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Abstract. The paper presents the basic elements and results of the
latest theory of collision between bodies in rolling. The theory is based
on the newly introduced hypothesis of conservation of the sum of the
angular momentum of the motions (the sum of kinetic moments) of
the bodies in rolling after the collision in relation to the collision and
it defines the collision coefficient using the angular rolling velocities
immediately after and immediately before the collision. Analytical
expressions are derived for the outgoing angular velocities of each body
immediately after the collision as a function of the axial moments of
inertia of the mass of each body for corresponding instantaneous axis of
rolling, the collision coefficient and the angular velocities of each body
immediately before the collision. It is shown how the rolling directions
of the body are determined immediately after the collision for different
types of collisions. It is shown that the basis of research on projects in
basic sciences, led by the author of this paper, obtained a large number
of scientific results that were published in journals, one master’s thesis
(2010), two doctoral dissertations (1996 and 2011), two monographs,
one preprint, while one monograph is in preparation for printing. Each
of these titles contains the keyword “vibro-impact system”. The paper
provides an overview of individual works. The Master of Science thesis
and both doctorates are based on the classical theory of bodies colliding
in translational motion, rectilinear and curvilinear, smooth or rough,
while the latest results relate to the dynamics of vibro-impact body
systems in rolling along curvilinear paths in a stationary or rotating
vertical plane around a vertical axis at a constant angular velocity. A new
methodology for investigating the dynamics of vibro-impact systems



with successive collisions between bodies in rolling using the method
of phase trajectory portraits in the phase plane has been defined. The
list of literature provides the most significant works of the author of this
paper who is also a supervisor and a research mentor of undergraduates
and doctoral students.
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1. Preface

The author gained the first knowledge about the dynamics of collisions from the
lecture of Professor Dr. Ing. Dipl. Math.Danilo P. Raskovi¢, as well as from his textbook
Dynamics [69-71], during her studies of mechanical engineering at the Mechanical
Engineering Department of the Technical Faculty in NiS. Later, the author received
the first university textbook on Theoretical Mechanics published in Serbian in
1880, according to ]. Weisbach, which was written by academician Ljubomir Kleri¢.
Academician Ljubomir Kleri¢ taught mechanics at the Belgrade Great School which
later grew into the University of Belgrade and he was also the founder of the Serbian
School of Mechanics and Mechanical Engineering.

Both textbooks, Raskovi¢’s and Kleri¢’s, meticulously present the well-known
classical theory of body collisions in translational motion, and are highly useful
resources for the education of graduate engineers in mechanical engineering and
mining, as well as other technical faculties.

Later, atthe European and world congresses of mechanics, after gettingacquainted
with Professor Frantisek Peterka from Prague and his scientific results in the field of
dynamics of vibro-impact systems [58-65], she became interested in this scientific
field. She also studied Russian literature. But she did not do research in this area
until she was contacted by Mr. Sc. Slavka Miti¢ who, under the author’s supervision,
completed and successfully defended her master’s thesis in the scientific field of
nonlinear oscillations using asymptotic methods of nonlinear mechanics by Krilov-
Bogolyuboc-Mitropolski, expressing a desire for a doctoral thesis under the author’s
mentorship. The author of this paper and the head of the three Projects (Oscillations
of the Special Elements and Systems [P.1], Basic Scientific Found of Region Nis (1981-
1986), Stochastic Processes in Dynamical Systems-Applications on the Mechanical
Engineering Systems [P.2], Basic Scientific Found of Region Nis (1986-1989) and
Nonlinear Deterministic and Stochastic Processes with Applications in Mechanical
Engineering Systems [P.3], Ministry of Science and Technology Republic of Serbia,
(1990-1995)), then suggested the topicin the field of dynamics and stability of vibro-
impact systems. This was at the beginning of the tenth decade of the last century,
and she conducted research within the project Sub-Project 04M03A [P.5] which was
led by Professor Katica (Stevanovi¢) Hedrih. When Slavka Miti¢ (2. 1. 1950, LusSca
Palanka, Sanski most, BIH- 20. 7. 2012, NiS) defended her doctorate [54], her mentor
suggested using her doctorate to form a monograph [55], which the mentor edited
and reviewed, so that the first monograph on vibro-impact systems in the Serbian
language was published.

In the last two project cycles, periods 2000-2010 and 2011-2019, projects [P4-P.9],
coordinated at the Mathematical Institute of SANU and led by the author of this paper,
a member of the research team was also Srdjan Jovi¢, teaching assistant at the Faculty
of Technical Sciences in Kosovska Mitrovica, along with numerous researchers from
different faculties and scientific institutes in Serbia.

At that time, several scientific articles [11, 13, 20] by the author and the project
leader were published, dealing with the topic of moving heavy material points along
rough curved lines in a stationary or rotating vertical plane around a vertical axis ata
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constant angular velocity. Vibro-impact systems were the primary interest of Srdjan
Jovi¢, which the project leader proposed as a theme of the project investigation. The
dynamics of vibro-impact systems of heavy bodies (heavy material points) moving
translational along rough curvilinear paths and examining the change of energy and
kinetic parameters in the conditions of Coulomb friction force and phase method,
based on previously published articles on the movement of a heavy material point
along rough curvilinear paths was proposed for research to Srdjan Jovic.

The agreement was reached to first formulate the research topic of a master of
science thesis, and then the topic for the preparation of a doctorate. These research
topics were worked on very intensively under the mentorship of the author of this
article in the period from 2009 to 2011 with constant consultations on Tuesdays and
Wednesdays at MI SANU, so that the quickly achieved results formed a master’s thesis
and a doctorate, which Srdjan Jovi¢ quickly formulated and successfully defended
before the respective committees, in which the author of this paper and the head
of research on the indicated topics was the president, and the official mentor was a
professor from the Faculty of Technical Sciences in Kosovska Mitrovica, because it
was prescribed by law. Later, based on these results, she co-authored one preprint
monograph and another monograph published under the title Dynamics of Vibro-
Impact Systems [36, 46]. Before the completion of the doctorate, during the research
phases, a number of co-authored papers [33-35, 46] were published in journals
based on the obtained research results.

As “scientific children grow up” and “find their own ways” in some other areas
of research, and with some other researchers, this project, in which Srdjan Jovié¢
achieved his titles of Magister of Science [48] and Doctor of Science [47], was left
without researchers on the topic of dynamics of vibro-impact systems.

The author of this review paper, as well as the project leader, has continued
research on the planned research topic for five years, since the end of the research
on the topic of dynamics of vibro-impact systems, when the project cycle continued
in the period 2015-2019. The continuation of the research on the topic of Dynamics
of Vibro-impact Systems, in the period from 2015 to the end of the project cycle
2019, was very fruitful for the author of this paper. As none of her colleagues or
researchers, to whom she suggested to research together on this topic, showed
any interest (for example, a personal invitation was sent to S.J., PhD, then to B.G,,
PhD, and to other younger researchers), she continued independent work on this
research topic. Thus, the original scientific results appeared, which were published
in a series of one-author articles in prestigious scientific journals, Springer’s
Proceedings, proceedings of various scientific conferences, which verified significant
scientific results under the following key titles: Theory of body collision in rolling;
Generalized rolling pendulum along curvilinear trajectories; Rolling the ball on
curved surfaces and coordinate surfaces of curvilinear coordinate systems; Phase
portraits of generalized rolling pendulums; Theorems of bifurcation and triggers of
coupled singularities; Methodology for studying the nonlinear dynamics of vibro-
impact systems with bodies in rolling, using the phase plane method (see References
[6-12], [14-19] and [24, 25]).
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2. Introduction

Material (mechanical) systems whose motion is repeated in equal or different
time intervals are called vibrational (oscillatory) systems, or oscillators for short.
In mechanics, the notion of collision is more general than the notion of impact,
so together (combined) impact and collision, we write collision [29, 31], for short;
impact and collision are phenomena of nonlinear nature and with alternation and
discontinuity of vector and scalar kinetic parameters of the system.

Systems in which vibrational (oscillatory) movements and impacts (or impacts
and collisions, or only collisions) occur and appear are called vibro-impact systems.
These are nonlinear discrete dynamical systems in which vibro-shock effects occur.

In the technical aspects of engineering practice, vibro-impact actions often occur
and are widely applied [46, 72-74]. Therefore, appropriate theoretical, numerical
and experimental investigations of nonlinear dynamics of vibro-impact systems are
of special importance.

The first research on vibro-shock action dates back to the 1930s, and a newer
wave of interest in the dynamics of vibro-impact systems emerged at the end of the
last (20™) century and intensified with the development of bifurcation theory [1,
4,5, 7-15, 21, 26] and the interpretation of chaotic regimes. The most significant
scientific results that improved the knowledge about the dynamics of vibro-impact
systems were published in [34, 36-39, 42-46, 66-69, 72-74], out of which we single
out the authentic works of Frantisek Peterka [69, 67], Dimentberg M.F. and Menyailov
A.lL, Foole S. and Bishop S., Lieber P. and Jensen, D., Luo G.W. and Xie ].H., Nordmark
A.B., Pavlovskaia E. and Wiercigroch M. (for details see lists of References in [43-
45] and in [51, 42]), Katica (Stevanovi¢) Hedrih [11, 12, 17-19, 21-25, 29-31, 34-
39, 42-49] and associates Slavka Miti¢ [54-57], Srdan Jovi¢ [47-49] and others; The
authors of these papers used different methods to find solutions to the set tasks of
the dynamics of vibro-impact systems, most often starting from the general stereo-
mechanical theory of impact (collision). The latest works are based on research
conducted numerically and experimentally on the basis of analytical methods.

Here we will point out the results of Serbian researchers Slavka Miti¢ (2. 1. 1950,
LusSca Palanka, Sanski most, BIH- 20. 7. 2012, Nis) [54-55] and Srdan Jovi¢ [47-49],
who did research on projects of the Ministry of Science of the Republic of Serbia
under the supervision of project leader Katica (Stevanovic¢) Hedrih (see the list of
Projects [P.1-P.9]).

The following parts of this paper present the latest authentic author results of
Katica (Stevanovi¢) Hedrih, which were obtained and published in the last five years
of research within the project and topics: Phenomena of nonlinear dynamics of
generalized rolling pendulums [14, 16-19] and Nonlinear dynamics and phenomena
in vibro-impact systems with bodies in rolling [19-25].

According to the research program on the project Nonlinear Deterministic and
Stochastic Processes with Applications in Mechanical Engineering Systems [P.3],
financially supported by the Ministry of Science and Technology of the Republic of
Serbia, (1990-1995) realized through Mechanical Engineering Faculty University of
Nis, the research topic was “Deterministic and stochastic processes in vibro-impact
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systems”. Slavka Miti¢ (2. 1. 1950, LuSca Palanka, Sanski most, BIH- 20. 7. 2012, Ni$)
participated as a researcher under the mentorship of the project leader Hedrih
(Stevanovi¢), KR., and on the basis of the obtained research results she formed
her doctoral dissertation under the title “Stability of deterministic and stochastic
processes in vibro-impact systems”, which she successfully defended in 1994.

Later in 2006, at the suggestion of the mentor and on the basis of the content
of the grant, she formed a monograph under the title “Vibro-impact systems”[54],
edited and reviewed by her mentor Hedrih (Stevanovi¢) K.R. This monograph
was also the first monograph in the Serbian language on vibro-impact systems.
This monograph used the classical theory of body collisions in translational
motion.

Among the published papers based on the obtained research results on the subject
of the project, on this occasion we single out the co-authored paper [56]. The paper
was published in the Journal Acta Technica CSAV (Ceskoslovensk Akademie Ved) in
the Czech Republic in 1997, and previously presented at the European Conference
on Nonlinear oscillations - ENOC Prague 1996.

In the paper [56] written by Miti¢, S. and Hedrih (Stevanovic), K.R., nonlinear
oscillations of the torsion oscillator with impact masses were described. This paper
dealt with nonlinear oscillations of the torsion oscillator with reciprocal rigidly
connected impact masses. [t was assumed that two impulses occurred at one interval
of the disturbing torsion moment. The asymptotic Krilow-Bogolyubov-Mitropolski
method was applied, along with the stereo-mechanical impact theory for the
inclusion of impact conditions, to the determination of the primary approximation
of the torsion system nonlinear oscillations. Phase trajectories were drawn on the
basis of the numerical results. The mathematical model of the vibro-impact system
was written in the form of an autonomous nonlinear system of the first order
differential equations. The integral curves and the phase trajectories were obtained
by means of the Runge-Kutta method, of the Turbo-Pascal program and with the aid
of the computer.

Asparts of research programs of two projects [P.8] and [P.9]: “Theoretical and Applied
Mechanics of the Rigid and Solid Bodies. Mechanics of Materials”, (2006-2010), and
“Dynamics of hybrid systems with complex structures. Mechanics of materials”, (2011-
2019), under the mentorship of the project leader Hedrih (Stevanovi¢), K.R., Srdjan
Jovi¢ researched the dynamics of vibro-impact systems, and based on the research
results he formed a master of science thesis [48] and a doctoral dissertation [47], which
he successfully defended at the Faculty of Technical Sciences in Kosovska Mitrovica.
By law, an official mentor was appointed from that faculty. The titles of the master’s
thesis and doctorate were: “Energy analysis of vibro-impact system dynamics” [48], [in
Serbian], Magister of Science Thesis, 2009, and “Energy analysis of vibro-impact system
dynamics with curvilinear paths and no ideal constraints” [47], [in Serbian], Doctoral
Degree Thesis, 2011. We will not show the contents of this master of science thesis
and doctoral dissertation here, because the titles speak eloquently enough about their
orientations. We will note that the results of a series of published works of the project
leader on the dynamics of a heavy material point along rough curved lines [11, 12]
and the dynamics of vibro-impact systems of heavy material points in translational
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motion along different rough curved lines and in successive collisions were used as
basis of the advanced research (see References [34-39] by Hedrih (Stevanovic), K.R.
and other). Phase portraits and portraits of constant mechanical energy curves were
used by Srdjan Jovi¢ (see References [47, 48]).

Alarge number of co-authored articles (see References [34-39]) were published,
some of which were published in prestigious world-famous journals. Additionally,
the obtained results related to their contents were presented at numerous
prestigious scientific conferences. Based on the research results of these projects,
the results of published co-authored papers [11, 34-39] as well as master’s theses of
sciences [48] and doctorate [47] created with three parts, one preprint [39] under
the title: ,Vibro-impact system dynamics” present an analysis of the dynamics of
one class of vibro-impact systems based on oscillators along curvilinear routes and
stationary non-ideal constraints, (309 pages long, 30 copies). Additionally, there
was one monograph of the same name [49], which was cataloged in the National
Library of Serbia, preprint (30 copies) and a published monograph (100 copies with
categorization) composed of three parts, the contents of which will be presented in
the continuation of this work.

The preprint [39] and the monograph [40]: ,Vibro-impact system dynamics”
contain a focused analysis of the dynamics of one class of vibro-impact systems
based on oscillators with two heavy mass particles translator moving along the
same rough curvilinear routes in a stationary or rotating vertical plane around a
vertical axis at constant angular velocity and in successive collisions.

This book (both the preprint and the monograph form) posed an original
methodology of the dynamics analysis of one class of vibro-impact systems based on
the phase trajectory method. [t used phase trajectory portraits of two oscillators each
with one heavy mass particle translatory moving along the same curvilinear rough
route in a vertical stationary or rotating plane about a vertical axis at a constant
angular velocity and in successive collisions. This book was compiled as a result of
selection, systematization and application of new and authentic research results in
each part, which the authors attained through their research work within scientific
research projects (see [P.8] project 0M144002 (2006-2010) and [P9] project
OH174001 (2011-2016)). Modern information technology (commercial software
tools - software package programs MathCad, MatLab, Wolfram Mathematica) was
used for graphic visualization of vibro-impact system dynamics. Some of those
results were previously published by the renowned scientific journals with the
highest scientific reputation worldwide. Some of these are [34-39].

The book [39, 49] was divided into three parts and written in such a way that the
parts could be used independently.

The abstract of the first part, authored by Hedrih (Stevanovi¢) K.R., with the
title of “The basis of the impact and collision theory, the chosen methods of analysis of
nonlinear system dynamics and the material point movement along the curved rough
line” isin the following content: This part outlines the theoretical basis for researching
vibro-impact system dynamics with curvilinear translatory motion and stationary
non-ideal constraints. The first chapter of this part presents the theoretical basis
of the impact and collision dynamics based on the theory which was established
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by Isaac Newton. The second chapter outlines the basic methods upon which the
methodology for researching vibro-impact system dynamics is established in the
remaining chapters of this part. The third chapter of this part presents the original
results of the author [11, 13, 20] on the heavy material point movement along the
rough arbitrary curvilinear route as well as a circle, parabola, cycloid and ellipse.
This chapter represents the theoretical basis for a choice of vibro-impact system
dynamics model which is studied in the following two parts on the vibro-impact
dynamics with two mass particles in translatory motions and successive collisions.
The final fourth chapter of this first part presents examples which are a result of
joint research, supported by Srdjan Jovi¢ [34-39].

The abstract of the second part, co-authored by Vladimir M. Raic¢evi¢ and Srdjan
V. Jovi¢ with the title “Analysis of the vibro-impact system dynamics based on the
autonomous oscillator with curvilinear routes and stationary non-ideal bonds” is in
the following content: This part of the monograph is based on theoretical results
presented in the first part [11], and shows the research results of the properties of
autonomous vibro-impact dynamics with a large number (four) of approximation
models of nonlinear dynamics of the real systems with one or more (two, three)
degrees of freedom of vibro-impact free oscillations. The system is abstracted to the
material point model which moves freely and translatory along the rough curved
line, in a vertical plane, fitted with the elongation limiters of the material point
movement. For the purpose of studying the dynamics of the vibro-impact system
dynamic models, authors use the concepts of the impact theory presented in the
first part of this monograph, nonlinear dynamics methods presented in the second
chapter and the results of the material point translatory movement along the rough
curved line [11] presented in the third chapter of the first part of the monograph,
which are theoretical bases for studying the autonomous nonlinear dynamics
models and vibro-impact dynamics phenomena. Modern information technology is
also used (software tools - software package programs MathCad, CorelDraw) for
graphic visualization of the vibro-impact dynamics. Most of the results presented in
this part are taken from the published papers [34-39, 44, 45] of all three authors of
this monograph, as well as from the PhD dissertation [48] of Srdjan Jovic.

The abstract of the third part, authored by Srdjan V. Jovi¢, with the title of “Analysis
of the vibro-impact system dynamics based on the forced oscillator with curvilinear
routes and stationary non-ideal bonds” is in the following content [47, 48]:

This part of the monograph presents the research results of the properties
of forced vibro-impact dynamics with a large number (seven) of approximation
models of nonlinear dynamics of real systems with one or more (two) degrees
of freedom of vibro-impact forced oscillation. All study models of the system
consist of one or more heavy slides moving along the curvilinear rough line, with
the middle line having the shape of a curve in a vertical plane. The line is fitted
with the limiters of heavy mass translatory movement. The system is abstracted
to the material point model (the pellets) which move forcefully along the rough
curved line, in a vertical plane, fitted with the elongation limiters of the material
point translatory movement, while the material points are exposed to the effect of
the outside forces. For the purpose of studying the dynamics of the vibro-impact
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system dynamic models, authors use the impact theory presented in the first
part of this monograph, nonlinear dynamics methods presented in the second
chapter and the results of material point movement along the rough curved line
presented in the third chapter [111] of the first part of the monograph, which
are the theoretical basis for studying the non autonomous nonlinear dynamics
model and vibro-impact dynamics phenomena. Modern information technology
is also used (software tools - software package programs MathCad, CorelDraw)
for graphic visualization of the vibro-impact dynamics. All the results presented
in this part of the monograph are the results of independent, authentic research
of Srdjan Jovi¢ [44, 45] under the supervision of project leader, within the theme
projects ON144002 [P8] and ON 174001 [P.8] financed by the Ministry of Science
of the Republic of Serbia.

3. Central collision of two rolling balls: Theory and examples

This part of the paper focuses on central collision [15, 17, 19, 26-31] of
two rolling rigid and heavy smooth balls and using elements of mathematical
phenomenology and phenomenological mapping [27, 28, 66-68] to obtain
corresponding post collision and outgoing angular velocities of the balls and
to apply these results for investigation in vibro-impact dynamics of two rolling
balls along a circular trace or curvilinear route in a stationary or rotating vertical
plane. This task is fully accomplished and the obtained results are original
and new. Original plans of component impact velocities and angular velocity
of each of two different rolling balls in central collision and corresponding
outgoing angular velocities are presented. The use of elements of mathematical
phenomenology by Petrovic [66-68], especially mathematical analogy between
kinetic parameters of collision of two bodies in translatory motion and collision of
two rolling different size balls, new original expressions of two outgoing angular
velocities for each of rolling balls after collision are defined. New hypothesis of
conservation of the sum of angular momentum for instantaneous axes of rolling
of two bodies in rolling before and after collision of two axisymmetric bodies is
introduced [15, 17, 19, 26-28, 30-32].

Using this new and original result, vibro-impact dynamics of two rolling different
heavy balls on the circle trace in a vertical plane in a period of series of successive
collisions is investigated. Using a series of the elliptic integrals, new nonlinear
equations for obtaining angles of balls positions at positions of collisions are
defined. Branches of phase trajectories of the balls in vibro-impact dynamics are
theoretically presented [15, 17, 19].

The theory of impact dynamics of systems as well as vibro-impact dynamics
is an important research task nowadays. This is the reason and motivation for
our research as the presentation of the theory of the collision of two rolling,
rigid, homogeneous and heavy, smooth balls with different radii and different
masses.
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3.1. Short history

“In connection with the game of billiards ... there are various dynamic tasks,
whose solutions are contained in this event. I think that people who know
Theoretical mechanics, and even students of polytechnics, with interest
familiarize themselves with explanations of all the original phenomenon
that can be observed from the time of movement of billiard balls”.

Gaspard-Gustave de Coriolis,

Mathematical theory of billiards game.

G. Coriolis (1990). Théorie mathématique des effets du jeu de billard; suivi
des deux célebres mémoires publiés en 1832 et 1835 dans le Journal de
I'’Ecole Polytechnique: Sur le principe des forces vives dans les mouvements
relatifs des machines & Sur les équations du mouvement relatif des
systéemes de corps (Originally published by Carilian-Goeury, 1835 ed.).
Editions Jacques Gabay. ISBN 2-87647-081-0 [50-52].

In 1668, the Royal Scientific Society in London launched a call for a solution to the
problem of impact and collision dynamics, and for that call, the well-known scientists
Wallis (John Wallis, 1616-1703, Mechanica sive de mote-1688) and Huygens (Christian
Huygens - De motu corporum ex percussione) submitted their papers. Wallis and Huygens
used the results of the collision, submitted them to the Royal Society and added their
generalizations. Using their work, Isaac Newton laid down the fundamental foundations
of the Theory of Impact [30, 70, 72], which is still unsurpassed today [30]. (see Figure 1.).
Even before Newton, Wallis and Huygens, there was research into the dynamics of impact.
Thus, for example, collision problems were addressed by Galileo Galilei, who came to the
realization that the impact force was infinitely large in relation to the pressure forces,
but did not reach and learn about the relation of the impact impulses and the amount of
movement. Today’s knowledge of collision dynamics is not much more advanced than
this collision theory, which was founded by Newton, Wallis and Huygens. In connection
with this competition of the Royal Scientific Society and submitted papers, it was evident
that papers contained the first set of basics of collision theory. The name also mentions
Sir Christopher Michael Wren (20 October 1632 - 25 February 1723), who was also the
president of the Royal Scientific Society (see Figure 2.).

The dynamics of rolling ball collisions occur in many engineering systems,
and especially in the dynamics of roller bearings. Even today, no general theory
of rolling ball collisions has been given. Some recent results by the author of
this paper present new and original results [15, 17, 19, 26-31] in support of the
classical theory of rolling ball collisions. These results are presented in the first
part of this article.

In the game of billiards, collisions of rolling equal balls occur. The complexities
of billiard dynamics and billiard models and the possibility of observing and noting
the complex phenomena and phenomena of collision dynamics were pointed out
by Coriolis (Gaspard-Gustave de Coriolis; Paris, May 21, 1792 - Paris, September
19, 1843) and to illustrate this we cite the following quotation (see References
[50-52]):
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“In connection with the game of billiards ...... different dynamic tasks occur, the solutions of
which are contained in this event. I think that people, who know theoretical mechanics, and
even students of the Polytechnic Schools, are interested in learning about the explanations
of all the original phenomena, which can be observed with the movement of billiard balls. *

FIGURE 1. From left to right scientists: Sir Christopher Michael Wren (20 October
1632 - 25 February 1723), John Wallis (1616-1703), Christiaan Huygens (14 April
1629 - 8 July 1695) and Gaspard-Gustave de Coriolis, (Paris, May 21, 1792 - Paris,
September 19, 1843).

FIGURE 2. Scientists, authors of the original ideas of Theoretical and Applied
Mechanics: Galileo Galilei (Paris, February 15, 1564 - Florence, January 8,
1642)and author ofanauthenticand significantwork: “Discorsi e dimostrazioni
matematiche intorno a due nuove scienze attinenti alla meccanica e i movimenti
locali” 1638 (left) and Sir Isaac Newton, (Lincolnshire, December 25, 1642
- London, March 20, 1726/7) (right) author of Basic Collision Theory and
Works: Mathematical Principles of Natural Philosophy (Lat. Philosophiae
Naturalis Principia Mathematica), published in 1687.

The elements of the dynamics of billiards [50-52], [30] are coupled into a complex
system, whose dynamics are different from the phenomena observed in the dynamics of the
system. Starting from the geometric basis for switching to the theory of impact and collisions
between two or a few numbers of the balls, it is possible to see that impacts and collisions are
in the center of this dynamics. Shown are the plans of translational and angular velocities of
rolling of one ball before and after the impact, and also the two balls colliding. Rolling balls
are the main elements in numerous mechanical engineering systems.
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3.2. Collision of two bodies in translatory motion. Let us start with the
largely known classical theory [70] of central collision between two bodies, with mass
m, and m,, in translatory motion and with translatory velocities V, (to and W\,
at the moment before collision between them. These velocities we denote as arrival, or
impact or pre-impact velocities at the moment #, (see Figure 3.).

At this moment /; of the central collision start between these bodies, the contact
of these two bodies is at point P, in which both bodies possess the common tangent
plane-plane of contact (touch). In the theory of central collision, it is proposed that
collision takes a very shorth period of time \#,,7, + T), and that 7 tends to zero.
After this short period bodies in collision separate and are in an_outgoing kinetic
state by post-impact-outgoing velocities ¥ (£, + ) and ¥, (¢, + 7).

On the basis of hypothesis of conservation of linear momentum (impulse) of
motion, the following relation is valid [70]:

my, (to)"' m,v, (to) =my, (to + T)+ myVv, (to + T) (1)

and the coefficient of the restitution of body central collision is:

k= vt +7) _ vty +7) =t +7) 2)

Vr(to) Vi (to)_vz (to)

and presents the ratio between the difference of translatory velocities in post-collision
and pre-collision kinetic states, defined by Newton’s classical theory of impact.
Post-central-collision - outgoing body translator velocities are in the form [67]:

vl(t0+r)=vl(t0)— Lk (Vl(to)_vz(to)) (3)

m
1+—L

vty + 1) = v 1)+ (0=, 1) @)

Impuls (linear momentum) of collision in this case is:

KFua’ =m (vl (to + T) " (to )) = _M(l + k)(vl (to)_ V) (to )) (5)
m, +m,

As it is known from the classical literature [70], the coefficient of the restitution
of body collision depends on the kind of collision: 1* for the pure no elastic (plastic)
collision, the coefficient of restitution is equal to zero- k£ = 0; 2* for the pure ideal
elastic collision, the coefficient of restitution is equal to unit, £ =1; and 3* for the
arbitrary case between ideal plastic and ideal elastic collision, the coefficient of
restitution is in the interval between zero and unit, 0 < k < 1.

From the comparison between outgoing (post-collision) velocities with no elastic
collision of two translatory bodies in the pre-collision state, we can point out the
following conclusions:
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* in the case of pure plastic collision of two bodies, k£ =0, outgoing (post-
collision) velocities are equal one to other;

* in the case of ideal elastic collision of two bodies in translator motions, k =1,
outgoing (post-collision) velocity of the body with largest pre-collision impact
velocity is smaller, and outgoing (post-collision) velocity of the body with
smaller pre-collision impact velocity is larger; in this case, the ideal elastic
impact, k =1, if both pre-collision impact velocities of the bodies are of equal
intensity, v\, )= v,{¢, ), and opposite direction, then both outgoing velocities
of the both bodies are of equal intensity, v,|7, )=V, \{, ), and opposite direction,
independent of the body masses.

* In the case of no elastic collision between bodies, 0 < k <1, if condition

my, (t0)+ m,v, (to) =0,or " _ _ v () i satisfied, outgoing (post-collision)
m, i\l
velocities of both bodies satisfied relation: " _ _M .In this case outgoing

m, \Z (to +7

velocities are: v, (¢, +7)=—kv,(z,) and v, (6 +7)= kv, (1)) .

FIGURE 3. Central collision between two bodies, with mass m, and m, in
translatory motion (a* and b*) and with translatory pre-impact velocities
7,(1,) and ¥,(z,) (c*) and with outgoing post-impact velocities ¥ (¢, +7)and
V,(t, +7) (c*and d*).

3.3. Kinematics of collision of two rolling balls along a horizontal trace
3.3.1. Possible impact points at one ball for different kinds of the impacts and
component velocities. Let us start with the analysis of the elements of kinematics
of two rolling balls in the state of pre-collision between them. We consider two
heavy smooth balls with different masses, and different radii, #; and 7,, each
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in rolling kinetic state with momentary angular velocity, E)Pl and (?)P ,, along
corresponding straight trace of rolling, which are linear. Moméntary axes of each
rolling line lie in a horizontal plane and are orthogonal to the rolling trace in each
moment passing through point P, (see Figure 4) or for first and second rolling
ball through point P, as in point P, (see Figure 5. a* and b*, and also c* and
d*) or Figure 6. These points F} and @,are points of touch between rolling trace
and corresponding rolling ball, and these points move along trace together with
momentary axis of ball’s rolling.

If momentary angular velocities, a)P1 and a)P ,» of the rolling balls and
corresponding axes of rolling the first and the second heavy ball are known, and
also the radiuses of balls and mass densities of balls, then the dynamics of each ball
is fully determined. Therefore, the investigation of the heavy balls dynamics is a
simple task for obtaining all kinetic parameters of balls.

Let us consider possible component impact velocities in point T at spherical
surface as a possible point of touch (contact) in a kinetic state of collision between
two rolling balls. If we talk about the collision of two equal dimensions (equal
radiuses) of the rolling balls all possible pointsT,, i =1,2,3...0f central or skew
collision between balls are at a circle passing through a mass center of both balls
and the balls’ common tangent plane through this point of balls collision is vertical.
Taking into account that trajectories of mass centers of both rolling balls are
horizontal and straight lines parallel to a rolhng trace, then both mass centers move
translatory with velocities 17C wanslator OT vc1 vanslator ANA vC 2 ranslaror (FigUTE 4).

Boundary impact vertical
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FIGURE 4. Plan of component impact velocities of impact points of a ball for
the different types of collisions of two equal rolling balls

For the case of equal balls in collision (Figure 4), each impact velocity Vv, impact
of impact at pre-collision state has two components, one horizontal equal to
Vy sranslator — Vc ansiator and one vertical component Vg rolling of self rotation
with angular velocity a)c = a)P around a central axis parallel to instantaneous
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(momentary) axis of a ball rolling along the trail. This rolling component of impact
velocity is dependent on the types of collision. If collision of balls is central with
same line as a trace rolling both balls, then rolling component \_/.To,mmng of impact
velocity of point T is with maximal intensity and with intensity equal to a
product between the ball radius R and the intensity of angular velocity @, = @,
of self rotation. In the case of rolling balls in skew collision between balls, impact
points are at the point T,or T, (see Figure 4) and with angular velocities not
parallel, and balls’ rolling traces are with intersection, or parallel, then points T,
or T13 of the collision of rolling balls are at the distance defined by Rcosa to the

Boundary impact
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FIGURE 5. Plans of the impact velocities of possible points of collision of
two rolling heavy balls with different radiuses: a* and c* for the first rolling
smaller ball and b* and d* for the second biggest rolling ball.
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self rotation central axis of ball, where « is the angle between trace rolling of
corresponding ball and normal to the common tangent plane. Thus, the intensity
of the rolling component of arrival velocity is equal to the product between the
orthogonal distance Rcosa and intensity of angular velocity @, = @, of self
rotation. Outgoing components of the impact velocity of the impact point T, in central
collision of the equal rolling balls are corresponding intensities and with opposite
directions in vertical and in horizontal planes, for ideal elastic collision. After analysis of
the post collision motion for this case we see that it is simple, taking into consideration
only that collisions appear in rolling balls with corresponding angular velocities of rolling.

3.3.2. Possible impact points at two balls for different kinds of collisions and component
velocities. In the case of rolling balls with different dimensions (size) and masses and
axial mass inertia moments for instantaneous axis of rolling, the kinematical plan of
component velocities in collision are presented in Figures 5 and 6.

In Figure 5, the kinematical plans of the impact velocities of possible points
of collision of two rolling heavy balls with different radiuses: a* and c* for the first
smaller rolling ball and b* and d* for the second bigger rolling ball are presented [30].
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FIGURE 6. Plans of the impact velocities of possible points at corresponding
circles at the same height of balls in central collision of two rolling heavy balls
with different radiuses: left for the first smaller ball and right for the second
bigger ball.

In Figure 6, plans of the impact velocities of possible points at corresponding circles
at the same height of balls in central collision of two rolling heavy balls with different
radiuses: left for the first smaller ball and right for the second bigger ball are presented.

From the listed plans of the component velocities, we can see that in the case of
central collision of the rolling different dimension balls, the collision point is T, at
both spherical surfaces. At the smaller ball, this point T, of central ball collision is
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higher to its mass center and at the bigger ball, this point T, is lower to the mass
center of the ball. The tangent plane of central collision is passing through point T,
and is orthogonal to the radii of both balls from point T}, to the corresponding ball
center, Cyand C,.

In Figures 5, 6 and 7, the possible points of impacts at balls with different size
for different types of collision with corresponding kinematic plans of velocities are
presented, but this part focuses on central collisions of two rolling rigid smooth
balls along the starting trace (Figures 5, 6 and 7) and circle trace (Figures 9 and
10). In Figures 5, 6 and 7, plans of the component impact and outgoing velocities at
point T, of central collision of two rolling heavy balls with different radiuses are
presented.
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FIGURE 7. Plans of the component impact and outgoing velocities at the point
of central collision of two rolling heavy balls with different radiuses

After a similar analysis of the presented kinematic plans of arrival and outgoing
component velocities, as in the previous case, all conclusions from the given
Figures 5, 6 and 7 directed us to a general central conclusion, that the collision
of the two rolling balls is simpler to investigate in analogy with the well-known
classical theory and results of kinetic, kinematic and dynamic parameters of
collision between two bodies in translatory motion. See the next subchapter for
detail about an elementary logical analogy between two simple motions, each with
one degree of freedom. Basic
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3.4. Basic assumptions of the theory of collision dynamics in non-
slip rolling bodies. From the previous kinetic analysis and the conclusions
we have drawn and proved, it follows that to consider the dynamics of collisions
of axisymmetric rigid bodies with one plane of symmetry, which are in non-slip
rolling, we must start with incoming angular velocities and rolling paths. Then, the
axial moment of inertia of rolling body masses for the instantaneous axes of rolling
should be included by introducing analogous assumptions, as well as for the case
of analogous dynamics of impact and collisions of bodies in translational motions
determined by the translational velocities and corresponding masses (see Reference
[70, 30]).

The theory of collision dynamics (and in the special case of impact) is based on the
following assumptions:

1* The contact time 7 of two bodies in a collision is very short; _
2* The impact forces F** and the corresponding impact moments " of the

1
forces are variable and of high intensity, of the order of magnitude —, and of short

T
duration during the contact time 7 of two bodies in the collision and during the
collision they have attack points at the contact points in the collision;
3* The change of angular momentum of motion of the material two bodies in
rolling for the corresponding rolling axes during the collision is finite.
4* The impulse (linear momentum) and angular momentum of “ordinary
forces” compared to the impulse (linear momentum) and angular momentum of
instantaneous collision forces are much smaller and can be neglected.

3.5. An elementary logical analogy. In the examples of the simplest dynamics
of rigid bodies with one degree of freedom of movement, we will present an
elementary logical analogy, which should be easily understood. Why do we begin
with this article, which should be popular but at the same time contain the results of
a high scientific domain?

It is well known that the most fundamental breakthroughs in science, which have
become a lasting scientific heritage, are in fact elementary learning, which, in the
integration of knowledge and conceptual processes, grows into complex scientific
disciplines. The aim and answer of the question posed is to show that starting from
the simplest dynamics of rigid bodies, translation and rolling, and then determining
the elementary logical analogy among these dynamics and abstraction to the model
of these dynamics, one can move to qualitative and mathematical analogies.

Therefore, by abstracting the disparate parameters of the dynamics of two real systems,
one can come up with a theoretical model, a unique mathematical model with the same
elements of mathematical phenomenology. We can use the knowledge of the properties of
one model to convey it in the knowledge of the properties of the other; logically analogous.

Using logical, structural, qualitative and mathematical analogies [27, 28, 66-68]
in both directions, we aim to obtain new original results of the theory of body-
collision in rolling. We base the new results on the well-known theory of collision
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between bodies in translation. The unsurpassed theory of collision between bodies
in translational moving has been formulated by world-renowned scientists Isaac
Newton, John Wallis, and Christiaan Huygens.

Consequently, let us start with a logical analogy between the dynamics of the
body systems shown in Figure 8a * and b *.

Figure 8a* shows two rigid bodies that can move along an ideally smooth
horizontal surface in one direction, so that their median plane is always vertical.
It is a planar, translational motion of a rigid body with one degree of freedom of
movement, so we can consider it as a material point of concentrated mass in the
mess center. Such a body is exposed to the effect of five constraints (links): two
translations are prevented (one in the vertical direction and one in the direction
perpendicular to the plane of plane motion) and three rotations around three
orthogonal directions (around the direction of the body translation, around the
vertical direction and around the direction perpendicular to the previous two).

The kinetic parameters of the motion translation of the rigid body model from
Figure 8a* are: m,, k =1,2, masses, ‘701 and ‘7c2 the velocities of body translation,
which are the connected vectors for the mass centers of these bodies C, and C,.
We suppose that each of the bodies is loaded by one external force with intensity £},
, k =1,2, with a direction collinear with velocity and an attack point at the center of
mass of the corresponding body affected.

On the basis of the theorem on the change of the linear momentum of motion (or
quantity of motion), we construct the ordinary differential equation of translational
dynamics of one and the other body in the form:

myy =F,. k=12 (6)

The change in the linear momentum of body motion theorem states that this
change in time equals the sum of active and reactive forces. The linear momentum of
motion in the translation of a rigid body or the impulse of the translational motion of a
body is the product between the mass of the body and the velocity vV, , kK =1,2 of the
centerof mass: K, =m v, , k=12, k=12.

FIGURE 8. Models of the two simplest dynamics of material bodies, each with
one degree of freedom of movement: a * translatory dynamics of a rigid body
and b* rolling without slipping of a rigid body (with a form of a homogeneous
disk, a homogeneous sphere or homogeneous with one axis and one plane of
symmetry).

Figure 8 b * shows two bodies which roll without sliding straight along a linear
path (guide, trace) through a circular plane contour of the body, a circular shape
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with a corresponding center at a point, C; and C,, respectively. These rolling
bodies may be spherical balls, cylinders, disks, but also other shapes, having one
axis of symmetry and one plane of symmetry in which there is a contour of the shape
of a circle, by which the legs are expected to roll.

Such bodies, which roll without sliding, have one degree of freedom of movement.
Since each free body has six degrees of freedom of movement, this means that five
motion constraints, three translation constraints and two rotations are imposed on
the motion of these bodies from Figure 8b*, that is, five bonds are imposed on each
of the bodies. The first limitation is that the median plane of symmetry of the body,
in which the center of mass of the body, is at all times in the plane of contour of
rolling. This produces the constraints of one translation perpendicular to that rolling
plane, and of two rotations about two orthogonal axes in that plane of rolling. The
connection with the non-slip rolling route prevented one translation in the direction
of the rolling route and one translation directly on the rolling route. All these
together represent five links and constraints, leaving only one degree of freedom of
movement, which is rolling around the current instantaneous axis of rolling.

Therefore, we direct our further consideration to that class of bodies which roll
without slipping. Flgure 8b * shows two rigid bodies which roll without sliding at
angular velocities a)P1 and a)Pz, at the corresponding instantaneous axes of rolling,
passing through the points, £} or P, respectively, of the contact of the bodies in
rolling and the track on which they are rolling, which are directed orthogonally to
the plane of the rolling. The axial moments of inertia of the masses of the body in
rolling for the instantaneous axes of rolling are J ,, and J ,, . Kinetic parameters
of the rolling dynamics of each body are the instantaneous angular velocities of
rolling (bm and @Pz, which are related to the instantaneous axes of rolling. These
axes move translationally along the rolling path, and the axial moments of inertia of
the mass of the body and for the corresponding instantaneous rolling axis, for the
observed body class, J ,, and J ,, do not change during the rolling dynamics.

Based on the theorem on the change of angular momentum (or kinetic
momentum) for the instantaneous axis of rolling without sliding, we construct the
ordinary differential equation of the dynamics of rolling of one and the other body,
in the form:

I @ =My, k=12 (7)

By comparingkinetic elements of two previous analyses of the dynamics of the bodies on
two systems, one in translation and another in rolling without sliding from Figure 8a * and
b * we establish a logical, and at the same time, qualitative analogy and phenomenological
mapping of the kinetic parameters of these models of two different dynamics, each with
one degree of freedom. The mathematical analogy follows in the next section.

3.6. Dynamics of the central collision of two rolling balls along a
horizontal trace. Let us start with the application of mathematical analogy of the
classical theory of dynamics of collision to the dynamics of the collision between two
rolling balls, with mass m, and m, , and axial mass inertia moments J p1 and J py for
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corresponding momentary axis of the rotation in rolling along trace with pre-impact
(arrival) angular velocities @p, ;e = @py\ly) and Dpy i ey ZCT)MEIO). Mass
centers C, and C, of the balls move translatory with pre-impact (arrival) velocities
vCl.impgct = vCl (tO )_,and ‘_}CZ,impact = vCZ (IO) Angular velocities E)Pljmpact = a_.)Pl (tO
and Wp, 0 = Op to) we denote as arrival, or impact or pre-impact angular
velocities at the moment ¢, (see Figures 5, 6, 7 and 8). At this moment /; of the
collision start between these rolling balls, the contact of these two balls is at point
T,, in which both balls possess common tangent plane - the plane of contact
(touch). In the theory of collision, it is proposed that collision takes a very short
period (to,to + Z'), and that 7 tends to zero. After this short period 7 bodies -
two rolling balls in collision separate, outgoing by post-impact-outgoing angular
velocities  @p uoime = Opi\lo +7) a0 Dy geoing = @p Ly + 7). Mass centers
C, and C2_> of the ballimove translator;y with post-impact (outgoing) translatory
velocities Vi yueoing = Ver\lo +7) and Ve pueoing = Vealty + 7). These translatory
velocities are possible to express, each by its corresponding outgoing post-collision
angular velocity and radius of the corresponding ball.

Elements of mathematical phenomenology [27, 28, 66-68] and phenomenological
mappings [64] between rolling balls and translatory bodies (balls), which are analogous
dynamical systems with elements in impact (similar as electro-mechanical analogy
between an electrical oscillator with one degree of freedom and a mechanical oscillator
with one degree of freedom). Translatory motion of a body (ball) and rolling motion
of a ball are analogous motions, and each with one degree of freedom. The analogies
between mass and axial mass inertia moment for the rolling momentary axis and also
translatory velocity and angular velocity around the momentary axis of rolling follow
from the comparison of their mathematical description by ordinary differential equations
of corresponding motion — translatory and rolling kinetic states. This is a visible and
simple explanation presented in the previous subchapter.

Taking into account that translatory motion of two bodies in central collision
is a simpler motion of two bodies, defined by corresponding inertia properties
expressed by mass, m, and m, , of each body, and also by corresponding translatory
pre-impact velocities, v, (to) and v, (to) at the moment before collision and by post-
impact-outgoing translatory velocities V,(¢, +7) and V,(¢, + 7)it is possible to
establish an analogy with the collision between two rolling balls. Explanation is in
the following form.

Additionally, rolling balls along a horizontal strength trace is a simple rotation
motion defined only by inertia properties in the axial ball mass inertia moments
J, and J,, for the corresponding momentary axis of rotation in rolling along
a trace with pre-impact (arrival) angular velocities @Pl,impact =wp,(t,) and
Op) jmpace = Pp2\Iy) and corresponding outgoing post-impact-outgoing angular
velocities @p; y00ing = Ppi\ly T T ) and Ops ,0ping = Ppa\ly + 7).

Using Petrovic’s theory of elements of mathematical phenomenology and
phenomenological mappings [27, 28, 66-68] in parts of qualitative and mathematical
analogies, we can indicate a qualitative and mathematical analogy between the system
of the translatory dynamics and central collision (impact) dynamics of two bodies in
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translatory motion pre-impact and post impact dynamics phenomena and the system of
the rolling two ball dynamics and central collision (impact) dynamics of two rolling balls
in rolling motion, without slipping, pre-impact and post impact dynamics phenomena.

On the basis of these indicated qualitative and mathematical analogies, it is
possible to list analogous kinetic parameters of these systems.

The axial mass inertia moments JP1 and Jpz for the corresponding
momentary axis of rotation in rolling, without slipping along trace are analogous
to the corresponding bodies with masses m, and m, of two bodies in collision in
translatory motion.

Pre-impact (arrival) angular velocities Dy ;,.,,., = @p, (10) and @p, ;0 = Dpy (to)
of the rolling balls around the corresponding momentary axis are analogous to
corresponding translatory pre-impact velocities, \71 t,) and \72 (l‘o of two bodies
at the moment before collision.

_ Postimpact-outgoing angular  velocities Opy putgoing = Pp1 (to + T) and
= Wp, fto + 7 ) of the rolling balls are analoious to the corresponding

a)PZ,outgoing =
and \/2(1‘0 +T) of two

post-impact-outgoing translatory velocities \71 (to +7
bodies in translatory motion to collision.

On the basis of Petrovi¢’s theory [63-65] and qualitative and mathematical
analogies considered in the previous section, it is possible to formulate the
analogous hypothesis of conservation of the sum of angular momentums (moment
of impulse for the corresponding momentary axis) of the impact dynamics of two
rolling balls in pre-collision and post-collision motion; this is achieved on the basis
of the hypothesis of conservation of the sum of linear momentum (impulse) (1) of
the impact dynamics of two bodies in translatory motion pre-collision and post-
collision, in the following relation:

J 5 @py (to )"’ J 5y 0p, (to ) =J p@p, (to + T)+ J 5, 0p, (to + T) (8)

and analogous with (2), the coefficient of the restitution of rolling balls collision is
in the form:

a)r(tO + T) _ a)PZ(tO + T)_a)Pl (to + T)

@, (to) Wp, (to)_ Wp, (to)
as the ratio between the difference of angular velocities of rolling balls post-collision
and pre-collision kinetic states.

Equation (8) is stating an important kinetic parameter of the system of two
colliding rolling balls as a sum of angular momentum (sum of the moment of impulse
of each of the colliding rolling balls for the corresponding momentary axis of rolling)
of the colliding and rolling balls before - pre-collision and after - post-collision
kinetic state of the system in analogy with and on the same level as equation (1) of
the sum of linear momentum (impulse) for two colliding bodies (balls) in translatory
motion, pre-collision and post-collision of bodies in translatory motion.

The restitution coefficient k expressed by (2) is determined by Newton’s classical
theory of impact dynamics of rigid bodies, as the ratio between the difference of the
translatory velocity components after and before the impact for the case of central
collision between two bodies (balls) in translatory motion after and before collision.

k=

(9)
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In the present paper the coefficient of the restitution k by expression (9) is introduced by
angular velocities after and before collision of the two rolling balls. 1t is in mathematical
and qualitative analogy to the basis of the theory of Elements of mathematical
phenomenology and Phenomenological mappings [53-65] founded by Mihailo
Petrovi¢ (Serbian scientist and one of three doctoral students of Julius Henri Poincaré)
using analogous kinetic elements of translatory motion of two balls and of the rotation
motion of two rolling balls, each of them with one degree of freedom.

Additionally, in analogy with the expressions (3)-(4) of post-collision - outgoing
body translatory velocities, it is possible to write expressions of post-collision -
outgoing rolling balls angular velocities in the following forms:

Wp, (to +T)= (JPI —kJp, )a)Pl(to)‘f'(l'f' k)JPszz(to)
Jp+Jdp,
(10)
1+k
@p, (tO + T) = Wp (to )_7‘](0)131 (fo)— @p, (to ))
1+
Ip,
sz(fo + T)= (JP2 — K, )a)P2(t0)+(l +k)JP1a)P1(tO)
Jp+dp (11)
1+k
wPZ(tO + T): wPZ(t0)+—J(a)Pl(t0)_ sz(to ))
1+
Jp

Previously obtained expressions (10) and (11) of post-collision — outgoing rolling balls
angular velocities are new and original results obtained on the basis of Petrovi¢’s theory
of elements of mathematical phenomenology (see Reference [63-65]). Additionally,
expression (8) for the hypothesis of conservation of the sum of angular momentums
(moment of impulse for corresponding momentary axis) of impact dynamics of two
rolling balls pre-collision and post-collision motion is a newly introduced relation in
impact dynamics as well as expression (9) for the coefficient of restitution in collision
of two rolling balls with different size and in central collision. All these results are
analytical and present a basis for applications in other kinds of collisions.

In analogy of expression (5) of the impulses (linear momentum) of collision
two bodies in pre-collision and post-collision translatory motions, it is possible
to compose analogous expressions of the moment of impulses (kinetic moment,
angular momentum) of collision of two rolling balls in pre-collision and post-
collision dynamics, in the following form:

gml,impact =J, (wm (to + T)_ a’m(to )): _@(1 + k)(a’m(to)_ ) (to )) (12)

Jp+dp,

As it is known from classical literature, in analogy with the coefficient of the
restitution of two bodies colliding in translatory motion [70], the coefficient of
collision of two rolling balls also depends on kinds of collisions: 1* for pure no
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elastic (plastic) collision coefficient of collision is equal to zero- k = 0; 2* for pure
ideal elastic collision coefficient of collision is equal to unit, ; and 3* for an
arbitrary case between ideal plastic and ideal elastic collision coefficient of collision
is in interval between zero and unique, 0 < k < 1. From the comparison between
outgoing (post-collision) angular velocities in no elastic collision of two rolling balls
in the pre-collision state, we can point out the following conclusions:
* in the case of pure plastic collision of two rolling balls, kK =1, outgoing (post-
collision) angular velocities are equal one to another;
* in the case of ideal elastic collision of two rolling balls, k£ =1, outgoing (post-
collision) angular velocities of the rolling balls are: outgoing (post-collision)
angular velocity of the rolling ball with the largest pre-collision impact angular
velocity is smaller, and outgoing (post-collision) angular velocity of the rolling
ball with smaller pre-collision impact angular velocity is larger; in this case, ideal
elastic collision without slipping, for k£ =1, if both pre-collision impact angular
velocities of the rolling balls are equal, then, both outgoing (post-collision)
angular velocities of the both balls are equal and independent of the balls axial
inertia moments.
* In the case of no elastic collision between rolling balls, 0 < k <1, if condition

J 5 @p, (t0)+ Jp0p, (to) =0,0r I _ _C‘)L(to) is present, outgoing (post-collision)
P2 Op\ly

angular velocities of both balls achieved the condition: I = _w

Jp Wp, (to tr

case outgoing angular velocities of the rolling balls are: Wy (to +T)= —kw,, (to)

and @, (t, +7) = —ka, t, )-

.In this

The kinetic energy of the rolling balls in the pre-collision kinetic state is in the form:

1
Ek(to):E(Jpla);l(to)""]mw}%z(to )) (13)

and kinetic energy of these rolling balls after collision (in the post-collision kinetic
state) is:

1
Ek(to +T):E(Jp1a)ﬁ1(to +T)+Jpza)12>2(to +T)) (14)

a* In the case of arbitrary coefficient of restitution, 0 < k <1, of collision, the rate
of decreasing kinetic energy in comparison between the pre-collision and post-
collision kinetic state of the rolling balls is equal:

JoJ 2

AE, =E,(t,+ 1)~ E,(t,) = ——2222 (1= k>, (£, ) - @0 2, ) (15)
2(Jm + JPZ)

b* For an ideal plastic collision, k£ = 0, the rate of the kinetic energy decreasing

in comparison between pre-collision and post-collision kinetic state of the rolling

balls is equal:

J,J
AE, L = E; (to + T)_ E, (to ) = _ﬁ(wm (to)_ Wp, (to ))2 (16)
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TABLE 1. Mathematical and qualitative analogies between Kkinetic
parameters of two system in central collision dynamics: the collision
of two bodies in translatory motion and collision of two rolling balls

Collision of two bodies in translator motion

Collision of two rolling balls

Configuration of the
systems in collision
state and plans f
velocities and tanfent
plane of bodies
collisions

v,
T2

Verimmpaa | Cy Ve2ouoing

Vr2 jowgons

7.(10) <)

Analogous theorms of
conservation of linear
momentum (impulse)
or angular momentum

Theorm of conservation of linear momentum (impulse) in collision
of two bodies in translator motion

my, (tn)"' myv (tn)= my, (to +7)+ myV, (’o +17)

Theorm of conservation of angular momentum (kinetic moment) in collision
of two rolling balls

JPI&Pl(Il))+JP2&P2(’(J)=JPIE'PI(’() +T)+JPldl’l(’u +1)

Coefficient of the
restitution of two body
collision

Coefficient of the restitution in collision of two bodies in
translator motion

k= v, (t,+7) - vylty +7) =ty +7)

v, (tu ) Y (tn ) —V; (tu)

Coefficient of the restitution in collision of two rolling balls
- “r(rn + 7") = Cpy (’n + f)_ a‘Pl(rﬂ + 7)
Wp, (tn ) — Wp, (ro )

o)
Outgoing angular velocities of the rolling balls at post-collision moment

Outgoing velocities of
thwo bodies at post-

Outgoing velocities of the of two bodies in translator motion at
post-collision moment

1+k

Irdr: 1+ k)@, (t,)- o,
».+Jm( Yo (1) = @3 (1))

collision moment 1+k @p, (f() + 7)= Wpy ()‘9)— ] (ll),,, (tu)_ Wpy (t“ ))
vty +7)=v,1,)- o () =7,(r,) 1450
1+ T
m 1+k
1+k Wp, (t,+7)= @py (t)+ —J(w" (t,)- wp:(’u))
V2 (ru + T) =V, (f“)+ T("] (’n )_ V2 (tu )) 1+
+— Jr
n,
Impuls (linear Impuls (linear momentum) of collision of impact forces Moment of impuls (linear momentum) of collision of impact couple (moment
momentum) of ., of impact forces )
collision Ky =m0 (1, +2)=0,,))= -—":”f:;' (1K) (1) =, 1,))
1 2

Loiogar = V(010 + )= 00 (1)) =~

Kinetic energy change
fromprecollison to
postcollision kinetic
state

A, 0= Bl +7)= E(1)= 52— 0 1) - v )

2(m, +m,)"

Ande (-0, 6,)- 0.0,

AE, = (i +7)~E, )= 5724
Pl P2

c*In the case of ideal elastic collision, k£ =1, between rolling balls with no change
of kinetic energy in comparison to pre-collision and post-collision kinetic states of
rolling balls and is equal to zero:
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AE

k,elast

=E(t,+7)-E,(,)=0. (17)

In this case of ideal elastic impact, low kinetic energy conservation is valid.

In Table 1, mathematical and qualitative analogies between kinetic parameters
of two systems in central collision dynamics are presented. In the left column, the
kinetic parameters for collision of two bodies in translatory motion and in the right
column, analogous kinetic parameters of collision of two rolling balls are presented.

Listed analytical expressions and relations (13)-(17) and conclusions a*-b*-c*
of the kinetic energy decreasing in comparison, kinetic energy of two rolling balls
in the pre-collision of kinetic state and the post-collision kinetic state of the balls in
collision present Carnot’s theorem generalized (Lazare Carnot 1753-1824, Principes
Jfondamentaux de [’équilibre et de mouvement - 1803), dealing with the kinetic energy of
two rolling balls in kinetic states pre- and post collision (in arrival and outgoing kinetic
states): “In the collision of two rolling balls in rolling motion for the arbitrary coefficient
of the restitution, 0 < k <1, the loss of kinetic enerqy decreasing during collision is
proportional to the loss of angular velocities”.

AE, =E, (to)_Ek (to + T): 2Ek,izg (7): ﬁJP [CT)P (T)]z ) (18)

Examples: Masses of the balls are p; = plgrf;; and j,, =p2§rz3ﬂ, and axial

mass inertia moments for momentary axis of the rolling balls are:

2 7 7 4 7 . 7
Ip=dtmr’ = gmlriz +my’ = gmlrlz = gp*rf” = Bpﬁsﬁ S =detmry = Epzrzsﬂ' ’

8
For 7 = R and A, = " ratio of the axial mass inertia moments is:
i n
J i A ’ 5
ﬁ:(ij (;; =4, For a different ratio between axial mass inertia moments, balls’

outgoing angular velocities around instantaneous axis at post collision kinetic state
between balls are:
ers_l 1. 11 1

PEY) JIp 1432 33

Pl

a* for ﬂ?—[r
1

b* AT TE TRa
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« _h 22 32 1 »
O ATLTT TR s e 1,28
1, 32
243
wPl(tO + T): wPl(to)_T%(l + k)(wm (to)_ Wp, (to))

Ops(ty +7) = @, (t0)+ %(] + kX @p (1)~ ps (8,))

3.7.Elementary approach for determination of expressions of intensity
of outgoing angular velocities in the centrally centric collision of two
bodies in the rolling, without sliding, immediately after the collision. we
look at two axisymmetric rigid bodies with one central plane of symmetry, centrally
colliding, and making contact at one point of collision, or two balls of different radii,
or two disks of different radii, axial moments of inertia of masses of bodies for the
corresponding instantaneous axes of rolling J 5, and J ,, . These axial moments of
inertia of masses do not change for the axial rolling axes in motion.

The bodies are in a non-slip rolling position at the moment #;, and have angular
velocities @Pl (to) and &')Pz lo) at an instant f, before entering the collision
configuration and are referred to as incoming (inlet or impact) angular velocities. At
the moment 7, of the start of the collision, the two bodies will touch at one contact
point P where both bodies have a tangential plane in common. We assume that
the collision lasts briefly over an interval \#,,?, + 7 ) of time, which lasts for a short
time 7 (and realistically tends to zero). After this collision of short-term contact, the
bodies are separated by angular velocities CT)PI(IO +7) and @, (to + Z'), which we
call the outgoing angular velocities. This is necessary to determine the intensities of
these outgoing angular velocities, E)Pl (to +7 ) and E)PZ (to +7 ), and we have already
determined the paths of outgoing rolling velocities and the directions of rolling and
directions of those outgoing velocity, velocities immediately after the collision.

Imagine that, at the point P of contact of two bodies in a state (configuration)
of collision, we have drawn a tangential plane and it's normal 7. This tangential
plane is called the touch tangent plane, and the direction of that normal to the touch
plane determines the direction of the collision. Since the centers C; and C, of mass
of the bodies in collision are at this normal, and if the incoming rolling traces of the
bodies are at that normal, the collision is called a centric (central) collision, and if
not, the collision is skew or oblique eccentric. When the incoming angular velocities
@p,(t,) and @, (t,) of both bodies in the collision are collinear with the tangent
plane, that is, direct with the direction of the collision, then it is a true (directional)
collision of the rolling bodies, otherwise it is a skew collision of two rolling bodies.

3.7.1. Hypothesis of conservation of sum of angular momentum for the instantaneous
axes of rolling of two bodies in rolling before and after the collision of two axisymmetric
bodies. At the time of the collision, both bodies, which roll immediately before the
collision, come into contact at one point, or line-derivatives. In the collision event
[67], although we have made the assumption of models of rigid, axisymmetric bodies
with a central plane of symmetry, during the collision they deform locally, in the local
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contact area. If the contact of the bodies in the collision is at the point of contact
(for example, the contact of the spherical surfaces of the balls in the collision, or
the rotation ellipsoids), deformation occurs in the immediate vicinity of the contact
point. And this deformation lasts until the projections of the angular velocities of
rotation of the body in the collision in the direction of the collision (the normal on
the tangent equal to both bodies in the contact point of the collision) are equal.
Additionally, the projections of the relative angular velocities of the rolling motion
around the instantaneous axes of rolling of the body in the collision, one relative
to the other, towards the collision direction became zero. From that moment, zero
projections of relative angular velocities in the direction of the collision begin to
restore the state of the body as it was before the collision until the moment when
the bodies separate from each other. During this time the projection of the relative
velocities of the bodies in the collision of one relative to the other begins to increase
and continues until the bodies have, in the part in contact, their original shape. Then
there is a moment when we consider that the bodies have practically separated and
that there is a period of time after the collision. Therefore, the collision period can be
divided into two parts: 7' the compression period in the tangential direction to the
body at the point of contact,and 7" the restitution period in the tangential direction
to the body at the point of contact in the collision, with the total short-time duration
7=17"417" of the collision.

Since external active forces and moments of forces of finite intensities have
impulses of forces equal to zero, and couplings have kinetic moments equal to zero
and, at infinitesimal intervals of time, we consider that two material rigid bodies,
which roll with the incoming angular velocities and in collision, are considered as
one system. Therefore, the hypothesis of the conservation of the sum of angular
momentum (kinetic momentum) for the instantaneous axes of rolling of each body
- the movement before and after the collision, can be applied to the dynamics of the
same to in the form:

I 1) (to)"' 3 200, (to) =Jp10p, (to + T)"' I py0p) (to + T)~ (8.2)

This hypothesis about the conservation of the sum of the angular momentum of
motion by rolling in a collision of two bodies, which is analogous to the hypothesis
of the conservation of the sum of the linear momentum (1) of motion of two bodies
in a collision and in translational motion (see References [1, 10, 12, 24, 25, 28, 29]).

3.7.2. Coefficient of restitution or collision of two axisymmetric rolling bodies with
one central plane of symmetry. When the incoming angular velocities 67)1,1 t,) and
c?)},2 t,) of rolling and the axial moments of inertia of mass J,, and Jp, for the
instantaneous axes of rolling of each of the bodies in a collision are known, the
previous hypothesis relation (8) and (8a) of the sum of the angular momentum of
motion for the instantaneous axes of rolling, before and after the collision, is not
sufficient to determine two unknown outgoing angular velocities 67)1,1(1‘0 + z’) and
67)1,2 (to + Z'), after the collision of two bodies, which roll just before and after the
collision. We need another relation, an equation, which we will set from the very
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properties of the body in a collision. As we have already described the collision
and the contact process of two bodies, in the period of solid body compression, the
angular velocity a)Pl(t ) of the first body will decrease by 6{)},1 t —@,,, and the
second increases by @~ @p,\t, ), where @), the angular Velocity of both bodies
in the collision is at the end of the compression at the local environment of the
contact point of the bodies in the collision. As both bodies are deformed in the local
area around the point of joint contact in the collision, it is apparent that, during the
restitution period, the deformations of the body will not be immediately lost and that
the angular velocity c?)Pl(t ) of the first body will decrease by k((?)cp — ®p, (to
another angular velocity and the angular velocity (0P2 t,) of the second body
will increase for size k(@ a)P2 t,)), where k is the sum coefficient. Based
on this analysis we can state that the outgomg angular velocities a)P1 (to + T) and
67)1,2 (to + Z') of the bodies that were in the collision are outgoing

C?’m(to"'f) a)Pl( ) (1+k)(a)Pl( ) @p )=(1+k)67)c,, _k@Pl(ZO)‘ (18)
@P2(t0+‘[) C’)Pz() (1+k)(a)a, a’Pz( )) (1+k)a’czn kapz(to). (19)

Subtracting these previous relations (18) - (19) we obtain
Wp, (to + T)_ 03P1(t0 + T) = k(&”m (to )+ Wpy (to )) - (20)

Theratio k ofthe relative angular velocities of rolling of the axisymmetric bodies
after and before the collision is

o,(t, +7) _ @py (6 +7) = @p (t, +7)
a)r(to) Wp (to)_ Wpy (to)

and is called the collision coefficient, or the coefficient of restitution, or the coefficient
of establishment of rolling bodies in a collision.

This coefficient k is also newly introduced and represents a new definition

of the collision coefficient, or the coefficient of restitution or the coefficient of
establishment of rolling bodies in a collision. This new definition (9a) is derived by
the author of this paper.
With the introduction of this new refinement of the collision coefficient, we have generalized
Newton'’s definition from the theory of collision between rigid bodies in translatory motion
to the theory of collision between rigid bodies in rolling motion without sliding by using
the difference of rolling angular velocities both after and before the collision. If a kinetic
state can be defined by one angular velocity around the instantaneous axis of the rolling for
each of the bodies, in attempting to define the dynamics of the collision, we implement our
definition of the coefficient k of restitution over the ratio of the relative angular velocities
of the rolling bodies after and before the collision.

k=

(9.a)

3.7.3. Intensity of outgoing angular velocities of two bodies rolling after a collision. In
order to determine the intensities of the outgoing angular velocities of the rolling of two
bodies after a collision, @, (t +7 ) and @y, 7, + 7 ),itis sufficient to eliminate from the

previous relations (8a) - (9a) the unknown angular velocities of both bodies, @, in the
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collision at the end of the compression at the local environment of the point of contact
of the bodies in the collision. Consequently, it is important to solve the relations b
unknown outgoing angular velocities, so for the outgoing angular velocities, @ o1 (t ot Tg
and 0_3P2 t, + Z'), after the collision of the balls, we get the following expressions:

@ty +7)= d’m(to)_%(@m(lo)—601)2(1‘0)) (10.a)
1+
- 1+k
a)P2(t0 +T):wPl(tO)"'iJ(a’Pl(to)_a)n(to)) (11.a)
1+=£2
Iy

By determining these intensities of the outgoing angular velocities @p, (to + z’)
and CT)P2 (to + z’) of the rolling of the balls (axisymmetric bodies each with a central
plane of symmetry) after the collision, we have solved the complete problem of the
theory of collision of axisymmetric bodies in rolling without slipping (see References
[1,10, 12, 24, 25, 28, 29]). These expressions (8a), (9a), (10a) and (11a) are reached,
also, in the form (8), (9), (10) and (11) by a logical, qualitative and mathematical
analogy, starting from the theory of collisions of bodies in translational motion, as
shown in the previous chapter 3.6.

4. Vibro-impact dynamics of multiple collisions of two different rolling
heavy balls along a circle trace in a vertical plane

In References [37, 45], the phase trajectory portrait of the vibro-impact forced dynamics of
two heavy mass particles motions along a rough circle is investigated, and also the vibro-
impact of a heavy mass particle moving along a rough circle with two impact limiters was
considered and studied. In References [34-39, 44-49] a series of mass particle motion along
smooth or rough curvilinear lines are studied, followed by the presentation of results.

The following part examines the vibro-impact dynamics of multiple successive
collisions of two rolling heavy balls along a circle trace in a vertical plane and
presents the obtained results.

In Figure 9, a model of two heavy homogeneous rolling balls, with radiuses 7 and
7, ,along a circle, with radius R ,in avertical plane is presented. Let us start with the
theory of dynamics of collision between these two rolling balls, with mass m, and
m, ,and axial mass inertiamoments J ,, and J ,, forthe corresponding momentary
axis of rotation in rolling along a curvilinear trace in the form of a circular line in a
VErtical planeﬁ,with re-impact (arrival) angular velocities @Pl’impact = C?’m t,) and
Op) jmpace = Ppr g 57 Mass centers C,and C, of the balls move translatory along
the two circles, with radius R —17; and R —7,, respectively, and with pre-impact
(arrival) velocities Ve, e = Verlfy ) and Ve, i = Vea (G ). The angular velocities
Opjmpac = Ppity) and Dpy e = Dpy 2y ) we denote as arrival, or impact or pre-
collision angular velocities at the moment 7, (see Figure 10). At this moment ?; of
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the start of the collision between these rolling balls, the contact of these two balls is at
point Tj, , in which both balls possess the common tangent plane - plane of contact
(touch). In the theory of the collision, it is proposed that collision takes a very short
period of time \#,,#, + Z'), and that 7 tends to zero. After this short period 7 bodies
- two rolling balls in collision separate, outgoing by post-collision-outgoing angular
velocities  Wp, yuoimg = Ppi\lo T 7) aNd Dpy geoing = @po Ly +T) . Mass centers
C, and C, of the balls move translatory with post-collision (outgoing) translatory
velocities Vi, ueome = Verllo T 7) and Vs ueoime = Veally + 7). These translatory
velocities are possible to express, each by the corresponding angular velocity and
radius of the corresponding ball [26].

Taking into account that translatory motion along an ideal curvilinear line of
two bodies in central collision (as the collision of two mass particles moving along a
curvilinear line) is a simpler motion of two mass particles, defined by corresponding
inertia properties expressed by mass, m, and m,, of each body and also by a
corresponding translatory pre-impact velocity, \71 t,) and \72 (l‘o) at the moment
before collision and by post-impact-outgoing translator velocities 171 t,+7) and
v,(¢, + 7) is possible to compare with the collision of two rolling balls along a
curvilinear line. Explanation is similar to the one in the case when the pre- and post-
collision traces are straight lines, presented in the previous part 3.5.

FIGURE 9. Mechanical system of collision of two heavy rolling balls along a
circular trace in a vertical plane

Additionally, the rolling balls along curvilinear circle lines-traces is a simple
rotation motion defined only by inertia properties in the axial mass inertia
moments J,, and J,, for corresponding momentary axis of rotation in rolling
along curvilinear circle traces with pre-impact (arrival) angular velocities

aa)m‘impm =0, (to) and cT)Pz’imW = Wp, (to) and corresponding outgoing post-impact-

outgoing angular velocities @y, i = CT)Pl(tO + Z') and @) yeoing = Opa (to + T).
Nevertheless, for the rolling motion between two collisions we must assume
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that balls are in the rolling dynamics under the conservative force caused by the
gravitational field, which contains the balls and the circle. But it is only necessary
to take this into account during the motion of the balls between two collisions, and
to obtain pre-collision angular velocities as angular velocities at end of the previous
interval of rolling each of the balls in the gravitational field.

4.1. Kinetic parameters of a rolling heavy ball motion along a
circle in a vertical plane. Let us consider the rolling dynamics of one heavy
smooth ball (first) along a curvilinear circle line trace in a vertical plane and in the
gravitational field (rolling pendulum in References [14, 66-68]). For that reason, the
kinetic and potential energies are expressed by the central angle ¢, with respect to
the circle center C;, (see Figure 9, and Reference [26, 69,]):

E, :%Klml(R_’i)z(plz; Ep,l =mghc =m1g(R—}”1)(1—COS§01) (21)

where the translatory velocity of the ball mass center 1_50 and the angular velocity
around the central axis @, and the angular velocity of the body rolling around the
momentary axis @, are in the following relations:

Ver = (R - ’i)(bl =N"Wp; =10y (22)

R . R-r).
@Oc) = WOp = (F_IJ(M :M(M (23)

i "

Additionally, the first ball axial mass inertia moment J , for the instantaneous
axis of rolling and the coefficient of rolling k; of the first rolling ball along a circular

line in a vertical plane are:
.2

Jm:m{JCl+rfJ and . - Joiy_tay (24)

2 2
m mh h

For that reason, it is necessary to obtain the corresponding ordinary nonlinear
differential equations of rolling each of balls along a curvilinear line in a vertical
plane in the gravitational field.

The ordinary nonlinear differential equation of the first ball rolling along a
curvilinear circular line in a vertical plane in the gravitational field is:

. g .
¢ +—=>——=singp, =0 (25)
K (R - 7'1)

The integral of the energy of the first ball in the rolling dynamics along a circular

trace in the gravitational field is:

1 .
E=E  +E, = 5’(1’"1(R -r, )2 s +m1g(R -7, )(1 —CcosQ, ) =C = const (26)

and it presents an expression of total mechanical energy of the rolling ball at
arbitrary moments and arbitrary positions on the circle trace. The total mechanical
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energy of the first rolling ball along a circular trace at the initial moment is:
E,=E,,+E —le(R—r Y @2, +mg(R—r, \1-cosg,,)=C = const (27)
1o — k10 pro = 5K 1) ProTmg 1 Do )=C 1=

where @, , = ¢, (0) and @, , = ¢, (0) are the initial values of the generalized angular
coordinate and generalized angular velocity.

The first integral of the ordinary nonlinear differential equation (25) of the
rolling dynamics of the first ball along a curvilinear circle line is possible to obtain
from the integral of energy (26)-(27) in the following form:

.2 2g -2 2’g
— = (1= = > 1= 28
o, +K1(R—Vl)( COS¢|) ¢]’O+K1(R—r1)( COS(/’],O) (28)
or in the form:
2 _ 22 2g _ 29
Q=@+ Kl(R—I’l)(COS(DI COS¢1,0) (29)

The previous non-linear equation (29) presents the equation of the phase
trajectory in the phase plane (¢,,¢, ), the curves of the constant total mechanical
energy of the rolling ball between two collisions are also visible, and the total
mechanical energy in this interval is constant, but depends on initial conditions,
0,=¢0) and ¢, ;=¢,(0), in each of the intervals between two successive
collisions. After each collision of the balls, the set of angular velocities of rolling balls
are outgoing angular velocities as post-impact or post-collision angular velocities of
rolling balls as the initial velocities for dynamics in the next post-collision interval of
the corresponding period of rolling.

For that reason, the expression of the momentary angular velocity of rolling balls
is necessary to be expressed by means of the independent generalized coordinate
@, in the following form:

(R (R 28 _ 30
R L L e ”

h h —h

The angular velocity of the first rolling ball is the function of the initial central
angular velocity ¢, (ng @, in relation to the circle center C, and generalized
coordinate @, ,, ..., of position at circle where first collision appears:

R . R . 2
a)Pl,impacf,l = [}"l - 1}@1 (¢l,impmrt ) = [}’i - lj\/¢12,0 + K'](T(g—rl) (COS ¢l,impact —Cos ¢l,0) (3 1)

and for the next impact angular velocity of each of the rolling balls depends on the
outgoing angular velocity in the previous collision of the balls and the coordinate
Primpact 1 of position where the next collision appears:

R 1l ( )
a)Pl,impm:l.Z = wPl,mztgning,l = 7_ (2 gol,impact,z
1

(32)

1

_ _[R 11 e? 2g ( )
Dpyjmpact2 = Pplougoing,! =| 7 Proutgoing.1 T COSD impact,2 ~ COS P vuigoing.1
h K (R —h )
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Using previous expressions for the description of the dynamics of the first rolling ball
along the same circular trace in a vertical plane, for the second rolling ball, kinetic and
potential energies are expressed by the central angle ¢,, and are in the following forms:

1 )
E,, :E’(zmz(R _rz)z%z and Ep,2 =mgh, = ng(R_rz)(l_COS(Pz) (33)

where the velocity of the second ball mass center V., and the second ball angular
velocity around the central axis C_[)Cz and angular velocity about the momentary axis
of rolling @,, are in the following relations:
. R .
Ver = (R_rz)(pz =10, =Hh0gad @, = 0,, =| —-1|p, =
n n

and the second ball axial mass inertia moment for the instantaneous axis of rolling
and the coefficient of the rolling of the second rolling ball along a circular trace in a
vertical plane are in the following forms:

(R_r2)¢2 (34)

J 2
J,,=m, @Jrrz? and g, = C22+1=lC_22+1 (35)
m, myr, v,

The ordinary non-linear differential equation describing the dynamics of the
second ball rolling is:
.. g .
@, +——=——sing, =0 (36)
K, (R - 2)

The integral of energy of the second ball rolling along the circle in the gravitational field is:
E,=E,,+E ,= %K2m2(R —r, Y ¢l +m,g(R —r, )1 - cosp, ) =C,= const (37)

and presents the expression of total mechanical energy of the second rolling ball at
an arbitrary moment and arbitrary position on the circle trace. The total mechanical
energy of the second rolling ball along the same circle trace at the initial moment is:

1 .
E,,=E,,+E,, = EKZ mZ(R - )2 (Pzz,o +m2g(R _rz)(l —Cos ‘/’2,0):C2: const  (38)

where @, , :(02(0) and @, :¢2(0) are the initial values of the generalized
angular coordinate and generalized angular velocity.

The first integral of the ordinary nonlinear differential equation (36) of the
rolling dynamics of the second ball along the curvilinear circle line is possible to
obtain from the integral of energy (37)-(38) in the following form:

.2 Zg -2 2g
+ 1— = +——2°  (1- 39
®, y (R r2 ) ( CoS @, ) <p2’0 y (R r2 ) ( COSQ, ) ( )

or in the form:

2—g)(cos¢)2 - COS¢2’O) (40)

.2 .2
=@+
D) =0y K'Z(R—I"Z
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This previous nonlinear equation (40) presents the equation of the phase trajectory in
aphase plane (@, , @, ) and itis also visible that there are curves of constant energy of the
second rolling ball between two collisions and that total mechanical energy in this interval
is constant, but depends on the initial conditions ¢, , = @, (O) and @, , =@, (O in
each of the interval between two successive collisions. After each collision of the balls,
angular velocities of the rolling balls are the outgoing angular velocities as post-impact
angular velocities of the rolling balls as a set of initial velocities for dynamics in the next
post-collision interval of the corresponding period of rolling of the balls.

For that reason, the expression of the momentary angular velocity of the rolling
ballis necessary to express by means of an independent generalized angle coordinate
@, in the following form:

R . R ) 2g
o= e ot o) “”

) 2

The angular velocity of the second ball rolling along an instantaneous axis is the
function of the initial central angular velocity (bjO) = ¢, , withrespectto the circle
center C; and the angle coordinate D, impacey Of the position where the second
collision appears:

R . R . 2
Dp3 impact,] = (r - lj(”z (¢72,impacz ) = (V - 1]\/¢22,0 + T‘%” (COS D3 impact — COS §02,0) (42)
2 2 2 2

and for the next impact-collision angular velocity of the second ball rolling depends
on the outgoing angular velocity in the previous collision of the second balls and
coordinate @, ..., of position where the next (second) collision appears:

R .
Dp) impact.2 = Pp2 ourgoing,l = [V -1, (¢2,impucl,2) (43)
2

Wp,; = —[R—IJ\/(/)Z v +27g(c0s¢ v —COSP, oo )
'P2,impact.2 'P2,0utgoing 1 " 2,0utgoing 1 K ( R_ ”2) 2 impact,2 2,0utgoing 1

Central angle coordinates of the positions of the balls in the state of collisions are
in the following relation: @, , ... =®, ..., T B, where angle  depends on the
geometrical parameters of the circle line radius R, and of the radiuses of both balls
7; and 7, , and it is defined by the expression in the form (see Figure 10):

(R_rl)Z"'(R_rz)z_(rl"‘rz)z ﬂﬂ(ﬂﬂ_ﬂ?_l)_ﬂz (44)
2(R_”1)(R_rz) (/11_/12)(/11_1)

p = arccos = arccos

7. I-
where 1, =-2 and 4, =—=.
h h

4.2. Non-linear vibro-impact dynamics and phase trajectories with
successive central collisions of two heavy smooth balls rolling along a

circular trace in a vertical plane. Let us consider the vibro-impact dynamics of two
heavy balls rolling along a circle in a vertical plane. Using the ordinary nonlinear differential
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equations (25) and (36), and the equations (29) and (40) of the phase trajectory of two separate
rolling balls along circle line (obtained in 4.1), we can consider the dynamics of two rolling
balls in vibro-impact dynamics along a circular trace in a vertical plane, taking into account
that these equations are valid for the nonlinear dynamics of the both balls between two
successive collisions of these balls.

4.2.1 Solution for governing nonlinear differential equations with respect to time duration
of the rolling balls at a circular line. For each interval of the non-linear dynamics of balls,
between two collisions, the initial conditions must take into account the position of the
corresponding impact and post-collision outgoing angular velocity of the corresponding
ball. We take the measure of time from zero at each next interval between two successive
collisions. Also, it is necessary to obtain the time for each next collision in relation to the
initial moment of motion, or from the starting interval of motion post-previous-collision.
For that reason, let us introduce the following denotations:

w28, 28 (45)
Kl(R_rl) Kz(R_rz)
4g
k= 20) _ Ky (R=r)
@2, +203sin’ P20 3, N SR Y1)
, 2 kg (R-n) 2 (46)
__ 48
k= 2] _ K‘ZA(‘R—}"z)
¢2270 +2@3sin’ % ¢22_0 + 7’(2 (R‘% rz)sinz %

then equations (29) and (40) of the phase trajectory of each of the rolling heavy balls
along a circular line in a vertical plane are expressed in the following forms:

(/71 = \/¢12,0 +a)21 (COS @, —Cos §01.0) and ¢2 = \/@zzo +w§ (COS @, —COos @z,o) (47)

VT 2,ifing outgoing

Ve, immpae

ot »-

('OPZ,nmgn[ng

= : )y 7.
U)Pl,outgaing — (DPl,imm/)ac/

ircle trace rollin ~ P;
B jmmpact Circle trace rollin s

FIGURE 10. Plan of angular velocities and component velocities in pre- and post-
collision of two rolling heavy balls along a circular trace in a vertical plane
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The first ordinary nonlinear differential equation from (25) is possible to solve
with respect to time 7, and for that reason we must introduce in the first integral (29)

the following trigonometric relation: cos¢, =1-2sin’ % and after transformation,

the time ¢ of duration of rolling a ball along a circular trace between two ball
positions @, , = @, (0) and @, = @, (t), on the circle line , is expressed by an integral
in the form:
P d(ﬁ
-] “ -] ‘ (48)
o \/golo +0 (COS(p1 cosgplo) Ao \/¢ 2 +20"sin® @;o —2a)fsin2%

or in the form:

D
di
2 2 (49)

o1 g1, JJ1—kisin? %

The next transformation of the previous expression of the integral is by
introducing relations: u —s1n9—s1n¢; and u,, —sin(z(pwj', that previous integral

for obtaining the time t of duration of rolling a ball along a circle between two ball
positions @, , = @ (0) and @, = @, (t), on the circle line, turns the following form:

j (50)

Sim\/l qu —ku?)

The obtained integral in the expression (50) for the time ¢ of duration
of rolling a ball along a circle between two ball positions ¢, , = ¢1(O) and
» =@ (t) on the circular line, is a normal elliptic integral, known as Legandre’s
elliptic integral of the first kind (see Reference by Raskovi¢ [67] and Mitrinovi¢,
Djokovi¢ [57]).

Using the development of terms of functions in the previous integral (50) in series:

(1 k2 2) _1+ kZ 2+73k4 4 1 3 Ské 6 :i _% (_1)'7k2nu2n (51)
24" T4 per] !
1
1 Q. o
= e S
where:

1 _% _(n-p 1 % (-3 (53)
n (2n) " (2n)
then it is not difficult to obtain the approximate values of the integral (50) in the
following form:
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(54)

sinZL

2 2
-i—i I3 uw + 21 3 kfu7+1(13j k‘]‘ug
@\ 2-4-5 2°-4.7 9\2-4

. Pro
sin——
2

The previously obtained expression (54) is an approximate value and presents
the time ¢ duration of the first ball rolling along a circular line between two ball
positions @, = @, (t) and @, = @\) on the circular line, from the initial position
O, of the ball to the arbitrary position ¢, on the curvilinear circle trace, where
@, is a coordinate angle at the initial position of the first ball initial at moment.

In the analogy with the previously obtained approximate value (54) of the time
¢, duration of the first ball rolling from the initial position to the arbitrary position
@, on the curvilinear circle line, for the expression of an approximate value of the
time ¢ duration of the second ball rolling from the initial position ¢, , = @, (0) to the
arbitrary position @, (t ) on the curvilinear circular line, we obtain:

sin2
t:z(u+1k§u3 L3 k;‘uSJ C oy

600’1 2-3 2:4-6 P20

sin——
2

P2

2 s 1,5 13 j
+—| —u +—ku’ + foyu +
wo,l(zs 4.5 22477 ) e (55)
2

sin

sin?2

2 2
LN L B k§u7+1(13) ki
@, | 2:4-5  27-4.7 9\2-4

Sin‘/’z.n
2

4.2.2. Non-linear system dynamics in the interval from the initial position to the first
collision of balls. For obtaining the coordinates of balls’ positions in the configuration
of the first collision between rolling heavy balls at a circular line in a vertical plane,
it is necessary to obtain time Limpact,1 of the first collision at which both balls are in
the configuration of the first collision. We propose that the mass center C, of

impact.1 ) = Plimpact 1

the first ball is in the position defined by the angle coordinate ¢, (t

, then the coordinate of the mass center C a1 Of the second ball is defined by the
angle coordinate: ¢, (timpacr,l ): ® (tampm,l )+ /3, where the angle £ is defined by the
expression (44). Using the approximate expressions (54) and (55) for time Z;,,,,, 1

duration of balls’ motion from the corresponding initial positions, @, , and @, , to

the positions @, ;a1 aNd P jypace,1» Of the first collision between rolling balls we
can write the following:

Limpact,1
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. P LJimpact |1
mn—_——

bimpactd = bimpacta = a)jl (u + 21‘3kfu3 + 2256ki‘uslmm2 +
+ wzo,l (;3;;3 + 4%5/(?145 221 j Sk 7linm2 + (56)
Primpact.|

sin

2
2( 13 S 1-3 kfu7+1(13jk49
P10

+ 2
@, | 2:4-5 2247 9(2-4
2
sin Pimpact 15
2 1, 3 1-3 4.5 2
timpact,l = t2,impact,1 ~ M(“ +ﬁk2u +mk21/l Sinm +
2
Sin("lmpmﬁrﬂ
+2(1u3+1k§u5 13 4, ] L (57)
23 45 2%.4.7 o
2
P impact, 15

sin

2
+i I3 uw + 213 kiu' +— (13jk49
w245 2747 9l2-4 o

Taking into account that both balls start from the initial positions, ¢, , and @, ,,
we must arrive at the configuration of the first position of the first collision, defined
by the coordinates (— and Py impact.1» show that the expressions (56) and
(57) are equal, first to one another, and then as result is,a nonlinear transcendent
equation with respect to the unknown angle coordinate @, timpact,ll) = D impact.| of the
mass center position of the first ball at the position of the first collision between
balls. This task of finding the first real root of this transcendental equation is not
possible to solve analytically and it is necessary to use certain numerical methods
and commercial software tools. In this paper, we deal with ideas and analytical
approaches to the defined task of vibro-impact dynamics. We propose that we have
the first real root of this transcendental equation obtained numerically.

Furthermore, we suppose that we have the angle coordinate ¢, (timpact,l ) = D impacr of
the mass center C,,, ., of the first ball at the position of the first collision between
balls, and also the angle coordinate ¢, (t[mpact,l): 1 (tompm’l)+ f of the mass center

C, impacr Of the second ball at the position of the first collision between balls, then
it is possible to compose the pre-first collision impact angular velocities @p, ;0.1
and @p; ;,,4c1 Of the both heavy rolling balls using the expressions (32) and (43),
in the following forms:

a)Pl,impact,l = (ﬂ"l - 1)¢1.impact,1 = (ﬂ’l - 1)\/(012,0 +6021 (COS wl,impact,l —COS q’l,O) (58)



Katica R. (Stevanovi¢) Hedrih 115

a)PZ,impact,l = (12 - 1)¢2,impact,l = (22 - 1)\/(022,0 +a)§ [COS(¢1,impact,l + IB)_ Cos (02,0] (59)

For obtaining the post-first-collision outgoing angular velocities
WOp, Gu,l +T )= Opy puigoing.s AN Opy\ly + T )= Op) 1g0ing 1 Of the rolling balls along
a circular line, at the same position of the first collision between balls, determined
by the generalized coordinates — and Dy impact,1» We Use the expressions (10)
and (11) and we obtain the following expressions:

1+k
WOp, (tu,] + T): Dp1 puigoing,1 = Op1impact,1 (tu,l )_ ;Jpl(ml’l,impact,] (tu,l )_ Dp3 impact 1 (tzul )) (60)
14221
"
1+k
oty +7)= Dp3,ourgoing,1 = Pp2,impact,1 (tu,l )+ ;Jm(a)l’l,impact,l (tu,l )_ Op impact,1 (tuJ )) (61)
1+
Jp

or in developed forms:

— _ -2 2
mPl (t() + T) - a)Pl,outgoing,l - (ﬂ'l - 1)\/(0],0 +0 1 (COS ¢l,impact,l —COoS ¢l,0 ) -

- ! +Jk kﬂ'l - 1)\/9012,0 +a)2] (COS (ol,impnz?t,l —COos (01,0 ) -
1+
P2
- (/12 - 1)\/(p22,0 +0)j [COS(¢1,impact,l + ﬂ)_ Cos (02,0]} (62)

Wp, (to + 7) = Op) pusgoing,1 = (/12 - 1)\/(?220 ’M)i [COS((DI,impm,l + ﬂ)_ cos (02,0] +

+ l-l:]k k’% - 1)\/¢12,0 +w2|(cos ¢1‘1mpacz,l —C0s (/’1,0)_
1+=£2
Iy
-4 —l)\/ 9, +w§[cos(go,y,mpﬂ,,y] + ﬂ)—cos (/)2)0]} (63)

For obtaining the kinetic parameters of the rolling balls in the form of pre-
collision and post-collision angular velocities and the angle coordinate of the ball
position at a series of successive collisions between balls we must use the approach
similar to the one presented in this part.

In case of dealing with numerical data, a discussion is possible about the directions
of outgoing angular velocities of corresponding rolling balls, depending on the
relation between the intensities and directions of the arrival at the pre-collision
angular velocities and the position of the collision between balls. It is possible to have
various cases, so that after the considered collision, balls departures are in opposite
directions or in the same direction depending on the listed kinetic parameters. But
this is a task with numerical analysis.



116 The Latest Theory of Body Collisions in Rolling and the Dynamics of Vibro-Impact Systems...

4.2.3 Non-linear system dynamics in the interval from the position of the first
collision to the second collision of the balls. The next period of the motion of
the rolling balls, between the first and the second collisions of balls, is starting
with the measures of time interval with zero, and the initial conditions are
equal to the outgoing kinetic parameters at the post-first-collision state of
rolling balls:

* for the first rolling ball the initial coordinates are @i impacr,1 = Prougoing,1 and the
initial angular velocity of the first ball mass center with respect to the circular trace
center is

_ a)Pl LJoutgoing 1

(pl (limpact ) )= (bl Joutgoing,l — (ﬂ,l _ 1)
and the equation of the phase trajectory branch of the first ball dynamics in the
interval between the first and the second collision is:

¢2 (timpacf,l ): wZ,impaa,l = wl (timpacz,l )+ ﬂ = gol,impt/cl,l + ﬂ (64)

and

* for the second rolling ball the initial coordinate is

(pZ (timpact,1)= (p2,impacl,l = @1 (timpacl,l )+ ﬁ = (pl,impact,l + ﬂ and the lnltlal anglﬂar VEIOCity iS

; (t. ): ; ) _ Pr2ougoing) of the second ball mass center with respect to
¢2 impact,l ¢2,outgomg,l (ﬂ, _1)
2
the circular trace center, and the equation of the phase trajectory branch of the
second ball dynamics in the interval between the first and the second collision
is:

o, = \/(p;,outgoing,l +w§ [COS 0, — COS((DIM + 'B)] (65)

For obtaining the time Limpact.2 = Uimpact.2 = Ua jmpact 2 of the second collision
between rolling balls and the duration between the first and the second collision
between balls, it is necessary to use the previous approach, and on the basis of this
write the following integrals:

Primpact 2

do
— 1
tl,impact,Z - . 5 (66)
Pt impact 1 \/gol,outgoing,l tw 1 (COS q)l —Cos ¢1,impact,l )
P impact, 2B
t _ do,
2,impact2 .2 ) (67)
(/71.mpac/,1+ﬁ \/¢2,outgoing,l +w2 [COS ¢)2 - COS((D] Jimpact,1 + ﬂ)]

On the basis of the previous explanation in an analogy with the approximate
expressions (56) and (57), for time ¢/, t ¥y impact,» Of duration of the
intervals between the first and the second collisions of the rolling balls dynamics, it
is possible to write:

impact,2 = Limpact,2 =



Katica R. (Stevanovi¢) Hedrih 117

tl,[mpact,Z for the first ball

2 1 1-3 2
Linpact2 = Lijmpact2 = [“ + k%"ﬁ + k‘;usj +
’ ’ ’ @y, 2-3 2-4-6 sin

2 3 Lo 1-3 4.7 N
+—| —u +—kw + k +
a)ovl[2~3u 4.5 T ) (68)

* l‘z,irmmt,2 for the second ball

Lopact2 = Lo jmpace2 &
0.2

(u+ik22u3+ I3 k;usj oy
2.3 sin

P2,0, pact, 1 (69)
2

2 (13 5 13
| ———u +— u —
2:4.5 2247 9

—N
q
| —
VR
2 | —
NS
Ne—
@
=
— s
Ny
o
Ne—
g
3
H o

Taking into account that both balls, starting from the position of the first collision,
which is now the initial position of both rolling balls along a circular trace, in the
intervalbetweenthefirstand thesecond collisions, we mustarrive atthe configuration
of the position of the second collision for equal time Limpact.2 = Wimpact,2 = Loimpact2 -

We show that the expressions (68) and (69) are equal first to one another, and as
a result there is a n0(1-linear transcendental equation with respect to the unknown

angle coordinate @, \¢ = D\ impact,» ©f the mass center C of the first ball

impact,2 1impact,2

at the position of the second collision between balls. The task is to find the first
real root of this transcendental equation, which is not solvable analytically and it
is necessary to use some numerical methods as well as some commercial software
tools. In this paper we deal with the ideas and the analytical approach to the defined
task of vibro-impact dynamics. We propose that we have the first real root of this
transcendental equation obtained numerically.

Suppose that we have the angle coordinate ¢, (timpacl,Z): Dt impact 2 of the mass

center C, impact,2 of the first ball at the position of the second collision between
balls, and also the angle coordinate ¢, (tl.mpm 1): o (tl.mpact 1 )+ pf of the mass center
C

2 impact.2 of the second ball at the position of the second collision between balls, then

it is possible to compose pre-second-collision impact angular velocities @p, impact,2
and @p, ;40 » Of the heavy rolling of balls around the corresponding instantaneous
axis, using the expressions (32) and (43), in the following forms:
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a)Pl,u,Z = a)Pl,impact,2 = (ﬂ’l - 1)¢1.impact,2
(70)

_ 2 2
a)Pl,u,Z - (/11 - 1)\/¢1,impact,1 tw 1 (COS wl,impact,Z —CO0s qol,immpact,l)

wPZ,u,Z = a)PZ,impact,Z = (12 - 1)¢2,impact,2

(71)
Wpyyo = (/12 - 1)\/¢22,impact,l +a)§ [COS(Col,impacz,z + ﬁ)_ COS(%,impacz,l + ﬂ)]

For obtaining the post-second-collision outgoing angular velocities
a)Pl (timpacr,Z + T): a)Pl,outgoing,Z and a)PZ (timpact,2 + T): a)P2,autgoing,2,1 of the rolling balls
along a circular line, we use the expressions (10) and (11) and we obtain the following
expressions:

1+k
a)Pl (timpzu't,2 + T) = a)Pl,outgoing,Z = wPl,impac't,Z (tu,Z )_ ;‘]Pl (wPl,impnc't,Z (tu,Z )_ wPZ,impact.2 (tuA,Z )) (72)
1+-=
I

1+k
wPZ (timpacl,Z + T) = a)PZ,ourgm'ng,Z = a)PZ,impact,Z (tu,Z )+ L‘]PZ (wPl,impact,Z (tu,Z )_ wPZ,impact,Z (tu‘Z )) (73)
1+
I

4.2.4 Non-linear system dynamics in the interval from the position of n-th to n+1-
th collision of balls. Based on the previous consideration of the present series
of successive collisions between balls, it is possible to make a generalization of
the expressions for Kinetic parameters between two successful collisions of the
balls.

The nextperiod of the motion of two rolling balls, after 7 -th collision, 7 > 2 ,between
balls, with the measures oftime interval Z,,, .., (,.1) = & impact (n+1) = L 2impact (n+1) StATHNG
with zero, and the initial conditions equal to outgoing kinetic parameters at the position
of 7 -th -collision state of the rolling balls:

* for the first rolling ball the initial angle coordinate is P impact n

= (01 ,outgoing ,n ’
n > 2 and the initial angular velocity is

a)Pl,autgoing,m

(pl (t impact,n ) = g.01 outgoing.n W
1

and the equation of phase trajectory branch of the first ball dynamics between 7 -th
and n+1-th n>2 collisions of the rolling balls is:

. ) 2
¢I - \/(0] LJoutgoing ,n +o 1 (COS §01 —COs ¢1,impact,n ) ’

between #-th and n+1-th n>2 (74)

and

*for the second rolling ball, the initial angle coordinateis @, . ... = @\ impaern + B

and the initial angular velocity between 7#-th and n>2-th n>2 is
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_ a)PZ,outgoing N

¢2 (timpact,n )= ¢2,outgoing n (/1 _ 1)
2

and the equation of the phase trajectory branch of the second ball dynamics after # -th
collision and in the interval between 7 -th and n+1-th n > 2 collisions of the second
rolling balls is:

. .2 2
¢2 - \/¢2,outgoing,n +a)2 [COS (02 - Cos(qol,impact,n + ﬂ)] )

between n-th and n+1-th n>2 (75)

For obtaining the time #,,,..; (u+1) = i impact (n+1) = L2 jmpace.(ns1) Of the (72+1)-th
collisions between rolling balls, it is necessary to use the previous approach, and
based on this, write the following integrals:

P (n+1) d
_ _ P 76
timpact,(nﬂ) - tl,impact,(nﬂ) - 2 2( ) ( )
Ploun (ol,outgoing,n +C()1 COS(pl - COS(pl,impact,n
Pl (n+
. T do, (77)

impa(t,(nﬂ) = t2,impact,(n+l) . B
Orunth \/¢2,outgoing,n +CU2 [COS (DZ - COS(¢l,impact,n + ﬂ)]
Based onthe explanationin part4.2.2,and an analogy with approximate expressions

(56) and (57), for the interval 7, .., (s1) = b impact (n+1 ) between 7 -th
and n+1-th n>2 collisions of the rolling balls it is possible to write:

,2impact ,(n+1

. P ot (n+1
o Pompact (1)

2 1 1-3 2
tinpac‘t (n+1) = tl inpact (n+1) ~ (u + 71{%”{3 + k‘l‘usj +
’ ’ ’ 0)0’1 2-3 2-4-6 i Peimpact n
. Plompact (n+1)
2 (1 1 13 ST
+(u3 +—ku’ +— kfu7) + (78)
@, \2:3 4.5 2247 ) s

in P1ompact (n+1)

2 Sl P
2 L3 u + 21 3 kfu7+1[l3j ki’
@, 2-4-5 2°-4.7 9\2-4 o Phimpactn
2
in Prompact (1)

)zi(u+ik§u3+ I3 k;usJ ’ +
@y 5 2-3

t =t
t,(n+1 2, ot (n+1
impact (n+1) inpact (n+ 2:4.6 sin P2impactn

+2(1u3+1k22u5+ I3 k4u7j + (79)
4.5 Si"(/’z pact ,n

in Prompact () * B

2 sin- 5
S D
@, 2-45 2247 9\2-4 i

2.impact .n

2
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Taking into account that both balls, starting from the position of 7 -th, n>2
collision, now the initial position of the rolling balls along a circle, in the interval
between 71 -th and 7 +1-th, 7 > 2 collisions, we must arrive at the configuration of
the position of 7+ 1 -th, n > 2 collision, and show the expressions (78) and (79) are
equal, first to one another. As a result, there is a non-linear transcendental equation
with respect to the unknown angle coordinate @,\l;,,,.c; (41+1)) = Primpace (n+1) Of the
mass center C, .., (,.1) of the first ball at the position of 7+1-th, n>2 collision

between balls. The task is to find the first real root of this transcendental equation
and it is not analytically solvable. It is necessary to use some numerical methods as
well as some commercial software tools, as we explained in the previous parts.
Supposethatwehavethenecessaryangle coordinate ¢, Limpact (n1)) = Primpact (n+1) of
the mass center Cl.impact (ns1) Of thefirstballatthe positionof 77 + 1-th, n > 2 collision
between balls, and also the angle coordinate ¢,\t,,,,.., (.1))= @, (t,.mpact,(n +1))+ p of
the mass center C, .., (1)
between balls, then it is possible to compose pre-( 7 + 1 )-th-collision impact angular
velocities Dpy impact (n+1) and Op3 impact (n+1) of the rolling of heavy balls, using the

expressions (32) and (43), in the following forms:

of the second ball at the position of 7 +1 collision

a)Pl,[mpacl,(nH) = (2’1 - l)¢1.impact,(n+1) (80)

_ 2 2
a)Pl,impacl,(nH) - (ﬂ’l - 1)\/¢1,impacl,n +to 1 (COS gD],[mpact,(nH) —COos ¢1,impacl,n)
a)[’Z,[mpacl,(nH) = (/12 - 1)¢2,z¢,(n+l)
.2 2
a)PZJmpact.(nH) = (/12 - 1)\/¢2Jmpact,n +C()2 [Cos(q)l,[mpael,(/wl) + IB)_ COS(¢1,[mpact,n + ﬂ)]

(81)

For obtaining post-( 7 +1)-th, # > 2 -central collision outgoing angular velocities
a)Pl (timpa(rt,(nH) +7)= a)Pl,outgoing,(nJrl) and a)P2 timpact,(nJrl) +7)= a)PZ,outgoing,(nJrl)l around
the corresponding instantaneous axis of each of the rolling balls along a circular line,
we use the expressions (10)-(11) and we obtain the following expressions:

Wp, (tu,(nﬂ) + ‘[): Dp1 ousgoing (n+1)

(82)

Wp, (tu,(n+1) + T): wPl,xnxpacr,(n+l)(tu,(n+1))_ Ak +J1; [wm,,-mpm,(m)(fu_(m))_ wPZ,impm‘t,(nH)(tu,(71+l)
I+
Jp

@p, (tu,(n+1 + '[) = Op) ourgoing (n+1)
| Lk (53)
Dp, (tu,(m) + T) = Op) impact 2 (tu,(ﬂ+l))+ 17‘]‘02 [wPl,[mpau,(n+1)(tu,(n+l))_ wPZ,[mpacz,(ﬂ+l)(tu.(ix+l))]
’ P1

The next period of the motion of the rolling balls, after (7 +1)-th collision,
n =72 between balls, with the measures of time Limpact (n+2) Interval starting with
zero, and initial conditions equal to the outgoing kinetic parameters at post-(72 +1)-th

-collision state of the rolling balls:
* for the first rolling ball, the initial coordinate is @ impact,(n+1), n>2 and the initial angular

. . . . . . wPl,uu oing (n+1
velocity around the circular line center Co is o (t,-”,p,,c,,(nﬂ)): Prousgoing (1) = 7@?_? ; 1)
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and the equation of the phase trajectory branch of the first ball dynamics between
n+1l-th and n+2-th, n>2 is:

. .2 2
go] - \/q)l ,outgoing,(n+l) +w 1 (COS (01 —Cos q)l,impact,(nﬂ)) ’

n+l-th and n+2-th, n>2 (84)
and
* for the second rolling ball, the initial coordinate is P2 impact (n+1) = P impact (n+1) + ﬂ
and the initial angular velocity between n+1 -th and n+2-th, n>2 central

_ wPZ,outgaing,(nJrl)

(timpact,(nﬂ)): ¢2,outg0ing,(n+l) - (ﬂ, _ 1) , and the equation of the
2

collisions is @,

phase trajectory branch of the second ball dynamics after (7 +1)-th collision,
n>2,and between n+1-th and n+2-th, n > 2 collisions of the balls is:

¢, = \/qbzz,owgoing,(nﬂ) +w§ [COS¢2 - COS((Pl,impacz,(n+1) +p )] ’

between n+1-th and n+2-th, n>2. (85)

4.2.5. Sketch of the phase trajectory branches of the rolling ball dynamics between
successive central collisions of two rolling heavy balls along a circular trace in a
vertical plane. In Figure 11, phase trajectory portraits of vibro-impact dynamics of
two rolling balls along a curvilinear circular line in a vertical plane with successive
two first collisions are presented: (upper) for the second rolling ball and (lower) for
the first rolling ball non-linear dynamics. In Figure 12, plans of the configurations of
the rolling balls in vibro-impact dynamics of rolling heavy balls along a curvilinear
circular line in a vertical plane with successive first two collisions are presented.

Let us explain how to obtain phase trajectories of vibro-impact nonlinear dynamics
of two rolling balls along a circle starting from the initial conditions defined by the
corresponding initial position and the initial angular velocity of the rolling balls:
((01’0,&)1’0) and (¢2,oa(7)2,0) . Balls in this configuration are presented in Figure 12 (upper
and left). In Figure 11, phase portraits for different initial conditions are presented: for
the first ball (lower) portrait in the phase plane (qol , q')l) and for the second ball (upper)
portrait in the phase plane (¢,,, ), for the cases of both single balls rolling along
a circular line. We can see that on the phase portraits there are three types of phase
trajectories visible. The closed phase trajectory corresponds to oscillatory motions
with the constant total mechanical energy of the nonlinear oscillation dynamics. Open
trajectories correspond to progressive balls rolling along a circular line in one direction.
Trajectories with cross sections passing through unstable saddle type singular points are
separatrices and homoclinic trajectories. Saddle points at the phase portrait correspond
to the upper ball position on the circle line and present no stable equilibrium position. A
stable center type singular point corresponds to a lower position of the ball at the circle
line, and presents a stable equilibrium position of the ball at circle line.
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Using these phase portraits for a single ball rolling along a circular line, we
start to construct phase trajectory branches for the vibro-impact dynamics of each
of the rolling balls at a circular line, starting by the corresponding initial position
and the initial angular velocity. In the phase portrait, see Figure 11, starting kinetic
states of the balls are presented by phase representative points: N, (¢1 0P, 0) and
N20(¢20,¢20), taking into account g & = D0 and @0 =

0\F2,00 %2, a1 YA, -
of the balls non-linear dynamics is along the correspondlng pha e tra]ectory
of the single ball non-linear dynamics between points from N, (010,(010 to

Nl_”npact,1 (¢1,impacz,1a¢1,impacz,1 ), for the first rolling ball and from N, 0((p2’0,¢2 0

. The interval

for the second rolling ball non-linear dynamics.

NZ Jmpact,1 ¢2 Jimpact > (02 Jmpact,1 b7
Limpact,1

1)
Taking into account ¢, ompactl = and ¢, " = _Zimpactl the equation of
Jimpaci

A, -1 A,-1

the correspondingbranch of phase trajectory for the firstand second rolling ball along
a circular &me is defined, respectively, by (29) and (40). Phase representative points
Nl ¢1 impact,1? @l Jmpact, 13 and N2 Jmpact,1 (¢2,tmpact s ¢2,lmpact,13 in phase portralts
in Figure 11, correspond to the pre-first-collision state, and phase representativs

pOIHtS Nl and N2 ,outgoing,1 ¢2,impact b ¢2,outgoingm1

impact,l

.outgoing,1 gol,impact,l b gol,outgaing,l
correspond to the post-first-collision kinetic state of the rolling balls along a circular
line. From these representative points at the phase portrait a jump in velocity for
each of the ball dynamics appears and this jump is a jump from one to another phase
trajectory depending on the outgoing angular velocity for each of the rolling balls
defined by the expressions (62) and (63) or (64) and (65).

The jump on one phase trajectory branch to another branch of another trajectory
appearsbetweenthefollowingrepresentativepoints:from DA (¢Umpw!] NN )to

) for the first ball and from AN

2,impact,1 ¢2,impact,l > ¢2,impact,l )

N] .outgoing 1 (¢1 Jmpact,1° ¢)1 LJoutgoing 1
) for the second ball. This is created by the change

to N,

of the angular velocities of rolling balls pre- and post- collision kinetic state at
the same position and caused by the change of angular velocity directions of both
rolling balls after the collision between them. The next corresponding branch of
the corresponding phase trajectory of the first ball and the one for the second ball
are defined by the expressions (70) and (71) respectively. These new branches are
defined and bounded by the pairs of the following representative points: for the

first ball rolling from the representative point N, to

,outgoing,1 ¢2,impact,l H ¢2,outgoing,1

1.outgoing 1 (q)l,impact,l 4 qol,outgoing,l )

N\ ipaci 2 ((Dl,impact,Z s Dlimpact 2 ), and for the second ball rolling from the representative

p01nt N2,outgo[ng,l (gDZ,impact,l H (02,0L4tgoing,l ) to N2,impact,2 (¢2,impact,2 H ¢2,outgoing,2 )’ respectlvely.

Next jumps appear from the representative points N“,WC,’2 ¢1,impa8,’2,gol’impagt’2) and

to the representatlve pomts Nl.autgaing,Z(qDI,impact,Z’(pl,outgoing,z)

NZ,[mpact,Z ((DZ,impact 2> (02,outgoing,2 )

and NV , ( , / . ),respectively.

2,outgoing ,2 @2,zmpact,2 > @2,outg0mg,2
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FIGURE 12. Plan of configurations of rolling balls in vibro-impact dynamics
of rolling heavy balls along a curvilinear circular line in a vertical plane with
successive first two collisions

The next branches of trajectories are defined by the expressions (80) and (81), bounded

by the representative points: for the first rollinf ball from N, 1.outgoing.n ((Dl,impact no ¢1,guzgomg,n )

to Nl.impact,(nH) ¢l7impact,(n+l)’gol,impact,(nﬂ) ’ and for the second ball from

)), respectively.

N. 2,0utgoing.n ((pz,impaa,n P (pz,amgaing,n) to N, 2,impact ,(n+1)((p2,fmpact,(n+l)’ D3 ourgoing (n+1

NeXt jumps appear from the pOintS Nl.impact,(n+1)(¢l,impact,(n+l)’¢1,impact,(n+l)) and
)) to the points N

N2,impact,(n+1)((OZ.impact,(nH)9¢2,0utgoing,(n+l 1.outgoing (n+1) ng,impact,(nH)’ qol,outgaing,(nﬂ))

and N

2,outgoing,(n+1)(¢2,impact,(n+l)’ ¢2,outgoing,(n+l))' reSpeCtiVely, for n= 23374’536"" )
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4.2.6. Energy analysis of the vibro-impact non-linear dynamics with successive
central collisions of two rolling heavy balls along a circular trace in a vertical plane.
From the phase portraits of the rolling heavy balls along a circular line in a vertical
plane it is possible to conclude that the nonlinear dynamics of both balls between
impacts is conservative with constant total mechanical energies for each of the rolling
balls. Jumps of the representative point in the corresponding ball phase portrait in
pre- and post- collision caused the change of total mechanical energy of each ball,
from upper to lower total mechanical energy for one and opposite for another ball.
If impacts are ideally elastic and the sum total of mechanical energies of both balls
are constant, if there is no ideal elastic collision, this sum of total mechanical energy
decreases and after numerous successive collisions tends to zero. Conversely, in this
case of no ideal elastic collisions a series of jumps appear from one to another phase
trajectory branch.

In case of ideal elastic collisions between rolling balls in the vibro-impact dynamics
of the whole system with constant mechanical energy and the change of mechanical
energy between balls in each of the collisions appears. The vibro-impact dynamics
continued in an infinite period and with infinite numbers of collisions. In the case of
no ideal elastic collisions between rolling balls in the vibro-impact dynamics of the
whole system with no constant mechanical energy, the energy dissipation appears
in each collision and the change of mechanical energy appears between balls in each
collision. Then the vibro-impact dynamics continued in a finite period and with
finite numbers of collisions up to the rest of the system after finite numbers of the
collisions.

Taking into account that non-linear dynamics of the single heavy ball rolling along
a circle in a vertical plane is in conservative motion, and that for each ball energy
integrals are presented in the forms: (26)-(28) for the first rolling ball and (36)-(38)-
(39) for the second rolling ball along a circular line and that each branch of the phase
trajectories in phase portraits between two successive collisions also present the
corresponding branch of the curves of the constant system total mechanical energy
for each of a single ball motion, it is possible to make some conclusions concerning
the vibro-impact dynamics of the two rolling balls. In each collision between two
rolling balls, the rolling ball with a large angular velocity of the ball after collision is
smaller and its total mechanical energy obtains a jump from the upper level to the
lower level, and the rolling ball with smaller angular velocity after collision obtains
a larger angular velocity and its total mechanical energy obtains a jump from the
lower to the upper level. The jumps of total mechanical energy of each ball appear
there after each collision of the balls.

Concluding remarks. In concluding remarks, it is necessary to point out the
importance of Petrovic’s theory of the Elements of mathematical phenomenology
and Phenomenological Mapping [58-60] for obtaining the original results of the
kinetic parameters of two rolling balls in the central collision when both balls roll
along a straight trace as well as along a curvilinear trace in a vertical plane, on
the basis of analogy with kinetic parameters of the central collision between two
bodies in translatory motion. In Table 1, on the basis of mathematical and qualitative
analogies between the kinetic parameters of two system central collision dynamics,
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the corresponding analogous kinetic parameters of the central collision of two
bodies in translatory motion are presented and the central collision of two rolling
balls.

Also, the kinetic parameters of the collision between two rolling balls presented in
this paper are used to present the vibro-impact dynamics of two rolling heavy balls
along a curvilinear circular line in a vertical plane. For the vibro-impact dynamics a
sketch of phase trajectory is presented in Figure 11.

At the end, it is useful to conclude that the obtained kinetic parameters of the
central collision of two rolling balls are possible to use in a study of the skew collision
of two rolling balls that roll along two straight line traces with the intersection as
well as parallel at a distance smaller than the sum of the balls’ radiuses.

The aim of this part is not to present an overview about the generalization
of all results in the area of the collision of two rolling balls with different
properties of balls and collisions. The part is focused on the central collision of
two rolling rigid and heavy smooth balls and using the elements of mathematical
phenomenology and phenomenological mapping to obtain the corresponding
new expressions for the post-collision and the outgoing angular velocity of each
ball and applied these results for the investigation of the vibro-impact dynamics
of two rolling balls along a circular trace. This task is analytically solved in full
and the obtained analytical results are original and new. Also, these results can
be fundamental for the next development and investigation of the special class of
collision of the rigid and/or deformable balls and also in application in different
areas of engineering systems with coupled rotations (in rolling bearings, rolling
vibro-impact dampers - mechanisms for the dynamic absorption of torsional
vibrations, or other).

5. Generalized rolling pendulum along a curvilinear trace:
Phase portrait, singular points and total mechanical
energy surface

5.1. Kinetic parameters of a rolling heavy ball motion along
three circle arches in a vertical plane. This part of the paper contains a
description of a generalized rolling pendulum along a curvilinear trace consisting
of three circle arches in a vertical plane. Sets of three non-linear differential
equations of dynamics of the described generalized rolling pendulum along each
of three circle arches are presented. A set of three equations of each of three
phase trajectory branches which correspond to the dynamics of the described
generalized rolling pendulum along each of three circle arches is derived. A
phase portrait, a set of singular points and total mechanical energy surface are
graphically presented for a particular case of geometrical parameters of the
system (for details see Reference [14]).
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FIGURE 13. Decomposition of the rolling ball dynamics along the curvilinear
line rolling trace consisting of three circle arches

To begin with, it is necessary to define a mechanical model of generalized rolling
pendulum. A rigid body with one axis of symmetry and a plane of symmetry, which
can roll along a curvilinear line with one or more minimums in a vertical plane, is
a rolling pendulum, in our definition. In this part of the paper, non-linear dynamics
of a rolling pendulum along a curvilinear line, as a rolling trace, consisting of three
circle arches is investigated. In Figure 13, the decomposition of the curvilinear
rolling trace into three separated circle arches with different radiuses is presented.
The system of the ordinary nonlinear differential equations of a heavy ball rolling
along a rolling trace into three separated circle arches with different radiuses is in
the forms:

. g . 7
+—=singp, =0,for — 7 <p <—— (85)
@ K'1(R_”1) [ 2] 2 s
. g . s z
— sing, =0,for —| =—— 3 |<qp, <=— (86)
®, K‘Z(RO+I”3) ®, (2 ﬂj ?, > B
.. g . 4
+—=_sIn :O,fOI'—ﬂ'S <—- (87)
PR n=y~’

The system of the first integral of the previously listed ordinary nonlinear
differential equations (85)-(87) of a heavy ball rolling along a rolling trace into three
separated circle arches with different radiuses are in the forms:

. . 2g V4
2 2

=@’ +——2=_(cosp, —cos Jor —gp<p <—— (88)
D =Py X, (R n )( (2] §01,0) (2] 5 B

. . 2g

2 2 T T
= ———2  _(cos@, —cos Jor | Z_pl<p <Z - (89)

D, =0y KZ(R+VZ)( (23 q’z,o) (2 ﬁ} ?, > it

. ) 2
¢32:(p320+—g(cosgo3—cos¢30), for —z<p<Z-p (90)

’ K3(R_r3) ’ 2

and present the equations of the branches of phase trajectory portraits.
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FIGURE 14. A rolling ball along a curvilinear line consisting of three circle
arches, each with a central angle of 3z or 7T or 3%, successively, and in the
2

singular case for R, > R —2r. a* Mechanical model of “the generalized rolling
pendulum” along a curvilinear rolling trace. b* Three parts of a phase portrait
which correspond to non-linear dynamics of a rolling ball along each of three
circle arches as rolling traces. c* The complete phase portrait of the rolling

dynamics of a ball along a curvilinear line-trace consisting of three circle arches
with central angles 35 or T or 35, successively, in the case for R > R—2r

and with a half of two triggers of coupled each of two singular points and a
homoclinic orbit in the form of half of number “eight” with one cross section
in one non stable saddle type singular point and with the second type of
homoclinic phase trajectory with a cross section in a non-stable saddle type
singular point and containing a stable center type singular point.

5.1.1. Particular case for: f=0 and R, > R—-2r, (see Figure 14.a*). For that
case, the set of the nonlinear equations of phase trajectory branches of nonlinear
dynamics of rolling balls along three circle arches of the rolling trace is in the form
(88)-(90) for £ =0.

Using the previous set of equations and changing the initial conditions, and
taking into account the conditions of continuity in the common posits between the
first and the second circle arches as well as the second and the third circle arches of
the rolling trace and that at the left end of the first circle arch and at the right end of
the third circle arch, limiters are positioned, we can obtain a set of three particular
parts of the phase portraits for a rolling ball along each of three circle arches of a
rolling trace presented in Figure 13b*. Using the obtained set of three particular
phase portraits, which preset decomposition of the complete phase trajectory
portrait for the considered case of a rolling ball along a curvilinear trace composed of
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three circle arches for =0 and R, > R —2r, (see Figure 14b*). In the results of
composition it is visible that the complete phase trajectory portrait (in phase plane
(¢1,¢1)-(¢2,¢2)— (qo3,(b3)), of a rolling ball along a curvilinear trace composed of
three circle arches for =0 and R, > R—2r,is presented in Figure 14c*.

Singular stable centers ~ Singular no stable saddle points

(R—r)>(R,+r)—(R,+R)sin B, for —z<gq, ggfﬁ,

T T T
~(5-p)zo=T-pand —xzp<Zp

b*
FIGURE 15. Arollingballalonga curvilinearline consisting of three circle arches,

each with a central angle of 35—,6' or r—2f or 31_/3, successively, and in
2 2

the case o1 (R-1)> (8, +7)- (% +Rnf o _rcq <% (T p)sgu T p

and —7r£go3s%—ﬂ. a* Mechanical model of “the generalized rolling

pendulum” along a curvilinear rolling trace. b* Complete phase portrait of
rolling dynamics of a ball along curvilinear line-trace consisting of three circle
arches in the case for (R - r)> (RO + r)—(RO + R)sinﬁ and with a trigger of
coupled each of three singular points and a homoclinic orbit in the form of
number “eight” with one cross section in one non-stable saddle type singular
point and with the second type of the homoclinic phase trajectory with two
cross-sections in two non-stable saddle type singular points.

5.1.2. Particular case for: f #0 and (R - r) > (Ry + r) = (Ry +R) sin B, (see Figure 15a*).
For that case, the set of the nonlinear equations of phase trajectory branches of nonlinear
dynamics of rolling balls along three circle arches of a rolling trace is in the following form
(93)-(95) for S # 0. For that case, the complete phase trajectory portrait in the phase

plane ((01 , P ) (0., 0,)- (§03 N0 ), is in the form presented in Figure 15b*.

5.2. Total mechanical energy surface of generalized rolling pendulum.
For a graphical presentation of the total mechanical energy surface of a generalized
rolling pendulum, we take into consideration a particular case for: f# 0 and
(R—r)> (R, +7r)—(R, + R)sin 3, (see Figure 16a* and 4a*). For that case, the set
of the nonlinear function of the total mechanical energy surface in the phase space
(El NN ) -(E,.0,.0,)- (E3,¢3,(j)3) is defined by (88)-(90).
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FIGURE 16. A generalized rolling pendulum with a rolling ball along a
curvilinear trace consisting of three circle arches each with the central
angle of 3§fﬁ or 7[—2,3 or 3%—,8, successively, and in the case of
(R=r)> (R, +r)-(R 4 R)sin g, for ~zsgsT-p, -(5-plcosT-p
and —-7=<¢, Sz—ﬂ . a* The mechanical model of “the generalized rolling
pendulum” along a curvilinear rolling trace. b* Surface of total mechanical
energy of the rolling dynamics of a ball along a curvilinear line consisting of

circle arches with central angles of 3% ~Borm—2p or 3% - 3, successively,

in the singular case for (R - r) > (R0 + r)—(R0 + R)sinﬁ and with three
maximum values of the total mechanical energy, two same local maximum
values of total mechanical energy and the smallest maximum value between
the previous, which correspond to three non-stable saddle type singular
points and two minimum of total mechanical energy values correspond to
two stable centre type singular points; c* Complete phase portrait of rolling
dynamics of a ball along curvilinear line-trace consisting of three circle
arches in the case for (R - r) > (R0 + r)— (R0 + R)sin,B and with the triggers
of coupled each of three singular points and homoclinic orbit in the form of
number “eight” with one cross section in one non-stable saddle type singular
point and with the second type of homoclinic phase trajectory with two cross-
sections in two non-stable saddle type singular points.
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In Figure 16a*, for a particular case for: 8 = 0 and (R — ) > (R, + )~ (R, + R)sin 3, the
raphical presentation of the total mechanical energy surface in the phase space
E.o.¢ ) -(E,,0,.0,)- (E3,¢3,(j)3) of nonlinear dynamics of a generalized

rolling pendulum is presented.

In the same Figure 16, the mechanical model (a*) of the generalized rolling
pendulum is presented for that case and also the corresponding complete phase
trajectory portrait (c*) is presented. The paper starts with a description of a
generalized rolling pendulum (see Reference [14]) along a curvilinear trace
consisting of three circle arches in a vertical plane. The rolling body of a generalized
rolling pendulum is a rigid body with an axis of symmetry and one plane of symmetry
with a cross-section in a plane of symmetry in the form of a circle. Sets of three
non-linear differential equations and a set of three equations of each of three phase
trajectory branches which correspond to the dynamics of the described generalized
rolling pendulum along each of three circle arches are derived. The phase portrait,
a set of singular points and the total mechanical energy surface are graphically
presented for particular cases of geometrical parameters of the system.

It is possible to use the presented analytical and graphical presentation for a
heavy mass particle moving along a curvilinear trace consisting of three circle arches,
introducing a nonlinear differential equations and other analytical expressions that
the coefficient of rolling is equal to unique, and that the radius of a rolling ball is
equal to zero (for detail see References [11-14]).

The presented analytical and graphical elements in the previous parts are the basis
of the methodology for the investigation of the vibro-impact dynamics of a system with
two rolling bodies in successive collisions (see References [10, 12, 15, 17, 24, 26, 29, 30,
31]). For obtaining the outgoing angular velocity of each rolling body after each collision
in a series of successive collisions we can use the analytical expressions presented in
References [15, 26, 30] from the extended classical theory of impact by kinematics and
dynamics of collision between two rolling bodies founded by Hedrih (Stevanovi¢) R. K.

5.3. Analytical generalization of a nonlinear dynamics description of a
rolling heavy thin disk along a curvilinear trace in a rotating vertical plane
around a vertical axis at a constant angular velocity. The nonlinear differential
equation of dynamics of a heavy thin disk rolling, without slipping, along a general
curvilinear trace, in a rotating vertical plane, around the vertical axis with the constant
angular velocity, is derived. The first integral of this nonlinear differential equation is
determined. The first integral presents the nonlinear equation of the phase trajectory in a
phase plane of rolling, without slipping, a heavy thin disk along a general curvilinear trace,
in a rotating vertical plane, around the vertical axis with the constant angular velocity. A
theorem about bifurcation and triggers of coupled singularities is formulated. A qualitative
analysis of the stability of singular points and relative equilibrium positions on a trace of a
rolling body is presented.

The characteristic equation of dynamics of the generalized rolling pendulum,
along a trajectory in a rotating vertical plane at a constant angular velocity around
vertical axis is presented (for details see References [6, 7, 26]).
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FIGURE 17. Geometric parameters of the rolling of heavy rigid disks on a
rotating curvilinear trace in a vertical plane around a vertical axis

Suppose there is a curvilinear trace determined by y :f(x), so that the
curvature radius of each of its concave arches is larger than the radius of the
contour of the disk circle in the plane of symmetry, by which the disk rolls, without
slipping, along the curvilinear trace, rotating, around the vertical axis with the
constant angular velocity €2, in the rotating vertical plane (see Refs. [6, 7, 26]).
The rolling body, without slipping, rotating around the vertical axis with the
constant angular velocity €2, has a degree of freedom of movement along the
curvilinear trace, because it has five constraints. For an independent generalized
coordinate, we select the abscise coordinate x , in the rotating vertical plane of the
coordinate system, by which we will express the angular velocity a)P(x,fc,Q) of
the instantaneous relative rotation around the current instantaneous axis of the
relative rolling of the disk along a curvilinear trace in a rotating Vertica} plane with
the constant angular velocity { around the vertical axis. @(x,%,Q)==v,, (x.%,Q)
. The expression of kinetic energy E, of a disk in relative rolllrng along a
curvilinear trace y=f(x) in a vertically rotating plane around the vertical axis
by a constant angular velocity (2, determines the integral of the kinetic energy

dE; () =%[v(d)]2dM of the elementary mass dM of the disk. (see right subfigure
b* in Figure 17).

5.3.1. Nonlinear differential equation of a rolling disk along a rotating curvilinear
line and the equation of phase trajectory. The nonlinear differential equation of the
rolling motion of a heavy thin rigid disk, without slipping with the radius 7, along
the curvilinear trace of the form y = f(x), in a rotating vertical plane around the

vertical axis with the constant angular velocity €2, (and where the coefficient of
J, i, i

rolling x=—%=-"%="C+1=x),is (for details see Refs. [6, 7, 26]):
Mre o or

Lo Flor) r M) g f(x) _ (91)

2x F(x,r) 2 JPF(x,r) KF(x,r)
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In order to get the first integral of the preceding nonlinear differential equation
(91), we introduce u = % asa change of the variable coordinate (see Reference [6,
7, 26]). The first integral of the rolling motion differential equation of a rigid disk,
without slipping, along the rotating curvilinear trace of the form y = f(x ), around
the vertical axis with the constant angular velocity 2, is:

. . F(x r) rz[J (x M r)—J (x M r)] 2g (92)
— i 2 0> QZ z El ) 2\ ) _
[x(x)] \/[xo(xo)] F(x,r) + JPF(x,r) + KF(x,r)[fC(xor) fc(xa’")]
If we introduce the coefficient of disk rolling, without slipping, in the form
J, iﬁ, ié 3
K= > =—3=-5+1=K  which for a thin disk is & =—, then the nonlinear
Mre v

ordinary differential equation of rolling without sliding a heavy rigid thin disk
along a curvilinear line in the rotating vertical plane around the vertical axis at the

constant angular velocity ¢ =€), is in the following form:

.. 1. rr LI (e, M,r
xF(x,r)+—sz'(x,r)——QZZ(—)+§fC’(x):0 (93)
2 2 J, K

where fc (x) and F(x, r) are expressed by the following expressions (for details
see References [6, 7, 26]):

Fler)= (s [0
| | 1+ (P

oy
fc(x)_ y ,—1+ [f'(x)]2

In the previous papers of the author (for details see References [6, 7, 26]), the
main attention was paid to a more detailed analysis of the characteristic equation of
the dynamics of the generalized rolling pendulum, along the trajectory in a rotating
vertical plane at a constant angular velocity around the vertical axis, which was
performed in the form:

"(x —rL(x) _zl 2 rf'(x) B rf"(x) _
il L) Q< 1+ ef ><1 [1+[f'(x)]zm> S

and in which: y= f(x) in general, or in particular cases y=fx)=k(—a’f

or y=/()=k(-a’f(x =) or f(x):—locz(xz_az)[c4_(x2_bz)z] is the

equation of the curvilinear path, where 5 , b, ¢ and k are the known constants,

(94)

(95)

2
and with the following relation a <b , kK, ,— 1+L¢; the rolling coefficient, Q the

r
radius of the circle of the body of the pendulum by which the pendulum rolls along
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curvilinear paths, o the angular velocity of rotation of the vertical plane about the
vertical axis, and in which there is the curvilinear rolling route of the generalized
rolling pendulum.

We can draw a conclusion in the form of the following theorem: The kinetic
energy of a thin disk rolling along a curvilinear trace in a vertical rotating plane
around a vertical axis, with a constant angular velocity €2, consists of the kinetic
energy of the rotation of the rigid disk around the vertical axis at angular velocity
Q, and the kinetic energy ({relativelrolling disk along the curvilinear trace with the
angular rolling velocity ®p XJ,Q):;VCW,(X,X,Q) along a curvilinear rotating trace:
E, :%J:Q2 *%JP[(”PM]Z .

The theorem on bifurcation and on the trigger of coupled singularities in the
nonlinear dynamics of generalized rolling pendulums along curvilinear routes in
a rotating vertical plane around a vertical axis at a constant angular velocity €2 :

Let us present the curved line, given with f()=s(-x), for which the
following is valid f(x)= f(-x), and which has at the points for extreme values
EX (x,,y,=f(x,)) for f/(x)=0, the minimums C (x,,y, = f(x,)) for f'(x,)=0,
17550, and'the maimams 5, (5,9, = f(s) for F-(e )< 0, (s )< 0, ehe
curvilinear route, along which a heavy homogeneous thin disk of the radius r >0
rolls without slipping and let it be located in the Earth’s gravitational field, in
the vertical plane which rotates around the vertical axis, at a constant angular
velocity QO >0. The characteristic equation for determining the singular points,
as well as the position of the relative equilibrium of the disk on the curvilinear
path, in the vertical rotating plane around the vertical axis at a constant angular
velocity >0, is of the form:

e Ve L) 2w ) ) N i (x) _ 97
| [ Lrep}) Q< il eF ><l [1+[f'(x)]2N1+[f’(x)]2> o

2 2 3
Jo B _de gy , that is k ==, the rolling coefficient of the disk,
M 2
4 3
because J. —oclz=m_ and J,=J +Mr’ ==Mr*, and g is the acceleration
Z 4 2

in whichitis x=

of the Earth that is heavier. Around each extremum of the curvilinear trajectory,
which is the minimum defined by C(x,,y, = f(x,)) for f"(x,)>0, £"(x,)>0, in the
nonlinear dynamics of the thin disk rolling, bifurcations and triggers of coupled
singularities appear, and around each extremum, which is a maximum defined with
S, (xs’y.y = f(xs )) for f'(x,)=0, f”(xs)< 0, there are neither bifurcation nor triggers
of coupled singularities (for details see References [6, 7, 26]).
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6. Vibro-impact dynamics of two rolling heavy
thin disks along a rotating curvilinear line
and energy analysis

Inthis partofthe paper, a construction of the phase trajectory portraits ofa generalized
rolling pendulum along a rotating curvilinear line is presented. The generalized rolling
pendulum containing a rolling thin heavy disk rotates along the curvilinear line
consisting of three circle arches, in a rotating vertical plane at a constant angular velocity
around a vertical eccentric/central axis. Depending on the system parameters, different
possible forms of the phase portraits appear with different structures of the sets of
singular points and forms of phase trajectories. A trigger of coupled singular points and
homoclinic orbit in the form of deformed number eight appears. A mathematical analogy
[67-69] between nonlinear differential equations of the considered generalized rolling
pendulum and motion of the heavy mass particle along the same form of the curvilinear
line, in a rotating vertical plane around the vertical axis at a constant angular velocity, is
pointed out. On the basis of the obtained different possible phase trajectory portraits, a
non-linear phenomenon in vibro-impact dynamics of two rolling thin disks on a rotating
curvilinear line around the vertical axis at a constant angular velocity, is investigated.
Energy transfer between rolling disks in each of the series of successive collisions is
analyzed and presented on relative mechanical energy portraits for the dynamics of
each of the rolling disks in collision (see Reference [24]).

6.1. Vibro-impact system description. The vibro-impact system (see Figure
18) contains two generalized rolling pendulums, each in the form of a thin heavy
disk, which are in rolling motions, without slipping, along a rotating curvilinear line
trace with the constant angular velocity €2 around a vertical axis. The curvilinear
line trace is symmetric and consists of three circle arches, two with the same radius
value and one with the different radius.

FIGURE 18. Vibro-impact system, containing two generalized rolling
pendulums each in the form of a thin heavy disk, which are in rolling
motions, without slipping, along a rotating curvilinear line trace with the
constant angular velocity €2 around the vertical axis of a curvilinear line
axial symmetry
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Figure 19 represents one combination of many possible parts of phase trajectory
portraits finalized into a complex phase trajectory portrait of a dynamics of a relative
rolling heavy thin disk along a rotating curvilinear trace around a vertical axis of its
symmetry at a constant angular velocity, with the notation of the corresponding set
of singular points, and two triggers of coupled singular points and two homoclinic
trajectory orbits in a form of two deformed figure eight shapes.

It is necessary to point out, that depending on the relations between geometrical
parameters and values of angular velocity of the rotation of a curvilinear rolling
trace, there is the exit of the component phase trajectory portraits of the dynamics
of a rolling thin heavy disk along the component circle arches of a curvilinear trace
rotating around eccentric/centric axes. For graphical presentations in this paper,
there are more complicated cases of the component phase trajectory portraits with
triggers of coupled singular points and homoclinic trajectory in a figure eight form,
as the results of bifurcation with change of bifurcation parameter.

Sepgratrix

Homoclinic phase trajectory in the form

le type sin gular points

N

—r<p <= T
-2r<@p<L2xw 7

FIGURE 19. One combination of many possible parts of phase trajectory portraits
finalized into a complex phase trajectory portrait of a dynamics of a relative rolling
heavy thin disk along a rotating curvilinear trace around a vertical axis of its
symmetry at a constant angular velocity, with the notation of the corresponding
set of singular points, and two triggers of coupled singular points and homoclinic
orbits in a form of two deformed figure eight shapes
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Additionally, it can be concluded that there are numerous combinations for the
continuation between parts of phase trajectories, from different parts of phase
trajectory portraits, in the construction of the complex phase trajectory portrait for
the dynamics of the relative rolling of a heavy thin disk along a curvilinear trace
rotating around a vertical axis of its symmetry, with constant angular velocity.

Depending on the initial conditions of the dynamics of rolling a heavy thin disk along
a rotating curvilinear trace, and the obtained in results of this dynamics of the form of
the phase trajectory presented in Figure 19, along which the representative point in
phase plane is moving, it is possible to evaluate and conclude about the character of disk
rolling, periodic or twice-periodic or progressive rolling up to a limiter of rolling along the
corresponding circle arch.

6.2. The vibro-impact dynamics with the central collision of two
disks which are rolling along a rotating curvilinear track. It is possible
to determine next the impact angular velocity of relative rolling of a disk along a
curvilinear trace at the position of the configuration of the first collision. For that
task, we use the following relations:

a* first collision appears at the first circle arch trace impact rolling angular
velocities are:

R-r), R-—r).
a)Pl,rel,impact,l :( r wl,l,impact,l and a)P2,rel,impact,1 = r ¢2,1,impact,1 (98)

where ¢1,1,im pact 1 and ¢2,1, impact,1 A€ angular velocities, determined by the equation of
phase trajectory of the rolling disk along the rotating first circle arch around an eccentric
vertical axis, for the angle coordinate of the first and the second disk in position of the
first collisions in position at the first circle arch (for details see Reference [24]):

2

. 5 L 1 Q. .
Dt Limpact1 = \/(plz.o +2 7 <A(C°S Dt Limpact,1 —COS P )_ Z (COS 2591,1,mzpm,1 —Cos z(p].() )> -2 7 g(sm D Limpace,s ~ S0Py )
(99)

s =0+ 2 2 )L -2 o : )
(pz,l.,m,mu.\ =1/P0 +27 A Cos(pﬁ,bmpa/u ’Coswz,z,mmnmm 2 72 C0S 2$Z,I.lmpm/.\ —cos 2¢1.2,mmmml\l 7275 s %J,ympau,l —sin ¢2,memum 2

b* first collision appears at the second circle arch trace impact rolling angular
velocities are:

@ (Rt R, +7).
Pl,rel impact,] — r ¢1,2,[mpacl,l and wPZ,re[,impacr,l = f ¢2,2,impact,l (100)

where @, | impact.1 and @, ;. pact1 aT€ angular velocities, determined by the equation of

phase trajectory of the rolling disk along a rotating first circle arch around an eccentric
vertical axis, for the angle coordinate of the first and the second disk in the position of
the first collisions in the position at the first circle arch (for details see Reference [24]):

. . o 1

P2 impacts = \/ (012,0 +2 7</1(COS P2 impact1 ~ COS Py usinuiny 1 )_ - (COS 20, 3 impact.s = €8 20, posimiiny 1 )>
K 4

(101)

2
p = |’ +ZQ— ﬂ(cos —cos )—l(cosz —cos2 )
P2 2,impact,1 = 1| Pro . D22 impact 1 D22, continuity,2 n P22, impact.| D2, continuity,2
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c* first collision appears at the first circle arch trace impact rolling angular
velocities are:

R—-r). R-7).
a)Pl,rel,[mpact,l :( r ¢l,3,[mpacl,l and a)P2,rel.impact,l = r ¢2,2,impact,1 (102)

where q')l,l’[mpm,l and ¢2,1,impacz,1 are angular velocities, determined by the equation
(18) of phase trajectory of the rolling disk along the rotating first circle arch around
eccentric vertical axis, for the angle coordinate of the first and the second disk
in position of the first collisions in position at the first circle arch (for details see
Reference [24]):

2

) @ ( ) 1 ( ) Q ( . . )
D 3impacta = 4| Pro T 2? Alcos D13 impacts ~ COS P13 contiminy.2 )~ ) cos 2g01.3,imp{1(1.| —cos2g;,))+2 75 S P, 3 impacty ~ SV P, 3 consinuiey,2

. 5, O 1 o . . (103)
(/’2,3,mwm,1 = \/(ﬂf,o + 27</1(C05 ¢z,s,mzpaa,1 —Cos (ﬂz,o)_ Z(COS 2(/’2,31mpm,1 - C052¢3,0)> + 275(Sm ¢72.3Jmpm'l.l —sin ws,o)

Let us start with the theory of dynamics of a central collision between two rolling
disks, with mass m, and m,, and axial mass inertia moments J,, and J,, for the
corresponding momentary axis of the relative rolling along a rotating curvilinear
trace with pre-impact (arrival) relative angular velocities @Pl,impaa =@, (to) and
CT)PZ,impact =0p, (to). The mass centers C, and C, of the disks are moving in a relative
translational move with pre-impact (arrival) relative velocities VC.MW, =V (to) and
Verimpaer = Veally ). Relative angular velocities @, = @p (ty) and @py e = @ps(ty)
, we denote as arrival, or impact or pre-impact relative angular velocities at the
moment . At this moment #, of the start of the collision between these relative
rolling disks, the contact of these two disks is at point T,,, in which both of the
disks possess a common tangent plane - plane of contact (touch). In the theory of
collision, it is proposed that collision takes a very short period of time (to,zo + z—)
, and that 7 tends to zero. After this short period 7 , bodies - two relative rolling
disks in collision separate and outgo with post-impact-outgoing relative angular
velocities G, " Gt +7) A0 @p, e = @p,(t, +7)- The mass centers C, and
C, ofthe disks perform relative translational motion with post-impact (outgoing)
translatory velocities v, . . =7 (to + 1') and 9,000 = <, (t, + 7)- These relative
translational velocities could be expressed by the corresponding relative angular
velocity and the radius of the corresponding disk.

Using Hedrih’ s expressions for outgoing angular velocities (chapter 3, parts 3.6
and 3.7), in the expressions (10) and (11), after the first collision, one can write
the expressions for the outgoing angular velocities of the rolling disks after the first
collision, for the first @p, ./ ,u00ing.1 a0 for the second @p) 1 suigoing 1 -

Taking into account that the collision kinetic state appears and disappears during
a very short time period, tends to zero, 7 — 0, and that in the classical theory the
hypothesis that collision is a quasi-static process is introduced, and also taking into
account only the change of the rolling disk angular velocities, but not changing the
disks positions, everything presented in chapters 3, (parts 3.6 and 3.7) 4 and 5
of this paper has been proved and is valid for the relative rolling disks in collision
positioned on the curvilinear line (for details see Reference [24]).
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For obtaining the first branches of phase trajectories of the first and the second
disk, the equation of phase trajectory with the initial condition of the corresponding
rolling disk, for starting the investigation of vibro-impact dynamics is used. One can
take into account the corresponding eccentricity of the vertical axis depending on
the disk rolling along the corresponding one, two or three circle arches of a rotating
curvilinear trace. These initial conditions are ¢, , and ¢, for the first disk and
®,, and @, for the second disk, which define the corresponding initial relative
positions and initial relative angular velocity of the corresponding disk center C
and C, in relation to a rotating curvilinear trace and a circle arches center O. By
using these initial conditions, we define the expressions for the pre-first collision
impact (arrival) derivative of the first generalized coordinate @ upacr,i and the
second generalized coordinate @ jmpacr,i when disks are in the positions of the first
collision, @ impact,t and P2 impacr,1 - Then we use these expressions for obtaining the

post-first collision outgoing relative angular velocities a’gz,rez,impacm = Wp) rol impact.|

and a)PZ,outgoing,l = a)PZ,rel,outgoing,l and the Corresponding ¢1,0utg{)ing,1 and ¢2,outgoing,l
, which present the initial conditions for the second branches of the rolling disks
between the first and the second collision: @ sugoing.! = Primpacti »  Prouigoing.l
¢2,outgoing,l = ¢2,impact,1 and ¢2,outgoing,1 .

For i-th branch of phase trajectories of the rolling disks relative dynamics

along the rotating curvilinear line between (7 — 1) -th and i -th collisions, the initial
conditions are: )
Ql,outgoing,(z’—l) = gol’impac’l‘,(i—l) and (Dl,outgoing,(i—l), and, (Dz,outgoing,(i—l) = (DZ,impact,(i—l) and
D3 ourgoing (i-1), obtained by the expressions for (i —1) phase trajectory branch. For
the pre i-th collision impact (arrival) derivative of the first generalized Primpact.i
and the second generalized coordinate @3 mpacr,i When disks are in the positions
of the i-th collision, Plimpacti and P2,impacti are defined by the corresponding phase
trajectory branches. For obtaining the expressions of the post i -th collision relative
angular velocities ¢l’0utg0ing,i and ¢2,outg{)ing,i , expressions for the corresponding
phase trajectory branches are used. We can conclude that this algorithm contains
successive applications of expressions for corresponding phase trajectory branches
with a combination of expressions of corresponding outgoing angular velocities.

The application of expressions for the corresponding phase trajectory
branches and for the corresponding outgoing angular velocities is clear and it is
easy to obtain all the necessary pre i -th collision and post i -th collision kinetic
parameters, arrival and outgoing relative angular velocities of both disks, if we
know the position of each of the successive collisions for both rolling disks.
However, the main problem is the lack of solvability of the transcendental equation
analytically. This task is still possible to solve numerically and obtain coordinates
of both disks’ positions for each at i -th collision, if collision exists. This problem
is solvable numerically, but requires consideration in each step of the existence of
the next collision between disks.

In Figure 20, phase trajectory branches in phase portraits of two rolling
heavy thin disks for relative motion in the interval between the initial condition
configuration and configurations of the pre-first-collision and post-first-collision
between two rolling disks with vibro-impact dynamics on a rotating curvilinear trace
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with the constant angular velocity around a vertical central axis of its symmetry, for
bifurcation parameters A <1,i=12,are presented (for details see Reference [24]).

Nycon, (¢,»,"W,_, Prougoingat )7 position of  first collision and outgoing angular velocity of first rolling disk

Ao o \ P ) ;- " ; N TR T
Ny ot Primpact> Primpacra )= Position of first cotlisionand impact angutar vetocity of firsi rolling disk

Ny (qlm, ¢W position and initial angular velocity of first rolling disk

T /
2 /// P 2
TSP <—
= )

e
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7

Ny, (q);o, ¢%)ji/nitial position and initial angular velocity of second rolling disk

N o, (%Jm’my/ ¢Z>,,';,,M.,_, )7 positionof first collision and impact angular velocity of sevond rolling disk

N, oy ((I)z.,»/mm,t.,,l,¢2_(,,1,mw.l)— position of first collision and outgoing angular velocity

of sevond rolline disk
of sevond rolling disk

FIGURE 20. Phase trajectory branches in phase portraits of two rolling heavy
thin disks for relative motion in the interval between the initial condition
configuration and configurations of the pre-first-collision and post-first-
collision between two rolling disks with vibro-impact dynamics on a rotating
curvilinear trace with the constant angular velocity around the vertical
central axis of its symmetry and for bifurcation parameters 4 <1, i=1,2-

He—— — ¢
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The basic results presented in this part, published in the Reference [24], are the
constructions of two-phase portraits, each of the corresponding nonlinear dynamics
of each of two rolling different heavy thin disks in successive central collisions along
a rotating complex curvilinear trace, as well as the determination of the kinetic
parameters before and after each successive central collision between rolling disks.
New Hedrih’s expressions published in References [12, 15, 17, 26, 27, 28, 30] and
presented in the third section (parts 3.6 and 3.7)
of this paper; related to the outgoing angular velocity after central collision are applied
for determining each of the outgoing angular velocities of the rolling disks after each
successive collision. Results include determining the transformed elliptic integrals for
the determination of time and position of each of the successive collisions. Moreover,
the energy analysis with corresponding energy jumps between disks is presented on
the comparative corresponding constant energy curve portraits.

Additionally, the aim of the paper is the presentation of advanced analytical results
in the development of principal methodology based on new results in the extension
of classical theory of collision with kinematics and dynamics of the collision of two
rolling disks along a rotating curvilinear rolling trace, for the investigation of vibro-
impact dynamics using phase trajectory portraits. This is an analytical approach
which is sufficient for a qualitative analysis of nonlinear and vibro-impact dynamics.

The results are presented theoretically with the necessary analytical expressions
and explanations, as well as with numerous graphical presentations of the different
phase portraits of the dynamics of rolling heavy thin disks. This methodology could
be applied for the investigation of the numerous engineering vibro-impact system
dynamics.

The full methodology is useful for investigation, not only for considering the
vibro-impact system dynamics; it is a useful methodology for the application to other
similar vibro-impact system dynamics of two or more rolling disks without slipping
along an arbitrary curvilinear line stationary or rotating around a vertical axis or
a skew positioned axis. This methodology could be applied for the investigation of
numerous engineering vibro-impact system dynamics.

7. Mechanics of billiards - Geometry and kinematics

For an introduction to the content of billiards mechanics, which includes content
on the geometry, kinematics and dynamics of playing billiards, it is most illustrative
to rely on a few Coriolis’ sentences, which we have adopted as the motto of this paper.
Obviously, many authors believe that these sentences point to the complexity of
geometry, kinematics and dynamics of billiards; because the analysis, which we will
expose here, reveals that the dynamics of billiards includes many phenomena of the
dynamics of real systems. Our presentation will be based on our results, but also on
the comparisons with the results achieved today by other authors, both mechanics
and mathematicians. Additionally, it is evident that our results are original.
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Multiple keywords and concepts of kinematics and dynamics, such as: ball
dynamics as a rigid body, non-slip rolling, collision, alternation of velocity direction,
impact velocity, outgoing velocity, ball rolling path, center of gravity trajectory,
central and skew (oblique) collision, force impulse, kinetic energy, impact and
collision, collision of two spheres, collision of three spheres, impulse forces, linear
momentum of motion, angular momentum of motion, speak about the complexity
of dynamics of the system of billiards elements. This is evident when we observe
only the movement of one billiards ball; when more balls are involved, then we have
a really complex system, hybrid structures and dynamic configurations of billiards.

Letus start with the names of famous scientists who contributed to the knowledge
of certain aspects of the dynamics of billiards.

As we were quoting a few sentences from Gaspard-Gustavo de Coriolis at the
outset, the following part provides biographical information about this scientist
whose work was essential in the field of mechanics. He was a mathematician, a
mechanical engineer, and a scientist. He was best known for his work on the Coriolis
acceleration and Coriolis force. Coriolis was the first to coin the term “work” for
the product of force and distance. In 1829, Coriolis published a textbook, “Calcul
de I'Effet des Machines”, which presented mechanics in a way that could easily be

applied in industry. During this period, the true term for kinetic energy E, = %mv2

was established, as well as its relation to mechanical work (see References [50, 51]).

FIGURE 21. Gaspard-Gustave de Coriolis or Gustave Coriolis (Paris, May 21,
1792 - Paris, September 19, 1843) and Jean-Victor Poncelet (July 1, 1788 -
December 22, 1867)

Coriolis explored the possibilities of generalizing kinetic energy and work on
rotating systems and, as a result, produced the work “Sur les équations du mouvement
relatif des systéemes de corps”, presented at the French Academy of Sciences (1832).
Coriolis wrote the work “Sur les équations du mouvement relatif des systémes de
corps”, 1835. In the 20™ century, the terms “Coriolis acceleration” and “Coriolis force”
appeared on systems with the coupled transverse rotational motion and relative
curvilinear motion.
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Beginning with the works of George Birkoff, billiards systems have become a
popular topic of study, drawing on a variety of fundamentals, beginning with the
ergodic Mors’s theory, KAM theory, and others. Also, the dynamics of billiards
systems is interesting because it occurs quite naturally in a number of tasks of
mechanics and physics: in the dynamics of vibro-impact systems, diffraction of short
waves, dynamics of ball bearings, etc.

The basis of the dynamics of billiards is the theory of dynamics of systems
with one-sided constraints. There are essentially various models of the theory of
impact. The one-sided bond imposed on the system can be replaced by the field
of conservative and dissipative forces, and then, the coefficients of elasticity and
dissipation by some assumption to the aspirations of infinity, as Kozlov writes in
[55]. It can then be shown that the movement of such a “released” system with fixed
initial data, at each finite interval of time, tends to move with an impact.

Finally, it is necessary to emphasize again that in the approach to investigating the
properties of the billiards game phenomenon, it is necessary to establish the basic
models of billiards. These models, under the same keyword “billiards”, distinguish
between defined tasks: geometry, kinematics, and the dynamics of billiards, or the
totality of all these tasks. For example, starting tasks are about the properties of
mathematical billiards. When approached by mathematicians, then it remains in
the domain of billiards geometry and the elements are the geometric point and its
possible open or closed polygonal paths, that is, polygons inscribed in a certain area
by a unilaterally bounded closed contour line. Periodic trajectories are possible,
depending on the initial position and the initial direction of the trajectory of the
geometric point. Therefore, the basic determinations are the lengths and angles that
determine the directions of the path of the geometric point. Furthermore, it works
with lengths and angles, and the units of measurement are meters and degrees or
radians. This is a rough approximation of the real billiards system and does not take
into account the time at which the geometric point is moved along the trajectory. If
the basic determination of time in addition to lengths and angles is included, then
it moves into the field of kinematics, so kinetic parameters, elements of translation
velocity and angular velocity of rolling are included.

If we stay only on the mathematical model that we enrich with basic determination
over time, with a unit in seconds, then only the kinematic element of the geometric
point translation rate, with the unit of meter per second, is included. A mass
associated with a geometric point can be added to this model, so we have a model
of gross abstraction of a real billiard by a material point that has mass, velocity,
and its motion in time is observed. The mass has a unit in pounds. We have already
included this in the model in addition to geometry and kinematics and dynamics,
and with that we open the questions of determining the impulses of motion, kinetic
energy and forces under which the dynamics are realized, including impacts at
unilateral holding bonds and collisions between material points. However, for
better abstraction of the billiard system to the model of billiard dynamics, it is not a
satisfactory model neither with a geometric point nor with a material point, but with
a rolling ball which has its mass, a certain mass distribution, defined by the axial
moment of inertia of the masses for the axis of rolling of the ball, and has a certain
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instantaneous angular velocity of rolling about the instantaneous axis of rolling,
measured in units of radian per second, or the velocity of translation of the center
of mass in units of meters per second, and the angular velocity of rotation about the
central eigen axis of self-rotation measured in units of radians per second. It means
that if a billiards model is formed as an abstraction of a real model of billiards with
one or more balls rolling, then the elements of the billiards events are studied as the
elements of geometry, kinematics and dynamics of billiards.

Thus, there is a body of a certain shape and a line along which it rolls, so the
definitions of length are used, so we are in the domain of geometry, and when we
include the analysis of translational velocities of the center of mass and the angular
velocity of rotation of the central self-rotation axis, then we are in the domain of
kinematics. If we now include masses and axial moments of inertia of masses and
impulses of motion and kinetic moment (angular momentum), kinetic energy and
impulse forces, we completed the task of kinetics of billiards or the dynamics of
the system of billiards. In the following chapters, we will first define the models of
billiards and then analyze the elements of geometry, kinematics and dynamics of
billiards within the limits of contemporary knowledge of the scientific literature in
this field, as well as the original results of the authors of this chapter.

7.1. Billiard geometry in a nutshell. In this section, we also highlight the
contributions of the French scientist, engineer and mathematician, Jean-Victor Poncelet
(July 1, 1788 - December 22, 1867), who was known for the following works: “Traité des
propriétés projectives des figures” (1822) and “Introduction a la mécanique industrielle
(1829)”. And here, we will point out a number of his theorems in geometry, which are of
great importance for the investigation of the geometry of billiards and for determining the
periodic paths of the rolling of billiards balls in elliptic billiards, as well as other forms of
contours in billiards (see Reference [2]).

It is certainly important to find out the properties of ideal mathematical billiards.
Today, many researches on this topic are based on a series of basic theorems of Jean-
Victor Poncelet, so here we will list the definitions of some of them (see Reference [1]).

THEOREM 1. (Poncelet Theorem): Consider two conical sections (conics) C and
D, which lie in the plane. Suppose that a polygon is inscribed in a conical section
C, and described around a conical section (conics) D. Then there is an infinite
number of such polygons inscribed in one conical section, and described around the
other conical section, all of which have an equal number of sides. Moreover, every
point of the conical intersection C is the subject of such a broken line.

THEOREM 2. (Poncelet Theorem): Suppose that there is such a point on the conical
section (conic) I that the polygon T, T,T,T,T,...T, , T, T _,T, with the number of
sides n >3 is inscribed in the conic section (conic) " and described around the
conic section I, and that the right [, does not tangent the conic section (conic)
I, for i=233,...,n—2,n—1. Then for arbitrary 7 >3 there is some polygon
N,N,N,N;N,..N, ,N N, N, with sides inscribed in a conical section I and
described around a conical section I, .
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FIGURE 22. Line-trace of the rolling motion of the ball along the horizontal
plane of the elliptical billiards with the plan of horizontal components of the
incoming impact velocities and the outgoing velocities of the contact point
after the impact of the ball into a contour elliptical cylindrical surface with
vertical derivatives (up); Detail of the plan of the velocity of one ball in the

configuration of the skew impact (down)

THEOREM 3. (Poncelet area theorem): Suppose that C' and C are two areas in
space (on the surface). If there is some closed polygon, inscribed in the area C and
described around the area [, it means that there are infinitely many polygons such
as that one. In addition, each point of the area C appears as the theme of such a

polygon and all polygons have an equal number of sides.

One of the numerous Poncelet theorems is the Comprehensive Generalized
Poncelet Theorem, but we don’t preset it, because in our opinion the previous three
listed theorems are a good illustration of the content and aims of these series of
Poncelet theorems for applications in the geometry of models of billiards as an
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abstraction of real billiards into mathematical billiards, as pre geometrical objects
without reality (for more details see mathematical references [2]).

Figure 22 shows the mechanical model as a good abstraction of real elliptical
billiards. The track of the ball rolling along the horizontal plane of the elliptical
billiards with the plan of horizontal components of the incoming impact velocities
and outgoing velocities after the impact of the ball into a contour of elliptical
cylindrical surface with vertical derivatives, as well as a detail plan of the velocity of
one ball skew impacts.

7.2. Elements of billiards kinematics. In Figure 22, we have presented a
model of an elliptical billiard with one rolling ball, which rolls on a horizontal surface
bounded by a single one-side contour elliptical-cylindrical surface with vertical
derivatives. The billiards balls are of the same dimensions and radius R, which is
not negligible with respect to the semi-axes of ellipse in the horizontal flat base of the
elliptical billiards, which we denote by @ and b , which, according to the semi-axes,

has an eccentricity of focus e =+/a? —b?* . With this in mind, the model of elliptical
billiards in Figure 22 cannot be reduced to mathematical billiards by reducing the
billiard sphere to a material or geometric point. Her line-trace of a billiard ball
rolling, which is a broken polygonal line, open or closed, is a polygon, and its path
can be determined purely geometrically using Poncelet theorems, or other results
in the field of mathematical billiard models from the literature, which remain in the
domain of pure geometry. It is necessary to first determine the geometric location of
the points of ball centers of the impacts in relation to the contour of the elliptic area
of billiards, and to determine the paths of rolling the ball centers in the new contour.

Boundary impact vertical
Boundary impact|vertical tan gent  plgnes

tan|gent  surface

T,

V1o iransiator

Vrojimppact

0. Rolling \_ |

schdliing

VTS impphci

race ball 1 rolling P\ ‘,) Trace ball 1 rolling
DOp impact Dp jmpact
FIGURE 23. Plan of the velocity of impact of a point on a large circle of a sphere,
which rolls along a straight line in a horizontal plane

In the observed model of the elliptical billiard from the case in Figure 22, we can
see that the parts of the track of the roll of the billiard ball in arriving at the point of
impact (the ball and contour), and leaving it after being hit by the contour elliptical-
cylindrical surface are parallel to the corresponding horizontal velocity component
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just before the impact and by the corresponding horizontal component of the
outgoing velocity of the point of impact of the ball after impact. The translational
velocities of the center of mass of the sphere, before and after impact in the contour
surface, are equal to the horizontal components of the incoming velocity before
impact and the outgoing velocity after the collision, the point at which the sphere
impact to the contour elliptical-cylindrical surface (see Reference [30]).

We will, now, turn to the representation of the kinematic elements of each of the
possible impacts of a ball in rolling, to the contour surface, as well as to the kinematic
elements of different cases of mutual collision of two balls.

¥,
1Rol impact
Tl
0.

w . "(/II Y,

Boyndary impact vertical tan gent  surface

Varotnpac = ROy, COSA = =Vypc COS@K v

Vi =7
Varol,ougoing = *V

Fesmps = e cosa's fiina Jo

Vezougong =7V

FIGURE 24. Decomposed system of two equal billiard balls in configuration of
an oblique (skew) collision. Plan of the incoming and outgoing velocities of the
collision contact points of each of the two balls at their oblique collision.
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FIGURE 25. A system of two equal billiards balls that roll on rolling tracks in an
oblique (skew) collision configuration. The plan of the incoming and outgoing
velocities of the collision points of each of the two balls at their oblique collision

7.2.1. An oblique collision of two billiard balls in a non-slip roll. If the rolling traces of two
billiard balls on rolling without slipping intersect and the balls simultaneously reach the
position so that they collide, then such a collision is said to be an oblique collision of
two balls. Figures 24 and 25 sh(iw the plans of tlle component incoming ‘7Cl,impact and
Ve impact » S well as outgoing Vel outgoing and V2 outgoing velocities of the ball center
mass C, and C, of an oblique collision of two billiards balls rotating horizontally
relative to a common vertical tangent plane at a common point of collision.

Their velocities ‘_}.Cl,impact and ch,impact of the centers of mass C, and Cz) are
non-collinear and we are using the collision model decomposition to subsystems
presented in Figure 24. Figure 25 shows a plan of the component incoming ‘7c1 impact
and V¢, e and of the component outgoing Ve, yueoime 304 Ve pugome Velocities
of an oblique collision of two billiards balls rolling along a horizontal plane, relative
to a common vertical tangent plane ata common point of oblique collision when their
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translational velocities of their centers C2 and C2 of ball mass are noncollinear,
using a complex system model .

We ask how many such positions in the collision configuration can be insulated
and how to define using the distance of the centers of mass of the two balls. Here is
the conclusion of the theorem.

Trace ball1 outgoing rollin Trace balll impact rolling

Trace ball 2 impact rolling

Trace ball 2 outgoing rolling

FIGURE 26. Collision of two rolling balls and the plan of incoming and outgoing
angular velocities of the rolling balls with their rolling paths before and after
an oblique collision

7.2.2. The theorem of the feasibility of the collision of two billiards balls. Two billiard
balls of equal radius, in rolling without slipping, and rolling along the intersecting
tracks, can reach the configuration of the collision, and the realization of the same,
only if their centers C, and C, of mass are located at the corresponding distance

C,C, =2R at points, which are at the translational velocities of their centers
of mass C, and C, are directed to the point of intersection of their rolling paths.
There are infinitely many such configurations of the collision feasibility of two balls.
A collision is possible before both balls pass the point of intersection of the tracks, and
also on condition that one has not reached the position of the section of the tracks and
that the other ball has passed through that section of the tracks so that the intensities
of the speeds allow the first round to cross the position of cross-sections of the tracks.
We shall now give an analysis and explanation of the plan of the component
velocities le,hor,outgoing and ‘_;Tl,hor,outgoing ,as wellas le,Rol,outgoing and ‘7T2,Rol,oulgnmg

of the points T, and T, of the balls in which the balls collide, using Figures 26 and
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27 respectively. If there was a collision through the points T, and T, at the collision
point T, =T, =T ,, then the two balls set up an imaginary common tangent plane,
which is tangent to both sphere surfaces at the point of their collision T, =T, =T,.
Let us set the coordinate system so that the coordinate axis x is in their common
tangent plane through the collision point, and the axis y in the normal direction
to that tangent plane and passes through both centers of the mass C, and C, of
the billiards balls in the collision configuration, while the axis z is in the vertical
direction in the tangent plane in which the tracks of rolling balls lie and are pulled
through the collision point of billiards balls (for details see Reference [30]).

The unit vectors of orientation of the direction and focusing of the incoming ball
rolling paths, just before the oblique collision, are defined by the unit orientation
vectors:

ﬁl,,.mpactz —(7 sina, +]’cos al), and ﬁZ,impact: —isina, + jcosa,- (104)
in which the angles ¢, and ¢, of the rolling path of the ball are locked by the
direction of the normal to the tangent plane to the sphere surfaces of the balls at
the point of their collision, that is, by the direction of the line passing through the
centers C, and C, of mass and both balls.

The components of the incoming velocities of the balls in rolling before the
collision are:

The translation velocities ‘_}Cl,impact and ch,impact of the centers of mass C, and
C2, or of the balls just before their collision, are:

vCl,impact = VClnl,impactz _vCl (l sm al + j Cos al)

)

and

VCZ,impact = VCZn 2,impact: VCZ (_ 1 sm 0.’2 + .] COos aZ )

(105)

The instantaneous angular velocities @p, impact and @p, impact of rolling due to
the rolling of balls on the corresponding incoming traces immediately before their
collision are:

— = _ (7 R )_ vCl,impact (‘.’ - . )
a)l,impact - a)Pl,impact - wPl,impact 1 cosa, + Jsma, J=——=——\1 Cos ¢, + Jsma,

P = _ (? R )_ VC2,impact (? - . )
a)Z,impact - a)PZ,impact - a)PZ,impact ! Cosaz —-J sm a2 - R 1 COs a2 —-J sin aZ (106)

The horizontal components ‘_;Tl,hur,impact and ‘_;TZ,hor,impact of the velocities of
the points T, and T, that the balls collide which are equal to the velocities of the
corresponding centers C,, and C, of mass, of the corresponding balls:

VTl,hor,impact = vCl,impact = vClnl,impact = _VCI (l sin al + ] COos al)

and

VTZ,hor,impact = vCZ,impact = vCZ”Z,impact = vC2 (_l s aZ + .] COsS aZ) (107)
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FIGURE 27. Partial analogies between the central and oblique collisions of two
rolling balls: the opening of the traces of ball rolling in the oblique (skew)
collision (b *) with respect to the central collision of the balls (a *).
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Vertical components Vi gy imaee 304 Vo porimpaee - Of Velocities of the contact

points T and T, of the balls that collide with the balls are the velocities due to the
rotation of the balls along the horizontal track by the incoming angular velocities
and are defined as:

le,Rol,impact = _Ra)Pl,Rolk = _VCI,impactk
and
vT2,R01,impact = _R a)PZ,Rolk = _VC2,impactk (108)

The horizontal components Ve jor ougoing @0 V12 hor ougoing Of the velocities of

contact points T1 and T2 , with which each of the balls leaves after the mutual
collision are:

vTI,hor,ougoing = VCl,outgoing = vClnl,outgoing = vCl (_ I s al + J COos a] )

and

- —

vTZ,hor»outgoing = VC2,0ulgoing = vC2n27outgoing = _VC2 (l sin a2 + .] COs a2) (109)

The outgoing velocities ‘701 outgoing and ‘7c2 outgoing of translation of the centers
C, and C, of mass, or the corresponding sphere, immediately after the mutual
collision of the billiards balls are equal to the corresponding horizontal component

VI hor ougoing and V12, hor outgoing of the outgoing velocity of the corresponding

contact points T, and T, sphere after the collision:

(—fsina, +}cosal)

vCl,outgoing = VClnl,outgoing = le,hor,ougoing = le,hor,ougoing
and
VCZ,outgoing = VC2n2,outgoing = vTZ,hor,outgoing = _VTZ,hor,outgoing (l sm a2 + ] COsS aZ) (110)

The instantaneous angular velocities  @p; ,ping AN Dpy, goine Of the rolling
and due to the outgoing rolling of each of the balls per track immediately after the

collision are:

le,hur,outgoing (‘.‘

O yureoine = Op1outeoine = Ppi .(zcosa1+js1nal): zcosa1+]smal)

@y picoine = Pp2 ouroine = Pp2 .(—icosa2+jsina2)

_ vTZ,hor,autgoing

The vertical component Vi roougoic and V12 rolougoic 0f the departure-
outgoing velocities of the contact points T, and T, of balls, by which each of
the balls leaves after each other’s oblique collision, is the cause of the outgoing
rolling of each of the balls along the horizontal track at angular velocity,
Op ougoing  respectively  @pj pugomg , and are determined by the following
expressions:

(—fcosa2+fsina2) (111)
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= RWp) yig0ing COS UK cosa,k

le,Rol,outguing = le,impact

VTZ,Rol,outgoing = Ra)PZ,uutgoing cos szk = vTZ,impact Cos a2k (112)

The unit vectors of orientation of the direction and focusing of the outgoing
traces of the outgoing roll of the balls in the outlet after the collision are:

nlyomgomg= -8, + jcosa, |

respectively

1y puigoing =~ SINQ, + ] COSQ, (113)

For next details see Reference [30].

Conclusion-Theorem: Ifthe incoming paths of the balls in the rolling equal angles
with the common tangent plane to the balls at the contact points of collision of the
balls, then the horizontal components of the outgoing velocities of those points close
the same angles with that tangent plane. Also, the outgoing paths of one or the other
ball, as well as the translational velocities of the centers of mass of the ball, close the
same angles with this common tangent plane of collision.

7.2.3. Billiard-Concluding considerations. Using the analysis of the elements of
geometry, kinematics and dynamics of impact (see Figure 24.) and the collision
of balls (see Figures 25, 26 and 27) given in the previous parts of this paper, it is
possible to draw some conclusions and generalizations.

Here, we can imagine that the route-traces of the rolling of both balls, by which
the balls are rolling “corrected” into straight lines and that each ball is rolling
along the corresponding “corrected straight route” until the configuration which is
impacted by an appropriate incoming angular velocity, and from the configuration
of the collision by the outgoing angular velocities along “broken traces with a break’,
as if a central collision had occurred, but we should take into account that at the
point of collision on the route a “fracture” of the route occurs and that the angular
velocity discontinuity occurs with the alternative of the angular velocity direction.
The same goes for the other ball. This practically means that there is a jump in the
intensity of the angular velocity of rolling in the kinetic state of the collision, and that
the “breaking” of the rolling path changes and the direction of the instantaneous
angular velocity of the roll-out after the collision changes. The “fracture of the rolling
path” depends on the angle at which the rolling path comes from the normal tangent
plane to the balls at the point of impact.

This consideration takes us back to the central collision of the two balls. Therefore,
the task comes down to a central collision of two balls from which we need to
determine the intensities of the translational outgoing velocities and the outgoing
angular velocities of rolling about the current axis, or around it parallel to its own
central axis of each of the balls; then the “track legs expand” as corner angles with
the apex in the point of collision configuration and set at angles with respect to the
normal of the tangent plane at the collision-contact points of the rolling trace of balls,
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depending on the angles that the incoming ball rolling paths close to that normal.
This leads us to the conclusion that it is also possible to use a central collision to
determine the intensities of the angular velocity of rolling and to change the angular
momentum of motion, and in the case of oblique collision of rolling balls of different
radii and masses use appropriate analogies [27, 28, 66-68]. It should be emphasized
that it is necessary to determine the outgoing rolling routes after a collision taking
into account the incoming routes.

In the dynamics of billiards, there is a simultaneous collision of several balls,
so the problem of determining the directions of the components of the outgoing
velocities after the collision is not difficult to determine, but even today the question
of determining the intensity of the individual components of the outgoing angular
velocities of rolling formed in the collision of several balls is open.

8. Concluding Remarks

The elements of geometry, kinematics and dynamics of rolling homogeneous
balls along curvilinear lines are defined (see Reference [30]). The complete Hedrih's
theory (see References [15, 19, 24, 25, 27, 28, 30]) of the impact and collision of
heavy rolling balls, through geometry, kinematics and dynamics of rolling balls, is
defined (see References [15, 19, 24, 25, 27, 28, 30]).

A new definition of the coefficient of restitution (collision) was introduced, starting
from the hypothesis of the conservation of the sum of angular momentum of the balls
in rolling, for instant rolling axes, after the collision in relation to the time before
collision of the bodies. The expressions for the outgoing angular velocities of the ball
rolling after the collision have been derived and their rolling paths after the impact or
collision have been determined and various possible anchors have been shown.

The difference between the content of the term billiards used in mathematical
works of many mathematicians, as well as the research that remains in the field
of geometry is pointed out. Our theory of ball rolling and collision is based on the
examples of the abstraction of real rolling systems of heavy homogeneous billiards
to a mechanical model.

Based on both of the new Hedrih’s results (see References [15, 19, 24, 25, 27,
28, 30]), the theory of collision between rolling bodies and dynamics of generalized
rolling pendulums (see References [6, 7, 14, 16, 18, 24, 26, 27, 28, 30, 31]) in
successive collisions, and the use of phase trajectory method, a new methodology of
vibro-impact dynamics investigation is founded and presented through a number of
applications in mechanical system dynamics.

We must point out again that the elements of geometry, kinematics and dynamics
of rolling homogeneous balls along curvilinear lines are defined (see Reference
accepted for ICTAM 2020+1 and Reference [30] accepted and published in EURODYN
2020 Proceedings). The complete theory of the impact and collision of heavy rolling
balls, through geometry, kinematics and dynamics of rolling balls, is defined by
Hedrih (Stevanovic).
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A new definition of the coefficient of restitution (collision) was introduced and
expressed by angular velocities of the rolling about instantaneous axis of each body
after and before collision. Starting from the hypothesis of the conservation of the sum
of angular momentum of the balls in rolling, for corresponding instant rolling axes,
after the collision in relation to the before collision of the bodies, theory of collision
obtained the basic foundation. This hypothesis is the main foundation of the new
theory of collision between bodies in rolling, different from the known hypothesis of
the conservation of the sum of linear momentum in the classical theory of collision
between bodies in translatory motion before and after collision.

The new expressions for the outgoing angular velocities of the ball rolling after
the collision have been derived and determined on the basis of the newly introduced
coefficient of restitution and the hypothesis of the conservation of the sum of
angular momentum. Also, the rolling paths after the impact or collision of each
rolling ball have been determined and various possible anchors have been shown.
The difference between the content of the term billiards used in mathematical works
[2] of many mathematicians, as well as the research that remains in the field of
geometry is pointed out. These results come down to the task of inscribing open or
closed polygonal lines in some restricted areas, and annals are with tasks in optics,
exploring the path of the light beam which is reflected off mirrors at the boundaries
defined by the regions. They are based on a series of Poncelet theorems in geometry
and do not reach the dynamics of the real billiards systems.

Our theory of ball rolling and collision is based on the examples of the abstraction
of real rolling systems of heavy homogeneous billiards to the dynamics of a
mechanical model.

Construction of the phase trajectory portraits of a generalized rolling pendulum
along a rotating curvilinear line is presented in the following References [8-33].
The generalized rolling pendulum containing a rolling thin heavy disk rotates along
the curvilinear line consisting of three circle arches, with constant angular velocity
around a vertical eccentric/central axis. Depending on system parameters, different
possible forms of the phase portraits appear with different structures of the sets
of singular points and forms of phase trajectories. Trigger of coupled singular
points and a homoclinic orbit in the form of a deformed figure eight appears (see
References [6-14]). A mathematical analogy (see References [3, 27, 28, 66-68])
between nonlinear differential equations of the considered generalized rolling
pendulum and motion of the heavy mass particle along a rotating curvilinear line
points out the same forms. On the basis of the obtained different possible phase
trajectory portraits, non-linear phenomena in vibro-impact dynamics of two rolling
thin disks on a rotating curvilinear line is investigated. Energy transfer between
rolling disks in each of the series of successive collisions is analyzed and presented
on relative mechanical energy portraits for the dynamics of each of the rolling disks
in collision (see Reference [14, 19, 21, 22, 23, 27, 28, 29, 32]).

By using the phase plane method, the non-linear phenomena in the dynamics of
vibro-impact system containing two rolling bodies along a rotating circle, or along a
different stationary curvilinear line is investigated and the results are presented in
author’s References. The newly established Hedrih's theory of the collision between
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two rolling bodies was published by the author in References [15, 30] and applied
in References [6-32]. Two generalized rolling pendulums [6, 7, 10-32] along the
same curvilinear trace are the main sub-systems of each of previously investigated
nonlinear dynamics of the vibro-impact systems. In previously listed published
papers, energy analysis is done and the successive energy jumps, between two
rolling bodies in successive collisions, are indicated.

In a series of the co-authored papers (see References [32-39]), the research
attention is focused to nonlinear phenomena and energy analysis in the dynamics
of the vibro-impact systems containing two heavy mass particles moving along
curvilinear rough lines with Amontons-Coulomb’s frictions and in successive
collisions.

In this review paper, the research attention is focused and based on the newly
obtained Hedrih's results, the theory of collision between rolling bodies and the
dynamics of generalized rolling pendulums in successive collisions, and the use of
phase trajectory method; a new methodology of vibro-impact dynamics investigation
is founded and presented through a number of previously published applications in
mechanical vibro-impact system dynamics as well as the research results of vibro-
impact dynamics in general through six Projects (P4-P9) and in the period of five
project cycles in the period 1991-2019.
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