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1. Introduction

Wonderful and successful collaboration binds the author of this review paper 
with the project leader and with the project participants. From this reason, the review 
paper is separated in two sections. In the first section, beginnings of author research 
are briefly presented.   Beginnings of author research successfully connect author 
with Leader of Project professor K. (Stevanović) Hedrih and with researchers with 
same project ON 174001. The first conference the author attended was 8th European 
Solid Mechanics Conference-ESMC in Graz, Austria with the paper under the name 
”Deformable Body Oscillations on a Layer with Visco-Elastic and Inertia Properties”, 
see Ref. [1]. Dynamics of hybrid system with nonlinear elastic and inertia properties 
is presented in Ref. [2]. This result is presented at the Symposium Nonlinear 
Dynamics – Milutin Milanković, Multidisciplinary and Interdisciplinary Applications 
(SNDMIA 2012) in Belgrade. In the papers which are presented in Refs. [3, 4] the 
vector method based on mass moment vectors and vector rotators for application to 
systems of multi rigid-bodies rotating about axes of no intersection are developed. 
The first result is presented at 84th Annual Meeting of the International Association 
of Applied Mathematics and Mechanics, in Novi Sad, Serbia - GAMM 2013, while two-
page paper was printed in PAMM, Proc. Appl. Math. Mech., see Ref. [3]. The series of 
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papers at national and international conferences with the colleague from the project 
OI 174001, are presented in Refs. [5, 6, 7, 8]. Phase portraits of dynamic system of 
moving of heavy material particle on smooth circle line are presented in Refs. [5, 6]. 
Phase portraits of dynamic system of moving of heavy material particle on rough 
circle line are presented in Refs. [7, 8]. One review paper of the most important 
results with mini-symposium Non-linear dynamics organizer by K. (Stevanović) 
Hedrih is presented in Ref. [9].

The second section describes the results that include various higher-order 
continuum theories involving material length scale parameters.  These results were 
achieved by the successful authorial cooperation of professors from the Faculty 
of Mechanical Engineering in Nis. Also, one successful authorial cooperation 
with college D. Karličić, from project OI 174001. In this second chapter, different 
composed nano-systems used nonlocal theory (see Refs. [10, 11]) and micro-
systems used modified couple stress theory (see Refs. [12, 13]), are presented. 
Including nonlocal theory and modified couple stress theory, the author has 
published a series of papers.

The dynamic responses of the double single-walled carbon nanotube system 
for four different cases of external transversal load are considered in Ref. [14]. 
Also, the paper [14] discusses the effects of the axial magnetic field of coupled 
nano-system by Winkler elastic medium. Nonlocal forced transversal vibration 
of an orthotropic double nano-plate system is considered in Ref. [17]. Both 
nano-plates are rectangular, simply supported and coupled by Winkler elastic 
medium. The dynamic responses of the orthotropic double nano-plate system 
for three different cases of external transversal load, by analytical methods 
are considered in paper [17]. A dynamic analysis of a single rotating nonlocal 
cantilever nano-beam under external excitations is presented in Ref. [18]. The 
cases of un-damped and damped forced vibrations are analyzed. The novelty 
of the study lies in the transient responses of the rotating cantilever nano-
beams with the nonlocality magnitude effect taken into consideration. In the 
parametric study the influences of the varying angular velocity and varying 
hub radius effects are presented in Ref. [18]. Based on the modified couple 
stress theory, in Ref. [19] the oscillatory system of two parallel Euler–Bernoulli 
micro-beams which are continuously joined by a Pasternak elastic layer under 
the influence of axial loading including with the temperature change effect, is 
discussed.

Important observations during the research are presented for all mentioned 
papers in the next paragraphs.

2. The beginnings of the author’s research paper 

A beginning research paper connects the author with professor K. (Stevanović) 
Hedrih. With great honor and satisfaction of the authors, with Project Leader ON 
174001, several papers were published and presented at the conferences.
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2.1. Deformable Body Oscillations on a Layer with Visco-Elastic and 
Inertia Properties. The paper under the name ”Deformable Body Oscillations on 
a Layer with Visco-Elastic and Inertia Properties”, is the first paper exposed from 
author to 8th European Solid Mechanics Conference- ESMC (see Ref. [1]), by the 
help of professor K. (Stevanović) Hedrih. The paper in Ref. [1] contains analytical 
descriptions of coupled deformable body nonlinear oscillations on a layer with 
different visco-elastic and inert properties see Fig. 1. The partial differential 
equations of a hybrid multi deformable body system nonlinear transversal oscillation 
on a discrete continuum layer with nonlinear elastic and translator and rotator 
inertia properties is also presented in detail in Ref. [1]. Body can be beam, plate and 
membrane and for all cases, the system of partial differential equations is derived.
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Figure 1. Membrane and plate on discrete continuum layer with translator 
and rotator inertia properties.

Constitutive relations of standard element with rolling sub-element introducing 
translator and rotor inertia properties are expressed by forces and displacements as 
element in the final forms:
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         (1.2)
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Constitutive relations for standard light fraction order elements are 
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α= − = − − + −                             (2)
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where [ ]tDα •  is operator of the αth derivative with respect to time t, c, cα are rigidity 
coefficients – momentary and prolonged one, and α a rational number between 0 
and 1, 0<α<1.

Similar results (see Ref. [2]) are presented at Symposium Nonlinear Dynamics – 
Milutin Milanković, Multidisciplinary and Interdisciplinary Applications (SNDMIA 
2012) in Belgrade. The paper under the title “Hybrid system dynamics on layer with 
nonlinear elastic and inertia properties” is presented.

2.2. Mass moment vector applications to the multi body dynamics 
rotating about axes of no intersection. In the paper which are presented in 
Refs. [3,4] the vector method based on mass moment vectors and vector rotators for 
application to systems of multi rigid-bodies rotating about axes of no intersection 
is developed. The mass moment vectors are used the express the linear momentum 
and angular momentum for the multi body dynamics, by which the derivatives with 
respect to time are determined. The multi body system contains a finite number 
of rigid bodies which are coupled with relative rotations to each other in chain of 
bodies. There are no intersecting axes of relative coupled rotations. These are axes 
of the component velocities of rigid body system dynamics, see Fig. 2.

For a model in Fig. 2, a rigid body coupled three-rotations around three no 
intersecting axes are considered, first oriented by unit vector 1n  with fixed position 
and second and next-third oriented by unit vectors jn , j = 2,3 , which are rotating 
around fixed axis with angular velocity 1 1 1nω ω=

  , and with next two, second and 
third, coupled component angular velocities , 2,3,j j jn jω ω= =

  . Three axes of 
rotations are no intersecting in general cases. 

Rigid body is skew, and eccentric positioned on the moving third rotating axis of 
self-rotation oriented by unit vector 3n . Also, rigid body is positioned on the moving 
self-rotating axis eccentrically and skew positioned (in general case body mass center 
is not positioned on the self-rotation axis and any of the body main central mass 
inertia moment axes are not parallel to self-rotation axis). Rigid body rotates around 
rotating self-rotation axis with angular velocity 3 3 3 ,nω ω=

  and around mowing axis 
oriented by unit vector 2n  with component angular velocity 2 2 2 ,nω ω=

  , and around 
fixed axis oriented by unit vector 1n with angular velocity 1 1 1nω ω=

   (see Fig. 2).

In Ref. [4], the three theorems are presented in following forms:
Theorem 1. Let a mechanical system contain K rigid bodies coupled K rotations 

around K no intersecting axes, when each single body is placed on the corresponding 
axis, first oriented by unit vector 1n  with fixed position and second and next oriented 
by unit vectors  jn , j = 2,3, ..., K, which are rotating around fixed axis with angular 
velocity 1 1 1nω ω=

  , and with next coupled angular velocities j j jnω ω=
  , j = 2,3, ..., K. 

Rigid body N1 rotates only around fixed axis oriented by unit vector 1n  with angular 
velocity 1 1 1nω ω=

  , and  next rigid bodies N2 , N2, ..., and NK rotates around corresponding 
rotating self-rotation axis with corresponding self-rotation angular velocity j j jnω ω=

 
, 
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j = 2,3, ..., K. and all bodies rotate around fixed axis oriented by unit vector 1n  with 
angular velocity 1 1 1nω ω=

  , and body N3   around axis oriented by unit vector  2n  with 
component velocity 2 2 2nω ω=

   and all next bodies rotate with the sum of component 
angular velocities corresponding to their order defined place on the corresponding 
no intersecting axis from the set of the axes of coupled rotations. For defined system 
vector expressions for linear momentum, angular momentum and their derivatives is 
possible to compose by linear vector superposition of corresponding vector expressions 
of linear momentum, angular momentum and their derivatives of corresponding single 
rigid body dynamics single, two, three …  and K coupled rotations, previously derived.

 

2
~O  

3O  

2η  

1ω


 

012r  

3Cr


 
2ξ  

12α  

1x  

y  

z  

022r  

1ζ  

1η  

1nR  

2nR  

1n  

1O  

3B  

3ω  

3dm  

3Cρ


 

3ρ


 

3C  
3N  

3n  

3ξ  2O  

3e  

2ω


 2n  
3r


 

2ζ  

023r  

3η  

3ζ  

3nR  

)1(  

1ξ  

23α  

Figure 2. A rigid body three coupled rotations around three no-intersecting axes.

Theorem 2. Vector expression of linear momentum derivative of the rigid N bodies, 
K multi coupled rotations, around no intersecting axes in all cases, placed bodies on 
the each axis, between other terms, contain the sum of products by intensity of rigid N 
bodies mass linear moment vectors ( ) , , 1, 2,3.... , 1, 2,3.... ,K

j
i

O
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S n dm i N j Kρ = = = ∫∫∫
  , i = 1, 2, 3 ...N, j = 1, 2, 3 ...K, 

for the axes oriented by unit vectors of component coupled rotation axes through pole 
on the rigid N bodies self-rotation axis and vector rotators defined by  
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where are i=1,2,3,…,N  number of bodies, j=1,2,3,…,K number of axes.   

i = 1, 2, 3 ...N, j = 1, 2, 3 ...K,
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Theorem 3.  Vector expression of angular momentum derivatives of the rigid N bodies, 
N multi coupled rotations, around no intersecting axes in all cases, placed bodies on the 
each axis, between other terms, contain sum of products by intensity of rigid N  bodies mass 
deviation moment vectors ( ) , , , , 1, 2,3.... , 1, 2,3.... ,K

j
i

O
i n j j i i jV

D n n dm n i N j Kρ   = = =     ∫∫∫
    i = 1, 2, 3 ...N, j = 1, 2, 3 ...K, 

for the axes oriented by unit vectors of component coupled rotation axes through pole 
on the rigid N bodies self-rotation axes and vector rotators defined by, 
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where are i=1,2,3, ...,N  number of bodies, j=1,2,3,…,K number of axis.   

Based on the results from Ref. [4] the linear and angular momentums and their 
derivatives of three rigid bodies rotating about three non-intersecting axes are 
devised through combination of the results which presented in Ref. [4] and using 
properties of linear vector superposition.  Also, two theorems for derivatives of 
linear momentum and angular momentum and vector rotators of N rigid bodies 
rotating about K no intersecting axes are inductively defined. From previous vector 
expressions and corresponding analysis, is conclude that vector rotators appear into 
expressions of the kinetic reactions of the shaft bearings of the structures of the rigid 
body multi-coupled rotations and that are very important to analyze their intensity 
as well as their relative angular velocity and angular acceleration around directions 
to the directions of axes of coupled multi-rotations. A series of kinematical vector 
rotators coupled to the axis and pole of self-rotation, last body in chain multi body 
system are defined and identified, which are expressed by the component angular 
accelerations and velocities. The results obtained for the mass moment vectors 
applications to the multi body systems dynamics open a new possibility in devising 
a new software tool for broad applications of the method to engineering problems. 
A lot more of this model can be seen in Ref. [4]. Summary results, see Ref. [3] are 
presented at the 84th Annual Meeting of the International Association of Applied 
Mathematics and Mechanics, GAMM 2013, in Novi Sad, Serbia, and printed in a 
shorter version in PAMM, Proc. Appl. Math.

2.3. Parametric testing of singularity and position of non-linear dynamics 
relative balance of heavy material particle. The series of papers at national 
and international conferences with the colleague from the project OI 174001, Marija 
Mikić are presented. The titles of papers are ”Three-parametric testing of singularity 
and position of non-linear dynamics relative balance of heavy material particle on 
eccentrically rotating smooth circle line”, presented at SNDMIA, Belgrade 2012, (see 
Refs. [5,6]),  “Testing of singularity and position of non-linear dynamics relative 
equilibrium of heavy material particle on eccentrically rotating rough circle line, with 
constant angular velocity”, presented at Fourth Serbian Congress on Theoretical and 
Applied Mechanics, Vrnjačka Banja 2013, (see Ref. [7]), “Three parametric testing of 
singularity and position of non-linear dynamics relative equilibrium of heavy material 

i = 1, 2, 3 ...N, j = 1, 2, 3 ...K,
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particle on eccentrically rotating rough circle line, with constant angular velocity”, 
presented at ENOC 2014, in Vienna, Austria, (see Ref. [8]). The all papers contain 
analytical descriptions of heavy material particle which moves on a rotating circular 
smooth line, radius R, which rotate around vertical axis, eccentrically positioned in 
relation to center of circle line on distance e, angular velocity Ω, see Fig. 3.
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Figure 3. Moving of heavy material particle on rough circle line, radius R, 
which rotates around vertical axis, eccentrically positioned in relation to 
center of circle line on distance e, by angular velocity Ω.

Differential equation of heavy material particle moving illustrated in Fig. 3 is:
2 2

1cos sin cos cos sin sin 2 cos 0,φ µφ λ φ φ ε φ µλ φ µ ε φ φ µ φ φ± +Ω  − − ± ± +  ± Ω = 
    (4)

where the following symbols λ=g/(RΩ2), ε=e/R and coefficient μ=tgα of the Coulomb’s 
type friction for the rough surfaces with normal in the radial directions and μ1=tgα1 
of the Coulomb’s type friction for the rough surfaces with normal in the binormal 
directions, are introduced.

Phase portraits of dynamic systems are presented in detail in Refs. [5, 6, 7, 8].

2.4. The most important results from Congress of Serbian Society for 
Mechanics IConSSM 2011, in one review paper. In the paper “Nonlinear 
differential equations in current research of system nonlinear dynamics” presented 
in Ref. [9], basic nonlinear differential equations which describe non-linear 
phenomena in system dynamics with one degree of freedom with same or more 
degree of mobility are illustrated. The most important results are shown in the papers 
presented at mini-symposium Non-linear dynamics organizer by K. (Stevanović) 
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Hedrih, and which is held on Congress of Serbian Society for IConSSM 2011. While, 
the review paper was published in journal of Scientific Technical Review.

The following works were specially selected: J. T. Katsikadelis; L. Cvetićanin; 
Z. Rakaric and I. Kovačić; K. (Stevanović) Hedrih and Lj. Veljović; A. Hedrih and 
K. (Stevanović) Hedrih; S. Jović and V. Raičević; R. M. Bulatović1 and M. Kažić; C. 
Frigioiu; A. Obradović, S. Šalinić, O. Jeremić, Z. Mitrović. All the above-mentioned 
papers can be found in the reference list of the paper presented in Ref. [9].

3. Forced vibration of different composed nano-systems

Modern science and technology became interested in micro and nano structures 
after they had been invented. They possess important mechanical, electrical and 
thermal performances that are higher than conventional structural materials. In 
recent years, nonlocal elastic theory has attracted many attentions because of the 
necessity of modeling and analysis of very small sized mechanical structures in the 
developments of nanotechnologies. It is known that the effect of nanostructures 
size is important for their mechanical behavior because their dimensions are 
small and comparable to molecular distances. There are various higher-order 
continuum theories involving material length scale parameters. In this review 
paper, different composed nano-systems used nonlocal theory (see Refs. [10,11]) 
and micro-systems used modified couple stress theory (see Refs. [12,13]), author 
is presented.

3.1. Nonlocal forced vibration of a double single-walled carbon 
nanotube system under the influence of an axial magnetic field. In the 
paper M. Stamenković et al. presented in Ref. [14], compressive nonlocal double 
single-walled carbon nanotube (SWCNT) system which is under the influence 
of an axial magnetic field is considered, and shown in Fig. 1a. Presented paper 
was published in Journal of Mechanics of Materials and Structures. The nonlocal 
double SWCNT system is assumed to be modeled as a system composed of two 
parallel nanobeams, which have the same length and are continuously joined 
by a Winkler elastic layer. The stiffness modulus of the Winkler elastic layer is 
denoted with k. The transversal displacement over the two nanobeams is denoted 
by w1(x,t) and w2(x,t), respectively, Fig. 4b. For the sake of simplicity, both nano-
beams are identical, where geometric and physical properties are the same and 
defined as: A is the cross-sectional area, E is the Young’s modulus, ρ is the mass 
density, I is the moment of inertia and L is the length of the nanobeam. Also, we 
assume that nanobeam-1is subjected to axial compression F1 and nanobeam-2 is 
subjected to axial compression F2, that are positive in compression, and arbitrarily 
distributed transverse continuous loads f1(x,t) and f2(x,t), that are positive when 
they act downward. The influence of the Lorentz magnetic force on the double 
nanobeam system is caused by the axial magnetic field ηAH2

x which acts in the x 
direction, as shown in Fig. 4.
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Figure 4. The system of double SWCNT affected by an axial magnetic field; 
(a) The physical model of external excited DSWCNTS coupled by an elastic 
medium and influenced by an axial magnetic field, and (b) The equivalent 
mechanical model.

Using the Euler-Bernoulli beam theory and Eringen nonlocal elasticity (see 
Refs. [10, 11]), the governing equations of motion of the nonlocal double nanobeam 
system (NDNBS) can be given as

( )
2 2 2 4

21 1 1 1
1 1 2 12 2 2 4x

w w w wA f k w w F AH EI
t x x x

ρ η
∂ ∂ ∂ ∂

− + − + − +
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2 2 22
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2 1 2 22 2 2 2 ,x
w w wA f k w w F AH

x t x x
µ ρ η

 ∂ ∂ ∂∂
= − − − + − ∂ ∂ ∂ ∂   

(5.2)

where, 2
0( )e aµ =   is the nonlocal parameter.

The dynamic responses of the DSWCNT system for four different cases of external 
transversal load, Uniformly distributed harmonic load, Concentrated harmonic force, 
Moving constant force and Moving concentrated harmonic force are considered. 
Closed form solutions for natural frequencies, amplitude ratio and forced vibration 
response under the influence of the magnetic field and the nonlocal parameter for 
four cases of external excitation are obtained by applying the method of separations 
of variables. 

Shown results for the lowest natural frequency of DSWCNT can be used to validate 
them with the results obtained for the free vibration of a SWCNT via molecular 
dynamics simulation in Ansari et al. [15].  

Table1 present the values of fundamental frequency obtained from MD simulations 
and also the Euler–Bernoulli beam models based on the nonlocal elastic theory. The 
results predicted by the present models are found to be in excellent agreement with 
the ones obtained from MD simulation which indicates the capability of the present 
approach in accurately predicting frequencies of SWCNT. This table show that the 
frequency of SWCNT decreases with increasing length-to-diameter ratio.
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Table 1. Fundamental frequencies (THz) for (8, 8) armchair SWCNT 
obtained from MD simulations of Euler–Bernoulli beam models, R/l=3, l=µ1/2, 

Hx=1∙108 A/m, η=4π∙10-7. 

L/d MD simulation [15]
Present study 
(ηH2

x = 0)
Present study 
(ηH2

x ≠ 0)
8.3 0.5299 0.5485 0.8284
10.1 0.3618 0.3707 0.6306
13.7 0.1931 0.2016 0.4267
17.3 0.1103 0.1264 0.3236
20.9 0.0724 0.0860 0.2613
24.5 0.0519 0.0630 0.2195
28.1 0.0425 0.0479 0.1895
31.6 0.0358 0.0379 0.1674
35.3 0.0287 0.0303 0.1491
39.1 0.0259 0.0247 0.1341

It can be noticed that the results obtained by using the Bernoulli-Fourier method, 
when is ηH2

x= 0, are in agreement with the results presented by Ansari et al. [15].

Table 2. Analytical validation of the steady-state vibration amplitude 
ratios ψ1 and ψ2. 

0
1 /nI nIA Aψ = 0

2 /nII nIIA Aψ =

Zhang et al.  [16], 
MP=0, η=0

1.1965 1.3019

MP=50, η=0.3 1.1499 1.2277

MP=50, η=0.5 1.0872 1.1309

MP=100, η=0.3 1.0779 1.1175

MP=100, η=0.5 1.0436 1.0658        
        χ=0.5.

In order to compare the results of the presented study and with those in 
the existing study by Zhang et al. [16], the values of the steady-state vibration 
amplitude ratios ψ1 and ψ2 for the uniformly distributed harmonic load and the 
concentrated harmonic force are represented in Table 2. It is found that the ratios 
ψ1 and ψ2 in this case are totally the same. From the presented we can conclude that 
the influence of the longitudinal magnetic field MP and the nonlocal parameter η 
on the relationship between ratio ψ1 and ψ2 causes a decrease in their values. It is 
presented in more detail in Ref. [14].
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Figure 5. The relationship between forced vibrations a) ( )1 0.5,w τ  and b)
( )2 0.5,w τ  and dimensionless time for different nonlocal parameters η in the 

case of the uniformly distributed harmonic load.

Figure 6. The relationship between forced vibrations a) ( )1 0.5,w τ  and b)
( )2 0.5,w τ  and dimensionless time for different axial magnetic fields MP in 

the case of the uniformly distributed harmonic load.

In the paper presented in Ref. [14] the nondimensional parameters is used. From 
this reason the longitudinal magnetic field and nonlocal parameters are presented by

2
2 2, / .x

LMP AH and L
EI

η η µ= =

Analytical expressions for the steady-state vibration amplitudes of the two 
nanobeams with the influence of the magnetic field and the nonlocal parameter are 
obtained, and numerical results based on them are presented. From the obtained 
results, we found that the nonlocal parameter and longitudinal magnetic field have a 
damping effect on the response vibration amplitude. In order to validate our results, 
we compared the obtained results for the steady-state amplitude ratios with the 
results found in the literature and excellent agreement was achieved. It was found that 
the natural frequencies and response vibration amplitude of the system can change 
by varying the intensity of the axial magnetic field without the necessity to change 
any other material and geometric parameter of the DNBS. We analyzed amplitudes 
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of transversal displacements for four cases of external excitation vibration and 
numerically presented the case of the uniformly distributed harmonic load and the 
case of the moving harmonic concentrated force with different nonlocal parameters 
and different axial magnetic fields. The obtained amplitudes of transversal vibration 
in both cases of external excitation are reduced due to the influence of the axial 
magnetic field, see Figs. 5 and 6. We noted that the effect of the magnetic field allows 
a change in the stiffness of carbon nanotubes and therefore a change in the overall 
stiffness of the DNBS. Changing the stiffness of the system causes changes in the 
natural frequency of the system, thus avoiding the resonance region for different 
cases of external excitation. All used parameters are presented in Ref. [14].

3.2. Forced transverse vibrations of an elastically connected nonlocal 
orthotropic double-nanoplate system subjected to an in-plane 
magnetic field. The forced transverse vibrations of the orthotropic double 
nanoplate system composed of two orthotropic elastic nanoplates embedded in a 
Winkler-type elastic medium influenced by the in-plane uniaxial magnetic field is 
consider in Ref. [17], and shown in Fig. 7. The presented paper was published in 
Acta Mechanica.

The orthotropic double nanoplate system is modeled as a stack of rectangular 
simply supported orthotropic nanoplates with the same material and geometric 
characteristics, with elastic modulus E1 and  E2, Poison coefficients υ12 and  υ21, 
shear modulus G12, mass density ρ, length a, width b and thickness h. The elastic 
medium located between the two nanoplates of the orthotropic double nanoplate 
system is modeled via continuously distributed pairs of parallel connected springs 
with stiffness coefficient k. Both nanoplates in the orthotropic system are subjected 
to the in-plane uniaxial magnetic field in the x direction and arbitrarily distributed 
transverse continuous loads are f1(x,y,t)  and  f2(x,y,t) . We assume that the transversal 
displacements of the nanoplates are w1(x,y,t) and w2(x,y,t).   

Figure 7. The double graphene nano-sheet system coupled by an elastic layer, 
(a) Physical model, (b) Mechanical model.

Based on the nonlocal constitutive relation and Kirchhoff-Love plate theory, the 
system of two coupled non-homogeneous partial differential equations of motion is 
derived in following form
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(6.2) 
        

where D11, D12, D22 and D66 are the bending rigidities of the orthotropic elastic nanoplates, 
2
xAHη  is magnetic field parameter and ψ=(e0a͂)/L is the nonlocal parameter.

The analytical solutions of the orthotropic double nanoplate system of non-
homogeneous differential equations of corresponding dynamic forced processes are 
obtained by using the Bernoulli–Fourier method. 

Authors conducted an analysis of forced vibrations of the orthotropic double 
nanoplate system for three cases of exciting loads: uniformly distributed harmonic 
surface load, uniformly distributed harmonic line load and concentrated harmonic 
force. For all cases, the obtained values of the amplitudes were compared with the 
values from the literature and presented in tables. It is concluded that the presented 
results are in very good agreement with the results observed in the literature.

Table 3. Validation of the analytical results for the fundamental 
natural frequency of the single-layer graphene sheet

Fundamental natural 
frequency (µ=1.34nm2)

a b× MD Simulations (THz) 
[20]

Presented model 
(THz)

10 10× 0.0595014 0.0592

15 15× 0.0277928 0.0284

20 20× 0.0158141 0.0165

25 25× 0.0099975 0.0107

Table 3 presents the fundamental natural frequencies, obtained by using the 
MD simulation and nonlocal continuum mechanics approach, for different sizes of 
squared single-layer graphene sheets. In this case, a single layered graphene sheet 
is modeled as a simply supported nonlocal Kirchhoff-Love plate. The value for the 
nonlocal parameter in the free vibration analyses is µ=1.34nm2. From the presented 
results, it can be noticed that the results obtained by using the analytical methods 
are in excellent agreement with the results presented in Ref. [20].
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When the magnetic field and nonlocal parameter are neglected, as is the case in the 
local theory, the value of amplitudes is lower for the orthotropic plates system than 
for the isotropic plates system. Also, the values of the amplitudes of the nanoplate 
system decrease with the introduction of the magnetic field and nonlocal parameters, 
as expected. Furthermore, the paper presents the effect of the nonlocal and magnetic 
field parameters on the dynamic response of nanoplate one and two of the system for 
all cases. From that, it can be seen that without the effects of the nonlocal and magnetic 
field parameters, the dynamic response for both plates has a much higher value, than 
when these effects are present. The response of nanoplate two is almost imperceptible 
with the effects of the nonlocal and magnetic field parameters in comparison with the 
case without these effects. We have concluded that the nonlocal and magnetic field 
parameters greatly reduce the dynamic response of nanoplates one and two of the 
orthotropic system, see Fig. 8. The increasing of the magnetic field parameter leads to 
the reduction of the forced vibration responses of nanoplates one and two. It was also 
examined the effects of external excitation for all three cases.  Here, it was noticed that 
with an increase in external excitation, the dynamic response of nanoplates one and 
two also increases, see Fig. 9. All used parameters are presented in Ref. [17].

Figure 8. Effect of the nonlocal and magnetic field parameters for the uniformly 
distributed continuous harmonic load case, (a) dynamic response of nanoplate 
one, (b) dynamic response of nanoplate two.

Figure 9. Effect of the external excitation for the uniformly distributed 
continuous harmonic load case, (a) dynamic response of nanoplate one, (b) 
dynamic response of nanoplate two.
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Summary results where are including thermal effect, see Ref. [21] are presented at 
the conrefence of Nonlinear dynamics–Scientific work of prof. Dr Katica (Stevanovic) 
Hedrih in Beograd, Mathematical Institute of SASA. 

Also, in paper under the name „Thermal and magnetic effects on the forced 
vibration of an elastically connected nonlocal orthotropic double-nanoplate system” 
see Ref. [22] which is presented at the 6th International Congress of Serbian Society 
of Mechanics, in Mountain Tara, the  influence of nonlocal parameter on critical scale 
load ratio of nonlocal and local critical buckling loads is presented. The paper in Ref. 
[22] presents the effect of the nonlocal and magnetic field parameters on the critical 
buckling load under constant value of temperature change. 

In the field of nonlocal mechanics is presented one more paper at Proceedings 
of the 8th European Nonlinear Dynamics Conference (ENOC 2014) under the name 
Nonlinear vibration of nonlocal Kelvin-Voigt viscoelastic nanobeam embedded in 
elastic medium in Ref. [23].

3.3. Nonlocal forced vibrations of rotating cantilever nano-beams. The 
dynamic behavior of a rotating nano-beam is of practical interest, especially when 
examining an external load. The physical model of a rotating nanotube is important 
for new miniature devices. The hybridized nano-generator can be presented as a 
nano-sensor where external load is observed as water or wind. When it comes to 
nanostructures, the effect of their size is important for their mechanical behavior 
because their dimensions are small and comparable to molecular distances. Rotating 
nanotube is represented as cantilever nano-beam. It was adopted that a nano-cantilever 
has length L which is fixed at point O to a rigid hub and has an external excitation, see 
Fig. 10.  The hub has the radius r with constant rotational speed. Presented paper was 
published in European Journal of Mechanics A-Solids in Ref. [18].

Figure 10. Rotating nano-cantilever with external excitations; (a) The physical 
model of the external excited CNT, (b) The equivalent mechanical model

By employing Eringen’s nonlocal elasticity theory Refs. [10,11] and based on 
Euler–Bernoulli’s beam theory, the governing equation of motion of the forced 
vibration rotating nonlocal cantilever nano-beam is derived in following form

( ) ( )
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(7)
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The mentioned equation of motion (7) is discretized by the Galerkin method. The 
further determination of the dynamic behavior is carried out by the standard modal 
analysis procedure. Then the forced damped and undamped vibrations of the given 
model are studied. Detailed procedure is presented in the Ref. [18].

In the paper in Ref. [18], the solutions for the natural frequencies of the rotating nano-
model are determined and verified with [24]. The values for the natural frequencies 
with various effects of nonlocality, angular velocities and hub radius are shown and 
discussed. Nondimensional frequencies is marked with γ=√((ρAΩ2L4)/EI). The first four 
nondimensional frequencies are presented. Slightly higher values of the natural frequencies 
are obtained when the nondimensional hub radius exists. The obtained values of the first 
nondimensional frequency for various values of the nonlocal parameter are in very good 
agreement with the results available in the literature, see Table 5. It is concluded that an 
increase in the nonlocal parameter leads to an increase only in the first natural frequency 
(the tendency is contrary for the higher frequencies as shown). Detailed analysis is 
conducted for variation of nondimensional first, second, third and fourth modes frequency 
with nondimensional angular velocity γ for different values of nonlocal parameters ψ and 
nondimension a hub radius δ. The impact of nonlocal and hub radius parameter in the first 
mode leads to increase of frequency with angular velocity of the rotating nanobeam. For 
higher modes frequency are the opposite observations. In fact, the increase the nonlocal 
parameter leads to decrease higher modes frequencies while the impact of hub radius 
at leads to increase higher modes values of frequencies. The convergence study is also 
presented. Increased the number of orders in discretization leads to the decreasing values 
of nondimensional frequencies, see Table 4.

Table 4. Convergence study of nondimensional frequencies for ψ=0, γ=1 and δ=0.

1λ 2λ 3λ 4λ

n=2 3.68167306 22.18102852
n=3 3.68167306 22.18102833 61.84178166
n=4 3.68164789 22.18101484 61.84177366 121.05094094
n=5 3.68164718 22.18101281 61.84176519 121.05092897
n=6 3.68164697 22.18101185 61.84176414 121.05092360

From the detailed analysis of the undamped system and presented time and 
longer time histories, the impact of contemplated effects leads to the periodically 
response. The transverse deflections of the undamped system with the impact 
of nonlocal effects were described by the beat phenomenon, see Fig. 8. The 
nondimensional nonlocal parameter is marked with ψ=(e0a͂)/L. The nonlocal effects 
were reduced the deflections of the vibration, see Fig. 8a. With the increase of values 
of nonlocal effects, more beat periods for the same observed time period can be 
noticed. The beat period is shorter for higher values of nonlocal effects. An interesting 
phenomenon was observed in the case of higher values of angular velocity effect. 
The nondimensional angular velocity is marked with γ=√((ρAΩ2L4)/EI). Increase in 
the angular velocity reduced the transverse deflections of the nonlocal undamped 
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cantilever nano-beam, see Fig. 11b. The beat phenomenon described the transverse 
deflections of the nonlocal undamped cantilever nano-beam for a lower value of 
angular velocity. The transverse deflections with an impact of hub radius effects 
were described as periodic variation, see Fig. 11c. The nondimensional hub radius is 
marked with δ=r/L. Increased hub radius effects caused the decrease of transverse 
deflections, see Fig. 11c. With the increasing of hub radius effects that increased 
number of beat and the amplitude in this case was less than in the case of the hub 
radius absence. Summary results, see Ref. [25] are presented at the 7th International 
Congress of Serbian Society of Mechanics, in Sremski Karlovci.

Table 5. Nondimensional frequencies for the nonlocal parameters  ψ=0;0.1; 0.2; 
0.3; 0.4, for γ=1 and δ=1.

1λ 2λ 3λ 4λ
Present study 3.889 22.375 62.043 121.263

ψ=0 Pradhan and Murmu [24] 3.890 22.380 62.050 -
Present study 3.932 21.122 51.603 86.356

ψ=0.1 Pradhan and Murmu [24] 3.932 21.122 51.603 -
Present study 4.065 18.257 37.744 55.350

ψ=0.2 Pradhan and Murmu [24] 4.065 18.257 37.744 -
Present study 4.305 15.107 29.519 39.189

ψ=0.3 Pradhan and Murmu [24] 4.305 15.110 29.520 -
Present study 4.701 12.229 26.018 28.587

ψ=0.4 Pradhan and Murmu [24] 4.701 12.230 26.0201 -

Figure 11. Longer time histories of the forced undamped vibration of the rotating 
nonlocal cantilever nano-beam a) nonlocality effects; b) angular velocities effects; 
c) hub radius effects.
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Figure 12. Time domain of the damped vibration of the rotating nonlocal 
cantilever nano-beam with the nonlocality effect; a) time histories; b) phase 
plots; c) deformed shapes.

Figure 13. Time domain of the damped vibration of the rotating nonlocal 
cantilever nano-beam with the effect of angular velocity; a) time histories; b) 
phase plots; c) deformed shapes.

Figure 14. Time domain of the damped vibration of the rotating nonlocal 
cantilever nano-beam with the hub radius effect; a) time histories; b) phase 
plots; c) deformed shapes.
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From the detailed analysis of the damped system, it is important to note that 
the qualitative character of the increase in the effect of nonlocality, angular velocity 
and hub radius, leads to a decrease in the transversal deflections of the nano-model. 
The quantitative characteristic of each parameter is determined and presented. 
An interesting phenomenon is discovered in the case when the maximal deformed 
shapes of the nano-model are analyzed under the nonlocality effect. It can be seen 
that the increase in the nonlocality effect slightly decreases the maximal deflections 
of the beam’s points close to the middle of the beam, see Fig. 12. This means that the 
nonlocality effect is the highest at the middle of the beam if we observe all beam’s 
points. These changes between the maximal deflections of the beam’s points are 
smooth. The observed phenomenon does not exist in the other examples for the 
analyzed hub radius and velocity effect. An increase in the hub radius and velocity 
leads to a decrease in the maximal deflections, see Figs. 13 and 14, and their effect 
is the highest on the free end of the beam. All used parameters for obtained results 
are presented in Ref. [18].

The novelty of the study from Ref. [18] lies in the transient responses of the 
forced excited of the rotating cantilever nano-beams with the nonlocality magnitude 
effect. The presented dynamic behavior of a rotating nano-beam under external 
excitation possesses practical interest. Functional properties of rotating structures 
with various effects of external excitations can be improved to better satisfy the 
motion of the shafts in hybridized nano-generators.

3.4. Thermal effect on the free vibration and buckling of a double-
micro-beam system. Using micro/nano structures in a high temperature 
environment leads to certain changes in the stiffness. Recently, the vibration 
and buckling studies of beams with the microstructure effect have been 
increasingly present in the scientific community. As is well known, the classical 
continuum mechanic theory does not contain any internal material length 
scale parameter and they are not able to describe these effects. The structural 
elements such as beams, plates, and membranes in the micro or nano length 
scale are frequently used as components in micro/nano electromechanical 
systems (MEMS/NEMS). 

Based on the of the modified couple stress theory - MCST, in Ref. [19] the 
oscillatory system of two parallel Euler–Bernoulli micro-beams which are 
continuously joined by a Pasternak elastic layer under the influence of axial 
loading including with the temperature change effect, have been discussed 
(see Fig. 15). Both micro-beams are rectangular and have the same length L, 
thickness h, width b. The beams are simply supported at the ends and under 
the effect of the axial compressive load with the temperature change effect. 
For the sake of simplicity, it was adopted that the two parallel beams of the 
elastically connected double-beam system have the same bending stiffness 
EI and cross-sectional area A. Both micro-beams have the same material 
characteristics ρ. Presented paper was published in Facta Universitatis Series: 
Mechanical Engineering.
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Figure 15. Double-micro-beam system coupled by the Pasternak’s layer

The equations of motion can be expressed in the terms of the displacements 
W01 and W02. The higher-order main differential equations are derived using the 
Hamilton principle

( ) ( ) ( )
4 2 2 2
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where K and G are the spring constants of the Winkler and Pasternak elastic medium, 
respectively, Dxx and Axz are the stiffness components, m0=ρA is the mass of micro-
beams, and l is the length scale parameter.

The first variation of the work done by the axial forces is Fxi=Fmi+FT, (i=1,2), where 
FT=AxxαΔT is the axial force due to the influence of the temperature change and Fmi, 
(i=1,2) is the axial forces due to the mechanical loading for the first and second 
micro-beam. The separation of variables method (known as the Fourier method) 
is used for the main equations to obtain the free vibration frequencies and critical 
buckling loads of the Euler-Bernoulli double-micro-beam system (EBDMBS). In Ref. 
[19] in detailed is developed of expression of buckling load in out-of-phase and in-
phase modes.

     
                 

Figure 16. Vibration of the double-micro-beam system (a) Out-of-phase 
modes, (b) in-phase modes

The length scale parameter, temperature change effect, critical buckling load, 
thickness/material parameter, Pasternak’s parameter and Poisson’s effect are 
discussed in detail. Also, the effect of different mentioned parameters on the natural 
frequency, frequency under compressive axial loading, critical buckling load and 
critical temperature of EBDMBS with thermal effect are presented. Effect of the 
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material length scale parameter and thermal effect on the two different cases of 
phase modes of vibration and buckling state are discussed, see Fig.16. Based on the 
presented analysis we concluded that the in-phase vibration mode and buckling 
state of the EBDMBS is independent of the stiffness of the connecting springs while 
is dependent of Pasternak’s layer and temperature effect and hence the EBDMBS can 
be treated as a single micro-beam.

In order to confirm the present study, we have shown in tabular form a 
comparison of thermal effect on the dimensionless natural frequency of the system 
for three modes with the results found in the literature, see Ref. [19]. 

It is concluded that the presented results are in perfect agreement with the 
results observed in Ke et al. [26]. It is shown that the inclusion of the thermal effect 
decreases the frequencies of the micro-beam one. Also, the effect of the Pasternak 
parameter kp=G⁄Axx for a greater mode leads to the increase in natural frequencies, 
but including the temperature change, the frequency is decreased and leads to the 
decrease stiffness of the system. The numerical results obtained for the natural 
frequency with Poisson’s effect and suggested by the present Euler-Bernoulli beam 
model are always higher than that without Poisson’s effect. The thermal effect on the 
natural frequency is very low for the micro-beam one of EBDMBS and with a small 
ratio of h/l, while it is significant for the micro-beam with a large ratio of h/l, see Fig. 
17. The impact of compressive axial loading on the natural frequencies of EBDMBS 
transverse vibration leads to the following observations:

The temperature change effect has an impact on both micro-beams.
The lower and higher natural frequency under compressive axial loading 

decrease with the increasing axial compressive load and also decrease with a 
temperature change increase. The reason for that is that the thermal effect leads to 
the reduction in stiffness and such a behavior leads to the softening of the materials 
of the EBDMBS.

The effect of compressive axial loading on the lower natural frequency is almost 
independent from the axial compression ratio, whereas on the higher natural 
frequency it depends on.

For the higher value of the Pasternak parameter, the critical buckling load has a 
higher value which decreases with the increasing temperature change.  

The critical buckling temperature for the presented systems is always lower than 
for the classical theories. 

The critical scale load ratio of the modified and local critical buckling loads at the 
low temperature environs increases with the increasing length scale parameter, see 
Fig. 18.

All these observations can be useful for modern electromechanical systems. 
Physical views of these paper may be useful for the design and vibration analysis 
of micro-resonators and micro-sensors applications.  We have shown that using 
the presented system with the temperature change leads to considerable changes 
in stiffness, i.e. the thermal effect leads to the reduction in stiffness and such a 
behavior leads to the softening of the materials of the EBDMBS. All used parameters 
for obtained results are presented in Ref. [19]. Also, the results of this paper are 
better described in Ref. [19].
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Figure 17. The natural frequency of the EBDMBS varying with micro-beam 
thickness, temperature effect and Pasternak’s parameter.

Figure 18. Length scale parameter Tcr at a low temperature environs

One more paper under the name “The critical load parameter of a Timoshenko 
beam with one-step change in cross section” is published in Facta Universitatis 
Series: Mechanical Engineering, (see Ref. [28]).

Based on the modified couple stress theory – MCST, one more result (see Ref. [29]) is 
presented at 5th International Congress of Serbian Society of Mechanics in Arandjelovac, 
Serbia, under the name „Dynamic analysis of micro-beam under the action of moving 
micro-particle”. Ref. [29] is shown that the effect of the velocity of the moving micro-
particle also plays an important role, with their magnification, value of deflections is 
increased. Practical applications of this research are in MEMS devices which allow to 
build sensors and actuators, together with measurement, control, and signal conditioning 
circuitry, and equipped with power and communications, all in the tiniest space.
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4. Conclusion

In the paper, a brief insight into the results achieved by the author during his 
participation in the project is considered. It is also noted where the results were 
published and at which conference were presented. Different composed nano-
systems and micro-systems which used nonlocal theory and modified couple stress 
theory are presented. In a shorter form, the papers from various conferences are 
illustrated. Forced vibration of a double single-walled carbon nanotube system 
under the influence of an axial magnetic field, forced transverse vibrations of an 
elastically connected nonlocal orthotropic double-nanoplate system subjected 
to an in-plane magnetic field, forced vibrations of rotating cantilever nano-beam 
are presented with significant influences of different parameters on transverse 
vibrations responses. Important observations during the research for all mentioned 
papers are presented.
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