, and also the angle coordinate ( ) ( ) βϕϕ += 1,11,2 ompactimpacr tt  of the mass center 

1,,2 impactC of the second ball at the position of the first collision between balls, then 
it is possible to compose the pre-first collision impact angular velocities 1,,1 impactPω   
and 1,,2 impactPω  of the both heavy rolling balls using the expressions (32) and (43), 
in the following forms:

      ( ) ( ) ( )0,11,,1
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1

2
0,111,.111,,1 coscos11 ϕϕωϕλϕλω −+−=−= impactimpactimpactP  	 (58)
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     ( ) ( ) ( )[ ]0,21,,1
2
2

2
0,221,,221,,2 coscos11 ϕβϕωϕλϕλω −++−=−= impactimpactimpactP  	 (59)

For obtaining the post-first-collision outgoing angular velocities
( ) 1,,11,1 outgoingPuP t ωτω =+  and ( ) 1,,202 outgoingPP t ωτω =+ of the rolling balls along 

a circular line, at the same position of the first collision between balls, determined 
by the generalized coordinates 1,,1 impactϕ  and 1,,2 impactϕ , we use the expressions (10) 
and (11) and we obtain the following expressions:
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or in developed forms:
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For  obtaining the kinetic parameters of the rolling balls in the form of pre-
collision and post-collision angular velocities and the angle coordinate of the ball 
position at a series of successive collisions between balls we must use the approach 
similar to the one presented in this part.

In case of dealing with numerical data, a discussion is possible about the directions 
of outgoing angular velocities of corresponding rolling balls, depending on the 
relation between the intensities and directions of the arrival at the pre-collision 
angular velocities and the position of the collision between balls. It is possible to have 
various cases, so that after the considered collision, balls departures are in opposite 
directions or in the same direction depending on the listed kinetic parameters. But 
this is a task with numerical analysis.
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4.2.3 Non-linear system dynamics in the interval from the position of the first 
collision to the second collision of the balls. The next period of the motion of 
the rolling balls, between the first and the second collisions of balls, is starting 
with the measures of time interval with zero, and the initial conditions are 
equal to the outgoing kinetic parameters at the post-first-collision state of 
rolling balls: 
* for the first rolling ball the initial coordinates are 1,,11,,1 outgoingimpact ϕϕ =  and the 
initial angular velocity of the first ball mass center with respect to the circular trace 
center is

      
( ) ( )11

1,,1
1,,11,1 −
==

λ
ω

ϕϕ outgoingP
outgoingimpacrt 

and the equation of the phase trajectory branch of the first ball dynamics in the 
interval between the first and the second collision is:

      ( ) ( ) βϕβϕϕϕ +=+== 1,,11,11,,21,2 impactimpactimpactimpacr tt 				    (64)

and 

* for the second rolling ball the initial coordinate is

( ) ( ) βϕβϕϕϕ +=+== 1,,11,11,,21,2 impactimpactimpactimpacr tt  and the initial angular velocity is 

( ) ( )12

1,,2
1,,21,2 −
==

λ
ω

ϕϕ outgoingP
outgoingimpactt   of the second ball mass center with respect to 

the circular trace center, and the equation of the phase trajectory branch of the 
second ball dynamics in the interval between the first and the second collision 
is:

      
( )[ ]βϕϕωϕϕ +−+= 1,,12

2
2

2
1,,22 coscos uoutgoing 				    (65)

For obtaining the time 2,,22,,12, impactimpactimpact ttt ==
 

of the second collision 
between rolling balls and the duration between the first and the second collision 
between balls, it is necessary to use the previous approach, and on the basis of this 
write the following integrals:
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(67)

On the basis of the previous explanation in an analogy with the approximate 
expressions (56) and (57), for time 2,,22,,12, impactimpactimpact ttt ==  of duration of the 
intervals between the first and the second collisions of the rolling balls dynamics, it 
is possible to write:
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* 2,,1 impactt  for the first ball
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* 2,,2 impactt  for the second ball
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									           (69)

Taking into account that both balls, starting from the position of the first collision, 
which is now the initial position of both rolling balls along a circular trace, in the 
interval between the first and the second collisions, we must arrive at the configuration 
of the position of the second collision for equal time  2,,22,,12, impactimpactimpact ttt == .

We show that the expressions (68) and (69) are equal first to one another, and as 
a result there is a non-linear transcendental equation with respect to the unknown 
angle coordinate ( ) 2,,12,1 impactimpactt ϕϕ =  of the mass center 2,,1 impactC of the first ball 
at the position of the second collision between balls. The task is to find the first 
real root of this transcendental equation, which is not solvable analytically and it 
is necessary to use some numerical methods as well as some commercial software 
tools.  In this paper we deal with the ideas and the analytical approach to the defined 
task of vibro-impact dynamics. We propose that we have the first real root of this 
transcendental equation obtained numerically.

Suppose that we have the angle coordinate ( ) 2,,12,1 impactimpactt ϕϕ =  of the mass 
center 2,,1 impactC  of the first ball at the position of the second collision between 
balls, and also the angle coordinate ( ) ( ) βϕϕ += 1,11,2 impactimpacr tt  of the mass center 

2,,2 impactC  of the second ball at the position of the second collision between balls, then 
it is possible to compose pre-second-collision impact angular velocities 2,,1 impactPω   
and 2,,2 impactPω  of the heavy rolling of balls around the corresponding instantaneous 
axis, using the expressions (32) and (43), in the following forms:

t
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For obtaining the post-second-collision outgoing angular velocities 
( ) 2,,12,1 outgoingPimpactP t ωτω =+  and ( ) 1,2,,22,2 outgoingPimpactP t ωτω =+  of the rolling balls 

along a circular line, we use the expressions (10) and (11) and we obtain the following 
expressions:

									         (72)

									         (73)

4.2.4 Non-linear system dynamics in the interval from the position of n-th to n+1-
th collision of balls. Based on the previous consideration of the present series 
of successive collisions between balls, it is possible to make a generalization of 
the expressions for kinetic parameters between two successful collisions of the 
balls. 

The next period of the motion of two rolling balls, after n -th  collision, 2≥n , between 
balls, with the measures of time interval ( ) ( ) ( )1,2,1,,11, +++ == nimpactnimpactnimpact ttt  starting 
with zero, and the initial conditions equal to outgoing kinetic parameters at the position 
of n -th  -collision state of the rolling balls: 

* for the first rolling ball the initial angle coordinate is noutgoingnimpact ,,1,,1 ϕϕ = , 
2≥n  and the initial angular velocity is  

and the equation of phase trajectory branch of the first ball dynamics between n -th   
and 1+n -th  2≥n  collisions of the rolling balls is:
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between n -th   and 1+n -th  2≥n   	            				    (74)

and 

* for the second rolling ball, the initial angle coordinate is βϕϕ += nimpactnimpact ,,1,,2  
and the initial angular velocity between n -th   and 2≥n -th  2≥n  is 
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and the equation of the phase trajectory branch of the second ball dynamics after n -th  
collision and in the interval between n -th   and 1+n -th  2≥n   collisions of the second 
rolling balls is:

( )[ ]βϕϕωϕϕ +−+= nimpactnoutgoing ,,12
2
2

2
,,22 coscos , 

between n -th   and 1+n -th  2≥n     					    (75)

For obtaining the time ( ) ( ) ( )1,,21,,11, +++ == nimpactnimpactnimpact ttt  of the ( 1+n )-th 
collisions between rolling balls, it is necessary to use the previous approach, and 
based on this, write the following integrals:
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Based on the explanation in part 4.2.2, and an analogy with approximate expressions 
(56) and (57), for the interval ( ) ( ) ( )1,2,1,,11, +++ == nimpactnimpactnimpact ttt  between n -th   
and 1+n -th  2≥n  collisions of the rolling balls it is possible to write:
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Taking into account that both balls, starting from the position of n -th, 2≥n  
collision, now the initial position of the rolling balls along a circle, in the interval 
between n -th   and 1+n -th,  2≥n  collisions, we must arrive at the configuration of 
the position of 1+n -th, 2≥n  collision, and show the expressions (78) and (79) are 
equal, first to one another. As a result, there is a non-linear transcendental equation 
with respect to the unknown angle coordinate ( )( ) ( )1,,11,1 ++ = nimpactnimpactt ϕϕ  of the 
mass center ( )1,.1 +nimpactC  of the first ball at the position of 1+n -th, 2≥n  collision 
between balls. The task is to find the first real root of this transcendental equation 
and it is not analytically solvable. It is necessary to use some numerical methods as 
well as some commercial software tools, as we explained in the previous parts. 

Suppose that we have the necessary angle coordinate ( )( ) ( )1,,11,1 ++ = nimpactnimpactt ϕϕ  of 
the mass center ( )1,.1 +nimpactC  of the first ball at the position of 1+n -th, 2≥n  collision 
between balls, and also the angle coordinate ( )( ) ( )( ) βϕϕ += ++ 1,11,2 nimpactnimpacr tt  of 
the mass center ( )1,,2 +nimpactC  of the second ball at the position of 1+n  collision 
between balls, then it is possible to compose pre-( 1+n )-th-collision impact angular 
velocities ( )1,,1 +nimpactPω   and ( )1,,2 +nimpactPω  of the rolling of heavy balls, using the 
expressions (32) and (43), in the following forms:
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									         (81)

For obtaining post-( 1+n )-th, 2≥n -central collision outgoing angular velocities 
( )( ) ( )1,,11,1 ++ =+ noutgoingPnimpactP t ωτω  and ( )( ) ( )11,,21,2 ++ =+ noutgoingPnimpactP t ωτω  around 

the corresponding instantaneous axis of each of the rolling balls along a circular line, 
we use the expressions (10)-(11) and we obtain the following expressions:
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The next period of the motion of the rolling balls, after ( 1+n )-th collision,  
2≥n  between balls, with the measures of time ( )2, +nimpactt  interval starting with 

zero, and initial conditions equal to the outgoing kinetic parameters at post-( 1+n )-th  
-collision state of the rolling balls: 
* for the first rolling ball, the initial coordinate is ( )1,,1 +nimpactϕ , 2≥n  and the initial angular 

velocity around the circular line center 0C  is        
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and the equation of the phase trajectory branch of the first ball dynamics between 
1+n -th   and 2+n -th , 2≥n  is:

( ) ( )( )1,,11
2
1

2
1,,11 coscos ++ −+= nimpactnoutgoing ϕϕωϕϕ  ,

                1+n -th   and 2+n -th, 2≥n  				    (84)

and 

* for the second rolling ball, the initial coordinate is ( ) ( ) βϕϕ += ++ 1,,11,,2 nimpactnimpact  
and the initial angular velocity between 1+n  -th   and 2+n -th, 2≥n  central 

collisions is ( )( ) ( )
( )

( )12

1,,2
1,,21,2 −
== +

++ λ
ω

ϕϕ noutgoingP
noutgoingnimpactt  , and the equation of the 

phase trajectory branch of the second ball dynamics after ( 1+n )-th collision, 
2≥n , and between 1+n -th   and 2+n -th, 2≥n   collisions of the balls is:

( ) ( )( )[ ]βϕϕωϕϕ +−+= ++ 1,,12
2
2

2
1,,22 coscos nimpactnoutgoing , 

            between 1+n -th   and 2+n -th,  2≥n .   				    (85)

4.2.5. Sketch of the phase trajectory branches of the rolling ball dynamics between 
successive central collisions of two rolling heavy balls along a circular trace in a 
vertical plane. In Figure 11, phase trajectory portraits of vibro-impact dynamics of 
two rolling balls along a curvilinear circular line in a vertical plane with successive 
two first collisions are presented: (upper) for the second rolling ball and (lower) for 
the first rolling ball non-linear dynamics. In Figure 12, plans of the configurations of 
the rolling balls in vibro-impact dynamics of rolling heavy balls along a curvilinear 
circular line in a vertical plane with successive first two collisions are presented.

Let us explain how to obtain phase trajectories of vibro-impact nonlinear dynamics 
of two rolling balls along a circle starting from the initial conditions defined by the 
corresponding initial position and the initial angular velocity of the rolling balls:
( )0,10,1 ,ωϕ

  and  ( )0,20,2 ,ωϕ
  . Balls in this configuration are presented in Figure 12 (upper 

and left). In Figure 11, phase portraits for different initial conditions are presented: for 
the first ball (lower) portrait in the phase plane ( )11,ϕϕ   and for the second ball (upper) 
portrait in the phase plane ( ),22 ,ϕϕ  , for the cases of both single balls rolling along 
a circular line. We can see that on the phase portraits there are three types of phase 
trajectories visible. The closed phase trajectory corresponds to oscillatory motions 
with the constant total mechanical energy of the nonlinear oscillation dynamics. Open 
trajectories correspond to progressive balls rolling along a circular line in one direction. 
Trajectories with cross sections passing through unstable saddle type singular points are 
separatrices and homoclinic trajectories. Saddle points at the phase portrait correspond 
to the upper ball position on the circle line and present no stable equilibrium position. A 
stable center type singular point corresponds to a lower position of the ball at the circle 
line, and presents a stable equilibrium position of the ball at circle line.
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Figure 11. Phase trajectory portraits of vibro-impact dynamics of rolling balls 
along a curvilinear circular line in a vertical plane with two first successive 
collisions: (upper) for the second rolling ball and (lower) for the first rolling ball
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Using these phase portraits for a single ball rolling along a circular line, we 
start to construct phase trajectory branches for the vibro-impact dynamics of each 
of the rolling balls at a circular line, starting by the corresponding initial position 
and the initial angular velocity. In the phase portrait, see Figure 11, starting kinetic 
states of the balls are presented by phase representative points: ( )0,10,10.1 ,ϕϕ N  and 

( )0,20,20,2 ,ϕϕ N , taking into account 
11

0,1
0,1 −
=
λ
ω

ϕ  and 
12

0,2
0,2 −
=
λ
ω

ϕ . The interval 

of the balls non-linear dynamics is along the corresponding phase trajectory 
of the single ball non-linear dynamics between points from ( )0,10,10.1 ,ϕϕ N  to 

( )1,,11,,11,.1 , impactimpactimpactN ϕϕ  , for the first rolling ball and from ( )0,20,20,2 ,ϕϕ N  to 
( )1,,2,21,,2 , impactimpactimpactN ϕϕ   for the second rolling ball non-linear dynamics.

Taking into account 
11

1,,1
1,,1 −
=

λ
ω

ϕ impact
ompact  and 

12

1,,2
1,,2 −
=

λ
ω

ϕ impact
impact , the equation of 

the corresponding branch of phase trajectory for the first and second rolling ball along 
a circular line is defined, respectively, by (29) and (40). Phase representative points 

( )1,,11,,11,.1 , impactimpactimpactN ϕϕ   and ( )1,,2,21,,2 , impactimpactimpactN ϕϕ  , in phase portraits 
in Figure 11, correspond to the pre-first-collision state, and phase representative 
points ( )1,,11,,11,.1 , outgoingimpactoutgoingN ϕϕ   and ( )1,2,21,,2 , outgoingmimpactoutgoingN ϕϕ   
correspond to the post-first-collision kinetic state of the rolling balls along a circular 
line. From these representative points at the phase portrait a jump in velocity for 
each of the ball dynamics appears and this jump is a jump from one to another phase 
trajectory depending on the outgoing angular velocity for each of the rolling balls 
defined by the expressions (62) and (63) or (64) and (65).

The jump on one phase trajectory branch to another branch of another trajectory 
appears between the following representative points: from ( )1,,11,,11,.1 , impactimpactimpactN ϕϕ   to 

( )1,,11,,11,.1 , outgoingimpactoutgoingN ϕϕ   for the first ball and from ( )1,,21,,21,,2 , impactimpactimpactN ϕϕ   
to ( )1,,21,,21,,2 , outgoingimpactoutgoingN ϕϕ   for the second ball. This is created by the change 
of the angular velocities of rolling balls pre- and post- collision kinetic state at 
the same position and caused by the change of angular velocity directions of both 
rolling balls after the collision between them. The next corresponding branch of 
the corresponding phase trajectory of the first ball and the one for the second ball 
are defined by the expressions (70) and (71) respectively. These new branches are 
defined and bounded by the pairs of the following representative points: for the 
first ball rolling from the representative point ( )1,,11,,11,.1 , outgoingimpactoutgoingN ϕϕ   to 

( )2,,12,,12,.1 , impactimpactimpactN ϕϕ  , and for the second ball rolling from the representative 
point ( )1,,21,,21,,2 , outgoingimpactoutgoingN ϕϕ   to ( )2,,22,,22,,2 , outgoingimpactimpactN ϕϕ  , respectively.

Next jumps appear from the representative points ( )2,,12,,12,.1 , impactimpactimpactN ϕϕ   and 
( )2,,22,,22,,2 , outgoingimpactimpactN ϕϕ   to the representative points ( )2,,12,,12,.1 , outgoingimpactoutgoingN ϕϕ   

and ( )2,,22,,22,,2 , outgoingimpactoutgoingN ϕϕ  , respectively. 
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Figure 12. Plan of configurations of rolling balls in vibro-impact dynamics 
of rolling heavy balls along a curvilinear circular line in a vertical plane with 
successive first two collisions

The next branches of trajectories are defined by the expressions (80) and (81), bounded 
by the representative points: for the first rolling ball from ( )noutgoingnimpactnoutgoingN ,,1,,1,.1 ,ϕϕ   
to ( ) ( ) ( )( )1,,11,,11,.1 , +++ nimpactnimpactnimpactN ϕϕ  , and for the second ball from 

( )noutgoingnimpactnoutgoingN ,,2,,2,,2 ,ϕϕ   to ( ) ( ) ( )( )1,,21,,21,,2 , +++ noutgoingnimpactnimpactN ϕϕ  , respectively. 

Next jumps appear from the points ( ) ( ) ( )( )1,,11,,11,.1 , +++ nimpactnimpactnimpactN ϕϕ   and 

( ) ( ) ( )( )1,,21,,21,,2 , +++ noutgoingnimpactnimpactN ϕϕ   to the points ( ) ( ) ( )( )1,,11,,11,.1 , +++ noutgoingnimpactnoutgoingN ϕϕ   
and ( ) ( ) ( )( )1,,21,,21,,2 , +++ noutgoingnimpactnoutgoingN ϕϕ  ,  respectively, for ,.....6,5,4,3,2=n . 
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4.2.6. Energy analysis of the vibro-impact non-linear dynamics with successive 
central collisions of two rolling heavy balls along a circular trace in a vertical plane. 
From the phase portraits of the rolling heavy balls along a circular line in a vertical 
plane it is possible to conclude that the nonlinear dynamics of both balls between 
impacts is conservative with constant total mechanical energies for each of the rolling 
balls. Jumps of the representative point in the corresponding ball phase portrait in 
pre- and post- collision caused the change of total mechanical energy of each ball, 
from upper to lower total mechanical energy for one and opposite for another ball. 
If impacts are ideally elastic and the sum total of mechanical energies of both balls 
are constant, if there is no ideal elastic collision, this sum of total mechanical energy 
decreases and after numerous successive collisions tends to zero.  Conversely, in this 
case of no ideal elastic collisions a series of jumps appear from one to another phase 
trajectory branch.

In case of ideal elastic collisions between rolling balls in the vibro-impact dynamics 
of the whole system with constant mechanical energy and the change of mechanical 
energy between balls in each of the collisions appears. The vibro-impact dynamics 
continued in an infinite period and with infinite numbers of collisions. In the case of 
no ideal elastic collisions between rolling balls in the vibro-impact dynamics of the 
whole system with no constant mechanical energy, the energy dissipation appears 
in each collision and the change of mechanical energy appears between balls in each 
collision. Then the vibro-impact dynamics continued in a finite period and with 
finite numbers of collisions up to the rest of the system after finite numbers of the 
collisions.

Taking into account that non-linear dynamics of the single heavy ball rolling along 
a circle in a vertical plane is in conservative motion, and that for each ball energy 
integrals are presented in the forms: (26)-(28) for the first rolling ball and (36)-(38)-
(39) for the second rolling ball along a circular line and that each branch of the phase 
trajectories in phase portraits between two successive collisions also present the 
corresponding branch of the curves of the constant system total mechanical energy 
for each of a single ball motion, it is possible to make some conclusions concerning 
the vibro-impact dynamics of the two rolling balls. In each collision between two 
rolling balls, the rolling ball with a large angular velocity of the ball after collision is 
smaller and its total mechanical energy obtains a jump from the upper level to the 
lower level, and the rolling ball with smaller angular velocity after collision obtains 
a larger angular velocity and its total mechanical energy obtains a jump from the 
lower to the upper level. The jumps of total mechanical energy of each ball appear 
there after each collision of the balls.

Concluding remarks. In concluding remarks, it is necessary to point out the 
importance of Petrović’s theory of the Elements of mathematical phenomenology 
and Phenomenological Mapping [58-60] for obtaining the original results of the 
kinetic parameters of two rolling balls in the central collision when both balls roll 
along a straight trace as well as along a curvilinear trace in a vertical plane, on 
the basis of analogy with kinetic parameters of the central collision between two 
bodies in translatory motion. In Table 1, on the basis of mathematical and qualitative 
analogies between the kinetic parameters of two system central collision dynamics,  
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the corresponding analogous kinetic parameters of the central collision of two 
bodies in translatory motion are presented and the central collision of two rolling 
balls.

Also, the kinetic parameters of the collision between two rolling balls presented in 
this paper are used to present the vibro-impact dynamics of two rolling heavy balls 
along a curvilinear circular line in a vertical plane. For the vibro-impact dynamics a 
sketch of phase trajectory is presented in Figure 11. 

At the end, it is useful to conclude that the obtained kinetic parameters of the 
central collision of two rolling balls are possible to use in a study of the skew collision 
of two rolling balls that roll along two straight line traces with the intersection as 
well as parallel at a distance smaller than the sum of the balls’ radiuses.

The aim of this part is not to present an overview about the generalization 
of all results in the area of the collision of two rolling balls with different 
properties of balls and collisions. The part is focused on the central collision of 
two rolling rigid and heavy smooth balls and using the elements of mathematical 
phenomenology and phenomenological mapping to obtain the corresponding 
new expressions for the post-collision and the outgoing angular velocity of each 
ball and applied these results for the investigation of the vibro-impact dynamics 
of two rolling balls along a circular trace. This task is analytically solved in full 
and the obtained analytical results are original and new. Also, these results can 
be fundamental for the next development and investigation of the special class of 
collision of the rigid and/or deformable balls and also in application in different 
areas of engineering systems with coupled rotations (in rolling bearings, rolling 
vibro-impact dampers - mechanisms for the dynamic absorption of torsional 
vibrations, or other). 

5. Generalized rolling pendulum along a curvilinear trace: 
Phase portrait, singular points and total mechanical 

energy surface

5.1. Kinetic parameters of a rolling heavy ball motion along 
three circle arches in a vertical plane. This part of the paper contains a 
description of a generalized rolling pendulum along a curvilinear trace consisting 
of three circle arches in a vertical plane. Sets of three non-linear differential 
equations of dynamics of the described generalized rolling pendulum along each 
of three circle arches are presented. A set of three equations of each of three 
phase trajectory branches which correspond to the dynamics of the described 
generalized rolling pendulum along each of three circle arches is derived. A 
phase portrait, a set of singular points and total mechanical energy surface are 
graphically presented for a particular case of geometrical parameters of the 
system (for details see Reference [14]). 
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                              a*      			   c*		               	 b*   		           					         

Figure 13. Decomposition of the rolling ball dynamics along the curvilinear 
line rolling trace consisting of three circle arches 

To begin with, it is necessary to define a mechanical model of generalized rolling 
pendulum. A rigid body with one axis of symmetry and a plane of symmetry, which 
can roll along a curvilinear line with one or more minimums in a vertical plane, is 
a rolling pendulum, in our definition. In this part of the paper, non-linear dynamics 
of a rolling pendulum along a curvilinear line, as a rolling trace, consisting of three 
circle arches is investigated. In Figure 13, the decomposition of the curvilinear 
rolling trace into three separated circle arches with different radiuses is presented. 
The system of the ordinary nonlinear differential equations of a heavy ball rolling 
along a rolling trace into three separated circle arches with different radiuses is in 
the forms:
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The system of the first integral of the previously listed ordinary nonlinear 
differential equations (85)-(87) of a heavy ball rolling along a rolling trace into three 
separated circle arches with different radiuses are in the forms:
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and present the equations of the branches of phase trajectory portraits.
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Figure 14. A rolling ball along a curvilinear line consisting of three circle 

arches, each with a central angle of 
2

3π  or π  or 
2

3π , successively, and in the 

singular case for  rRR 20 −> .  a* Mechanical model of “the generalized rolling 
pendulum” along a curvilinear rolling trace. b* Three parts of a phase portrait 
which correspond to non-linear dynamics of a rolling ball along each of three 
circle arches as rolling traces. c* The complete phase portrait of the rolling 
dynamics of a ball along a curvilinear line-trace consisting of three circle arches 

with central angles 
2

3π  or π  or 
2

3π , successively, in the case for rRR 20 −>  

and with a half of two triggers of coupled each of two singular points and a 
homoclinic orbit in the form of half of number “eight” with one cross section 
in one non stable saddle type singular point and with the second type of 
homoclinic phase trajectory with a cross section in a non-stable saddle type 
singular point and containing a stable center type singular point.

5.1.1. Particular case for: 0=β  and rRR 20 −> , (see Figure 14.a*).  For that 
case, the set of the nonlinear equations of phase trajectory branches of nonlinear 
dynamics of rolling balls along three circle arches of the rolling trace is in the form 
(88)-(90) for 0=β .  

Using the previous set of equations and changing the initial conditions, and 
taking into account the conditions of continuity in the common posits between the 
first and the second circle arches as well as the second and the third circle arches of 
the rolling trace and that at the left end of the first circle arch and at the right end of 
the third circle arch, limiters are positioned, we can obtain a set of three particular 
parts of the phase portraits for a rolling ball along each of three circle arches of a 
rolling trace presented in Figure 13b*. Using the obtained set of three particular 
phase portraits, which preset decomposition of the complete phase trajectory 
portrait for the considered case of a rolling ball along a curvilinear trace composed of 
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FFiigguurree  1144.. A rolling ball along a curvilinear line consisting of three circle arches, 

each with a central angle of 
2

3  or   or 
2

3 , successively, and in the singular 

case for rRR 20   .  a* Mechanical model of “the generalized rolling pendu-

lum” along a curvilinear rolling trace. b* Three parts of a phase portrait which 
correspond to non-linear dynamics of a rolling ball along each of three circle 
arches as rolling traces. c* The complete phase portrait of the rolling dynamics of 
a ball along a curvilinear line-trace consisting of three circle arches with central 

angles 
2

3  or   or 
2

3 , successively, in the case for rRR 20   and with a 

half of two triggers of coupled each of two singular points and a homoclinic orbit 
in the form of half of number “eight” with one cross section in one non stable 
saddle type singular point and with the second type of homoclinic phase trajecto-
ry with a cross section in a non-stable saddle type singular point and containing a 
stable center type singular point. 
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The system of the first integral of the previously listed ordinary nonlinear differential 
equations (85)-(86)-(87) of a heavy ball rolling along a rolling trace into three separated 
circle arches with different radiuses are in the forms: 

   0,11
11

2
0,1

2
1 coscos2 


 




rR
g

 , for   
21             (88) 

 

a* 

c* 

b* 



Katica R. (Stevanović) Hedrih 129

three circle arches for 0=β  and rRR 20 −> , (see Figure 14b*). In the results of 
composition it is visible that the complete phase trajectory portrait (in phase plane
( )11,ϕϕ  - ( )22,ϕϕ  - ( )33,ϕϕ  ), of a rolling ball along a curvilinear trace composed of 
three circle arches for 0=β  and rRR 20 −> , is presented in Figure 14c*.

b*
Figure 15. A rolling ball along a curvilinear line consisting of three circle arches, 

each with a central angle of βπ
−

2
3  or βπ 2−  or βπ

−
2

3 , successively,  and in 

the case for ( ) ( ) ( ) βsin00 RRrRrR +−+>− , for βπϕπ −≤≤−
21

, βπϕβπ
−≤≤






 −−

22 2
 

and βπϕπ −≤≤−
23 . a* Mechanical model of “the generalized rolling 

pendulum” along a curvilinear rolling trace. b* Complete phase portrait of 
rolling dynamics of a ball along curvilinear line-trace consisting of three circle 
arches in the case for ( ) ( ) ( ) βsin00 RRrRrR +−+>−  and with a trigger of 
coupled each of three singular points and a homoclinic orbit in the form of 
number “eight” with one cross section in one non-stable saddle type singular 
point and with the second type of the homoclinic phase trajectory with two 
cross-sections in two non-stable saddle type singular points.

5.1.2. Particular case for: β ≠ 0 and (R − r) > (R0 + r) − (R0 +R) sin β, (see Figure 15a*).  
For that case, the set of the nonlinear equations of phase trajectory branches of nonlinear 
dynamics of rolling balls along three circle arches of a rolling trace is in the following form 
(93)-(95) for 0≠β . For that case, the complete phase trajectory portrait in the phase 
plane ( )11,ϕϕ  - ( )22,ϕϕ  - ( )33,ϕϕ  , is in the form presented in Figure 15b*. 

5.2. Total mechanical energy surface of generalized rolling pendulum. 
For a graphical presentation of the total mechanical energy surface of a generalized 
rolling pendulum, we take into consideration a particular case for: 0≠β  and 
( ) ( ) ( ) βsin00 RRrRrR +−+>− , (see Figure 16a* and 4a*).  For that case, the set 
of the nonlinear function of the total mechanical energy surface in the phase space 
( )111 ,, ϕϕ E - ( )222 ,, ϕϕ E - ( )333 ,, ϕϕ E  is defined by (88)-(90).
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Figure 16.  A generalized rolling pendulum with a rolling ball along a 
curvilinear trace consisting of three circle arches each with the central 
angle of βπ

−
2

3  or βπ 2−  or βπ
−

2
3 , successively,  and in the case of 

( ) ( ) ( ) βsin00 RRrRrR +−+>− ,    for βπϕπ −≤≤−
21 ,   βπϕβπ

−≤≤





 −−

22 2  
and  βπϕπ −≤≤−

23  .  a* The mechanical model of “the generalized rolling 
pendulum” along a curvilinear rolling trace.  b* Surface of total mechanical 
energy of the rolling dynamics of a ball along a curvilinear line consisting  of 

circle arches with central angles of βπ
−

2
3  or βπ 2−  or βπ

−
2

3 , successively,  

in the singular case for ( ) ( ) ( ) βsin00 RRrRrR +−+>−   and with three 
maximum values of the total mechanical energy, two same local maximum 
values of total mechanical energy and the smallest maximum value between 
the previous, which correspond to three non-stable saddle type singular 
points and two minimum of total mechanical energy values correspond to 
two stable centre type singular points;  c* Complete phase portrait of rolling 
dynamics of a ball along curvilinear line-trace consisting of three circle 
arches in the case for ( ) ( ) ( ) βsin00 RRrRrR +−+>−  and with the triggers 
of coupled each of three singular points and homoclinic orbit in the form of 
number “eight” with one cross section in one non-stable saddle type singular 
point and with the second type of homoclinic phase trajectory with two cross-
sections in two non-stable saddle type singular points.
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In Figure 16a*, for a particular case for: 0≠β  and ( ) ( ) ( ) βsin00 RRrRrR +−+>− , the 
graphical presentation of the total mechanical energy surface in the phase space 
( )111 ,, ϕϕ E - ( )222 ,, ϕϕ E - ( )333 ,, ϕϕ E  of nonlinear dynamics of a generalized 
rolling pendulum is presented.

In the same Figure 16, the mechanical model (a*) of the generalized rolling 
pendulum is presented for that case and also the corresponding complete phase 
trajectory portrait (c*) is presented. The paper starts with a description of a 
generalized rolling pendulum (see Reference [14]) along a curvilinear trace 
consisting of three circle arches in a vertical plane. The rolling body of a generalized 
rolling pendulum is a rigid body with an axis of symmetry and one plane of symmetry 
with a cross-section in a plane of symmetry in the form of a circle.  Sets of three 
non-linear differential equations and a set of three equations of each of three phase 
trajectory branches which correspond to the dynamics of the described generalized 
rolling pendulum along each of three circle arches are derived. The phase portrait, 
a set of singular points and the total mechanical energy surface are graphically 
presented for particular cases of geometrical parameters of the system. 

It is possible to use the presented analytical and graphical presentation for a 
heavy mass particle moving along a curvilinear trace consisting of three circle arches, 
introducing a nonlinear differential equations and other analytical expressions that 
the coefficient of rolling is equal to unique, and that the radius of a rolling ball is 
equal to zero (for detail see References [11-14]).

The presented analytical and graphical elements in the previous parts are the basis 
of the methodology for the investigation of the vibro-impact dynamics of a system with 
two rolling bodies in successive collisions (see References [10, 12, 15, 17, 24, 26, 29, 30, 
31]). For obtaining the outgoing angular velocity of each rolling body after each collision 
in a series of successive collisions we can use the analytical expressions presented in 
References [15, 26, 30] from the extended classical theory of impact by kinematics and 
dynamics of collision between two rolling bodies founded by Hedrih (Stevanović) R. K.

5.3. Analytical generalization of a nonlinear dynamics description of a 
rolling heavy thin disk along a curvilinear trace in a rotating vertical plane 
around a vertical axis at a constant angular velocity. The nonlinear differential 
equation of dynamics of a heavy thin disk rolling, without slipping, along a general 
curvilinear trace, in a rotating vertical plane, around the vertical axis with the constant 
angular velocity, is derived. The first integral of this nonlinear differential equation is 
determined.  The first integral presents the nonlinear equation of the phase trajectory in a 
phase plane of rolling, without slipping, a heavy thin disk along a general curvilinear trace, 
in a rotating vertical plane, around the vertical axis with the constant angular velocity. A 
theorem about bifurcation and triggers of coupled singularities is formulated. A qualitative 
analysis of the stability of singular points and relative equilibrium positions on a trace of a 
rolling body is presented.

The characteristic equation of dynamics of the generalized rolling pendulum, 
along a trajectory in a rotating vertical plane at a constant angular velocity around 
vertical axis is presented (for details see References [6, 7, 26]).
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	                             a*			               b*									       
Figure 17. Geometric parameters of the rolling of heavy rigid disks on a 
rotating curvilinear trace in a vertical plane around a vertical axis

Suppose there is a curvilinear trace determined by ( )xfy = , so that the 
curvature radius of each of its concave arches is larger than the radius of the 
contour of the disk circle in the plane of symmetry, by which the disk rolls, without 
slipping, along the curvilinear trace, rotating, around the vertical axis with the 
constant angular velocity Ω , in the rotating vertical plane (see Refs. [6, 7, 26]). 
The rolling body, without slipping, rotating around the vertical axis with the 
constant angular velocity Ω , has a degree of freedom of movement along the 
curvilinear trace, because it has five constraints. For an independent generalized 
coordinate, we select the abscise coordinate x , in the rotating vertical plane of the 
coordinate system, by which we will express the angular velocity ( )Ω,, xxP ω  of 
the instantaneous relative rotation around the current instantaneous axis of the 
relative rolling of the disk along a curvilinear trace in a rotating vertical plane with 
the constant angular velocity Ω  around the vertical axis. ( ) ( )Ω=Ω ,,1,, xxv

r
xx CrelP ω

. The expression of kinetic energy kE  of a disk in relative rolling along a 
curvilinear trace ( )xfy =  in a vertically rotating plane around the vertical axis 
by a constant angular velocity Ω , determines the integral of the kinetic energy 
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Suppose there is a curvilinear trace determined by  xfy  , so that the curvature
radius of each of its concave arches is larger than the radius of the contour of the disk 
circle in the plane of symmetry, by which the disk rolls, without slipping, along the cur-
vilinear trace, rotating, around the vertical axis with the constant angular velocity  , in
the rotating vertical plane (see Refs. [6, 7, 26]). 

The rolling body, without slipping, rotating around the vertical axis with the constant 
angular velocity  , has a degree of freedom of movement along the curvilinear trace,
because it has five constraints. For an independent generalized coordinate, we select the 
abscise coordinate x , in the rotating vertical plane of the coordinate system, by which 
we will express the angular velocity  ,, xxP   of the instantaneous relative rotation
around the current instantaneous axis of the relative rolling of the disk along a curviline-
ar trace in a rotating vertical plane with the constant angular velocity   around the

vertical axis.     ,,1,, xxv
r

xx CrelP  .

The expression of kinetic energy kE  of a disk in relative rolling along a curvilinear 
trace  xfy   in a vertically rotating plane around the vertical axis by a constant angular

velocity  , determines the integral of the kinetic energy 
     dMvdE ddMk

2

2
1

  of the

elementary mass dM  of the disk. (see right subfigure b* in Figure 17.). 

5.3.1. Nonlinear differential equation of a rolling disk along a rotating curvilinear 
line and the equation of phase trajectory 

The nonlinear differential equation of the rolling motion of a heavy thin rigid disk, 
without slipping with the radius r , along the curvilinear trace of the form  xfy  , in
a rotating vertical plane around the vertical axis with the constant angular velocity  ,

(and where the coefficient of rolling    12
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In order to get the first integral of the preceding nonlinear differential equation 
(91), we introduce 2xu   as a change of the variable coordinate (see Reference [6, 7,
26]). The first integral of the rolling motion differential equation of a rigid disk, without 
slipping, along the rotating curvilinear trace of the form  xfy  , around the vertical
axis with the constant angular velocity  ,  is:
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 of the elementary mass 
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Suppose there is a curvilinear trace determined by  xfy  , so that the curvature
radius of each of its concave arches is larger than the radius of the contour of the disk 
circle in the plane of symmetry, by which the disk rolls, without slipping, along the cur-
vilinear trace, rotating, around the vertical axis with the constant angular velocity  , in
the rotating vertical plane (see Refs. [6, 7, 26]). 

The rolling body, without slipping, rotating around the vertical axis with the constant 
angular velocity  , has a degree of freedom of movement along the curvilinear trace,
because it has five constraints. For an independent generalized coordinate, we select the 
abscise coordinate x , in the rotating vertical plane of the coordinate system, by which 
we will express the angular velocity  ,, xxP   of the instantaneous relative rotation
around the current instantaneous axis of the relative rolling of the disk along a curviline-
ar trace in a rotating vertical plane with the constant angular velocity   around the
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trace  xfy   in a vertically rotating plane around the vertical axis by a constant angular

velocity  , determines the integral of the kinetic energy 
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without slipping with the radius r , along the curvilinear trace of the form  xfy  , in
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In order to get the first integral of the preceding nonlinear differential equation 
(91), we introduce 2xu   as a change of the variable coordinate (see Reference [6, 7,
26]). The first integral of the rolling motion differential equation of a rigid disk, without 
slipping, along the rotating curvilinear trace of the form  xfy  , around the vertical
axis with the constant angular velocity  ,  is:
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 of the disk. (see right subfigure 
b* in Figure 17).

5.3.1. Nonlinear differential equation of a rolling disk along a rotating curvilinear 
line and the equation of phase trajectory. The nonlinear differential equation of the 
rolling motion of a heavy thin rigid disk, without slipping with the radius r , along 
the curvilinear trace of the form ( )xfy = , in a rotating vertical plane around the 
vertical axis with the constant angular velocity Ω , (and where the coefficient of 
rolling  
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vilinear trace, rotating, around the vertical axis with the constant angular velocity  , in
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In order to get the first integral of the preceding nonlinear differential equation 
(91), we introduce 2xu   as a change of the variable coordinate (see Reference [6, 7,
26]). The first integral of the rolling motion differential equation of a rigid disk, without 
slipping, along the rotating curvilinear trace of the form  xfy  , around the vertical
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), is (for details see Refs. [6, 7, 26]):
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In order to get the first integral of the preceding nonlinear differential equation 
(91), we introduce 2xu =  as a change of the variable coordinate (see Reference [6, 
7, 26]). The first integral of the rolling motion differential equation of a rigid disk, 
without slipping, along the rotating curvilinear trace of the form ( )xfy = , around 
the vertical axis with the constant angular velocity Ω ,  is:
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If we introduce the coefficient of disk rolling, without slipping, in the form 
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If we introduce the coefficient of disk rolling, without slipping, in the form 

  12
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, which for a thin disk is 
2
3

 , then the nonlinear

ordinary differential equation of rolling without sliding a heavy rigid thin disk along a 
curvilinear line in the rotating vertical plane around the vertical axis at the constant an-
gular velocity  , is in the following form:
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where  xfC and  rxF ,  are expressed by the following expressions (for details
see References [6, 7, 26]).: 
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In the previous papers of the author (for details see References [6, 7, 26]), the 
main attention was paid to a more detailed analysis of the characteristic equation of the 
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   the angular velocity of rotation of the vertical plane about the vertical axis, and in 
which there is the curvilinear rolling route of the generalized rolling pendulum.  

We can draw a conclusion in the form of the following theorem: The kinetic energy of 
a thin disk rolling along a curvilinear trace in a vertical rotating plane around a vertical 
axis, with a constant angular velocity  , consists of the kinetic energy of the rotation of
the rigid disk around the vertical axis at angular velocity  , and the kinetic energy of
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ordinary differential equation of rolling without sliding a heavy rigid thin disk 
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where ( )xfC  and ( )rxF ,  are expressed by the following expressions (for details 
see References [6, 7, 26]):
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curvilinear paths, Ω   the angular velocity of rotation of the vertical plane about the 
vertical axis, and in which there is the curvilinear rolling route of the generalized 
rolling pendulum. 

We can draw a conclusion in the form of the following theorem: The kinetic 
energy of a thin disk rolling along a curvilinear trace in a vertical rotating plane 
around a vertical axis, with a constant angular velocity Ω , consists of the kinetic 
energy of the rotation of the rigid disk around the vertical axis at angular velocity 
Ω , and the kinetic energy of relative rolling disk along the curvilinear trace with the 
angular rolling velocity ( ) ( )Ω=Ω ,,1,, xxv
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The theorem on bifurcation and on the trigger of coupled singularities in the 
nonlinear dynamics of generalized rolling pendulums along curvilinear routes in 
a rotating vertical plane around a vertical axis at a constant angular velocity Ω : 

Let us present the curved line, given with ( ) ( )xfxf −= , for which the 
following is valid ( ) ( )xfxf −= , and which has at the points for extreme values  
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The theorem on bifurcation and on the trigger of coupled singularities in the non-
linear dynamics of generalized rolling pendulums along curvilinear routes in a rotat-
ing vertical plane around a vertical axis at a constant angular velocity  :

Let us present the curved line, given with  xfy  , for which the following is valid
   xfxf  , and which has at the points for extreme values   ssss xfyxEX ,  for 

  0 sxf , the minimums   ssss xfyxC ,  for   0 sxf ,   0 sxf , and the maxi-

mums   ssss xfyxS ,  for   0 sxf ,   0 sxf , the curvilinear route, along which 
a heavy homogeneous thin disk of the radius 0r  rolls without slipping and let it be 
located in the Earth's gravitational field, in the vertical plane which rotates around the 
vertical axis, at a constant angular velocity 0 . The characteristic equation for de-
termining the singular points, as well as the position of the relative equilibrium of the 
disk on the curvilinear path, in the vertical rotating plane around the vertical axis at a 
constant angular velocity 0 , is of the form: 
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in which it is   12
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 , the rolling coefficient of the 

disk, because 
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3 MrMrP  CJJ , and g is the accelera-

tion of the Earth that is heavier. Around each extremum of the curvilinear trajectory, 
which is the minimum defined by   ssss xfyxC ,  for   0 sxf ,   0 sxf , in the 
nonlinear dynamics of the thin disk rolling, bifurcations and triggers of coupled singu-
larities appear, and around each extremum, which is a maximum defined with 

  ssss xfyxS ,  for   0 sxf ,   0 sxf , there are neither bifurcation nor triggers
of coupled singularities (for details see References [6, 7, 26]). 

6 Vibro-impact dynamics of two rolling heavy thin disks along a 
rotating curvilinear line and energy analysis 

      In this part of the paper, a construction of the phase trajectory portraits of a 
generalized rolling pendulum along a rotating curvilinear line is presented. The generalized 
rolling pendulum containing a rolling thin heavy disk rotates along the curvilinear line 
consisting of three circle arches, in a rotating vertical plane at a constant angular velocity 
around a vertical eccentric/central axis. Depending on the system parameters, different 
possible forms of the phase portraits appear with different structures of the sets of singular 
points and forms of phase trajectories. A trigger of coupled singular points and homoclinic 
orbit in the form of deformed number eight appears. A mathematical analogy [67-69] 
between nonlinear differential equations of the considered generalized rolling pendulum and 
motion of the heavy mass particle along the same form of the curvilinear line, in a rotating 
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curvilinear route, along which a heavy homogeneous thin disk of the radius 0>r  
rolls without slipping and let it be located in the Earth’s gravitational field, in 
the vertical plane which rotates around the vertical axis, at a constant angular 
velocity 0>Ω . The characteristic equation for determining the singular points, 
as well as the position of the relative equilibrium of the disk on the curvilinear 
path, in the vertical rotating plane around the vertical axis at a constant angular 
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vertical axis, at a constant angular velocity 0 . The characteristic equation for de-
termining the singular points, as well as the position of the relative equilibrium of the 
disk on the curvilinear path, in the vertical rotating plane around the vertical axis at a 
constant angular velocity 0 , is of the form: 

     

   
 
  

 
      

0
11

1
13

2

1
1

222

2

2
3

2





























xfxf

xfr

xf

xfrx
gxf

xfrxfxh   (97) 

in which it is   12

2

2

2

2 rrMr
CPP iiJ , that is 

2
3

 , the rolling coefficient of the 

disk, because 
44

24 rMr
z  CJ  and  22

2
3 MrMrP  CJJ , and g is the accelera-

tion of the Earth that is heavier. Around each extremum of the curvilinear trajectory, 
which is the minimum defined by   ssss xfyxC ,  for   0 sxf ,   0 sxf , in the 
nonlinear dynamics of the thin disk rolling, bifurcations and triggers of coupled singu-
larities appear, and around each extremum, which is a maximum defined with 

  ssss xfyxS ,  for   0 sxf ,   0 sxf , there are neither bifurcation nor triggers
of coupled singularities (for details see References [6, 7, 26]). 

6 Vibro-impact dynamics of two rolling heavy thin disks along a 
rotating curvilinear line and energy analysis 

      In this part of the paper, a construction of the phase trajectory portraits of a 
generalized rolling pendulum along a rotating curvilinear line is presented. The generalized 
rolling pendulum containing a rolling thin heavy disk rotates along the curvilinear line 
consisting of three circle arches, in a rotating vertical plane at a constant angular velocity 
around a vertical eccentric/central axis. Depending on the system parameters, different 
possible forms of the phase portraits appear with different structures of the sets of singular 
points and forms of phase trajectories. A trigger of coupled singular points and homoclinic 
orbit in the form of deformed number eight appears. A mathematical analogy [67-69] 
between nonlinear differential equations of the considered generalized rolling pendulum and 
motion of the heavy mass particle along the same form of the curvilinear line, in a rotating 

, that is 
2
3

=κ , the rolling coefficient of the disk, 

because 
44

24 rMr
z == πσCJ  and  

The latest theory of body collisions in rolling and the dynamics of vibro-impact systems… 
137 

The theorem on bifurcation and on the trigger of coupled singularities in the non-
linear dynamics of generalized rolling pendulums along curvilinear routes in a rotat-
ing vertical plane around a vertical axis at a constant angular velocity  :
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6. Vibro-impact dynamics of two rolling heavy 
thin disks along a rotating curvilinear line 

and energy analysis

In this part of the paper, a construction of the phase trajectory portraits of a generalized 
rolling pendulum along a rotating curvilinear line is presented. The generalized rolling 
pendulum containing a rolling thin heavy disk rotates along the curvilinear line 
consisting of three circle arches, in a rotating vertical plane at a constant angular velocity 
around a vertical eccentric/central axis. Depending on the system parameters, different 
possible forms of the phase portraits appear with different structures of the sets of 
singular points and forms of phase trajectories. A trigger of coupled singular points and 
homoclinic orbit in the form of deformed number eight appears. A mathematical analogy 
[67-69] between nonlinear differential equations of the considered generalized rolling 
pendulum and motion of the heavy mass particle along the same form of the curvilinear 
line, in a rotating vertical plane around the vertical axis at a constant angular velocity, is 
pointed out. On the basis of the obtained different possible phase trajectory portraits, a 
non-linear phenomenon in vibro-impact dynamics of two rolling thin disks on a rotating 
curvilinear line around the vertical axis at a constant angular velocity, is investigated. 
Energy transfer between rolling disks in each of the series of successive collisions is 
analyzed and presented on relative mechanical energy portraits for the dynamics of 
each of the rolling disks in collision (see Reference [24]).

6.1. Vibro-impact system description. The vibro-impact system (see Figure 
18) contains two generalized rolling pendulums, each in the form of a thin heavy 
disk, which are in rolling motions, without slipping, along a rotating curvilinear line 
trace with the constant angular velocity Ω  around a vertical axis. The curvilinear 
line trace is symmetric and consists of three circle arches, two with the same radius 
value and one with the different radius.

Figure 18. Vibro-impact system, containing two generalized rolling 
pendulums each in the form of a thin heavy disk, which are in rolling 
motions, without slipping, along a rotating curvilinear line trace with the 
constant angular velocity  Ω  around the vertical axis of a curvilinear line 
axial symmetry
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Figure 19 represents one combination of many possible parts of phase trajectory 
portraits finalized into a complex phase trajectory portrait of a dynamics of a relative 
rolling heavy thin disk along a rotating curvilinear trace around a vertical axis of its 
symmetry at a constant angular velocity, with the notation of the corresponding set 
of singular points, and two triggers of coupled singular points and two homoclinic 
trajectory orbits in a form of two deformed figure eight shapes.

It is necessary to point out, that depending on the relations between geometrical 
parameters and values of angular velocity of the rotation of a curvilinear rolling 
trace, there is the exit of the component phase trajectory portraits of the dynamics 
of a rolling thin heavy disk along the component circle arches of a curvilinear trace 
rotating around eccentric/centric axes. For graphical presentations in this paper, 
there are more complicated cases of the component phase trajectory portraits with 
triggers of coupled singular points and homoclinic trajectory in a figure eight form, 
as the results of bifurcation with change of bifurcation parameter.

Figure 19. One combination of many possible parts of phase trajectory portraits 
finalized into a complex phase trajectory portrait of a dynamics of a relative rolling 
heavy thin disk along a rotating curvilinear trace around a vertical axis of its 
symmetry at a constant angular velocity, with the notation of the corresponding 
set of singular points, and two triggers of coupled singular points and homoclinic 
orbits in a form of two deformed figure eight shapes



Katica R. (Stevanović) Hedrih 137

Additionally, it can be concluded that there are numerous combinations for the 
continuation between parts of phase trajectories, from different parts of phase 
trajectory portraits, in the construction of the complex phase trajectory portrait for 
the dynamics of the relative rolling of a heavy thin disk along a curvilinear trace 
rotating around a vertical axis of its symmetry, with constant angular velocity.

Depending on the initial conditions of the dynamics of rolling a heavy thin disk along 
a rotating curvilinear trace, and the obtained in results of this dynamics of the form of 
the phase trajectory presented in Figure 19, along which the representative point in 
phase plane is moving, it is possible to evaluate and conclude about the character of disk 
rolling, periodic or twice-periodic or progressive rolling up to a limiter of rolling along the 
corresponding circle arch.

6.2. The vibro-impact dynamics with the central collision of two 
disks which are rolling along a rotating curvilinear track. It is possible 
to determine next the impact angular velocity of relative rolling of a disk along a 
curvilinear trace at the position of the configuration of the first collision. For that 
task, we use the following relations:

a* first collision appears at the first circle arch trace impact rolling angular 
velocities are:
	

1,,1,11,,,1 impactimpactrelP r
rR ϕω 





 −

= 	 and   1,,1,21,,,2 impactimpactrelP r
rR ϕω 





 −

=  	 (98)

where 1,,1,1 impactϕ   and  1,,1,2 impactϕ  are angular velocities, determined by the equation of 
phase trajectory of the rolling disk along the rotating first circle arch around an eccentric 
vertical axis, for the angle coordinate of the first and the second disk in position of the 
first collisions in position at the first circle arch (for details see Reference [24]):
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b* first collision appears at the second circle arch trace impact rolling angular 
velocities are:
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where 1,,1,1 impactϕ   and  1,,1,2 impactϕ  are angular velocities, determined by the equation of 
phase trajectory of the rolling disk along a rotating first circle arch around an eccentric 
vertical axis, for the angle coordinate of the first and the second disk in the position of 
the first collisions in the position at the first circle arch (for details see Reference [24]):

      ( ) ( )1,,11,,2,11,,11,,2,1

2
2

0,11,,2,1 2cos2cos
4
1coscos2 ootinuityimpactootinuityimpactimpact ϕϕϕϕλ

κ
ϕϕ −−−

Ω
+= 

 
(101)

      
( ) ( )2,,2,21,,2,22,,2,21,,2,2

2
2

0,11,,2,2 2cos2cos
4
1coscos2 continuityimpactcontinuityimpactimpact ϕϕϕϕλ

κ
ϕϕ −−−

Ω
+= 



The Latest Theory of Body Collisions in Rolling and the Dynamics of Vibro-Impact Systems...138

c* first collision appears at the first circle arch trace impact rolling angular 
velocities are:

       1,,3,11,,,1 impactimpactrelP r
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
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= 	 (102)

where 1,,1,1 impactϕ   and  1,,1,2 impactϕ  are angular velocities, determined by the equation 
(18) of phase trajectory of the rolling disk along the rotating first circle arch around 
eccentric vertical axis, for the angle coordinate of the first and the second disk 
in position of the first collisions in position at the first circle arch (for details see 
Reference [24]):
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Let us start with the theory of dynamics of a central collision between two rolling 
disks, with mass 1m  and 2m , and axial mass inertia moments  2PJ  and 2PJ   for the 
corresponding momentary axis of the relative rolling along a rotating curvilinear 
trace with pre-impact (arrival)  relative angular velocities ( )01,1 tPimpactP ωω


=  and 

( )02,2 tPimpactP ωω


= . The mass centers 1C  and 2C  of the disks are moving in a relative  
translational move with pre-impact (arrival) relative velocities ( )01.1 tvv CimpactC


=  and 

( )02.2 tvv CimpactC


= . Relative angular velocities ( )01,1 tPimpactP ωω


=  and ( )02,2 tPimpactP ωω


=
, we denote as arrival, or impact or pre-impact relative angular velocities at the 
moment 0t . At this moment 0t  of the start of the collision between these relative 
rolling disks, the contact of these two disks is at point 12T , in which both of the 
disks possess a common tangent plane – plane of contact (touch). In the theory of 
collision, it is proposed that collision takes a very short period of time ( )τ+00 ,tt
, and that τ  tends to zero. After this short period τ  , bodies - two relative rolling 
disks in collision separate and outgo with post-impact-outgoing relative angular 
velocities  ( )τωω += 01,1 tPoutgoingP

  and ( )τωω += 02,2 tPoutgoingP
 . The mass centers 1C  and 

2C  of the disks perform relative    translational motion with post-impact (outgoing) 
translatory velocities ( )τ+= 01.1 tvv CoutgoingC

  and ( )τ+= 02.2 tvv CoutgoingC
 . These relative 

translational  velocities  could be expressed by the corresponding relative angular 
velocity and the radius of the corresponding disk.

Using Hedrih’ s expressions for outgoing angular velocities (chapter 3, parts 3.6 
and 3.7), in the expressions (10) and (11), after the first collision, one can write 
the expressions for the outgoing angular velocities of the rolling disks after the first 
collision, for the first 1,,,1 outgoingrelPω  and for the second 1,,,2 outgoingrelPω .

Taking into account that the collision kinetic state appears and disappears during 
a very short time period, tends to zero, 0→τ , and that in the classical theory the 
hypothesis that collision is a quasi-static process is introduced, and also taking into 
account only the change of the rolling disk angular velocities, but not changing the 
disks positions, everything presented in chapters 3, (parts 3.6 and 3.7)  4 and 5 
of this paper has been proved and is valid for the relative rolling disks in collision 
positioned on the curvilinear line (for details see Reference [24]).

12
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For obtaining the first branches of phase trajectories of the first and the second 
disk, the equation of phase trajectory with the initial condition of the corresponding 
rolling disk, for starting the investigation of vibro-impact dynamics is used. One can 
take into account the corresponding eccentricity of the vertical axis depending on 
the disk rolling along  the corresponding one, two or three circle arches of a rotating 
curvilinear trace. These initial conditions are 0,1ϕ  and 0,1ϕ  for the first disk and 

0,2ϕ  and 0,2ϕ for the second disk, which define the corresponding initial relative 
positions and initial relative angular velocity of the corresponding disk center 1C  
and 2C  in relation to a rotating curvilinear trace and a circle arches center O . By 
using these initial conditions, we define the expressions for the pre-first collision 
impact (arrival) derivative of the first generalized coordinate 1,,1 impactϕ  and the 
second generalized coordinate 1,,2 impactϕ  when disks are in the positions of the first 
collision, 1,,1 impactϕ  and 1,,2 impactϕ .  Then we use these expressions for obtaining the 
post-first collision outgoing relative angular velocities 1,,,2 impactrelPω = 1,,,2 impactrelPω   
and 1,,2 outgoingPω = 1,,,2 outgoingrelPω   and the corresponding 1,,1 outgoingϕ  and 1,,2 outgoingϕ
, which present the initial conditions for the second branches of the rolling disks 
between the first and the second collision: 1,,11,,1 impactoutgoing ϕϕ =  ,  1,,1 outgoingϕ  , 

1,,21,,2 impactoutgoing ϕϕ = and  1,,2 outgoingϕ .
For i -th branch of phase trajectories of the rolling disks relative dynamics 

along the rotating curvilinear line between ( )1−i -th and i -th collisions, the initial 
conditions are: 

( ) ( )1,,11,,1 −− = iimpactioutgoing ϕϕ  and ( )1,,1 −ioutgoingϕ , and, ( ) ( )1,,21,,2 −− = iimpactioutgoing ϕϕ and  
( )1,,2 −ioutgoingϕ , obtained by the expressions for ( )1−i  phase trajectory branch. For 

the pre i -th collision impact (arrival) derivative of the first generalized iimpact ,,1ϕ  
and the second generalized coordinate 1,,2 impaciϕ  when disks are in the positions 
of the i-th collision, iimpact ,,1ϕ  and iimpact ,,2ϕ

 
are defined by the corresponding phase 

trajectory branches. For obtaining the expressions of the post i -th collision relative 
angular velocities ioutgoing ,,1ϕ  and ioutgoing ,,2ϕ  , expressions for the corresponding 
phase trajectory branches are used. We can conclude that this algorithm contains 
successive applications of expressions for corresponding phase trajectory branches 
with a combination of expressions of corresponding outgoing angular velocities. 

The application of expressions for the corresponding phase trajectory 
branches and for the corresponding outgoing angular velocities is clear and it is 
easy to obtain all the necessary pre i -th collision and post i -th collision kinetic 
parameters, arrival and outgoing relative angular velocities of both disks, if we 
know the position of each of the successive collisions for both rolling disks. 
However, the main problem is the lack of solvability of the transcendental equation 
analytically. This task is still possible to solve numerically and obtain coordinates 
of both disks’ positions for each at i -th collision, if collision exists. This problem 
is solvable numerically, but requires consideration in each step of the existence of 
the next collision between disks. 

In Figure 20, phase trajectory branches in phase portraits of two rolling 
heavy thin disks for relative motion in the interval between the initial condition 
configuration and configurations of the pre-first-collision and post-first-collision 
between two rolling disks with vibro-impact dynamics on a rotating curvilinear trace 

t
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with the constant angular velocity around a vertical central axis of its symmetry, for 
bifurcation parameters 1<iλ , 2,1=i , are presented (for details see Reference [24]).

Figure 20. Phase trajectory branches in phase portraits of two rolling heavy 
thin disks for relative motion in the interval between the initial condition 
configuration and configurations of the pre-first-collision and post-first-
collision between two rolling disks with vibro-impact dynamics on a rotating 
curvilinear trace with the constant angular velocity around the vertical 
central axis of its symmetry and for bifurcation parameters 1<iλ , 2,1=i .
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with vibro-impact dynamics on a rotating curvilinear trace with the constant angular 
velocity around a vertical central axis of its symmetry, for bifurcation parameters 

1i , 2,1i , are presented (for details see Reference [24]). 

Figure 20. Phase trajectory branches in phase portraits of two rolling heavy thin disks 
for relative motion in the interval between the initial condition configuration and config-
urations of the pre-first-collision and post-first-collision between two rolling disks with 
vibro-impact dynamics on a rotating curvilinear trace with the constant angular velocity 
around the vertical central axis of its symmetry and for bifurcation parameters 

1i , 2,1i . 
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The basic results presented in this part, published in the Reference [24], are the 
constructions of two-phase portraits, each of the corresponding nonlinear dynamics 
of each of two rolling different heavy thin disks in successive central collisions along 
a rotating complex curvilinear trace, as well as the determination of the kinetic 
parameters before and after each successive central collision between rolling disks. 
New Hedrih’s expressions published in References [12, 15, 17, 26, 27, 28, 30] and 
presented in the third section (parts 3.6 and 3.7) 
of this paper, related to the outgoing angular velocity after central collision are applied 
for determining each of the outgoing angular velocities of the rolling disks after each 
successive collision. Results include determining the transformed elliptic integrals for 
the determination of time and position of each of the successive collisions. Moreover, 
the energy analysis with corresponding energy jumps between disks is presented on 
the comparative corresponding constant energy curve portraits. 

Additionally, the aim of the paper is the presentation of advanced analytical results 
in the development of principal methodology based on new results in the extension 
of classical theory of collision with kinematics and dynamics of the collision of two 
rolling disks along a rotating curvilinear rolling trace, for the investigation of vibro-
impact dynamics using phase trajectory portraits. This is an analytical approach 
which is sufficient for a qualitative analysis of nonlinear and vibro-impact dynamics. 

The results are presented theoretically with the necessary analytical expressions 
and explanations, as well as with numerous graphical presentations of the different 
phase portraits of the dynamics of rolling heavy thin disks. This methodology could 
be applied for the investigation of the numerous engineering vibro-impact system 
dynamics.

The full  methodology  is useful for  investigation, not  only  for considering the 
vibro-impact system dynamics; it is a useful methodology for the application to other 
similar vibro-impact system dynamics of two or more rolling disks without slipping 
along an arbitrary curvilinear line stationary or rotating around a vertical axis or 
a skew positioned axis. This methodology could be applied for the investigation of 
numerous engineering vibro-impact system dynamics.  

7. Mechanics of billiards – Geometry and kinematics

For an introduction to the content of billiards mechanics, which includes content 
on the geometry, kinematics and dynamics of playing billiards, it is most illustrative 
to rely on a few Coriolis’ sentences, which we have adopted as the motto of this paper. 
Obviously, many authors believe that these sentences point to the complexity of 
geometry, kinematics and dynamics of billiards; because the analysis, which we will 
expose here, reveals that the dynamics of billiards includes many phenomena of the 
dynamics of real systems. Our presentation will be based on our results, but also on 
the comparisons with the results achieved today by other authors, both mechanics 
and mathematicians. Additionally, it is evident that our results are original.
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Multiple keywords and concepts of kinematics and dynamics, such as: ball 
dynamics as a rigid body, non-slip rolling, collision, alternation of velocity direction, 
impact velocity, outgoing velocity, ball rolling path, center of gravity trajectory, 
central and skew (oblique) collision, force impulse, kinetic energy, impact and 
collision, collision of two spheres, collision of three spheres, impulse forces, linear 
momentum of motion, angular momentum of motion, speak about the complexity 
of dynamics of the system of billiards elements. This is evident when we observe 
only the movement of one billiards ball; when more balls are involved, then we have 
a really complex system, hybrid structures and dynamic configurations of billiards.

Let us start with the names of famous scientists who contributed to the knowledge 
of certain aspects of the dynamics of billiards.

As we were quoting a few sentences from Gaspard-Gustavo de Coriolis at the 
outset, the following part provides biographical information about this scientist 
whose work was essential in the field of mechanics. He was a mathematician, a 
mechanical engineer, and a scientist. He was best known for his work on the Coriolis 
acceleration and Coriolis force. Coriolis was the first to coin the term “work” for 
the product of force and distance. In 1829, Coriolis published a textbook, “Calcul 
de l’Effet des Machines”, which presented mechanics in a way that could easily be 
applied in industry. During this period, the true term for kinetic energy 
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Coriolis explored the possibilities of generalizing kinetic energy and work on 
rotating systems and, as a result, produced the work “Sur les équations du mouvement 
relatif des systèmes de corps”, presented at the French Academy of Sciences (1832). 
Coriolis wrote the work “Sur les équations du mouvement relatif des systèmes de 
corps”, 1835. In the 20th century, the terms “Coriolis acceleration” and “Coriolis force” 
appeared on systems with the coupled transverse rotational motion and relative 
curvilinear motion.
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  Beginning with the works of George Birkoff, billiards systems have become a 
popular topic of study, drawing on a variety of fundamentals, beginning with the 
ergodic Mors’s theory, KAM theory, and others. Also, the dynamics of billiards 
systems is interesting because it occurs quite naturally in a number of tasks of 
mechanics and physics: in the dynamics of vibro-impact systems, diffraction of short 
waves, dynamics of ball bearings, etc.

The basis of the dynamics of billiards is the theory of dynamics of systems 
with one-sided constraints. There are essentially various models of the theory of 
impact. The one-sided bond imposed on the system can be replaced by the field 
of conservative and dissipative forces, and then, the coefficients of elasticity and 
dissipation by some assumption to the aspirations of infinity, as Kozlov writes in 
[55]. It can then be shown that the movement of such a “released” system with fixed 
initial data, at each finite interval of time, tends to move with an impact.

Finally, it is necessary to emphasize again that in the approach to investigating the 
properties of the billiards game phenomenon, it is necessary to establish the basic 
models of billiards. These models, under the same keyword “billiards”, distinguish 
between defined tasks: geometry, kinematics, and the dynamics of billiards, or the 
totality of all these tasks. For example, starting tasks are about the properties of 
mathematical billiards. When approached by mathematicians, then it remains in 
the domain of billiards geometry and the elements are the geometric point and its 
possible open or closed polygonal paths, that is, polygons inscribed in a certain area 
by a unilaterally bounded closed contour line. Periodic trajectories are possible, 
depending on the initial position and the initial direction of the trajectory of the 
geometric point. Therefore, the basic determinations are the lengths and angles that 
determine the directions of the path of the geometric point. Furthermore, it works 
with lengths and angles, and the units of measurement are meters and degrees or 
radians. This is a rough approximation of the real billiards system and does not take 
into account the time at which the geometric point is moved along the trajectory. If 
the basic determination of time in addition to lengths and angles is included, then 
it moves into the field of kinematics, so kinetic parameters, elements of translation 
velocity and angular velocity of rolling are included.

If we stay only on the mathematical model that we enrich with basic determination 
over time, with a unit in seconds, then only the kinematic element of the geometric 
point translation rate, with the unit of meter per second, is included. A mass 
associated with a geometric point can be added to this model, so we have a model 
of gross abstraction of a real billiard by a material point that has mass, velocity, 
and its motion in time is observed. The mass has a unit in pounds. We have already 
included this in the model in addition to geometry and kinematics and dynamics, 
and with that we open the questions of determining the impulses of motion, kinetic 
energy and forces under which the dynamics are realized, including impacts at 
unilateral holding bonds and collisions between material points. However, for 
better abstraction of the billiard system to the model of billiard dynamics, it is not a 
satisfactory model neither with a geometric point nor with a material point, but with 
a rolling ball which has its mass, a certain mass distribution, defined by the axial 
moment of inertia of the masses for the axis of rolling of the ball, and has a certain 
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instantaneous angular velocity of rolling about the instantaneous axis of rolling, 
measured in units of radian per second, or the velocity of translation of the center 
of mass in units of meters per second, and the angular velocity of rotation about the 
central eigen axis of self-rotation measured in units of radians per second. It means 
that if a billiards model is formed as an abstraction of a real model of billiards with 
one or more balls rolling, then the elements of the billiards events are studied as the 
elements of geometry, kinematics and dynamics of billiards.

Thus, there is a body of a certain shape and a line along which it rolls, so the 
definitions of length are used, so we are in the domain of geometry, and when we 
include the analysis of translational velocities of the center of mass and the angular 
velocity of rotation of the central self-rotation axis, then we are in the domain of 
kinematics. If we now include masses and axial moments of inertia of masses and 
impulses of motion and kinetic moment (angular momentum), kinetic energy and 
impulse forces, we completed the task of kinetics of billiards or the dynamics of 
the system of billiards. In the following chapters, we will first define the models of 
billiards and then analyze the elements of geometry, kinematics and dynamics of 
billiards within the limits of contemporary knowledge of the scientific literature in 
this field, as well as the original results of the authors of this chapter.

7.1. Billiard geometry in a nutshell. In this section, we also highlight the 
contributions of the French scientist, engineer and mathematician, Jean-Victor Poncelet 
(July 1, 1788 - December 22, 1867), who was known for the following works: “Traité des 
propriétés projectives des figures” (1822) and “Introduction à la mécanique industrielle 
(1829)’’. And here, we will point out a number of his theorems in geometry, which are of 
great importance for the investigation of the geometry of billiards and for determining the 
periodic paths of the rolling of billiards balls in elliptic billiards, as well as other forms of 
contours in billiards (see Reference [2]).

It is certainly important to find out the properties of ideal mathematical billiards. 
Today, many researches on this topic are based on a series of basic theorems of Jean-
Victor Poncelet, so here we will list the definitions of some of them (see Reference [1]).

Theorem 1. (Poncelet Theorem): Consider two conical sections (conics) C  and 
D , which lie in the plane. Suppose that a polygon is inscribed in a conical section 
C , and described around a conical section (conics) D . Then there is an infinite 
number of such polygons inscribed in one conical section, and described around the 
other conical section, all of which have an equal number of sides. Moreover, every 
point of the conical intersection C  is the subject of such a broken line.

Theorem 2. (Poncelet Theorem): Suppose that there is such a point on the conical 
section (conic) Γ  that the polygon 010243210 ... TTTTTTTTT −− nn  with the number of 
sides 3≥n  is inscribed in the conic section (conic) Γ  and described around the 
conic section uΓ  and that the right uΓ  does not tangent the conic section (conic) 

uΓ   for 1,2,...,3,3,2 −−= nni . Then for arbitrary 3≥n  there is some polygon  
010243210 ... NNNNNNNNN −− nn  with sides inscribed in a conical section uΓ  and 

described around a conical section uΓ .
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Figure 22. Line-trace of the rolling motion of the ball along the horizontal 
plane of the elliptical billiards with the plan of horizontal components of the 
incoming impact velocities and the outgoing velocities of the contact point 
after the impact of the ball into a contour elliptical cylindrical surface with 
vertical derivatives (up); Detail of the plan of the velocity of one ball in the 
configuration of the skew impact (down)

Theorem 3. (Poncelet area theorem): Suppose that C  and C  are two areas in 
space (on the surface). If there is some closed polygon, inscribed in the area C  and 
described around the area D , it means that there are infinitely many polygons such 
as that one. In addition, each point of the area C  appears as the theme of such a 
polygon and all polygons have an equal number of sides.

One of the numerous Poncelet theorems is the Comprehensive Generalized 
Poncelet Theorem, but we don’t preset it, because in our opinion the previous three 
listed theorems are a good illustration of the content and aims of these series of 
Poncelet theorems for applications in the geometry of models of billiards as an 
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abstraction of real billiards into mathematical billiards, as pre geometrical objects 
without reality (for more details see mathematical references [2]).

Figure 22 shows the mechanical model as a good abstraction of real elliptical 
billiards. The track of the ball rolling along the horizontal plane of the elliptical 
billiards with the plan of horizontal components of the incoming impact velocities 
and outgoing velocities after the impact of the ball into a contour of elliptical 
cylindrical surface with vertical derivatives, as well as a detail plan of the velocity of 
one ball skew impacts.

7.2. Elements of billiards kinematics. In Figure 22, we have presented a 
model of an elliptical billiard with one rolling ball, which rolls on a horizontal surface 
bounded by a single one-side contour elliptical-cylindrical surface with vertical 
derivatives. The billiards balls are of the same dimensions and radius R , which is 
not negligible with respect to the semi-axes of ellipse in the horizontal flat base of the 
elliptical billiards, which we denote by a  and b , which, according to the semi-axes, 
has an eccentricity of focus 22 bae −= . With this in mind, the model of elliptical 
billiards in Figure 22 cannot be reduced to mathematical billiards by reducing the 
billiard sphere to a material or geometric point. Her line-trace of a billiard ball 
rolling, which is a broken polygonal line, open or closed, is a polygon, and its path 
can be determined purely geometrically using Poncelet theorems, or other results 
in the field of mathematical billiard models from the literature, which remain in the 
domain of pure geometry. It is necessary to first determine the geometric location of 
the points of ball centers of the impacts in relation to the contour of the elliptic area 
of billiards, and to determine the paths of rolling the ball centers in the new contour.

Figure 23. Plan of the velocity of impact of a point on a large circle of a sphere, 
which rolls along a straight line in a horizontal plane

In the observed model of the elliptical billiard from the case in Figure 22, we can 
see that the parts of the track of the roll of the billiard ball in arriving at the point of 
impact (the ball and contour), and leaving it after being hit by the contour elliptical-
cylindrical surface are parallel to the corresponding horizontal velocity component 
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just before the impact and by the corresponding horizontal component of the 
outgoing velocity of the point of impact of the ball after impact. The translational 
velocities of the center of mass of the sphere, before and after impact in the contour 
surface, are equal to the horizontal components of the incoming velocity before 
impact and the outgoing velocity after the collision, the point at which the sphere 
impact to the contour elliptical-cylindrical surface (see Reference [30]).

We will, now, turn to the representation of the kinematic elements of each of the 
possible impacts of a ball in rolling, to the contour surface, as well as to the kinematic 
elements of different cases of mutual collision of two balls.

Figure 24.  Decomposed system of two equal billiard balls in configuration of 
an oblique (skew) collision. Plan of the incoming and outgoing velocities of the 
collision contact points of each of the two balls at their oblique collision.
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Figure 25. A system of two equal billiards balls that roll on rolling tracks in an 
oblique (skew) collision configuration. The plan of the incoming and outgoing 
velocities of the collision points of each of the two balls at their oblique collision

7.2.1. An oblique collision of two billiard balls in a non-slip roll. If the rolling traces of two 
billiard balls on rolling without slipping intersect and the balls simultaneously reach the 
position so that they collide, then such a collision is said to be an oblique collision of 
two balls. Figures 24 and 25 show the plans of the component incoming impactCv ,1


 and 

impactCv ,2


, as well as outgoing outgoingCv ,1


 and outgoingCv ,2


 velocities of the ball center 
mass 1C  and 2C   of an oblique collision of two billiards balls rotating horizontally 
relative to a common vertical tangent plane at a common point of collision.

Their velocities impactCv ,1


 and impactCv ,2


 of the centers of mass  1C  and 2C , are 
non-collinear and we are using the collision model decomposition to subsystems 
presented in Figure 24. Figure 25 shows a plan of the component incoming impactCv ,1


 

and  impactCv ,2


 and of the component outgoing outgoingCv ,1


 and outgoingCv ,2


 velocities 
of an oblique collision of two billiards balls rolling along a horizontal plane, relative 
to a common vertical tangent plane at a common point of oblique collision when their 
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translational velocities of their centers 2C  and 2C  of ball mass are noncollinear, 
using a complex system model .

We ask how many such positions in the collision configuration can be insulated 
and how to define using the distance of the centers of mass of the two balls. Here is 
the conclusion of the theorem.

Figure 26. Collision of two rolling balls and the plan of incoming and outgoing 
angular velocities of the rolling balls with their rolling paths before and after 
an oblique collision

7.2.2. The theorem of the feasibility of the collision of two billiards balls. Two billiard 
balls of equal radius, in rolling without slipping, and rolling along the intersecting 
tracks, can reach the configuration of the collision, and the realization of the same, 
only if their centers 2C  and 2C  of mass are located at the corresponding distance 

R221 =CC   at points, which are at the translational velocities of their centers 
of mass 1C  and 2C  are directed to the point of intersection of their rolling paths. 
There are infinitely many such configurations of the collision feasibility of two balls. 
A collision is possible before both balls pass the point of intersection of the tracks, and 
also on condition that one has not reached the position of the section of the tracks and 
that the other ball has passed through that section of the tracks so that the intensities 
of the speeds allow the first round to cross the position of cross-sections of the tracks.

We shall now give an analysis and explanation of the plan of the component 
velocities outgoinghorv ,,1T


 and  outgoinghorv ,,1T


 , as well as outgoingRolv ,,1T


 and outgoingRolv ,,2T


 

of the points 1T  and 2T  of the balls in which the balls collide, using Figures 26 and 

 
 
 

rollingimpactballTrace 1  

ballsbothtopoinyimpactatplaneTangent  

rmtranslatoTv 1


 
1C  

12T  

1α  

outgoingv ,T1


 

imppactCv ,2


 

impact,2ω


 

rollingoutgoingballTrace 1  

rollingimpactballTrace 2  

impact,1ω


 

outgoing,2ω


 

outgoing,1ω


 

imppactCv ,1


 outgoingCv ,1


 

outgoingCv ,2


 

rollingoutgoingballTrace 2  

rmtranslatoTv 2


 

outgoingv ,2T


 

1α  

1α  
1α  

2α  2α  

2α  2α  

2C  



The Latest Theory of Body Collisions in Rolling and the Dynamics of Vibro-Impact Systems...150

27 respectively. If there was a collision through the points 1T  and 2T  at the collision 
point 1221 TTT ≡≡ , then the two balls set up an imaginary common tangent plane, 
which is tangent to both sphere surfaces at the point of their collision 1221 TTT ≡≡ . 
Let us set the coordinate system so that the coordinate axis x  is in their common 
tangent plane through the collision point, and the axis y  in the normal direction 
to that tangent plane and passes through both centers of the mass 2C  and 2C  of 
the billiards balls in the collision configuration, while the axis z  is in the vertical 
direction in the tangent plane in which the tracks of rolling balls lie and are pulled 
through the collision point of billiards balls (for details see Reference [30]).

The unit vectors of orientation of the direction and focusing of the incoming ball 
rolling paths, just before the oblique collision, are defined by the unit orientation 
vectors:

( )11,1 cossin αα jin impact


+−= , and     22,2 cossin αα jin impact


+−= .	 (104)

in which the angles 1α  and 2α of the rolling path of the ball are locked by the 
direction of the normal to the tangent plane to the sphere surfaces of the balls at 
the point of their collision, that is, by the direction of the line passing through the 
centers  1C  and 2C  of mass and both balls.

The components of the incoming velocities of the balls in rolling before the 
collision are:

The translation velocities impactCv ,1


 and  impactCv ,2


 
of the centers of mass 1C  and 

2C , or of the balls just before their collision, are:

( )111,11,1 cossin αα jivnvv CimpactCimpactC


+−==  ,

 and

( )222,22,2 cossin αα jivnvv CimpactCimpactC


+−== 		                                 (105)

The instantaneous angular velocities impactP ,1ω  and  impactP ,2ω   of rolling due to 
the rolling of balls on the corresponding incoming traces immediately before their 
collision are:

( ) ( )11
,1

11,1,1,1 sincossincos ααααωωω ji
R

v
ji impactC

impactPimpactPimpact

 +=+==
   

( ) ( )22
,2

22,2,2,2 sincossincos ααααωωω ji
R

v
ji impactC

impactPimpactPimpact

 −=−==
 
 (106)

The horizontal components impacthorv ,,1T


 and impacthorv ,,2T


 of the velocities of 
the points 1T  and   2T   that the balls collide which are equal to the velocities of the 
corresponding centers 2C , and 2C  of mass, of the corresponding balls:

( )111,11,1,,1 cossin αα jivnvvv CimpactCimpactCimpacthor


+−===T

and
( )222,22,2,,2 cossin αα jivnvvv CimpactCimpactCimpacthor


+−===T        (107)

12
12
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Figure 27. Partial analogies between the central and oblique collisions of two 
rolling balls: the opening of the traces of ball rolling in the oblique (skew) 
collision (b *) with respect to the central collision of the balls (a *).
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Vertical components impactRolv ,,1T


 and impactRolv ,,2T


  of velocities of the contact 
points 1T  and   2T  of the balls that collide with the balls are the velocities due to the 
rotation of the balls along the horizontal track by the incoming angular velocities 
and are defined as:  

  kvkRv impactRolimpactRol


,1,1,,1 CPT −=−= ω   

and 
 kvkRv impactRolimpactRol


,2,2,,2 CPT −=−= ω  			        	 (108)

The horizontal components ougoinghorv ,,1T


 and outgoinghorv ,,2T


 of the velocities of 
contact points 1T  and   2T   , with which each of the balls leaves after the mutual 
collision are:

( )111,11,1,,1 cossin αα jivnvvv CoutgoingCoutgoingCougoinghor


+−===T

and

( )222,22,2,,2 cossin αα jivnvvv CoutgoingCoutgoingCoutgoinghor


+−===T    	 (109)

The outgoing velocities outgoingCv ,1


 and outgoingCv ,2


 of translation of the centers  
1C  and 2C  of mass, or the corresponding sphere, immediately after the mutual 

collision of the billiards balls are equal to the corresponding horizontal component 
ougoinghorv ,,1T


 and  outgoinghorv ,,2T


 of the outgoing velocity of the corresponding 

contact points 1T  and 2T  sphere after the collision:

( )11,,1,,1,11,1 cossin αα jivvnvv ougoinghorougoinghoroutgoingCoutgoingC


+−=== TT

and

( )22,,2,,2,22,2 cossin αα jivvnvv outgoinghoroutgoinghoroutgoingCoutgoingC


+−=== TT  (110)

The instantaneous angular velocities  outgoing,1Pω


 and utgoingo,1Pω


 of the rolling 
and due to the outgoing rolling of each of the balls per track immediately after the 
collision are:

( ) ( )11
,,1

11,1,1,1 sincossincos ααααωωω ji
R

v
ji outgoinghor

outgoingPoutgoingoutgoing

 +=+== T
P

  

        
 

( )
( )22

,,2

22,2,2,2

sincos

sincos

αα

ααωωω

ji
R

v
ji

outgoinghor

outgoingPoutgoingoutgoing





+−=

+−==

T

P
   	

						            			   (111)

The vertical component outgoigRolv ,,1T


 and outgoigRolv ,,2T


of the departure-
outgoing velocities of the contact points 1T  and  2T  of balls, by which each of 
the balls leaves after each other’s oblique collision, is the cause of the outgoing 
rolling of each of the balls along the horizontal track at angular velocity, 

outgoingP ,1ω  respectively  outgoingP ,2ω , and are determined by the following 
expressions:
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kvkRv impactoutgoingoutgoingRol


1,11,1,,1 coscos ααω TPT ==

kvkRv impactoutgoingoutgoingRol


2,22,2,,2 coscos ααω TPT == 		  (112)

The unit vectors of orientation of the direction and focusing of the outgoing 
traces of the outgoing roll of the balls in the outlet after the collision are:

11,1 cossin αα jin outgoing


+−=

 ,

respectively 

       22,2 cossin αα jin outgoing


+−=  				     	 (113)

For next details see Reference [30].

Conclusion-Theorem: If the incoming paths of the balls in the rolling equal angles 
with the common tangent plane to the balls at the contact points of collision of the 
balls, then the horizontal components of the outgoing velocities of those points close 
the same angles with that tangent plane. Also, the outgoing paths of one or the other 
ball, as well as the translational velocities of the centers of mass of the ball, close the 
same angles with this common tangent plane of collision.

7.2.3. Billiard-Concluding considerations. Using the analysis of the elements of 
geometry, kinematics and dynamics of impact (see Figure 24.) and the collision 
of balls (see Figures 25, 26 and 27) given in the previous parts of this paper, it is 
possible to draw some conclusions and generalizations.

Here, we can imagine that the route-traces of the rolling of both balls, by which 
the balls are rolling “corrected” into straight lines and that each ball is rolling 
along the corresponding “corrected straight route” until the configuration which is 
impacted by an appropriate incoming angular velocity, and from the configuration 
of the collision by the outgoing angular velocities along “broken traces with a break”, 
as if a central collision had occurred, but we should take into account that at the 
point of collision on the route a “fracture” of the route occurs and that the angular 
velocity discontinuity occurs with the alternative of the angular velocity direction. 
The same goes for the other ball. This practically means that there is a jump in the 
intensity of the angular velocity of rolling in the kinetic state of the collision, and that 
the “breaking” of the rolling path changes and the direction of the instantaneous 
angular velocity of the roll-out after the collision changes. The “fracture of the rolling 
path” depends on the angle at which the rolling path comes from the normal tangent 
plane to the balls at the point of impact.

This consideration takes us back to the central collision of the two balls. Therefore, 
the task comes down to a central collision of two balls from which we need to 
determine the intensities of the translational outgoing velocities and the outgoing 
angular velocities of rolling about the current axis, or around it parallel to its own 
central axis of each of the balls; then the “track legs expand” as corner angles with 
the apex in the point of collision configuration and set at angles with respect to the 
normal of the tangent plane at the collision-contact points of the rolling trace of balls, 
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depending on the angles that the incoming ball rolling paths close to that normal. 
This leads us to the conclusion that it is also possible to use a central collision to 
determine the intensities of the angular velocity of rolling and to change the angular 
momentum of motion, and in the case of oblique collision of rolling balls of different 
radii and masses use appropriate analogies [27, 28, 66-68]. It should be emphasized 
that it is necessary to determine the outgoing rolling routes after a collision taking 
into account the incoming routes.

In the dynamics of billiards, there is a simultaneous collision of several balls, 
so the problem of determining the directions of the components of the outgoing 
velocities after the collision is not difficult to determine, but even today the question 
of determining the intensity of the individual components of the outgoing angular 
velocities of rolling formed in the collision of several balls is open.

8. Concluding Remarks

The elements of geometry, kinematics and dynamics of rolling homogeneous 
balls along curvilinear lines are defined (see Reference [30]). The complete Hedrih’s 
theory (see References [15, 19, 24, 25, 27, 28, 30]) of the impact and collision of 
heavy rolling balls, through geometry, kinematics and dynamics of rolling balls, is 
defined (see References [15, 19, 24, 25, 27, 28, 30]).       
      A new definition of the coefficient of restitution (collision) was introduced, starting 
from the hypothesis of the conservation of the sum of angular momentum of the balls 
in rolling, for instant rolling axes, after the collision in relation to the time before 
collision of the bodies. The expressions for the outgoing angular velocities of the ball 
rolling after the collision have been derived and their rolling paths after the impact or 
collision have been determined and various possible anchors have been shown.

The difference between the content of the term billiards used in mathematical 
works of many mathematicians, as well as the research that remains in the field 
of geometry is pointed out. Our theory of ball rolling and collision is based on the 
examples of the abstraction of real rolling systems of heavy homogeneous billiards 
to a mechanical model.

Based on both of the new Hedrih’s results (see References [15, 19, 24, 25, 27, 
28, 30]), the theory of collision between rolling bodies and dynamics of generalized 
rolling pendulums (see References [6, 7, 14, 16, 18, 24, 26, 27, 28, 30, 31]) in 
successive collisions, and the use of phase trajectory method, a new methodology of 
vibro-impact dynamics investigation is founded and presented through a number of 
applications in mechanical system dynamics.

We must point out again that the elements of geometry, kinematics and dynamics 
of rolling homogeneous balls along curvilinear lines are defined (see Reference 
accepted for ICTAM 2020+1 and Reference [30] accepted and published in EURODYN 
2020 Proceedings). The complete theory of the impact and collision of heavy rolling 
balls, through geometry, kinematics and dynamics of rolling balls, is defined by 
Hedrih (Stevanović). 
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A new definition of the coefficient of restitution (collision) was introduced and 
expressed by angular velocities of the rolling about instantaneous axis of each body 
after and before collision.  Starting from the hypothesis of the conservation of the sum 
of angular momentum of the balls in rolling, for corresponding instant rolling axes, 
after the collision in relation to the before collision of the bodies, theory of collision 
obtained the basic foundation. This hypothesis is the main foundation of the new 
theory of collision between bodies in rolling, different from the known hypothesis of 
the conservation of the sum of linear momentum in the classical theory of collision 
between bodies in translatory motion before and after collision. 

The new expressions for the outgoing angular velocities of the ball rolling after 
the collision have been derived and determined on the basis of the newly introduced 
coefficient of restitution and the hypothesis of the conservation of the sum of 
angular momentum.  Also, the rolling paths after the impact or collision of each 
rolling ball have been determined and various possible anchors have been shown. 
The difference between the content of the term billiards used in mathematical works 
[2] of many mathematicians, as well as the research that remains in the field of 
geometry is pointed out. These results come down to the task of inscribing open or 
closed polygonal lines in some restricted areas, and annals are with tasks in optics, 
exploring the path of the light beam which is reflected off mirrors at the boundaries 
defined by the regions. They are based on a series of Poncelet theorems in geometry 
and do not reach the dynamics of the real billiards systems. 

Our theory of ball rolling and collision is based on the examples of the abstraction 
of real rolling systems of heavy homogeneous billiards to the dynamics of a 
mechanical model.

Construction of the phase trajectory portraits of a generalized rolling pendulum 
along a rotating curvilinear line is presented in the following References [8-33]. 
The generalized rolling pendulum containing a rolling thin heavy disk rotates along 
the curvilinear line consisting of three circle arches, with constant angular velocity 
around a vertical eccentric/central axis. Depending on system parameters, different 
possible forms of the phase portraits appear with different structures of the sets 
of singular points and forms of phase trajectories. Trigger of coupled singular 
points and a homoclinic orbit in the form of a deformed figure eight appears (see 
References [6-14]). A mathematical analogy (see References [3, 27, 28, 66-68]) 
between nonlinear differential equations of the considered generalized rolling 
pendulum and motion of the heavy mass particle along a rotating curvilinear line 
points out the same forms. On the basis of the obtained different possible phase 
trajectory portraits, non-linear phenomena in vibro-impact dynamics of two rolling 
thin disks on a rotating curvilinear line is investigated. Energy transfer between 
rolling disks in each of the series of successive collisions is analyzed and presented 
on relative mechanical energy portraits for the dynamics of each of the rolling disks 
in collision (see Reference [14, 19, 21, 22, 23, 27, 28, 29, 32]).

By using the phase plane method, the non-linear phenomena in the dynamics of 
vibro-impact system containing two rolling bodies along a rotating circle, or along a 
different stationary curvilinear line is investigated and the results are presented in 
author’s References. The newly established Hedrih’s theory of the collision between 
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two rolling bodies was published by the author in References [15, 30] and applied 
in References [6-32]. Two generalized rolling pendulums [6, 7, 10-32] along the 
same curvilinear trace are the main sub-systems of each of previously investigated 
nonlinear dynamics of the vibro-impact systems. In previously listed published 
papers, energy analysis is done and the successive energy jumps, between two 
rolling bodies in successive collisions, are indicated.

In a series of the co-authored papers (see References [32-39]), the research 
attention is focused to nonlinear phenomena and energy analysis in the dynamics 
of the vibro-impact systems containing two heavy mass particles moving along 
curvilinear rough lines with Amontons-Coulomb’s frictions and in successive 
collisions.

In this review paper, the research attention is focused and based on the newly 
obtained Hedrih’s results, the theory of collision between rolling bodies and the 
dynamics of generalized rolling pendulums in successive collisions, and the use of 
phase trajectory method; a new methodology of vibro-impact dynamics investigation 
is founded and presented through a number of previously published applications in 
mechanical vibro-impact system dynamics as well as the research results of vibro-
impact dynamics in general through six Projects (P4-P9) and in the period of five 
project cycles in the period 1991-2019.
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