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BIOLOGICAL OSCILLATORS 

Abstract. There are many oscillatory processes within biological systems. 
The whole human body is a complex system of coupled and synchronized 
oscillators. The mode of coupling can be very different. Oscillatory 
processes exist at almost every scale in human body: from systems of 
organs to subcellular structures and molecules. Using knowledge from 
several scientific fields (biology, medicine, theory of oscillations, theory 
of elasticity, rheology, non-linear dynamics), a complex multidisciplinary 
methodology for studying a wide class of oscillatory biodynamic models 
has been set. The principle of phenomenological mapping has been used 
in developing each of the oscillatory models of biological oscillators. In this 
review, oscillatory models of three different structures will be presented: 
the oscillatory model of double DNA chain helix, oscillatory model of zona 
pellucida and conditions for successful fertilisation, and oscillatory model 
of the mitotic spindle. These models are based on oscillations of chain 
systems. The DNA double helix is considered as a molecular biological 
oscillator, mitotic spindle as a subcellular system of coupled oscillators, and 
zona pellucida as an oscillating spherical net of cross-chains of oscillators 
that envelopes the female reproductive cell – the oocyte, at the surface of 
which an interaction with male reproductive cell- spermatozoa occurs. 
Assumptions of mathematical oscillatory models are presented as well as 
conditions for resonance. Some numerical analysis are also presented. 
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1. Introduction

Biological systems of different scales of complexity can function as oscillators 
from the molecular level to the level of the system of organs. Fine tuning of their 
synchronous work is in their physical and functional way of coupling making it work 
like a symphony. Resonance in a mechanical system can increase the amplitudes 
of oscillations to infinity leading to breakage or cracks into the system that could 
be desirable or undesirable. The specific cracks in the system change structural 
properties of the system. Different structural properties may affect the function of the 
system to a certain level. All these events are possible in biological systems according 
to the phenomenological mapping theory. It is possible to transfer knowledge from 
one scientific field to another, and to use the same mathematical methodology to 
describe different biological or technical processes with equal assumptions. Some 
phenomena are universal and exist both in living and in artificially created systems.

In this review, different biological systems are modeled as oscillators. In 
modelling, we tried to preserve the structural organization of the biological system 
we modeled and to give some answers on how the system works as a biomechanical 
system. The theory of oscillations is the main theory that is used in these modeling. In 
this review, three different oscillatory models will be presented: an oscillatory model 
of a double DNA helix, an oscillatory spherical net model of mouse zona pelucida 
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and an oscillatory model of a mitotic spindle. Results of mathematical modeling 
of all these three biological oscillators brings new light into the understanding of 
their functions from a biomechanical point of view thus contributing to biochemical 
understanding of the process. 

All three models were created as a result of original work on the project NO 
174001 (project leader prof. dr Katica (Stevanovic) Hedrih) financially supported by 
the Ministry of education, sciences and technological developement of the Republic 
of Serbia through the Mathematical Institute of the Serbian Academy of Sciences and 
Arts (MI SANU).

2. Oscillatory model of double DNA chain helix

Summary. Oscillatory models of the DNA chain are a part of research related to 
the mathematical modeling of the system of DNA molecules as an oscillatory chain 
system. The papers considers the corresponding oscillatory modes in the free and 
forced mode of oscillation of DNA molecules, as well as the possibility of resonance 
and dynamic absorption under the conditions of forced oscillation corresponding 
to the transcription process. It has been mathematically shown that a double DNA 
strand can be separated into two independent chains that oscillate with a different 
set of natural circular frequencies that could correspond to a sequence of base pairs 
in the double strand of DNA in a living cell. According to the mathematical analytical 
expressions of the double-strand oscillatory model, for special cases when a single-
frequency force acts on a DNA molecule in the general case, there are different 
cases of resonant states that can occur in a single DNA chain. It has been shown 
mathematically that there are no interactions between two chains in terms of energy 
transfer from one chain to another.

2.1. Mathematical models of a double DNA molecule. DNA molecule 
is a complex polymer that codes genetic information the dynamics of which were 
studied through many different approaches and biomechanical models (polymer 
models, elastic rod model, network model, torsional springs model, soliton-existence 
supporting models, multi-pendulum models) [1]. 

Stretching and twisting properties of DNA’s were obtained through different 
techniques (optical tweezers, atomic force microscopy and single-molecule 
technique, dielectrophoresis) [2–4]. “Double-stranded DNA (dsDNA) expresses 
sequence-dependent flexibility on the sub-microsecond timescale. Pyrimidine-
purine type steps are the most flexible, purine-purine steps are about average, and 
purine-pyrimidine steps are the most inflexible” (Okonogi et al., 2002 by [1]). 

We propose a multi pendulum models of double DNA [5–8]. Models are based on 
DNA model by N. Kovaleva and L. Manevich [9, 10] and dynamics in chain systems 
[11]. The pendulum models differ in the way its elements (base pairs) are coupled, 
from pure elastic to hereditary properties: the model with elastic properties, model 
with fractional [7, 12, 13] and model with hereditary properties [8, 12]. In a pure 
elastic model, elements are interconnected with elastic springs, in the fractional 
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model with standard light fractional order creep elements and in the model with 
hereditary properties with standard light hereditary element. As DNA molecule 
ages [14] we suggest that DNA molecule might also be changing its mechanical 
properties during aging. In this light of dDNA aging phenomenon, different types 
of oscillatory models of dDNA were considered regarding the way of coupling the 
polymer elements of dDNA. Free and forced vibrations[7, 12], eigen modes [15] and 
the transfer of energy through double DNA [5] chains were analysed.

Constitutive stress-strain relation for the restitution force as the function of 
element elongation for standard light hereditary element is given by an integral 
member in the form:

[ ]0 0
0
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Different boundary conditions of the double DNA chain helix were taken into 
account: the cases when the ends of chains are either free or fixed. Fig. 1. and Fig 2. 
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Fig. 1. Multi-pendulum model of dDNA helix with free ends. Example of Ideally elastic 
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Fig 2. Multi-pendulum model of dDNA helix with fixed ends. . Example of Ideally elastic 
model. Taken from [15]. 

Figure 1. Multi-pendulum model of dDNA helix with free ends. Example of 
Ideally elastic model. Taken from [15].
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Fig 2. Multi-pendulum model of dDNA helix with fixed ends. . Example of Ideally elastic 
model. Taken from [15]. 

Figure 2. Multi-pendulum model of dDNA helix with fixed ends. Example of 
Ideally elastic model. Taken from [15].

In each of the models (ideally elastic, fractional and hereditary), the complex 
methodology was derived to generate the generalized and main coordinates of each 
base pair in the chains system. Mathematically, it is possible to obtain two fictive 
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decoupled and separated single eigen chains of the double DNA helix, a different 
set of eigen circular frequencies of decupled dDNA helix in all type of oscillatory 
dDNA models. “This may correspond to different chemical structure (the order of 
base pairs) of the complementary chains of DNA. We are free to propose that every 
specific set of the base pair order has its circular eigen frequencies, and it changes 
when DNA chains are coupled in the system of double helix”[6]. 

The models are suitable for studying resonance phenomena and phenomena 
of dynamical absorption in dDNA as well as rare nonlinear phenomena such as 
resonant jumps and energy interactions between nonlinear modes“ [6]. Solutions 
obtained for forced vibrations in dDNA oscillatory model [7] may correspond with 
process of binding the enzyme to the specific part of the DNA molecule. “Enzyme 
has a role of inducer of forced vibrations. In the transcription process only one 
chain is used as a template for transcription, the other chain is control. The part of 
DNA chain that is the template has to make more movements than the other chain. 
Dynamical absorption on the first pair of the main coordinates of the main chains 
appears on the resonant circular frequencies of the set of the double DNA helix chain 
system with one less pair of the material particles compared to the considered real 
system. Resonant state that appears only in one main chain may be important for 
selecting the specific sequence for transcription. We suggest that every sequence 
of DNA that encodes the specific protein has its own resonant circular frequencies 
different from the sequences that encode other proteins. Dynamical absorption on 
the second pair of the main coordinates of the main chains appears on the resonant 
circular frequencies of the set of the double DNA helix system with two less pairs 
of the material particles in comparison with considered system. This mathematical 
fact is important to consider in the light of the interruption or break of the double 
DNA helix system on the specific places where the transcription process starts and 
ends” [7].

“We are free to suggest that, from the mechanical point of view, if one specific 
frequency excitation caused by RNA polymerase is the same as eigen oscillatory 
frequency of specific promoter region resonance appears, that is the condition for 
starting the transcription from the mechanical point of view. This means that every 
gene has its specific “starting” oscillatory frequency that will correspond with one 
frequency external excitation. This may also correspond with spatially localized 
solitons in soliton –existence supporting models of DNA” [13].

 “Expressions for the kinetic and potential energy as well as energy interaction 
between chains in the double DNA chain helix are obtained and analyzed for a 
linearized model [14]. By obtained expressions we concluded that there is no energy 
interaction between eigen main chains of the double DNA helix”[12].

Under certain sequences it is possible that oscillatory signal is transferred only 
through one chain.

 “The results open possibilities for a different approach to explaining the behavior 
of the double chain DNA and of transfer of oscillatory signals trough the chains. 
Under certain sequences it is possible that oscillatory signal is transferred only 
through one chain. This may correspond to base pair order and translation process 
in complementary fractional order chains of DNA double helix in a living cell”[12]. 
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We consider multi-pendulum models appropriate for experimental testing of 
visco-elastic properties of DNA [1].

3. An oscillatory model of a mouse zona pelucida (mZP)

Summary. The fertilization process on a cellular level of interaction can be 
considered as an oscillatory phenomenon. The surface of the interaction of the 
oocyte and sperm cell in IFV protocols is zona pelucida (ZP) - a complex network 
of polymers that has gel consistence, net like structure and can dynamically change 
its mechanical properties during the process of oocyte maturation, fertilization 
and early stage embryo. Its main biological function is selectivity regarding sperm 
penetration. We develop a single layer oscillatory net model of mouse ZP (mZP). 
The oscillatory spherical net model of mZP is a type of discrete systems based 
on oscillations in crossed chain systems. This model is suitable for explaining 
the process of fertilization- interaction of an oocyte and the spermatozoa and for 
studying the effect of oscillatory behavior of ZP regarding the influence of sperm 
impact angle, sperm velocity and sperm number. The model is further improved by 
proposing a multilayer model of ZP. The model can be used to analyze the energy 
state of ZP before and after fertilization. To better understand the interaction of 
oocyte and sperm cell the deformation work of ZP and parameters that influence it, a 
quasi-static continual shell-like ZP model was developed. The dynamics of frictional 
contact between the oocyte and the spermatozoa is studied by using the finite 
element method. Using phenomenological mapping of a model of ZP as a mechano-
responsive and electroactive – polymer, a new mechano-chemical fertilization 
concept is proposed. 

3.1. The oscillatory spherical net model of mouse zona pellucida. Mouse 
ZP structure is important for fertilization, polyspermy block, integrity of the growing 
embryo and guiding the embryo through the oviduct. In the late blastocyst stage, 
this structure no longer exists. During oocyte maturation, fertilization and embryo 
development ZP dynamically changes its elasticity. 

Oscillatory spherical net model of mZP [16–18] was inspired by the Green 
modification of Wassermans’ model of mZP [19] and 3D structural changes of ZP on 
atomic force microscopy [20–22] and scanning electron microscopy analysis [23]. 
We considered the oocyte with ZP as a biomechanical oscillator that could oscillate 
in free and forced regimes. We considered that a forced regime is induced by sperm 
cells that are “attacking” the outer surface layer of the oocyte- the ZP. The focus is on 
the events that are happening on the ZP, induced by impacts of sperm cells. First, a 
single layer model oscillatory spherical net model of mZP was developed.

Mouse ZP as a spherical net consists of orthogonal chains in meridian and 
circular directions with cross-sections with knot mass particles. Net envelopes 
the oocyte in one layer. The net has the same structure in circular and meridian 
directions and lies in the sphere concentric to the oocyte that we suppose is rigid. 
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Each oscillatory mechanical chain has a finite number of material particles with 
a finite number of degrees of freedom. Chains are composed of material particles 
of different masses interconnected with massless non-linear elastic elements on a 
specific manner. See Fig 3. a and b. For modelling this oscillatory spherical net of 
mZP, the method of discrete continuum was used [24]. Each material particle has 
three degrees of freedom and is connected to the sphere surface with a standard 
light non-linear-elastic element in the radial direction and can oscillate in the radial, 
circular and meridional directions. We suppose that, from the mechanical point 
of view, fertilization occurs in the moment of forced regime of oscillations of mZP 
induced by sperm cells, when a spermatozoid that oscillates in a resonance with the 
ZP net, penetrates the ZP. 

The resonant frequencies for a certain theoretical initial conditions are 
determined using the frequency equation:

2 2( ) 0f C Aω ω= − = 						      (2)

C is a matrix of coefficients of elasticity, and A is a matrix of coefficients of inertia. 
The numerical analyses were done on a representative part of the mZP network 
that still preserves the molar ratio of the ZP glycoproteins (ZP1, ZP2 and ZP3). The 
frequency equation is an eleven-degree function. 

The assumption of the model: the system of ZP oscillatory net oscillates in a free 
regime after ovulation without presence of spermatozoa. If there is only an initial 
perturbation by kinetic and potential energy given to oscillatory structures, only 
free vibration regimes of vibration discrete structure appear. In this case material 
particles at the initial moment obtain the initial displacement measured from their 
equilibrium positions and initial velocities. The conditions for free oscillations is 
that only one mass particle position is perturbed from its equilibrium position, or 
that only one mass particle at its equilibrium position obtains initial velocity.
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Fig. 3. a* Model of ZP spherical surface that shows a radial direction of axis of 
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ZP proteins. Each ZP protein is connected to the sphere with elastic springs that can oscillate in 
radial direction. c* segment of spherical surface net model of mZP. Taken from [17]. 
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The bonds between the molecules that form the chains can be ideally elastic or 
viscoelastic depending on the state in which the biological system is. By applying 
analytical methods, the values of the natural frequency of oscillation of nodal -ZP1 
molecules were obtained. ZP1 molecules have been selected for two reasons – their 
masses are the largest thus their contribution to the oscillatory behavior will be 
significant; upon fertilization, by creating disulphide bridges between ZP1 molecules 
on one side and ZP2 and ZP3 on the other, followed by a change of ZP structure, Young 
modulus of elasticity increases [25] and the conditions for a polyspermy block are 
created. In addition, according to the modified Wassarman model of ZP [26], without 
the ZP1 bonding molecules the net structure of ZP does not exist [27, 28].

If the system of ZP net is considered linear and conservative, free oscillations of 
mZP molecules in radial ijw circular .i ju and meridian .i jv  direction can be described 
by a system of homogeneous linear differential equations in the following form:
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viscoelastic depending on the state in which the biological system is. By applying 
analytical methods, the values of the natural frequency of oscillation of nodal -ZP1 
molecules were obtained. ZP1 molecules have been selected for two reasons – their 
masses are the largest thus their contribution to the oscillatory behavior will be 
significant; upon fertilization, by creating disulphide bridges between ZP1 molecules 
on one side and ZP2 and ZP3 on the other, followed by a change of ZP structure, 
Young modulus of elasticity increases [25] and the conditions for a polyspermy block 
are created. In addition, according to the modified Wassarman model of ZP [26], 
without the ZP1 bonding molecules the net structure of ZP does not exist [27, 28]. 
If the system of ZP net is considered linear and conservative, free oscillations of mZP 
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significant; upon fertilization, by creating disulphide bridges between ZP1 molecules 
on one side and ZP2 and ZP3 on the other, followed by a change of ZP structure, 
Young modulus of elasticity increases [25] and the conditions for a polyspermy block 
are created. In addition, according to the modified Wassarman model of ZP [26], 
without the ZP1 bonding molecules the net structure of ZP does not exist [27, 28]. 
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on one side and ZP2 and ZP3 on the other, followed by a change of ZP structure, 
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are created. In addition, according to the modified Wassarman model of ZP [26], 
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are created. In addition, according to the modified Wassarman model of ZP [26], 
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are created. In addition, according to the modified Wassarman model of ZP [26], 
without the ZP1 bonding molecules the net structure of ZP does not exist [27, 28]. 
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The system of non-linear differential equations (9), (10) and (11) corresponds to 
the situation after fertilization when for the very short time other sperm cells affect 
the ZP surface. 

For obtaining solutions of displacements of molecules, known solutions of linear 
homogeneous differential equations obtained by trigonometric methods [29] was 
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used. Solutions for oscillatory movements in radial directions for ZP1 molecules 
are:
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The system of non-linear differential equations (9), (10) and (11) corresponds to 

the situation after fertilization when for the very short time other sperm cells affect 
the ZP surface.  
For obtaining solutions of displacements of molecules, known solutions of linear 
homogeneous differential equations obtained by trigonometric methods [29] was 
used. Solutions for oscillatory movements in radial directions for ZP1 molecules are: 

 

( ) ( ) ( ) ( )( )
ijwwijwij tAtw αω += 0cos    (12) 

( )ijwA  is amplitude, ( )ijwα  phase of single frequency force, ( )
( )

m

c w

w =0ω  is circular 

frequency ( )w
c is rigidity of connections between molecules. Proposed solutions for 

system of linear homogeneous differential equations (3) and (4) are in the following 
form: 

 

( ) ( ) ( ) ( )( )
jujuijuij tAtu αω += cos ,    (13) 

( ) ( ) ( ) ( )( )ivivijvij tAtv αω += cos     (14) 

 

Where amplitudes ( )ijuA  and ( )ijvA have the following form: 

( ) ( ) ϕiCA
juiju
sin= ,  ( ) ( ) ϑjCA

iuijv
sin= .  (15) 

• Component displacements in meridian and circular directions of knot 
molecules are multi-frequency oscillations. Depending on initial perturbation of the 
equilibrium state of material particles in the spherical net, component displacements 
of knot mass particles are in multi-frequency oscillatory regimes, but with number of 
frequencies less or equal to the number of eigen frequencies of the system. The 
analysis of oscillatory behavior of knot molecules in mZP spherical net model are 
done through generalized Lussajous curves. The resulting trajectory of the component 
motions in the circular and meridian directions in the plane tangential to the sphere 
net of the observed ZP1 molecules in the model are in the form of generalized 
Lissajous curves that could be in the form of a strait line, periodical, non-periodical, 
stochastic-like or chaotic-like trajectories, as a results of summing two orthogonal 
multiple-frequency component vibrations. For obtaining a real space trajectory of a 
knot mass particle, the components in radial direction have to be added [30]. Fig. 4. 
Numerical methods were used to obtain amplitude-frequency graphs of oscillation of 
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of the equilibrium state of material particles in the spherical net, component 
displacements of knot mass particles are in multi-frequency oscillatory regimes, but 
with number of frequencies less or equal to the number of eigen frequencies of the 
system. The analysis of oscillatory behavior of knot molecules in mZP spherical net 
model are done through generalized Lussajous curves. The resulting trajectory of the 
component motions in the circular and meridian directions in the plane tangential 
to the sphere net of the observed ZP1 molecules in the model are in the form of 
generalized Lissajous curves that could be in the form of a strait line, periodical, 
non-periodical, stochastic-like or chaotic-like trajectories, as a results of summing 
two orthogonal multiple-frequency component vibrations. For obtaining a real 
space trajectory of a knot mass particle, the components in radial direction have to 
be added [30]. Fig. 4. Numerical methods were used to obtain amplitude-frequency 
graphs of oscillation of ZP1 molecules depending on the speed, angle of action, and 
number of spermatozoa [30–32]. ZP1 molecule is the main cross-linker of the 3D 
ZP net structure and response for hardening effect of ZP after fertilisation [19, 33]. 
On the basis of the shape of Lissaous curves, a frequency analysis of the behavior 
of molecules in the oscillatory model of ZP was performed. Comments related to 
successful fertilization are given by analysing the oscillatory behavior of molecules. 
Angles at which sperm acts upon ZP surface affects its oscillatory behaviour. Some 
angles are more favourable for achieving oscillatory stats favourable for fertilisations 
[31, 34]. The authors suggested that for the successful fertilisation favourable are 
sperm impact angles that result in synchronisation of mZP net molecules. Very small 
and very large impact angles are unfavourable; fertilization [30]. 

Generalized Lissajous curves on Fig 4b has chaotic –like form showing that the 
π/2 sperm impact angle is not suitable for fertilization. It is the most unfavorable 
impact angle, although the amplitudes of motions of knot molecules are very low. 
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The number of sperm cells with effective swimming velocity, capable of reaching 
the oocyte and undergoing complex adaptations within the female reproductive 
tract is a key determinant of male fertilization success [35]. The quality of the 
whole ejaculate is important for the fertilization success. Total sperm numbers 
are positively correlated to proportions of normal sperm, acrosome integrity 
and motile sperm and also with gonadosomatic index [36]. ZP1 molecules in the 
mZP oscillatory model have different oscillatory states when exposed to external 
vibro -impacts of a different number of hyperactivated spermatozoa, indicated 
that a certain number of hyperactivated spermatozoa is necessary for reaching 
the favorable oscillatory state of mZP for fertilization [32]. Influence of the sperm 
velocity on oscillatory behavior of mZP was studied in [31]. The important result 
of numerical analysis is that oblique angles are more favourable and this was 
also suggested in [37]. Using the oscillatory spherical net model of mZP, it is 
possible to predict values of sperm impact angles favourable for fertilization. 

 
 
 
 
 
 
442 

Andjelka N. Hedrih 
 
favourable for achieving oscillatory stats favourable for fertilisations [31, 34]. The 
authors suggested that for the successful fertilisation favourable are sperm impact 
angles that result in synchronisation of mZP net molecules. Very small and very large 
impact angles are unfavourable; fertilization [30].  
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angles are more favourable and this was also suggested in [37]. Using the oscillatory 
spherical net model of mZP, it is possible to predict values of sperm impact angles 
favourable for fertilization.  

The model is suitable for modelling  and explaining the different conditions that 
this structure goes through during oocyte maturation and after fertilization [38]. The 
generalized function of dissipating the total energy of the oscillatory system of mZP, 
and the representative part of the network, is derived. Fig 5. An interpretation of the 
dynamic changes in the elastic properties of mouse ZP and the energy dissipation that 
occurs after fertilization and its potential biological significance is given in [38]. “The 
energy state of the mouse zona pellucida before and after fertilization has been 

Figure 4. a. Full synchronization (angles π/6 and π/4). b. Full asynchronization 
for (angles π/2 and π/2) of all four ZP 1 molecules from representative part 
of the mZP oscillatory net.

The model is suitable for modelling  and explaining the different conditions 
that this structure goes through during oocyte maturation and after fertilization 
[38]. The generalized function of dissipating the total energy of the oscillatory 
system of mZP, and the representative part of the network, is derived. Fig 5. 
An interpretation of the dynamic changes in the elastic properties of mouse 
ZP and the energy dissipation that occurs after fertilization and its potential 
biological significance is given in [38]. “The energy state of the mouse zona 
pellucida before and after fertilization has been analysed via the created discrete 
fractional order spherical net model based on the fractional derivative Voigt 
model of viscoelasticity. According to this model, after fertilization, until the 
stage of morula the modulus of elasticity decreases [27], and these stages could 
be modelled as non-conservative systems with viscoelastic properties.
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Fig 5. Main eigen modes of fractional order representative part of mZP net, Ts,sin (t,α) is 

plotted on the ordinate, time t and α (0 < α ≤ 1) are on two abscissa axes. Taken from [38]. 

 

In the stage when the mZP has the highest viscosity, its energy is minimal. We can 
speculate that this minimum of mZP energy is essential (from the mechanical point of 
view) for embryo to escape from this structure and implant itself into the uterus.” 
[38].  
Our analysis of influence of sperm impact angle on parametric frequency analysis of 
oscillatory behaviour of knot molecules in mZP spherical net model is one step 
forward in understanding dynamical conditions and vibro-impacts in the process of 
mammalian fertilization and the process of polyspermy block [11].  

Synchronisation of oscillations of mZP molecules. The phenomenon of 
synchronisation and desynchronization of mZP1 molecules using multi-parametric 
analysis is studied in [39]. One or more parameter transformations of curve graphs in 
the phase space of the oscillatory state of the kinetics of one or more molecules using 
combinations of oscillatory displacements of one or more molecules in the radial 
and/or circular direction can be followed. The results are analysed in the context of 
polyspermy block. The polyspermy block is a phenomenon that includes electrical 
and mechanical events on ZP structure caused by sperm penetration trough ZP. The 
result is that other sperms could neither attach to nor penetrate the ZP [40]. One of the 
theories is that chemical modifications of ZP2 and ZP3 molecules are responsible for 
polyspermy block [33]. Polyspermy block is the mechanism that ensures the constant 
quantity of genetic material in each generation. Based on the results of the numerical 
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In the stage when the mZP has the highest viscosity, its energy is minimal. We 
can speculate that this minimum of mZP energy is essential (from the mechanical 
point of view) for embryo to escape from this structure and implant itself into the 
uterus.” [38]. 

Our analysis of influence of sperm impact angle on parametric frequency analysis 
of oscillatory behaviour of knot molecules in mZP spherical net model is one step 
forward in understanding dynamical conditions and vibro-impacts in the process of 
mammalian fertilization and the process of polyspermy block [11]. 

Synchronisation of oscillations of mZP molecules. The phenomenon of 
synchronisation and desynchronization of mZP1 molecules using multi-parametric 
analysis is studied in [39]. One or more parameter transformations of curve graphs 
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electrical and mechanical events on ZP structure caused by sperm penetration 
trough ZP. The result is that other sperms could neither attach to nor penetrate the 
ZP [40]. One of the theories is that chemical modifications of ZP2 and ZP3 molecules 
are responsible for polyspermy block [33]. Polyspermy block is the mechanism that 
ensures the constant quantity of genetic material in each generation. Based on the 
results of the numerical experiment on the viscoelastic oscillatory model of mouse 
ZP after fertilization, we notice that mZP1 molecules oscillate synchronously when 
the bonds between them are stronger (higher values of linear and nonlinear stiffness 
coefficients) and when the system damping is more pronounced. Experimental data 
show that the higher viscosity of ZP after fertilization is associated with a more 
efficient polyspermy block and embryo survival [39, 41]. Based on these data, we 
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can assume a connection between the synchronization of the oscillatory motion 
of ZP molecules and polyspermy block: better synchronization could mean more 
efficient polyspermy block.

Limitation of the oscillatory spherical net model of mZP. The main 
limitations are: the analysis of oscillatory behaviour were done on a representative 
part of the mZP net and that model is a single-layer model. In the real ZP there 
are numerous ZP molecules and so the numerous eigen circular frequencies. Non-
linear properties of real ZP and limitations of the analytical method of solving a 
system of differential non-linear equations require using numerical methods and 
approximations in modelling. Real ZP is a very complex oscillatory system and very 
selective in regard to spermatozoa penetration. This ZP selectiveness provides 
constant quantity of genetic material in each generation. 

In order to overcome some limitations of the one-layer oscillatory spherical net 
model of mZP a multi-layered model is developed [42]. 

3.2. Multi-layer oscillatory spherical net model of mouse zona pelucida. 
On a basis of single-layered oscillatory spherical net model of mZP we proposed 
improved double layer models [42]. Due to visco-elastic properties of ZP and its 
importance for mechanism of sperm penetration double layered oscillatory net model 
of mZP has fractional order properties. Fig. 6. In the double-layered mZP oscillatory 
model interconnections between ZP glycoproteins have fractional order properties. In 
this way, oscillatory behavior of ZP from pure elastic to viscous is covered. A double-
layered model with fractional order properties has advantage over a single-layered 
model with ideally elastic properties because it can explain changes in ZP mechanical 
properties before, in the course of and after fertilization [22, 43]. Assuming that both 
layers have identical regular geometry and structure, examples of double-layered 
oscillatory networks are presented in Fig 6. Each molecule is interconnected with 
two neighboring molecules and with ZP surface with standard light fractional order 
visco-elastic elements. At places where upper and lower net are overlapped (not 
molecules or ZP2 molecules as in Fig 6), nets are interconnected by these molecules 
with standard light fractional order visco-elastic elements.

Lower net is rotated for an angle of 45° compared to the upper net overlapping the 
knot molecules at one diagonal. Sides of the square of upper spherical net corespond to the 
diagonal of the square of the lower spherical net. In the undeformed state, interconection 
lengths are longer in upper than in the lower net making that fenestrations of upper net 
larger than those of the lower. This assumtion coresponds to experimental results [23, 
44]. Using a double-layered oscillatory fractional order ZP net, it is possible to explain the 
mechanism of sperm penetration trough ZP. Sperm cells have a more demanding task of 
passing through a denser environment than in the case of the single-layered net. In vitro 
[37] and numerical [30] experiments have reported that sperm creates an oblique path 
through ZP. Double-layered oscillatory fractional order ZP net model gave basis that 
possible mechanism of sperm penetration trough ZP are oscillations of relaxations.

A system of ordinary fractional order differential equations for fractional order 
oscillations of chains with 11 molecules (material particles) of a representative 
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segment of lower (inner) spherical net are in the following form:

for molecules in chains in circular direction: 
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for all molecules of inner net except knot molecules (mZP1) and for knot molecules 
that are not interconnected to the upper (outer) net knot molecule: 
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for knot molecules (mZP1) that interconnect inner and upper net and are connected 
to the ZP surface by standard light fractional order elements:	
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cells have a more demanding task of passing through a denser environment than in the 
case of the single-layered net. In vitro[37] and numerical [30] experiments have 
reported that sperm creates an oblique path through ZP. Double-layered oscillatory 
fractional order ZP net model gave basis that possible mechanism of sperm 
penetration trough ZP are oscillations of relaxations. 

A system of ordinary fractional order differential equations for fractional order 
oscillations of chains with 11 molecules (material particles) of a representative 
segment of lower (inner) spherical net are in the following form: 

for molecules in chains in circular direction:  
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for all molecules of inner net except knot molecules (mZP1) and for knot molecules 
that are not interconnected to the upper (outer) net knot molecule:  
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the ZP surface by standard light fractional order elements:  
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The system of ordinary fractional order differential equations for fractional order 
oscillations of chains with 11 molecules of the representative segment of upper 

(outer) spherical mZP net is in the following form (see Fig. 3): 

For molecules in chains in circular direction (at angle of 45˚ compared to lower net 
circular chain): 

  	                	(19)
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cells have a more demanding task of passing through a denser environment than in the 
case of the single-layered net. In vitro[37] and numerical [30] experiments have 
reported that sperm creates an oblique path through ZP. Double-layered oscillatory 
fractional order ZP net model gave basis that possible mechanism of sperm 
penetration trough ZP are oscillations of relaxations. 

A system of ordinary fractional order differential equations for fractional order 
oscillations of chains with 11 molecules (material particles) of a representative 
segment of lower (inner) spherical net are in the following form: 

for molecules in chains in circular direction:  
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  11,...,3,2,1=k , 4,2=j , 10 ≤≤ α     (17) 

for all molecules of inner net except knot molecules (mZP1) and for knot molecules 
that are not interconnected to the upper (outer) net knot molecule:  
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for knot molecules (mZP1) that interconnect inner and upper net and are connected to 
the ZP surface by standard light fractional order elements:  
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The system of ordinary fractional order differential equations for fractional order 
oscillations of chains with 11 molecules of the representative segment of upper 

(outer) spherical mZP net is in the following form (see Fig. 3): 

For molecules in chains in circular direction (at angle of 45˚ compared to lower net 
circular chain): 

 		  (20)

The system of ordinary fractional order differential equations for fractional 
order oscillations of chains with 11 molecules of the representative segment of 
upper (outer) spherical mZP net is in the following form (see Fig. 3):

For molecules in chains in circular direction (at angle of 45˚ compared to lower 
net circular chain):
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For molecules in chains in meridian direction (at angle of 45˚ compared to lower 

net meridian chain):
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where ( )tu jk , , ( )tv jk ,  and ( )tw jk ,  are molecule component displacements in 
circular, meridian and radial directions of the representative segment of lower net, 
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~  are molecule component displacements in circular, 

meridian and radial directions of the characteristic, representative segment of the 
upper net, [ ]•α
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where ( )tu jk , , ( )tv jk ,  and ( )tw jk ,  are molecule component displacements in 

circular, meridian and radial directions of the representative segment of lower net, 

( )tu
jk ,

~ , ( )tv
jk ,

~  and ( )tw
jk ,

~  are molecule component displacements in circular, 

meridian and radial directions of the characteristic, representative segment of the 

upper net, [ ]•α
t  is a fractional order differential operator of the thα  derivative with 

respect to time t . 
Influence of the sperm impact angle on local sperm oocyte contact dynamics 

was analysed using a finite element method approach [45]. Sperm–oocyte contact was 
defined as a non-linear frictional contact. Deformations of ZP relative to different 
sperm impact angles are analysed. An effect which resembles the “slip-stick” effect 
was identified. Spermatozoa accelerate and decelerate during the sliding on the ZP 
surface and this is characteristic to slip – stick motion. Some favourable ZP-stress 
state for sperm penetration for different sperm impact angles are also identified. [45]. 
The sperm head–ZP contact area increases as sperm impact angle decreases [45]. 
Spermatozoa with sperm impact angle of 75⁰ achieves local maximum equivalent 
stress in ZP and has the maximum contact area. Spermatozoa with sperm impact 
angle of 10⁰ achieves maximum total deformation, frictional stress and sliding 
distance. The analysis [45] revealed local minimums and local maximums of 
maximum equivalent ZP stress, maximum contact pressure, total contact stress and 
frictional stress for certain sperm impact angles. Local maximums of maximum 
equivalent ZP stress are for sperm impact angles 40°, 60°, 75° respectively, with the 
maximum value for sperm impact angle of 75°. Local minimums of maximum 
equivalent ZP stress are for sperm impact angles 10°, 30°, 50°, 70°, 90° with a 
minimal value for 10⁰ [45].“Although it was expected that the maximum equivalent 
stress in the local contact zone of ZP would be obtained for the angle of 90°, the 
simulation results showed otherwise.” [45].This is probably that penetration force has 
two components-tangential and radial components. Tangential component is equal to 
the sliding friction force that resists the spermatozoa head movement on the ZP 
surface. For a sperm impact angle of 90°, the frictional forces are minimal due to 
absence of tangential force component [45]. For a sperm impact angle of 10° at the 
end of the simulation time, sperm velocity is higher than it is for sperm impact angles 
above 10° (30°, 60°, 90) [45]. Similar experimental results were obtained by [46] 
suggesting that, sperm develops a strategy to overcome this ZP reaction by decreasing 
its velocity over time. Maximum equivalent stress of ZP is predominantly induced by 
spermatozoa propulsion force [45]. 

3.3. The influence of sperm velocity on oscillatory behaviour of mZP 

The model of oscillatory spherical net of mouse ZP was used for the analysis how the 
sperm velocity and arrangement upon the ZP surface affect the oscillatory behavior of 
mZP [31]. It is universally acknowledged that the success of fertilization is measured 
by the quality of spermatozoa, primarily by the percentage of progressively moving 
spermatozoa. In the course of fertilization in both in vivo and in vitro conditions, 
oocyte is in contact with spermatozoa of different quality (morphology, velocity, 

 derivative with 
respect to time t .
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Figure 6. Part of double-laired net in oscillatory spherical net model of mZP 
with fractional properties-possible arrangement. Taken from ref [42].

Influence of the sperm impact angle on local sperm oocyte contact dynamics was 
analysed using a finite element method approach [45]. Sperm–oocyte contact was 
defined as a non-linear frictional contact. Deformations of ZP relative to different 
sperm impact angles are analysed. An effect which resembles the “slip-stick” effect 
was identified. Spermatozoa accelerate and decelerate during the sliding on the ZP 
surface and this is characteristic to slip – stick motion. Some favourable ZP-stress 
state for sperm penetration for different sperm impact angles are also identified. 
[45]. The sperm head–ZP contact area increases as sperm impact angle decreases 
[45]. Spermatozoa with sperm impact angle of 75⁰ achieves local maximum 
equivalent stress in ZP and has the maximum contact area. Spermatozoa with sperm 
impact angle of 10⁰ achieves maximum total deformation, frictional stress and 
sliding distance. The analysis [45] revealed local minimums and local maximums 
of maximum equivalent ZP stress, maximum contact pressure, total contact stress 
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and frictional stress for certain sperm impact angles. Local maximums of maximum 
equivalent ZP stress are for sperm impact angles 40°, 60°, 75° respectively, with 
the maximum value for sperm impact angle of 75°. Local minimums of maximum 
equivalent ZP stress are for sperm impact angles 10°, 30°, 50°, 70°, 90° with a 
minimal value for 10⁰ [45].“Although it was expected that the maximum equivalent 
stress in the local contact zone of ZP would be obtained for the angle of 90°, the 
simulation results showed otherwise.” [45].This is probably that penetration force 
has two components-tangential and radial components. Tangential component is 
equal to the sliding friction force that resists the spermatozoa head movement on 
the ZP surface. For a sperm impact angle of 90°, the frictional forces are minimal due 
to absence of tangential force component [45]. For a sperm impact angle of 10° at 
the end of the simulation time, sperm velocity is higher than it is for sperm impact 
angles above 10° (30°, 60°, 90) [45]. Similar experimental results were obtained 
by [46] suggesting that, sperm develops a strategy to overcome this ZP reaction by 
decreasing its velocity over time. Maximum equivalent stress of ZP is predominantly 
induced by spermatozoa propulsion force [45].

3.3. The influence of sperm velocity on oscillatory behaviour of mZP. 
The model of oscillatory spherical net of mouse ZP was used for the analysis how the 
sperm velocity and arrangement upon the ZP surface affect the oscillatory behavior of 
mZP [31]. It is universally acknowledged that the success of fertilization is measured 
by the quality of spermatozoa, primarily by the percentage of progressively moving 
spermatozoa. In the course of fertilization in both in vivo and in vitro conditions, 
oocyte is in contact with spermatozoa of different quality (morphology, velocity, 
acrosome status). ZP is a mechanosensitive structure and response on mechanical 
stimulation that come from sperm on its surface.

Acting upon the surface of ZP all these spermatozoa, each in its own way, 
contribute to the change of oscillatory behavior of the ZP and oocyte as a whole. 
Their joint action contributes to the final result – fertilizationThe oscillatory pattern 
is different for healthy spermatozoa and spermatozoa having morphological defects 
[47]. Thus, action of spermatozoa having different characteristics can be considered 
as action of external periodic forces having different characteristics. 

Different distributions of spermatozoa having the same/different kinetic 
parameters result in different distributions of external forces acting on the ZP 
surface. Each individual spermatozoid generates certain force which acts upon the 
ZP surface [48] and their joint action will give specific distribution of force on the 
ZP surface. A symmetric or asymmetric distribution of force produced by action 
of spermatozoa upon ZP surface will cause different oscillatory states of the ZP. 
Theoretically, there are combinations of the distribution of this force resulting in 
the same or similar oscillatory states of the ZP. Examples of different distributions of 
spermatozoa on the ZP surface are shown in Figs. 7 A, B, and C. 

For numerical analysis only, spermatozoa with effective velocities were used [49]. 
The numerical simulations show that for the cases when a symmetric distribution 
of spermatozoa having the same velocity exists, the resulting trajectories of the 
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knot molecules in the plane tangential to the spherical surface have the form of a 
straight line, -they move synchronously, only amplitudes of these movements are 
different depending upon the angle of impact of the spermatozoa action [31]. “Under 
physiological conditions, slow spermatozoa would never reach the oocyte, but in 
IVF conditions they could contribute to creation of a favourable oscillatory state of 
mZP.” [31].

Figure 7. Hypothetical arrangement of spermatozoa on ZP surface: A 
Symmetrical arrangement of spermatozoa having two different swimming 
velocities. B Asymmetrical arrangement of spermatozoa having two different 
swimming velocities but the same impact angle. C Asymmetrical arrangement 
of spermatozoa having three different swimming velocities and different 
impact angles arbitrarily arranged. Different colors of spermatozoa (pink, blue 
or green) denote their different swimming velocities. Taken from ref [31]. 

Under specific initial conditions, it is possible that only individual knot molecules 
in the model move along a straight line in the plane tangential to the sphere 
surface, while the others do not. The possibility that some knot molecules oscillate 
synchronously while the others do not, indicates that the fertilization phenomenon 
could have a local character, indicating that the position of the initial penetration of 
spermatozoa through ZP could be determined by local initial conditions which are 
of stochastic character while the structure and composition of the ZP surface could 
be assumed to be uniform.

This research opened some questions regarding the relation between kinetic 
parameters of sperm swimming velocity and sperm impact angle, and the 
arrangement of sperm cells with effective velocity on the mZP surface. 

Considering the fertilization process as an oscillatory phenomenon, and the mZP 
as an oscillatory structure, we supposed that the oocyte and embryo are in different 
oscillatory states [50] and that the whole cell and ZP structure have different 
energies. 

The double-layered model is suitable for explaining the mechanism of penetration 
of spermatozoa trough ZP thickness on a basis of oscillations of relaxations and 
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could serve as the basis for the next more complex model of mZP where mZP will 
be considered as an oscillating gel. By modelling mZP as an oscillating gel, it will 
be possible to investigate nonlinear dynamical phenomena that can arise from the 
coupling of mechanical and chemical energy”[51]. Regarding the limitations of 
the oscillatory spherical net MZP model, specifically that the fertilization process 
includes not only the biomechanical events, but also  the physico-chemical, electro- 
and thermal effects which are coupled, a novel concept that the ZP can be modelled 
as a mechano-responsive gel is given in [52].

3.4. Zona pelucida as a mechano-responsive polymer. Temperature, 
pH and ionic strength influence biological function of ZP and its aggregate state. 
We consider ZP as a mechano-responsive polymer and propose a new theory of 
fertilization based on coupled chemical—electrical fields and modelled ZP as 
a non-linear oscillatory reactive system [52]. Analysis of its oscillatory states 
regarding external force is discussed in [52]. The process of oocyte fertilization 
requires a certain amount of functionally capable spermatozoa, although only one 
sperm will fertilize the oocyte ensuring the constant quantity of genetic material 
in each generation. In this system, oocyte is reacting as an inert body due to huge 
differences in cell masses between spermatozoa and oocyte (in range of 107). From 
the oscillatory theory of fertilization [53] ZP changes its oscillatory states after 
fertilization [16, 54] as well as mechanical properties [27]. Changes in mechanical 
and electrical properties after fertilization allow attaching of silicon nano chips 
[55]. ZP is a polymer with highly sulfated glycoproteins interconnected with 
non-covalent bonds, so it is easily dissolved by mild heating, low pH, low ionic 
strength [26]. In this model ZP is considered as a mechano-responsive but also 
electroactive – polymer analogue to [56, 57]. Using phenomenological mapping 
[11, 58], concept of controlling chemical oscillations in mechano reactive gels 
[57, 59] and consequent rhythmical soluble-insoluble changes of the gel [60] 
the new mechano-chemical fertilization concept is proposed. The system (ZP) is 
considered to be incompressible. “Oscillations in chemical reactions are possible 
to control via mechanical strain [57, 59]. Basic assumptions: Sperm penetration 
area is determined by local parameters acting upon ZP surface. ZP surface is 
negatively charged due to content of sulphated glycoproteins. Numerous sperms 
with different velocities and different sperm impact angles act upon ZP surface in 
a form of periodic impulsive forces transferring a part of their kinetic energy to the 
ZP structure. This external mechanical influence (time dependent force intensity 
and pressure changings) of spermatozoa cause changing in chemical reaction 
(analogue to [57, 59]that change the local pH of ZP causing local changes of its 
aggregate state (analogue to  [60]) from soluble to insoluble or causing the state 
of plastic flow of ZP. The area of ZP where the plastic flow persists long enough 
will be the “weak spot/area” for sperm penetration. The spermatozoid that is in 
range of this area could easily swim through ZP. By changing the local parameters 
of the external mechanical force (stress intensity, pressure, sperm arrangement…) 
it is possible to control local chemical oscillatory processes [59]. Further, 
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receptor recognition between sperm and oocyte changes the local potential of 
cell membranes. According to the proposed model of the fertilization process, 
ZP is an area of coupled mechano-electro-chemical fields. The approximation is 
that this phenomenon has a local character and that it is not uniform through the 
entire ZP.” [52]. Fig 8. In light of the coupled field theory, we suggest a possible 
role of cortical granules of the oocytes (CG): content of CG (mostly enzymes) are 
acting like catalysts to chemical reactions in the sense that they change the pH of 
the local environment. The changed pH than changes the conformation of the ZP 
glycoproteins and discloses additional bounding sides on ZP glycoproteins leading 
to its structural reorganization.

Figure 8. Zona pelucida as a mechano-responsive polymer. ZP is considered as a 
responsive gel that responds to external mechano-electrical stimuli that originate 
from numerous spermatozoa impacting its surface in the process of fertilization. 
Oscillatory changing of external mechano-electrical stimuli upon ZP surface lead 
to a local oscillatory phenomenon of rhythmical soluble-insoluble changes of ZP 
resulting in penetration by a spermatozoid via a mechanism of oscillations of 
relaxation if the soluble ZP state lasts long enough. Local chemical oscillations of 
ZP gel could be controlled via external mechanical strain.

3.5. Other approaches to modeling the sperm-oocyte dynamics. “Using 
the quasi-static approximate ZP model in the form of a hollow sphere the numerical 
analysis of how specific deformation work depends on different variables like: 
ZP thickness, specific point in ZP, external pressure that comes from sperm cells 
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were done in[61]. According to the model, spermatozoa that make pressure upon 
ZP surface are in the form of homogeny discrete continuum distribution in radial 
directions“ [61]. The impact of spermatozoa upon ZP surface is not only mechanical 
but also involves a receptor-recognition mechanism. Specific deformation work 
could be used as a criterion for determining the point/area of ZP where spermatozoid 
penetration could occur. The point/area where the specific deformation work has 
the lowest values will be the area of the highest probability for sperm penetration. 
This point/area could be the “weak spot.” ZP thickness is an independent parameter 
that affects the success of In vitro fertilization (IVF) protocols: the thicker the ZP is 
(smoking, age of female partner, serum levels of follicle-stimulating hormone (FSH) 
[62], the lower the probability for conception.” Numerical analysis shows that volume 
dilatation-compression in thicker ZP would have lower values. This indicates that in 
thicker ZP volume dilatation/compression obtained by certain amount of sperm cells 
could not reach critical value for sperm penetration. As the ZP thickness increases 
the higher absolute values of volume dilatation – higher compression of ZP would 
be necessary/or the higher force/energy is needed to sperm to penetrate trough ZP 
thickness. Theoretically, sperm cell needs more energy to penetrate thicker ZP [63].

Microscope imaging techniques could be useful for testing whether sperm impact 
angles favourable for successful fertilization predicted by oscillatory spherical net 
ZP model [34] and finite element method of modelling frictional contact between 
the sperm cell and the oocyte are indeed the most favorable [45]. We believe that this 
oscillatory approach could contribute to the better understanding of the fertilization 
process: how oocyte makes selection through its extra-cellular matrix; that receptor-
mediated mechanism of recognition and fertilization has an oscillatory phenomenon 
in its nature like resonance between oscillatory regimes of ZP and “chosen” sperm cell 
as a necessary condition for fertilization. “According to our oscillatory model, we are 
free to suggest a new type of treatment for male sub fertility: we believe that adding 
adequate mechanical stimulation in the medium with healthy oocyte and adequate 
number of spermatozoa could improve fertilization. Mechanical simulation could be 
in the form of a sound. The basic idea is that adding the mechanical stimulation with 
specific parameters (intensity and set of oscillatory frequencies) could contribute 
to achieving successful fertilization through the creation of resonance in the 
oscillations between an oocyte and a spermatozoid. This method could be useful in 
subfertility cases (when there are not enough spermatozoa with normal function 
and morphology to achieve fertilization in physiological conditions)” [31].

4. An oscillatory model of mitotic spindle

Summary. Each cell with a nucleus possesses a mitotic spindle -a complex 
molecular machinery responsible for the cell division process. It is necessary to 
devide genetic material, condense it in the form of chromosomes, from mother cell 
into daughter cells, equally. Specific movements of chromosomes during the stages 
of cell division process was an inspiration for developing a biomechanical oscillatory 
model of mitotic spindle that will be presented in this part of the manuscript. The 
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basic concept of the model with its assumptions will be presented. The idea that 
the resonance as a possible mechanism of separation of homologue chromosomes 
during anaphase is suggested. We postulated that the energy of oscillatory 
movements of chromosomes during meta- and anaphase of cell division cycle could 
be valuable physical parameters for estimating the energy balance within the cell. 
Potential, kinetic and total mechanical energy of pairs of dyads of sister chromatids 
regarding mass distribution of chromosomes, as well as the spindle size and the 
centrosome frequency are analysed. All these parameters affect the energy of the 
dyads of sister chromatids. Our model can be analysed as a visco-elastic system with 
linear dissipation of energy of the system, and also as a fractional order type system 
with fractional order dissipation energy. Fractional order forced oscillatory modes 
of elements of the mitotic spindle are presented. Different distributions of energy in 
the system of the mitotic spindle could represent an additional level of information 
coding that is transferred into the next cell generation and could be of interests in 
the process of cell differentiation. The model could be suitable for explaining the 
irregularities in cell division process in cancerogenesis. 

During the cell division process, chromosomes –the carriers of genetic material 
move within the cell in a specific way, not just in interphase but also in the metaphase 
stage of the cell division cycle showing functional character in spatial, temporal and 
cell type specific organization [64, 65]. There are biomechanical models that describe 
dynamics of microtubules in the mitotic spindle [66]. These models are oriented 
on microtubules micro-dynamics and involved modelling of motions of specific 
proteins that form microtubules. There are many biomechanical models of the mitotic 
spindle[66–70]. In this part we will present a new approach in modelling dynamics of 
the mitotic spindle.

4.1. A biomechanical oscillatory model of mitotic spindle. A detail description 
of the biomechanical model of mitotic spindle is given in [71, 72]. Schematic 
representation of the basic concept of the biomechanical model of mitotic spindle is 
given in Fig. 9. The oscillatory behavior of this model is based on dynamics of coupled 
systems [73]. Mitotic spindle is considered as a system of coupled oscillators. The 
coupling is realized through the centrosome. Centrosomes are presented as mass 
particles on the cell poles and represent two rheonomic centers of oscillations. 
Microtubules could be presented with standard light massless elastic or visco-
elastic or fractional order type elements depending on the age of the specific cell. We 
proposed that mechanical elements that could describe the visco-elastic behavior 
could be used to model dynamical oscillatory behavior of microtubules in aged cells. 
In this paper, for the simplicity of the model, microtubules are considered elastic. 
Homologue chromosomes are represented as mass particles that are interconnected 
with standard light massless linear elastic spring. Homologue chromosomes have 
equal masses and different chromosomes have different masses. System is, in static 
equilibrium in state without force excitation; symmetrical in relation to the horizontal 
plane like an image in the mirror. Homologue chromosomes are arranged in two 
symmetric and parallel planes to the equatorial plane. Centrosomes - microtubule 
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organizing centers generate oscillations and governed movements of microtubules 
and attached chromosomes in the mitotic spindle [74].

  
		               A 	                        B

Figure 9. A. The biomechanical model of the mitotic spindle in a forced regime 
of oscillations with different distribution of chromosomes with different 
masses. Rectangles denote visco-elastic elements that represent microtubules. 
Elastic springs denote connections between pairs of homologue chromosomes-
kinetochore complexes. B. A general oscillatory model of mitotic spindle with 
inertia elements on the poles of the cell that represents centrosomes. Only two 
pairs of homologue chromosomes are presented. Kinematical excitation of the 
mitotic spindle occurs in the centrosomes-rheonomic centers in vertical axis 
with synchronous or asynchronous kinematic excitation. Taken from [72].

Assumptions of the model: rheonomic centres of oscillation with masses M1 
and M2 generate oscillations and oscillate along the vertical axis. Oscillations are 
transferred trough standard light elastic or visco-elastic elements to homologue 
chromosomes – the mass particle and its homologue pair. During anaphase A 
homologue chromosomes are disconnected (elastic spring that interconnects 
mass particles breaks) and homologues are moving in an oscillatory manner to the 
corresponding centrosomes-spindle rheonomic oscillatory centres. 

For the simplicity of the model we consider that system is conservative without 
energy dissipation; kinematical excitation of rheonomic centres of oscillations is 
each with a single frequency and only in the vertical axis, movement of centrosomes 
in other axis are neglected. The frequency of excitation of rheonomic centres of 
oscillations in this paper is considered equal. We assume that eigen oscillations of 
the subsystem are negligible, and is not considered.

Oscillatory motions of chromosomes
Each pair of homologue chromosomes has two component velocities: a relative 

velocity ( gikx and dikx ) in direction of standard light elastic or visco-elastic element 
and components of transfer velocity: in collinear (
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in orthogonal (
gikgOy αsin1  and
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visco-elastic element. Fig. 9B. 
The square of absolute velocity of homologue chromosomes in each subset –are: 
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1gOy  and 2dO
y  are velocities of kinematic excitation of rheonomic centers with 

masses  and .  

Approximate value of elongation of a standard light linear elastic element that 
interconnect pairs of sister chromatids in homologues chromosomes is: 
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1gOy  and 2dOy  are velocities of kinematic excitation of rheonomic centers with 

masses 1M  and 2M . 
Approximate value of elongation of a standard light linear elastic element that 

interconnect pairs of sister chromatids in homologues chromosomes is:

( ) ( )1 1 sin sinik gO dO gik gik dik diky y x xα α ∆ ≈ − + + +  		  (25)

4.2. Resonance as a potential mechanism for homologue chromosomes 
separation. We suggested that the mechanism for homologue chromosome separation 
in anaphase of mitotic spindle could be the mechanism of resonance. This mechanism can 
be explained through an oscillatory model of the mitotic spindle using a biomechanical 
approach. The conditions for resonance as a potential mechanism for homologue 
chromosomes separation are analysed through a system of N coupled subsystems of 
ordinary fractional order differential equations that describes motions of the material 
particles in the system in forced oscillatory regime. If we expressed properties of visco-
elastic elements with constitutive relation in fractional order derivatives by generalized 
function of fractional order dissipation of subsystem energy, we will have a system of 
fractional order differential equations, obtained by extended Lagrange’s differential 
equations. Considering the coupling of homologue chromosomes in the proposed 
mechanical oscillatory model of the mitotic spindle, in general case, we will have a system 
of 20 (for mice) or 24 (for humans) pairs of coupled fractional order differential equations. 
Each pair of coupled fractional order differential equations could be solved independently 
from the other coupled pairs of the oscillatory mitotic spindle [72]. 

For generalized coordinates gikx  and dikx , we will obtain a system with 20/24 
sub-systems, each with one pair of the ordinary fractional order differential 
equations that, after linearization, has the following form:
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kinematic excitations of centrosomes with masses  and  amplitudes 0gy  and 

0dy ; gikx and dikx  are independent generalized coordinates, gikc , dikc  and ikc  are 

rigidities of standard light visco-elastic and elastic elements – coupling between pair 
of mass particles. 

Particular solutions of modified ordinary differential equations (26) and (27) are: 
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where gikD , 
dikD , 

gikD and dikD  are unknown amplitudes. 

When we introduce proposed particular solutions (28) and (29) and their second 
derivatives into differential equations (26) and (27) we obtain a system of differential 
equations that could be transformed into a system of coupled non-homogeneous 
algebraic equations with unknown amplitudes of proposed particular solutions in the 
following forms: 
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This coupled system could be further decoupled into two independent subsystems 
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system is 0=∆ ik  or 0

~
=∆ ik , we can obtain resonant frequencies of kinematic 

excitation of rheonomic centres. When one of the amplitudes 0,1 =
∆

∆
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=
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~
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∆
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dikD  is equal to zero, or 

determinants 0,1 =∆ ik  and 0,2 =∆ ik  or/and 0
~

,1 =∆ ik
, 0

~
,2 =∆ ik

, dynamical 

absorption of corresponding amplitude, forced mode and force frequency, in 
corresponding homologue chromosome occurs.  
From the theory of oscillations, dynamic absorption could be the explanation why 
some pairs of homologue chromosomes postpone their movements until other pairs of 
homologues are not in the right position in equatorial plain. 

“If dilatation ( )
criticalik∆  according to the (25) reaches, in resonant state, critical 

value for disconnection of pair of homologue chromosomes-material particles before 

the critical value of breakage of opposite microtubules-both dilatations ( )
criticalPgikx  

and ( )
criticalPdikx  is reached, homologue chromosomes are separated and move to the 

corresponding centrosome. In the case when one of the dilatations ( )
criticalPdikx  or 

( )
criticalPdikx  reaches the critical value of breakage, in resonant state, before 

( )
criticalik∆  is reached, aneuploidia occurs and an aberrant spindle assembly-an 

undesirable and unfavourable state for equal distribution of genetic material in sister 
cells. Which of these scenarios will occur depends on resonant frequencies of 
excitation of rheonomic centers, angles between microtubules (standard light visco-
elastic element) and centrosome (rheonomic center of excitation) as well as of 
rigidities and chromosomal masses in oscillatory system of mitotic spindle”[72].  
As aging causes a loss of meiotic chromosome cohesion, which can explain premature 
disjunction of sister chromatids [75] the proposed model could be suitable for 
explaining age related aberrations in the mitotic spindle.  

Using the previously developed methodology [72, 76] and data from the literature 
the resonant frequencies of mouse chromosomes were analyzed [77, 78]. Resonant 
frequencies curves for first 10 mouse chromosomes are presented on Fig 10, 11, and 
12.  

For each homologue chromosome pair, we obtained non-linear frequency curves and 
identified two eigen resonant frequencies that behave differently [78]. First resonant 
frequency is almost the same for all pairs of homologue chromosomes (Fig. 11), while 
the second resonant frequency increases as the mass of a homologue chromosome 
decreases (Fig 12). First, lowest eigen frequency of each pair of two mass in an 
oscillator with two degrees of freedom, is the same as frequency of the corresponding 
oscillator built with one degree of freedom, caused by model with symmetry. The first 
resonant frequency is impacted by the chromosome masses which are very similar to 
each other, while the second resonant frequency is impacted both by the chromosome  
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4.2. Resonance as a potential mechanism for homologue chromosomes 

separation 

We suggested that the mechanism for homologue chromosome separation in anaphase 
of mitotic spindle could be the mechanism of resonance. This mechanism can be 
explained through an oscillatory model of the mitotic spindle using a biomechanical 
approach. The conditions for resonance as a potential mechanism for homologue 

chromosomes separation are analysed through a system of N coupled subsystems of 
ordinary fractional order differential equations that describes motions of the material 
particles in the system in forced oscillatory regime. If we expressed properties of 
visco-elastic elements with constitutive relation in fractional order derivatives by 
generalized function of fractional order dissipation of subsystem energy, we will have 
a system of fractional order differential equations, obtained by extended Lagrange’s 
differential equations. Considering the coupling of homologue chromosomes in the 
proposed mechanical oscillatory model of the mitotic spindle, in general case, we will 
have a system of 20 (for mice) or 24 (for humans) pairs of coupled fractional order 
differential equations. Each pair of coupled fractional order differential equations 
could be solved independently from the other coupled pairs of the oscillatory mitotic 
spindle [72].  

For generalized coordinates gikx  and dikx , we will obtain a system with 20/24 

sub-systems, each with one pair of the ordinary fractional order differential equations 
that, after linearization, has the following form: 
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, dynamical 

absorption of corresponding amplitude, forced mode and force frequency, in 
corresponding homologue chromosome occurs.  
From the theory of oscillations, dynamic absorption could be the explanation why 
some pairs of homologue chromosomes postpone their movements until other pairs of 
homologues are not in the right position in equatorial plain. 

“If dilatation ( )
criticalik∆  according to the (25) reaches, in resonant state, critical 

value for disconnection of pair of homologue chromosomes-material particles before 

the critical value of breakage of opposite microtubules-both dilatations ( )
criticalPgikx  

and ( )
criticalPdikx  is reached, homologue chromosomes are separated and move to the 

corresponding centrosome. In the case when one of the dilatations ( )
criticalPdikx  or 

( )
criticalPdikx  reaches the critical value of breakage, in resonant state, before 

( )
criticalik∆  is reached, aneuploidia occurs and an aberrant spindle assembly-an 

undesirable and unfavourable state for equal distribution of genetic material in sister 
cells. Which of these scenarios will occur depends on resonant frequencies of 
excitation of rheonomic centers, angles between microtubules (standard light visco-
elastic element) and centrosome (rheonomic center of excitation) as well as of 
rigidities and chromosomal masses in oscillatory system of mitotic spindle”[72].  
As aging causes a loss of meiotic chromosome cohesion, which can explain premature 
disjunction of sister chromatids [75] the proposed model could be suitable for 
explaining age related aberrations in the mitotic spindle.  

Using the previously developed methodology [72, 76] and data from the literature 
the resonant frequencies of mouse chromosomes were analyzed [77, 78]. Resonant 
frequencies curves for first 10 mouse chromosomes are presented on Fig 10, 11, and 
12.  

For each homologue chromosome pair, we obtained non-linear frequency curves and 
identified two eigen resonant frequencies that behave differently [78]. First resonant 
frequency is almost the same for all pairs of homologue chromosomes (Fig. 11), while 
the second resonant frequency increases as the mass of a homologue chromosome 
decreases (Fig 12). First, lowest eigen frequency of each pair of two mass in an 
oscillator with two degrees of freedom, is the same as frequency of the corresponding 
oscillator built with one degree of freedom, caused by model with symmetry. The first 
resonant frequency is impacted by the chromosome masses which are very similar to 
each other, while the second resonant frequency is impacted both by the chromosome  
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cells. Which of these scenarios will occur depends on resonant frequencies of 
excitation of rheonomic centers, angles between microtubules (standard light visco-
elastic element) and centrosome (rheonomic center of excitation) as well as of 
rigidities and chromosomal masses in oscillatory system of mitotic spindle”[72].  
As aging causes a loss of meiotic chromosome cohesion, which can explain premature 
disjunction of sister chromatids [75] the proposed model could be suitable for 
explaining age related aberrations in the mitotic spindle.  

Using the previously developed methodology [72, 76] and data from the literature 
the resonant frequencies of mouse chromosomes were analyzed [77, 78]. Resonant 
frequencies curves for first 10 mouse chromosomes are presented on Fig 10, 11, and 
12.  

For each homologue chromosome pair, we obtained non-linear frequency curves and 
identified two eigen resonant frequencies that behave differently [78]. First resonant 
frequency is almost the same for all pairs of homologue chromosomes (Fig. 11), while 
the second resonant frequency increases as the mass of a homologue chromosome 
decreases (Fig 12). First, lowest eigen frequency of each pair of two mass in an 
oscillator with two degrees of freedom, is the same as frequency of the corresponding 
oscillator built with one degree of freedom, caused by model with symmetry. The first 
resonant frequency is impacted by the chromosome masses which are very similar to 
each other, while the second resonant frequency is impacted both by the chromosome  
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As aging causes a loss of meiotic chromosome cohesion, which can explain 
premature disjunction of sister chromatids [75] the proposed model could be 
suitable for explaining age related aberrations in the mitotic spindle. 

Using the previously developed methodology [72, 76] and data from the literature 
the resonant frequencies of mouse chromosomes were analyzed [77, 78]. Resonant 
frequencies curves for first 10 mouse chromosomes are presented on Fig 10, 11, and 12. 

For each homologue chromosome pair, we obtained non-linear frequency 
curves and identified two eigen resonant frequencies that behave differently 
[78]. First resonant frequency is almost the same for all pairs of homologue 
chromosomes (Fig. 11), while the second resonant frequency increases as the mass 
of a homologue chromosome decreases (Fig 12). First, lowest eigen frequency of 
each pair of two mass in an oscillator with two degrees of freedom, is the same 
as frequency of the corresponding oscillator built with one degree of freedom, 
caused by model with symmetry. The first resonant frequency is impacted by 
the chromosome masses which are very similar to each other, while the second 
resonant frequency is impacted both by the chromosome mass and its position in 
the mitotic spindle. The findings are important for understanding the process of 
cell division.

Impact of centrosome frequency [79] and spindle size [80] on potential [81]and 
kinetic energy [82] of sister chromatids were also analysed using the g oscillatory 
model of a mitotic spindle.
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Figure 10. Frequency curve for first 10 mouse chromosomes. Only the right 
part of the curve has mechanical sense-positive values of resonant frequencies.

Figure 11. A detail from Fig 10. First resonant frequency is almost equal for 
all 10 mouse chromosomes.
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Figure 12. A detail from Fig 10: The second resonant frequency increases as 
mass of a homologue chromosome decreases.
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4.3. Distribution of mechanical energies in a mitotic spindle 
regarding mass distribution. One of the models that explains the 
organization of chromosomes during mitosis predicts a central location of gene 
rich chromosomes within a cell nucleus and gene-poor chromosomes located 
in a zone close to the nuclear edge [64, 83]. Distribution of chromosomes in 
equatorial plane of the mitotic spindle, chromosome territories (CT) [84] 
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and dynamics of chromosome movements towards centrosomes could carry 
additional epigenetic information.

Regarding the distribution of chromosomes in the equatorial plane of a mitotic 
spindle and its impact on mitotic spindle dynamics, especially oscillatory movements 
of homologue chromosomes towards the corresponding centrosome, we analysed 
how different distributions of homologue chromosome masses in the equatorial plane 
during metaphase influence the distribution of kinetic and potential energy in the 
system of the mitotic spindle [85]. For numerical analysis we considered two cases: 
1. when homologue chromosomes with heavier masses are located in the central 
zone of the metaphase equatorial plane, and 2. when homologue chromosomes with 
heavier masses are located in the peripheral zone of the metaphase plane. See Fig 
13. In Fig. 13, a basic model is presented in which microtubules are represented 
with standard light visco-elastic elements, but for numerical analysis we consider 
microtubules elastic and represent them with a standard light elastic element. 
Numerical analyses were done for mouse chromosome masses. A mouse has 20 
pairs of chromosomes. The angle of a mitotic spindle-an angle between rheonomic 
centers and the chromosomes on the very periphery of the mitotic spindle was taken 
to be π/2. Regarding the vertical axis that interconnects two opposite rheonomic 
centres- centrosomes, homologue chromosomes are equally distributed. See Fig. 14.

    
         a				          b

Figure 13. The Biomechanical model of the mitotic spindle in forced regime 
of oscillations with different distributions of chromosomes and the different 
masses-symmetrical distribution of chromosomes mass in the mitotic spindle. 
a) Heavy chromosomes are in a central position. b) Heavy chromosomes 
are in a peripheral position. Rectangles denote visco-elastic elements that 
represent microtubules. Elastic springs denote connections between pairs of 
homologue chromosomes. 

Data for chromosomal mass for mouse chromosomes were taken from ref [86]. As 
data in the ref [86] denotes masses for 4 chromatids data from the table from ref [86] 
were divided with 2 and expressed in pg. Data for rigidity of eukaryote metaphase 
chromosomes was taken from [87] -1kPa=103 pN/µm2. Rigidity for microtubules at 
37ᵒ C were taken from ref [88] (1.9x1011 pN/µm2). Data for rheonomic centers of 
oscillation was calculated according to the data for angular frequency oscillation for 
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centrosome were taken from [89] (2π/T, T=20s). Centrosome mass was calculated 
from centrosome volume (1,5µm3) from http://www.proteinatlas.org/humancell/
centrosome and density - (density was taken approximatively as data for density 
for cell organelle- mitochondria 1,05g/ml) – (1.575pg) [90]. Data for centrosome 
amplitude oscillations was taken from [91] (2.1µm). 

Total mechanical energy for each pair of homologue chromosomes subsystem for 
the case when heavy chromosomes take a central position in the mitotic spindle are 
presented in Fig 15. From the graph it is evident that amplitudes of total energy for 
each pair of homologue chromosomes subsystem have lower values in the central 
zone of mitotic spindle compare to the amplitudes of total mechanical energy for each 
pair of homologue chromosomes positioned at the periphery of the mitotic spindle.

 
a				    b

Figure 14. Schematic representation of the potential distribution of mouse mitotic 
chromosomes in equatorial plane in metaphase used for numerical modeling 
with a biomechanical model of mitotic spindle-half section. A. The case when 
chromosomes with heavier masses are in the central part of the mitotic spindle. 
B. Case when chromosomes with heavier masses are in the peripheral part of 
the mitotic spindle. Angle of mitotic spindle was taken to be π/2, angles between 
centrosome - rheonomic center of oscillations and direction of microtubules - 
elastic element are assumed to equally increase from the central to the peripheral 
zone of the mitotic spindle (for π/4). The distribution of chromosome masses are 
assumed to be relatively symmetrically distributed in relation to the symmetry 
line that interconnects two rheonomic centers (intercentromeres’ distance). The 
model has a relatively balanced distribution of chromosomal masses in the vertical 
axis of symmetry, and an identical distribution of masses in the horizontal plane - 
homologue chromosomes.

The distribution of the total mechanical energy of each chromosome pair for the case 
when chromosomes with heavier masses are positioned in the peripheral part of the 
equatorial plane are presented on Fig. 16. In this case amplitudes of the total mechanical 
energy for each pair of homologue chromosomes have also lower values in the central 
zone of mitotic spindle compared to the amplitudes of total mechanical energy for each 
pair of homologue chromosomes positioned at the periphery of the mitotic spindle but 
values of amplitudes are higher compared to the first case when chromosomes with 
heavier masses are positioned in the central part of the mitotic spindle. Kinetic and 
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potential energy for each dyad of sister chromatids follow the same pattern [81, 92]. If 
this biomechanical system follows the minimum energy principle for its stability, than 
the system of mitotic spindle will be more stable in the case when chromosomes with 
heavier masses are positioned in the central zone of the metaphase plate. 

Figure 15. The distribution of total energy of each chromosome pair for the 
case when chromosomes with higher masses are positioned in the central 
part of the equatorial plane. Lower values of energy of each pair of homologue 
chromosomes are arranged in the central part of the biomechanical model of 
the mitotic spindle (upper diagram). Energy expressed in 

2

2

pg m
s
µ⋅ is shown on 

the vertical axis. On the horizontal axis (x) is time in seconds (s).
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Figure 16. The distribution of the total energy of each chromosome pair for the 
case when chromosomes with higher masses are positioned in the peripheral 
part of the equatorial plane. Lower values of energy of each pair of homologue 
chromosomes are arranged in the central part of the biomechanical model of 
the mitotic spindle (upper diagram). Energy expressed in 

2

2

pg m
s
µ⋅ is shown on 

the vertical axis. On the horizontal axis (x) is time in seconds (s).

The mass distribution of chromosomes in equatorial plane in static equilibrium position, 
in dynamical oscillatory state and forced regimes influences the distribution of potential, 
kinetic and total mechanical energy for each pair of homologue chromosome subsystems 
in the system of oscillatory mitotic spindle. Regardless of the distribution of chromosome 
masses (central or peripheral position of chromosomes with heavier masses) kinetic, 
potential and total mechanical energy for each particular pair of homologue chromosomes 
are lower in the central zone of the mitotic spindle, but amplitudes of kinetic, potential and 
total mechanical energy for each pair of homologue chromosomes subsystems are lower 
when chromosomes with heavier masses are positioned in the central zone of the mitotic 
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spindle compared to the case when they have peripheral positions in the mitotic spindle. 
The results we obtain by numerical analysis could be explained by non-linear dependence 
of the angle between microtubule (elastic element) and centrosome-rheonomic centre. 
This difference in energy distribution could be of importance for the stability of the system 
of the mitotic spindle and its energy balance. Also this difference in energy distribution 
during metaphase may carry additional epigenetic information and could be important for 
the process of differentiation. 

We must point out, that all numerical analysis are conducted for the conservative 
model without energy dissipation and for a forced oscillatory regime when rheonomic 
centres are excited by a single frequency. In the considered case, we assume that eigen 
vibrations of the subsystem are negligible, and it is not taken into calculations. 

Elements that represent microtubules in the oscillatory model of mitotic spindle 
can be modelled as visco-elastic elements. Fig 16. In that case, fractional calculus can 
be used for modelling energy dissipation of the system.

4.4. The fractional order oscillatory model of the mitotic spindle. The 
fractional order oscillatory model of the mitotic spindle is presented in [77, 93]. Fig 
17. This concept was used because elastic properties of microtubules could change 
in aging cells. We postulate that microtubules lose elasticity when the cell ages. 

           
	                                   A	 B

Figure 17. The biomechanical oscillatory model of the mitotic spindle with 
microtubules as visco-elastic elements. 1A. case when chromosomes are 
arranged in equatorial plane. 1B. part of the model with only two chromosomes. 
Beads represent chromosomes with a certain mass m , rectangles represent 
standard light fractional order elements (SLFE) that have visco-elastic properties 
and denote microtubules. 1O  and 2O  are autonomous oscillatory centres. 
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chromosome/ k -th material particle-chromosome.  
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where expressions under square denote the square of the absolute velocity of one 
chromosome/ k -th material particle-chromosome.  
The expression of potential energy of the chromosome displacements along axial 
deformation of the standard light fractional order element is: 
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Expression of potential energy of the standard light linear elastic element inter-
connecting two mass particles/homologues chromosomes in one pair, taking into 
account approximate values of elongation of standard light linear elastic element 
that interconnect pairs of homologues chromosomes, is in the following form:
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Expression of potential energy of the standard light linear elastic element inter-
connecting two mass particles/homologues chromosomes in one pair, taking into 
account approximate values of elongation of standard light linear elastic element that 
interconnect pairs of homologues chromosomes, is in the following form: 
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The expression of the generalized function of the fraction order dissipation of the 
biomechanical model system energy is: 
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where   is the fractional order α differential operator of the Louisville type [77]. 

The dynamics of each pair of homologue chromosomes can be modelled as a pair 
of coupled ordinary fractional order differential equations that can be solved 
independently. Using the Laplace transformation and the development into a series 
[94], analytical approximate solutions of coupled ordinary fractional order differential 
equations for forced vibration regimes are determined [93]. Eigen main coordinates 
and eigen main fractional order modes for forced vibrations of the considered 
fractional type oscillatory model are determined in an analytical form. The analytical 
solution revealed that fractional type main modes for forced regimes are independent, 
that there are no interactions and energy transfers between modes, but that total 
mechanical energies of modes are not constant. System behaviour is linear [93]. The 
model is suitable for explaining mitotic spindle disorders in a context of numerical 
chromosomal aberrations and the oscillatory behaviour of chromosomes in the mitotic 
spindle in young and aged cells [77]. During the process of ageing chromatin 
structure will be modified in different ways [95]. Microtubules exhibit dynamical 
instability in the mitotic spindle during the process of cell division, but their dynamics 
will be also affected by the ageing process [96, 97]. To model the dynamical 
behaviour of a mitotic spindle during metaphase and anaphase that could cover ageing 
changes in the mitotic spindle constitutive elements, we modified the previously 
proposed oscillatory model of the mitotic spindle [82]. 
 
Main eigen independent modes for forced vibrations of elements of the mitotic 

spindle  
Standard light fractional order creep elements and fractional order derivatives of 
Louisville type were used in the analysis to express constitutive stress-strain relations 
for the restitution forces as a function of element elongation [94]. Approximate 
solution in analytical form for that fractional type model is determined and presented 
in [93]. A general solution for fractional order forced modes is: 
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The expression of the generalized function of the fraction order dissipation of the 
biomechanical model system energy is:
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where D  is the fractional order α differential operator of the Louisville type [77].
The dynamics of each pair of homologue chromosomes can be modelled as a 

pair of coupled ordinary fractional order differential equations that can be solved 
independently. Using the Laplace transformation and the development into a 
series [94], analytical approximate solutions of coupled ordinary fractional order 
differential equations for forced vibration regimes are determined [93]. Eigen main 
coordinates and eigen main fractional order modes for forced vibrations of the 
considered fractional type oscillatory model are determined in an analytical form. 
The analytical solution revealed that fractional type main modes for forced regimes 
are independent, that there are no interactions and energy transfers between modes, 
but that total mechanical energies of modes are not constant. System behaviour 
is linear [93]. The model is suitable for explaining mitotic spindle disorders in a 
context of numerical chromosomal aberrations and the oscillatory behaviour of 
chromosomes in the mitotic spindle in young and aged cells [77]. During the process 
of ageing chromatin structure will be modified in different ways [95]. Microtubules 
exhibit dynamical instability in the mitotic spindle during the process of cell division, 
but their dynamics will be also affected by the ageing process [96, 97]. To model the 
dynamical behaviour of a mitotic spindle during metaphase and anaphase that could 
cover ageing changes in the mitotic spindle constitutive elements, we modified the 
previously proposed oscillatory model of the mitotic spindle [82].
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Main eigen independent modes for forced vibrations of elements of the 
mitotic spindle. Standard light fractional order creep elements and fractional 
order derivatives of Louisville type were used in the analysis to express constitutive 
stress-strain relations for the restitution forces as a function of element elongation 
[94]. Approximate solution in analytical form for that fractional type model is 
determined and presented in [93]. A general solution for fractional order forced 
modes is:
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Fractional type main modes for forced regimes are independent, there are no 
interactions and no energy transfer between modes, but total mechanical energies 
of modes are not constant. System behavior is linear [93].

4.5. Relation between centrosome excitation and oscillatory energy of 
a mitotic spindle. Orientation of the mitotic spindle and the position of the 
centrosome affects polarity and function of new cells [66, 98, 99]. Polarity of 
the cells plays a great role in cell differentiation.

The relation between centrosome excitation and oscillatory energy of 
mitotic spindle is studied in [79, 92, 100]. “Our results show that centrosome 
frequency change can change energy of the same homologue pair of 
chromosomes when it remains in the same position in the mitotic spindle 
indicating that centrosome frequency change can change energy code of the 
chromosome pair. Changing the frequency of centrosome oscillations induces 
a phase shift in kinetic and potential energy curves of the same oscillating 
homologue chromosome pair. Besides, kinetic energy of the same chromosome 
pair shows amplitude change with centrosome frequency change. This could 
be of importance for the process of cell differentiation.” [79]. 

Narrow and long mitotic spindles as well as wide and short are indicative 
of some mitotic spindle disorders typical for old or cancerous cells. It will be 
of interest to study the influence of width of the mitotic spindle on the energy 
distribution in the system of the mitotic spindle using this biomechanical 
oscillatory model. 

Also, centrosomes – rheonomic centres in real biological system could have 
different frequencies as well as different amplitudes of oscillations that will have 
influence on amplitudes of energy of oscillations for each pair. “Spindle size affects 
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total mechanical energy of each homologue chromosome pair. Total mechanical energy 
for each homologue chromosome pair increases with mitotic spindle size-angle. This 
approach could be useful for understanding mitotic spindle size disorders” [80].

“If centrosomes oscillate with different frequencies, the energy of dyads of sister 
chromatids has a non-linear oscillatory character. The maximum values of the 
amplitudes of the kinetic energy of the same dyad are equal in the case of equal 
frequencies of forced centrosome excitation”[92]. 

5. Conclusion

Three different mechanical models of biological oscillators were presented: the 
oscillatory model of double DNA helix, the spherical oscillatory net model of mouse 
ZP and the oscillatory model of the mitotic spindle. The models have different levels of 
complexity and are suitable for explaining some biological phenomena like: unfolding the 
double DNA helix in the process of transcription, conditions for initiation of transcription, 
sperm penetration trough ZP of the oocyte as a result of resonance phenomenon, 
separation of sister chromatids in anaphase of cell division cycle as a result of resonance. 
We also postulate that the energy of moving chromosomes within the cell during the 
cell division cycle could be an important physical parameter for epigenetic coding. It 
could be of great importance for explaining the process of cell differentiations but also 
of cancerogenesis. The concept and the theory of the oscillatory model of mitotic spindle 
could open new possibilities for cancer treatment.
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