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Abstract. Based on the given conceptual models of real phenomena from the 
disparate scientific fields the main task of my nine-year research was to establish 
corresponding mathematical models with acceptable approximations and to 
give a satisfactory prediction of system dynamics behavior. The relationship of 
main variables has predominantly non-linear properties thus we use nonlinear 
analysis and Krylov-Bogoliubov-Mitropolsky method to obtain first asymptotic 
approximations of system dynamics behavior and to be able to study 
parameter changes influence analytically and numerically. The multi-mode 
mutual coupling and transition through resonant regimes of system dynamics 
were analyzed and explained. Since the number of contributed parameters 
was considerable the multi-parametric analysis was exploited to examine 
the synchronization of system parts with external periodic loading. The 
mathematical analogy between discrete and continuous systems dynamics was 
detected and used in disparate phenomena behavior description. Continuous 
mechanical system nonlinear coupling, nonlinear lattice of orthogonal chains 
of discrete material particles representing biological systems of zona pellucid, 
and population models of bone cell behavior were all analyzed by using the 
same mathematical formalism and mapping. The mathematical analogy was 
detected in time-domain of solutions for disparate natural phenomena so that 
the same dynamics behavior can be detected and explained. 
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1. Introduction

Theory of Mihailo Petrović Alas, presented in two books [1–2], contains elements 
of mathematical phenomenology and phenomenological mapping. Both publications 
were published in Serbian and only a small number of his contemporaries were 
able to read and understand this theory. However, the modern scientific public 
can find several examples of theory explanation and application in the paper 
by Hedrih and Simonovic (2015).  The idea of mathematical phenomenology of 
M. Petrović, was presented in his works entitled “Phenomenological Mapping” 
[2]. “Phenomenological Mapping” by M. Petrović Alas and his mathematical 
phenomenology and mathematical analogy can be considered to be the continuation 
of the ideas of Poincare’s mapping. Like his teacher Poincare, Petrovic also accepted 
the approach of the mathematical transformations that can be used for analyzing 
the original system, often too complex, in a simpler way.  The transformations are 
suitable as long as they preserve many properties of periodic and quasiperiodic 
orbits of the original system and has a lower-dimensional state space. This approach 
is especially useful for analyzing the non-linear dynamics of complex continuous 
dynamical systems.

Based on this theory it is possible to make integration of contemporary 
knowledge obtained in various areas of sciences and identify analogous dynamics 
and phenomena. Phenomenological mapping of phenomenon and models enables 
multiple system dynamics models of disparate nature to be described by a single 
mathematical model. The well-known example is mathematical analogy of electrical 
circuit, so-calld electro-mechanics analogy, consisting of a resistor, an inductor, and a 
capacitor, connected in series or in parallel with simple harmonic oscillator. Rašković 
[3] gave a series of examples for electromechanical mathematically analogous 
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vibration systems mathematically described and solved for free vibrations. By using 
idea from [1-2], in the paper [4] an analogy between vector models of stress state, 
strain state and model of the state of the body mass inertia moments were presented 
and used for explanation in possible phenomenological   mapping of these different 
kind states.

Discrete continuum method for investigation of linear and nonlinear dynamics 
of hybrid systems containing coupled multi deformable bodies was presented by 
Hedrih  [5]. The systems of coupled rods, beams, strings, plates and membranes with 
discrete continuum massless layers as well as layers with translator and rotator 
inertia properties were investigated and phenomenological mappings in dynamics 
of these different real system were applied and identified. 

Composing the proper mathematical model of mechanical system presents one 
of the most important steps in the description of the system dynamics and structural 
model formulation. Whereby the description of the system we suppose all the 
levels of exploring the kinetics characteristics of the systems and abilities of their 
improvement, control, regulation or some other usage of mechanical systems. On 
the other way said, mathematical modeling regard on the usage of mathematical 
language to present the behavior of practical systems. It plays the role of better 
understanding of systems features. Non-linearity appears both as an object’s natural 
characteristic and the corresponding non-linearity of the systems of differential 
equations describing the system dynamics, which is a consequence of the choice of 
the coordinates of the system’s description. Since the problem is to explore and in 
some possible way control non-linearity. 

Theory is useful for presenting the general conclusions to the simple models while 
the computers are useful for obtaining the special conclusions for more complicated 
systems. However, in order to form a mathematical description of the complex 
system we are forced to introduce a number of assumptions, simplifications, neglect 
or possible measurement errors, and our structural model can have significant 
different dynamics from real physical models. To avoid this, it is useful to note the 
similarities in the physical phenomena and mathematical descriptions of the various 
systems and to take advantage in the general conclusions. 

The paper by Hedrih and Simonovic [6] is a good example of this theory 
application and it presents mathematical models of several complex mechanical 
systems, introduces its analogies, and explains nonlinear phenomena of passing 
through resonant regions. Systems consist of coupled deformable bodies like plates, 
beams, or membranes that are connected through discrete continuum layer with 
nonlinear elastic and translator and rotator inertia properties. Visco-elastic non-
linear layer, with properties of translation and rotation of added mass elements, was 
rheological modeled by continuously distributed elements of Kelvin-Voigt type with 
nonlinearity of third order with addition of rotatory elements. The formalism and 
results of these ideas will be summarised in the first section of this review.

The interest in the study of multi bodies systems, as new qualitative systems, 
dynamics has grown exponentially over the last few years because of the theoretical 
challenges involved in the investigation of such systems. Recent technological 
innovations have caused a considerable interest in the study of component and 



Multy-Parametric Analysis of Complex Hybrid Systems Dynamics Under External Excitation36

hybrid dynamical processes of coupled rigid and deformable bodies (plates, beams 
and belts) (see Refs. [5–8] and [9]) denoted as hybrid systems, characterized by the 
interaction between subsystem dynamics, governed by coupled partial differential 
equations with boundary and initial conditions. 

The study of transversal vibrations of multi bodies system with elastic, visco-
elastic or creep connections is important for both theoretical and pragmatic reasons. 
The dynamic behavior of many important structures may be investigated from 
mathematical models of such a deformable bodies system. The models presented 
in this paper might be use in presentation of non-linear dynamics behavior for 
one number of real structures. For example, in civil engineering for roofs, floors, 
walls, in thermo and acoustics isolation systems of walls and floors constructions, 
orthotropic bridge decks or for building any structural application in which the 
traditional method of construction uses stiffened steel. 

The sandwich constructions consist of two or more facing layers that are 
structurally bonded to a core made of material with small specific weight. This type 
of construction provides a structural system that acts as a crack arrest layer and 
that can join two dissimilar metals without welding or without setting up a galvanic 
cell and provides equivalent in plane and transverse stiffness and strength, reduces 
fatigue problems, minimizes stress concentrations, improves thermal and acoustical 
insulation, and provides vibration control. It is shown here that as a model of those 
structures it is possible to use a visco-elastically connected double deformable 
bodies system with non-linearity in elastic layer.  

In many engineering systems with non-linearity, high frequency excitations are 
the sources of multi frequency resonant regimes appearance at high as well as at 
low frequency modes. That is obvious from many experimental research results and 
also theoretical results [10–11]. The interaction between amplitudes and phases 
of the different modes in the nonlinear systems with many degrees of freedom, 
as in the deformable body with infinite numbers frequency vibration in free and 
forced regimes, is observed theoretically in [12] by using averaging asymptotic 
methods Krilov-Bogoliyubov-Mitropolyskiy [13]. This knowledge has great practical 
importance. 

In the monograph by Nayfeh [10] a coherent and unified treatment of analytical, 
computational, and experimental methods and concepts of modal nonlinear 
interactions is presented. These methods are used to explore and unfold in a unified 
manner the fascinating complexities in nonlinear dynamical systems. 

Identifying, evaluating, and controlling dynamical integrity measures in 
nonlinear mechanical oscillators are topics for researchers, [8–14–17]. Energy 
transfer between coupled oscillators can be a measure of the dynamical integrity 
of hybrid systems as well as subsystems [7–16]. In the series of references, it is 
possible to find a different approach to obtain solutions of the nonlinear dynamics 
of real systems, as well to discover nonlinear phenomena or some properties of the 
system dynamics. There are many systems which consist of a nonlinear oscillator 
attached to a linear system, examples of which are nonlinear vibration absorbers, 
or nonlinear systems under test using shakers excited harmonically with a constant 
force.  
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List of the valuable research results in a related area of the objects of the author’s 
research is large, but in this introduction the subjective choice was mentioned. The 
interested reader can find more references in the reference list of the doctoral thesis 
by Simonovic [9].

By using averaging and asymptotic methods for obtaining system of ordinary 
differential equations of amplitudes and phases in first approximations and 
expressions for energy of the excited modes depending on amplitudes, phases and 
frequencies of different nonlinear modes are obtained by Hedrih K. in [15–16] and 
by Hedrih K. and Simonović J. in [8]. By means of these asymptotic approximations, 
the energy analysis of mode interaction in the multi frequency free and forced 
vibration regimes of nonlinear elastic systems (beams, plates, and shells) excited 
by initial conditions was made, and a series of resonant jumps as well as energy 
transfer features were identified. Meaning that excitation was, by perturbation of 
equilibrium state of the double plate system at initial moment, defined by initial 
conditions for displacements and velocities of both plate middle surface points. In 
this review inside the section 2.3 the energies transfer in one eigen amplitude mode 
of oscillation of coupled system is analyzed.  The new diagrams of time functions 
corresponding to specific eigen amplitude mod of oscillation are presented so 
that energy jumps and transfer between system elements and time modes can be 
analyzed according to established values of reduced energies that corresponds to 
system parts. 

In the point of having mathematical model of modelled physical system we are 
able to analyze the influence of system’s parameter changes on the behavior of 
system dynamics. It is easy to summarize influence of one ore two parameters. For 
instance, in the paper Simonovic (2015) [17] the influence of the mass of rolling 
elements has been investigated and amplitude/phase-frequency characteristic 
curves were compared for theree different values of rolling elements mass. The 
presence of rolling elements in the interconnected layer introduces the part of the 
dynamic coupling into mathematical model- the system of obtained PDE’s. Also, this 
model with nonlinearity of the third order in the interconnected layer introduces 
the phenomenon of passing through resonant range and appearance of one or 
several resonant jumps in the amplitude–frequency and phase–frequency curves, 
as in the multi-nonlinear mode mutual interactions between amplitudes and phases 
of different nonlinear modes. Based on the presented numerical comparison it has 
been consequently concluded that dynamic coupling intensifies the phenomena 
of the resonant transition caused by the mutual interaction of the harmonics.  The 
changes of one parameter we cross-correlated with the discrete and continuous 
changes of external excitation frequencies in the region of the resonant system 
frequencies for stationary and non-stationary resonant regimes. And since the 
numerical calculations were quite intense, and the number of obtained amplitude/
phase frequencies characteristic curves were large it was necessary to find another 
method for analyzing a larger number of important parameters. Moreover, the 
presented analysis is suitable for the exploration of dynamics in the bounded 
regimes of oscillation. Consequently, we introduced the new method of mathematical 
model analysis for the investigation of the global dynamics named multi-parametric 



Multy-Parametric Analysis of Complex Hybrid Systems Dynamics Under External Excitation38

analysis that allows us the simultaneous analysis of several parameter`s influences.
The proposed multi-parametric analysis has been exploited further, in the section 

2.4, for identical synchronization (IS) appearance in the global dynamics of the 
same system of coupled deformable bodies with the layer of visco-elastic nonlinear 
elements with rolling properties. 

The proposed multi-parametric analysis is applicable for research of IS of the 
systems with more degree of freedom and similar parameters of elastic, viscose, and 
dynamic coupling that can be simultaneously examined. The next model of interests 
presented in the section 3., is the model of chain lattice composed of the four chains 
with eleven material particles, as it was proposed by Simonovic [18]. Investigation 
of dynamics of chains of material particles in the systems with more than three 
degrees of freedom, even in the field of classical and linear chain forced dynamics, 
is important not only for mechanical signal processing, but also for electrical signal 
processing and signal filtering, for processing biodynamical signals in life systems 
(DNA double helix chains [19], biodynamical chain oscillators [20–21] and also for 
university teaching and integrations of scientific results in different scientific fields.

The acquired knowledge and skills of complex system dynamics analysis using 
mathematical analogies can be applied also in mechanobiology. Several years of 
research in that filed has been realized by two postdoc research period supported by 
European Union trough ERASMUS MUNDUS and Marie Skłodowska-Curie Actions 
(MSCA) frameworks. Two projects were realized: six-month post PhD research 
period, between December 2015 and June 2016, at Interdisciplinary Centre for 
Mathematical and Computational Modelling of Warsaw University on subject 
of Bone Tissue Advanced Modelling with Piezoelectricity; and two-year, 2017-
2019, post PhD research period at Biomedical Engineering Department, School of 
Engineering, Cardiff University under the project “Mathematical Modelling of Bone 
Externally Excited Remodelling” (MMoBEER). Bone mechanobiology research how 
mechanical forces and loadings influences architecture and quality of bone tissue 
and it is important to establish proper mathematical model of this process. Although 
it is possible to mechanically stimulate bone and quantify the tissue-level changes 
that occur, it is still extremely challenging to simultaneously delineate the cellular 
and molecular mechanisms that give rise to these changes.

The following section 4. presents a nice application of the same concept of 
mathematical modelling and analogies application in bone mechanobiology. The 
scientific field that investigates how physical forces and changes in the mechanical 
properties of cells and tissues contribute to development, cell differentiation, 
physiology, and disease, in general, is mechanobiology. The governing system of 
differential equations that describe bone remodeling processes at the cellular level 
is the generalized Lotka-Volterra system or S-system with power low coefficients.  
The number of important parameters in such a system is large and it is possible 
to successfully use multi-parametric simultaneous analysis to reveal the desirable 
dynamics of the bone cells that ensure balanced resorption of old, damaged bone tissue 
and formation of new, healthy bone content. In the case of bone cellular modelling 
and structural mathematical modelling, both fields should benefit. Specifically, we 
gain more understanding of bone tissue development through developing more 
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mimetic models that can more realistically simulate real cell environment, which 
can be further used to predict treatment prognosis. Equally, the mathematical 
modelling improves as we develop new tools that deal with many different input 
and output parameters and variables and can be characterised as the mathematics 
of adaptive systems. Overall, joining theoretical and experimental approaches offers 
new paths for understanding, producing, simulating and predicting the features of 
a new generation of biomimetic trends (materials, experimental and measurement 
devices, mathematical predictions etc.).

All the examples in this review paper encompass and underline the variety, 
beauty, and power of mathematical formalism, modeling, and simulations that can 
be applied in disparate scientific research. Furthermore, the experiments with the 
mathematical calculation so-called in/silico experiments allow effective and efficient 
ways to explore reality.

2. Models of hybrid dynamical systems

In this chapter, we present a conceptual model of coupled multi-layered systems. 
Many important structures may be modeled from composite (multi-layered) 
structure and are necessary in many appliances. For example, in civil engineering 
for roofs, floors, walls, in thermo and acoustics isolation systems of walls, and floor 
constructions, orthotropic bridge decks or for building, any structural application in 
which the traditional method of construction is applied usage of stiffened steel. Also, 
it is applied in cars, planes and ships industry for sheaths of plain wings, for inner 
arrangement of plain, it is suitable for building maritime vessels or for building civil 
structures such as double hull oil tankers, bulk carriers, auto bodies, truck bodies 
or for railway vehicles. Furthermore, such construction may serve as a dynamic 
absorber system since it possesses several bodies some of which may play the role 
of the harvester of the energy of external excitation what we call natural absorption 
[22] or we can also detect nonlinear harvesting of energy due to the multi-mode 
nonlinear coupling in some of the nm mode of oscillations [7]. Our model of coupled 
structures contains several deformable bodies (plates, beam, belts, or membranes) 
connected with continually distributed layers of discrete rheological elements with 
various properties of elasticity, viscous, and nonlinear character, Fig.1.The first 
assumption in conceptual model is that he coupling layer  is presented of infinite 
number od distrete rheological elements which ends moves coresponding to mid-
plane (line) points transversal displacement of conected deformable bodies. The 
study of transversal vibrations of a double like multi body system with elastic, visco-
elastic of creep connections is important for both theoretical and pragmatic reasons. 

For standard rolling visco nonlinear elastic element, Figs. 1c) lighted on a 
way of the rheological models [23], we write the expressions for the velocity of 
translation for the centre of masse C , Fig 1. c), in the form: 
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axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�
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The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
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where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:
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 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 
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where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�
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The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:
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Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)
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the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
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displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:
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 axis, of the upper body-plate  middle surface and 
of the lower body-plate  middle surface, respectively. We present the interconnecting 
layer as a model of distributed discrete rheological rolling visco-elastic rolling elements with 
nonlinearity in the elastic part of the layer, as shown in Figure 1.c).  Since that elements 
are continually distributed on plates surfaces, the generalized resulting forces (1) are also 
continually distributed onto middle plate surface points. Our assumptions for the plates are:  
they are thin with same contours and with equal type of the boundary conditions and they have 
small transversal displacements. The system of two coupled partial differential equations is 
derived using d’Alembert’s principle of dynamic equilibrium in the following forms:
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
�

� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)� (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 𝑚⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ .
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 𝑖 𝑖𝑖𝑖 in direction of the 𝑧𝑧𝑧axis, of the upper body-plate
middle surface and of the lower body-plate middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c). Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are: they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 

−𝑎𝑎(�)
� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 𝑚⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 𝑚⁄ ; 𝑎𝑎�ii = 𝑚𝑚 𝑚⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 𝑚⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material.

For circular plates we have: ℘ ≡ 𝑟𝑟𝑟 𝑟𝑟 space middle surface coordinates; operator
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 𝑐 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄ and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽𝛽𝛽𝛽�ℎ�; for 𝑖𝑖 𝑖 𝑖𝑖𝑖; ℎ� height of plates. The form𝜌𝜌� of the
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟 )/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams;
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)

� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 𝜀𝜀𝜀𝜀(�) =

𝛽𝛽𝛽𝛽𝛽�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏𝑏𝑏𝑏�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧𝑧𝑧𝑧 )/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟𝑟 𝑟𝑟 space surface coordinates; ∏ ≡ 𝛥𝛥 𝛥

��

��� + �
�

�
��

+ �
��

��

��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽𝛽𝛽𝛽�; 2𝛿𝛿� = 𝑏𝑏𝑏𝑏𝑏�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟 )/𝜌𝜌�. 

 

    

                                                                                                                                     
                                                                                                                                               (2)

where: 
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
�

� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 

−𝑎𝑎(�)
� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)

� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 𝜀𝜀𝜀𝜀(�) =

𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =

��

��� + �
�

�
��

+ �
��

��

��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 

 E = Young’s 
modulus of bodies materials; 
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
�

� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 

−𝑎𝑎(�)
� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)

� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 𝜀𝜀𝜀𝜀(�) =

𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =

��

��� + �
�

�
��

+ �
��

��

��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 

 Poisson’s coefficient; 
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
�

� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 

−𝑎𝑎(�)
� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)

� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 𝜀𝜀𝜀𝜀(�) =

𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =

��

��� + �
�

�
��

+ �
��

��

��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 

density of bodies material.
For circular plates we have: 
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
�

� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 

−𝑎𝑎(�)
� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)

� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 𝜀𝜀𝜀𝜀(�) =

𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =
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��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 

 space middle surface coordinates; operator 
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
�

� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 

−𝑎𝑎(�)
� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)

� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 𝜀𝜀𝜀𝜀(�) =

𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =
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��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 

. Reduction of coefficients are: 
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𝐹𝐹�(�) = ± �𝑐𝑐 + ��
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� (𝑤𝑤� − 𝑤𝑤�) ± 𝑏𝑏�(𝑤̇𝑤� − 𝑤̇𝑤�) ± 𝛽𝛽(𝑤𝑤� − 𝑤𝑤�)� − �
�

𝑚𝑚 �(𝑤̈𝑤� +

+𝑤̈𝑤�) ∓ ��
�

�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)
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� [𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)] = ±𝜀𝜀𝜀𝜀(�)[𝑤𝑤���(℘, 𝑡𝑡) − 𝑤𝑤�(℘, 𝑡𝑡)]� + 𝑞𝑞�(�)(℘, 𝑡𝑡)

 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)
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𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�. 
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =
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��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 
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�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������
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 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)

� =
(𝑐𝑐 + 𝑐𝑐� 4⁄ ) 𝜌𝜌�ℎ�⁄ ; 𝐷𝐷� = 𝐸𝐸�ℎ�

� 12(1 − 𝜇𝜇�
�)� ; flexural plate rigidity 𝑐𝑐(�)

� = 𝐷𝐷�/ℎ�; 2δ� =
𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)
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For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡ 𝛥𝛥 =
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��� is Laplacian operator. Reduction of the coefficients are: 𝑎𝑎�ii =

𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
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� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) =
𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�. 
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where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
����(℘,�)

��� + 𝑎𝑎�12(�)
������

��� + 𝑐𝑐(�)
� ∏𝑤𝑤�(℘, 𝑡𝑡) − 2𝛿𝛿(�) ������(℘,�)

��
− ���(℘,�)

��
� − 
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 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)
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external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�𝐴𝐴�; 𝑎𝑎�12(�) = 𝑎𝑎�12/𝜌𝜌�𝐴𝐴�; 𝑐𝑐(�)
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where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
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axial mass inertia moment for the rolling element around central axis. If the rolling 
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The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:

(1 + 𝑎𝑎�ii)
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 for   𝑖𝑖 = 1,2   (2) 

where: 𝑎𝑎�12 = 𝑚𝑚 4⁄ − 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 𝑚𝑚 8⁄ ; 𝑎𝑎�ii = 𝑚𝑚 4⁄ + 𝑱𝑱𝑪𝑪 4𝑅𝑅�⁄ = 3𝑚𝑚 8⁄ ; E = 
Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
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�� (𝑤̈𝑤� − 𝑤̈𝑤�)�  (1) 
where cand 𝑐𝑐� are stiffness of linear springs, 𝑏𝑏�is coefficient of damping force,   

stiffness of nonlinear springs, m  is mass of disc, 𝑖𝑖�
� = 𝑱𝑱𝑪𝑪 𝑚𝑚⁄  is the square of radius of 

axial mass inertia moment for the rolling element around central axis. If the rolling 
element is the disc then mass axial moment of inertia is 𝑱𝑱𝑪𝑪 = 𝑅𝑅�𝑚𝑚 2⁄  and 𝑖𝑖�

� = 𝑅𝑅� 2⁄ . 
The governing equations of the double body-plate system [6–8–24], Figs. 1 a), b), 

e) and d), are formulated in terms of two unknowns: the transversal
displacement  𝑤𝑤�(℘, 𝑡𝑡), 𝑖𝑖 = 1,2 in direction of the 𝑧𝑧 axis, of the upper body-plate
middle surface and of the lower body-plate  middle surface, respectively. We present
the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
using d’Alembert’s principle of dynamic equilibrium in the following forms:
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Young’s modulus of bodies materials; 𝜇𝜇�= Poisson’s coefficient; 𝜌𝜌�=density of bodies 
material. 

For circular plates we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space middle surface coordinates; operator 
∏ ≡ 𝛥𝛥�. Reduction of coefficients are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�ℎ�; 𝑎𝑎�12(�) = 𝑎𝑎�12 𝜌𝜌�ℎ�⁄ ; 𝑎𝑎(�)
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𝑏𝑏� 𝜌𝜌�ℎ�⁄  and 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�ℎ�; for 𝑖𝑖 = 1,2; ℎ� height of plates. The form𝜌𝜌� of the 
external loads on the bodies surfaces are given as𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌�ℎ� . 

For beams we have: ℘ ≡ 𝑧𝑧 space line coordinate along neutral line of the beams; 
operator ∏ ≡ 𝜕𝜕�/𝜕𝜕𝜕𝜕�; 𝔅𝔅� = 𝐸𝐸�𝐼𝐼�flexural beam rigidity. Reductions of the coefficients 
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the interconnecting layer as a model of distributed discrete rheological rolling visco-
elastic rolling elements with nonlinearity in the elastic part of the layer, as shown in
Figure 1.c).  Since that elements are continually distributed on plates surfaces, the
generalized resulting forces (1) are also continually distributed onto middle plate
sutface points. Our assumptions for the plates are:  they are thin with same contours
and with equal type of the boundary conditions and they have small transversal
displacements. The system of two coupled partial differential equations is derived
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generalized resulting forces (1) are also continually distributed onto middle plate
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� = �𝔅𝔅�/𝜌𝜌�𝐴𝐴�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�𝐴𝐴�; 

𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�𝐴𝐴�; 2𝛿𝛿� = 𝑏𝑏/𝜌𝜌�𝐴𝐴�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑧𝑧, 𝑡𝑡)/𝜌𝜌�𝐴𝐴�.  
For circular membranes we have: ℘ ≡ 𝑟𝑟, 𝜑𝜑 space surface coordinates;  ∏ ≡
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��� is Laplacian operator. Reduction of the coefficients 

are: 𝑎𝑎�ii = 𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)
� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)

� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2𝛿𝛿� =
𝑏𝑏/𝜌𝜌�; 𝑞𝑞�(�) = 𝑞𝑞(�)(𝑟𝑟, 𝜑𝜑, 𝑡𝑡)/𝜌𝜌� . 

Multi-parametric analysis of complex hybrid systems……. 
41 

For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 
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The sign ± on the right hand side of equations (2) corresponds  to the soft (sign 
+) or hard (sign -) properties of the non-linear elastic layer. 

The system of equation (2) represents a mathematical model of multi-body 
small transversal displacement and has the same form for different coupled bodies 
(plates, membranes, beams, or belts)only the coordinates of the mid plane (line) and 
the reduction parameters have different notation. 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
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� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)
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where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +
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(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
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𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
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where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 and describing their time evolution (see 
Refs.  [8–24–25]):
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 	             (3)

where: 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

co-factors of elements of second row and corresponding column 
of determinant corresponding to basic linear coupled system [9–24], for proper 
eigen characteristic number 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 real parts of the appropriate pair of the roots 
of the characteristic equation, and unknown amplitudes 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 and phases 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 of unknown time functions 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 
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Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 which 
we are going to obtain by using the Krilov-Bogolyubov-Mitropolyskiy asymptotic method (see 
Refs. [12–13–26]).  The proposed assumption for mathematical model is that nonlinearities 
are small and that interactions between eigen amplitude modes may be neglected, and we 
only consider interactions between time eigen modes in one eigen amplitude mode. 

Figure 1.  a) Double circular plate system; b) Multi plate system; c) the rheological 
model of rolling visco-elastic nonlinear discrete element; d) the rheological scheme 
of rolling visco-elastic nonlinear discrete element; f) double membrane system; g) 
double beam system.
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Figure 1. a) Double circular plate system; b) Multi plate system; c) the rheological model
of rolling visco-elastic nonlinear discrete element; d) the rheological scheme of 
rolling visco-elastic nonlinear discrete element; f) double membrane system; g) 
double beam system. 

𝑇̈𝑇(�) + 𝜅𝜅�𝑇̈𝑇(�) − 2𝛿𝛿�(�)�𝑇̇𝑇(�) − 𝑇̇𝑇(�)� + 𝜔𝜔�(�)
� 𝑇𝑇(�) − 𝑎𝑎�(�)

� 𝑇𝑇(�) =

= ±𝜀𝜀𝜀𝜀�(�)ℵ�𝑊𝑊������𝑇𝑇(�) − 𝑇𝑇(�)�
�
+ 𝑓𝑓�(�)

𝑇̈𝑇(�) + 𝜅𝜅�𝑇̈𝑇(�) + 2𝛿𝛿�(�)�𝑇̇𝑇(�) − 𝑇̇𝑇(�)� + 𝜔𝜔�(�)� 𝑇𝑇(�) − 𝑎𝑎�(�)
� 𝑇𝑇(�) =

= ∓𝜀𝜀𝛽𝛽�(�)ℵ�𝑊𝑊������𝑇𝑇(�) − 𝑇𝑇(�)�
�
− 𝑓𝑓�(�)

(4) 

where: 𝜔𝜔�(�)
� = 𝜔𝜔(�)

� /(1 + 𝑎𝑎�ii); ℵ�𝑊𝑊����� =
∫ ∫ �(�)����

� �����
�

�
�

∫ ∫ �(�)����
� �������

�
�
�

 is coefficient of non-

linearity influence of elastic layer, 𝑓𝑓(�)(𝑡𝑡) =
∫ ∫ ��� �(�)���� �����

��
�

�
�

∫ ∫ ��(�)�����
�
�������

�
�
�

are the known 

function of external forces and coefficients of reduction are: 𝜅𝜅� = 𝑎𝑎�12(�)/(1 + 𝑎𝑎�ii), 
𝑎𝑎�(�)
� = 𝑎𝑎(�)

� /(1 + 𝑎𝑎�ii), 2𝛿𝛿�� = 2δ(�)/(1 + 𝑎𝑎�ii), 𝛽𝛽�(�) = 𝛽𝛽(�)/(1 + 𝑎𝑎�ii) and 𝑓𝑓�(�)�� =
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� = 𝑘𝑘(�)����
� 𝑐𝑐(�)

� + 𝑎𝑎(�)
� , 𝑖𝑖 = 1,2 for the 

square of eigen circular frequency of coupled body free linear vibrations, correspond 
to one eigen amplitude mode and corresponding time functions, obtained form system 
of ordinary differential equations (4) by omitting nonlinear terms and terms 
correspond to external exitation distributed along body middle surface in transversal 
directions.  

The system of ordinary non-linear DE`s (4) is completely, pure mathematically, the 
same type for plate, beam, membrane or belt system of two coupled deformable 
bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
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After substituted this proposed asymptotic aproximation of solutions 
(3) in system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 
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For belts we have: x  line coordinate along neutral line lenght of belts;
∏ ≡ 𝛥𝛥 = 𝜕𝜕�/𝜕𝜕𝜕𝜕�is Laplacian operator. Reduction coefficients are: 𝑎𝑎�ii =
𝑎𝑎�ii/𝜌𝜌�; 𝑎𝑎���(�) = 𝑎𝑎�12/𝜌𝜌�; 𝑐𝑐(�)

� = 𝜎𝜎�/𝜌𝜌�; 𝑎𝑎(�)
� = 𝑐𝑐�/𝜌𝜌�; 𝜀𝜀𝜀𝜀(�) = 𝛽𝛽/𝜌𝜌�; 2 i ib  ; 𝑞𝑞�(�) =

𝑞𝑞(�)(𝑥𝑥, 𝑡𝑡)/𝜌𝜌�. 
The sign  on the right hand side of equations (2) corresponds  to the soft

(sign +) or hard (sign -) properties of the non-linear elastic layer.  
The system of equation (2) represents a mathematical model of multi-body 

small transversal displacement and has the same form for different coupled 
bodies (plates, membranes, beams, or belts)only the coordinates of the mid 
plane (line) and the reduction parameters have different notation.  

The asymptotic approximation of solution, in one eigen mod of oscillations, 
where number of eigen modes are 𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates or membranes, and 
𝑛𝑛 = 1,2,3 …∞ for beams or belts,  for the system (1) is taken in the form of the 
eigen amplitude functions 𝑊𝑊�(����)(℘), satisfying the same boundary conditions 
and orthogonally conditions, multiplied   with time coefficients in the form of 
unknown time functions 𝑇𝑇�(𝑡𝑡), 𝑖𝑖 = 1,2 and describing their time evolution (see 
Refs.  [8–24–25]): 

 𝑤𝑤�(℘, 𝑡𝑡) = 𝑊𝑊�(����)(℘) 𝑇𝑇(�)�(����)(𝑡𝑡) = 
= 𝑊𝑊�(����)(℘) �𝐾𝐾��,�(����)

(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡) +

+ 𝐾𝐾��,�(����)
(�) 𝑒𝑒����(����)�𝑅𝑅�(����)(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ�(����) (𝑡𝑡)�  (3) 

where: 𝐾𝐾��,�(����)
(�) co-factors of elements of second row and corresponding 

column of determinant corresponding to basic linear coupled system [9–24], for 
proper eigen characteristic number −𝛿𝛿��(����) real parts of the appropriate pair of 
the roots of the characteristic equation, and unknown amplitudes 𝑅𝑅�(����)(𝑡𝑡) and 
phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 

 and 
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phases 𝛷𝛷�(����)(𝑡𝑡) = 𝛺𝛺�(����)𝑡𝑡 + 𝜑𝜑�(����)(𝑡𝑡); 𝑖𝑖 = 1, 2;  of unknown time functions 
𝑇𝑇(�)�(����)(𝑡𝑡) which we are going to obtain by using the Krilov-Bogolyubov-
Mitropolyskiy asymptotic method (see Refs. [12–13–26]).  The proposed 
assumption for mathematical model is that nonlinearities are small and that 
interactions between eigen amplitude modes may be neglected, and we only 
consider interactions between time eigen modes in one eigen amplitude mode.  

After substituted this proposed asymptotic aproximation of solutions (3) in 
system of partial nonlinear differential equations (2), keeping in mind 
orthogonality conditions of body eigen amplitude functions 𝑊𝑊�(����)(℘) and 
𝑊𝑊�(����)(℘), 𝑖𝑖 ≠ 𝑗𝑗, it turns out system of ordinary non-linear DE for eigen time 
functions 𝑇𝑇(�)�(����)(𝑡𝑡) of one eigen amplitude mode of considered class of the 
bodies transversal oscillations: 
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Figure 1. a) Double circular plate system; b) Multi plate system; c) the rheological model
of rolling visco-elastic nonlinear discrete element; d) the rheological scheme of 
rolling visco-elastic nonlinear discrete element; f) double membrane system; g) 
double beam system. 
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correspond to one eigen amplitude mode and corresponding time functions, 
obtained form system of ordinary differential equations (4) by omitting nonlinear 
terms and terms correspond to external exitation distributed along body middle 
surface in transversal directions.  
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
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the corresponding linear and free system to system (4) and that initial conditions of 
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regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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Figure 1. a) Double circular plate system; b) Multi plate system; c) the rheological model
of rolling visco-elastic nonlinear discrete element; d) the rheological scheme of 
rolling visco-elastic nonlinear discrete element; f) double membrane system; g) 
double beam system. 
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� , 𝑖𝑖 = 1,2 for the 

square of eigen circular frequency of coupled body free linear vibrations, 
correspond to one eigen amplitude mode and corresponding time functions, 
obtained form system of ordinary differential equations (4) by omitting nonlinear 
terms and terms correspond to external exitation distributed along body middle 
surface in transversal directions.  

The system of ordinary non-linear DE`s (4) is completely, pure mathematically, the 
same type for plate, beam, membrane or belt system of two coupled deformable 
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of the corresponding linear and free system to system (4) and that initial 
conditions of the double plate system permit appearance of the  two-frequency 
like vibrations regimes of  in one eigen amplitude mode of the system. 
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(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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(Ω� + 𝑝̂𝑝�)𝑎𝑎�(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠� =

= 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 

 𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) − ���
(������)

𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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 = 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��)   (5) 

where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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= 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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 = 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��)   (5) 

where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 

𝜑̇𝜑�(𝑡𝑡) = (𝑝̂𝑝� − Ω�) −
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= 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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 = 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��)   (5) 

where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 

𝜑̇𝜑�(𝑡𝑡) = (𝑝̂𝑝� − Ω�) −
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(Ω� + 𝑝̂𝑝�)𝑎𝑎�(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠� =

= 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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 = 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��)   (5) 

where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�
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where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
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where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 
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where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 
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where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 

𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) −
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 

𝜑̇𝜑�(𝑡𝑡) = (𝑝̂𝑝� − Ω�) −
3
8

𝛼𝛼�

𝑝̂𝑝�
𝑎𝑎�

�(𝑡𝑡) −
1
4

𝛽𝛽�

𝑝̂𝑝�
𝑎𝑎�

�(𝑡𝑡) +
𝜀𝜀𝜀𝜀�

(Ω� + 𝑝̂𝑝�)𝑎𝑎�(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠� =

= 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 

 𝑎̇𝑎�(𝑡𝑡) = −𝛿𝛿�𝑎𝑎�(𝑡𝑡) − ���
(������)

𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐� = 𝜎𝜎�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��) 

𝜑̇𝜑�(𝑡𝑡) = (𝑝̂𝑝� − Ω�) − �
�

��
���

𝑎𝑎�
�(𝑡𝑡) − �

�
��
���

𝑎𝑎�
�(𝑡𝑡) + ���

(������)��(�)
𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠� =

 = 𝜏𝜏�(𝑎𝑎�(𝑡𝑡), 𝑎𝑎�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), 𝜑𝜑�(𝑡𝑡), Ω��, Ω��)   (5) 

where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 

 were presented in [[9–26] Simonovic 
(2012 a, b)]. Here it was underlined that these constants all rely on coefficients of 
coupling properties via cofactors 

Julijana Simonović 

44 
constants all rely on coefficients of coupling properties via cofactors 𝐾𝐾��

(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
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amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
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means that we were observed the passing thought main resonant states by discrete 
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approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
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bodies. The mathematical analogy is complete. By use phenomenological mapping a 
mathematical analogy between time functions 𝑇𝑇(�)�(����)(𝑡𝑡) in one eign amplitude 
mode of hybrid system dynamics is identified for corresponding multi beam, multi 
plate, multi membrane and multi belt system dynamics with layers of the same 
properties. Then, based on this phenomenological mapping and mathematical 
analogy, we present that solution for one type of the hybrid system dynamics is 
possible to use for the other to qualitative analysis linear or nonlinear phenomena 
appeared in dynamics. 

It is considered that defined task satisfies all necessary conditions for applying 
asymptotic Krilov-Bogolyubov-Mitropolskiy method concerning small parameter of 
discrete continuum layer between bodies. We suppose that the functions of external 
excitation at one eigen mode of oscillations are the two-frequency process in the 
form: 𝑞𝑞�(�)����(𝑡𝑡) = ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡� + ℎ��(����) 𝑐𝑐𝑐𝑐𝑐𝑐�𝛺𝛺�(����)𝑡𝑡�, and that 
external force frequencies 𝛺𝛺�(����)are in the range of two corresponding eigen linear 
damped coupled system frequencies 𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) and  𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����) of 
the corresponding linear and free system to system (4) and that initial conditions of 
the double plate system permit appearance of the  two-frequency like vibrations 
regimes of  in one eigen amplitude mode of the system. 𝑝̂𝑝�(����) are frequencies of 
visco-elastic coupling obtained like imaginary parts of solution 
𝜆𝜆�,�(����) = −𝛿𝛿��(����) ∓ ip��(����) for characteristic equations of system (4). More 
details and complete calculations could be find in Refs. [9–17–25–27]. 

The observed case is that external distributed two-frequencies force acts at upper 
surfaces of upper body with frequencies near circular frequencies of coupling 
𝛺𝛺�(����) ≈ 𝑝̂𝑝�(����), and that the lower body is free  of excitation  𝑞𝑞�(�)����(𝑡𝑡) = 0. 
Then the first asymptotic averaged approximation of the system of differential 
equations for amplitudes 𝑅𝑅�(����)(𝑡𝑡) and difference of phases 𝜑𝜑�(����)(𝑡𝑡) is obtained 
in the following general form,  [6–8–9–24–26]: 
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where 𝑎𝑎�(𝑡𝑡) = 𝑅𝑅�(𝑡𝑡)𝑒𝑒����� is the change of variables hence 
𝑎̇𝑎�(𝑡𝑡) = �𝑅̇𝑅�(𝑡𝑡) − 𝛿𝛿��𝑅𝑅�(𝑡𝑡)� 𝑒𝑒�����. The full forms of constants 𝛿𝛿�, 𝛼𝛼�, 𝛽𝛽�  and 𝑃𝑃�  were 
presented in [[9–26] Simonovic (2012 a, b)]. Here it was underlined that these 
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2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system. For the analysis of the stationary resonant regimes 
of eigen time function mode oscillations correspond to one eigen amplitude function 
we were used analysis of amplitudes and phases for system of differential equations 
(5) in first approximation, obtained by Krilov-Bogolyubov-Mitropolyski method.  For 
that reason, we equal the right-hand sides of differential equations (5) with null. 
Eliminating the phases 
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right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  
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eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
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linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
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 in the case of two-frequency forced oscillations in stationary regime of one 
eigen (
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(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
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mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 
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Figure 2.   Amplitude-frequency characteristic curves for the amplitudes of the first time 
harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude mode 
on the different value of the excited frequency 𝛺𝛺��  for the discrete value of the 
excited frequency 𝛺𝛺��� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more resonant 
jumps for 𝑚𝑚 = 240𝑘𝑘𝑘𝑘. The arrows designate the directions of the resonant jumps. 
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Figure 3.   Phase -frequency characteristic curve for the phase of the first time harmonics 
𝜙𝜙��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude mode on the 
different value of the excited frequency 𝛺𝛺���, for the discrete value of the excited 
frequency 2nm const   with noted corresponding one or more resonant jumps for 

240m kg . The arrows designate the directions of the resonant jumps. 

For any different discrete value of external force frequencies, we get characteristic 
diagram of that amplitide-frequency and proper phase-frequency  curves of eigen time 
function modes in one amplitude modes. The Fig. 2  illustrates the series of that 
diagrams of eigen time function modes in one amplitude mode representing the 
passing through discrete stationary states alog resonant frequency intervals. We may 
follow the changes of amplitude and phase of eigen time function modes in one 

, for the discrete 
value of the excited frequency 2nm constΩ =  with noted corresponding one or 
more resonant jumps for 240m kg= . The arrows designate the directions of 
the resonant jumps.

For any different discrete value of external force frequencies, we get characteristic 
diagram of that amplitide-frequency and proper phase-frequency  curves of eigen 
time function modes in one amplitude modes. The Fig. 2  illustrates the series of 
that diagrams of eigen time function modes in one amplitude mode representing 
the passing through discrete stationary states alog resonant frequency intervals. 
We may follow the changes of amplitude and phase of eigen time function modes 
in one amplitude mode at that characteristic values of the frequencies of external 
force from the range of eigen frequencies of coupling in one eigen amplitude mode 
of proper linearized system oscillations. 

The phenomena of the resonant transition for stationary regime are evident 
from diagrams. Those are the distinctive jumps of the amplitude and phase 
response in the vicinity of the resonant values p̂i iΩ ≈ , appearance of the new 
stable and unstable branches causing the more value-system responses and 
the emergence of two stable solutions of the system in the area of those new 
branches, the mutual interaction of the time harmonics and the jumps of the 
system energies.

Characteristic for both series of the amplitude-frequency and phase-frequency 
curves of eigen time function modes in one amplitude modes is that more than 
one pair of the resonant jumps appears for two frequencies like non-linear 
stationary vibration regimes. Also, those jumps are followed by appearance of 
new instability branches, so there is more than one instability branches in the 
proper amplitude-frequency and phase-frequency curves.  It is visible that in 
the listed discrete values of the external excitation frequency from the proper 
resonant intervals two pairs plus one or three pairs with one more resonant 
jump appear together with proper instable branch presented by dashed line in 
the listed figures.
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𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�). 
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excited frequency 𝛺𝛺��� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more resonant 
jumps for 𝑚𝑚 = 240𝑘𝑘𝑘𝑘. The arrows designate the directions of the resonant jumps. 
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frequency 2nm const   with noted corresponding one or more resonant jumps for 

240m kg . The arrows designate the directions of the resonant jumps. 

For any different discrete value of external force frequencies, we get characteristic 
diagram of that amplitide-frequency and proper phase-frequency  curves of eigen time 
function modes in one amplitude modes. The Fig. 2  illustrates the series of that 
diagrams of eigen time function modes in one amplitude mode representing the 
passing through discrete stationary states alog resonant frequency intervals. We may 
follow the changes of amplitude and phase of eigen time function modes in one 



Multy-Parametric Analysis of Complex Hybrid Systems Dynamics Under External Excitation46

Figure 4. Amplitude-frequency characteristic curves for the amplitudes of the first 
time harmonics 
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amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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Figure 4.   Amplitude-frequency characteristic curves for the amplitudes of the first time 
harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 

2a

1

 1
2 100  s

1
 1

2 190  s

2a

1

 1
2 200  s

2a

1

 1
2 201  s

2a

1

 1
2 210  s2a

Figure 5.    Amplitude -frequency characteristic curve for the amplitudes of the second 
time harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude 
mode on the different value of the excited frequency 𝛺𝛺���, for the discrete value 
of the excited frequency 𝛺𝛺�� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more 
resonant jumps for 𝑚𝑚 = 0[𝑘𝑘𝑘𝑘].  
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amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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Figure 4.   Amplitude-frequency characteristic curves for the amplitudes of the first time 
harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 
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Figure 5.    Amplitude -frequency characteristic curve for the amplitudes of the second 
time harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude 
mode on the different value of the excited frequency 𝛺𝛺���, for the discrete value 
of the excited frequency 𝛺𝛺�� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more 
resonant jumps for 𝑚𝑚 = 0[𝑘𝑘𝑘𝑘].  
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46 
amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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Figure 4.   Amplitude-frequency characteristic curves for the amplitudes of the first time 
harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 
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time harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude 
mode on the different value of the excited frequency 𝛺𝛺���, for the discrete value 
of the excited frequency 𝛺𝛺�� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more 
resonant jumps for 𝑚𝑚 = 0[𝑘𝑘𝑘𝑘].  

. Arrows means directions of the resonant jumps.
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46 
amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 
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Figure 5.    Amplitude -frequency characteristic curve for the amplitudes of the second 
time harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude 
mode on the different value of the excited frequency 𝛺𝛺���, for the discrete value 
of the excited frequency 𝛺𝛺�� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more 
resonant jumps for 𝑚𝑚 = 0[𝑘𝑘𝑘𝑘].  
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46 
amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 
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time harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺���) of eigen time function modes in one amplitude 
mode on the different value of the excited frequency 𝛺𝛺���, for the discrete value 
of the excited frequency 𝛺𝛺�� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted corresponding one or more 
resonant jumps for 𝑚𝑚 = 0[𝑘𝑘𝑘𝑘].  
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Characteristic for both series of the amplitude-frequency and phase-frequency 
curves of eigen time function modes in one amplitude modes is that more than one  

Comparing the first and the last diagrams on the Figs. 4. and 5. we may conclude 
that the amplitude (same is for phase) responses of the first harmonic of eigen time 
function modes in one amplitude mode have small changes after transient regime, 
while the amplitude (phase) responses of the second harmonics have significant 
changes of the values and the shapes. Therefore, we conclude that the influence of the 
first harmonics on the second is greater in the resonant region of the frequencies 𝛺𝛺��� 
of external excitation, then the same influence in the resonant region of the 
frequencies 𝛺𝛺��� of external excitation. 
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Figure 6.   Frequency characteristic curves for the amplitude of the first time  harmonic 
𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), for the amplitude of the second time  harmonic 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), for the 
phase of the first time  harmonic 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and for the phase of the second time  
harmonic 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode on 
discrete  value of excited frequency  𝛺𝛺� = 132[𝑠𝑠��] , with noted proper five 
stationary values on star points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸. 

For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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Figure 4.   Amplitude-frequency characteristic curves for the amplitudes of the first time 
harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 
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amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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that the amplitude (same is for phase) responses of the first harmonic of eigen time 
function modes in one amplitude mode have small changes after transient regime, 
while the amplitude (phase) responses of the second harmonics have significant 
changes of the values and the shapes. Therefore, we conclude that the influence of 
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harmonic 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode on 
discrete  value of excited frequency  𝛺𝛺� = 132[𝑠𝑠��] , with noted proper five 
stationary values on star points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸. 

For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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amplitude mode at that characteristic values of the frequencies of external force from 
the range of eigen frequencies of coupling in one eigen amplitude mode of proper 
linearized system oscillations.  

The phenomena of the resonant transition for stationary regime are evident from 
diagrams. Those are the distinctive jumps of the amplitude and phase response in the 
vicinity of the resonant values p̂i i  , appearance of the new stable and unstable 
branches causing the more value-system responses and the emergence of two stable 
solutions of the system in the area of those new branches, the mutual interaction of 
the time harmonics and the jumps of the system energies. 
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harmonics 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode for 
hard characteristics of interconnected layer and for the different  discrete  values of 
excited frequency  𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with noted proper one or more resonant jumps, for 
𝑚𝑚 = 0[𝑘𝑘𝑘𝑘]. Arrows means directions of the resonant jumps. 
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Figure 6. Frequency characteristic curves for the amplitude of the first time  
harmonic 

Multi-parametric analysis of complex hybrid systems……. 
47 
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Comparing the first and the last diagrams on the Figs. 4. and 5. we may conclude 
that the amplitude (same is for phase) responses of the first harmonic of eigen time 
function modes in one amplitude mode have small changes after transient regime, 
while the amplitude (phase) responses of the second harmonics have significant 
changes of the values and the shapes. Therefore, we conclude that the influence of the 
first harmonics on the second is greater in the resonant region of the frequencies 𝛺𝛺��� 
of external excitation, then the same influence in the resonant region of the 
frequencies 𝛺𝛺��� of external excitation. 
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phase of the first time  harmonic 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and for the phase of the second time  
harmonic 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode on 
discrete  value of excited frequency  𝛺𝛺� = 132[𝑠𝑠��] , with noted proper five 
stationary values on star points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸. 

For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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discrete  value of excited frequency  𝛺𝛺� = 132[𝑠𝑠��] , with noted proper five 
stationary values on star points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸. 

For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 
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For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
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and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
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, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 
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constants all rely on coefficients of coupling properties via cofactors 𝐾𝐾��

(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 

 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime 
of the second frequency of external excitation without characteristic apearance 
of new branches, but the amplitude respons of the second harmonic has resonant 
jumps in the resonant range of the second frequency of external excitation 
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Comparing the first and the last diagrams on the Figs. 4. and 5. we may conclude 
that the amplitude (same is for phase) responses of the first harmonic of eigen time 
function modes in one amplitude mode have small changes after transient regime, 
while the amplitude (phase) responses of the second harmonics have significant 
changes of the values and the shapes. Therefore, we conclude that the influence of the 
first harmonics on the second is greater in the resonant region of the frequencies 𝛺𝛺��� 
of external excitation, then the same influence in the resonant region of the 
frequencies 𝛺𝛺��� of external excitation. 
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harmonic 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) of eigen time function modes in one amplitude mode on 
discrete  value of excited frequency  𝛺𝛺� = 132[𝑠𝑠��] , with noted proper five 
stationary values on star points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸. 

For the case without rolling elements at the connected layer of the two plates, 
𝑚𝑚 = 0kg, on Figs. 4 and 5. for the select numerical particular values of the system 
parameters the interactions between two-time modes in one 𝑛𝑛𝑛𝑛 - th eigen amplitude 
shape mode of plates two frequency stationary like vibrations regime are presented. 
From the Fig. 4. it is noticable that amplitude-frequency curve of the first harmonics 
of eigen time function modes in one amplitude mode pass through resonant regime of 
the second frequency of external excitation without characteristic apearance of new 
branches, but the amplitude respons of the second harmonic has resonant jumps in the 
resonant range of the second frequency of external excitation 𝛺𝛺��� ∈ [185, 201]𝑠𝑠�� 
and after resonant transition undergo changes of values and shape. This also turned-
out conclusion that first harmonic has more influence on the second then in the 
oposite case. Hence, the amplitude responses in this case seems like in the case that 

 and after resonant transition undergo changes of values 
and shape. This also turned-out conclusion that first harmonic has more influence 
on the second then in the oposite case. Hence, the amplitude response in this case 
seems like in the case that there no nonlinearity we may turn out that influence of 
nonlinearity in the coupling layer is insignificant for such select of all other system 
parameters. The influence of the nonlinearity in the interconnected layer may be 
less or more present which depend on the parameters of the system. For example, 
by changing the value of the amplitude of the external excitations or coefficient of 
damping we may find the same phenomena of resonant transition, the resonant 
jumps and mutual modes interactions. 

For obtaining data of stability or instability of the stationary amplitude and phase of 
eigen time function modes in one amplitude mode, it is necessary to use linearization 
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of the system of first approximation differential equations for two amplitudes and two 
phases (5) in each discrete stationary vibration state and to compose corresponding 
characteristic equation and to obtained corresponding roots. We could define local 
stability problem in a sense of Jacobian matrix of system (5). The eigen values of that 
matrix need to be known and explore consequently corresponding characteristic 
equation was composed. By using real parts of the roots of the evaluated characteristic 
equation it is possible to conclude whether the stationary two frequency like non-linear 
vibration regimes of eigen time function modes in one amplitude mode are stable or not. 
The values of these coefficients need to be valued for any value of  
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there no nonlinearity we may turn out that influence of nonlinearity in the coupling 
layer is insignificant for such select of all other system parameters. The influence of 
the nonlinearity in the interconnected layer may be less or more present which depend 
on the parameters of the system. For example, by changing the value of the amplitude 
of the external excitations or coefficient of damping we may find the same 
phenomena of resonant transition, the resonant jumps and mutual modes interactions.  

For obtaining data of stability or instability of the stationary amplitude and phase 
of eigen time function modes in one amplitude mode, it is necessary to use 
linearization of the system of first approximation differential equations for two 
amplitudes and two phases (5) in each discrete stationary vibration state and to 
compose corresponding characteristic equation and to obtained corresponding roots. 
We could define local stability problem in a sense of Jacobian matrix of system (5). 
The eigen values of that matrix need to be known and explore consequently 
corresponding characteristic equation was composed. By using real parts of the roots 
of the evaluated characteristic equation it is possible to conclude whether the 
stationary two frequency like non-linear vibration regimes of eigen time function 
modes in one amplitude mode are stable or not. The values of these coefficients need 
to be valued for any value of  𝛺𝛺�� and determined values of 𝑎𝑎�� for 𝑖𝑖 = 1,2 from the 
above diagrams and of 𝜙𝜙�� from proper diagrams of phase-frequencies curves. For 
example, the noted star points 𝐴𝐴,𝐵𝐵, 𝐶𝐶or any else, on a diagrams at Fig. 6, has 
coordinate stationar values(𝑎𝑎�; 𝜙𝜙�; 𝑎𝑎�; 𝜙𝜙�; 𝛺𝛺�; 𝛺𝛺�).Than, the corresponding roots of 
the characteristic equation  are obtained numerically, and for star point A  we 
conclude that it is stable because the roots are all complex with negative real parts. 
All stationary valuses were numerically treated and if all real parts of the all roots of 
the characteristic equation are negative, then stationary resonant regime is stable. 
Since the solution is unstable if at least one of all roots has a positive real part. In the 
listed figures branches presented with dashed line corresponds to the expected 
unstable stationary vibration resonant regimes.  

In the end of this section, we may discuss that obtained results for couple plates 
may be used for explanation of non-linear phenomenon in models of coupled beams, 
belts or membranes in connection with layer of same properties. All of them have 
same mathematical model in the time domain of their dynamics.  

Using Petrovic’s approach from [1–2], and comparing the results from the papers 
[28] with results in this paper, it is clear that there are analogies  between non-linear
phenomena in particular multi-frequency stationary resonant regimes of multi circular
plate system non-linear dynamics and proper resonant forced regimes in chain system
non-linear dynamics. Also, an analogy between non-linear phenomena in particular
multi-frequency stationary resonant regimes of multi circular plate system non-linear
dynamics and proper forced resonant regimes in multi-beam, membrane or belt
system non-linear dynamics was here identified.
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2.2. Controllability of the non-stationary resonant jumps. Strong interactions 
between time modes in the 
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constants all rely on coefficients of coupling properties via cofactors 𝐾𝐾��

(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 

 -th eigen amplitude shape mode of plate, appear only 
in the case that both values of both external excitation frequencies  
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2.2 Controllability of the non-stationary resonant jumps 

Strong interactions between time modes in the 𝑛𝑛𝑛𝑛 -th eigen amplitude shape mode 
of plate, appear only in the case that both values of both external excitation 
frequencies  𝛺𝛺��� and  𝛺𝛺��  are chosen simultaneously in the corresponding 
resonant frequency interval 𝛺𝛺��� ≈ 𝑝̂𝑝���. We introduce here the linear changes of the 
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of plate, appear only in the case that both values of both external excitation 
frequencies  𝛺𝛺��� and  𝛺𝛺��  are chosen simultaneously in the corresponding 
resonant frequency interval 𝛺𝛺��� ≈ 𝑝̂𝑝���. We introduce here the linear changes of the 
external frequencies in the proximity of the 𝑝̂𝑝���  in the form: 𝛺𝛺��� = 𝑝̂𝑝��� ± 𝜂𝜂 ⋅ 𝑡𝑡, 
where 𝜂𝜂 is the rate of the linear changes. 

 The severity and speed of transitional jumps of this non-stationary regimes, Fig 3 
a) and c), can be controlled by appropriate choice of the rate of external frequencies`
changes. For instance, up to down jump, blue arrow line on the Fig.7 b), has several
characteristics jumps after the first one that faster reaches main cure as the external
frequency has slower changes, blue line on the Fig. c) for 𝛺𝛺��� = 170 + 5 ⋅ 𝑡𝑡. For
faster transition changes of external frequencies, lines red and green on the Fig.7 c)
for 𝛺𝛺��� = 170 + 10 ⋅ 𝑡𝑡 and 𝛺𝛺��� = 170 + 20 ⋅ 𝑡𝑡, subsequent jumps are more
numbered but less sharp. Faster transition passage in the resonant intervals is more
dangerous with sharper sudden jumps in both directions: up to down, Fig.7 c),
likewise bottom to top, Fig 7 a).

These considerations give the conclusion that the transition unexpected system 
jumps could be controlled by appropriate choice of the rate of the external 
frequencies` changes. 

2.3 Analysis of energy transfer between nonlinear mode of oscillation in the 
nm -th eigen amplitude shape mode of coupled deformable bodies 

Following the established ideas and clarified proofs in the extensive work of 
Hedrih K. [16] and Simonovic [7–9] it is possible to analyze energy stream between 
coupled bodies in evry 𝑛𝑛𝑛𝑛 -th eigen amplitude shape mode where it is obvious that, 
due to the nonelinearity and coupling layer presence and time mode mutual 
interaction, exist the energy transfer between time modes and also energy mutation in 
one mode caused by changes in other mode. The energy flow between potential and 
kinetic energy present in conservative system with constant total energy cannot be 
accepted in this system not only due to the dissipation energy of damping elements 
properties but also due to nonlinearity and external sources of periodic forces.  

Energy harvesting of external source in coupled nonlinear systems depends on 
multimode coupling and nonlinear interaction of mode that can be analyzed using the 
ideas of reduced values of energy parts that belong to system elements. In that sense 
we distinguish the following parts of reduced values of energies in one 𝑛𝑛𝑛𝑛 -th eigen 
amplitude shape mode, where orthogonality conditions apply in form 𝑣𝑣(�)��(𝑟𝑟, 𝜑𝜑) =
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numbered but less sharp. Faster transition passage in the resonant intervals is 
more dangerous with sharper sudden jumps in both directions: up to down, Fig.7 c), 
likewise bottom to top, Fig 7 a). 

These considerations give the conclusion that the transition unexpected 
system jumps could be controlled by appropriate choice of the rate of the external 
frequencies` changes.

2.3. Analysis of energy transfer between nonlinear mode of oscillation in 
the nm-th eigen amplitude shape mode of coupled deformable bodies. 
Following the established ideas and clarified proofs in the extensive work of Hedrih 
K. [16] and Simonovic [7–9] it is possible to analyze energy stream between coupled 
bodies in evry 
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44 
constants all rely on coefficients of coupling properties via cofactors 𝐾𝐾��

(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 

-th eigen amplitude shape mode where it is obvious that, due to the 
nonelinearity and coupling layer presence and time mode mutual interaction, exist the 
energy transfer between time modes and also energy mutation in one mode caused by 
changes in other mode. The energy flow between potential and kinetic energy present 
in conservative system with constant total energy cannot be accepted in this system 
not only due to the dissipation energy of damping elements properties but also due to 
nonlinearity and external sources of periodic forces. 

Figure 7. Amplitude-frequency characteristic curves for the amplitudes of the first 
time harmonics 
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Figure 7.   Amplitude-frequency characteristic curves for the amplitudes of the first time 
harmonics 𝑎𝑎��� = 𝑓𝑓�(𝛺𝛺�� )  for the discrete value of the excited frequency  
𝛺𝛺��� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Three different rates of the resonant passage in both directions: a) 
Bottom to top jumps (point A to B on the middle diagram b)) during the 
decreasing of external excitation frequency 𝛺𝛺��� = 140 − 5 ⋅ 𝑡𝑡,  𝛺𝛺��� = 140 −
10 ⋅ 𝑡𝑡 and            𝛺𝛺��� = 140 − 20 ⋅ 𝑡𝑡 and c) Up to down jumps ( point C to D on 
the middle diagram b))  during the increasing of external excitation frequency  
𝛺𝛺��� = 170 + 5 ⋅ 𝑡𝑡,   𝛺𝛺��� = 170 + 10 ⋅ 𝑡𝑡  and 𝛺𝛺��� = 170 + 20𝑡𝑡 . b) 
Nonlinear amplitude jumps occurring at the end points of non-stable branch (AC) 
of amplitude-frequency curve. 

A.1* Kinetic energy of coupled bodies 𝑖𝑖 = 1,2:
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and part of kinetic energy caried by bodies originating from rolling parts of coupling layer: 
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A.2* Kinetic energy of interaction between bodies due to the rolling elements in
interconnected layer: 

  for the discrete value of the excited frequency 
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A.2* Kinetic energy of interaction between bodies due to the rolling elements in
interconnected layer: 

. Three different rates of the resonant passage in both directions: a) 
Bottom to top jumps (point A to B on the middle diagram b)) during the decreasing 
of external excitation frequency 
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on multimode coupling and nonlinear interaction of mode that can be analyzed 
using the ideas of reduced values of energy parts that belong to system elements. 
In that sense we distinguish the following parts of reduced values of energies in 
one 
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constants all rely on coefficients of coupling properties via cofactors 𝐾𝐾��

(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 

 -th eigen amplitude shape mode, where orthogonality conditions apply 
in form 
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2.2 Controllability of the non-stationary resonant jumps 

Strong interactions between time modes in the 𝑛𝑛𝑛𝑛 -th eigen amplitude shape mode 
of plate, appear only in the case that both values of both external excitation 
frequencies  𝛺𝛺��� and  𝛺𝛺��� are chosen simultaneously in the corresponding 
resonant frequency interval 𝛺𝛺��� ≈ 𝑝̂𝑝���. We introduce here the linear changes of the 
external frequencies in the proximity of the 𝑝̂𝑝���  in the form: 𝛺𝛺��� = 𝑝̂𝑝��� ± 𝜂𝜂 ⋅ 𝑡𝑡, 
where 𝜂𝜂 is the rate of the linear changes. 

 The severity and speed of transitional jumps of this non-stationary regimes, Fig 3 
a) and c), can be controlled by appropriate choice of the rate of external frequencies`
changes. For instance, up to down jump, blue arrow line on the Fig.7 b), has several
characteristics jumps after the first one that faster reaches main cure as the external
frequency has slower changes, blue line on the Fig. c) for 𝛺𝛺��� = 170 + 5 ⋅ 𝑡𝑡. For
faster transition changes of external frequencies, lines red and green on the Fig.7 c)
for 𝛺𝛺��� = 170 + 10 ⋅ 𝑡𝑡 and 𝛺𝛺��� = 170 + 20 ⋅ 𝑡𝑡, subsequent jumps are more
numbered but less sharp. Faster transition passage in the resonant intervals is more
dangerous with sharper sudden jumps in both directions: up to down, Fig.7 c),
likewise bottom to top, Fig 7 a).

These considerations give the conclusion that the transition unexpected system 
jumps could be controlled by appropriate choice of the rate of the external 
frequencies` changes. 

2.3 Analysis of energy transfer between nonlinear mode of oscillation in the 
nm -th eigen amplitude shape mode of coupled deformable bodies 

Following the established ideas and clarified proofs in the extensive work of 
Hedrih K. [16] and Simonovic [7–9] it is possible to analyze energy stream between 
coupled bodies in evry 𝑛𝑛𝑛𝑛 -th eigen amplitude shape mode where it is obvious that, 
due to the nonelinearity and coupling layer presence and time mode mutual 
interaction, exist the energy transfer between time modes and also energy mutation in 
one mode caused by changes in other mode. The energy flow between potential and 
kinetic energy present in conservative system with constant total energy cannot be 
accepted in this system not only due to the dissipation energy of damping elements 
properties but also due to nonlinearity and external sources of periodic forces.  

Energy harvesting of external source in coupled nonlinear systems depends on 
multimode coupling and nonlinear interaction of mode that can be analyzed using the 
ideas of reduced values of energy parts that belong to system elements. In that sense 
we distinguish the following parts of reduced values of energies in one 𝑛𝑛𝑛𝑛 -th eigen 
amplitude shape mode, where 𝑣𝑣(�)��(𝑟𝑟, 𝜑𝜑) = ∬ �𝑊𝑊(�)��(𝑟𝑟, 𝜑𝜑)�

�
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� ,  𝑖𝑖 = 1,2, 

of oscillation that belong to first and second coupled element: 
 , of oscillation that belong 
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A.2* Kinetic energy of interaction between bodies due to the rolling elements in
interconnected layer: 

 	    
A.2* Kinetic energy of interaction between bodies due to the rolling elements 

in interconnected layer:
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B.1* Potential energy of bodies together with potential energy of visco-elastic
layer that belongs to every body: 
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B.2* Potential energy of interaction caused by visco-elastic properties of layer:
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By analysing potential energy of system, we can separate the following parts: 
B.3 * reduced potential energy of every body without parts belonging to potential

energies of elastic parts of layer: 
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B.4*  Reduced potential energy of elastic layer:
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where eigen frequencies of bodies are: 𝜔𝜔(�)��
� = 𝑐𝑐(�)
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  

C.1* Rayleigh function of dissipation-the reduced part  from visco-elastic layar
corresponding to the bodies: 
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C.2* Rayleigh function of dissipation- only from interaction between bodies
caused by the visco-elastic layer: 
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Since the form of time functions corresponding to the nm -th eigen amplitude 
shape mode is presented by the form (3) we can only add the first time derivatives in 
the forms: 

	        
(6c)

B.1* Potential energy of bodies together with potential energy of visco-elastic 
layer that belongs to every body: 
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where eigen frequencies of bodies are: 𝜔𝜔(�)��
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  

C.1* Rayleigh function of dissipation-the reduced part  from visco-elastic layar
corresponding to the bodies: 

Φ����(�,�)�����(�) = 𝛿𝛿(�)𝜌𝜌�ℎ��𝑇̇𝑇(�)���
�
=

���(�,�)�����(�)

�(�)��
 (6h) 

C.2* Rayleigh function of dissipation- only from interaction between bodies
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Since the form of time functions corresponding to the nm -th eigen amplitude 
shape mode is presented by the form (3) we can only add the first time derivatives in 
the forms: 
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B.2* Potential energy of interaction caused by visco-elastic properties of 
layer: 
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  

C.1* Rayleigh function of dissipation-the reduced part  from visco-elastic layar
corresponding to the bodies: 
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C.2* Rayleigh function of dissipation- only from interaction between bodies
caused by the visco-elastic layer: 
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Since the form of time functions corresponding to the nm -th eigen amplitude 
shape mode is presented by the form (3) we can only add the first time derivatives in 
the forms: 

	
(6e)

By analysing potential energy of system, we can separate the following parts:

B.3 * reduced potential energy of every body without parts belonging to potential 
energies of elastic parts of layer:
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By analysing potential energy of system, we can separate the following parts: 
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where eigen frequencies of bodies are: 𝜔𝜔(�)��
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  

C.1* Rayleigh function of dissipation-the reduced part  from visco-elastic layar
corresponding to the bodies: 
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C.2* Rayleigh function of dissipation- only from interaction between bodies
caused by the visco-elastic layer: 

𝛷𝛷����(�,�)����� = −�𝛿𝛿(�)𝜌𝜌�ℎ� + 𝛿𝛿(�)𝜌𝜌�ℎ��𝑇̇𝑇(�)��𝑇̇𝑇(�)�� =
���(�,�)�����

�(�)��
 (6i) 

Since the form of time functions corresponding to the nm -th eigen amplitude 
shape mode is presented by the form (3) we can only add the first time derivatives in 
the forms: 
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B.4*  Reduced potential energy of elastic layer: 
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  

C.1* Rayleigh function of dissipation-the reduced part  from visco-elastic layar
corresponding to the bodies: 
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where eigen frequencies of bodies are: 
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  
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C.2* Rayleigh function of dissipation- only from interaction between bodies
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.

At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies. 
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C.1* Rayleigh function of dissipation-the reduced part  from visco-elastic layar 
corresponding to the bodies: 
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At this manner we separated total potential energy to the parts belong to potential 
energy of bodies on the Winkler-type ground and potential energy of coupling layer 
corresponding to the bodies and a part corresponds to the interaction between bodies 
that depends only on rigidity of elastic layer and time functions of both bodies.  
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Since the form of time functions corresponding to the nm -th eigen amplitude 
shape mode is presented by the form (3) we can only add the first time derivatives in 
the forms: 
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Since the form of time functions corresponding to the nm -th eigen amplitude 
shape mode is presented by the form (3) we can only add the first time derivatives 
in the forms:

having in mind the first asymptotic solutions of amplitude and phase of both 
time harmonics given by the expressions (5) it is obvious that any changes and 
features that these solutions behave affect the changes of time harmonics of 
both functions. All the characteristic phenomena of the system dynamics, such 
as amplitude and phase jumps, stable and unstable new born branches of back-
bone curve during transition stationary changes in resonant domain of both two 
frequencies oscillatory regimes of external loading, nonstationary amplitude 
jumps in both directions of increasing and decreasing of external frequencies in 
transition regimes, mutual interaction of both time harmonics in these regimes, 
determines the behavior of the energies parts of the system. All the reduced 
values ​​of the energies relay on the shape of time harmonics and/or their time 
derivatives, expressions (6a-i), and their changes determines changes and 
energies jumps and transfers between system parts.	

Time function of the first eigen shape of oscillation, whose shapes in 
the resonant region of the second excitation frequency are presented in 
Fig. 10, compounds of two mutually connected time harmonics. The time 

Julijana Simonović 

52 

𝑇̇𝑇(�)��(𝑡𝑡) = 𝐾𝐾����
(�) 𝑎̇𝑎�� (𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ��� (𝑡𝑡)

− 𝐾𝐾����
(�) 𝑎𝑎�� (𝑡𝑡)(Ω��� + 𝜑̇𝜑�� ) 𝑠𝑠𝑠𝑠𝑠𝑠 Φ��� (𝑡𝑡)

+ 𝐾𝐾����
(�) 𝑎̇𝑎�� (𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ��� (𝑡𝑡)

− 𝐾𝐾����
(�) 𝑎𝑎�� (𝑡𝑡)(Ω��� + 𝜑̇𝜑���) 𝑠𝑠𝑠𝑠𝑠𝑠 Φ��� (𝑡𝑡) 

𝑇̇𝑇(�)��(𝑡𝑡) = 𝐾𝐾����
(�) 𝑎̇𝑎���(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ��� (𝑡𝑡)

− 𝐾𝐾����
(�) 𝑎𝑎���(𝑡𝑡)(Ω��� + +𝜑̇𝜑���) 𝑠𝑠𝑠𝑠𝑠𝑠 Φ��� (𝑡𝑡)

+ 𝐾𝐾����
(�) 𝑎̇𝑎�� (𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 Φ��� (𝑡𝑡)

− 𝐾𝐾����
(�) 𝑎𝑎���(𝑡𝑡)(Ω��� + +𝜑̇𝜑���) 𝑠𝑠𝑠𝑠𝑠𝑠 Φ�� (𝑡𝑡) 

having in mind the first asymptotic solutions of amplitude and phase of both time 
harmonics given by the expressions (5) it is obvious that any changes and features 
that these solutions behave affect the changes of time harmonics of both functions. 
All the characteristic phenomena of the system dynamics, such as amplitude and 
phase jumps, stable and unstable new born branches of back-bone curve during 
transition stationary changes in resonant domain of both two frequencies oscillatory 
regimes of external loading, nonstationary amplitude jumps in both directions of 
increasing and decreasing of external frequencies in transition regimes, mutual 
interaction of both time harmonics in this regimes, determines the behavior of the 
energies parts of the system. All the reduced values of the energies relay on the shape 
of time harmonics and/or their time derivatives, expressions (6a-i), and their changes 
determines changes and energies jumps and transfers between system parts.  

Time function of the first eigen shape of oscillation, whose shapes in the resonant 
region of the second excitation frequency are presented in Fig. 10, compounds of two 
mutually connected time harmonics. The time harmonics vary shapes by passage 
through resonant regions and the curves are presented for both harmonics at the Figs. 
8 and 9. We can conclude that the first time harmonic has a bigger influence since the 
shape of the time function, Fig. 10, is more similar to the shape of the first nonlinear 
time-harmonic, Fig. 8, than to the shape of the second time harmonics, Fig. 9. Since 
the reduced value of the potential energy of the first body, Eq. (6f), is directly 
proportional to the value of the time function corresponding to the particular eigen 
shape of oscillation we can suggest that the shape of that energy is similar to the 
shapes presented in Fig. 10, where we notice numerous jumps of energy by passage 
trough this resonant region. The further analysis can be performed also for first 
derivatives of time harmonics and functions which gives shapes similar to shapes of 
reduced values of kinetic energies Eqs. (6a, b) and energies of dissipation Eqs. (6h, i). 
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shape of the time function, Fig. 10, is more similar to the shape of the first nonlinear 
time-harmonic, Fig. 8, than to the shape of the second time harmonics, Fig. 9. Since 
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proportional to the value of the time function corresponding to the particular eigen 
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harmonics vary shapes by passage through resonant regions and the curves 
are presented for both harmonics at the Figs. 8 and 9. We can conclude that 
the first time harmonic has a bigger influence since the shape of the time 
function, Fig. 10, is more similar to the shape of the first nonlinear time-
harmonic, Fig. 8, than to the shape of the second time harmonics, Fig. 9. 
Since the reduced value of the potential energy of the first body, Eq. (6f ), 
is directly proportional to the value of the time function corresponding 
to the particular eigen shape of oscillation we can suggest that the shape 
of that energy is similar to the shapes presented in Fig. 10, where we 
notice numerous jumps of energy by passage trough this resonant region. 
The further analysis can be performed also for first derivatives of time 
harmonics and functions which gives shapes similar to shapes of reduced 
values of kinetic energies Eqs. (6a, b) and energies of dissipation Eqs. 
(6h, i). Considering the length of this review paper the curves of that time 
derivatives were not presented but of course, it is not hard to get them once 
we have established mathematical models, Eqs. (4) and its first asimptotic 
aproximations for amplitude and phase Eqs. (5) of proposed solutions Eqs. 
(3). On the basis of the complete presentation, we could get the impression of 
the energy transfer in this complex dynamical behavior of hybrid structures 
of coupled deformable bodies.

Figure 8. Time function of the first harmonics
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2.4 Multi-parametric analysis of Identical Synchronization (IS) in double 
plate systems with layer of rolling visco-elastic non-linear elements 

The first asymptotic solutions for amplitude and phase changes (5) stand for 
transition changes in resonant regimes for a small time interval thus we can use them 
for analysis of local behaviour of system dynamics. However, the global behaviour of 
system dynamics play important role in many application and real consumption of 
construction. For instance, identical synchronization (IS) can only be examined on 
long time scales and shows global dynamics possibilities of adjustment of system 
parts with an external signal. Once established IS can be changed by parameter 
alteration and there exists parameter regions that ensure conditions for IS even though 
the initial conditions of coupled dynamics can be different. To explore these 
parameters basin that gives IS it is suitable to use a multi-parametric analysis of the 
system based on the established mathematical model (4).  

Possibilities for IS differ of the nature of coupling elements as it was verified in 
[29]. In our example the coupling element is rather complicate with the dynamic, 
static, nonlinear and damping properties, Fig. 1.d*.   Such kind of element should be 
the represent of material properties such are nonlinear elasticity, viscosity and rolling 
of connected material.  

This example with forced plates, with external forces in opposite direction, coupled 
with layer of rolling visco-elastic nonlinear elements presented with coupled time 
domain DE (4) for one nm -mode of oscillation may be explored in a sense of 
synchronization possibilities by changing the parameters of coupling. Here it is 
interesting phenomena that we expect resynchronization i.e., the situation when 
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2.4. Multi-parametric analysis of Identical Synchronization (IS) in 
double plate systems with layer of rolling visco-elastic non-linear 
elements. The first asymptotic solutions for amplitude and phase changes (5) 
stand for transition changes in resonant regimes for a small time interval thus 
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Considering the length of this review paper the curves of that time derivatives were 
not presented but of course, it is not hard to get them once we have established 
mathematical models, Eqs. (4) and its first asimptotic aproximations for amplitude 
and phase Eqs. (5) of proposed solutions Eqs. (3). On the basis of the complete 
presentation, we could get the impression of the energy transfer in this complex 
dynamical behavior of hybrid structures of coupled deformable bodies.  
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for analysis of local behaviour of system dynamics. However, the global behaviour of 
system dynamics play important role in many application and real consumption of 
construction. For instance, identical synchronization (IS) can only be examined on 
long time scales and shows global dynamics possibilities of adjustment of system 
parts with an external signal. Once established IS can be changed by parameter 
alteration and there exists parameter regions that ensure conditions for IS even though 
the initial conditions of coupled dynamics can be different. To explore these 
parameters basin that gives IS it is suitable to use a multi-parametric analysis of the 
system based on the established mathematical model (4).  

Possibilities for IS differ of the nature of coupling elements as it was verified in 
[29]. In our example the coupling element is rather complicate with the dynamic, 
static, nonlinear and damping properties, Fig. 1.d*.   Such kind of element should be 
the represent of material properties such are nonlinear elasticity, viscosity and rolling 
of connected material.  

This example with forced plates, with external forces in opposite direction, coupled 
with layer of rolling visco-elastic nonlinear elements presented with coupled time 
domain DE (4) for one nm -mode of oscillation may be explored in a sense of 
synchronization possibilities by changing the parameters of coupling. Here it is 
interesting phenomena that we expect resynchronization i.e., the situation when 
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we can use them for analysis of local behaviour of system dynamics. However, the 
global behaviour of system dynamics play important role in many application and 
real consumption of construction. For instance, identical synchronization (IS) can 
only be examined on long time scales and shows global dynamics possibilities of 
adjustment of system parts with an external signal. Once established IS can be 
changed by parameter alteration and there exists parameter regions that ensure 
conditions for IS even though the initial conditions of coupled dynamics can be 
different. To explore these parameters basin that gives IS it is suitable to use a multi-
parametric analysis of the system based on the established mathematical model (4). 

Figure 11. The characteristic synchronization attractor in a time domain of 
plates forced oscillations with the same external forces amplitudes and  proper 
diagrams of synchronization error 
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synchronization diagram is in the second and fourth quadrant because of opposite 
direction of forces. The value of resynchronization error is: 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
conditions:𝑇𝑇�(𝑡𝑡) = 0;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0; d* same parameters as for 
c* and different initial conditions 𝑇𝑇�(𝑡𝑡) = 0.3;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0  
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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direction of forces. The value of resynchronization error is: 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
conditions:𝑇𝑇�(𝑡𝑡) = 0;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0; d* same parameters as for 
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
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� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
conditions:𝑇𝑇�(𝑡𝑡) = 0;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0; d* same parameters as for 
c* and different initial conditions 𝑇𝑇�(𝑡𝑡) = 0.3;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0  
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
conditions:𝑇𝑇�(𝑡𝑡) = 0;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0; d* same parameters as for 
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
conditions:𝑇𝑇�(𝑡𝑡) = 0;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0; d* same parameters as for 
c* and different initial conditions 𝑇𝑇�(𝑡𝑡) = 0.3;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0  

 
 

𝑧𝑧�(𝑡𝑡) = � �
�� (−𝑇𝑇� − 𝑇𝑇�)� + �−𝑇̇𝑇� − 𝑇̇𝑇��

�
 (7) 

The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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synchronization diagram is in the second and fourth quadrant because of opposite 
direction of forces. The value of resynchronization error is: 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
conditions:𝑇𝑇�(𝑡𝑡) = 0;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0; d* same parameters as for 
c* and different initial conditions 𝑇𝑇�(𝑡𝑡) = 0.3;𝑇𝑇�(𝑡𝑡) = 0.2;𝑇̇𝑇�(𝑡𝑡) = 𝑇̇𝑇�(𝑡𝑡) = 0  
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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direction of forces. The value of resynchronization error is: 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
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� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
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The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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Possibilities for IS differ of the nature of coupling elements as it was verified in 
[29]. In our example the coupling element is rather complicate with the dynamic, 
static, nonlinear and damping properties, Fig. 1.d*.   Such kind of element should 
be the represent of material properties such are nonlinear elasticity, viscosity and 
rolling of connected material. 

This example with forced plates, with external forces in opposite direction, 
coupled with layer of rolling visco-elastic nonlinear elements presented with 
coupled time domain DE (4) for one 

Julijana Simonović 

44 
constants all rely on coefficients of coupling properties via cofactors 𝐾𝐾��

(�), that 𝛿𝛿�
depends of damping coefficients of visco-elastic layer 𝛿𝛿�(�), 𝜀𝜀𝜀𝜀� depend of excited 
amplitudes, and 𝛼𝛼�, 𝛽𝛽�  of non-linearity layer properties. Coefficients 𝛼𝛼� , 𝛽𝛽�  are 
coefficients of eigen time mode mutual interactions.  

It was observed the case when external distributed two-frequencies force in one 
eigen body amplitude mode    acts at normal direction and along middle plain (line) of 
upper body with frequencies near eigen circular frequencies of corresponding coupled 
linearized plate systems 𝛺𝛺� ≈ 𝑝̂𝑝� . In this case the lower body is free of load. This 
means that we were observed the passing thought main resonant states by discrete 
changing the values of the forced frequencies. By using the first asymptotic 
approximation of the amplitudes and phases of multi frequency particular solutions of 
eigen time functions of one eigen amplitude shape  as well as of the non-linear system 
dynamics (5), we are in position to make analytical analysis of the stability of 
nonlinear modes in stationary regimes and to present results of theirs numerical 
solutions, for particular eigen time modes in one eigen amplitude mode of 
oscillations,             𝑛𝑛, 𝑚𝑚 = 1,2,3 …∞ for plates (membranes) or 𝑛𝑛 = 1,2,3 …∞ for 
beams (belts).  

 2.1. Multi-frequency analysis of the stationary resonant regimes of transversal 
vibrations of a double body system 

For the analysis of the stationary resonant regimes of eigen time function mode 
oscillations correspond to one eigen amplitude function we were used analysis of 
amplitudes and phases for system of differential equations (5) in first approximation, 
obtained by Krilov-Bogolyubov-Mitropolyski method.  For that reason, we equal the 
right-hand sides of differential equations (5) with null. Eliminating the phases 𝜙𝜙�  and 
𝜙𝜙� we obtained system of two non-linear algebraic equations by unknown amplitudes 
𝑎𝑎� and 𝑎𝑎� (for detail see Refs. [9–26]). Also, with elimination of amplitudes 𝑎𝑎� and 
𝑎𝑎�, we obtained the algebraic equations for phases 𝜙𝜙�and 𝜙𝜙� in the case of two-
frequency forced oscillations in stationary regime of one eigen (𝑛𝑛𝑛𝑛 for plates or 
mode 𝑛𝑛 for beams) mode of double bodies system oscillations. Solving these 
algebraic systems by numerical Newton-Kantorovic's method in computer program 
Mathematica, we obtained stationary amplitudes and phases curves of two-
frequencies resonant regime of one eigen amplitude mode oscillations in double 
bodies system coupling with rolling visco-elastic nonlinear layer depending on 
frequencies of external excitation force in one amplitude mode and distributed along 
upper middle plate surface. If we fixed the value of on external excitation frequency 
of two possible, we obtained amlitude- and phase-frequency curves of stationary 
resonant vibration regime in the following forms: 

1* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 
eigen time function modes in one amplitude mode are denoted by: 

𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝑎𝑎� = 𝑓𝑓�(𝛺𝛺�), 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�) and 𝜑𝜑� = 𝑓𝑓�(𝛺𝛺�)  and 
2* for 𝛺𝛺� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proper  amplirude-frequency and phase-frequency curves of 

eigen time function modes in one amplitude mode are denoted by: 

-mode of oscillation may be explored in 
a sense of synchronization possibilities by changing the parameters of coupling. 
Here it is interesting phenomena that we expect resynchronization i.e., the 
situation when synchronization diagram is in the second and fourth quadrant 
because of opposite direction of forces. The value of resynchronization error is:
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synchronization diagram is in the second and fourth quadrant because of opposite 
direction of forces. The value of resynchronization error is: 
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Figure 11.   The characteristic synchronization attractor in a time domain of plates forced 

oscillations with the same external forces amplitudes and  proper diagrams of 
synchronization error  tz and function  tk  for : 𝜅𝜅� = 𝜅𝜅� = 0.835 and                
𝑎𝑎�(�)
� = 0.0468 and different initial conditions : a* 𝑇𝑇�(0) = 𝑇𝑇�(0) = 0.4;𝑇̇𝑇�(0) =

𝑇̇𝑇�(0) = 0.4 and b* 𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8;𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4 and c* different 
parameter values 𝑎𝑎(�)

� = 1.23, 𝛿𝛿(�) = 𝛿𝛿(�) = 0.25 and 𝜅𝜅� = 𝜅𝜅� = 0 , and initial 
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𝑧𝑧�(𝑡𝑡) = � �
�� (−𝑇𝑇� − 𝑇𝑇�)� + �−𝑇̇𝑇� − 𝑇̇𝑇��

�
 (7) 

The shape of attractors resynchronization can be changed by changing the 
coefficients of static and dynamic coupling.  The form of the characteristic attractor 
do not changed by choosing the different initial values for proper relations of dynamic 
and static properties of coupling  but its dimensions changed, Fig. 11.a* and b*. 
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with greater absolute values for bigger synchronization attractor and changed its 
phase modulation by changing initial values. The alteration and changes of 
parameters` value in the system (4) can be simultaneously explored in Mathematica 
program by defining as many parameters as necessary and them simply by scrolling 
the left-hand side buttons, Fig. 11. which corresponds to parameter values we can 
visualize the synchronization diagram changes in time. 

By increasing the coefficient of damping the  dimensoins of synchronization 
attractor decrease. Sufficiently large value of damping coefficient might introduce the 
synchronization instead resynchronization. Since, dimensoins of resynchronization 
attractor in a second and fourth quadrant decrease by increasing the coefficient of 
damping. So its dimension in a diagonal direction of first and third quadrant increase 
and we have synchronization attractor and presents error of synchronization (6) with 
time function 𝑇𝑇(�)(𝑡𝑡) as a variable. 

We have here transition from attraction to repulsion in a time domain of plates 
dynamics at a critical coupling strength. This might be clearer by comparing the 
diagrams from the Figs.11. b* and 12. which are done for all same values of 
parameters and initial conditions but for different value of damping coefficient of 
coupling.  

The scroll labels in the Figs. 10 and 11 have the meaning of coefficient values 
which could be easy changed, and the diagram of synchronization gives the 
information of synchronization possibilities. These ideas of using the possibilities of 
the Mathematica program for easy and fast checking of synchronization phenomena 
may have the great practical importance.  
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Figure 12.   Diagrams of time function 𝑇𝑇� − 𝑇𝑇� , 𝑇̇𝑇� − 𝑇̇𝑇� and synchronization error function 
of forced plate system coupled with layer of rolling visco-elastic nonlinear 
elements. With dynamic and static coefficients of coupling: 𝜅𝜅� = 𝜅𝜅� = 0.835 and 
𝑎𝑎�(�)
� = 0.0468, whereby the coefficient of nonlinear coupling has value 𝜷𝜷�𝒊𝒊 = 𝟎𝟎. 𝟏𝟏 ,

  
are quasi periodic functions with greater absolute values for bigger 
synchronization attractor and changed its phase modulation by changing 
initial values. The alteration and changes of parameters` value in the system 
(4) can be simultaneously explored in Mathematica program by defining as 
many parameters as necessary and them simply by scrolling the left-hand side 
buttons, Fig. 11. which corresponds to parameter values we can visualize the 
synchronization diagram changes in time.

By increasing the coefficient of damping the  dimensoins of synchronization 
attractor decrease. Sufficiently large value of damping coefficient might 
introduce the synchronization instead resynchronization. Since, dimensoins 
of resynchronization attractor in a second and fourth quadrant decrease by 
increasing the coefficient of damping. So its dimension in a diagonal direction 
of first and third quadrant increase and we have synchronization attractor and 
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 as a variable.
We have here transition from attraction to repulsion in a time domain 

of plates dynamics at a critical coupling strength. This might be clearer by 
comparing the diagrams from the Figs. 11. b* and 12. which are done for all 
same values of parameters and initial conditions but for different value of 
damping coefficient of coupling. 

The scroll labels in the Figs. 10 and 11 have the meaning of coefficient 
values which could be easy changed, and the diagram of synchronization 
gives the information of synchronization possibilities. These ideas of using 
the possibilities of the Mathematica program for easy and fast checking of 
synchronization phenomena may have the great practical importance.
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� = 0.0468, whereby the coefficient of nonlinear coupling has value 𝜷𝜷�𝒊𝒊 = 𝟎𝟎. 𝟏𝟏 ,
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Figure 12.   Diagrams of time function 𝑇𝑇� − 𝑇𝑇� , 𝑇̇𝑇� − 𝑇̇𝑇� and synchronization error function 
of forced plate system coupled with layer of rolling visco-elastic nonlinear 
elements. With dynamic and static coefficients of coupling: 𝜅𝜅� = 𝜅𝜅� = 0.835 and 
𝑎𝑎�(�)
� = 0.0468, whereby the coefficient of nonlinear coupling has value 𝜷𝜷�𝒊𝒊 = 𝟎𝟎. 𝟏𝟏 , , and damping coefficient is 
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Synchronization error and value 𝑘𝑘�(𝑡𝑡) = |−𝑇𝑇� − 𝑇𝑇�|  are quasi periodic functions 
with greater absolute values for bigger synchronization attractor and changed its 
phase modulation by changing initial values. The alteration and changes of 
parameters` value in the system (4) can be simultaneously explored in Mathematica 
program by defining as many parameters as necessary and them simply by scrolling 
the left-hand side buttons, Fig. 11. which corresponds to parameter values we can 
visualize the synchronization diagram changes in time. 

By increasing the coefficient of damping the  dimensoins of synchronization 
attractor decrease. Sufficiently large value of damping coefficient might introduce the 
synchronization instead resynchronization. Since, dimensoins of resynchronization 
attractor in a second and fourth quadrant decrease by increasing the coefficient of 
damping. So its dimension in a diagonal direction of first and third quadrant increase 
and we have synchronization attractor and presents error of synchronization (6) with 
time function 𝑇𝑇(�)(𝑡𝑡) as a variable. 

We have here transition from attraction to repulsion in a time domain of plates 
dynamics at a critical coupling strength. This might be clearer by comparing the 
diagrams from the Figs.11. b* and 12. which are done for all same values of 
parameters and initial conditions but for different value of damping coefficient of 
coupling.  
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𝑎𝑎�(�)
� = 0.0468, whereby the coefficient of nonlinear coupling has value 𝜷𝜷�𝒊𝒊 = 𝟎𝟎. 𝟏𝟏 ,

and damping coefficient is 2δ�(�) = 4 with initial conditions   𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8; 
𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4  
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� = 0.0468, whereby the coefficient of nonlinear coupling has value 𝜷𝜷�𝒊𝒊 = 𝟎𝟎. 𝟏𝟏 ,

and damping coefficient is 2δ�(�) = 4 with initial conditions   𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.8; 
𝑇𝑇�(0) = 𝑇̇𝑇�(0) = 0.4  

3. Models of lattice of non-linear chains of material particles

The proposed multi-parametric analysis, in the previous section applied to 
global dynamics identical synchronization of coupled bodies, is applicable for 
research of IS of the systems with more degree of freedom and similar parameters 
of elastic, viscose, and dynamic coupling that can be simultaneously examined. The 
next model of interests is the model of chain lattice composed of the four chains 
with eleven material particles, as it was proposed by Simonovic [18]. The chains are 
orthogonally crossed on the third and the ninth particles noted as the knots, so there 
is two horizontal and two vertical chains, Fig. 13. Thus, we have forty-four coupled 
equations of motions in the form:
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Investigation of dynamics of chains of material particles in the systems with more 
than three degrees of freedom, even in the field of classical and linear chain forced 
dynamics, is important not only for mechanical signal processing, but also for electri-
cal signal processing and signal filtering, for processing biodynamical signals in life 
systems (DNA double helix chains [[19], biodynamical chain oscillators  [20–21]) 
and also for university teaching and integrations of scientific results in different scien-
tific fields. 

To solve system of coupled differential equations (8) we were forced to use numer-
ical simulation to obtain conclusions about possibilities of knots IS. We assume that 
horizontal and vertical directions of motion are independent, so for a general trajecto-
ry of knots motions we sum of the solutions from independent directions. For possible 
identical synchronization of vertical knots we are looking for the equality 𝑥𝑥�(𝑡𝑡) +
𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) or 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and for possible syn-
chronization of horizontal knots 𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) or 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) =
𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and similar for the opposite combinations of knots. We also can pro-
vide different direction and position of the external excitation by changing the angle 
of attack on the particles 

ij  and also position of the forces itself, Fig.13. 
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Figure 13.   Crossed chains with knot external excitation or with excitation in the middle of 
the chains 
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Investigation of dynamics of chains of material particles in the systems with 
more than three degrees of freedom, even in the field of classical and linear chain 
forced dynamics, is important not only for mechanical signal processing, but also for 
electrical signal processing and signal filtering, for processing biodynamical signals 
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time function 𝑇𝑇(�)(𝑡𝑡) as a variable. 

We have here transition from attraction to repulsion in a time domain of plates 
dynamics at a critical coupling strength. This might be clearer by comparing the 
diagrams from the Figs.11. b* and 12. which are done for all same values of 
parameters and initial conditions but for different value of damping coefficient of 
coupling.  

Out[112]=

koef.nelinearnosti sprege

amp.prinude na gornjoj ploči

amp.prinude na donjoj ploči

koef.prigušenja

4.

koef.dinamičke sprege

koef.statičke sprege

t1 1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Out[113]=

koef.nelinearnosti sprege

amp.prinude na gornjoj ploči

amp.prinude na donjoj ploči

koef.prigušenja

4.

koef.dinamičke sprege

0.835

koef.statičke sprege

0.0468

t1

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Out[116]=

koef.nelinearnosti sprege

amp.prinude na gornjoj ploči

amp.prinude na donjoj ploči

koef.prigušenja

koef.dinamičke sprege

koef.statičke sprege

t1

0 50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

1T

2T

1T  

2T

 tz

t

Figure 12.   Diagrams of time function 𝑇𝑇� − 𝑇𝑇� , 𝑇̇𝑇� − 𝑇̇𝑇� and synchronization error function 
of forced plate system coupled with layer of rolling visco-elastic nonlinear 
elements. With dynamic and static coefficients of coupling: 𝜅𝜅� = 𝜅𝜅� = 0.835 and 
𝑎𝑎�(�)
� = 0.0468, whereby the coefficient of nonlinear coupling has value 𝜷𝜷�𝒊𝒊 = 𝟎𝟎. 𝟏𝟏 ,
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in life systems (DNA double helix chains [19], biodynamical chain oscillators  [20–
21]) and also for university teaching and integrations of scientific results in different 
scientific fields.

To solve system of coupled differential equations (8) we were forced to use 
numerical simulation to obtain conclusions about possibilities of knots IS. We 
assume that horizontal and vertical directions of motion are independent, so for 
a general trajectory of knots motions we sum of the solutions from independent 
directions. For possible identical synchronization of vertical knots we are looking for 
the equality 
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numerical simulation to obtain conclusions about possibilities of knots IS. We assume 
that horizontal and vertical directions of motion are independent, so for a general 
trajectory of knots motions we sum of the solutions from independent directions. For 
possible identical synchronization of vertical knots we are looking for the equality 
𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) or 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and for 
possible synchronization of horizontal knots 𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) or 
𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and similar for the opposite combinations of knots. 
We also can provide different direction and position of the external excitation by 
changing the angle of attack on the particles 

ij  and also position of the forces itself, 

Fig.13. 

Figure 13.   Crossed chains with knot external excitation or with excitation in the middle of 
the chains 
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3 Models of lattice of non-linear chains of material particles 

The proposed multi-parametric analysis, in the previous section applied to global 
dynamics identical synchronization of coupled bodies, is applicable for research of IS 
of the systems with more degree of freedom and similar parameters of elastic, viscose, 
and dynamic coupling that can be simultaneously examined. The next model of 
interests is the model of chain lattice composed of the four chains with eleven 
material particles, as it was proposed by Simonovic [18]. The chains are orthogonally 
crossed on the third and the ninth particles noted as the knots, so there is two 
horizontal and two vertical chains, Fig. 13. Thus, we have forty-four coupled 
equations of motions in the form: 
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Investigation of dynamics of chains of material particles in the systems with more 
than three degrees of freedom, even in the field of classical and linear chain forced 
dynamics, is important not only for mechanical signal processing, but also for 
electrical signal processing and signal filtering, for processing biodynamical signals in 
life systems (DNA double helix chains [[19], biodynamical chain oscillators  [20–21]) 
and also for university teaching and integrations of scientific results in different 
scientific fields. 

To solve system of coupled differential equations (8) we were forced to use 
numerical simulation to obtain conclusions about possibilities of knots IS. We assume 
that horizontal and vertical directions of motion are independent, so for a general 
trajectory of knots motions we sum of the solutions from independent directions. For 
possible identical synchronization of vertical knots we are looking for the equality 
𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) or 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and for 
possible synchronization of horizontal knots 𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) or 
𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and similar for the opposite combinations of knots. 
We also can provide different direction and position of the external excitation by 
changing the angle of attack on the particles 

ij  and also position of the forces itself, 

Fig.13. 

Figure 13.   Crossed chains with knot external excitation or with excitation in the middle of 
the chains 
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3 Models of lattice of non-linear chains of material particles 

The proposed multi-parametric analysis, in the previous section applied to global 
dynamics identical synchronization of coupled bodies, is applicable for research of IS 
of the systems with more degree of freedom and similar parameters of elastic, viscose, 
and dynamic coupling that can be simultaneously examined. The next model of 
interests is the model of chain lattice composed of the four chains with eleven 
material particles, as it was proposed by Simonovic [18]. The chains are orthogonally 
crossed on the third and the ninth particles noted as the knots, so there is two 
horizontal and two vertical chains, Fig. 13. Thus, we have forty-four coupled 
equations of motions in the form: 
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Investigation of dynamics of chains of material particles in the systems with more 
than three degrees of freedom, even in the field of classical and linear chain forced 
dynamics, is important not only for mechanical signal processing, but also for 
electrical signal processing and signal filtering, for processing biodynamical signals in 
life systems (DNA double helix chains [[19], biodynamical chain oscillators  [20–21]) 
and also for university teaching and integrations of scientific results in different 
scientific fields. 

To solve system of coupled differential equations (8) we were forced to use 
numerical simulation to obtain conclusions about possibilities of knots IS. We assume 
that horizontal and vertical directions of motion are independent, so for a general 
trajectory of knots motions we sum of the solutions from independent directions. For 
possible identical synchronization of vertical knots we are looking for the equality 
𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) or 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and for 
possible synchronization of horizontal knots 𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) or 
𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and similar for the opposite combinations of knots. 
We also can provide different direction and position of the external excitation by 
changing the angle of attack on the particles 

ij  and also position of the forces itself, 

Fig.13. 

Figure 13.   Crossed chains with knot external excitation or with excitation in the middle of 
the chains 
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3 Models of lattice of non-linear chains of material particles 

The proposed multi-parametric analysis, in the previous section applied to global 
dynamics identical synchronization of coupled bodies, is applicable for research of IS 
of the systems with more degree of freedom and similar parameters of elastic, viscose, 
and dynamic coupling that can be simultaneously examined. The next model of 
interests is the model of chain lattice composed of the four chains with eleven 
material particles, as it was proposed by Simonovic [18]. The chains are orthogonally 
crossed on the third and the ninth particles noted as the knots, so there is two 
horizontal and two vertical chains, Fig. 13. Thus, we have forty-four coupled 
equations of motions in the form: 
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 for   𝑖𝑖 = 1. .4, 𝑗𝑗 = 1. . . .11  (8) 

Investigation of dynamics of chains of material particles in the systems with more 
than three degrees of freedom, even in the field of classical and linear chain forced 
dynamics, is important not only for mechanical signal processing, but also for 
electrical signal processing and signal filtering, for processing biodynamical signals in 
life systems (DNA double helix chains [[19], biodynamical chain oscillators  [20–21]) 
and also for university teaching and integrations of scientific results in different 
scientific fields. 

To solve system of coupled differential equations (8) we were forced to use 
numerical simulation to obtain conclusions about possibilities of knots IS. We assume 
that horizontal and vertical directions of motion are independent, so for a general 
trajectory of knots motions we sum of the solutions from independent directions. For 
possible identical synchronization of vertical knots we are looking for the equality 
𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) or 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and for 
possible synchronization of horizontal knots 𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) or 
𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and similar for the opposite combinations of knots. 
We also can provide different direction and position of the external excitation by 
changing the angle of attack on the particles 

ij  and also position of the forces itself, 

Fig.13. 

Figure 13.   Crossed chains with knot external excitation or with excitation in the middle of 
the chains 
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and similar for the opposite combinations of 
knots. We also can provide different direction and position of the external excitation 
by changing the angle of attack on the particles ijα  and also position of the forces 
itself, Fig. 13.

Figure 13. Crossed chains with knot external excitation or with excitation in 
the middle of the chains

In the left part of the Fig. 13 all four knots are attacked with external forces and 
we changed amplitudes and angles of attack like as values of coupling coefficients 
to synchronize them. The right part of the Fig. 13 presents possible attacks on 
the middles of the vertical chains, which perhaps give possibility of the diagonal 
symmetry of the lattice with synchrony of the opposite knots.

We were looking for the diagonal

Julijana Simonović 

58 
In the left part of the Fig.13 all four knots are attacked with external forces and we 

changed amplitudes and angles of attack like as values of coupling coefficients to 
synchronize them. The right part of the Fig. 13 presents possible attacks on the 
middles of the vertical chains, which perhaps give possibility of the diagonal 
symmetry of the lattice with synchrony of the opposite knots.  

 

Figure 14.   Synchronization attractors for knots from left vertical chain. External excitation 
acts on all four nodes. 

We were looking for the diagonal𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) for exploration 
of synchronization of nodes on first vertical chain (nodes 33 and 39). That was natu-
rally possible in the completely symmetric lattice when external excitations perform 
for notes in the same manner. The nodes adjust the resulting movements, and the 
synchronization attractor is visible after transition changes, Fig. 14. But for the value 
of the coefficient of linear coupling larger than 2.08, Fig. 14, middle part, the diagonal 
attractor is possible; the identical synchronisation is reached after some initial period 
of time called synchronization time. By increasing the damping coefficient, the syn-
chronisation time is smaller, the nodes are synchronised faster when the coupling is 
with greater damping coefficient. The following observation was IS of the opposite 
nodes 33 and 99, Fig.15, for the same case of symmetrically excited lattice. Synchro-
nization of opposite nodes is less possible even though for larger values of coefficient 
of linear coupling, upper part of the Fig.15. But only increasing the damping coeffi-
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for exploration 
of synchronization of nodes on first vertical chain (nodes 33 and 39). That was 
naturally possible in the completely symmetric lattice when external excitations 
perform for notes in the same manner. The nodes adjust the resulting movements, 
and the synchronization attractor is visible after transition changes, Fig. 14. But for 
the value of the coefficient of linear coupling larger than 2.08, Fig. 14, middle part, 
the diagonal attractor is possible; the identical synchronisation is reached after 
some initial period of time called synchronization time. By increasing the damping 
coefficient, the synchronisation time is smaller, the nodes are synchronised faster 
when the coupling is with greater damping coefficient. The following observation 
was IS of the opposite nodes 33 and 99, Fig. 15, for the same case of symmetrically 
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3 Models of lattice of non-linear chains of material particles 

The proposed multi-parametric analysis, in the previous section applied to global 
dynamics identical synchronization of coupled bodies, is applicable for research of IS 
of the systems with more degree of freedom and similar parameters of elastic, viscose, 
and dynamic coupling that can be simultaneously examined. The next model of 
interests is the model of chain lattice composed of the four chains with eleven 
material particles, as it was proposed by Simonovic [18]. The chains are orthogonally 
crossed on the third and the ninth particles noted as the knots, so there is two 
horizontal and two vertical chains, Fig. 13. Thus, we have forty-four coupled 
equations of motions in the form: 
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 for   𝑖𝑖 = 1. .4, 𝑗𝑗 = 1. . . .11  (8) 

Investigation of dynamics of chains of material particles in the systems with more 
than three degrees of freedom, even in the field of classical and linear chain forced 
dynamics, is important not only for mechanical signal processing, but also for 
electrical signal processing and signal filtering, for processing biodynamical signals in 
life systems (DNA double helix chains [[19], biodynamical chain oscillators  [20–21]) 
and also for university teaching and integrations of scientific results in different 
scientific fields. 

To solve system of coupled differential equations (8) we were forced to use 
numerical simulation to obtain conclusions about possibilities of knots IS. We assume 
that horizontal and vertical directions of motion are independent, so for a general 
trajectory of knots motions we sum of the solutions from independent directions. For 
possible identical synchronization of vertical knots we are looking for the equality 
𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) or 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and for 
possible synchronization of horizontal knots 𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) or 
𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑣𝑣�(𝑡𝑡) and similar for the opposite combinations of knots. 
We also can provide different direction and position of the external excitation by 
changing the angle of attack on the particles 

ij  and also position of the forces itself, 

Fig.13. 

Figure 13.   Crossed chains with knot external excitation or with excitation in the middle of 
the chains 
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excited lattice. Synchronization of opposite nodes is less possible even though for 
larger values of coefficient of linear coupling, upper part of the Fig. 15. But only 
increasing the damping coefficient the IS emerges even for the less values of the 
coupling strength, lower part of Fig. 15 the diagonal of synchronisation is visible.

Figure 14. Synchronization attractors for knots from left vertical chain. 
External excitation acts on all four nodes.

When lattice is not attacked symmetrically, for example when external excitation 
acts on nodes 33, 39 and 99, the IS is impossible, Fig. 16. But after transition changes 
the different forms of phase synchronization are possible and the synchronization 
attractor is visible.

The upper part of Fig. 16 presents phase synchronisation 3:1, and the lower 
part phase synchronisation 1:1. By increasing coefficient of linear coupling the 
possibilities of synchronization increase after transition process, middle part of the 
Fig. 16. Increasing the frequency of excitations, the phase locking 1:1 of nodes gets 
better possibilities.

For the case when external excitations act on the middle of the chains like it 
was presented on the right part of Fig. 13, we have interesting phenomena of initial 
synchronization of knots, the diagonal line that is visible in the beginning of the 
motion, Fig. 17 upper part. In initial periods nodes are synchronize but after some 
period lost IS, it is necessary that signal from external excitation from the middle 
of chain reaches to the node after some initial period and to disturb the synchrony. 
Increasing the time period, we lost synchrony, Fig. 17 lower part.
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In the left part of the Fig.13 all four knots are attacked with external forces and we 

changed amplitudes and angles of attack like as values of coupling coefficients to 
synchronize them. The right part of the Fig. 13 presents possible attacks on the 
middles of the vertical chains, which perhaps give possibility of the diagonal 
symmetry of the lattice with synchrony of the opposite knots.  

 

Figure 14.   Synchronization attractors for knots from left vertical chain. External excitation 
acts on all four nodes. 

We were looking for the diagonal𝑥𝑥�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑦𝑦�(𝑡𝑡) for exploration 
of synchronization of nodes on first vertical chain (nodes 33 and 39). That was natu-
rally possible in the completely symmetric lattice when external excitations perform 
for notes in the same manner. The nodes adjust the resulting movements, and the 
synchronization attractor is visible after transition changes, Fig. 14. But for the value 
of the coefficient of linear coupling larger than 2.08, Fig. 14, middle part, the diagonal 
attractor is possible; the identical synchronisation is reached after some initial period 
of time called synchronization time. By increasing the damping coefficient, the syn-
chronisation time is smaller, the nodes are synchronised faster when the coupling is 
with greater damping coefficient. The following observation was IS of the opposite 
nodes 33 and 99, Fig.15, for the same case of symmetrically excited lattice. Synchro-
nization of opposite nodes is less possible even though for larger values of coefficient 
of linear coupling, upper part of the Fig.15. But only increasing the damping coeffi-
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By increasing coefficient of linear coupling the period of time in a synchrony of nodes 
is longer, Fig. 18, we can notice that the period of time is the same as on the lower part 
of Fig. 17, but there is diagonal line representing IS because of the greater value of the 
coefficient of the linear coupling.

Figure 15. Synchronization attractors for opposite knots 33 and 99. External 
excitation acts on all four nodes.

Figure 16. Synchronization attractors for knots from left vertical chain. 
External excitation acts on nodes 33, 93 and 99.
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cient the IS emerges even for the less values of the coupling strength, lower part of 
Fig. 15 the diagonal of synchronisation is visible. 
When lattice is not attacked symmetrically, for example when external excitation acts 
on nodes 33, 39 and 99, the IS is impossible, Fig.16. But after transition changes the 
different forms of phase synchronization are possible and the synchronization attrac-
tor is visible. 

The upper part of Fig.16 presents phase synchronisation 3:1, and the lower part 
phase synchronisation 1:1. By increasing coefficient of linear coupling the possibili-
ties of synchronization increase after transition process, middle part of the Fig.5. In-
creasing the frequency of excitations, the phase locking 1:1 of nodes gets better pos-
sibilities. 

For the case when external excitations act on the middle of the chains like it was 
presented on the right part of Fig. 13, we have interesting phenomena of initial syn-
chronization of knots, the diagonal line that is visible in the beginning of the motion, 
Fig. 17 upper part. In initial periods nodes are synchronize but after some period lost 
IS, it is necessary that signal from external excitation from the middle of chain reach-
es to the node after some initial period and to disturb the synchrony. Increasing the 
time period, we lost synchrony, Fig. 17 lower part. 

By increasing coefficient of linear coupling the period of time in a synchrony of 
nodes is longer, Fig.18, we can notice that the period of time is the same as on the 
lower part of Fig.17, but there is diagonal line representing IS because of the greater 
value of the coefficient of the linear coupling. 

Figure 15.   Synchronization attractors for opposite knots 33 and 99. External excitation acts 
on all four nodes. 
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Figure 16. Synchronization attractors for knots from left vertical chain. External excitation
acts on nodes 33; 93 and 99. 

Figure 17. Synchronization of nodes on first vertical chain (nodes 33 and 39). External ex-
citations act on middle dots in vertical and horizontal chains 
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Figure 17. Synchronization of nodes on first vertical chain (nodes 33 and 39). 
External excitations act on middle dots in vertical and horizontal chains

Figure 18. Identical synchronization of nodes on first vertical chain (nodes 33 
and 39). External excitations act on middle dots in vertical and horizontal chains

Figure 19. Identical synchronization of nodes on first vertical chain (nodes 
33 and 39). External excitations act on middle dots in vertical chains
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Figure 16. Synchronization attractors for knots from left vertical chain. External excitation
acts on nodes 33; 93 and 99. 

Figure 17. Synchronization of nodes on first vertical chain (nodes 33 and 39). External ex-
citations act on middle dots in vertical and horizontal chains 
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Figure 18.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in vertical and horizontal chains 

Figure 19.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in vertical chains 

Figure 20.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in horizontal chains 

When nodes from vertical chains share the signal from the external excitation that acts 
on the middle point of vertical chain, Fig. 19, then the initial identical synchronization 
is possible with transition to phase synchronization. If we retain all parameters on the 
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Figure 18.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in vertical and horizontal chains 

Figure 19.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in vertical chains 

Figure 20.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in horizontal chains 

When nodes from vertical chains share the signal from the external excitation that acts 
on the middle point of vertical chain, Fig. 19, then the initial identical synchronization 
is possible with transition to phase synchronization. If we retain all parameters on the 
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Figure 20. Identical synchronization of nodes on first vertical chain (nodes 
33 and 39). External excitations act on middle dots in horizontal chains

When nodes from vertical chains share the signal from the external excitation 
that acts on the middle point of vertical chain, Fig. 19, then the initial identical 
synchronization is possible with transition to phase synchronization. If we retain 
all parameters on the same values and only change the position of the external 
excitations that acts on the middle points of the horizontal chains, Fig. 20, then 
we find out identical synchronisation of left vertical nodes. This is because 
excitation is symmetric in the latter case, and in the first case the influence of the 
signal from the parallel chains that has time delay causes the transition to phase 
synchronization. 

The presented numerical simulation was performed to the identical 
synchronization mostly of the nodes from the left vertical chain, but all the given 
conclusions have relevance to synchronization of the other nodes.

4. Population model of bone remodelling

The accomplished knowledge of mathematical modeling of complex 
mechanical systems can be used for modeling of biological complex systems 
detecting the similar behavior in dynamics of system.  Once the mathematical 
model has been established it is possible to analyze its dynamics by using 
multi-parametric analysis as suggested previously. The model in charge is the 
population model of bone cell time behavior under external periodic signal. 

The system of bone cellular communication, which involves at least three 
main cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) 
and orchestrating-osteocytes (OCYs) cells lineage, with their self (autocrine 
signaling) and mutual (paracrine signalling) interactions and their interactions 
with the environment, is complex and elucidate a number of parameters that 
detail the psychological mechanism of bone tissue adaptation processes. One 
cycle of the bone regular turnover, so called bone remodeling, consists of the 
bone resorbing activity of the OCs and the bone forming activity of the OBs, 
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Figure 18.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in vertical and horizontal chains 

Figure 19.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in vertical chains 

Figure 20.   Identical synchronization of nodes on first vertical chain (nodes 33 and 39). Ex-
ternal excitations act on middle dots in horizontal chains 

When nodes from vertical chains share the signal from the external excitation that acts 
on the middle point of vertical chain, Fig. 19, then the initial identical synchronization 
is possible with transition to phase synchronization. If we retain all parameters on the 

In[12]:=

amplitude of excitation on central nod 61h

amplitude of excitation on central nod 61v

amplitude of excitation on central nod 62h

amplitude of excitation on central nod 62v

damping coefficient

coefficient of linear stiffness

1.335

coefficient of nonlinear stiffness

frequence of excitation

angle of attack on nod 61h

angle of attack on nod 61v

angle of attack on nod 62h

angle of attack on nod 62v

t1

296

6 4 2 2 4 6
u3

6

4

2

2

4

6

u9

In[13]:=

amplitude of excitation on central nod 61h

amplitude of excitation on central nod 61v

amplitude of excitation on central nod 62h

amplitude of excitation on central nod 62v

damping coefficient

coefficient of linear stiffness

coefficient of nonlinear stiffness

frequence of excitation

ugao udara na cvor 61h

ugao udara na cvor 61v

ugao udara na cvor 62h

ugao udara na cvor 62v

t1

6 4 2 2 4 6
u3

6

4

2

2

4

6

u9

Out[13]=

amplitude of excitation on central nod 61h

amplitude of excitation on central nod 61v

amplitude of excitation on central nod 62h

amplitude of excitation on central nod 62v

damping coefficient

coefficient of linear stiffness

coefficient of nonlinear stiffness

frequence of excitation

ugao udara na cvor 61h

ugao udara na cvor 61v

ugao udara na cvor 62h

ugao udara na cvor 62v

t1

6 4 2 2 4 6
u3

6

4

2

2

4

6

u9

ix  

iii bcc ,~,

im  

2

iy  

iu  

iv  

31 4
... ...

n

2 31 4
... ...

n

tB y6cos  

y6

tD v6cos  

v6

1

2

3

4

n

1

2

3

4

n









ix  

iii bcc ,~,

im  

2

iy  

iu  

iv  

tA x6cos  

tC u6cos  

x6

u6

31 4
... ...

n

2 31 4
... ...

n

1

2

3

4

n

1

2

3

4

n











Multy-Parametric Analysis of Complex Hybrid Systems Dynamics Under External Excitation62

which are both driven by the signals transduced via OCYs from the external 
loading. The importance of this process goes with the fact that after every 
ten years of adult life the whole skeleton is regained and renewed due to 
this process. The following are the general form of models used by several 
authors [30–31] and references herein] representing the power of analytical 
approaches:

              	
                                                                                                                                                                        (9)
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 
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The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
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mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
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stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 

���
��

= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 

��
��

= −𝑘𝑘�𝑣𝑣� + 𝑘𝑘�𝑣𝑣� for 𝑣𝑣� = �
𝑢𝑢� − 𝑢𝑢�, 𝑖𝑖𝑖𝑖𝑖𝑖� > 𝑢𝑢�

0, 𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑢𝑢�
�,  𝑗𝑗 = 1,2 (9) 

where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�

���𝑢𝑢�
���  and 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�

���𝑢𝑢�
��� ,where 𝛾𝛾��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑗𝑗 = 1,2 are

defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-

, where 

Julijana Simonović 

62 
same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 
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it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  
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trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
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mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 
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0, 𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑢𝑢�
�,  𝑗𝑗 = 1,2 (9) 

where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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��� ,where 𝛾𝛾��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑗𝑗 = 1,2 are

defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 
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= −𝑘𝑘�𝑣𝑣� + 𝑘𝑘�𝑣𝑣� for 𝑣𝑣� = �
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0, 𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑢𝑢�
�,  𝑗𝑗 = 1,2 (9) 

where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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��� ,where 𝛾𝛾��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑗𝑗 = 1,2 are

defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 
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�,  𝑗𝑗 = 1,2 (9) 

where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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��� ,where 𝛾𝛾��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑗𝑗 = 1,2 are

defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 
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0, 𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑢𝑢�
�,  𝑗𝑗 = 1,2 (9) 

where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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��� ,where 𝛾𝛾��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑗𝑗 = 1,2 are

defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 
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where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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��� ,where 𝛾𝛾��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑗𝑗 = 1,2 are

defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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= 𝛼𝛼�𝑓𝑓�(𝑢𝑢�) + 𝑘𝑘 ⋅ 𝑓𝑓��𝑢𝑢�, 𝜇𝜇(𝑡𝑡)� − 𝛽𝛽�𝑢𝑢�      for  𝑖𝑖 = 1,2,3 
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where 𝑢𝑢�  are the densities of OCs, OBs and OCYs for 𝑖𝑖 = 1,2,3, respectively, and 
𝑓𝑓�(𝑢𝑢�) are the functions giving the growth rates which include the interaction between 
cell populations by the biochemical regulators in the form of power law approxima-
tion: 𝑓𝑓�(𝑢𝑢�, 𝑢𝑢�) = 𝑢𝑢�
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defined by their autocrine and paracrine regulation.  The last, so-called bone mass 
equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone- functions as a regulator of the bone-remodeling process and 
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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equation describes the activity of bone resorption and formation where 𝑧𝑧 is total bone 
mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone- can model regulators 
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same values and only change the position of the external excitations that acts on the 
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behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
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remodeling process and includes external signaling transduced via osteocyte activities 
that stimulates the production of OC and OB. This inputs function 𝜇𝜇(𝑡𝑡) can model 
regulators production from osteocytes as well as its regulation by the sclerostin inhibi-
tor.  An explicit functional form for 𝜇𝜇(𝑡𝑡) linked to osteocytes activity is was proposed 
in equation of osteocyte time changes as follow: 
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= 𝛼𝛼��
�� ��������� ����

𝐵𝐵���(����� ��) �1 − �
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+ 𝐴𝐴(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐𝑐) (10) 

where 𝐾𝐾� is the osteocyte carrying capacity. The frequencies, 𝜃𝜃, of the received and 
transduced signal are same in both functions but with some delay represented as phase 
shifting of π/2 or π in the following simulations. Many of the published 
bio/mathematical models represent only free dynamics of the bone cells although the 
evidence of external loading importance already widely exists. By presenting an ex-
perimentally evidenced mathematical model of bone, which includes externally 
forced turnover, we contribute to the realism of modelling. Critically, we approach the 
modelling through both deterministic (9) and (10), as though stochastic methods, 
which allow us to consider the intrinsic noisiness of the discrete process. We use a 
stochastic framework, Fig 21., to simulate the creation and degradation, which encap-
sulates the noisy features of individual cell division and death  [32–34]. 

Figure 21.   Schematic diagram of how the next action in a stochastic simulation is calculat-

ed. The probabilities of all actions (creation and degradation of OC and OB, and/or 

OcY embedding) are calculated using the Law of Mass and Action and subse-

quently normalized to lie within [0, 1]. A uniformly random variable U is chosen 

between zero and one. Wherever this lies in the interval, this will choose the next 

action to occur, namely “Degradation of OC". 

Using the proposed formalism from Fig 18. we are able to extract the stochiometric 
creation and degradation relations for system (8), and present its probabilistic ana-
logue: 
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�� ∅, 𝑖𝑖 = 1, 2, … , 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≠ 𝑖𝑖.  (11) 

System of Eqs. (8) for wo cell lineages, only forming OB and resorbing OC, has 
the following form: 
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remodeling process and includes external signaling transduced via osteocyte activities 
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transduced signal are same in both functions but with some delay represented as phase 
shifting of π/2 or π in the following simulations. Many of the published 
bio/mathematical models represent only free dynamics of the bone cells although the 
evidence of external loading importance already widely exists. By presenting an ex-
perimentally evidenced mathematical model of bone, which includes externally 
forced turnover, we contribute to the realism of modelling. Critically, we approach the 
modelling through both deterministic (9) and (10), as though stochastic methods, 
which allow us to consider the intrinsic noisiness of the discrete process. We use a 
stochastic framework, Fig 21., to simulate the creation and degradation, which encap-
sulates the noisy features of individual cell division and death  [32–34]. 
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remodeling process and includes external signaling transduced via osteocyte activities 
that stimulates the production of OC and OB. This inputs function 𝜇𝜇(𝑡𝑡) can model 
regulators production from osteocytes as well as its regulation by the sclerostin inhibi-
tor.  An explicit functional form for 𝜇𝜇(𝑡𝑡) linked to osteocytes activity is was proposed 
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where 𝐾𝐾� is the osteocyte carrying capacity. The frequencies, 𝜃𝜃, of the received and 
transduced signal are same in both functions but with some delay represented as phase 
shifting of π/2 or π in the following simulations. Many of the published 
bio/mathematical models represent only free dynamics of the bone cells although the 
evidence of external loading importance already widely exists. By presenting an ex-
perimentally evidenced mathematical model of bone, which includes externally 
forced turnover, we contribute to the realism of modelling. Critically, we approach the 
modelling through both deterministic (9) and (10), as though stochastic methods, 
which allow us to consider the intrinsic noisiness of the discrete process. We use a 
stochastic framework, Fig 21., to simulate the creation and degradation, which encap-
sulates the noisy features of individual cell division and death  [32–34]. 
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, of the 
received and transduced signal are same in both functions but with some delay 
represented as phase shifting of π/2 or π in the following simulations. Many of 
the published bio/mathematical models represent only free dynamics of the bone 
cells although the evidence of external loading importance already widely exists. 
By presenting an experimentally evidenced mathematical model of bone, which 
includes externally forced turnover, we contribute to the realism of modelling. 
Critically, we approach the modelling through both deterministic (9) and (10), 
as though stochastic methods, which allow us to consider the intrinsic noisiness 
of the discrete process. We use a stochastic framework, Fig. 21., to simulate the 
creation and degradation, which encapsulates the noisy features of individual 
cell division and death  [32–34].
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same values and only change the position of the external excitations that acts on the 
middle points of the horizontal chains, Fig. 20, then we find out identical synchronisa-
tion of left vertical nodes. This is because excitation is symmetric in the latter case, 
and in the first case the influence of the signal from the parallel chains that has time 
delay causes the transition to phase synchronization.  

The presented numerical simulation was performed to the identical synchronization 
mostly of the nodes from the left vertical chain, but all the given conclusions have 
relevance to synchronization of the other nodes. 

4 Population model of bone remodelling 

The accomplished knowledge of mathematical modeling of complex mechanical 
systems can be used for modeling of biological complex systems detecting the similar 
behavior in dynamics of system.  Once the mathematical model has been established 
it is possible to analyze its dynamics by using multi-parametric analysis as suggested 
previously. The model in charge is the population model of bone cell time behavior 
under external periodic signal.  

The system of bone cellular communication, which involves at least three main 
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs) and orches-
trating-osteocytes (OCYs) cells lineage, with their self (autocrine signaling) and mu-
tual (paracrine signalling) interactions and their interactions with the environment, is 
complex and elucidate a number of parameters that detail the psychological mecha-
nism of bone tissue adaptation processes. One cycle of the bone regular turnover, so 
called bone remodeling, consists of the bone resorbing activity of the OCs and the 
bone forming activity of the OBs, which are both driven by the signals transduced via 
OCYs from the external loading. The importance of this process goes with the fact 
that after every ten years of adult life the whole skeleton is regained and renewed due 
to this process. The following are the general form of models used by several authors 
[30–31] and references herein] representing the power of analytical approaches: 
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mass, 𝑘𝑘�  represents the normalized activities of bone resorption and formation, 𝑢𝑢�rep-
resents the steady states for the OCs and OBs and  𝑘𝑘 is a positive proportionality con-
stant measured in cells day-1. The term 𝜇𝜇(𝑡𝑡) functions as a regulator of the bone-
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Figure 21. Schematic diagram of how the next action in a stochastic simulation 
is calculated. The probabilities of all actions (creation and degradation of OC and 
OB, and/or OcY embedding) are calculated using the Law of Mass and Action and 
subsequently normalized to lie within [0, 1]. A uniformly random variable U is 
chosen between zero and one. Wherever this lies in the interval, this will choose 
the next action to occur, namely “Degradation of OC”.

Using the proposed formalism from Fig. 21. we are able to extract the stochiometric 
creation and degradation relations for system (8), and present its probabilistic 
analogue:
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The unique nontrivial steady states of 𝑢𝑢�could be calculated and in general depends on 
relations of eight different parameters involved in this simple example. The behavior 
of the solution of equations (12) and (13) can be explored by sign of the real part of 
the eigen values of Jacobian matric 𝐽𝐽𝐽𝐽𝐽��, 𝑢𝑢��) of the steady state solutions. The nature 
of the Jacobian matrices’ eigen value depends on the following functions: 
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               

         
 The solution of system (12) and (13) exhibit limit cycle as  𝜓𝜓 passes through 0 per-
forming self-sustained oscillation of number of OC and OB, see Fig.22 a). Also, if 
𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓(Π < 0) solution yields unstable oscillations diverging away from 
the nontrivial steady state solutions 𝑢𝑢�  what defines existence of unstable source (re-
pellers), see Fig. 22 c) and if 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓(Π < 0) solution yields damped oscil-
lations converging to the iu  what defines existence of stable attractors (sinks), Fig. 22 
b). Likewise, if Δ < 0  unstable saddle points can be find. The bifurcation diagram 
for these parameters could be designed based on this analysis but more applicable 
solution for biologist is a tool where they can simultaneously change values of the 
parameters and track the shape of the phase diagram. In such a way find the combina-
tion of parameters value that satisfy desirable dynamics of solution. The multi-
parametric analysis here is proposed where simply by moving sliders for parameter`s 
value we can follow the changes in the dynamics of the OC and OB, and find out the 
same inferences as it comes from structural analysis. (see Fig.22).  

Figure 22.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, b) 𝛾𝛾�� =
1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 𝛾𝛾�� = 1.098and 
𝛽𝛽� = 𝛽𝛽� = 0.028 
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pellers), see Fig. 22 c) and if 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓(Π < 0) solution yields damped oscil-
lations converging to the iu  what defines existence of stable attractors (sinks), Fig. 22 
b). Likewise, if Δ < 0  unstable saddle points can be find. The bifurcation diagram 
for these parameters could be designed based on this analysis but more applicable 
solution for biologist is a tool where they can simultaneously change values of the 
parameters and track the shape of the phase diagram. In such a way find the combina-
tion of parameters value that satisfy desirable dynamics of solution. The multi-
parametric analysis here is proposed where simply by moving sliders for parameter`s 
value we can follow the changes in the dynamics of the OC and OB, and find out the 
same inferences as it comes from structural analysis. (see Fig.22).  

Figure 22.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
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remodeling process and includes external signaling transduced via osteocyte activities 
that stimulates the production of OC and OB. This inputs function 𝜇𝜇(𝑡𝑡) can model 
regulators production from osteocytes as well as its regulation by the sclerostin inhibi-
tor.  An explicit functional form for 𝜇𝜇(𝑡𝑡) linked to osteocytes activity is was proposed 
in equation of osteocyte time changes as follow: 

��
��

= 𝛼𝛼��
�� ��������� ����

𝐵𝐵���(����� ��) �1 − �
��

�
�

+ 𝐴𝐴(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐𝑐) (10) 

where 𝐾𝐾� is the osteocyte carrying capacity. The frequencies, 𝜃𝜃, of the received and 
transduced signal are same in both functions but with some delay represented as phase 
shifting of π/2 or π in the following simulations. Many of the published 
bio/mathematical models represent only free dynamics of the bone cells although the 
evidence of external loading importance already widely exists. By presenting an ex-
perimentally evidenced mathematical model of bone, which includes externally 
forced turnover, we contribute to the realism of modelling. Critically, we approach the 
modelling through both deterministic (9) and (10), as though stochastic methods, 
which allow us to consider the intrinsic noisiness of the discrete process. We use a 
stochastic framework, Fig 21., to simulate the creation and degradation, which encap-
sulates the noisy features of individual cell division and death  [32–34]. 

Figure 21.   Schematic diagram of how the next action in a stochastic simulation is calculat-

ed. The probabilities of all actions (creation and degradation of OC and OB, and/or 

OcY embedding) are calculated using the Law of Mass and Action and subse-

quently normalized to lie within [0, 1]. A uniformly random variable U is chosen 

between zero and one. Wherever this lies in the interval, this will choose the next 

action to occur, namely “Degradation of OC". 

Using the proposed formalism from Fig 18. we are able to extract the stochiometric 
creation and degradation relations for system (8), and present its probabilistic ana-
logue: 
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System of Eqs. (8) for wo cell lineages, only forming OB and resorbing OC, has 
the following form: 
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based on this analysis but more applicable solution for biologist is a tool where 
they can simultaneously change values of the parameters and track the shape 
of the phase diagram. In such a way find the combination of parameters value 
that satisfy desirable dynamics of solution. The multi-parametric analysis here 
is proposed where simply by moving sliders for parameter`s value we can 
follow the changes in the dynamics of the OC and OB, and find out the same 
inferences as it comes from structural analysis. (see Fig. 22).

Figure 22. Phase portraits of OC-OB interaction dynamics for different 
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Figure 25.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, 

Figure 26.   b) 𝛾𝛾�� = 1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 𝛾𝛾�� =
1.098and 𝛽𝛽� = 𝛽𝛽� = 0.028 

The visualization of different system dynamics obtained by small changes of only one 
parameter (effectiveness of osteoclast autocrine signaling 𝛾𝛾�� = 𝑔𝑔��) are presented at 
Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
values for the other parameter ar: 𝛾𝛾�� = 𝑔𝑔�� = −0.5,𝛾𝛾�� = 𝑔𝑔�� = 0,𝛾𝛾�� = 𝑔𝑔�� = 1 
are dimensionless param a 𝛼𝛼� = 𝛼𝛼� = 3,𝛼𝛼� = 𝛼𝛼� = 4,𝛽𝛽� = 𝛽𝛽� = 0.2,𝛽𝛽� = 𝛽𝛽� = 0.02 
have dimension day-1.  The following parameter`s range values are used in this re-
search: 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1.2), 𝛾𝛾�� = 𝑔𝑔�� ∈ (−1; 0), 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 
 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5),𝛽𝛽� = 𝛽𝛽� ∈ (0.1; 0.5),  
𝛽𝛽� = 𝛽𝛽� ∈ (0.01; 1). Initial conditions are constantly [OC(0); OB(0)]=(11; 231) in all 
simulations. However, having in mind the form of function  it is obvious that
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
between 200 and 500 cells. However, using stochastic model Eq. (11) we perform 

parameter (effectiveness of osteoclast autocrine signaling) values: a) 
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same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
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effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
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number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
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The unique nontrivial steady states of 𝑢𝑢�could be calculated and in general depends on 
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lations converging to the iu  what defines existence of stable attractors (sinks), Fig. 22 
b). Likewise, if Δ < 0  unstable saddle points can be find. The bifurcation diagram 
for these parameters could be designed based on this analysis but more applicable 
solution for biologist is a tool where they can simultaneously change values of the 
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Figure 22.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, b) 𝛾𝛾�� =
1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 𝛾𝛾�� = 1.098and 
𝛽𝛽� = 𝛽𝛽� = 0.028 
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Figure 25.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
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Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
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simulations. However, having in mind the form of function  it is obvious that 
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
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rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
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It is possible to perform the changes of any parameter and even of all of them sim-
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interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
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rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
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64 
The unique nontrivial steady states of 𝑢𝑢�could be calculated and in general depends on 
relations of eight different parameters involved in this simple example. The behavior 
of the solution of equations (12) and (13) can be explored by sign of the real part of 
the eigen values of Jacobian matric 𝐽𝐽𝐽𝐽𝐽��, 𝑢𝑢��) of the steady state solutions. The nature 
of the Jacobian matrices’ eigen value depends on the following functions: 

          

   

1 2 1 21 11 2 22 1 2 22 11 12 21 1 2

22
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and trJ J

            

       

               

         
 The solution of system (12) and (13) exhibit limit cycle as  𝜓𝜓 passes through 0 per-
forming self-sustained oscillation of number of OC and OB, see Fig.22 a). Also, if 
𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓(Π < 0) solution yields unstable oscillations diverging away from 
the nontrivial steady state solutions 𝑢𝑢�  what defines existence of unstable source (re-
pellers), see Fig. 22 c) and if 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓(Π < 0) solution yields damped oscil-
lations converging to the iu  what defines existence of stable attractors (sinks), Fig. 22 
b). Likewise, if Δ < 0  unstable saddle points can be find. The bifurcation diagram 
for these parameters could be designed based on this analysis but more applicable 
solution for biologist is a tool where they can simultaneously change values of the 
parameters and track the shape of the phase diagram. In such a way find the combina-
tion of parameters value that satisfy desirable dynamics of solution. The multi-
parametric analysis here is proposed where simply by moving sliders for parameter`s 
value we can follow the changes in the dynamics of the OC and OB, and find out the 
same inferences as it comes from structural analysis. (see Fig.22).  

Figure 22.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, b) 𝛾𝛾�� =
1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 𝛾𝛾�� = 1.098and 
𝛽𝛽� = 𝛽𝛽� = 0.028 
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to be analyzed. This on the other side confirmed that continuous therapies that 
targeted only one parameter most likely would not be appropriate for a long-term 
period treatment.

It is possible to perform the changes of any parameter and even of all of them 
simultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the most 
influencing and most responsible for changes of model dynamics, even if the number of 
parameters or equations in the model enhanced. Obtained conclusions and discussions 
for parameter values and ranges are very applicable for the justification of effectiveness 
of mathematical models and their compliance with in-vivo experiments of bone cells. 
Nevertheless, it should bear in mind that the presented range of parameters for this paper 
are chosen only intuitively and the further readouts from in-vitro experiments could be 
extremely important in order to further validate the model. There also can be mentioned 
that known histopathological samples suggest limited number of cells per one cycle of 
remodeling what puts constraint to the maximal number of OC and OB present in the 
simulations, e.g., 
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Figure 27.    𝛾𝛾�� = 1.098and 𝛽𝛽� = 𝛽𝛽� = 0.028 

The visualization of different system dynamics obtained by small changes of only one 
parameter (effectiveness of osteoclast autocrine signaling 𝛾𝛾�� = 𝑔𝑔��) are presented at 
Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
values for the other parameter ar: 𝛾𝛾�� = 𝑔𝑔�� = −0.5,𝛾𝛾�� = 𝑔𝑔�� = 0,𝛾𝛾�� = 𝑔𝑔�� = 1 
are dimensionless param a 𝛼𝛼� = 𝛼𝛼� = 3,𝛼𝛼� = 𝛼𝛼� = 4,𝛽𝛽� = 𝛽𝛽� = 0.2,𝛽𝛽� = 𝛽𝛽� = 0.02 
have dimension day-1.  The following parameter`s range values are used in this re-
search: 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1.2), 𝛾𝛾�� = 𝑔𝑔�� ∈ (−1; 0), 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 
 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5),𝛽𝛽� = 𝛽𝛽� ∈ (0.1; 0.5),  
𝛽𝛽� = 𝛽𝛽� ∈ (0.01; 1). Initial conditions are constantly [OC(0); OB(0)]=(11; 231) in all 
simulations. However, having in mind the form of function  it is obvious that 
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
between 200 and 500 cells. However, using stochastic model Eq. (11) we perform 

and 

Multi-parametric analysis of complex hybrid systems……. 
65 

Figure 25.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, 

Figure 26.   b) 𝛾𝛾�� = 1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 

Figure 27.    𝛾𝛾�� = 1.098and 𝛽𝛽� = 𝛽𝛽� = 0.028 

The visualization of different system dynamics obtained by small changes of only one 
parameter (effectiveness of osteoclast autocrine signaling 𝛾𝛾�� = 𝑔𝑔��) are presented at 
Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
values for the other parameter ar: 𝛾𝛾�� = 𝑔𝑔�� = −0.5,𝛾𝛾�� = 𝑔𝑔�� = 0,𝛾𝛾�� = 𝑔𝑔�� = 1 
are dimensionless param a 𝛼𝛼� = 𝛼𝛼� = 3,𝛼𝛼� = 𝛼𝛼� = 4,𝛽𝛽� = 𝛽𝛽� = 0.2,𝛽𝛽� = 𝛽𝛽� = 0.02 
have dimension day-1.  The following parameter`s range values are used in this re-
search: 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1.2), 𝛾𝛾�� = 𝑔𝑔�� ∈ (−1; 0), 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 
 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5),𝛽𝛽� = 𝛽𝛽� ∈ (0.1; 0.5),  
𝛽𝛽� = 𝛽𝛽� ∈ (0.01; 1). Initial conditions are constantly [OC(0); OB(0)]=(11; 231) in all 
simulations. However, having in mind the form of function  it is obvious that 
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
between 200 and 500 cells. However, using stochastic model Eq. (11) we perform 

 per one cycle of bone remodeling. Parameters 

Multi-parametric analysis of complex hybrid systems……. 
65 

Figure 25.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, 

Figure 26.   b) 𝛾𝛾�� = 1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 

Figure 27.    𝛾𝛾�� = 1.098and 𝛽𝛽� = 𝛽𝛽� = 0.028 

The visualization of different system dynamics obtained by small changes of only one 
parameter (effectiveness of osteoclast autocrine signaling 𝛾𝛾�� = 𝑔𝑔��) are presented at 
Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
values for the other parameter ar: 𝛾𝛾�� = 𝑔𝑔�� = −0.5,𝛾𝛾�� = 𝑔𝑔�� = 0,𝛾𝛾�� = 𝑔𝑔�� = 1 
are dimensionless param a 𝛼𝛼� = 𝛼𝛼� = 3,𝛼𝛼� = 𝛼𝛼� = 4,𝛽𝛽� = 𝛽𝛽� = 0.2,𝛽𝛽� = 𝛽𝛽� = 0.02 
have dimension day-1.  The following parameter`s range values are used in this re-
search: 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1.2), 𝛾𝛾�� = 𝑔𝑔�� ∈ (−1; 0), 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 
 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5),𝛽𝛽� = 𝛽𝛽� ∈ (0.1; 0.5),  
𝛽𝛽� = 𝛽𝛽� ∈ (0.01; 1). Initial conditions are constantly [OC(0); OB(0)]=(11; 231) in all 
simulations. However, having in mind the form of function  it is obvious that 
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
between 200 and 500 cells. However, using stochastic model Eq. (11) we perform 

 and 

Multi-parametric analysis of complex hybrid systems……. 
65 

Figure 25.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, 

Figure 26.   b) 𝛾𝛾�� = 1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 

Figure 27.    𝛾𝛾�� = 1.098and 𝛽𝛽� = 𝛽𝛽� = 0.028 

The visualization of different system dynamics obtained by small changes of only one 
parameter (effectiveness of osteoclast autocrine signaling 𝛾𝛾�� = 𝑔𝑔��) are presented at 
Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
values for the other parameter ar: 𝛾𝛾�� = 𝑔𝑔�� = −0.5,𝛾𝛾�� = 𝑔𝑔�� = 0,𝛾𝛾�� = 𝑔𝑔�� = 1 
are dimensionless param a 𝛼𝛼� = 𝛼𝛼� = 3,𝛼𝛼� = 𝛼𝛼� = 4,𝛽𝛽� = 𝛽𝛽� = 0.2,𝛽𝛽� = 𝛽𝛽� = 0.02 
have dimension day-1.  The following parameter`s range values are used in this re-
search: 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1.2), 𝛾𝛾�� = 𝑔𝑔�� ∈ (−1; 0), 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 
 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5),𝛽𝛽� = 𝛽𝛽� ∈ (0.1; 0.5),  
𝛽𝛽� = 𝛽𝛽� ∈ (0.01; 1). Initial conditions are constantly [OC(0); OB(0)]=(11; 231) in all 
simulations. However, having in mind the form of function  it is obvious that 
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
between 200 and 500 cells. However, using stochastic model Eq. (11) we perform 

 are responsible for bounding the number of cells as they are cell`s growth and 
death rate coefficients. If the value of parameter 

Multi-parametric analysis of complex hybrid systems……. 
65 

Figure 25.   Phase portraits of OC-OB interaction dynamics for different 𝛾𝛾��parameter (ef-
fectiveness of osteoclast autocrine signaling) values: a) 𝛾𝛾�� = 1.1, 

Figure 26.   b) 𝛾𝛾�� = 1.098and c) 𝛼𝛼� = 1, d) 𝛾𝛾�� = 1.1 and 𝛽𝛽� = 𝛽𝛽� = 0.028 and e) 

Figure 27.    𝛾𝛾�� = 1.098and 𝛽𝛽� = 𝛽𝛽� = 0.028 

The visualization of different system dynamics obtained by small changes of only one 
parameter (effectiveness of osteoclast autocrine signaling 𝛾𝛾�� = 𝑔𝑔��) are presented at 
Fig. 22. 𝛾𝛾��has been changed from the value of 1.1, Fig.22 a) where the solutions 
exhibit limit cycle, also presented at [31], to the value 1.089, Fig.22 b) where yielding 
damped oscillations converging to the nontrivial steady states 𝑢𝑢�is presented. The 
values for the other parameter ar: 𝛾𝛾�� = 𝑔𝑔�� = −0.5,𝛾𝛾�� = 𝑔𝑔�� = 0,𝛾𝛾�� = 𝑔𝑔�� = 1 
are dimensionless param a 𝛼𝛼� = 𝛼𝛼� = 3,𝛼𝛼� = 𝛼𝛼� = 4,𝛽𝛽� = 𝛽𝛽� = 0.2,𝛽𝛽� = 𝛽𝛽� = 0.02 
have dimension day-1.  The following parameter`s range values are used in this re-
search: 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1.2), 𝛾𝛾�� = 𝑔𝑔�� ∈ (−1; 0), 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 
 𝛾𝛾�� = 𝑔𝑔�� ∈ (0; 1), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5), 𝛼𝛼� = 𝛼𝛼� ∈ (0; 5),𝛽𝛽� = 𝛽𝛽� ∈ (0.1; 0.5),  
𝛽𝛽� = 𝛽𝛽� ∈ (0.01; 1). Initial conditions are constantly [OC(0); OB(0)]=(11; 231) in all 
simulations. However, having in mind the form of function  it is obvious that 
changing, for instance value of parameter 𝛽𝛽� = 𝛽𝛽� = 0.028 the response of the sys-
tem dynamic no longer depend on the small changes of the value of 𝛾𝛾�� = 𝑔𝑔��with the 
same sensitivity, Fig.22 e) and d). This is what underlines the importance of such a 
multi-parametric analysis presented herein. As an overall outcome, we can conclude 
that the right relation between parameters, not only value range of one primary pa-
rameter, is valuable to be analyzed. This on the other side confirmed that continuous 
therapies that targeted only one parameter most likely would not be appropriate for a 
long-term period treatment. 

It is possible to perform the changes of any parameter and even of all of them sim-
ultaneously with this procedure what is a very functional way of parameter`s ranges 
interpretation and explanation. By performing similar simulations with all involved 
parameters, it is straightforward to decide which of the parameter`s relation is the 
most influencing and most responsible for changes of model dynamics, even if the 
number of parameters or equations in the model enhanced. Obtained conclusions and 
discussions for parameter values and ranges are very applicable for the justification of 
effectiveness of mathematical models and their compliance with in-vivo experiments 
of bone cells. Nevertheless, it should bear in mind that the presented range of parame-
ters for this paper are chosen only intuitively and the further readouts from in-vitro 
experiments could be extremely important in order to further validate the model. 
There also can be mentioned that known histopathological samples suggest limited 
number of cells per one cycle of remodeling what puts constraint to the maximal 
number of OC and OB present in the simulations, e.g., 𝑂𝑂𝑂𝑂���and 80 < 𝑂𝑂𝑂𝑂���  per 
one cycle of bone remodeling. Parameters 𝛼𝛼�and 𝛽𝛽�are responsible for bounding the 
number of cells as they are cell`s growth and death rate coefficients. If the value of 
parameter 𝛼𝛼� = 1 than it is obvious from the Fig. 22 c) that number of OB is bonded 
between 200 and 500 cells. However, using stochastic model Eq. (11) we perform 

 than it is obvious from the Fig. 
22 c) that number of OB is bonded between 200 and 500 cells. However, using stochastic 
model Eq. (11) we perform cross-correlation analysis of parameter having in mind the 
mentioned variable constraints, the results are presented at Fig 23.

This allows probability that the transition number of cells, in the beginning and 
on the end of cycle, become small than 10 cells in which case predator-pray system 
yields to population extinction after only one cycle. Reasonably, our current research 
is the stochastic analogue Eq. (11) of the system of equations where we run 1000 
simulations to explore these effects and perform cross-correlation simulation of 
parameters to find out appropriate intervals of expected value of parameters. Both 
the stochastics and deterministic trajectories can be found. Any individual stochastic 
trajectory does not match the deterministic solution. However, the average of these 
1000 stochastic trajectories does correspond extremely well with the first peak of 
the deterministic solution, Fig. 24. The Fig. 24 presents benchmarking of the OC and 
OB time series obtained deterministically because of system (8) and with stochastic 
simulations form model (10). In a cycle of remodelling there is good agreement of 
results since the average trajectory of stochastic simulation absolutely corresponds 
to the deterministic solution, bottom diagrams of Fig. 24. However, in the next cycle, 
the population density is insufficient to start a stochastic process. This situation 
moves us further to the in/vivo/vitro experimental evidence that bone remodelling 
is not a self-sustained process rather it is strongly forced by an external signal. 

This comparative analysis of different mathematical approaches shows 
that biological real event can be interpreted with a useful model depending on 
the different real constraints from the biological experiment. If the simulated 
population are large enough then the continuum deterministic approximation is 
appropriate, while if the population number tends to fall below 10 cells then the 
stochastic description is more apt.
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Figure 23. The cross-correlation simulations of the formation/degradation 
rate parameters. Specifically, a more yellow value suggests that the parameters 
are more likely to be chosen from this region of the parameters ranges. Four 
uniformly random variables from intervals: 
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Figure 28.   The cross-correlation simulations of the formation/degradation rate parameters. 
Specifically, a more yellow value suggests that the parameters are more likely to 
be chosen from this region of the parameters ranges. Four uniformly random vari-
ables from intervals: 𝛼𝛼�𝜖𝜖[0; 20], 𝛽𝛽�(𝛽𝛽�)𝜖𝜖[0; 10] i 𝛼𝛼�𝜖𝜖[0; 100] have been used to 
simulate the solutions of the Eq. (1). All accepted and presented solutions satisfy 
conditions: 𝑂𝑂𝑂𝑂��� < 20, 80 < 𝑂𝑂𝑂𝑂��� < 120; 𝑂𝑂𝑂𝑂 > 1 after 1 day, and 𝑂𝑂𝑂𝑂 < 5 
and 𝑂𝑂𝑂𝑂 < 1 for 𝑡𝑡 > 200. 

This comparative analysis of different mathematical approaches shows that biolog-
ical real event can be interpreted with a useful model depending on the different real 
constraints from the biological experiment. If the simulated population are large 
enough then the continuum deterministic approximation is appropriate, while if the 
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straints, the results are presented at Fig 23. 

This allows probability that the transition number of cells, in the beginning and on 
the end of cycle, become small than 10 cells in which case predator-pray system 
yields to population extinction after only one cycle. Reasonably, our current research 
is the stochastic analogue Eq. (11) of the system of equations where we run 1000 
simulations to explore these effects and perform cross-correlation simulation of pa-
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Figure 24. Top: 1000 stochastic simulations (colored lines, extinct after the first 
cycle) and 1 deterministic simulation (thick black line, periodically repeated) of 
the OB-OC model. Initial conditions are constantly (11; 212) in all simulations. 
Bottom: The black line is the same deterministic line illustrated in the top images. 
The green dashed line is the average trajectory extracted from the 1000 stochastic 
simulations. The red dashed lines show one standard deviation about the mean.

Julijana Simonović 

66 
cross-correlation analysis of parameter having in mind the mentioned variable con-
straints, the results are presented at Fig 23. 

This allows probability that the transition number of cells, in the beginning and on 
the end of cycle, become small than 10 cells in which case predator-pray system 
yields to population extinction after only one cycle. Reasonably, our current research 
is the stochastic analogue Eq. (11) of the system of equations where we run 1000 
simulations to explore these effects and perform cross-correlation simulation of pa-
rameters to find out appropriate intervals of expected value of parameters. Both the 
stochastics and deterministic trajectories can be found. Any individual stochastic tra-
jectory does not match the deterministic solution. However, the average of these 1000 
stochastic trajectories does correspond extremely well with the first peak of the de-
terministic solution 

Figure 28.   The cross-correlation simulations of the formation/degradation rate parameters. 
Specifically, a more yellow value suggests that the parameters are more likely to 
be chosen from this region of the parameters ranges. Four uniformly random vari-
ables from intervals: 𝛼𝛼�𝜖𝜖[0; 20], 𝛽𝛽�(𝛽𝛽�)𝜖𝜖[0; 10] i 𝛼𝛼�𝜖𝜖[0; 100] have been used to 
simulate the solutions of the Eq. (1). All accepted and presented solutions satisfy 
conditions: 𝑂𝑂𝑂𝑂��� < 20, 80 < 𝑂𝑂𝑂𝑂��� < 120; 𝑂𝑂𝑂𝑂 > 1 after 1 day, and 𝑂𝑂𝑂𝑂 < 5 
and 𝑂𝑂𝑂𝑂 < 1 for 𝑡𝑡 > 200. 

This comparative analysis of different mathematical approaches shows that biolog-
ical real event can be interpreted with a useful model depending on the different real 
constraints from the biological experiment. If the simulated population are large 
enough then the continuum deterministic approximation is appropriate, while if the 

Multi-parametric analysis of complex hybrid systems……. 
67 

This comparative analysis of different mathematical approaches shows that biolog-
ical real event can be interpreted with a useful model depending on the different real 
constraints from the biological experiment. If the simulated population are large 
enough then the continuum deterministic approximation is appropriate, while if the 
population number tends to fall below 10 cells then the stochastic description is more 
apt. 

Figure 29.   Top: 1000 stochastic simulations (colored lines, extinct after the first cycle) and 
1 deterministic simulation (thick black line, periodically repeated) of the OB-OC 
model. Initial conditions are constantly (11; 212) in all simulations. Bottom: The 
black line is the same deterministic line illustrated in the top images. The green 
dashed line is the average trajectory extracted from the 1000 stochastic simula-
tions. The red dashed lines show one standard deviation about the mean. 

4.1 Non-Homogeneous model of bone cell population 

 If we include osteocytes OcY (Ss), OBs (Bs), OCs (Cs) and preosteoblastic (Ps) 
lineages of cells together with a bone mass equation the system (9) will be system of 
5th order (𝑛𝑛 = 5). Although parameter values exist in the literature, they are mainly 
approximate and are proposed to simplify and justify the model. Further, in all of the 
literature it is assumed that the 𝛾𝛾�� parameters are constant. However, in real bone 
remodelling processes the 𝛾𝛾�� parameters may depend on time and other factors. Un-
fortunately, these parameters cannot be directly measured and must be estimated. 
Thus, although initially we consider constant parameters (which simplifies the math-
ematical treatment and gives a high level of approximation but is useful as a bench-
mark for model validation), we later adapt the first equation of (9) to include the addi-
tional time dependant terms, which are based on the in-vitro experiment of loaded 
OcYs cell culture and adopt the Eq. (10) as system modification.  The modification of 
the model was in editing the power term 𝛾𝛾�� to time dependent oscillatory function 
𝛾𝛾��(1 + sin (𝜃𝜃𝜃𝜃)), which represents transduced signal of OcY, and inserting the me-
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remodelling processes the 𝛾𝛾�� parameters may depend on time and other factors. Un-
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Thus, although initially we consider constant parameters (which simplifies the math-
ematical treatment and gives a high level of approximation but is useful as a bench-
mark for model validation), we later adapt the first equation of (9) to include the addi-
tional time dependant terms, which are based on the in-vitro experiment of loaded 
OcYs cell culture and adopt the Eq. (10) as system modification.  The modification of 
the model was in editing the power term 𝛾𝛾�� to time dependent oscillatory function 
𝛾𝛾��(1 + sin (𝜃𝜃𝜃𝜃)), which represents transduced signal of OcY, and inserting the me-
chanical periodic excitation 𝐴𝐴(1 − cos (𝜃𝜃𝜃𝜃)) to the responding OcYs into the follow-
ing form: 

The simulation eventually stops, when 𝑆𝑆 = 𝐾𝐾� because the term (1 − 𝑆𝑆/𝐾𝐾�)� 
evaluates to zero and all dynamics stop, which is highly artificial. However, going 
forward, we simply consider the production rate of 𝑆𝑆 proportional to (1 − 𝑆𝑆/𝐾𝐾�), 
whether positive or negative. This means that the number of OcY (S) is unrestricted, 
and the simulations are observed to have small oscillations around 𝐾𝐾� = 200 cells per 
remodeling cycle (blue line on diagrams of Fig.25 a)). Basically, this means that we 
assume there are a certain number of OcY ready to receive and send external signals 
and to open cell signaling channels in response to loading. 

Many of the published bio/mathematical models represent only free dynamics of 
the bone cells although the evidence of external loading importance already widely 
exists. By presenting an experimentally evidenced mathematical model of bone, 
which includes externally forced turnover, we contribute to the realism of modelling. 
Critically, we approach the modelling through both deterministic and stochastic 
methods, which allow us to consider the intrinsic noisiness of the discrete process. 

Starting from a set of homogeneous coupled ordinary nonlinear differential equa-
tions, and a biologically relevant set of parameter ranges, we are able to derive an 
analogous stochastic framework. Although the observed dynamics are similar, intrin-
sic noise produces fluctuations that drive the system toward more realistic descrip-
tions of the process itself. Based on evidence from in-vitro experiments we incorpo-
rated both received and transduced signal as periodic rate transitions into the model 
(9). We find that the model can capture the essential autocrine, paracrine and syner-
gistic characteristics of bone cell communication processes in response to the external 
incentives. 

 Specifically, including oscillatory signals with small delays between received 
and send a signal by OcY provides the closest matches between mathematical data 
and biology theory. This is straightforward to conclude from Fig 25 c) where, after 
the period of resorption (the depression of the green line below zero), we observe a 
significant activation of osteoblasts that results in a formation period (the green line is 
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the bone cells although the evidence of external loading importance already widely 
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which includes externally forced turnover, we contribute to the realism of modelling. 
Critically, we approach the modelling through both deterministic and stochastic 
methods, which allow us to consider the intrinsic noisiness of the discrete process.

Starting from a set of homogeneous coupled ordinary nonlinear differential 
equations, and a biologically relevant set of parameter ranges, we are able to derive 
an analogous stochastic framework. Although the observed dynamics are similar, 
intrinsic noise produces fluctuations that drive the system toward more realistic 
descriptions of the process itself. Based on evidence from in-vitro experiments we 
incorporated both received and transduced signal as periodic rate transitions into 
the model (10). We find that the model can capture the essential autocrine, paracrine 
and synergistic characteristics of bone cell communication processes in response to 
the external incentives.
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above zero). Comparing the green line in Fig. 25 c) with the green line in Fig. 25 a) (which 
has no over formation) we demonstrate that under the influence of the external 
periodic signal the local formation of the newly remodeled bone will exceed the 
amount of resorbed old bone. Furthermore, we investigated the relation between 
the strength of these two signals and got satisfactory results when the received 
signal has a smaller value of amplitude. This is our prediction from the model, 
which must be addressed experimentally. Namely, we require experiments that 
explore the magnitudes of information that OcY receives and explores. However, we 
showed that the steady-state value of total bone content changes depending on the 
external excitation and on the interplay of other parameters value that influences 
the dynamics of the process.

Figure 25. a) Legend for both figures. b) The number of osteocytes (OcY) is 
restricted to a maximum of 200 cells and diagram correspond to the same 
system of equations (1) of 5th order without external signaling. c) The 
number of OcY is unrestricted and has small oscillations around a number 
of 200 and external excitation to both the parameter and the source with a 
source strength is 
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Figure 30.   a) Legend for both figures. b) The number of osteocytes (OcY) is restricted to a 
maximum of 200 cells and diagram correspond to the same system of equations (1) 
of 5th order without external signaling. c) The number of OcY is unrestricted and 
has small oscillations around a number of 200 and external excitation to both the 
parameter and the source with a source strength is 𝐴𝐴 𝐴 𝐴𝐴 and without delay.  

5 Conclusion 

The way to a mathematical model of the physical reality goes through establishing 
a conceptual model that contains numerous assumptions and approximations depend-
ing on what we want to explore as the dominant behavior of the physical reality. The 
first accepted assumption in the modeling of complex coupled deformable bodies was 
that the transversal displacements of middle plane (line) points of the bodies are 
small. We also assumed that there is no deplanation of the cross section of the bodies, 
we actually neglected shear deformations, that causes rotation between cross section 
and bending line so that we were able to apply Euler-Bernoulli theory. A general sys-
tem of coupled partial differential equations of transversal oscillations for the system 
of coupled deformable bodies: plates, beams, membranes, and belts were established. 
On the base of the Bernoulli method first asymptotic approximation of the solutions 
were separated on the two domains. The space domain differs from body shape and 
boundary conditions, and the time domains have the same forms for any of the con-
sidered class of multi-body system dynamics. The completely analogy of system of 
coupled ordinary non-linear differential equations on time Eq. (4) of eigen time func-
tion in one amplitude mode is obvious for different physical coupled multi deforma-

a) b) 

c) 

 and without delay.

How physical forces and changes in the mechanical properties of cells and tissues 
contribute to development, cell differentiation, physiology, and disease, in general, is 
a major interest of mechanobiology. Based on bone mechanobiology research, this 
research develops computational analytical models in order to address and better 
understand mechanotransduction - the molecular mechanisms by which bone cells 
sense and respond to mechanical signals. Downstream autocrine and paracrine 

Julijana Simonović 

70 

Figure 30.   a) Legend for both figures. b) The number of osteocytes (OcY) is restricted to a 
maximum of 200 cells and diagram correspond to the same system of equations (1) 
of 5th order without external signaling. c) The number of OcY is unrestricted and 
has small oscillations around a number of 200 and external excitation to both the 
parameter and the source with a source strength is 𝐴𝐴 𝐴 𝐴𝐴 and without delay.  

5 Conclusion 

The way to a mathematical model of the physical reality goes through establishing 
a conceptual model that contains numerous assumptions and approximations depend-
ing on what we want to explore as the dominant behavior of the physical reality. The 
first accepted assumption in the modeling of complex coupled deformable bodies was 
that the transversal displacements of middle plane (line) points of the bodies are 
small. We also assumed that there is no deplanation of the cross section of the bodies, 
we actually neglected shear deformations, that causes rotation between cross section 
and bending line so that we were able to apply Euler-Bernoulli theory. A general sys-
tem of coupled partial differential equations of transversal oscillations for the system 
of coupled deformable bodies: plates, beams, membranes, and belts were established. 
On the base of the Bernoulli method first asymptotic approximation of the solutions 
were separated on the two domains. The space domain differs from body shape and 
boundary conditions, and the time domains have the same forms for any of the con-
sidered class of multi-body system dynamics. The completely analogy of system of 
coupled ordinary non-linear differential equations on time Eq. (4) of eigen time func-
tion in one amplitude mode is obvious for different physical coupled multi deforma-

a) b) 

c) 



Julijana Simonović 69

signaling in response to periodic excitation were modelled by cell population 
system of ordinary differential equations (9) to better represent and predict long-
term behavior and consequences of bone cell loading.   The system (9) is S-system 
(the generalized Lottka-Volterra system) and was solved deterministically together 
with its stochastic analog Eq. (11) (Gillespie algorithm [33]) used for noise check 
and system behavior dynamics analysis. Population dynamics are illustrated using 
time series plots, phase portraits, histograms and bifurcation diagrams. In-silico 
experimenting with a number of responding cells which is up to or around a certain 
threshold allows us to distinguish and describe different dynamics and relations 
between involved cells. The external signal can be considered as an additional term 
affecting the number of responding cells or as the functional periodicity of power 
low coefficients affecting autocrine signaling of forming cells. This research clearly 
shows the indispensability and beneficial effects of external excitation on balanced 
and regular bone cell activities and underline the importance of mathematical 
modeling and predictions.

5. Conclusion

The way to a mathematical model of the physical reality goes through establishing 
a conceptual model that contains numerous assumptions and approximations 
depending on what we want to explore as the dominant behavior of the physical reality. 
The first accepted assumption in the modeling of complex coupled deformable bodies 
was that the transversal displacements of middle plane (line) points of the bodies are 
small. We also assumed that there is no deplanation of the cross section of the bodies, 
we actually neglected shear deformations, that causes rotation between cross section 
and bending line so that we were able to apply Euler-Bernoulli theory. A general system 
of coupled partial differential equations of transversal oscillations for the system of 
coupled deformable bodies: plates, beams, membranes, and belts were established. 
On the base of the Bernoulli method first asymptotic approximation of the solutions 
were separated on the two domains. The space domain differs from body shape 
and boundary conditions, and the time domains have the same forms for any of the 
considered class of multi-body system dynamics. The completely analogy of system of 
coupled ordinary non-linear differential equations on time Eq. (4) of eigen time function 
in one amplitude mode is obvious for different physical coupled multi deformable 
body systems. Since there is mathematical analogy in structural model of different 
multi deformable body systems we conclude that there exists the phenomenological 
analogy too.  This indicated mathematical analogy and phenomenological mapping 
are basis for extending results obtained in one research task of nonlinear dynamics 
of one mechanical system to the results of other mechanical systems. Since, we could 
obtain qualitative conclusions and explanations for dynamical behavior of mechanical 
systems with analog non-linear properties without solving them.

For the coupled plates with layer on rolling non-linear visco-elastic properties we 
approximately solved system of PDE`s (2) semi analytically in averaged asymptotic 
first approximation by using asymptotic method Krilov-Bogolyubov-Mitropoksiy. 
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Then we analyzed the stationary regimes of forced resonant non-linear oscillations 
for presented model of double plate system and introduced the analogy with 
system of beams, membranes and belts with the same coupling layer. These ideas 
were summarized form the results of numerous papers by Hedrih and Simonovic 
over several years [5–15–16], [6–8–24] and [9–26–27] and present the beauty 
of mathematical analytical calculus which could be the same even for physically 
different systems. The mathematical numerical calculus is a powerful and useful 
tool for making the final conclusions between too many input and output values. 
One step (part) of solutions were obtained numerically and presented at a series 
of first asymptotic approximations of the amplitudes-frequency characteristics of 
eigen time function modes in one amplitude mode. We could conclude that there 
exist complexities in the system forced non-linear response, depending on initial 
conditions and on proper relation between the system kinetic parameters.

In systems of coupled deformable bodies with layers of non-linear properties 
the non-linearity is source for appearing resonant jumps at the amplitude and 
phase -frequency curves of eigen time function modes in one amplitude mode in the 
resonant frequency interval. Between two jumps there appear three or five, or seven 
or more singular values of the stationary amplitudes and phases with alternatively 
stable and unstable values which build coupled singularities and trigger of coupled 
singularities, two stable values around one unstable stationary amplitudes and 
corresponding stable and unstable stationary phases. Passing through resonant 
ranges of the external excitation frequencies unique values of the stationary 
amplitudes and phases lose its stability and split into trigger of the coupled three 
singularities- two stable stationary values and one unstable saddle type of the 
amplitudes (or phases) for simple case without non-linear interactions between 
time modes. But, in the case when there are resonant interactions between modes, 
more than one pair of the resonant jumps appears, and there are possibilities for 
appearance of the coupled triggers of the coupled singularities consisting of odd 
number of the alternating coupled stable and unstable singularities. The mentioned 
instabilities of the stationary vibration regimes are associated with Hopf bifurcations 
in mathematical descriptions of the first asymptotic approximations of solutions. 
The described non-linear phenomena of passing through resonant regions are all 
characteristics in different deformable bodies systems with modeled non-linearity. 
The presented model from Ref. [9–17–26] of new features in interconnected layer 
introduced with rolling elements with its inertia of rolling without sliding and of 
translation of mass center is the novelty in modeling of the rheological elements. 
The presence of rolling elements in the interconnected layer introduces the part of 
the dynamic coupling into system of obtained PDE’s. On the basis of the presented 
numerical comparison, we consequently conclude that dynamic coupling intensifies 
the phenomena of the resonant transition caused by the mutual interaction of the 
harmonics.  The first asymptotic solutions for amplitude and phase changes (5) 
stand for transition changes in resonant regimes for a small time interval thus we 
can use them for analysis of local behaviour of system dynamics, that was presented 
in the section 2.1 and 2.1. However, the global behaviour of system dynamics play 
important role in many application and real consumption of construction. For 
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instance, identical synchronization (IS) can only be examined on long time scales 
and shows global dynamics possibilities of adjustment of system parts with an 
external signal. Once established IS can be changed by parameter alteration and 
there exists parameter regions that ensure conditions for IS even though the initial 
conditions of coupled dynamics can be different. To explore these parameters 
basin that gives IS it is suitable to use a multi-parametric analysis of the system 
based on the established mathematical model (4). That analysis was presented in 
chapter 2.4 and we concluded that for establishing IS the most sensitive parameter 
was the coefficient of damping coupling and we revealed the region of its values 
necessary for IS of deformable bodies. We also introduced the easiness of the new 
way to benchmark the influence of several parameters synchronously by using the 
proposed multi-parametric analysis.

Based on the research from the papers [18–29] that we summed up in section 
3, which present also the application of the convenient multi-parametric analysis, 
we can underline several conclusions: In hybrid systems with static coupling, the 
increasing static coupling coefficient introduces better IS in a large region of the 
initial condition. But in systems with dynamic coupling, there exist attractor of 
synchronization but with a very large value of synchronization error which is in 
form of modal periodic function after the transition time, and also in systems with 
dynamical coupling the interesting phenomena of parameter ragged synchronization 
occur. For same parameter combination the IS repeats after specific time. and do not 
exist as global property of system dynamics.

The acquired knowledge and skills of complex system dynamics analysis using 
mathematical analogies can be applied also in mechanobiology. Several years of 
research in that filed has been realized by two postdoc research period supported by 
European Union trough ERASMUS MUNDUS and Marie Skłodowska-Curie Actions 
(MSCA) frameworks. Two projects were realized: six-month post PhD research 
period, between December 2015 and June 2016, at Interdisciplinary Centre for 
Mathematical and Computational Modelling of Warsaw University on subject 
of Bone Tissue Advanced Modelling with Piezoelectricity; and two-year, 2017-
2019, post PhD research period at Biomedical Engineering Department, School of 
Engineering, Cardiff University under the project “Mathematical Modelling of Bone 
Externally Excited Remodelling” (MMoBEER). Bone mechanobiology research how 
mechanical forces and loadings influences architecture and quality of bone tissue 
and it is important to establish proper mathematical model of this process. Although 
it is possible to mechanically stimulate bone and quantify the tissue-level changes 
that occur, it is still extremely challenging to simultaneously delineate the cellular 
and molecular mechanisms that give rise to these changes.

Further, the complexity of the bone tissue processes and their interactions with 
the rest of the body limits the ability of a single biological in-vitro model to capture 
all of the relevant aspects of bone remodelling on all scales simultaneously what 
raise the degree of approximation of the model. Moreover, parameterization of an 
established accompanying mathematical model is difficult, given its dependency 
on the accuracy and availability of data. The available data from existing in-vitro 
experiments are the discrete values of measurable parameters that were taken 
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in defined cross points of readouts and cannot be enough to feed completely the 
continual model of mathematical equations. The models match in specific points 
but the lack of agreement in most of the time domain is present. For instance, the 
mathematical model can perform the behavior of the cells that have not yet been 
detected by biological experiments. The time scale of the in-vitro experiments 
depends on the viability of the cell population, in many cases during the controlled 
conditions of the experiment it is up to fourteen days, however, the cycle of the 
bone remodelling lasts up to 120 days, and mathematical model can give prediction 
even on the longer time scale. The important features of the credibility of biological 
models for in-vitro experiment depend on how well the accompanying mathematical 
models agree with results of repeatable experiments. The better agreement 
between theoretical mathematical models and experimental measurements often 
brings important advances and mutual benefits as better theories are developed. 
The established model has been presented in section 4 and among other we can 
summerised conclusion as following:

Introduces oscillatory signals with small delays between received and send 
signals by OcY, Eq. (10), provides the closest matches between mathematical data 
and biology theory. This is straightforward to conclude from Fig. 25 c) where, after 
the period of resorption (the depression of the green line below zero), we observe 
a significant activation of osteoblasts that results in a formation period (the green 
line is above zero). Comparing the green line in Fig. 25c) with the green line in Fig 
25b) (which has no over formation) we demonstrate that under the influence of 
the external periodic signal the local formation of the newly remodelled bone will 
exceed the amount of resorbed old bone. We showed that the steady-state value of 
total bone content changes depending on the external excitation and also on the 
interplay of other parameters value that influences the dynamics of the process.

This collaboration between in-silico, mathematical, experiments and in-
vitro, biological, experiments is inevitable for further success of the field. With 
this research, we wish to emphasize the importance, reliability and credibility of 
mathematical models are a great way of cementing biological intuition. Specifically, 
they provide causative mechanisms linking inputs and outputs and illuminating 
underlying assumptions that determine a biological system’s dynamics. Finally, 
they offer a means of predicting new outcomes, as well as highlighting the most 
sensitive modelled components, resulting in the construction of new experimental 
hypotheses and experimentations that are more efficient.

Finally, mathematical modeling of complex systems and structures seeks not only 
under-standing and knowledge of mathematical calculus but also understanding 
and interpreting of the real phenomena that can be detected and measured in the 
dynamics of the investigated systems. The presence of the same dynamical behavior 
of the systems in disparate scientific field and application of mathematical analogies 
and mapping have significant contribution for any successful modeler. Further for 
systems with considerable number of involved parameters it is as important to 
explore the influence of the parameters on system dynamics as to discover mutual 
links between parameters. Bifurcation theory gives us possibilities to explore the 
influence of small changes of parameters on dramatic changes of dynamics of 
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system. However, multi-parametric analysis gives possibility to visualize and explore 
influence of several parameters synchronously. This is advantages for mathematical 
analysis but also for experimental setups in various scientific fields for acquiring 
adequate parameter’s ranges.
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