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DEVELOPMENT OF CABLE-SUSPENDED PARALLEL ROBOT, 
CPR SYSTEM, AND ITS SUB-SYSTEMS

Abstract. This paper is an overview of the modeling approaches of 
different constructions of Cable Suspended Parallel Robots, CPR systems. 
Each new design requires studious approach and detection of specific 
phenomena, which needs to be defined through the process of mathematics 
modeling. The characteristic features of CPR structures can be grouped as 
follows: 1. shape of the work space (plane, spatial), 2. number of motors, 
3. type of motors, translational or rotational motors, 4. number of hanging 
points, 5. total number of ropes for the functional work of the CPR system, 
6. number of ropes from the camera carrier to the hanging points, 7. type 
of cable winding/unwinding system, CWU system, and influence of new 
dynamic variables: winch radius of CWU system and cable length on dynamic 
response of CWU system and finally on dynamic response of CPR system. Each 
of these characteristics differently affects the response of the CPR system. 
The geometric relations between the motor and the camera carrier motion 
are very important for the modeling of the system. The mathematical model 
(kinematic and dynamic) is defined as generally solution. It is evident that the 
choice of construction of CPR significantly affects the response of this system. 
The validity of the obtained theoretical contribution has been illustrated 
through several case studies by using a newly developed software packages.
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1. Introduction

The systems for observation of the workspace with moving objects have been 
developed and analyzed worldwide in various research areas and for different purposes. 
It is important that both kinematic and dynamic modeling of these systems is considered. 
Relatively new systems that are designed and considered are parallel systems. In paper 
[1], the design of a planar three-degree-of- freedom parallel manipulator is considered 
from a kinematic viewpoint. The paper [2] presents the first and second order kinematic 
analysis of a three-degree-of- freedom 3-RPS parallel robot mechanism. In paper [3] 
authors present algorithms that enable precise trajectory control of NIMS3D, an under 
constrained, three-dimensional cabled robot intended for use in actuated sensing. In 
paper [4] author presents several prototypes of wire-driven parallel robots, recently 
designed and which use two different actuation schemes. The wrench-closure workspace 
of parallel cable-driven mechanisms is the set poses of their mobile platform for which 
the cables can balance any external wrench in [5]. Parallel cable-driven Stewart-Gough 
platforms consist of an end-effector which is connected to the machine frame by motor 
driven cables in [6]. The paper [7] presents the recent results from a newly designed 
parallel wire robot which is currently under construction. Firstly, an overview of the 
system architecture is given and technically relevant requirements for the realization 
are identified. The paper [8] presents an auto-calibration method for over constrained 
cable-driven parallel robots using internal position sensors located in the motors. Wire-
driven parallel robot has attracted the interest of researchers since the very beginning of 
the study of parallel robots [9]. 

In the current literature survey there is no any mathematical model of the cable-
suspended-parallel robots with double parallel ropes and there is no available 
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procedure for generating the Jacobian matrix of the similar systems. Another 
problem is that the current published models do not include the motors dynamics. 
The analysis and synthesis of these complex systems cannot be proper without 
the motor dynamics, because it represents the dominant dynamics for any electro 
mechanical system. 

The kinematic formulation of the presented CPR system is a key contribution 
in this paper, which will be used for the system realization. This formulation can 
be used for determining the Jacobian matrix of any CPR system configuration. This 
methodology for developing the kinematic model of selected CPR systems is named 
the KinCPR-Solver (Kinematic Cable Parallel Robot Solver), and it gives a precise 
direct and inverse kinematic solutions. 

The dynamic model is generated using the fundamental dynamic theory based 
on the Lagrange’s principle of virtual work which for most CPR systems was not 
directly applied because of the systems complexity. The Lagrange’s principle of 
virtual work has been used for solving the complex relation between the resultant 
motor load moment (acting as a load at the motor shaft) and external forces (acting 
at the camera carrier). The Lagrange ‘s principle of virtual work can be directly 
applied to original form to the RSCPR system, as in paper [10], which has one rope 
from camera carrier to the pivot point of the system. There can be several reasons 
for the adaptation of Lagrange’s principle of virtual work as presented in paper [11]. 
First of them is presence of two parallel ropes in any direction and (or) second is 
when the motor winds or unwinds two ropes at the same time about the coil. In the 
RFCPR as in paper [11], CPR-A [12], CPR-B, CPR-C [13], and CPR-D [14] systems, 
the adapted Lagrange’s principle of virtual work can provide the correct relation 
between the internal and external forces. The resulting equation developed by the 
Lagrange’s principle of virtual work has been used for determining the motors 
dynamic model of the CPR system. 

The mathematical model of the motors is determined using the Lagrange’s 
equations second order and expressed with the generalized coordinates. 

In this paper the camera carrier workspace has the shape of a parallelepiped, 
such that the camera carrier hangs over the ropes properly connected on the four 
highest points i.e. the four upper angles of the workspace. The suspension system is 
defined in these four points. 

A camera workspace is an area where the camera can move quietly and 
continuously by following the observed object.

A camera carrier moves freely in the 3D space which enables the recording of the 
object from the above.

This gives a unique feeling to the viewer to follow the event easy from an unusual 
proximity and to be very close to the action regardless of the size of the observed 
space. 

The CPR, like many robotic systems is very complex and includes many sub-
systems, which interact with each other, compatibility conditions of displacement 
and kinetic parameters of the system dynamics. 

A new procedure for creating the reference trajectory of the CPR system’s camera 
intended for object tracking and monitoring in real time is presented in [15]. This 
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procedure is named the CPR Trajectory Solver. We started with a presumption that 
the CPR system’s camera needs to follow an object which is moving within the 
camera’s sight at the lowest plane of the camera’s workspace. The CPR Trajectory 
Solver has continuous information about the position and orientation of the camera 
during the task execution. 

The paper [16] contains two contributions. The first one is the idea for application 
of the CPR system intended for monitoring and treating the plants in green-houses. 
The second contribution is a theoretical one. We have identified and defined the 
problem of deviation of camera and diffuser carrier’s position and orientation 
during its motion. The carrier’s hanging point and center of mass do not overlap 
in its workspace, which was an idealized presumption in the previously published 
works. 

Main contribution of work [17] is development of novel methodology for 
choosing actuator for a CPR-8 system, named CPR-ACM. This methodology implies 
the formulation and application of a data base which contains catalogue parameters 
of the actuators available at the market. Both, user and designer define together the 
parameters and desired feasible workspace of the CPR-8 system being designed. The 
methodology is illustrated by a logic flow chart.

In paper [18], multivariable procedure for choosing the parameters of CPR sys-
tem was developed. This was performed because of the need for the load carrier 
to move in broader area of its geometric workspace, i.e. for achieving its feasible 
workspace. Given task is defined by: configuration of the system, its dimensions, 
weight of the load, load’s velocity; while the parameters which are set to achieve 
this goal are: type of the winch and its winding/unwinding radius, gearbox 
characteristics, and especially characteristics of the motor. This paper points out 
another important fact that task of choosing a motor is not solved by only choosing 
motor by its nominal output power. Results presented in this paper show that motor 
with power of 140 W gives better results than motor with nominal power of 420 W.

CPR systems are also used for implementation of humanoid robotic systems. 
By thorough analysis of the CPRAM system, it can be seen that well-known 
mathematical models of these systems have generated instability and oscillatory 
behavior around the horizontal position of artificial muscle of the forearm. The main 
contribution and novelty of the paper [19] is new, original form of mathematical 
model of the forearm artificial muscle. To define kinematic and dynamic models of 
this system, its thorough analysis was needed. With this analysis, system’s geometry 
and characteristic relations were defined. Geometry of the CPRAM system reveals 
and defines new, not yet recognized geometric relations of the artificial forearm.

Various complex mechatronic systems have cables (ropes as well) winding/
unwinding systems as main sub-systems. Authors of papers [10-19] dealt with 
design, analysis and synthesis of the cable suspended parallel robotic system (CPR 
system). They have used a well-known winding/unwinding sub-system presented 
in [20].

There are a lot of similar systems in different areas of science and engineering. 
Some of these systems are: measuring mechanism, machines in textile industry, 
cable logging systems in civil engineering and forestry, cranes, systems in ship-ping 
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industry, CPR (Cable-suspended Parallel Robot) and other complex cable driven 
systems.

Phenomenon of cable winding/unwinding (hereinafter referred to as: CWU 
system) on winch is present in different applications, so in this paper the importance 
of its analysis will be emphasized. Some of papers which have inspired the research 
presented in this paper will be mentioned in the following paragraphs.

Authors of [21] have written a review paper on application of cable logging 
systems. Goals of [21] are far-reaching because authors define the instruction set 
for users that use those systems. These instructions help the users to solve several 
problems such are protection of workers, soil and forests. The author of [22] gives 
a detailed image about the history of CWU systems. The author points the fact that 
these systems were used in different areas for several millennia. One type of systems 
which use CWU sub-systems are cranes and these systems are thoroughly analysed 
in [23]. 

In [23-25], authors present theoretical and experimental contribution to analysis 
and synthesis of kinematics and dynamics of winding/unwinding process of thread 
from a balloon. Fluctuating tensions in a perfectly flexible string unwinding from 
a stationary package were considered in [24]. Also, dependence of unwinding 
tensions on air resistance, unwinding speed, angle of winding on the package etc. 
was examined. Based on results from [24], in [25] over-end unwinding of yarn from 
a stationary helically wound cylindrical package was considered. An improved 
theory for the variation of yarn tension during high speed over-end unwinding from 
cylindrical yarn packages based upon the theory of bent and twisted elastic rods was 
presented in [26]. Authors of [27] presented a dynamic simulation for wire cable on 
the tower crane. They have considered not only the contact with the winch drum, 
but also the characteristics of the hydraulic system using SINDYS. Specifically, the 
following points have been demonstrated: 1. The contact between the winch drum 
and wire cable can be modelled by using the variable-length truss elements and 
the contact spring. 2. The dynamic behavior of wire cable that occurs at hydraulic 
winch stopping is affected by the dynamic characteristics of the hydraulic sys-tem. 
3. A slow-stopping hydraulic winch system has been proposed, and the sys-tem can 
prevent disordered winding even if the winch is rapidly operated.

In [28], authors presented the mathematical model of a pipelay spread. In the 
model, elasto-plastic deflections of the pipe, its large deformations and contact 
problems were considered. The modification of the rigid finite element method was 
used to discretize the pipe.

Wire-guided control technologies are widely used to increase the targeting ac-
curacy of advanced military weapons through the use of unwinding dispensers to 
guarantee that unwinding occurs without any problems, such as tangling or cut-ting. 
In [29], the transient behavior of cables unwinding from inner-winding cylindrical 
spool dispensers was investigated.

Given results were an inspiration for us to deal with CWU systems and from this 
interest novel papers were made. 

The aim of paper [30] is the analysis and definition of the phenomenon of nonlinear 
and pulsed nature of the dynamic process of the rope winding (unwindung) on the winch. 
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This process is characterized with sudden and abrupt jumps of dynamic variables which 
describe the rope winding (unwinding) process. Because of that, we have named this 
process: process of the rope „jumpy“ nonlinear in one row radially multilayered winding 
(unwinding) on the winch. Because of the easier understanding of this „jumpy“ concept 
of the winding (unwinding) process, we have first analyzed this concept under idealized 
circumstances - when the rotational speed of the winch is constant.

As a solution of analyzed problem, novel winch was developed which was 
patented as Registration number 57921 B1 [31]. . New constructive solutions of 
winches for single-row radial multi-layered cable smooth winding/unwinding on 
a winch are described in [32]. Two new structural solutions of winches have been 
defined. The nonlinear phenomenon of cable smooth winding/unwinding process 
on the winch by using one of the two proposed constructive solutions has been 
defined and analyzed. To facilitate understanding of this concept, the cable winding/
unwinding process on only one winch has been analyzed. The obtained variables 
which characterize the kinematics of the cable smooth winding/unwinding process 
are nonlinear and smooth. This result is important because the systems for smooth 
cable winding/unwinding process on the winch could be parts of any cables driven 
mechanism. These systems can be used in various fields of human activity. 

Based on analysis and synthesis of different types of CWU systems, in paper [33] 
a general form of mathematical model of these systems is presented. Mathematical 
model of CWU system indicates the impact of all the dynamic parameters of this 
system on its dynamic response. Theoretical contribution will be confirmed through 
experimental analysis of one chosen type of CWU system.

In Section 2, a detailed description of some types of CPR systems developed 
and general form of mathematical model is given. Most of this section is devoted 
to the CPR kinematic model, which is directly involved in the development of its 
dynamic model. See Subsection 2.1. Several cases of the systems are analyzed for 
same conditions in the Subsections 2.2 and 2.3. 

In this Section 3, several types of CWU systems are analyzed and modeled. In 
Subsections 3.1-3.3, different types of CWU systems are presented. The general 
form of mathematical model of CWU system is formulated in Subsection 3.4. By 
using the new mathematical model, the program package CWUSOFT is presented in 
Subsection 3.5. This program package is used to perform simulation of the motion 
of one chosen CWU system’s load in Subsection 3.6. In Section 3.7, experimental 
confirmation of theoretical contributions is presented. 

The conclusions and observations are presented in the last part of the paper, 
Section 4. 

2. CPR systems

The shape of the work space (plane, spatial), number of motors, number of 
hanging points, and total number of ropes, characterize the structure of the system. 
Individual analysis of each of new elements does not make sense, because it is 
important that the combined affect is analyzed and defined.
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 The shape of the work space depends in the dimensions and shape of the space where 
the camera needs to move. Basis of spatial systems may have different geometric shape 
(above view): triangle, quadrilateral, pentagon, and hexagon; except that they have a third 
dimension, i.e. height. Plane CPR systems are not the subject of this work. Spatial CPR 
systems whose working space is in the form of parallelepiped are of particular importance. 
They have the task of camera spatial movement and they are the topic of this work. 

Number of hanging points is usually dictated by the need to achieve certain 
camera functions in certain dimensions of space.

Number of engines depends on the design of the mechanism and DOFs of the CPR 
mechanism.

This paper will be limited to the types of structures that were developed in 
Mihajlo Pupin Institute. We will complete further exposure related to the limited 
type of construction as defined in Figs. 7-12.

θ

motorized 
winch

moto
r

winch

a) b)
Figure 1. The motor that winds and unwinds the rope at the same side.

Mode of the motor operation is important element for functioning CPR system.
In the Figs. 1-3 represents the type of motor. Each example has two pictures related 

to view: 
a) in direction of shaft axe motor, 
b) in space.
The motor which, from the same side, winds or unwinds the rope is used for the 

RSCPR system described in Fig. 7 and in RFCPR system described in Fig. 8.
Motor presented in Fig. 2. is used for systems CPR-A, CPR-B, CPR-C and CPR D 

presented in Figs. 9-12, respectively. 
The motor presented in Fig. 3 winds the ropes at one side. The motor is used to 

wind up the two ropes about the coil only in same direction. This motion produces 
winding or unwinding of both ropes at the same time. Motor presented in Fig. 3. is 
used for systems CPR-A, CPR-B, CPR-C and CPR D presented in Figs. 9-12 respectively.

Different suspension systems with cameras are presented in following figures.
In the Figs. 4-6 represents the type of the hanging. Each example has two pictures 

related to view: 
a) 3D space view, 
b) top view. 
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Figure 2. The motor that winds the rope at one side, and unwinds it at the 
other side.

θ

motorized 
winch

winch

motor

a) b)
Figure 3. The motor that winds and/or unwinds two ropes at the same time 
from the same side.

The 3D recorded space has a parallelepiped shape with length d, width s, and height 
v in which the camera is connected with the parallel ropes. See Fig. 7-12. The connecting 
points at the camera carrier are used to safely support the camera. The distances between 
these points and the center A of camera are δx1, δx2, δy1, δy2. See Figs. 4-6 and compare with 
Figs. 7-12. These dimensions are very small in comparison with the complete 3D recorded 
space. From this observation it is clear that δx1≈0, δx2≈0, δy1≈0, δy2≈0. It is also assumed that 
the height of pivot point A is z which is equal to the heights of all four connecting points.

This fact allows us to choose a point A as a hanging position of the camera carrier 
for all ropes, see Figs. 7-12. This assumption simplifies the definition of geometric 
relations between camera carrier motion in Cartesian coordinates and coordinated 
motions of all motors. 
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Figure 4. The connecting points at the camera carrier for RSCPR system, a) 
3D space view, b) top view.

2.1. The Mathematical Model of Different Type CPR Systems. From this 
observation (see Figs. 7-12) it is clear that each direction k, h, m, n can have one or 
two parallel ropes. 

The graphical representation different types of the CPR systems are shown in 
Figs. 7-12. The camera carrier of the CPR structures is guided through the work area 
of the parallelepiped shape with ropes connected with three winches, each of them 
powered by the motor. 

The ropes of the pulley system are run on the winches (reel) 1, 2, 3, powered 
by the motors. The ropes coil or uncoil on the winches of radius R1, R2, and R3. The 
motors rotate winches directly and its angular positions are θ1, θ 2, and θ3. This 
motion moves the camera in the x, y, z Cartesian coordinates. 

The first step towards the dynamic model of the CPR is the development of its 
kinematic model. This calculation involves accurate definition of the geometric 
relationship between the camera motion in the x, y, z Cartesian space (external 
coordinates) and motor angular positions θ1, θ 2, θ3, (internal coordinates).
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Figure 5. The connecting points at the camera carrier for RFCPR system, a) 
3D space view, b) top view.
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Figure 6. The connecting points at the camera carrier for CPR-A, CPR-B, 
CPR-C, and CPR-D systems, a) 3D space view, b) top view.

The relation between the internal and external coordinates is defined by 
the Jacobian matrix J, which relates the velocities of the external coordinates 
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The relation between the internal and external coordinates is defined by the Jacobian 

matrix J, which relates the velocities of the external coordinates Tzyxp ][   with 

the velocities of the internal coordinates T][ 321    , presented in equation 
(1) and (2). 
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For the generation of any trajectory in x, y, z space, it is necessary to provide very 
precise and mutually coordinated motion of all three motors1,  2, 3. 

This procedure is named KinCPR-Solver (Kinematic Cable Parallel Robot Solver). 
This is a novel methodology for the CPR system kinematic modeling. This methodol-
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For the generation of any trajectory in x, y, z space, it is necessary to provide very 
precise and mutually coordinated motion of all three motors1,  2, 3. 

This procedure is named KinCPR-Solver (Kinematic Cable Parallel Robot Solver). 
This is a novel methodology for the CPR system kinematic modeling. This methodol-
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For the generation of any trajectory in x, y, z space, it is necessary to provide very 
precise and mutually coordinated motion of all three motors θ1, θ 2, θ3.

This procedure is named KinCPR-Solver (Kinematic Cable Parallel Robot 
Solver). This is a novel methodology for the CPR system kinematic modeling. This 
methodology KinCPR-solver represents a general guideline for solving any kinematic 
structure of the CPR system types. 

The Jacobian matrix J in equation (1) is full matrix. The elements of this matrix beyond 
diagonal show the strong coupling between the external and internal coordinates. 

The camera carrier together with the camera represents a small system in a 
comparison to the complete work area. In that case the small system has neglectable 
moments of inertia about each axis of the local coordinate system at the point A.

In the camera dynamics modeling, the camera is represented as a material 
particle with three degrees of freedom in the x, y, z Cartesian coordinates system.

The kinetic energy Ek and potential energy Ep of the camera carrier motion with 
mass m are given in the following equations:

	 222
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1
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1
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1 zmymxmEk  ⋅⋅+⋅⋅+⋅⋅= 				    (3)

	 zgmE p ⋅⋅= 							       (4)
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In this analysis the ropes are assumed to be rigid. In that case the mathematical 
model of the described system has the following form:

MSLGu vvv ⋅+⋅+⋅= φφ  						      (5)

The vector equation (5) is developed by applying the Lagrange’s equation on 
generalized coordinates θ1, θ 2, θ3. 

Where: u=[u1 u2 u3]T, Gv(3x3)=diagGvi, Lv(3x3)=diagLvi, Sv(3x3)=diagSvi. 
The resultant load moment M is defined with the vector’s equation (6).
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The Lagrange principle of virtual work has been used to find the relation between 
the resultant moment M and external force F.

( ) pFM TT
 ⋅=⋅φ 							       (7)

The external force F is given in the following equation:	
pp PFF += 								        (8)

	
)( ccp apmF +⋅=  							       (9)

The external force F represents the sum of the inertial force Fp which is acting on 
the camera carrier described in equation (8), and the perturbation force Pp   which 
is disturbing the camera motion. 

Vector acc=[0 0 -g]T  represents the gravitational acceleration.
By substituting the equation (1) into the equation (7) the following equation is 

generated:
	
( ) pFpJM TT

 ⋅=⋅⋅ 							       (10)

By dividing the equation (10) with p , the equation (11) is obtained.

( ) TT FJM =⋅ 							       (11)

By transposing the equation (11), the equation (12) is obtained.
	

FMJ T =⋅)( 								       (12)

From the equation (12), the equation (13) is expressed:
	

( )( ) FJM T
⋅=

−1
							       (13)

	
( )( ) 1−

=
TJO 								        (14)

The equation (13) cannot be directly applied to the system presented in the Fig. 
8, because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊.
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◊ is a factor which multiplies only the direction where there are two parallel 
ropes. In the k direction, a force in each rope is multiplied by ◊, which is a half of the 
whole force Fk. See Fig. 8b). 

Observed RFCPR system has two ropes from a camera carrier to the wall 
anchors (line k), and one rope from the camera carrier to the remaining three-point 
suspension (line h, m, n). The elements of the matrix J which contain the length k  
are multiplied by a factor ◊.

Some elements of the Jacobian matrix J have the following values 
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Vector acc=[0 0 -g]T  represents the gravitational acceleration. 
By substituting the equation (1) into the equation (7) the following equation is gen-

erated: 

   pFpJM TT
   (10) 

By dividing the equation (10) with p , the equation (11) is obtained. 

   TT FJM   (11) 

By transposing the equation (11), the equation (12) is obtained. 

 FMJ T )(  (12) 

From the equation (12), the equation (13) is expressed: 

    FJM T
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1
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    1


TJO  (14) 

The equation (13) cannot be directly applied to the system presented in the Fig. 8, 
because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊. 

◊ is a factor which multiplies only the direction where there are two parallel ropes. 
In the k direction, a force in each rope is multiplied by ◊, which is a half of the whole 
force Fk. See Fig. 8b).  

Observed RFCPR system has two ropes from a camera carrier to the wall anchors 
(line k), and one rope from the camera carrier to the remaining three-point suspension 
(line h, m, n). The elements of the matrix J which contain the length k  are multiplied 
by a factor ◊. 

Some elements of the Jacobian matrix J have the following values 
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This situation causes the Jacobian matrix J to be corrected using the factor ◊. 

 ),( JfJ   (15) 

, 

Ljubinko B. Kevac and Mirjana M. Filipovic  

340 
Vector acc=[0 0 -g]T  represents the gravitational acceleration. 
By substituting the equation (1) into the equation (7) the following equation is gen-

erated: 

   pFpJM TT
   (10) 

By dividing the equation (10) with p , the equation (11) is obtained. 

   TT FJM   (11) 

By transposing the equation (11), the equation (12) is obtained. 

 FMJ T )(  (12) 

From the equation (12), the equation (13) is expressed: 

    FJM T


1
 (13) 

    1


TJO  (14) 

The equation (13) cannot be directly applied to the system presented in the Fig. 8, 
because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊. 

◊ is a factor which multiplies only the direction where there are two parallel ropes. 
In the k direction, a force in each rope is multiplied by ◊, which is a half of the whole 
force Fk. See Fig. 8b).  

Observed RFCPR system has two ropes from a camera carrier to the wall anchors 
(line k), and one rope from the camera carrier to the remaining three-point suspension 
(line h, m, n). The elements of the matrix J which contain the length k  are multiplied 
by a factor ◊. 

Some elements of the Jacobian matrix J have the following values 
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This situation causes the Jacobian matrix J to be corrected using the factor ◊. 
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Vector acc=[0 0 -g]T  represents the gravitational acceleration. 
By substituting the equation (1) into the equation (7) the following equation is gen-

erated: 

   pFpJM TT
   (10) 

By dividing the equation (10) with p , the equation (11) is obtained. 

   TT FJM   (11) 

By transposing the equation (11), the equation (12) is obtained. 

 FMJ T )(  (12) 

From the equation (12), the equation (13) is expressed: 

    FJM T


1
 (13) 

    1


TJO  (14) 

The equation (13) cannot be directly applied to the system presented in the Fig. 8, 
because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊. 

◊ is a factor which multiplies only the direction where there are two parallel ropes. 
In the k direction, a force in each rope is multiplied by ◊, which is a half of the whole 
force Fk. See Fig. 8b).  

Observed RFCPR system has two ropes from a camera carrier to the wall anchors 
(line k), and one rope from the camera carrier to the remaining three-point suspension 
(line h, m, n). The elements of the matrix J which contain the length k  are multiplied 
by a factor ◊. 

Some elements of the Jacobian matrix J have the following values 

nR

x

kR

x
J







11
11 , 

nR

ys

kR

y
J









11

)(
12 , and 

nR

z

kR

z
J







11
13  while ele-

ments of the adopted Jacobian matrix J◊ have values 
nR

x

kR

x
J







11
11 , 

nR

ys

kR

y
J









11

)(
12 , and 

nR

z

kR

z
J







11
13 , respectively.  

This situation causes the Jacobian matrix J to be corrected using the factor ◊. 
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Vector acc=[0 0 -g]T  represents the gravitational acceleration. 
By substituting the equation (1) into the equation (7) the following equation is gen-

erated: 

   pFpJM TT
   (10) 

By dividing the equation (10) with p , the equation (11) is obtained. 

   TT FJM   (11) 

By transposing the equation (11), the equation (12) is obtained. 

 FMJ T )(  (12) 

From the equation (12), the equation (13) is expressed: 

    FJM T


1
 (13) 

    1


TJO  (14) 

The equation (13) cannot be directly applied to the system presented in the Fig. 8, 
because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊. 

◊ is a factor which multiplies only the direction where there are two parallel ropes. 
In the k direction, a force in each rope is multiplied by ◊, which is a half of the whole 
force Fk. See Fig. 8b).  

Observed RFCPR system has two ropes from a camera carrier to the wall anchors 
(line k), and one rope from the camera carrier to the remaining three-point suspension 
(line h, m, n). The elements of the matrix J which contain the length k  are multiplied 
by a factor ◊. 

Some elements of the Jacobian matrix J have the following values 
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This situation causes the Jacobian matrix J to be corrected using the factor ◊. 
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Vector acc=[0 0 -g]T  represents the gravitational acceleration. 
By substituting the equation (1) into the equation (7) the following equation is gen-

erated: 

   pFpJM TT
   (10) 

By dividing the equation (10) with p , the equation (11) is obtained. 

   TT FJM   (11) 

By transposing the equation (11), the equation (12) is obtained. 

 FMJ T )(  (12) 

From the equation (12), the equation (13) is expressed: 

    FJM T


1
 (13) 

    1


TJO  (14) 

The equation (13) cannot be directly applied to the system presented in the Fig. 8, 
because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊. 

◊ is a factor which multiplies only the direction where there are two parallel ropes. 
In the k direction, a force in each rope is multiplied by ◊, which is a half of the whole 
force Fk. See Fig. 8b).  

Observed RFCPR system has two ropes from a camera carrier to the wall anchors 
(line k), and one rope from the camera carrier to the remaining three-point suspension 
(line h, m, n). The elements of the matrix J which contain the length k  are multiplied 
by a factor ◊. 

Some elements of the Jacobian matrix J have the following values 
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This situation causes the Jacobian matrix J to be corrected using the factor ◊. 
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Vector acc=[0 0 -g]T  represents the gravitational acceleration. 
By substituting the equation (1) into the equation (7) the following equation is gen-

erated: 

   pFpJM TT
   (10) 

By dividing the equation (10) with p , the equation (11) is obtained. 

   TT FJM   (11) 

By transposing the equation (11), the equation (12) is obtained. 

 FMJ T )(  (12) 

From the equation (12), the equation (13) is expressed: 

    FJM T


1
 (13) 

    1


TJO  (14) 

The equation (13) cannot be directly applied to the system presented in the Fig. 8, 
because the system has two ropes in k direction. This situation causes the Jacobian 
matrix J to be corrected using the factor ◊. 

◊ is a factor which multiplies only the direction where there are two parallel ropes. 
In the k direction, a force in each rope is multiplied by ◊, which is a half of the whole 
force Fk. See Fig. 8b).  

Observed RFCPR system has two ropes from a camera carrier to the wall anchors 
(line k), and one rope from the camera carrier to the remaining three-point suspension 
(line h, m, n). The elements of the matrix J which contain the length k  are multiplied 
by a factor ◊. 

Some elements of the Jacobian matrix J have the following values 
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This situation causes the Jacobian matrix J to be corrected using the factor ◊. 
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respectively. 
This situation causes the Jacobian matrix J to be corrected using the factor ◊.	

),( JfJ ◊=◊ 								       (15)

The adapted Lagrange principle of virtual work defined in equation (16) has 
been used for solving the complex relation between the resultant moment (acting 
as a load at the first, second and third motor shaft) and external force (acting at the 
camera carrier) for RFCOR system. 

	
( )( ) FJM T

⋅=
−

◊
1

							       (16)

The equation (13) cannot be directly applied to the system from the Fig. 9-12, 
also, because of the following reasons:

The system has two ropes in each direction. The equation (13) has been corrected 
using the factor ◊=0.5. This correction affects the forces Fk, Fh, Fm, and Fn, which are 
multiplied by the factor ◊, and their values are ◊.Fk, ◊.Fh, ◊.Fm, and ◊.Fn. 

The Jacobian matrix J has been changed accordingly.
	

JJ ⋅◊=◊ 								        (17)

This is the first reason why the Lagrange’s principle of virtual work has been 
adapted. See equation (17).

The force F3 multiplied by the radius R3 produces a moment load at the motor 
3. The two forces at the motor 3 have the same direction and the intensity, which is 
◊.F3. See Figs. 9-12. The force F3 has two equal components of the ◊.F3 value. The total 
force F3 is the sum of these two components: F3=2. ◊.F3. 

The motor 3 simultaneously unwind or wind both ropes.
The motor 3 is used to synchronize winding or unwinding these two ropes. 
The adopted matrix J◊ (defined in equation (17)) components J◊31, J◊32, J◊33 should 

be multiplied by two, which will produce the double-adapted Jacobian matrix Jx◊. 
These facts significantly influence the Jacobian matrix, which has a new form 

expressed in equation (18): 
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The adapted Lagrange principle of virtual work defined in equation (16) has been 
used for solving the complex relation between the resultant moment (acting as a load 
at the first, second and third motor shaft) and external force (acting at the camera 
carrier) for RFCOR system.  

    FJM T





1
 (16) 

The equation (13) cannot be directly applied to the system from the Fig. 9-12, also, 
because of the following reasons: 

The system has two ropes in each direction. The equation (13) has been corrected 
using the factor ◊=0.5. This correction affects the forces Fk, Fh, Fm, and Fn, which are 
multiplied by the factor ◊, and their values are ◊.Fk, ◊.Fh, ◊.Fm, and ◊.Fn.  

The Jacobian matrix J has been changed accordingly. 

 JJ   (17) 

This is the first reason why the Lagrange's principle of virtual work has been adapted. 
See equation (17). 

The force F3 multiplied by the radius R3 produces a moment load at the motor 3. 
The two forces at the motor 3 have the same direction and the intensity, which is ◊.F3. 
See Figs. 9-12. The force F3 has two equal components of the ◊.F3 value. The total 
force F3 is the sum of these two components: F3=2. ◊.F3.  

The motor 3 simultaneously unwind or wind both ropes. 
The motor 3 is used to synchronize winding or unwinding these two ropes.  
The adopted matrix J◊ (defined in equation (17)) components J◊31, J◊32, J◊33 should 

be multiplied by two, which will produce the double-adapted Jacobian matrix Jx◊.  
These facts significantly influence the Jacobian matrix, which has a new form ex-

pressed in equation (18):  
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This change represents the second adaptation of the Jacobian matrix.  
Using the equation (18) the moment mapping matrix O is generated below:  
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The connection between the resultant moment M and external force F is established. 
See equation (20). 

 FOM   (20) 
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This change represents the second adaptation of the Jacobian matrix. 
Using the equation (18) the moment mapping matrix O is generated below: 
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The connection between the resultant moment M and external force F is 
established. See equation (20).

FOM ⋅= 								        (20)

By substituting equations (20) into the equation (5), the dynamic model of the 
CPR has been generated:
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By substituting equations (20) into the equation (5), the dynamic model of the CPR 
has been generated: 

 FOSLGu vvv     (21) 

The moment mapping matrix O represents a strong coupling between the presented 
motors.  

This would be a general form of mathematical model of different CPR system 
type: RSCR, RFCPR, CPR-A, CPR-B, CPR-C and CPR-D. It was clearly emphasized 
that different configurations of these systems result in different Jacobian matrix J and 
moment mapping matrix O of every system. For the same reason, the Lagrange’s 
principle of virtual work in original form is not applicable for the systems: RFCPR, 
CPR-A, CPR-B, CPR-C and CPR-D, but it needs to be modified.  

Through the comparative results, it will be shown how motor selection can signifi-
cantly affect the motion dynamics of a camera carrier. This emphasizes the im-
portance of selecting the type of motor as a very important component of the CPR 
system. 

Control law is selected by the local feedback loop for position and velocity of the 
motor shaft in the following equation: 
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2.2 Program Packages 

In this paper, we have developed the 6 types of CPR systems: RSCPR, RFCPR, CPR-
A, CPR-B, CPR-C, and CPR-D system. They are shown in Figs. 7 -12, and they are 
briefly described via their program packages. 

RSCPR System. The program system ORIGI is generated in MATLAB. This pro-
gram system presents the analysis, synthesis and modeling of the selected Rigid ropes 
S-type Cable-suspended Parallel Robot (RSCPR).  

The important characteristic of this system is its geometric construction which de-
fines the kinematic model through the Jacobian matrix JS. 

The relationship between external and internal forces is defined by the Lagrange 
principle of virtual work. The Jacobian matrix is directly involved in the application 
of the Lagrange principle of virtual work and generation of the dynamic model of the 
RSCPR system. The software packages named ORIGI has been used for the RSCPR 
model verification. 

						      (21)

The moment mapping matrix O represents a strong coupling between the 
presented motors. 

This would be a general form of mathematical model of different CPR system 
type: RSCR, RFCPR, CPR-A, CPR-B, CPR-C and CPR-D. It was clearly emphasized that 
different configurations of these systems result in different Jacobian matrix J and 
moment mapping matrix O of every system. For the same reason, the Lagrange’s 
principle of virtual work in original form is not applicable for the systems: RFCPR, 
CPR-A, CPR-B, CPR-C and CPR-D, but it needs to be modified. 

Through the comparative results, it will be shown how motor selection can significantly 
affect the motion dynamics of a camera carrier. This emphasizes the importance of selecting 
the type of motor as a very important component of the CPR system.

Control law is selected by the local feedback loop for position and velocity of the 
motor shaft in the following equation:
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2.2. Program Packages. In this paper, we have developed the 6 types of CPR 
systems: RSCPR, RFCPR, CPR-A, CPR-B, CPR-C, and CPR-D system. They are shown 
in Figs. 7 -12, and they are briefly described via their program packages.

RSCPR System. The program system ORIGI is generated in MATLAB. This 
program system presents the analysis, synthesis and modeling of the selected Rigid 
ropes S-type Cable-suspended Parallel Robot (RSCPR). 

The important characteristic of this system is its geometric construction which 
defines the kinematic model through the Jacobian matrix JS.

The relationship between external and internal forces is defined by the Lagrange 
principle of virtual work. The Jacobian matrix is directly involved in the application 
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of the Lagrange principle of virtual work and generation of the dynamic model of the 
RSCPR system. The software packages named ORIGI has been used for the RSCPR 
model verification.
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Figure 7. RSCPR system, a) in the 3D space, b) top view.

RFCPR System. The program system ORVER is generated in MATLAB. This 
program system presents a methodology for kinematic and dynamic modeling of 
the selected Rigid ropes F-type Cable-suspended Parallel Robot (RFCPR) with the 
un - stretchable ropes.

The RFCPR system is used for the workspace observation. The complex 
construction of the selected aerial robot requires in depth study of the relationship 
between external and internal forces. The Jacobian matrix JF plays an important role 
in developing the RFCPR dynamic model.

This system is constructed such that its geometric structure requires the 
adaptation of the Lagrange principle of virtual work. The RFCPR model is utilized 
for very complex tasks using the intelligent control system. The software packages 
named ORVER has been used for the RFCPR model verification. 
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Figure 8. RFCPR system, a) in the 3D space, b) top view.

CPR-A System. The software package AIRCAMA is also synthesized for the 
same purpose, and it offers a choice of parameters of the system and analysis of its 
dynamic behavior as well as with the purpose of presenting comparative results.

Defined algorithm is applied to any size workspace selection, with the camera 
weight, the desired speed cameras and so on, of CPR-A system from Fig. 9. Depending 
on the choice of these parameters’ types and characteristics of each motor are 
chosen. 

Activating the program package, it is possible to make the analysis of the results, 
where it can be concluded if the selection of motor types is correct, or whether it 
meets the requirements. It is also possible to analyze the coordination of motion 
in relation to the desired requests. It is possible to observe any motion from the 
selected workspace. The formulated program package AIRCAMA (based on its 
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mathematical model) has a special significance because it is the foundation for 
further development and implementation of this system. 

Program package AIRCAMA that is synthesized specially for the purpose of 
comfort analysis of such complex system served for obtaining simulation results.
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Figure 9. CPR-A system, a) in the 3D space, b) top view.

CPR-B System. The aim of this program package AIRCAMB is a detailed synthesis 
and analysis Cable-suspended Parallel Robot, CPR-B system from Fig. 10, which 
should enable their strong progress. This would be reflected in the implementation 
of highly-automated system that would lead the camera precisely in space with 
minimum participation of human labor. Setting and achieving this goal provides a 
much wider possibilities for its future use. 

The unique general type of the CPR-B mathematical model is defined. Kinematic 
model is generated for the system via Jacobian matrix. An adequate choice of 
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generalized coordinates (the internal coordinates), provides a mathematical model 
that illuminates the mapping of internal (resultant forces acting on the shaft of each 
motor) and external forces (acting on a camera carrier) by the Jacobian matrix on 
motion dynamics of each motor. Such an operation of this system can provide only with 
application of his high-fidelity mathematical model during the synthesis and analysis, 
which would further enable the development and application of modern control law. 
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Figure 10. CPR-B system, a) in the 3D space, b) top view.

The modeling task is solved as software so that a user should choose the system 
parameters that provide the possibility of the analysis of its dynamic behavior.

There is a possibility of extension of program system AIRCAMB from different 
aspects according to the users’ needs. This program system is generated in MATLAB.

CPR-C System. In this program system a special case of the constructive Cable 
Suspended Parallel Robot - CPR model solution, has been analyzed. This model is 
named CPR-C, and it is presented in Fig. 11. 
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Figure 11. CPR-C system, a) in the 3D space, b) top view.

The purpose of this research is to implement the program system AIRCAMC and 
possibly improve the model for the future modernization, autonomy and intelligent 
behavior of the aerial robot named CPR-C. The form of highly complex mathematical 
model is necessary in order to achieve the desired motion of the camera carrier in 
the parallelepiped workspace shape.

CPR-D System. This system is defined by specific features such as ropes which 
are led double in four directions, as well as the motor which on one side winds the 
rope and unwinds it on the other side. Each of these properties must be included 
within the CPR-D mathematical model which will influence the change of the 
Lagrange principle of the virtual work.

The CPR-D system is modeled and analyzed by the software package AIRCAMD, 
which is used for validation of applied theoretical contributions. 
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The modeling task is solved as software AIRCAMD so that a user should choose 
the system parameters that provide the possibility of the analysis of its dynamic 
behavior. This program system is generated in MATLAB. 

The software package includes three essential modules, which are the kinematic, dynamic 
and motion control law solvers for the considered CPR system. The most important element 
of the CPR system is the motor mathematical model which is an integral part of software 
package. Through the simulation results it is shown that the dynamic characteristics of the 
motor significantly affect the response of the system and its stability. The camera carrier 
motion dynamics directly depends of the mechanism dynamic parameters. 

2.3. Simulation Results. We will show the comparative analysis of, only, 
these systems: CPR-A, CPR-B, CPR-C, and CPR-D, because they look same when 
one first looks at them. Mathematical models of these configurations show their 
difference, which is confirmed by the simulation results. 
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In order to make the results comparable, the CPR-A, CPR-B, CPR-C, and CPR-D 
models have been analyzed using the same desired trajectory and the same all other 
system parameters. The camera moves in the 3D space in x , y, and z directions. 

The camera carrier has starting point pstart
o=[1.6 1.3 -0.5](m), and the end point 

pend
o=[1.0 0.7 -0.2](m). 
A camera carrier is under the influence of the disturbance force Pp=[0 110.sin(4.π 

.t) 0]T, which simulates the impact of wind attack.
The camera moves in x, y, and z directions and its velocity has a trapezoidal form 

with maximum velocity )/(417.0
max

smpo = , as shown in Fig. 13c). 
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CPR-D systems).

The selected motors are by Heinzman SL100F and selected gear boxes are 
HFUC14-50-2A-GR+belt.

The system responses, for all four Examples are shown in Figs. 13-16. 
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Figure 14. Simulation results for CPR-A system.
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Figure 15. Simulation results for CPR-B system.

In the Fig. 13-16. represents the results for selected case studies (Examples 1-4). 
Each example has six pictures related to: 

a) the camera carrier position at the reference and the real frames, 
b) the motor shaft position at the reference and the real frames, 
c) the forces in the ropes at the reference and the real frames, 
d) the deviation between the real and the reference trajectory of the camera carrier, 
e) the deviation between the real and the reference trajectory of the motor shaft 

positions, 
f) the reference and the real control signals.
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Figure 16. Simulation results for CPR-C system.
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Figure 17. Simulation results for CPR-D system.

In this Section, six types of CPR systems: RSCPR, RFCPR, CPR-A, CPR-B, CPR-C, 
and CPR-D system, are presented, modeled and analyzed. These are systems with 3 
DOF. In next Section, one of subsystems of CPR system which describes nature of the 
dynamic process of the rope winding (un-winding) on the winch will be described. 
This subsystem contais following elements: motor, gear, winch, pulley and cable 
that is wound/unwound on the winch. This subsystem is called cable winding/
unwinding system, or: CWU system.

3. Different Types of Cable Winding/Unwinding Systems 

In this part of paper, several types of CWU systems will be presented. Their 
constructive differences will be indicated. The CWU system consists of: motor, gear, 
winch, pulley and cable that are wound/unwound on the winch. 

3.1. Standard System for Single-row Radial Multi-layered CWU Process. This 
construction of CWU system has a circular shape of the winch and it is shown in Fig. 18. 

Detailed description of this system is presented in [30]. It was shown that this 
solution of the winch has adverse effects on the system’s dynamic response and it 
causes instability and oscillations of the system. This structural instability of the 
winch from Fig. 1 has inspired the authors of this paper to design a new form of 
the winch for performing the smooth process of CWU. This novel solution of CWU 
system for smooth winding/unwinding in two variants will be presented in the next 
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sub-section. The new constructive solution of the system intended for performing 
smooth CWU process is presented in Fig. 19.

Figure 18. Standard system for single – row radial multi-layered CWU process.

3.2. Novel System for Smooth Single – row Radial Multi-layered CWU 
Process. Fig. 19 presents two new constructive solutions of the winch can be 
used to avoid the constructively generated unstable and oscillatory behavior of the 
system from Fig. 18.

By using either of the two new constructive solutions of systems from Fig. 19: the 
two – cylinder winch (Fig. 19b) or the spiral winch (Fig. 19c), a smooth process of 
CWU on the winch is achieved. 

1.	 The first constructive solution consists of two semicylindrical bodies of 
different radii and it is presented in Fig. 19b. Because of the characteristics 
of this winch, it has been named the two – cylinder winch. 

2.	 The second constructive solution has a spiral shape and this winch is shown 
in Fig. 19c. It has been named the spiral winch.

See references [31, 32]. For further discussion, only the constructive solution 
from Fig. 19b will be used.

Fig. 20 presents two currently selected positions during the process of the CWU 
on the winch. Angle θ is measured as deflection between the line OE and negative 
part of the xw axis, in positive mathematical direction, around point O. The process 
presented in Fig. 20 is named as: single – row radial multi-layered smooth CWU 
process on the winch or abbreviated smooth process of CWU on the winch. Dynamic 
variables which characterize the process shown in Fig. 20 are the following: winding/
unwinding radius R, length lw=AB, and angle γ.
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Figure 19. The new winch for performing a smooth CWU process: a) the 
winding/unwinding system, b) the two – cylinder winch, c) the spiral winch.

The change of these variables during the CWU process is smooth and nonlinear. 
Three phases of this process are to be observed:

a)	 in Fig. 20a the starting position of the CWU system is presented. In this case 
angle θ =0.

b)	 in Fig. 20b the position of the smooth CWU process for the following values 
of angle θ is presented: γ<θ<π+γ. In this period, dynamic variables R, lw=AB, 
and γ of this process are constant, so this area has been named the con area, 

c)	 in Fig. 20c the position of the smooth CWU process for the following 
values of angle θ is shown: π+γ<θ<2.π+γ. In this period dynamic variables 
R, lw=AB  and γ of this process change their values, so this area has been 
named the smvar area. Changes of the characteristic variables are smooth 
and nonlinear, which is substantially different in comparison with the CWU 
process presented in Fig. 18.
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Figure 20. The positions of the smooth CWU system for: a) θ=0 b) γ<θ<π+γ, 
c) π+γ<θ<2.π+γ. .

During the process of the smooth CWU on the winch, areas con and smvar 
alternate cyclically. In the next sub-section, CWU system for multi-row radial and 
axial CWU process will be presented.

3.3. CWU System for Multi-row Radial and Axial CWU Process. This 
system is shown in Fig. 21. This type of CWU system is characterized with one motor and 
two gears. One gear rotates the winch, while the other gear moves it translatory based 
on its rotation. It can be seen that this system has one DOF. The motor which drives 
the winch has a rotary motion around the winch’s axis. This motion is labeled as θ. For 
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successful and controllable winding/unwinding of the cable on the winch, this winch 
must have a translatory motion along its zw axis as well. This motion is labeled as cθ. In 
[34], authors have defined the relation between motions cθ and θ  with Eqs. (13), (14) and 
Figs. 5, 6. It can be seen that these two motions have linear and ideal relation [34]. Many 
researchers, i.e. designers of CPR systems assume application of CWU systems which 
keep relation between these two motions linear. In case of any error in construction or 
disturbance during such system’s application, idealized mathematical relation from [34] 
does not apply. In that case, relation between these two motions is defined with another 
mathematical formulation which will not be analyzed in this paper. 

In order to facilitate understanding of this system’s functionality, the first 
winding/unwinding layer will be described first. This example is shown in Fig. 22. 

Figure 21. The system for multi-row radial and axial CWU process.

a)	 The first layer of winding. 
Fig. 22 presents only the first layer of CWU process from Fig. 21. For example, 
authors of [20] only use cable winding/unwinding on the first layer, without 
the possibility and need for using the second layer, for implementation of 
their CWU system. The cable is only axially furled around the winch. Angular 
motion θ and translator motion cθ must be coordinated for ideal cable furling 



Ljubinko B. Kevac and Mirjana M. Filipovic 343

to be achieved. Unlike examples from Figs. 18-20, this phase of CWU implies 
constant characteristics R, lw and γ, so their first derivatives are zero. Radius 
of winding/unwinding is R=R0+d/2. Next sub-section will present the CWU 
process of the second and third layer of system from Fig. 21. 

b)	 The second and third layer of CWU process. 
Fig. 23 shows the second layer of CWU process, while Fig. 21 presents the third 
layer of CWU process. Both figures relate to the same system, but because of easier 
understanding two different situations are examined. Like it was stated before, 
this type of the system implies coordinated angular θ and translator motion 
cθ. Unlike the CWU phase on the first layer from Fig. 22, at the moment when 
the cable starts winding/unwinding on the second/third layer, characteristic 
variables R, lw and γ become changeable, so their first derivatives are not zero.

Figure 22. The system for multi-row radial and axial CWU process – one layer.

From Fig. 23 one can see that the winding/unwinding radius has a value of 
R=R0+d/2+2.d/2 in the C-C cross-section, while this value is R=R0+d/2+(2.d/2).

cos(30o) when system traverses the next 90o, see the cross-section A-A. During the 
winding on the second layer, radius R continually increases and decreases each 90o. 
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In the case of CWU process on the third layer from Fig. 22, one can see that 
radius R has a value of R=R0+d/2+4.d/2 in the cross-section C-C, while after system 
traverses next 90o, the radius is R=R0+d/2+(4.d/2).cos(30o). This can be seen in 
the cross-section A-A from Fig. 21. During the winding on the third layer, radius R 
continually increases and decreases each 90o. This change of radius R causes the 
change of length lw and angle γ.

Following rule applies for CWU systems from Figs. 18-23: coordinate system 
xw- yw belongs to the plane defined by coordinate system x-y. This condition is 
constructively secured for systems from Figs. 18-20. For CWU systems shown in Figs. 
21-23, this is secured with coordinated translational motion of the winch cθ along zw 
axis in dependence of angular rotation θ. This condition is especially noticeable in 
cross-section A-A shown in Figs. 21 and 22. 

In the next Section, the general form of mathematical model of CWU systems 
from this Section will be presented. 

Figure 23. The system for multi-row radial and axial CWU process – two layers.

3.4. The General Form of Mathematical Model of CWU System. By observing 
the CWU systems from Figs. 18-23, it can be seen that they are different. Regardless of this 
fact, they are connected with same forms of kinematic and dynamic models. This will be 
presented in following sub-sections in detail. CWU system’s cable is connected to a load 
via one pulley. Load’s weight is labeled as m. Pulley’s rotation axis is positioned at the 
coordinate system x-y. Whole system is presented in x-y plane. Coordinate system xw- yw is 
in the same plane as well.
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The Kinematic Model of CWU System. It has been presumed that the position 
of the load, defined in the Cartesian coordinate system, is labeled as p=[x y]T. These 
coordinates are named external coordinates. The winding/unwinding angle of the 
winch θ is defined around axis zw which contains the point O. It is also presumed that 
winding/unwinding angle of the winch is defined as internal coordinate.

In the observed examples, motion direction of the load is in direction of the y axis. 
It is presumed that load’s x coordinate has a constant value. The load’s weight m is 
affected by gravitational acceleration and this defines the force F. 

In general, it can be said that CWU systems from Figs. 18-23 are characterized 
with changeable dynamic variables: radius of winding/unwinding R, length of cable 
which connects pulley with winch lw, and all the other dynamic variables. 

In this Section, the changes of these variables will be included into CWU system’s 
mathematical model. By introducing this novel phenomenon, a new form of the 
mathematical model of the CWU system is obtained. Based on Figs. 18-23, for small 
changes of variables ∆(θ .R), ∆y and ∆lw one can write the following Eq.:
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coordinates are named external coordinates. The winding/unwinding angle of the 
winch  is defined around axis zw which contains the point O. It is also presumed that 
winding/unwinding angle of the winch is defined as internal coordinate. 
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mathematical model. By introducing this novel phenomenon, a new form of the math-
ematical model of the CWU system is obtained. Based on Figs. 18-23, for small 
changes of variables R, y and lw one can write the following Eq.: 

 ∆(𝜃𝜃 ∙ 𝑅𝑅) = −∆𝑦𝑦 − ∆𝑙𝑙𝑙𝑙 (23) 

Since the increment of the product R can be written in the following form:  

 ∆(𝜃𝜃 ∙ 𝑅𝑅) = ∆𝜃𝜃 ∙ 𝑅𝑅 + 𝜃𝜃 ∙ ∆𝑅𝑅 (24) 

one can substitute Eq. (24) into Eq. (23) to obtain: 

 ∆𝜃𝜃 ∙ 𝑅𝑅 + 𝜃𝜃 ∙ ∆𝑅𝑅 = −∆𝑦𝑦 − ∆𝑙𝑙𝑙𝑙 (25) 

In this way, the relation between increments y, , lw, and R is obtained.  
One can see that the left side of Eq. (25), R+R , is dependent on increments 

 and R, because these variables are changeable during implementation of the task 
of CWU system.  

If Eq. (25) is divided with a small increment of time t, in the limit one can write: 

 𝜃̇𝜃 ∙ 𝑅𝑅 + 𝜃𝜃 ∙ 𝑅̇𝑅 = −𝑦̇𝑦 − 𝑙𝑙𝑙̇𝑙 (26) 

From Eq. (26) one can write the following equation for angular velocity of the winch: 

 θ̇ = -�ẏ/R + lẇ/R + (θ ∙ Ṙ)/R� (27) 

From Eq. (27), one can see that angular velocity of  is dependent on variables: and 
R, and velocity of y, R and lw. Eq. (27) presents a kinematic relation between veloci-
ties of external 𝑦𝑦 and internal coordinate  and other dynamic variables.  

The Kinematic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Kinematic model of CWU system for multi-row radial and axial CWU process is 
defined with Eqs. (23)-(27). For regular winding/unwinding of the cable on the winch, 
this system has a translator motion of the winch along its axis zw as well. This motion 
is labeled as c. As it was previously described, this motion is usually implemented 
with the same motor as angular motion . For achieving the translator motion, this 

		  (23)
Since the increment of the product ∆(θ .R) can be written in the following form:
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		  (25)
In this way, the relation between increments ∆y, ∆θ, ∆lw, and ∆.R is obtained. 
One can see that the left side of Eq. (25), ∆θ .R+θ .∆R , is dependent on increments 

∆θ and ∆R, because these variables are changeable during implementation of the 
task of CWU system. 

If Eq. (25) is divided with a small increment of time ∆t, in the limit one can write:
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coordinates are named external coordinates. The winding/unwinding angle of the 
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one can substitute Eq. (24) into Eq. (23) to obtain: 

 ∆𝜃𝜃 ∙ 𝑅𝑅 + 𝜃𝜃 ∙ ∆𝑅𝑅 = −∆𝑦𝑦 − ∆𝑙𝑙𝑙𝑙 (25) 

In this way, the relation between increments y, , lw, and R is obtained.  
One can see that the left side of Eq. (25), R+R , is dependent on increments 

 and R, because these variables are changeable during implementation of the task 
of CWU system.  

If Eq. (25) is divided with a small increment of time t, in the limit one can write: 

 𝜃̇𝜃 ∙ 𝑅𝑅 + 𝜃𝜃 ∙ 𝑅̇𝑅 = −𝑦̇𝑦 − 𝑙𝑙𝑙̇𝑙 (26) 

From Eq. (26) one can write the following equation for angular velocity of the winch: 

 θ̇ = -�ẏ/R + lẇ/R + (θ ∙ Ṙ)/R� (27) 

From Eq. (27), one can see that angular velocity of  is dependent on variables: and 
R, and velocity of y, R and lw. Eq. (27) presents a kinematic relation between veloci-
ties of external 𝑦𝑦 and internal coordinate  and other dynamic variables.  

The Kinematic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Kinematic model of CWU system for multi-row radial and axial CWU process is 
defined with Eqs. (23)-(27). For regular winding/unwinding of the cable on the winch, 
this system has a translator motion of the winch along its axis zw as well. This motion 
is labeled as c. As it was previously described, this motion is usually implemented 
with the same motor as angular motion . For achieving the translator motion, this 

					      	  (27)

From Eq. (27), one can see that angular velocity of θ is dependent on variables: 
θ and R, and velocity of y, R and lw. Eq. (27) presents a kinematic relation between 
velocities of external  y  and internal coordinate θ and other dynamic variables. 

The Kinematic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Kinematic model of CWU system for multi-row radial and axial CWU process is 
defined with Eqs. (23)-(27). For regular winding/unwinding of the cable on the 
winch, this system has a translator motion of the winch along its axis zw as well. 
This motion is labeled as cθ. As it was previously described, this motion is usually 
implemented with the same motor as angular motion θ. For achieving the translator 
motion, this system consists of an additional gear. Relation between angular and 
translator motion was given in [34], and in case considered in this paper it is:
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system consists of an additional gear. Relation between angular and translator motion 
was given in [34], and in case considered in this paper it is: 

 𝜃𝜃 = 2𝜋𝜋 ∙ 𝑐𝑐�/𝑑𝑑 (28) 

In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 

 ċ� =
-�̇�-

��̇
� -

��
� ∙��∙�̇

�
��
�

= -�(d ∙ ẏ)/(2π ∙ R) + (d ∙ lẇ)/(2π ∙ R) + (c� ∙ Ṙ)/R� (29) 

Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 

		  (28)
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In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is 
assumed that the cable has an idealized circular cross-section. 

Eq. (28) illustrates a linear relation between the angular and translator motion. 
After substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved:
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system consists of an additional gear. Relation between angular and translator motion 
was given in [34], and in case considered in this paper it is: 

 𝜃𝜃 = 2𝜋𝜋 ∙ 𝑐𝑐�/𝑑𝑑 (28) 

In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 
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= -�(d ∙ ẏ)/(2π ∙ R) + (d ∙ lẇ)/(2π ∙ R) + (c� ∙ Ṙ)/R� (29) 

Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 

		
(29)

Eq. (29) shows that translator velocity of winch 
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system consists of an additional gear. Relation between angular and translator motion 
was given in [34], and in case considered in this paper it is: 

 𝜃𝜃 = 2𝜋𝜋 ∙ 𝑐𝑐�/𝑑𝑑 (28) 

In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 
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Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 

 along its axis zw, depends on 
variables: cθ , R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are 
constant and their first derivatives are zero. One of these cases is shown in Fig. 22 
and that is the period when only the first layer of cable is wound on the winch. In this 
case a simplified kinematic model is achieved from Eq. (27):
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system consists of an additional gear. Relation between angular and translator motion 
was given in [34], and in case considered in this paper it is: 

 𝜃𝜃 = 2𝜋𝜋 ∙ 𝑐𝑐�/𝑑𝑑 (28) 

In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 
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Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 

 								        (30)

In this case, kinematic model of translator motion in comparison to Eq. (29) is:

Ljubinko B. Kevac and Mirjana M. Filipovic  

360 
system consists of an additional gear. Relation between angular and translator motion 
was given in [34], and in case considered in this paper it is: 

 𝜃𝜃 = 2𝜋𝜋 ∙ 𝑐𝑐�/𝑑𝑑 (28) 

In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 
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Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 

							       (31)

Now, it is mathematically clear that application of only the first layer of cable 
winding/winding on the winch, shown in Fig. 22, is much simpler then application 
of cable winding/unwinding on the second, third or n-th layer on the winch, See Figs. 
23 and 21.

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinematic 
model of this system presents a prerequisite for performing dynamic analysis of 
the CWU system. In order to define the dynamic model of CWU system one needs 
to identify the resultant torque which acts on shaft of the CWU system. Lagrange 
virtual work principle is used in this paper to acquire the following equation:	
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system consists of an additional gear. Relation between angular and translator motion 
was given in [34], and in case considered in this paper it is: 

 𝜃𝜃 = 2𝜋𝜋 ∙ 𝑐𝑐�/𝑑𝑑 (28) 

In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 
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Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 

		  (32)

where F is the force acting on the load’s weight m and M is the torque acting on the shaft 
of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is obtained:	

Ljubinko B. Kevac and Mirjana M. Filipovic  

360 
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was given in [34], and in case considered in this paper it is: 
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In Eq. (28), variable d presents the diameter of the cable, see Figs. 21-23. It is as-
sumed that the cable has an idealized circular cross-section.  

Eq. (28) illustrates a linear relation between the angular and translator motion. Af-
ter substituting Eq. (28) and its first derivative in Eq. (27), following equation for 
definition of translator velocity is achieved: 
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Eq. (29) shows that translator velocity of winch 𝑐̇𝑐� along its axis zw, depends on vari-
ables: c, R, and d, and velocity of y, R and lw. Eq. (29) presents another kinematic 
relation which is a result of Eq. (28). One can use either Eq. (27) or R and lw are con-
stant and their first derivatives are zero. One of these cases is shown in Fig. 22 and 
that is the period when only the first layer of cable is wound on the winch. In this case 
a simplified kinematic model is achieved from Eq. (27): 

 θ̇ = -ẏ/R  (30) 

In this case, kinematic model of translator motion in comparison to Eq. (29) is: 

 ċ� = -(d ∙ ẏ)/(2π ∙ R) (31) 

Now, it is mathematically clear that application of only the first layer of cable wind-
ing/winding on the winch, shown in Fig. 22, is much simpler then application of cable 
winding/unwinding on the second, third or n-th layer on the winch, See Figs. 23 and 
21. 

The Dynamic Model of CWU System. In the previous sub-section, the equations 
which describe the kinematic model of CWU system have been defined. The kinemat-
ic model of this system presents a prerequisite for performing dynamic analysis of the 
CWU system. In order to define the dynamic model of CWU system one needs to 
identify the resultant torque which acts on shaft of the CWU system. Lagrange virtual 
work principle is used in this paper to acquire the following equation: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ 𝜃̇𝜃 (32) 

where F is the force acting on the load’s weight m and M is the torque acting on the 
shaft of CWU system. By substituting Eq. (27) into Eq. (32), the following equation is 
obtained: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (33) 	 (33)

From Eq. (33), one can write the equation for resultant torque M:
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From Eq. (33), one can write the equation for resultant torque M: 

 𝑀𝑀 = −(𝐹𝐹 ∙ 𝑦̇𝑦)/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (34) 

Resultant torque M acting on the shaft of CWU system’s winch includes the dynamics 
of the CWU process. It can be seen that the resultant torque M is dependent on geom-
etry of the considered CWU system, Eqs. (32) – (34), i.e. it depends on variables: 
and R, and velocity of y, R and lw. 

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
the CWU system is presented by 

 𝑢𝑢 = 𝐺𝐺� ∙ 𝜃̈𝜃 + 𝐿𝐿� ∙ 𝜃̇𝜃 + 𝑆𝑆� ∙ 𝑀𝑀 (35) 

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, Lv 
– motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of R 
and lw, the system does not get more complicated in the terms of number of DOFs.  

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is de-
fined by Eqs. (32) – (35). These equations can be expressed through the winch’s 
translator motion c as well. If one substitutes the first derivative of Eq. (28) in Eq. 
(32), the following equation is determined: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ (2𝜋𝜋 ∙ 𝑐𝑐�̇)/𝑑𝑑 (36) 

By substituting Eq. (29) into Eq. (36), the following equation is obtained:  

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (37) 

From Eq. (37) one can express the resultant torque M in form: 

 𝑀𝑀 = −𝐹𝐹 ∙ 𝑦̇𝑦/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (38) 

Now the motor equation depending on the winch’s translator motion c can be writ-
ten: 

 u = ��
�
∙ (G� ∙ c̈� + L� ∙ ċ�)-S� ∙ F ∙ ẏ/�ẏ/R + lẇ/R + (2π ∙ c� ∙ Ṙ)/(d ∙ R)� (39) 

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and their 
first derivatives are zero. One of these cases is shown in Fig. 22 and that is the period 
when only first layer of cable is wound on the winch.  

In this case, the load torque is: 

	 (34)

Resultant torque M acting on the shaft of CWU system’s winch includes the 
dynamics of the CWU process. It can be seen that the resultant torque M is dependent 
on geometry of the considered CWU system, Eqs. (32)–(34), i.e. it depends on 
variables: θ and R, and velocity of y, R and lw.

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
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in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
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From Eq. (33), one can write the equation for resultant torque M: 

 𝑀𝑀 = −(𝐹𝐹 ∙ 𝑦̇𝑦)/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (34) 

Resultant torque M acting on the shaft of CWU system’s winch includes the dynamics 
of the CWU process. It can be seen that the resultant torque M is dependent on geom-
etry of the considered CWU system, Eqs. (32) – (34), i.e. it depends on variables: 
and R, and velocity of y, R and lw. 

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
the CWU system is presented by 

 𝑢𝑢 = 𝐺𝐺� ∙ 𝜃̈𝜃 + 𝐿𝐿� ∙ 𝜃̇𝜃 + 𝑆𝑆� ∙ 𝑀𝑀 (35) 

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, Lv 
– motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of R 
and lw, the system does not get more complicated in the terms of number of DOFs.  

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is de-
fined by Eqs. (32) – (35). These equations can be expressed through the winch’s 
translator motion c as well. If one substitutes the first derivative of Eq. (28) in Eq. 
(32), the following equation is determined: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ (2𝜋𝜋 ∙ 𝑐𝑐�̇)/𝑑𝑑 (36) 

By substituting Eq. (29) into Eq. (36), the following equation is obtained:  

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (37) 

From Eq. (37) one can express the resultant torque M in form: 

 𝑀𝑀 = −𝐹𝐹 ∙ 𝑦̇𝑦/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (38) 

Now the motor equation depending on the winch’s translator motion c can be writ-
ten: 

 u = ��
�
∙ (G� ∙ c̈� + L� ∙ ċ�)-S� ∙ F ∙ ẏ/�ẏ/R + lẇ/R + (2π ∙ c� ∙ Ṙ)/(d ∙ R)� (39) 

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and their 
first derivatives are zero. One of these cases is shown in Fig. 22 and that is the period 
when only first layer of cable is wound on the winch.  

In this case, the load torque is: 

		  (35)

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, 
Lv – motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position θ of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of 
R and lw, the system does not get more complicated in the terms of number of DOFs. 

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is defined 
by Eqs. (32) – (35). These equations can be expressed through the winch’s translator 
motion cθ as well. If one substitutes the first derivative of Eq. (28) in Eq. (32), the 
following equation is determined:
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From Eq. (33), one can write the equation for resultant torque M: 
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Resultant torque M acting on the shaft of CWU system’s winch includes the dynamics 
of the CWU process. It can be seen that the resultant torque M is dependent on geom-
etry of the considered CWU system, Eqs. (32) – (34), i.e. it depends on variables: 
and R, and velocity of y, R and lw. 

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
the CWU system is presented by 

 𝑢𝑢 = 𝐺𝐺� ∙ 𝜃̈𝜃 + 𝐿𝐿� ∙ 𝜃̇𝜃 + 𝑆𝑆� ∙ 𝑀𝑀 (35) 

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, Lv 
– motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of R 
and lw, the system does not get more complicated in the terms of number of DOFs.  

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is de-
fined by Eqs. (32) – (35). These equations can be expressed through the winch’s 
translator motion c as well. If one substitutes the first derivative of Eq. (28) in Eq. 
(32), the following equation is determined: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ (2𝜋𝜋 ∙ 𝑐𝑐�̇)/𝑑𝑑 (36) 

By substituting Eq. (29) into Eq. (36), the following equation is obtained:  
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From Eq. (37) one can express the resultant torque M in form: 
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Now the motor equation depending on the winch’s translator motion c can be writ-
ten: 
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∙ (G� ∙ c̈� + L� ∙ ċ�)-S� ∙ F ∙ ẏ/�ẏ/R + lẇ/R + (2π ∙ c� ∙ Ṙ)/(d ∙ R)� (39) 

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and their 
first derivatives are zero. One of these cases is shown in Fig. 22 and that is the period 
when only first layer of cable is wound on the winch.  

In this case, the load torque is: 

		  (36)

By substituting Eq. (29) into Eq. (36), the following equation is obtained: 	
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From Eq. (33), one can write the equation for resultant torque M: 
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of the CWU process. It can be seen that the resultant torque M is dependent on geom-
etry of the considered CWU system, Eqs. (32) – (34), i.e. it depends on variables: 
and R, and velocity of y, R and lw. 

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
the CWU system is presented by 

 𝑢𝑢 = 𝐺𝐺� ∙ 𝜃̈𝜃 + 𝐿𝐿� ∙ 𝜃̇𝜃 + 𝑆𝑆� ∙ 𝑀𝑀 (35) 

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, Lv 
– motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of R 
and lw, the system does not get more complicated in the terms of number of DOFs.  

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is de-
fined by Eqs. (32) – (35). These equations can be expressed through the winch’s 
translator motion c as well. If one substitutes the first derivative of Eq. (28) in Eq. 
(32), the following equation is determined: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ (2𝜋𝜋 ∙ 𝑐𝑐�̇)/𝑑𝑑 (36) 

By substituting Eq. (29) into Eq. (36), the following equation is obtained:  

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (37) 

From Eq. (37) one can express the resultant torque M in form: 
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∙ (G� ∙ c̈� + L� ∙ ċ�)-S� ∙ F ∙ ẏ/�ẏ/R + lẇ/R + (2π ∙ c� ∙ Ṙ)/(d ∙ R)� (39) 

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and their 
first derivatives are zero. One of these cases is shown in Fig. 22 and that is the period 
when only first layer of cable is wound on the winch.  

In this case, the load torque is: 

	 (37)

From Eq. (37) one can express the resultant torque M in form:
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From Eq. (33), one can write the equation for resultant torque M: 

 𝑀𝑀 = −(𝐹𝐹 ∙ 𝑦̇𝑦)/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (34) 

Resultant torque M acting on the shaft of CWU system’s winch includes the dynamics 
of the CWU process. It can be seen that the resultant torque M is dependent on geom-
etry of the considered CWU system, Eqs. (32) – (34), i.e. it depends on variables: 
and R, and velocity of y, R and lw. 

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
the CWU system is presented by 

 𝑢𝑢 = 𝐺𝐺� ∙ 𝜃̈𝜃 + 𝐿𝐿� ∙ 𝜃̇𝜃 + 𝑆𝑆� ∙ 𝑀𝑀 (35) 

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, Lv 
– motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of R 
and lw, the system does not get more complicated in the terms of number of DOFs.  

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is de-
fined by Eqs. (32) – (35). These equations can be expressed through the winch’s 
translator motion c as well. If one substitutes the first derivative of Eq. (28) in Eq. 
(32), the following equation is determined: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ (2𝜋𝜋 ∙ 𝑐𝑐�̇)/𝑑𝑑 (36) 

By substituting Eq. (29) into Eq. (36), the following equation is obtained:  

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (37) 

From Eq. (37) one can express the resultant torque M in form: 

 𝑀𝑀 = −𝐹𝐹 ∙ 𝑦̇𝑦/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (38) 

Now the motor equation depending on the winch’s translator motion c can be writ-
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 u = ��
�
∙ (G� ∙ c̈� + L� ∙ ċ�)-S� ∙ F ∙ ẏ/�ẏ/R + lẇ/R + (2π ∙ c� ∙ Ṙ)/(d ∙ R)� (39) 

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and their 
first derivatives are zero. One of these cases is shown in Fig. 22 and that is the period 
when only first layer of cable is wound on the winch.  

In this case, the load torque is: 

	 (38)

Now the motor equation depending on the winch’s translator motion cθ can be 
written:
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From Eq. (33), one can write the equation for resultant torque M: 

 𝑀𝑀 = −(𝐹𝐹 ∙ 𝑦̇𝑦)/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (𝜃𝜃 ∙ 𝑅̇𝑅)/𝑅𝑅� (34) 

Resultant torque M acting on the shaft of CWU system’s winch includes the dynamics 
of the CWU process. It can be seen that the resultant torque M is dependent on geom-
etry of the considered CWU system, Eqs. (32) – (34), i.e. it depends on variables: 
and R, and velocity of y, R and lw. 

Now the final form of the mathematical model of CWU system, which is analyzed 
in this paper, can be written. To define the dynamic model of CWU systems presented 
in Figs. 18-23, the well-known equation of motor will be used. The dynamic model of 
the CWU system is presented by 

 𝑢𝑢 = 𝐺𝐺� ∙ 𝜃̈𝜃 + 𝐿𝐿� ∙ 𝜃̇𝜃 + 𝑆𝑆� ∙ 𝑀𝑀 (35) 

where: u – control signal (voltage) of the motor, Gv – motor’s inertia characteristic, Lv 
– motor’s damping characteristic, Sv – motor’s geometric characteristics, while the 
first and the second derivatives of angular position of the winch, influence on the 
motor motion. Regardless that the motion of this system is influenced by velocity of R 
and lw, the system does not get more complicated in the terms of number of DOFs.  

The Dynamic Model of CWU System for Multi-row Radial and Axial CWU Process. 
Dynamic model of CWU system for multi-row radial and axial CWU process is de-
fined by Eqs. (32) – (35). These equations can be expressed through the winch’s 
translator motion c as well. If one substitutes the first derivative of Eq. (28) in Eq. 
(32), the following equation is determined: 

 𝐹𝐹 ∙ 𝑦̇𝑦 = 𝑀𝑀 ∙ (2𝜋𝜋 ∙ 𝑐𝑐�̇)/𝑑𝑑 (36) 

By substituting Eq. (29) into Eq. (36), the following equation is obtained:  

 𝐹𝐹 ∙ 𝑦̇𝑦 = −𝑀𝑀 ∙ �𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (37) 

From Eq. (37) one can express the resultant torque M in form: 

 𝑀𝑀 = −𝐹𝐹 ∙ 𝑦̇𝑦/�𝑦̇𝑦/𝑅𝑅 + 𝑙𝑙𝑙̇𝑙/𝑅𝑅 + (2𝜋𝜋 ∙ 𝑐𝑐� ∙ 𝑅̇𝑅)/(𝑑𝑑 ∙ 𝑅𝑅)� (38) 

Now the motor equation depending on the winch’s translator motion c can be writ-
ten: 

 u = ��
�
∙ (G� ∙ c̈� + L� ∙ ċ�)-S� ∙ F ∙ ẏ/�ẏ/R + lẇ/R + (2π ∙ c� ∙ Ṙ)/(d ∙ R)� (39) 

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and their 
first derivatives are zero. One of these cases is shown in Fig. 22 and that is the period 
when only first layer of cable is wound on the winch.  

In this case, the load torque is: 

	 (39)

Special case of the mathematical model of CWU system for multi-row radial and 
axial CWU process is a period when dynamic variables R and lw are constant and 
their first derivatives are zero. One of these cases is shown in Fig. 22 and that is the 
period when only first layer of cable is wound on the winch. 

In this case, the load torque is:	
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 𝑀𝑀 = −𝐹𝐹 ∙ 𝑅𝑅 (40) 

Load torque from Eq. (40) can be achieved by using Eqs. (34) or (38). 
The equations from this Section, define the general form of mathematical model of 

CWU system having variables R and lw changeable during the motion of the load 
along line h.  

In order to prove the validity of the mathematical formulations defined in this Sec-
tion, in the following Section a novel program package, named CWUSOFT, is pre-
sented.  

 
3.5 The Program Package CWUSOFT 

Based on the mathematical model of CWU system, defined by Eqs. (23) – (40), a 
novel program package CWUSOFT has been synthesized. This program package 
contains several subroutines combined into one unit:  

1. Subroutine for generation of the reference trajectory. In this case, the refer-
ence trajectory of the load in x-y space along the line h is defined. From x-y 
space, the internal coordinate, angular position of CWU system  (as defined 
by Eq. (27)), is calculated. It should be noted that for CWU system for multi-
row radial and axial CWU process it is possible to calculate the translator 
motion c of the winch as well. This procedure includes the kinematic model 
of the CWU system. 

2. Subroutine for generation of the dynamic response of the CWU system. In 
this subroutine, the influence of the changes of radius R and length between 
the winch and hanging point lw is included. This is defined through the re-
sultant torque M which includes the dynamics of load’s motion (force F) via 
Lagrange virtual work principle. Eq. (34) includes the geometry of the 
mechanism, i.e. its kinematic model, as well. It can be seen that now the rela-
tion between the resultant torque M and force F is related via the follow-
ing variables: and R, and velocity of y, R and lw. It should be emphasized 
that for CWU system for multi-row radial and axial CWU process one can 
use the Eq. (38) as well.  

3. Subroutine for control structure of the system. This routine assumes the crea-
tion of various control algorithms for the motion control of the load in x-y 
space along the line h.  

Based on the analysis from Sections 3, next part of the paper will show the simula-
tion results which illustrate the implementation of one trajectory of one type of the 
CWU system.  

 

		  (40)

Load torque from Eq. (40) can be achieved by using Eqs. (34) or (38).
The equations from this Section, define the general form of mathematical model 

of CWU system having variables R and lw changeable during the motion of the load 
along line h. 

In order to prove the validity of the mathematical formulations defined in this 
Section, in the following Section a novel program package, named CWUSOFT, is 
presented. 

3.5. The Program Package CWUSOFT. Based on the mathematical model of 
CWU system, defined by Eqs. (23)–(40), a novel program package CWUSOFT has been 
synthesized. This program package contains several subroutines combined into one unit: 
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1.	 Subroutine for generation of the reference trajectory. In this case, the 
reference trajectory of the load in x-y space along the line h is defined. 
From x-y space, the internal coordinate, angular position of CWU system 
θ (as defined by Eq. (27)), is calculated. It should be noted that for CWU 
system for multi-row radial and axial CWU process it is possible to calculate 
the translator motion cθ of the winch as well. This procedure includes the 
kinematic model of the CWU system.

2.	 Subroutine for generation of the dynamic response of the CWU system. In 
this subroutine, the influence of the changes of radius R and length between 
the winch and hanging point lw is included. This is defined through the 
resultant torque M which includes the dynamics of load’s motion (force 
F) via Lagrange virtual work principle. Eq. (34) includes the geometry 
of the mechanism, i.e. its kinematic model, as well. It can be seen that 
now the relation between the resultant torque M and force F is related 
via the following variables: θ and R, and velocity of y, R and lw. It should 
be emphasized that for CWU system for multi-row radial and axial CWU 
process one can use the Eq. (38) as well. 

3.	 Subroutine for control structure of the system. This routine assumes the 
creation of various control algorithms for the motion control of the load in 
x-y space along the line h. 

Based on the analysis from Sections 3, next part of the paper will show the 
simulation results which illustrate the implementation of one trajectory of one type 
of the CWU system. 

3.6. Testing the CWU System – Simulation Results. In this Section one 
example of CWU system’s load motion is simulated. CWU system named system for 
smooth single – row radial multi-layered CWU process from Figs. 19b and 20 was 
chosen. 

Figure 24. a) position and b) velocity of load’s motion.
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Figure 25. Angular a) position θ and b) velocity of CWU system.

This system has constructive radii: Ri0=0.0136(m) and Ri0(withtilde)=0.014(m) . 
The mathematical model of CWU system defined in Section 3.4 will be tested. For 
generation of all the results in this Section, the program package CWUSOFT from 
Section 3.5 is used. The considered CWU system has the carrying capacity of 
0.064(kg). 

For the purpose of testing, the following reference trajectory has been used: the 
load needs to move along the line h from point ystart=-0.815(m) to point yend=-0.335(m). 
Total load carrying length is 0.48(m). See Fig. 24a. During the load lifting, cable is 
wound on the winch. Velocity of the load has a trapezoidal shape with maximal value 
of 0.063(m/s). See Fig. 24b. For driving the winch, a DC motor with rated voltage of 
12(V) was used.

Figure 26. a) Winding/unwinding radius R and b) its velocity.
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Figure 27. a) Length lw and b) its velocity.

By using Eq. (27) and based on the geometry of examined CWU system, angular 
velocity of θ of the CWU system is determined and that is shown in Fig. 25b. By 
integrating this variable, angular position of CWU system is achieved, see Fig. 25a. 
Total angular motion of the CWU system during the task execution is from 0 to 
28.82(rad). Maximal angular velocity is 4.235(rad/s).

Fig. 26a shows the change of winding/unwinding radius R during the task 
implementation, while Fig. 26b shows its velocity. At the beginning, from 0 – 0.48(s), the 
CWU system is winding inside the con area, where its radius R has a constant value of 
R=0.0148(m), while its first derivative is =0. After this moment, from 0.48 – 1.26(s), the 
CWU system is inside the smvar area and during this period of time radius R grows and 
its first derivative is >0. As it can be seen from Fig. 26, during the load lifting, i.e. during 
the cable winding on a winch, a cyclical alternation of con and smvar areas occurs. This 
statement is confirmed by Fig. 26b where one can see the change of velocity of R during 
the load lifting. As radius R changes its value during the load lifting, length lw and angle γ 
change their values as well. 

Figure 28. a) Angle γ and b) its velocity. 
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Figure 29. Control signal u and b) load torque M.

Fig. 27a shows the change of the length lw, while Fig. 27b shows the first derivative 
of this variable lw. From these figures one can see that this variable has a smooth 
change in time. By comparing the Figs. 27a and 26a, one can see that during the con 
period both R and lw are constant. Unlike the con period, when winch is in the smvar 
period during the cable winding, radius R is growing while length lw is decreasing in 
the same period.

In Fig. 28a, change of the angle 
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Fig. 28. a) Angle  and b) its velocity.  

 
Fig. 29. Control signal u and b) load torque M. 

Fig. 27a) shows the change of the length lw, while Fig. 27b) shows the first derivative 
of this variable lw. From these figures one can see that this variable has a smooth 
change in time. By comparing the Figs. 27a) and 26a), one can see that during the con 
period both R and lw are constant. Unlike the con period, when winch is in the smvar 
period during the cable winding, radius R is growing while length lw is decreasing in 
the same period. 

In Fig. 28a), change of the angle 𝛾𝛾 during the load lifting is presented, while Fig. 
28b) shows its first derivative 𝛾̇𝛾. From these figures, one can see that angle  has the 
same change dynamics as length lw - when cable is winding both lw and  decrease 
their values. When winch is in the con area, i.e. when R=const, angle  also has a 
constant value, as well as length lw. 

Fig. 29a) presents the control signal u, while Fig. 29b) shows the load torque M 
which acts on the CWU system’s shaft. One can see that the load toque is growing 
during the cable winding and that is due to the growth of radius R during the task 
implementation.  

 during the load lifting is presented, while Fig. 
28b shows its first derivative 
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Fig. 27a) shows the change of the length lw, while Fig. 27b) shows the first derivative 
of this variable lw. From these figures one can see that this variable has a smooth 
change in time. By comparing the Figs. 27a) and 26a), one can see that during the con 
period both R and lw are constant. Unlike the con period, when winch is in the smvar 
period during the cable winding, radius R is growing while length lw is decreasing in 
the same period. 

In Fig. 28a), change of the angle 𝛾𝛾 during the load lifting is presented, while Fig. 
28b) shows its first derivative 𝛾̇𝛾. From these figures, one can see that angle  has the 
same change dynamics as length lw - when cable is winding both lw and  decrease 
their values. When winch is in the con area, i.e. when R=const, angle  also has a 
constant value, as well as length lw. 

Fig. 29a) presents the control signal u, while Fig. 29b) shows the load torque M 
which acts on the CWU system’s shaft. One can see that the load toque is growing 
during the cable winding and that is due to the growth of radius R during the task 
implementation.  

. From these figures, one can see that angle γ has the 
same change dynamics as length lw - when cable is winding both lw and γ decrease 
their values. When winch is in the con area, i.e. when R=const, angle γ also has a 
constant value, as well as length lw.

Fig. 29a presents the control signal u, while Fig. 29b shows the load torque M 
which acts on the CWU system’s shaft. One can see that the load toque is growing 
during the cable winding and that is due to the growth of radius R during the task 
implementation. 

In this part of the paper, simulation results which show load lifting process 
were shown. During the load lifting process, cable is always winding on the winch. 
Opposite process of cable unwinding was not shown, because all the phenomena 
that occur during the process of winding occur during the process of unwinding as 
well only in opposite direction. 

Next Section of the paper will present an experimental analysis which will 
confirm theoretical results from 3.4 Section and simulation results from 3.6 Section 
of the paper. 

3.7. Experimental Results. In this part of the paper, experimental confirmation 
of simulation and theoretical results from previous Sections will be given. 
Experiment was made on the set-up shown in Fig. 30.
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Figure 30. The experimental set-up.

The winch is in Fig. 30 labeled as position 1. The following components have been 
used: DC motor, 12V, 20W with encoder and gear head (position 2), Arduino UNO 
REV3 (position 3), Arduino Motor Shield REV3 (position 4) and a laptop computer 
(position 5). The mass of the load (position 6) which is lifted is 0.064 kg, while the 
total cable (position 7) winding length is 0.48 m, lengths a and b are a=0.147 m, 
b=0.045 m. Duration of the motion is 8.2 s. Experiment was made on a CWU system 
which uses a winch from Fig. 19b whose constructive radii are: Ri0=0.0136(m) and 
Ri0(withtilde)=0.014(m). All the parameters are the same as ones used for simulation 
results. Because of that, experimental and simulation results are comparable. 

Fig. 31a shows angular position of the CWU system during the task 
implementation. This figure presents results achieved by simulations θ and 
experiment θexp. One can see that θexp has a change from 0 to 27.3(rad), while θ 
has a change from 0 to 28.82(rad). It is clear that θexp can never achieve the value 
of θ, because of the problem of un-modeled frictions in CWU system. Fig. 31b 
presents comparison between angular velocities of θ of the CWU system achieved 
with simulation and experiment. In general, it can be said that angular velocity has 
decrease of value during the task execution which is caused by the growth of load 
torque acting on the CWU system’s shaft. By comparing simulation and experiment 
angular velocities of θ, one can also conclude that because of unmodeled frictions 
experiment angular velocity on average always has a value which is under 
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simulation  angular velocity (average value). This causes θexp < θ for each moment 
during the task execution.

Figure 31. Angular a) position and b) velocity of the CWU system.

4. Concluding Remarks

Six types of CPR systems: RSCPR, RFCPR, CPR-A, CPR-B, CPR-C, and CPR-D system, 
are presented, modeled and analyzed.

The geometric relations between the motor and the camera motion are highly 
important for the kinematic and dynamic modeling of each system.

The relation between internal and external coordinates is described by the 
Jacobian matrix  J. This methodology for developing the kinematic model of selected 
systems is named the KinCPR-Solver (Kinematic Cable Parallel Robot Solver), and it 
gives a precise direct and inverse kinematic solutions. 

The relation between the forces in the ropes and the forces acting at the camera 
carrier cannot be solved by using the original form of Lagrange’s principle of virtual 
work. Because of the CPR system complexity, the Lagrange’s principle of virtual 
work has been adapted and changed. This equation has been used for determining 
the dynamic model of the CPR system. This calculation shows the influence of the 
external forces on the motor dynamics. The motors’ mathematical models are 
defined in classical form.

The Jacobian matrix J and moment mapping matrix O for each system are 
significantly different, which is the consequence of their different constructions. 

For the four case studies, the software packages: AIRCAMA, AIRCAMB, AIRCAMC, 
and AIRCAMD, have been developed to analyze the CPR-A, CPR-B, CPR-C, and CPR-D 
models, respectively, under same conditions. 

Oscillatory character of the responses presented on Fig. 14-17. Compare 
simulation results for all four constructions, CPR-A, CPR-B, CPR-C, and CPR-D, 
mutually.
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By the comparative analysis of the results, we can come to the conclusion that 
these four CPR constructions follow the same trajectory of the camera carrier. It is 
important to notice that every construction has totally different motion of motors 
for the same camera trajectory. Analyzing the results of these four CPR constructions 
responses indicates their differences. 

The general mathematical model of cable winding/unwinding (CWU) system is 
presented. CWU system includes motor, gear and the winch, and it is one of main parts of 
any CPR system. This model is defined in general form for CWU systems from Figs. 19-23. 

The purpose of this research is pointing out the complexity of CWU systems. Even 
at these simple constructions shown in Figs. 19-23 where each of them contains 
motor, gear and winch one can see the influence of winding radius R and length lw on 
system’s dynamics of response. 

For the verification of the defined mathematical model, a novel program package 
CWUSOFT was defined. Simulation results are shown through relevant dynamic 
variables of CWU system: angular position θ, radius R, length lw and angle γ. 
Simulation results were performed for one novel type of CWU system, see Figs. 19b 
and 20. Simulation results were achieved by using the program package CWUSOFT. 
These simulation results as well as theoretical definitions were confirmed through 
the experimental analysis. 

CWU systems can be sub-systems of more complex mechatronic systems and in 
that case the mathematical model of this complex system is much more complicated 
and one of the reasons is mutual coupling of several CWU sub-systems. Because of 
that, it is very important that dynamic characteristics which are indicated in this 
paper are included in the analysis and synthesis of these complex mechatronic 
systems. This will be a subject of future research of authors of this paper. 
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