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DYNAMICS OF A SPINNING SHAFT WITH NON-CONSTANT ROTATING
SPEED, LEADING TO THEOREMS IN MECHANICS

Abstract. Recent developments in nonlinear dynamic analysis of
mechanical systems are discussed. The nonlinear dynamic analysis of
a spinning shaft with non-constant rotating speed, as a specific type
of hybrid system, in various ways is done. Due to rigid body angular
rotation, this type of hybrid system admits rigid body modes associated
with zero eigenvalues. Therefore the Lyapunov approximation of the
nonlinear dynamics behaviour with the underlying linear system modes
for low energies is not necessarily valid, and the presented two analyses
are becoming more valuable. The first analysis is the well-established
multiple scales nonlinear dynamic analysis. In the 2™ analysis, rigid
body motion’s backbone curves have been determined and lead to
additional information. The nonlinear dynamic analysis of the spinning
shaft expanded further, including the new concept of perpetual points,
leading to the preliminary conclusion that mechanical system'’s perpetual
points are associated with rigid body motions. Although the nonlinear
dynamics analysis of the spinning shaft is extensive in mathematical
formulation, a concrete outcome for critical situations is not established
yet, and more work is needed.

Moreover, based on the observation for the perpetual points, two
theorems proved that the perpetual points are associated with the rigid
body motions in linear natural, unforced systems, and they are forming
the perpetual manifolds. With some new definitions in mechanics, a
third theorem and one corollary proved with the significant outcome
the conditions of wave-particle motion of flexible mechanical systems.
The presented work is significant in two directions; the first is about
examining the dynamics of nonlinear systems with the underlying
linear system with zero eigenvalues, associated with mechanical
systems with rigid body angular rotations with non-constant rotating



speed. The 2" direction is developing the perpetual mechanic’s theory,
with the significant 3™ theorem in mathematics, physics/mechanics,
and mechanical engineering. In mathematics, the theorem provides
solutions in non-autonomous N-degrees of freedom systems. In physics/
mechanics the particle-wave motion is of high significance. Finally in
mechanical engineering the rigid body motion without any oscillation is
the ultimate possible type of motion, e.g., trains, cars, etc.
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1. Introduction

This invited review article summarizes the latestresearch of the author’s outcome
relevant to the concept of the hybrid systems developed by Prof. K.R. (Stevanovic)
Hedrih. The concept of hybrid systems defined in [1], formed by several subsystems,
is examined in a hybrid system (particular type), a spinning shaft with non-constant
rotating speeds. The rigid body acceleration is a generalized coordinate of the shaft
coupled with the elastic deformation generalized coordinates on this system.

Starting from the model of the spinning shaft, then nonlinear dynamic analysis
in two ways is presented.

The outcome of applying the very well-established multiple scales analysis
developed in [2] up to two-time scales in the spinning shaft dynamics is presented.
In the main text, the systems of differential equations describing the motions are
shown. The associated solutions, alongside the system of differential equations in
the main text, are referenced and in Appendix-A explicitly are shown.

Through a different approach developed in [3], the dynamic analysis of the spinning
shaft, by examining particular points relevant to the dynamics of the spinning shaft in
two ways, is extended. The first type of points arises by considering a restricting system
that describes the motion of the spinning shaft [3]. Chaotic dynamics of the spinning
shaft is discussed in [4]. Moreover, to expand the dynamic analysis characteristics, the
concept of perpetual points (PPs) is employed. Prasad has defined the PPs in [5], and
mainly to identify hidden attractors in, e.g. [6], are used.
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Linearization around the fixed points of the restricted system or otherwise stated around
the PPS is performed and leads to three different sets describing the motion for different
rigid body angular velocities. The eigenvalues of the dynamical systems, determined in
[3], are shown. A 3D plot of all the perpetual points with the associated eigenvalues of the
linearized dynamical systems is shown. Moreover; using the linearized system’s eigenvalues,
the normal modes of the spinning shaft, determined in [3], are explained.

The significance of the nonlinear dynamic analyses, with multiple scales and the
linearization around the perpetual points of the spinning shaft, are discussed.

The observation that the perpetual points of the spinning shaft are associated
with rigid body motions leads to further development of theory relevant to perpetual
points as follows. Two theorems about the nature of perpetual points in linear
natural mechanical unforced systems stated and proved in [7-8] are presented.
Based on these theorems, some new definitions for mechanical systems [9] herein
are presented. These definitions lead to the statement of a theorem in [10], which
makes the proof very easy in [9]. The theorem herein is presented, and an analytical
and numerical example is certified. Before the conclusions, there is a discussion for
the already developed theory about the perpetual points.

2. Spinning shaft with non-constant rotating speed

A spinning shaft with a non-constant rotating speed, as a hybrid system, is
considered. The hybrid system description is in the sense that the rigid body rotation
due to not necessarily zero acceleration forms a generalized coordinate coupled
with the generalized coordinates that describe the elastic deformation of the shaft.

In §2.1, there is the model of the spinning shaft, and then in the subsequent sections,
the nonlinear dynamic analysis with two ways is presented. The multiple scales
nonlinear dynamic analysis is in §2.2, and an alternative nonlinear dynamic analysis is
in §2.3. The analytical findings in §2.4 with numerical simulations are verified. Finally,
in §2.4, there is a summary of the research outcome with future research directions.

2.1. Model of the spinning shaft. A flexible shaft with length ~L, made of a
material with density —p ,Young’s (shear) modulus —F (G) and internal (external)
diameter -D, (D,), is considered. The distributed mass —m and the inertia coefficient
for torsion —I, are given by,

4

m=pA=mnp (ﬂ) ' (1a)

Dy*-D*
ho=pl =mp (222) (1)
whereas A is the area of the cross section, and I is the second moment of the area of
the cross section of the shaft.

The shaft considered as an Euler-Bernoulli linearly deformed beam with
deformation indicated in Figure 1. The lateral bending (v, w) deformations are
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coupled with the torsional (¢) deformation and the rigid body angular rotation (6),
noting that the axial deformation is fully decoupled from the rest, as in [2] is shown.

A first attempt in modelling a spinning shaft with the non-constant rotating
speed was in [11], but there are missing terms in the partial differential equation
defining the torsion, and the complete derivation repeated in [2].

A-B

—0(t), —0(t), —6(t), ¢ = q,,
0 “—» B L

FIGURE 1. The configuration of the spinning shaft, with the coupled generalized
coordinates of deformations (v, w, @), their associated modal generalized
coordinates (q,, q,, q(p), and the associated direction of the angular rigid body
coordinate (8), velocity (6), and acceleration (6).

The system of equations describing the motion, apart from the partial differential
equations (PDEs), includes an integrodifferential equation as shown in [2].
Considering hinged-hinged (fixed position-free rotation) boundary conditions for
the lateral bending motions and fixed-free for the torsional motion, PDEs, solve the
eigenvalue problem and then using Bubnov-Galerkin approximation, in their first
mode shapesare projected [2]. The deformation in torsion (¢), to the ‘modal’ torsional
generalized coordinate -q,,is projected, and the lateral bending deformations (v, w)
are projected to the modal lateral bending generalized coordinates (g, g ), and lead
to the following system of ‘modal’ equations,

a5 @ | 9.5 F .. Gviw
[1 + 24l | 20l LL oo 9o T 5
Gvaw _ _ 6-4vqy _ 0-dwqw _ 2'9'd¢'q¢ _
2L L IL L L’ (2a)
é'Qw+(1_M)'iiv=[éz_wg'(l_M)-l'QV_z'é'QW=h2 f (Zb)
_é'qv+(1_M)'qW:[éz_wlzz'(l_M)]'qW-l'z'é'qv:h3 ) (ZC)

whereas, overdot means derivative in time, and the rigid body angular generalized
coordinate as 6 is denoted. Also the constants in equations (2) are given by,

2
F=2-J2:h-L (3a)

11-712
M=-— (3b)

m-L2
)

W, = \/L"L (30)

2.2y +L%m
)
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4 G-I

wr =—*
T 7oL Iy,

(3d)

The last two formulas correspond to the natural frequencies obtained by solving
the PDE’s eigenvalue problem of lateral bending motion (w,) and torsion (w.) for
the considered boundary conditions. The shaft angular deformation, by the sum of
the rigid body angular position (8) adding the local torsional deformation (¢), is
defined, noting that the actual natural frequency in torsion with free-free boundary
conditions must be defined; therefore, is not by the equation (3d), and this is the
reason of the punctuation in ‘modal’ displacements for torsion.

The system of equations (2) can be written in matrix form,

me Qw —qy -2-F 2} ] hy
e R B L S L e
-4, 0 1-M) 0 Giw ) dw hs
-F 0 0 1 g dg hy ,  (4)
with,
me=2-L-L+q;+qs+2-q5 (5)

Considering the inverse of inertia matrix, then the equations (4) are taking the form,
5o . T _
{9 Qv qw Q¢} = [My]™" -{hy hy by h4}T’ (6)
which, is the Cauchy form of differential equations (2). The inverse of the nonsingular
inertia matrix is given by,

1

(Mol ™ =3
[ 1-M) —Qw T 2-1-M)F
I —qy mt—(lli—%M)—Z-Fz —% -2-F-q, I
I ¢ - mt—%—z-ﬂ 2-Fq, i
lF-a-m  -Feq, Fau (=M= g2 = a3 7a)
§=2(1—-M)(L~F*)—Mqi — Mqg +2(1 — M)gg > 0, (7b)

Some observations of the above systems eqs. (4), (6) are necessary before
presenting any nonlinear dynamic analysis of the equations (2) or (4). Considering
the following change of variables [3,12],

(X1 X3 X3 X4 X5 Xg X7 Xg}T =
S . . 3T
={0 4@ avw a4 O 4 4w dg} , (8)

the system of equations (2) or (4), (6) can be written as 1% order dynamical system
with the following form [3,12],

{:} = [€] x {x} +5°[000,0,Gy, G, G3,G]” 9)
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with,
0 0 0 0 1 0 0 O
00 0 0 0 1 0O
00 0 0 0 O0 1O
_10 0 0 0 0 0 0 1
€1=10 0 0 0 00 0 0
00 0 0 0 O0 O0 O
00 0 0 0 0 O0 O
0o 000 00 0 o, (10a)
and,
Gy =2"M-xy X5 Xg+2 "M x5 x5%;—4 (1 —M) x4 x5 %g +
42 F-(1=M)-xZ-x,—2-F-(1—M) w?-x,, (10b)
GZ=—%-xz-x3-x5-x6+4-x3-x4-x5-x8+2-(11-L—F2)-x2-x§—
M M
—(1_M)-x§-xsz—m-xz-x32-x52+2-x2-xf-x§—
.2- -
—Z'wlz,'(1—1\/1)'(11'L—Fz)'x2+w'x23+
a-m)
2(1—
+ Oy xf =2 wf (L= M) 2 xy =4 (L= FD) x5 2y +
2:M
m-x%-xs-x7—4-x5-x7-xf—2-F-(y42—w%)-x3-x4‘ (10¢)
2M
G3=m'x2'X3'x5'x7—4'x2'x4'x5'x8—

2L L—F*) w1 —-M) x3+w} M-x5 x3+wi-M-x3—

-2 wp-(1—M) xg-xZ+2-(I;'L—F%) x5 x% — x%-x3-xE —

M
(1-m)

X3 xZ+ 2 x5 xF xF+4-(I; L —F?) x5 x5 —

(1-M)

M
(I_M)-xg-xs-x6+4-x2-xs-x6+2-F-x2-x4-x§—

—2-F-wf x; Xy, (10d)
G,=2"F-M-xy x5 %+2-F-M-x3-%x5-%x;,—4-F-(1—=M)-x4"x5"xg +

42 (L=M) "I L-xy-x2—M-x%-x, x5 —M-x5 x, x%+
+2-(1-M)x3-x2-2-(1—M) "I, L wb x, + M- ws x5 x, +
M wZ x2x,—2 (1 — M) w?-x3. (10e)
The firsttermin the right-hand side of equation (9) is the linear term of the system,
and examining the explicit form of the matrix —[C] given by equation (10a) is easy
to find out that it has many zero eigenvalues, which means that the Lyapunov linear

modes approximation of the nonlinear system in small energies is not necessarily
valid [12]. Therefore the linearized approximation of the nonlinear system cannot
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help much in obtaining nonlinear solutions. All the methods relying on the natural
frequencies of the underlying linear system developed for this nonlinear system will
not necessarily lead to a good approximation of the original system.

In the following two sections, two different methods for the nonlinear dynamic
analysis of the shaft identifying critical situations developed in [2-3,12], are
explained. More precisely, the multiple scales nonlinear dynamic analysis developed
in [2]; and linearization around the equilibrium manifolds of a restricted system
or otherwise stated through the linearization around the system’s (4) perpetual
manifolds are shown.

2.2. Multiple scales dynamic analysis. The multiple scales perturbation
method, developed by Nayfeh in [13], used for the nonlinear dynamic analysis of the
spinning shaft in [2], in this section is presented.
This method is based on the dynamic analysis of the nonlinear differential
equations, with different time scales -T as follows,
Tj=¢t, (11a)
therefore, the derivatives are given by,

= Xioek Dy, (11b)

whereas D, indicates the derivative in T, time scale.
The accelerations are given by,

dz _ (e} oo k+7
2z = Ljzo Limo € ™ - Diy. (11c)

The multiple scales approach leads to the solutions of the ‘modal’ equations
system eq. (2) in the following form,

0=€%0,+¢" -0, +e* 0, +HOT, (12a)
gy = € qp1 + €% qy, + HOT, (12b)
qw =¢€'"qu, +€%-qy, + HOT, (12¢)
qp = €' qps + €% qp, + HOT. (12d)

Also, following the multiple scales approach, the system of equations (2) for the
various e-scale orders (up to the 2 order) is taking the form:

&, Di,=0 © Db, =0 & 6,=0-T,+ct, (13)
g, 2:1,-L-D30; —2+F Diqg, = =4I - L DyD, 6, (14a)
D§0o * Qw1 + (1 = M) - D§qy1 — (Do00)? * qyy + wjy - (1 — M) - gy +

+2:Dyby - Dyqy1 =0, (14b)
—D§8o " Qyy + (1 — M) - Diqy1 — (Dg80)? - Qs + wf - (L= M) - Gy —
—2+Dy6y " Dyqy,1 = 0, (14c)

—F - D§6; + ng(b.l = (Dy6p)? - qpa1 + w7 "4y =2 F - DyD,6,, (14d)
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€, 21, -L D36, —2F-Diqy, = F, =

==2:1;:L-(2-DyD16; +2-DyD,0, + D1290) - D§90 'Q5,1 - D§90 ) qum -

-2 Dgeo 'Qé,l +4-F-DoDiqp1 + qu1- ngw,l —qwa” D§Qv,1 -

=2 Dobo " DoGy1 " qva — 2" Dby " DoGw,1 " qw,1 =4 Dobo " Doy Apa, (15a)
D§6o - Qw2 + (1 = M) - D§qy,, — (Do) Gy + wj - (1 = M) - @y +

+2Dob * DoQu,2 = Fo = =D§61 - qua — 2+ DoD16o * Q1 —

=2 (1 =M) DoD1qy, + 2" Dby * Dby * qyy + 2 Dby D164 qyy —

=2 Doy D1Gw,1 — 2+ Do0y - Doqu1 — 2 D164 * Doqu,1,(15b)
—=D§6q - Qv + (1= M) - D3qy,2 — (Do6p)? Gy + wh - (1 = M) - qy, —

—2-Dy8 - DoGy = F3 = D§6y - @y + 2 DoD16y - Gy — 2+ (1 = M) - DyDiqy,1 +

+2:Dy0yDo01qu1 +2:Dyby- D16y qy, +

+2 Doy D1qy,1 + 2 Dby - Doqy,y + 2 D160 - Doqyya, (15¢)

—F -D§6; + Diqg, — (Do00)* * qpr + w7 -y = Fy = F - (2 DyDy1 6, +
+2 - DyD,00 + Df6y) — 2 DyD1qg 1 + 2+ Doy - Doby - g1 +

+2: Do D16 g1 (15d)

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2],

DyD,68, =0 & D0 =0 DQ-T, =D,6, = 0. (16)

The equation (16) provides a very helpful expression to eliminate the other secular
terms in equations (14)-(15).

The expressions simplified with the over-dot notation instead of D, and the dash
notation instead of D, in the following sections.

On the left side of the equations (14)-(15), the coupled equations in pairs. The
first pair of equations describes the rigid body angular position with torsional
‘modal’ displacement, and the second pair comprised of the two equations
describing the lateral bending modal displacements. Therefore the multiple scales
nonlinear dynamic analysis of the spinning shaft is divided into two analyses. The
Ist one is about the dynamics of the spinning shaft in rotation, which involves
rigid body angular and torsional motion presented in the following subsection. The
28 analysis is related to lateral bending motions that are presented just after the
following subsection.

Multiple scales analysis, the equations describing torsional with rigid body
angular motions. In this subsection, the systems of equations of motion describing
the dynamics of torsional with rigid body motion at different scales are shown, with
referenced their solutions that in Appendix-A, are explicitly shown. More precisely,
the multiple scales dynamic analysis in this section involves the solution of the 1%
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order approximation, without and with amplitude modulations, and the 2" order
approximation without amplitude modulation.

The 1% order approximation system describing torsional motion
The 1% order approximation equations describing torsional with rigid body angular
motions in T - time scale by equations (14a,d) are obtained [2], and they are given by,
i . 5 _ F .
2'11'L'91_2'F'Q¢,1—0‘:’91—1: Apa, (17a)
Ip-L-(w§-0?)
(I;'L-F?)

—F 01+ Gy + (@3 —02) - qp, =0 S g, + “qp1 = 0. (17b)

The solution of this system, obtained in [2], by the equations (A.la-b) in
Appendix-A, is given. The natural frequency —u by the equation (A.2) is defined.

In case that the rigid body angular velocity () is equal to the ‘torsional frequency’
(w,), then the oscillatory frequency () in equations (A.1a-b) becomes zero.

The amplitude modulation equations of the 1% order approximation describing
torsional motion

The amplitude modulation equations by the T,~ time scale arise, with the
elimination of the secular terms in equations (15a,d) [2], and they are given by:

Apa = —t Aga, (18a)
Ay =ty Agpa, (18b)

The solution of equations (18a-b) defines the modulation amplitudes, and their
explicit form obtained in [2] by the equations (A.6a-d) in Appendix-A is given. The
overall 1% order approximation solution, also considering the amplitude modulation,
by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency(u,) by the
equation (A.6) is given. The detuning frequency is not defined whenever the rigid
body angular velocity is equal to the torsional frequency —u, since the torsional
frequency is a denominator, and in these cases, becomes zero.

The 2" order approximation system describing torsional motion
The system of equations describing the 2" order approximations describing the
motion in T~ time scale by the equations (15a,d) are obtained [2], and they are given by:

b, =5, 4p,2 + [S:1(Th) - et ZHoTo 4 8, (Ty) - "2 @1 To 4 S3(Ty) - "2 @2To +
+5,(Ty) - el(@itwz)To 4 S<(Ty) - el(w1—w2)To CC], (193)
qd),z + ﬂ(z) o2 = AR et ZhoTo 4 Vo (Ty) - etzorTo 4 V3(Ty) - etZwzTo 4

+V,(Ty) - et @102 To 4 Y (T,) - et @1=92)To 4 ¢, (19b)
whereas cc means complex conjugate, and also,
—F-u?
So =10, (20a)
_ F11(T1)+2:FFy1(T1)
5:(Ty) = YO (20b)
Fq,;(T1) v
5;(Ty) = #_;2) , with j=2:5, (20c)
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FeFy,1(T1)+215°LFy1(T1)

Vy(ry) = Z a0 (20d)
V(T = 40 with j=2:5, (20e)
with,
Fiq(Ty) = —4-0Q-po - i- A3 (Ty), (21a)
Fio(T) ==2-0-w i [CH(T) + C3.(TY)], (21b)
Fi3(Ty) =—=2-0-w,i-[D4(Ty) + DZ,(TD)], (21c)
Fy4(Ty) = (0} — @3) - [Co1 (T1) - Dy (T1) — Copa (T1) - Dy (T1)] —
=20 (w; +wy) [Cpi(Ty) * Dyy (Ty) + Cp1 (Ty) - D1 (T1)], (21d)
Fi5(Ty) = (0} — @3) * [Cp1(T1) * Dyy (Ty) = Cyy (T1) * Dy (T1)] =
=202 (01 — @) " [Co1 (T1) * Dyy (T1) + Copa (T1) - Dy (T1)], (21e)
Fu1(Ty) =2-0-A4,,(T)) - Ay (Th). (21f)

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is
explicitly defined.

Multiple scales analysis, the equations describing the lateral bending motions.
In this subsection, the systems of equations of motion describing the dynamics of the
two lateral bending motions at different scales are shown, with referenced solutions.
The multiple scales dynamic analysis in this section, consistent with the previous
subsection dynamic analysis, involves the solution of the 1st order approximation,
without and with amplitude modulations, and the 2nd order approximation without
amplitude modulation.

The 1% order approximation system describing lateral bending motions
The 1% order approximation equations that describe lateral bending motion in
T,- time scale arise by equations (14b,c) [2], and given by:

(A =M) " Gyy +[wf - (1 =M) = 0]y +2-24y, =0, (22a)
(1_M)'qw,1 + [wﬁ (1-M) _92] “qw,1 —-2-0 '(:Iv,l =0. (ZZb)

These equations coincide with those obtained when constant parameter angular
velocity is considered, which are the well-known equations examined in the literature
for steady states to obtain the Campbell diagram. Considering most of the shaft’s
configurations that their geometry obeys the ratio given by equation A.14b, and also
for low rotating speeds the inequality (A.14d) is valid, then the eigenvalues of the
system of equations (22a-b) are pure imaginary, and by the equations (A.17a-d) are
given. As mentioned in [2], not all these natural frequencies lead to normal modes
since the periodicity conditions must be fulfilled and the following equation,

00(Tor) — 000 = 0 = mod [ - Ty7, 2 7| = mod [ﬂz : n] =0, (23)

w12

is required, which is valid only for w, = nQ (with n any integer), which leads to the
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shaft’s critical speeds in steady states, and also defines the shaft’s normal modes. For
purely imaginary eigenvalues, the equation’s solution of (22a-b) by the equations
(A.20a-d) is given.

The amplitude modulation equations of the 1** order approximation describing
lateral bending motions

The amplitude modulation equations of the 1°* order approximation in lateral
bending motions by the T, time scale arise, with elimination of the secular terms in
equations (15b,c), and they are defined by:

(1-M)-w, 0, 0, -0, I(B?/Z,j (TN
0, ~A-M-w, -0 0 ) Buy ()
0, 0, 1-M) o, 0 | By2;(T1) |
.Q, 0, 0, _(1_M)'(DJ k f }
Bwl,j(Tl)
0, 2-A4A11,41 0, -0, (BVZJ (Tl)\| 0
- Ay, 0, 0, —Ai1" By, (T1) 0
’ : = = 1;2 )]
—Ay; o, 0, 0, 0-Ay I Bu2,(T1) I o’/ (24)
0, A11°00-4,, 0 kaLj (T1)} 0

where as, j=1 corresponds to the system arising from first frequency (w,) and j=2
to the system arising from the second frequency (w, ). Considering the detuning
frequencies arising by the amplitude modulation equations (24), only the left side of
equation (23) defines the critical speeds, and the explicit expression of periodicity
becomes very complicated. The system of equations (24) is becoming singular for,

(1-Mw;—2=0, (25)

corresponding to angular velocity very close to the ‘critical speed’ of the shaft
defined by considering the equations (22a,b) and describing the spinning shaft
dynamics for constant rotating speed. In case of neglecting rotary inertia terms
(M = 0), then the system of equations (24) becomes singular for angular velocity
on the ‘critical speed’ of the shaft with dynamics described only by equations
(22a,b).

The solution of equations (24), obtained in [2], by equations (A.24a-d) in
Appendix-A, explicitly are provided. The detuning frequencies by the equations
(A.23a-d) are defined. In the angular velocity on the ‘critical speed’ of the 1% order
approximation defined by the equations (22a,b), two of the detuning frequencies
given by the equations (A.23a,c) cannot be defined since these equations are
becoming singular.

The total solution, arising with the combination of the 1% order approximation
solution with the detuning frequencies from the amplitude modulation, in
Appendix-A by the equations (A.27a-b) is given.

The 2" order approximation system describing lateral bending motions

The 2" order approximation equations describing the lateral bending motion in
T,- time scale [2] obtained by considering equations (15a,b), and they are given by:

(1_M)'fl.v,2_-(22'%,2+0’12;'(1_M)'%,2+2'-Q'QW,2=F2:
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=F,,(T)) - etWotw)To L F (T,) - el Hot@2)To 4 (T,) - el o-w1)To 4

+F, 4 (Ty) - e" o=@ To 4 ¢ (26a)
(A =M)Guo— 2% quat @y (L=M) Qo =202 Gy, =F3 =

= Fy(Ty) - et WotoTo 4 Fr o (T)) - et Wot@2)To 4 o (T)) - elHo=@1)To 4

+F5,(Ty) - e"Bo=@2)To 4 ¢, (26b)

with,

Fpa(Ty) = App(Ty) (=i o  Cun(T1) + 202+ Cpy (Ty) = 2+ i wy - €1 (Ty)), (27a)
Fa2(T1) = Ara(Ty) * (=i~ pto * Dyyy (Ty) + 22 Dyy (Ty) = 2+ i - wy * Dyy (1)), (27b)
Fp3(Ty) = Ay (T1) - (_i o Con (T) +2-02-Coy(T) + 2+ i~y 'Ew1(T1)), (27¢)
Fy4(Ty) = App(Ty) - (_i “Ho "Dy (T) + 202 Dyy (T) + 21" w, '5w1(T1)), (27d)

F31(Ty) = App(T) - (i o Con(T) + 22 Cpy(T) + 2 i~ 0, - Cu(TY)),  (27e)
F35(T) = A1p(Ty) - (i po  Dypy (Ty) + 2+ 2+ Doy (Ty) + 2 i - w, - Dy (Th)),  (276)
Fya(Ty) = Ay (1) - (it Corn(T) + 20 Cuy (T) = 2+ i @y - T (T1)),  (27g)
Fy4(Ty) = Ay (Ty) - (i o Dy (T) + 202Dy (Ty) =2+ - wy -5,,1(T1)), (27h)

whereas it is profound that the right-hand side of equations (26a,b) defined by the
terms given by equations (27) are becoming zero for,

A12(T1) =0, [28]

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b),
this happens for zero initial conditions of torsional initial ‘modal’ amplitude and
velocity.

The solution of the system of equations (26a-b) in [2] is derived, and by the
equations (A.28a-b) is given.

All the individual solutions of the systems of differential equations given in
Appendix-A, in [2] numerically, are verified.

In [2], the explicit equations defining the periodicity conditions had not obtained.
However, for a shaft with explicitly defined configuration, they can be obtained
through the extended Campbell diagram defined by using the plot of the 1% order
approximation frequencies adding the detuning frequencies plotted with respect to
the rigid body angular velocity and the points that a line with slope one is crossing
the frequencies curve are the points with critical speed velocity and corresponds to
the normal modes of the system.
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2.3. Alternative dynamic analysis through the perpetual points of the
system. In this section, a different approach for nonlinear dynamic analysis is
presented. Initially, the equations of a restricted system describing the motion of
the spinning shaft and the equations defining the perpetual points of the dynamical
system describing the motion of the spinning shaft are presented. Then the fixed
points of the restricted system and the perpetual points of the system describing
the dynamics of the spinning shaft are shown, and they form the backbone lines
of rigid body modes of the spinning shaft. Linearization of the spinning shaft
motion equations around the perpetual points in the next subsection is presented,
and the eigenvalues of the linearized dynamical systems are shown. Then in the
following subsection, the backbone lines of the rigid body modes, incorporating the
eigenvalues of the linearized systems around the PPs, for a discussion are presented.
In the last subsection, there are the normal modes of the spinning shaft obtained
from linearization around the PPs.

Determination of the perpetual points and the fixed points of a restricted
system. The determination of the fixed points of a restricted system, and the original
system’s (4), (6) perpetual points, are defined on this subsection. Initially, the equations
of the restricted system are presented, then the equations defining the PPs, and finally,
the fixed points of the restricted system and the PPs are shown.

Equations of the restricted system

In [3], recognizing that the rigid body angular position (x, = ) is not involved
explicitly in any of the equations (4), (6), without losing any information, it can be
neglected by using the following change of variables,

5. . . 1T
Drov2 ¥3 e s Ve V' ={a qw qp 0 G Guw dg} (29)

which leads to the following 1" order restricted system of differential equations that
describes the motion,

Vi =Ys, (30a)
Y, = Ve, (30Db)
V3 =, (30¢)
Dn Y5 Y6 ¥7)' = %'{F1 F, Fy F)T (30d)

Since the equation describing the motion is decoupled from the equations
(30), the rigid body angular displacement can be easily determined with the direct
integration of the expression defining the rigid body angular velocity (y4=9).

The explicit form of the right-hand side of the vector field in equation (30d) arise
by using the explicit form of the multiplication of the inverse of the inertia matrix
with the vector, using the above change of variables (eq. 29), and is given by [3],

Fy=2-M-y 'y, y+2-My, -y y—4 QA-M y, 'y v+

+2-F-(1=M) yi ys—2-F-(1-M) wi-ys, (31a)
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2:M
Fo=—0n Y1 Y2 Y Vst 4y, Y37y, "y, 4

M M
+2- (WL = F*) y1 yi =5 Vi Ve — oy YT YE T yE

+2-yy3yi =2 wp - A=M)-(LL=F?)y +

M-wp(1-M) 3 | wp-M-(1-M)

aon Vit Taon Vi vi—2rwp (L=M)yiiy -

2 My} 2
—4-(,-L-F )'3’4'3’6+(1_M)'3’4'3’6_4'3’4'3’6'3’3 -
—Z'F'(}’f—w%)'}’z Y3, (31b)
2-M

F3=

(1_M).y1.y2.y4.y6_4yl.y3.y4.y7_
=2- (" L=F) wp - (1=M) -y, +wp M-y -y, +wi-M-y; —
—2-wp (L=M)yy ¥ +2- Uy L—=F?) -y, yi =

M M
R G OB it rur ORI A CRB C I i
2:M
a4 (o L=F") ya ys = op Y2 Ya Ys + 4 yiyatys +
+2-F -yt ys yi —2-F - wf y"ys (31c)

F4=Z-F-M-yl'y4'y5+2-F-M-y2'y4'y6—4-F-(1—M)-y3-y4-y7+
2 (A =M)- Ly Ly yi =M -yl ys yi —M-y3-y; yi+
+2-(A1=-M)-y;-yi=2-(A1=M)- I, "L -wf y; + M- wf-yf-y; +
+M - wfyiys—2-(1— M) wi-y3 (31d)

Equations defining the perpetual points

Before proceeding with linearization around the restricted system’s fixed points,
the system’s (4), (6) perpetual points, by setting accelerations and jerks equal to
zero, are determined. The equations of jerks by differentiation of equations (4) with
respect to time can be obtained, and in an explicit form, they are given by,

(61 (oY (A
4+ A = L}
UI'(/;J CI¢J U14J
(6 [ A} (6]
oo b=l - L (32)

i) L) iy |
Considering that for the determination of the perpetual points the accelerations
are equal to zero, then lead to,
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(6\ {h1\| (_Z'Q'Q’E‘Z'é'quv—ﬁl-é-q;\
q” =M, .11t ,:12 — M. 1 [92 _ w12; -(1- M)] -4, N
{th}} [M o] {hg ? (M o] 4' [62 —w2-(1-M)] Gy } (33)
de Uu,) k (62— w2) G, )

The perpetual points in [7], by setting the accelerations given by the equations
(6), and the equations (33), equal to zero, are determined for non-zero velocities.

Perpetual manifolds and the sets of fixed points of the restricted system

The sets of PPs of the original system eq. (6) with the sets defining the equilibria
of the restricted system of equations (30a-d) coincide. The following three sets of
points define them:

1. The first set of perpetual points (v, ), is given by,
Yio = (yo,l' Yo2rY03 You Yos Yoe y0,7) =
= (%,w Qo,ws 9o, 6o, Go.vr Gowr %,gb) = (0,0,0» 6o, 0,0;0),With 6, ER, (34a)

which is a set for arbitrary values of the rotating speed but all the rest deformations
and velocities of the shaft are zero.

2. The second set of perpetual points (y, ) is given by,
Y20 = (y0,1' Yo Y03 YoaYos Yoe y0,7) =
= (%,v' qo,w» QO,¢'90; Go.v» Gow C?o,¢) =
= (0w Gouw 0 2wy /(L = M),0,0,0), with (qo, Gow) € R?, (34b)

which is a family for a rotating speed correlated with the natural frequency of lateral
bending deformation, and the shaft can have any arbitrary values for lateral bending
deformation, but the torsional position and all the velocities are zero.

3. The third set of perpetual points (y, ;) is given by,
Y30 = (yO,l’ Yo Yoz Yo Yos Yoe y0,7) =
= (%,w Qo,wr 90,9, 90: Go.v» Gows ‘?0,4:) =
= (0,0, o4, Twr,0,0,0), with qo4 € R, (34¢)

a set accepting arbitrary values for torsional deformation of the shaft, a specific
value of rotating speed relative to the torsional frequency, but the lateral bending
deformation and all the velocities are zero.

The PPs of the original system eqs. (4), (6) or otherwise stated the equilibria of
the restricted system of equations (30a-d) are not just a few points, but they are
infinite points, and they form manifolds that in case of equilibria they are called
equilibrium manifolds as explained in [14]. Similarly, the sets of PPs with infinite
points are called Perpetual Manifolds (PMs).

The considered restricted system is fully decoupled by the equation describing
the rigid body angular position’s motion. So a fixed point in the restricted system
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considering the constant value of the rigid body angular velocity as defined by the
equilibria,

You = %5 = 0y = ct, (35a)

and then through the first equation of the system of equations (9) the angular
position 6 € S! is given by,

x1=9=90't+00, (35b)
which are periodic rigid body motions of the spinning shaft with period,
2
T = W (35¢)

Therefore, these solutions form families of normal modes with the rigid body
motions of the spinning shaft. More precisely,

- The first set of the PPs/equilibria given by equation (34a) defines dynamics
that the shaft is spinning with any constant angular velocity (90 € R) in rigid body
rotation without any deformation and forms the 1t PM.

- The second set of the PPs/equilibria given by equation (34b) defines dynamics
that the shaft is spinning with a specific constant value of angular velocity
(90 =ztw, (11— M)) in rigid body rotation with any lateral bending constant
deformation ((qo,w dow) € RZ), but with zero torsional deformation, and forms the
27 PM.

- The third set of the PPs/equilibria given by equation (34c) defines dynamics
that the shaft is spinning with a specific constant value of angular velocity (égz tw,)
in rigid body rotation with any constant torsional deformation (g, , €R) value, but
with zero lateral bending deformation, and forms the 3 PM.

Linearization around the perpetual points/fixed points of the restricted system

Therefore, in the previous subsection, the two ways to determine the rigid body
modes/motions of the spinning shaft are shown. The linearization equations around
the three sets of points/PMs, given by eq. (32), using equations (30) or equations (9)
are the same with the only difference that in the latter, there is the existence of one
more decoupled equation that defines the rigid body angular position.

The linearization is performed to the restricted system using the following
perturbations ((§;,i = 1,..7) [3],

y= (Y1;yz;}’3;}’4;}’5;y6;y7) = (qw Qw, q¢'é! QU' QW' CI¢) =
= (3’0,1 +$1.Y02 1 $2 Y03 + 3, Y04 + 80 Vos + 85 Y06 T 86 Vo7 + 57), (36)

lead to,
{51 Séz 53 5.4 Sés Sée 57}T = []y]lygi) '{51 $ & & & S 57}T,
with i=1,2,3, (37)

and the Jacobian (J)) can be split into upper (Jy,;;) and lower (Jy,;) parts as follows,

Tyu
[]y] = ]Z',l]' (38)
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The upper part of the Jacobian matrix —[]y,] is given by,

0 00 01 0 O
[]y_u]z[o 000 01 0]=ct, (39)
00 0 0 0 0 1
and the lower part of the Jacobian matrix —[J),/] is given by,
—|-L.98 1.0
[]y,l] - [ 52 ay; Fl + 5 dy; ’ (40)
it should be noted,
Fi=0. (41)
Therefore, the lower part of the Jacobian —[Jy,j] is given by,
—[L.%%
sall, =[5 5]1 (42)

with regards to the Hessian since the upper part of the Jacobian is constant ([Jy,u] = ct)
the determinant of the Hessian is zero, therefore; all the equilibria of the restricted system
are degenerate.

Linearization around the 1** perpetual manifold

Linearization around the 1% PM of the restricted system, with the perturbations
denoted by adding the 1 as first bold-index ((¢, , for i = 1,...7)) resulting in the
following sets of differential equations [3]:

The linearized equations that describe the motion are given by,

$13 = %17, (43a)
é1,4 =F-a3-¢y,, (43b)
51,7 =l L-ay- &, (43¢)
that lead to,
§a=hl a§,=0 (44)
and the lateral bending motions are described by,
(1 o 010 ffu)
el (o o0 1 fhel (45)
|9e1,5 | ag 0 0 -—az |€1,5 I'
) 0@ e 00 G
whereas,
S(yP)=2-1=M) (I, - L—F?), (46a)
2 2
a\(8,) = W (46b)
52 2
a,(6y) = %. (46¢)

2:0

a5 (6) = s (46d)
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The dynamics, by the same systems of differential equations obtained with the
1st order approximation of the multiple scales analysis of the previous section [3],
is described. More precisely, the differential equation (44) of the linearized system
that describes the perturbed torsional modal displacement (q¢), then with the
exchange of the notation of the variable §; 5 with q4, and considering equation (46c¢)
in equation (44) leads to the equation (17a) that describes the same motion in 1*
order approximation in multiple scales analysis.

Similarly, the system of equations (22a-b) that describes the lateral bending motions
in 1** order approximation of multiple-scale analysis is the same as the system eq. (45)
describing the perturbed lateral bending modal displacements of the linearized equations
with the 1% set of equilibrium points. Considering the equation (45), this can become
profound by exchanging the perturbation velocities &; 5, with 4y, é; ¢ with ¢, , and the
perturbations &; 1, with q,, and &; 5 with g,, respectively, by also taking into account the
explicit definitions of constants that are given by the equations (46b,d).

Linearization around the 2" perpetual manifold

Linearization around the 2" PM of the restricted system, with the perturbations
denoted by adding the 2 as the first index (fz'i,fori =1,...7) resulting in the
following sets of differential equations [3]:

The system of differential equations is given by,

$23 = $27, (47a)
é2,4 =Co8y3 T OS5t ety (47Db)
é2,5 = 708" Yoy Sa3 T O3 Vg TS5, T 67 S5 T Cat (47¢)
é2,6 =g Voq " S23 T3 Yy Sa T 5 Sy5 T 0780 (47d)
52‘7=C6'52,3+F'C1'52,5+F'C2'fz‘6, (47¢)
and then, the other perturbed variables arise with direct integration of,
&1 = Sas, (47f)
s%2,2 = $26- (47g)
whereas,
! (yO,l’ yo,z) = %ﬁmr (48a)
¢2(¥o 1Y) = % (48b)
c; = %ﬁ (48¢)

2wy (1-M)[2:(1-M) (11 L—F?)-My} ||
(Vo Y02) = T e , (48d)
0

_ Z-wb-w/(1—M)-[2-(1—M)-(ll-L—FZ)—M-yg,Z]
Cs (J’O,p 3’0,2) - (I—M)-E(y(()Z)) ) (48e)
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(2-(1—M)'11-L—M-ygyl—M-yg'z)(w%'(l—M)—w%)

C6(y0,1’y0,2) = 6(}1(()2)) ) (48f)

c ( ) _ Z'M'yo,l'y(),z'“’b'\/ (1-m)

7\VorYo2) = (1—M)-6(yéz)) , (48g)
2P (wf(1-M)-0}f)

Cg (}’0'1' yo,z) = 6(y(()z)) , (48h)
_ 2P (1-M)(wf-(1-M)-w})

G (y0,1’ yo,z) - 5(y§2)) - ) (48i)

and,

S(P)=2-(1=M)-Uy-L—F?) = M-y%, — M- yE,, (48))

fi = 0} —wi- A —M). (48Kk)

The eigenvalues of the Jacobian are given by,

n1+3 = 0' (4‘93'(:)
] p0+p1-z¢\[(r1-z—r2)z+r§-z .

774+7(Z) =*i- 25 =ti- H1+2- (4’9d'g)

whereas,

z=Y31+ Yoz, (50a)

Po=8wp-(h-L—=F)+2-(1-M)-I,"L-f; (50b)

pr=—M-(4-wj+f) (50¢)

n=M- (4w} —f (50d)

rz=2'[4'(1)12;'(11'L_FZ)_(l_M)'I1'L'f1]’ (50€)

7"32=32'M2'(U12,'f1'F2. (501:)

Linearization around the 3™ perpetual manifold

Linearization around the 3™ PM of the restricted system lead to, with the
perturbations denoted by adding the 3 as first index (¢, , for i = 1, ...7) resulting
in the following sets of differential equations [3]: '

The systems of differential equations are given by,

- First system

$33 = $37, (51
- Second system

53,4 =by F-&, —bi"$5, (52a)
$o7=b1 b3 &y, —F by &y, (52b)

which describes coupled motions of rigid body angular velocity with torsional
‘modal’ displacement.
- Third system

$31 = S35 (53a)
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$32 = S35, (53b)
63_5 = bZ ’ fl ' 63_1 -2 bZ Tt 63,6: (53C)
§g6=ba fy 835+ 2 by 0p &y, (53d)
which describes the lateral bending motions. The parameters are given by,
. 2'(0"["}103
bl(yo‘g;) - (11'L_FZ+Y§,3)’ (543)
1
2 = (1—M)’ (54’b)
b3(y0'3)=11.l‘+y(2)'3. (54'(:)
The eigenvalues are given by,
u, =0, (55a)
i 2wty i
Mys(Vy) = £by [ (F* = by) = +i- ——=2—=+i- M, (55b)
’ J (hL-F?+y5 3)
ﬂ4+7 = i (1—M)
-J(1+M)-w%+(1—M)2-wﬁiz-wT-\/M-w%+w§-(1—M)2 =
= il ) M3+4 =ct. [55(:)
The explicit solution of the second system eq. (52a,b) is given by [3],
§5,=(Ap+i-4)- Mt 4 cc (56a)
§3,= (Bp+i-B)-e™M*+cc (56b)
with,
_ 4
Ap=—"1, (56¢0)
 (570-F5,0)
A= = (56d)
and
R = —53'72(0). (56€)
(P, (033, @)
B, = o3P . (56f)

The last perturbed variable (&3) is given through direct integration of equation
(122b) and it is given by,

43300 B, i(Bg+iB) Myt
$33 TR €

+ cc

T2 My My (568)
The final solution is given by,
Y=Y Y3 Y0 Ys Ve ¥7) = (0,0, Yo3cr + €33 w1 + &34,0,0,83 7). (57)

This system can also be considered as a perturbed linearized system of the 1%
family of fixed points at rotating velocity (90= wr) with Y3 = ¢ 13 = Yo3.cr therefore
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it is expected that positive perturbation of the angular velocity (§3 4 (0) > 0) leads to
a non-periodic solution of the original system, but negative perturbations can lead
to periodic orbits.

In the 3™ PM, all the eigenvalues of the Jacobian are purely imaginary. The
eigenvalues associated with lateral bending motions are constant on the 3 PM,
therefore with the same eigenvalues of the 1 PM on this rotating speed, and the
motion is described by the equations (A.20a-d).

Backbone lines of the rigid body modes with the eigenvalues of the linearized
systems around them. As in the previous section is shown, the equilibrium
manifolds of the restricted system are the same as the perpetual manifolds of the
original system, and they are given by the equations (32a-c). They are three PMs and
define the rigid body modes of the shaft spinning with non-constant rotating speed.
The physical deformation of the shaft in the lateral bending motion, by the radial
deformation is defined by combining the two lateral bending modal deformations
(V01, Yo2)- Therefore the two lateral bending deformation modal displacements can
be considered together without losing any information, and considering all the rest
generalized coordinates that form the PMs, a 3D plot, that is, the projection of the
PMs, can be drawn. In Figure 2, the projected to 3D PMs are plotted, and they form
the backbone lines of the rigid body modes. In Figure-2, the 15--PM is formed by
the line with any value of rigid body angular velocity and all the generalized rest
coordinates being zero.

The 2M-PM is the line with angular velocity w;, - v1 — M , with any value of lateral
bending modal displacements for zero torsional ‘modal’ displacement. The 3"-PM is
the line with angular velocity —wy, with any value of torsional ‘modal’ displacement,
and with zero modal displacements for lateral bending motion.

Moreover, in Figure 2, the associated eigenvalues, obtained from the dynamical
systems arisen by the linearization of the original dynamical system to the three PMs,
are shown. The A; — eigenvalues indicated near the line of the first set of perpetual
manifolds, obtained from the linearization around the 1t PM, and are the same that
describe the motion in the 1% order approximation of the multiple scale analysis.
The n; — eigenvalues indicated near the vertical line correspond to the linearization
around the 2™ set of perpetual manifolds. The ;- eigenvalues indicated near the 3™
PM line correspond to the linearization around the 3" perpetual manifold.

In Figure 2, two regions can be identified based on the eigenvalue’s qualitative
characteristics. One region is defined by the cyan line for rigid body angular velocity,
wp(1-M)

Nk
that the 1% PM describes the motion. The eigenvalues that are associated with the
lateral bending motion as long as the angular velocity is less than the given by
equation (58) value, that the trajectory is on the ‘Line (side-), are purely imaginary
/14+7(y0,4) = *i-w;,. As long as the trajectory is crossing the cyan line and move to
the ‘Line (side+), the eigenvalues associated with lateral bending dynamics are not
pure imaginary any longer (447 = +(4g £ i - 45)).

b = (58)
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FIGURE 2. Perpetual manifolds (PMs)/backbone curves of the rigid body
normal modes overall manifold projected to 3D, with the associated
eigenvalues of the linearized system around them, indicating the stability
regions, and incorporating the two regions (‘Green zone’, and ‘Cyan line’) that
the eigenvalues are changing qualitatively with respect to the angular velocity.

The second region is the green ‘Zone, centred in the angular velocity 90: w7
There is a qualitative change of the eigenvalues of the dynamical system describing
the dynamics in torsion from pure imaginary to real.

The system’s eigenvalues describing the torsional/rigid body angular velocity
dynamics near this region are with bold green fonts. For almost zero values of
torsional ‘modal’ displacement, the motion is described by the linearization around
the 15%-PM. For smaller values of the angular velocity than wy that the system is in
‘Zone (1-)’ the eigenvalues are pure complex (4,3 = %i - uy). Whereas the trajectory
is crossing the threshold for angular velocity equal to w; they become zero and
then for greater values of angular velocity that the trajectory is in ‘Zone (1+)’ they
become real (A;3 = £As). Also, as long as the part of the trajectory corresponds to
high values of torsional ‘modal’ displacement, and with angular velocity close to wr,
then the trajectory is in green ‘Zones (+3)’, and the dynamics is described by the 3™
set of PM, with eigenvalues (1,3 = &; - M;). Therefore there is a qualitative difference
in the solutions of the trajectory, for the torsional and rigid body angular velocity
dynamics, at different parts of the green ‘Zone".

The positive real eigenvalues in the differential equations solution are called
Lyapunov exponents, and they are associated with chaotic motion. A trajectory
that crosses all the regions of the green ‘zone’ in fig. 2 with different qualitative
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eigenvalues means the motion is chaotic with variant Lyapunov exponents. The
torsional/rigid body angular velocity dynamic analysis in [4] has been done based
on this observation. More precisely, the different solutions of the torsional motion
on green region considered and the trajectory they form on each zone of this region
is determined as follows.

The systems of differential equations that describe the motions around the 1%
and 3™ PM are used for the projection to the phase space by parameterizing time
with respect to the perturbation in torsional position (§; 3, and & 5, respectively).

Using the linearized equations (43b-c) and (44) with &, ; perturbations around
the 1% PM, and parameterization of time leads to [4],

aé1s _ F(85-wF) €1

g1z (I L-F2)Eq; (59)
déyy _ IiL(B3-w?) &3 2 IL(03-w}) L2
s GLFE, $17 (I1'L—F?2) Sia=Ae
o IL(88-wi) 5 _
S 4~y 6 =4, (60a-c)

whereas, §;; # 0. The zero value corresponds to the local extrema of perturbation of
torsional position (§;3), and they can be neglected without changing the qualitative
characteristics of the analysis. Angular velocity greater than w; corresponds to a
family of hyperbolas with center (0,0) in phase space, and they approximate well the
orbit near the region defined by the green ‘Zone (1+)’ of fig. 2 which corresponds to
almost zero torsional modal displacements. Whenever the angular velocity is equal to
wr lead to a constant perturbation in torsional velocity (§;,) and finally for angular
velocity less than w; the orbit are crossing the region of green ‘Zone (1-)’ of fig. 2 with
almost zero torsional modal displacements. A family of ellipses with center (0,0) in
phase space, is describing this part of the orbit. Using equation (60b), the constant of
integration A can be determined. Rearrangement of equation (60c) lead to [4],

. IL(82-w?) .o . LL(82-w?)
f1,7-i\/ﬁ'f1,3+1‘1‘:’%—i o e TA (61)

then using equation (61) in equation (59), and integrating while considering the
original system state space variables lead to [4],

s _ 4 o F o |wr(68-wf) o
=60+ [Toe 45 TA+B, (62)
with B being the integration constant, and they correspond to the following families

of orbits [4],

. . 2 .
UrD)*(6-00-B)"  IL(03-wF)
F2-4 A(I;-L-F2) 19

=1, (63)

whereas for angular velocity greater than w; corresponds to a family of hyperbolas
with centre (8, + B,0). Initial angular velocity (6,) equal to w; leads to a solution with
constant rigid body angular velocity (6). Finally for angular velocity smaller than wy
lead to a family of ellipses with center (6, + B,0) in phase space.

The linearized namely 3¢ PM with angular velocity equal to wy is surrounded
by periodic orbits. The constant perturbations in torsional and rigid body angular
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velocities obtained from equations (62) and (63) respectively are not describing the
orbits in this region. In this region near the green ‘Zones (+3)’ of fig.2, with different
than zero torsional modal displacements ([y3| = |q4,| > 0), a better approximation
of the orbits by the linearization around the 3" EM can be obtained. The orbits
associated with the linearization around the 3% EM with &;; - perturbations, by
parametrizing time with the perturbation in torsional position (&33) using the
equations (52a,b), are determined. Firstly, the differential equation [4],

af3s _ F§34=837
dézy;  (IrL+y§3)€34-FE37°

(64)

whereas the points corresponding to local extrema of the torsional velocity (§3,) are
neglected (without changing qualitative the conclusions of this analysis) with (I; - L +
Yo%)+ &34 # F - & 7. Solving equation (64) lead to [4],

f _ F-&37 J_(Il'L_F2+yg.3)'$§,7+C
34T (hieyga) — (lL+755)

(65)

Using any pair of values, the constant of integration C can be determined by the
following rearranged equation [4],

(hL+8s) Gat (b L+33s) & =2 (L L+ yEs) Fraa sy~
—C=0, (66)

which is forming an ellipse.
The 2" equation, for &, # 0, is given by [4],

a2
37 _ 5, W1 Vos - ( (liL+ys) &34 F >, (67)

dés3 (I'L-F2+y33) $37  (IL-F2+¥83)

using (eq. 65) and direct integration lead to [4],

53,3 =

—_ 1

2:wTYo0,3

-\[—(11 "L—F?+y};)-&,+C+D, (68)

or using state space variables of the original system and with rearrangement lead to
the following family phase space curves [4],

[2 TWr Yoz (‘I¢ —Yo3 — D)]Z + (11 “L—F? +y§,3) &3, =0C, (69)

which are ellipsis centered at (ys3, y7) = (Vo3 + D,0) [3].
Rearrangement of equation (69) for a solution of perturbation of ‘modal’ torsional
velocity with respect to perturbation of ‘modal’ torsional position lead to [4],

&, = i\/C—[Z'wT'YO,z'(fs,z—D)]z Sy, = i\/C_[Z"UT'YO,S'(Q(;)—J’O,s—D)] (70a)

(1L-F2+yE5) (I L-F2+y§3) ’

and replacing eq. (70a) in eq. (65) using state space variables of the original system
lead to [4],

2
6 = wr + (Il.L-I:yés) . \/C_[Z'wT'YO,3'(q¢_y0,3_D)] + 2:01Y0,3'(4¢—Y0,3—D) (70b)

(I L=F?+¥§3) - (L+y8s) 7
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and written as a 2™ order, that forms a family of ellipsis with center at (¢4, 6) = (Vo3
+ D, wy) can be easily concluded.

The curves in phase space, associated with each solution eq. (61), (69), (70b),
with real and imaginary eigenvalues, in each zone, in [4] with the numerical
solutions are compared. The analytical solutions approximate the trajectories,
within the region of their validity, and they were in good agreement. The analytical
verification of the variant Lyapunov exponents with numerical simulations in [4]
is done, but further work for a thorough examination of chaotic motions of the
spinning shaft e.g. domain of attraction of chaos etc, is needed.

Normal modes from linearization around the perpetual manifolds. In [3], based
on the linearization around the perpetual manifolds, the associated normal modes
are determined, and they are given by,

Normal modes, around the 1** perpetual manifold

They are associated with:

1) Perturbations in torsional motion have periodic solutions for the following
critical speed [3],

2

: 1
Oorcr12 = i\/ﬁ wr = £0.916%r. (71)

2) Perturbations in lateral bending motions, corresponding to the following rigid
body angular velocities [3],

. M?—5-M+4

Oopery =@y - (L =M)- [, (72a)
and

. M*—M

GO,B,cr,z =w,-(1-M)- Mo rom—an’ (72b)

that must be perturbed for periodic lateral bending motions.

Normal modes around the 3™ perpetual manifold

They are associated with torsional motions and correspond to the following
torsional ‘modal’ value [3],

_ o |1L=F?
qd),cr - yO,B,cr - 3 ) (73)

which defines the equilibrium point that must be perturbed to find torsional
periodic motions. This normal mode cannot directly obtained from the
multiple scales analysis since, the associated equations of motion are not
explicitly correlated with the 1* order approximation with the multiple scale
analysis.

In the next section, the analytical findings with numerical simulations of the
original system are compared and discussed.
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2.4. Numerical results from theoretical analysis. On this section, the
verification of the theoretical findings of the previous sections, with numerical
simulations are shown.

A shaft with configuration, material, dimensions, that is following the Euler-
Bernoulli beam assumptions, used in [2,3] is considered. It is a 1 m length (L) shaft
with internal and external radii r; = 0.028 m and r, = 0.03 m, respectively. It is made
of stainless steel with the following material properties: density = 7850 Kg/m?,
Young’s (shear) modulus E = 200 GPa (G = 76.9 GPa) , and Poisson’s ratio v = 0.3,
which leads to the following parameters: I; - L = 12.04 - 10* Kg - m, F= 31.24 - 10’3
m - \/KG,and M = -41.55 - 10°*,

All the numerical results are mainly to confirm the theoretical analysis and
identify its limitations. It should be highlighted that the initial angular position (6,)
can be arbitrarily defined since the origin of the fixed coordinates system that the
angular initial position is related can have any orientation in space. The selected set
of initial conditions for lateral bending motions corresponds to all instances with the
same radial amplitude, obtained by combining the two deformations of the lateral
bending motions.

Since this article is a review article, to make sense the findings of different
publications, the best way is to start from the simple results and then move on to
the more complex ones. Therefore, in the next subsection, before the examination of
the normal modes solutions, the PMs solutions as rigid body modes of the spinning
shaft numerically are examined. Then in the next subsection, the analytical findings
relevant to other types of normal modes obtained through linearization around the
PMs, that in many cases coincide with the 1% order approximation with numerical
simulations are presented. Finally the validity of the multiple scales analysis with
the existence of detuning frequencies in the dynamics of the spinning shaft, in the
third numerical subsection is shown.

Numerical results confirming rigid body motions on PMs. The following 3-sets
of initial conditions (ICs), associated with each one of the three perpetual manifolds,
are considered:

-The 1% set of ICs associated with the 15t PM (eq. 34a),

(90,0 Gow 90,6 00 Go.v» Gowr Gop) = (0,0,0,10,0,0,0), and corresponds to a period T;
= 0.6283 s, as given by (eq. 35c).

-The 2™ set of ICs associated with the 2" PM (eq. 34b),

(90,0 90w Q0.6 00r G0 dowr do,p) = (8,10,0,1022.16,0,0,0), and corresponds to a
period T, = 0.0061 s.

-The 3™ set of ICs associated with the 3 PM (eq. 34c),

(%,w Qowr 90,¢ 90' Go,v» Gow» L.IO,¢) =(0,0,5,4916.41,0,0,0), and corresponds to a
period T3 =0.0013s.

The initial angular position (0,) is selected to be zero.

In Figures 3a-c, the numerically determined transient responses, of equations (9) are
depicted. The transient responses obtained with initial conditions associated with the 1+
PM in Figure (3a) are depicted, with only rigid body angular (6) motion and period T;
=0.6283 s which is the same as the analytically defined period of the rigid body angular
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motion. In Figure (3b) the transient responses associated with the 24 PM are depicted.
Examination indicates only rigid body angular motion with fixed lateral bending
deformation and the same as the analytically defined period of T, = 0.0061 s. Finally, the
3 PM initial conditions lead to the transient responses depicted in Figure (3c). There is
only rigid body angular periodic motion with fixed torsional ‘modal’ deformation with
period of T3 = 0.0013 s, which is the same as the analytical value.

Numerical results confirming normal modes solutions defined by perpetual
manifolds. The validity of the four theoretically determined normal modes
obtained with linearization around the PMs of §2.3, through numerical simulations
is discussed on this subsection.

Based on the parameters defining the spinning shaft configuration, in Table
1, the characteristic values on the spinning shaft dynamics are presented. The
two characteristic values of the angular velocities that define the 27 w, " v1-M
and the 3 PM (wy), and the characteristic value of the angular velocity
@, (1=M)/Y=M that in the 1% PM the eigenvalues for lateral bending motions
are qualitatively changing from pure imaginary to complex with nonzero real
parts. Also, the characteristic values determining the normal modes (periodic
motions) of the system, obtained by the linearization around the perpetual
manifolds, are shown.

Considering the 1% PM, there are 3 normal modes associated with particular
critical speeds, one for torsional motion (6 z..1) and two for lateral bending motion
(Bo,z.rj withj = 1,2). All of them coincide with the 1% order approximation of multiple
scales analysis without considering the amplitude modulation equations.

In Table 1 is clear that the qualitative change of the eigenvalues describing lateral
bending motions w, - (1 — M)/v—M corresponds to much higher angular velocities than
these that correspond to normal modes (6 g, With j = 1,2).

The fourth normal mode is obtained by the linearization of the 3¢ PM, with
angular velocity equal to the torsional characteristic frequency (w7), and the
torsional modal displacement (q¢4.) as by the equation (6) is defined, and in
Table 1 is indicated. Noting that this normal mode cannot easily obtained from the
multiple scale analysis, therefore forms add-on information provided by the PMs
approach.

TABLE 1. Characteristic values on the dynamics of the spinning shaft based on
solutions around the PMs [3].

Wp (O M éo,T,cr,l 90,3,cr,1 90,3,61‘,2 Ao.cr
V1I-M V-M x 10*
(rad/s)/ (rad/s)/ (rad/s)/ (rad/s)/  (rad/s)/ (rad/s) / rad-m
(RPM) ([RPM) R.PM) (RPM) [®RPM) ([RPM) -JKg
(for wy)
1022.16/ 4916.41/ 15890.24/ 4507.95/  510.82/ 15857.33/ 87.21

9761 46948 151741 43048 4878 151426
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FIGURE 3. Numerically determined transient responses, (a) with the 1% set of initial
conditions, (b) with the 2" set of the initial conditions and, (c) with the 3™ set of initial
conditions [3].

The theoretical analysis of normal modes in two sets of numerical simulations
is presented. The 1% set considers only the linearization around the PMs/1 order
approximation of multiple scales analysis neglecting the detuning frequencies, and the
2" set considering also the amplitude modulation equations.

In [2], the Campbell diagram for lateral bending motions obtained from FEA
(ANSYS) and incorporating the analytical results is examined. More precisely, the
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analytical frequencies (f;, for j = 1,2) obtained from the first-order approximation,
neglecting the detuning frequencies, are in good agreement with those obtained
from FEA, and the critical speed is on 4878 R.PM. (6 g 1), which is validating the 1%
order approximation analysis and the PPs linearization analysis presented herein,
that are associated with the steady states of the spinning shaft.
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body angular velocity =8 and the lateral bending modal displacement —q, with co =
2.9365 x 10, b) torsional ‘modal’ displacement —qg and the lateral bending modal
displacement —q,, [3].
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Transient responses of normal modes for lateral bending motion
Normal modes for lateral bending motion, identified only around 1% PM for two
critical speeds as in Table 1 are shown.

Firstly, a perturbation of the 1% PM, for 8¢ p,1(=510.82 rad/s), with initial

conditions of (qo,, qow) = (§0,1, §0,2) = (1073, 10%) and the rest of the perturbations
being zero, is considered. This perturbation is resulting 1.2 mm radial initial
deformation of the shaft [3]. In Figures 4a-b, the transient responses obtained
from direct numerical simulations of equations (9), and those defined by the
analytical solution eqs (A.1a-b) and (A.20a-b) [3]. In Figure 4a, the analytically,
and the numerically determined rigid body angular velocity -6 and lateral bending
modal displacement -gq, , are depicted, and they are in very good agreement. The
rigid body angular velocity is constant. Figure 4b, depicts, the torsional ‘modal’
displacement -q4 and the lateral bending modal displacement -g,, numerically
and analytically determined. The numerical with the analytical results are in very
good agreement.

Considering the 2" critical speed 6ypc,1 (=15857.33 rad/s), the analytical
solution eqgs (A.1a-b) and (A.20a-b), even for very small values of perturbations, is in
high disagreement with the numerical simulations, as in [3] is shown.

Transient responses of normal modes for torsional motion

Two normal modes identified in torsion, the first one arises with perturbation
of 1t PM and the 2" normal mode arises with perturbation of the 3¢ PM.

The first normal mode for small deformations (for the validity of 1°* order
approximation) is defined, and for angular velocity —6g1.1(=4507.95 rad/s).
Perturbation of torsional modal angle qo4 = &3 = 107 is considered and the rest
of the perturbations being zero. In Figure 5, the transient responses obtained from
direct numerical simulations of equation (9) and the analytical solutions given
by equations (A.la-b and A.20a-b), are depicted [3]. In Figure 5a, the torsional
‘modal’ displacements are depicted and the numerical results are in very good
agreement with the numerical. The numerically determined lateral bending modal
displacements are in very good agreement with the analytically determined, shown
in Figure 5b. This is a torsional normal mode , with the lateral bending modal
displacements coalescence as Figure 5b is shown. In Figure 5c the numerically and
the analytically determined rigid body angular velocity, are depicted, and they are in
very good agreement.

The 2" normal mode in torsion arise by the 3™ PM, 6,(0) = wy + &;4(0) = 4906.41
rad/s (&4(0)= —10 rad/s), torsional angle q4(0) = ¥ 3. + &33(0) = 0.009721 (&;(0) =
10%), and a large perturbation of angular velocity q4(0) = &;,(0)= 0.1. In Figures 6a-d,
the transient responses obtained from direct numerical integration of equation (9) are
depicted, incorporating those obtained by the equations (56a-b), (57) and (A.20a-d),
and they are in very good agreement. In Figure 64, the torsional ‘modal’ displacement
is depicted, and seems that it is an unstable motion, since for the first time instances,
the numerical responses are coincide with the analytical ones. However, after some
cycles of oscillations the numerical solution is deviating from the analytical solution.
Figure 6b depicts, the two modal lateral bending displacements, they are coalescence,
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and there is a good agreement between the numerical with the analytical results. In
Figure 6c¢ the torsional modal velocities are depicted, the good agreement between
the numerical with the analytical results in early stages is obvious, and the instability
of this normal mode is further confirmed. In Figure 6d the rigid body angular velocity
is depicted, and similarly in early stages there is agreement between numerical with
analytical results and then their disagreement due to the instability of the normal

mode is becoming profound.
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FIGURE 5. Transient responses for torsional critical speed .1 ,=4507.95 rad/s, a)
torsional angle —q,, b) lateral bending motions g, and g,,, ¢) angular velocity -6 [3].
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Numerical results confirming the solutions from multiple time scales analysis.
On this subsection the multiple scales nonlinear dynamic analysis, through numerical
simulations is discussed.

In [2] numerical simulations, 4 angular velocities considered, but only for small
angular velocity with value8,(0)=104.72rad/s (=1000 R.P.M.) there isa confirmation
of the analytical results. The following set of initial conditions considered,

7,(0) =1,q,(0) = 1,4,(0) = 0,4,,(0) = 0,44(0) = 0,4,(0) = 0. (74)

The above initial conditions resulting a very high initial deformation but it is a good
set for examining the theoretical analysis.

In Figure 7, the numerically obtained responses are depicted, incorporating the
analytical solutions obtained from a) 1% order approximation without detuning
frequencies, equations (A.1a-b) and (A.20a-b) and b) 1%t order approximation with
detuning frequencies given by equations (A.8a-b), (A.27a-b).

In lateral bending motions (fig. 7a-b) the 1% order approximation with the
detuning frequencies are in very good agreement with the numerical solution, since
the detuning frequencies are not zero the 1% order approximation without detuning
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frequencies is not capturing the dynamics. The torsional ‘modal’ displacement and
rigid body angular velocity are approximated as an envelope without capturing the
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numerical simulation’s details, as in Figure 7c-d, are depicted.
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FIGURE 7. Comparison of the direct numerical integration responses with
the multiple scales solution for 8, (0) = 104.72 rad/sec: a) bending motion in
y-direction (q,(t)), b) bending motion in z-direction (g,(t)), c) torsional modal
angle (q4(t)) and, d) angular velocity (6 (t)) [2].

Highlighting that the numerical simulation presented herein is for 1000 R.PM, which
is much smaller from the 1** and 2™ critical speeds. Therefore further analysis is needed
for identifying the detuning frequencies in critical situations for the spinning shaft.

2.5. Discussion of this section. On this section nonlinear dynamic analysis of a
spinning shaft with non-constant rotating speed, with two ways, has been presented.
The system of equations describing the motion as highlighted in [4], is a system with
zero eigenvalues associated with the underlying linear system, and they are associated
with rigid body modes. In this case, the Lyapunov solutions, in low energies the nonlinear
system’s dynamics, is described by the underlying linear modes is not necessarily valid.
Therefore the methods with development relying to the underlying linear modes most
likely cannot provide accurate results. Typical practice in discrete systems with rigid
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body modes is a change of variables such that the system becomes ‘grounded’ in one of
the generalized coordinates, and the rigid body modes are disappearing. In our system,
the original equations are PDEs. The ‘grounding’ in one of the deformation variables
makes the system very complicated, e.g. the torsional deformation with rigid body
motion, leading to coupling of the lateral bending with torsional motion, through the
Coriolis and the centrifugal forces.

The 1% method of nonlinear dynamic analysis, is the well-established multiple
scales analysis, and herein the results arose by incorporating two time scales with
detuning frequencies from the steady states solutions.

The 2" approach was performed with linearization around the PMs that form
the backbone lines of rigid body modes. The analytical results obtained with the
linearization around the 15 PM, overlap with the analytical results obtained with the
1% order approximation from the multiple-scale analysis. The combination of the 3
PMs of rigid body modes, and the eigenvalues associated with the dynamical systems
arising from the linearization of the original system around the PMs, leads to several
observations. In a plot that is the projection of the backbone lines, of the rigid body
motions of the spinning shaft with non-constant rotating speed, to 3D make some
things very clear. There is qualitative change of the eigenvalues, for different values
of the angular velocity associated with the linear systems around 1% PM, and leads to
trajectories associated with variant Lyapunov exponents and chaotic motions.

Moreover four sets of normal modes that define critical situations have been
determined. The three of them coincide with multiple scale analysis. The fourth one
is a torsional normal mode that through the PMs linearization can directly obtained.

Apart of the normal modes, that define the critical situations, the regions in the
backbone lines of rigid body modes with the dynamical systems associated with
eigenvalues having positive real parts, means that the solutions are escape to infinity,
and this form another type of critical situations, that can be examined further on.

Although the mathematical analysis is extensive, the definition of the critical situations,
of the spinning shaft with non-constant rotating speed, needs more work, for the definition
of the normal modes e.g. away from the PMs and in the regions that the dynamics is
described by linear dynamical systems associated with eigenvalues with positive real parts.

Also, the full chaotic motions analysis is still incomplete, e.g. the determination of
the basins of attraction, and therefore further work is needed.

The above mentioned nonlinear dynamic analysis through the observation that
the PPs are associated with the rigid body modes paved the way for developing the
theorems presented in the subsequent sections.

3. Theorems in mechanics about rigid body motions

3.1. Theorems about perpetual points of mechanical systems. The first
analysis of determining the spinning shaft’s perpetual points leads to a preliminary
conclusion that the perpetual points are associated with rigid body motions in
mechanical systems. Later on, simpler mechanical systems have been examined to verify
it. In Figure 8, the configuration of a 2 degrees of freedom mechanical system is shown.
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M, oy B2 M,

FIGURE 8. Configuration of the 2 degrees of freedom mechanical system.

The equations of motion are given by,

My -3 k- (o — %) + kg (i —x3)3 4+ ¢ - (5, — %) =0, (75a)
My %y — ey - (g = x3) — kg~ (g —23)° —¢1 - (X = %) = 0, (75b)
and taking their derivative in time the following equations of jerks arise,

My %+ kg (G — %) 43k (0 —2)? - (B — %) + ¢y - (B — %) =0, (76a)

My %, —ky s (X — %) =3 ky (X — %)% (% — %) — ¢y - (% — %) = 0. (76b)

The perpetual points of this system, by setting jerks and accelerations to zero,
n [8] are determined, and they are given by,

15 set,
Uzp—aor = {02, x5, %3, X3), (2, %,) € R X R}, (77a)

2m get,

K . .
So—dof = xz \/ k:;xz,xz,xz ,(xz,%,) ER X R ki € Ry, k; € R<0};(77b)

31 get, _
Wy_gor = x + —, Xy, X ?ﬂ' —F1 % ), (g, %) €E RX R
f 2 2 X2 ¢t X2

ki € Rsg, ky € Reg, ¢y € R, (77¢)

Since in all sets the generalized coordinates can have any real value and the
generalized velocities any non-zero real value, they are infinite points and they are
forming manifolds in state space, the perpetual manifolds [8]. The two first sets are
associated with rigid body motions.

In case that the system is linear (k, = 0), only the first set of perpetual points
exists as in [7] without damping (c; = 0) and in [8] with damping (c; # 0), are shown.
In considering nonlinearities but without damping (¢; = 0), only the 1t and the 2™
sets of perpetual points exist and they are associated with rigid body motions [7].

The 2™ set of perpetual points, extended to N-Degrees of Freedom (dof) systems,

S ={(a:(®), ., an(®), 4s, -, 45), (@1 (), ., qn (1), 4s) € RN x R'}, (78a)

is forming the perpetual manifolds of rigid body motions [9], that all the inertia
elements are moving with constant not necessarily zero distance with the same
velocities.
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The 1% set of perpetual points, extended to N-dof systems,
U ={(qs(®), -, q5(t), G5, -, 45), (q5(1), 45) € R X R}, (78b)
is forming the perpetual manifolds of exact rigid body motions [9].

In [7], the following theorem about the perpetual points of conservative linear
natural mechanical systems proved:

THEOREM 1. The perpetual points in linear conservative natural mechanical systems
are defined by the rigid body motions and the inverse. [7]

In [8], for dissipative linear natural mechanical systems, another theorem proved
and stated:

THEOREM 2. The perpetual points in linear natural mechanical discrete systems with
viscous damping excepting any externally applied load, are defined by the rigid body
motions and they exist if both stiffness and damping matrices are positive semi-
definite. 8]

And,

INVERSE OF THEOREM 2. The rigid body motions define the perpetual points in linear
natural mechanical discrete systems with viscous damping excepting any externally
applied load, if and only if the damping matrix is positive semi-definite. [8]

The connection of perpetual points of mechanical systems with their rigid body
motions leads to some definitions in mechanics and the proof of a theorem, that in
the following section, is presented.

3.2. Definitions of perpetual mechanical systems, augmented perpetual
manifolds, and a relevant theorem with a corollary. The main observation
that the perpetual points are associated with rigid body motions, that whereas exist on
the mechanical systems, lead to the preliminary idea, as stated in the conclusions of [7],
that the perpetual points formalism can be used for exciting only the rigid body modes,
without any oscillations.

Recalling in mathematical terms the definition of perpetual points of a mechanical
system,

q,=q,="=q,=0, (79a)
and,
G, =G, = =%, =0, (79b)

leads to the following question:

[s it possible only the left-hand side of these equations (79a-b) to be valid by
means without necessarily being zero or constant accelerations?

The question’s address leads to developing the framework in [10] and [9] for
triggering rigid body modes, or otherwise stated external excited flexible N-dof
systems to move as rigid body without any oscillations. In [10], the description of
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some definitions are written, that they are mathematically strictly defined in [9].
Moreover, the theorem’s statement in [10] is written, and in [9] is proved.

Definition of Perpetual Mechanical Systems. A discrete dissipative mechanical
system, without any external forcing that is described by the following equations of
motion,

[Mij(t: q:(®), Qm(t))] x{q;(O)} + [Cij] x{q: (O} +
+[Kij] x {q:(O} + {Fnri(q.(®), 4,(©))} = {0}, for
i=1..,N,j=1,..,N, Lmmn,o0€{12,..,N},and

(q:(8), 4:(8), 4 (1)) € R?, (80)
whereas,

[M;;(t,qi(t), gm(t))] is areal N x N state-dependent matrix with elements that may
be nonsmooth and nonlinear functions, and nonzero all the sums of rows,

[Kj] and [Cy], are real N x N constant, stiffness and proportional to velocity
vector, matrices, respectively,

{Fnyi},isa N x 1 vector with elements state-dependent nonlinear functions which
can also be nonsmooth but singled valued for rigid body motions,

is called discrete Perpetual Mechanical System if admits as perpetual points
the exact perpetual manifolds of rigid body motions. [9]

Definitions of Augmented Perpetual Manifolds. The 2N +1 dimensional
Augmented Perpetual Manifolds, e.g., M, of an N-dof mechanical discrete system,
with generalized coordinates g; that admits solutions of perpetual manifolds arise
when,

G;(t) =G, (), for=1,..,N,and §,(t) ER, (81)
and the solutions of the system in state space, define them, as,

My ={(t,ga1 () + 1+ (t = t0) + dy, v, Gun () + ey - (£ — o) +dy

Gar(t) + €1, G () + Cy):

(£ 00 (6), 4ui(®)) € RV, (cyy oy, i, o dy) € RENY, (82a)
whereas the constants are given by considering the initial conditions as follows,

4i(to) = qq,i(t0) + ¢, fori=1,..,N, (82b)
and,

qi(to) = qa,i(to) +d;, fori=1,..,N, (82¢) [9]

Further on, in case that the constants —¢; (i = 1, ..., N) in equation (82a) are equal
to zero, lead to the augmented perpetual manifolds, e.g., W, of rigid body motions,
which are given by,

Wy = {(t,4g1(®) + dy, e, G () + dy, 4o (0), ...
3a(®): (£,40i(0), 4a(®)) € RY*2,(dy, .., dy) € R}, (83)
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In the augmented perpetual manifolds of rigid body motion, each part of the
system moves together with the rest of the system, maintaining not necessarily zero
but a constant distance of the relative positions. [9]

In case that all the constants -c;, d; (i = 1, .., N), in equation (82a) are equal to
zero, then the augmented perpetual manifolds of rigid body motions are called
Exact Augmented Perpetual Manifolds (X,), which are given by,

¥, = {(64,(0.0,0,3,0),.3,0)  (60,0.0,0) e R}, (8ay19)

In the exact augmented perpetual manifolds, the system is moving like a particle.
After the definition of the exact augmented perpetual manifolds the proof of the
following theorem, is straightforward as in [9] is shown.

THEOREM 3.Any N(22)-degrees of freedom discrete mechanical system with generalized
coordinates q,(t) that can be written as a perpetual mechanical system with external
forcing that is described by the following system of differential equations,

[Mi;(t, q:(8), 4 ()] X {d: (O} + [Cij] x {q:(O} + [Kij] X {q:(D)} +

+HFY (000, 40 (0)} = {Fi (£, 0,0, 44(®)}, for

i=1,.,N,j=1,..,N, Lmno,pq€{1,2,.. N},

(q:(8), 4:(8), G; (1)) € R3, (85)
and admits unique solutions for the following matrices,

[My] is a real N x N inertia matrix with elements that can be, nonsmooth, nonlinear,
time and state dependent, functions but having at least one nonzero sum of k-row for
all time instants,

[Kjj] and [C;], arereal N x N constant, stiffness and proportional to velocity vector,
matrices,

{F,-NL} is a N x 1 vector of nonlinear internal forces with elements state dependent
nonlinear functions which can be nonsmooth but single-valued for rigid body motions,
and FiNL(qS,O) =0forqg,€R,

{Fi}isareal N x 1 vector of external forces with elements, time and state dependent,
maybe nonlinear and nonsmooth functions,

if the external forces (F;) with the reference k-inertia external force (F)) are related
as follows,

. N M, i (64a().da(®) Fr(taa(®).4a(®)
Fi(t,q,(1), 4, (1)) = ===,

, for
2 M (640 ©).da () f

i,k €{1,2,..,N},and q,(t) = q;(t),q,(t) = ¢;(t), (86)
then, the solution of any of the following differential equations,

.. _ Fr(taa®.g4a®)  _ .
qa(t) - Z‘l’y=1 Mk,j(t»Qa(t):‘:Ia(t)) - G(tr Qa(t): Qa (t)), [87)

with vector field G, for the following set of initial conditions at the time instant t,,
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qi(ty) = qu(ty),for i=1,..,N, and, qa(ty) ER (88a)
qi(ty) = qq(ty), for i=1,..,N, and, ¢,(t,) €R, (88b)
is defining the generalized coordinates -q; and their velocities in the exact augmented
perpetual manifold,
Xo ={(t:9(®), -, 4a(®), 4o (®), -, 4a(®)), (£, 42 (), 4a(®)) € R*}. (89) [9-10]

After the above theorem the following corollary in [9] is stated and proved.

COROLLARY. In an externally forced discrete perpetual mechanical system, if
the exact augmented perpetual manifold is formed, by a harmonic motion,
even though the system is flexible, the system behaves in dual mode as a wave-
particle. [9]

Example for the analytical and the numerical verification of the theorem.
Herein the application of the theorem using the 15t example of [9] follows.
A 5-dof mechanical system is considered with the following equations of motion [9],

[Mi,i] X (X} + [Ci,i] x {x;} + [Ki,i] x {x;} + {F?’"(xn,fco)} = {Fext,i(t)}’
forn,0 € {1,2,...,5},i = 1,...,5. (90)

The mass matrix is defined by [9],

e 0 0 0 0
[0 my, 0 0 0]

M,]=10 0 my 0 oF (91a)
lo o o m, ol
lo 0o o o0 ms

with m; (i = 1, .., 5) being positive constants.
The stiffness matrix is given by [9],

Tk, —ky 0 0 0 1
—ky kytk, —k 0 0|
[Kij]=1 0  —k, kytks —ks O | (91b)
0 0 —ky kst ky —kol
[ o 0 0 —ky kg
The damping matrix is given by [9],
rc1 - 0 0 0 1
—C; ¢ty —C; 0 0|
[Cy]=10 - c+ec - 0] (91¢)
0 0 —C3 c3+cy —c4|
[ 0 0 0 ol
The nonlinear forces vector is [9],
( ki - sin(xy — x;) 1
I —kny1 o sin( —x3) + k- (2 — x3)° I
{F?]L(xn,xo)} =< —kpo (= x3)° + knyz + sin(x; — x4) } +
| —knyz - sin(xs — x4) + kppa * (x4 — x5)7 |
Kt - (4 = x5)’ )
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( 1t (% — %5)° )
I —Cu1t (B — %) + Cpp * (R — %3)° I
+{ —Cpiz " (A — 553)5 +cppzt (X3 — %,)7 },for n,0 € {1,2,...,5}. (91d)
| =iz (3 — %4) + Cppa tanh(b (A — 5‘5)) |
—Cnia " tanh(b (X4 — 9&5))

The external forcing vector is [9],
{Fext,i(t)}T = [1 mz/ml m3/m1 m4/m1 ms/ml] ) Fext,l(t)- (916)

The system is fulfilling the theorem’s conditions, and the solution the in exact
augmented perpetual manifolds is given by [9-10],

iy (t) = fextal® (92)

mq
Two types of external forces considered in [9]:

1. Linear time-varying force (F(l)l(t)),

ext,
EQ. () =n-t+c, with (n,¢) € R2, (93a)
The velocity (x, (t)), is given by [9],
, _ n (42 _ 42 ¢ (t — Y
xa,l(t) - Z'Z;\Lle,j (t to) + Z;\Ll Mk,j (t to) + xa,l(to); (93b)
and the response (x,; (t)), is given by [9],
_ n L (+3 — +3 ¢ (12 — $2)

%01 (8) = g (6 1) g (= )

St et g (20 ) (= tg) + X (Eg) (93¢)

2'2?]=1Mk,j Z?’:le,j a,1\*0 0 a,1\*0/"

2. Single frequency harmonic forces (F,),

F® (6) = Apy - Sin(wey * t + 0oy), With (Agy, 0sy) € R? and, w,, € Ry, (94a)

ext,1
whereas, A, is the excitation amplitude, the external frequency and phase, are
denoted as w,, and 6,,, respectively. The velocity (x,,(t)) is given by [9],

; = Aex | .
xa,z (t) - 29\;1 Mk,j'wex Cos(wex t+ gex) +
+ AgxCOS(Wexto+bex) + xa,z (to), (94b)

Z?’:l My, j*@Wex
and the response (x,,2(t)), is [9],

——_Aex .
xa,z (t) - 2;}!:1 Mk,j'ng Sln(wex t+ eex) +

Aexcos(wexto+0Oex) .
| P 4 o) | (E—t) +
( Zﬁ‘Lle,j‘wex a,Z( 0)) ( 0)

Aex'sin(wex'to+0ex)

+
N 2
Zj=1Mk,j""ex

+ x4q,2(to). (94¢)

The form of equation (94c) is harmonic; with a wave solution in space. The wave
velocity (wv) is given by the last two terms of equation (94b) [9],
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_ Aexcos(wextot+Bex)

wv N
2j=1 Mk,j'wex

+ X2 (Eo). (94d)

The zero wave velocity leads to a standing wave motion, and the nonzero leads
to a longitudinal wave motion. The 5 masses for this excitation force have the same
displacements and the same velocities; therefore the system's motion with harmonic
forcing is particle-wave motion.

TABLE 2. Values of the parameters forming the structural matrices [9].

M;; K;; Cij
my = 2000 kg ky =1-10°N/m c; = 100899 N -s/m
m, = 1000 kg k, =14-10°N/m ¢, = 141258 N-s/m
my = 1500 kg ks =13-10°N/m  ¢; =1311.68N-s/m
my, = 1200 kg ky=12-10°N/m ¢, =1210.78 N-s/m
ms = 500 kg - -

TABLE 3. Values of the parameters of the nonlinear forces [9].

FiNL
kna=1-10°N Cniy = 1008.99 N - s3/m?
Kpz =—1.5-105N/m® Cniz = 141258 N - s5/m>
knz = 1.3+ 10°N Cniz = 1311.68 N -s7/m’
Knia =12+ 105N/m’ Cnia = 121078 N

TABLE 4. Initial conditions and the external forcing parameters [9].

Time interval ICs External Forcing Parameters
i .
Xq,i(to) Xq,i(to)
m/s m
©) (m/s) (m)
1 1 n=5000N/s
te(0,1
! 1] c=10N
Aex1 = —1.5867030608259 - 10° N
2 te(1,2] 2.255000 2419167 Wex = 19.8221rad/s
0.y = 0rad
Aexp =2-105N
3 te(23] 2440323  —1.461429 Wex = 19.8221rad/s
0., = 0rad

In the numerical simulations, the used values of the parameters, of the linear
structural matrices, are in Table 2. The values of the parameters of the nonlinear
forces are in Table 3. The external forcing parameters are in Table 4.
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Figure 9a, depicts selected numerical displacements and the analytical solution,
whereas the analytical solution is in good agreement with the numerical simulations.
In first time interval from 0-1s, the system’s motion is a rigid body curvilinear one,
and later on wave-particle motion. More precisely in the 2™ time interval, from 1-2s,
the motion is wave-particle with zero wave velocity. In the 3" time interval, 2-3s, the
motion is wave particle but with -3.303 m/s wave velocity. Therefore, in the 2" and
the 3 time intervals, the mechanical system moves in dual mode, as wave-particle.

25
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FIGURE 9. Displacements of selected generalized coordinates, incorporating
the analytical solution [10].

3.3. Discussion of this section. The perpetual points in mathematics defined
recently, and herein their application in mechanics and mechanical engineering is
discussed. The PMs in linear natural systems are associated with rigid body motions,
and this is proved in 2 theorems [7,8].

Further on, based on some new definitions of mechanical systems, and their
solutions, the proof of another theorem is straightforward. This theorem defines the
conditions that a N-dof flexible mechanical system is moving as a rigid body, and
in this case the state space is forming the exact augmented perpetual manifolds. In
case of harmonic excitation that leads to a solution in the exact augmented perpetual
manifold, the motion of the N-dof mechanical flexible system is a wave particle
motion.

The analysis of zero internal forces in the exact augmented perpetual manifolds
are in a corollary with proof in [10] and the analysis of the energies in a theorem
proved is in an under review article, indicating that flexible dissipative mechanical
systems in the exact augmented perpetual manifolds might behave as perpetual
machines of 2" and 3" kind. Under review articles, have more corollaries and more
theorems under preparation, and combining them might lead to the development of
the perpetual mechanics theory.
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4. Conclusions

In this review article, starting from examining the dynamics of a hybrid system,
theorem’s development relative to perpetual points applied in mechanics is shown.
The dynamic analysis of the hybrid system, a spinning shaft with non-constant
rotating speed, through the traditional multiple scales analysis enhanced with
a dynamic analysis through linearization around the perpetual points defining
the rigid body modes, is performed. Although the nonlinear dynamic analysis
formalism is extensive, identifying spinning shaft's critical situations requires
further work.

The observation that the perpetual points of the spinning shaft are associated
with the rigid body modes, lead to the proof of two theorems, that the pps of
linear natural mechanical unforced systems are associated with rigid body modes.
Further on some new definitions, such as perpetual mechanical systems, and the
augmented perpetual manifolds, lead to the proof of a theorem that defines the
conditions for a N-dof flexible mechanical system to move as a rigid body, with
state space given by the exact augmented perpetual manifolds. Moreover, if the
exact augmented perpetual manifolds arise through harmonic excitation, as
a proved corollary states, the N-dof flexible mechanical system moves in dual
mode, as wave particle. The last theorem is of high significance in mathematics,
mechanics, and mechanical engineering. Since it provides a particular solution
of non-autonomous mechanical systems and the system might have dual-mode
wave particle motion, which is highly significant in physics. Finally, the rigid body
motion without any other vibrations is the ultimate motion in many mechanical
engineering applications.

As a continuation of this work, further developments need to identify the
spinning shaft's critical situations for non-constant rotating speed, normal modes
away from the linearization, and rigid body angular velocities the system's dynamics
associated with eigenvalues with positive real part. Moreover the chaotic motions of
the spinning shaft needs more work.

There are several directions to be followed for the development of the perpetual
mechanics theory e.g. internal energies of the perpetual mechanical systems in the
exact augmented perpetual manifolds that lead to perpetual machines behavior, the
physics of particle wave motion, properties of the augmented perpetual submanifolds
etc., highlighting that many of them are currently in under review articles.
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Appendix A

A.1 Solution of torsional with rigid body angular motion, equations.
15t order approximation solution of equations (17a-b)
They are obtained in [2,3]:

For ? < wr,
4p1(To) = Az - ei'uo'To +cc, (A.1a)
61(To) = A1y + Ay -0 + cc, (A.1b)
with,
_ L (wF-02)
Ho = \/l(ll.LfFZ) ) (AZ)
and amplitudes given by,
49,1(0) . 4p1(0) _ .
Ay = % - .i';l‘-o =Ap1— 1Ay, (A.3)
; F .
Ay =6,(0) — i 49,10, (A4a)
F . . F .
127 50 Gp(0) + i+ 2_1’1‘_0L "0p1(0) = Ag1 — i+ Agp. (A.4b)

In case of 2% = wy, then the eigenvalues are real and given by,
As =+ \[7’1'”(93“"%) (A.5)

(I4°L—F2%) ’

and there is no oscillatory motion in torsion, therefore they are not associated with
any NNMs or critical situations.

Amplitudes modulation of 1% order approximation. They are obtained by solving
in [2] the equations (18a,b), and they are given :

Apr(T) ==+ [Ag1(0) + i+ Ay, (0)] - et + cc, (A.6a)

Apa(Ty) =5+ [Ap2(0) =i~ Ap1(0)] - €17 + cc, (A.6b)

Apa(Ty) =2+ [A91(0) + i+ Ag(0)] - €™t + cc, (A.6C)

Ap2(Ty) = - [Ag2(0) — i Ag 1 (0)] - €17 + cc, (A.6d)
with,

B = sy (A7)

and in case of y equal to zero equation (A.7) becomes singular.
Lead to the following 1st order approximation solution,

41 (To, T1) = Az(0) - e WoTometa ™) 4 ¢, (A.8a)

6:(To, Ty) = 2y A15(0) - e"WoTomewmT) 4 cc (A.8b)

2
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2" order approximation solution of equations (19a-b)
Itis given by [2]:
de,z(To) = Ry0(T1) - eltoTo 4 Ry (Ty) - elZHoTo 4 Ry, (Ty) elz@rTo 4

Ry 3(Ty) - €75 92T0 4 Ry 4 (Ty) - " (1% 0D To 4 Ry (1)) - e (17920 4 cc,

with,
Roo(Ty) = 5z [3 - Va(T) = Ta(T)] +

V2(T1) (2:w1+p0)=V2(T1) (2:w1 — o)
2t (+0d 1)

+ +
V3(T1) (2:wa+po)=V3(T1) (2:wa—po) | Va(T1)(w1+wa+po)

+
2pg (4 w§-uf) 2 po[(w1+w2)2 - pd]

V5(T1) (w1~ w2+U) —V5(T1) (w1 —w2—Ho)
2:po°[(w1—w2)%-p3]

_ (M) (w1+wza—po)
2po°[(w1+w2)2-pf]

+

)

Ry (Ty) = — V;(:%)'

R,,(T)) = _%'

Ry3(T) = _%'

Ry 4(Ty) = —%’

Ry5(Ty) = — [@Vm(—T))u]
and,
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(A9)

(A.10a)
(A.10b)
(A10c)
(A.10d)
(A10¢€)

(A10f)

éz(To) =U,o(Ty) + U2,1(T1)ei'”°'T° + Uy, (Ty) - elZhoTo Uy 3(Ty) - etz@rTo 4

Uz (Ty) - €220 + Uy 5(T1) - el(@itw2)To 4 Uye(T1) - el@imw2)To 4 cc,

with,

Upa(Ty) = —%’
Upa(Ty) = = W
Uys(Ty) = — w
Uz,4(T1) = —%;2”3@)] )
Uz,s(T1) = —W’
Uz6(T1) = —W}

Uz,o(T1) = _Z?:1 Uz,j(T1)-

(A.11)

(A12a)
(A12b)
(A12¢)
(A12d)
(A12e)

(A12f)

(A12g)
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A.2 Solution of lateral bending motion equations.
1% order approximation solution, of equations (22a-b)

The eigenvalues that lead to natural frequencies are depended in the following
two parameters [2]:

2 (M+D)

m=—wp, — (1-M)2 Q ) (A13a)
and,
402 M-0?
N2 = (1-M)2 ’ ((1—M)2 + (1)127)' (Algb)
The first parameter (1) is negative for,
L? n?
G a = 250 12> 25 (1% +n2), (A.14a)

Rule of thumb for Euler-Bernoulli solid beams is,
= >10 = 2 >100 7,2 > 2.5 1,2, (A.14b)
therefore, for all solid Euler-Bernoulli beams 7, < 0.
In case of hollow beams a practical consideration could be,
12 L2

(ro2+7142) 2762

2
> HT =L>2221, . (A14c)

In conclusion, the parameter 7, is negative for sufficient small dimension of the
cross section with respect to the shaft length that applies in many Euler Bernoulli
shaft configurations.

Considering positive angular velocity, the 2" parameter (1;) is positive as long as,

.02
N> 00 hswi >0 M 02+ (1- M0} >0 &
_ 2,2 - .
o M| 07 < (1= MY - 0f & 02 < S200 g < G000 (A14d)

The eigenvalues are given by,

A= i\/nl +./1, (A.15)

Considering equations (A.13a,b) in equation (A.15) then the following three
cases for the definitions of the eigenvalues might happen [2],

Casel 1, >0, 17, +/n; <O0.
Case?2 n, >0, r)1+\/7ﬁ>0.
Case3 1, <0.

In [3] different definitions of parameters are used and makes profound that the
2" case can never exist, as follows,

_ —(a§-2a,)
= . :

N (A.16a)

_ (a§-2a1)’-#a?
= (irzey) —vef

2 (A.16b)

which lead to,
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_(q2_o. 2 o0 \2_ 4.2
7]1+\/7E= (a322a1)+\[(a3 Zal) 4a1<0, (A16C)

whereas the parameters a; and a; by equations (46b) and (46d) respectively are
defined (using the consistent notation of 2 = 6;).

Summarizing the eigenvalue analysis of [2] and [3], then, only the 1 and 3™ case
exist as follows:

Casel, n, 2 0, then the eigenvalues are purely imaginary and they are given by,

Aan = _i\[ =l = oy (A17a)

Aap = —i\/—m + \/75 = —lw,, (A17b)
Ao3 = i\/_rh - \/rﬁ = lwy, (A17¢)
Aga = i\[_Th + N2 = ilw;, (A17d)
with natural frequencies given by,
(M+1) — 20 M-Q2
Wiy = 27T flag = Jwg + o C02F o \/(1—M)2 + w2, (A.18a-b)

and this is true for rigid body angular velocities that obey inequality (A.14d).

Case Il, n, 20, then the eigenvalues are not purely imaginary any longer and they
are given by [3],

. — 2
Ay:7(60) = £ ( \[(f;,’)z — W} Q" ) = +(A i), (A19a-d)

a-m)

and this is true as long as the rigid body angular velocities do not obey inequality
(A.13d).
Further on, for pure imaginary eigenevalues (case I) the solutions are given by,

Qo1 (To) = Cpy - €710 + Dy - 7270 4 cc, (A.20a)
Qw,1(To) = Cypy - €710 + D,y - 5270 + cc, (A.20b)
Go1(To) = i+ @y Cpy - €"“1T0 + i+ @y Dy - P20 + ¢, (A.20¢)
Gwa(To) =i+ @y Cpy - €"®1™0 + i+ w, - D,y - e"®270 4 cc, (A.20d)
With,

Co1 = —dnz " Gw1(0) — dny *dy * q,,,(0) +

+i- (dnl "Wy dy Gy (0) —dpg e w3 - qW,l(O)) =By11 + 1By, (A21a)

Dy =dpy- QW,l(O) +dp; by Qv 0) +
+i- (_dm by wy qV,1(0) +dp a)f Tyt qW,l(O)) =By, +i- sz.z:(A-zlb), (A-Zlb)
Cy1 = —dpq " by~ d; "’:Iv,l(o) +dp - by '(‘-’% 'QW,I(O) +

+i- [_dnz . (ZZ) G2 (0) = dyy - (bi:z) Gyn (0)] =Byy1+i By, (A21¢)

1
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Dyy =dpn1 by dy Gy, (0) — dyy - wi dy- qQw,1(0) +

. d2\ - byd .
+i [dnz ' (w_zz) w1 (0) + dns - ( :22) ' qv,1(0)] = By12 T 1" Byapy, (A21d)
b, = %;(wbw) (A22a)
d, = A (0hme]) (A22b)
d. = 0

ni = [—!22+(1—M)~(mlz,—w§)]~m§—[—!22+(1—M)~(wlz,—w§)]-w%' [AZZC)
Ao = 0

nz — 1-M)-(wi-w?): (AZZd)

Amplitudes modulation of 1% order approximation, determined by the solution
of the systems of equations (23)
The eigenvalues of this system are given by [2],

N-wj . )
Agj1 = —A1r- (m) L= Waet L, (A.23a)
R+w;j ) 3
Az = ~An ((1—M)'wjj+!2> T T Wdejz L, (A:23b)
Aaj3 = ~Waetja 1, (A.23¢)
Agja = Wgetj2 L. (A.23d)

whereas, j=1 corresponds to the system arising from first frequency (w,) and j=2 to
the system arising from the second frequency (w,).
Then, the solution of the system eq. (23) is given by,

Buti(T) = (Qruj+ 1+ Q) e ™ + (Qay +1° Quay) e 2™ + ce, (A24a)
By,;(Ty) = (PRl,j +i Pll,j) sl et 4 (PR2,j +i Plz,j) retwaeniz T 4 cc, (A24D)
By j(T1) = (Upyj + i Upj) - e"detin™ 4 (Upy j + i+ Upy ) - "0deti2 ™ + cc, (A.24¢)
B2 (Ty) = (Sgyj +i-Sp;) e ®detin™ 4 (S, i +i-Spy ;) - e"®detiz™ + cc, (A.24d)

with amplitudes for:
Bv],j(Tl)

given by,
Qr1,j = fj1°Pj1 Buij(0) — gj1*pj1 Buzj(0), (A.25a)
Qr1j = €1 Pj1 B2 (0) = hjy " pja- B,y ,(0), (A.25b)
Qr2j = —fj2 " Pj2 " Bvij(0) + gjzDj2 By2y(0), (A.25¢)
Qi2,j = €2 Pj2" Bi2;(0) + hjy " pj2 - B,y ;(0), (A.25d)
By (T1) given by,
Prij = €1 By2;(0) — hjq* B,,;,;(0), (A.25e)
Py =—fj1"B,1;(0) + gj1 - B,2,(0), (A.25f)
Praj = €2 B,;(0) + hy; - B,,;;(0), (A.25g)

PIz,j = fj,z ' Bvl,j(o) —Jj2 'Bw2,j(0)) (A.25h)
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B,;,;(T1) given by,

U B (@) = hys 73 B (O) (A250)
Upnj=—fj1 71 By1j(0) + gj1 11 By2,(0), Y
Gy = 61232 Bas(0) 4 hos 73 Bup (O) (A25K)
Upaj = fiz 12 Buj(0) = gj2 72" B, (0), —

B,,;(Ty) given by,
Sr1,j = fin@ja By j(0) — g1 a1 Bz (0), (A:25m)
Sij = €1 qj1 Buoy(0) = hyjy gy B,y (0), (20
Sr2j = —fi2" 42 'Bvl,j(o) + 9292 .sz*f(o)' (4:250)
Sz, = €2 qj2" Bi2j(0) + hjy - qj2 B, ;(0), (A259)

And the parameters are given by,
Pik = — ik (A.26a)

dj k' Wdet,jk’

__ Kk
Qj = ©reodeti’ (A.26b)
e = 25 with k=12, (A260)
&,
& = fnfj (A26d)
_d .l.
&2 = = (A.26€)
d,’ -k,' wd ',’
fin =20 (A26f)
_ dj2kj1@det,j2
fiz = T (A26g)
d.’ ]' wd '_'
gj1 = % (A26h)
djj10det _
gja = (A.261)
= Yrdje ;
hia = (A26])
djje = @3 ) Wier jix (2-23 ) by - €35 + b3 0+C3 ;- 0wiep jic - 0° (A.26k)
Jik =05 Caj Oder g — 2°Q3 by Wi j it 24b3 - c3 5 — 3 +
+03) Wger i 2%, (A.26])
Kjx = @3 " b3~ Wierji — 2:0s) " C3 " Waer,juHbs - c5; — b3 +
+bs * WGer i - 27, (A.26m)

— a3 ...2 _ . h2 _ L2 .2 . 0249.h. - .
Lk =03)" Wherjk — 3j b3 —aszj c3j— a3 Wgepji 2°+2:b3 ¢35 ;2 , (A26n)

miy =2 (dj1Lp—diplis), (A.260)



314 Dynamics of a Spinning Shaft With Non-constant Rotating Speed, Leading to Theorems in Mechanics

mj_z =2- (jj,l . kj,2 _jj’2 ' kj,l) . (A26p)
Combining both scales solutions lead to [2],

Qo1 (To, T1) = 2+ 231 Xica[(Qrjse = Prjk) - cos(wi Ty + € wgee ;" Tr)| =
=22 Y| (Qujk + Pryxe) - sin(wy - To + € - waee - Ti)] +

+2- 2 Yo [(Qrjge + Prjxc) - cos(wi * To — € - waeerj - Th)] —

—2 'Z?=1 z:lzc:l[(PRj.k - Qlj,k) 'Sin(wk Ty — € Waerk,j 'T1)] , (A.273)
Qw1 (To, ) = 2 X5y o1 [(Urjk — Sijie) “ cos(wpe - To + € Wgernj - Ti)| —
=22 Yo [(Urje + Swjx) - sin(wy " To + &€ waerse; " T1)] +
+2- 23 Yo [(Unji + Siji) - cos(wi " To — &€ Wgerre - Tr)| —
=22 Y4 [(Srjk = Usjie) * sin(wg  To — € * waer e * Tr)), (A27Db)
2" order approximation solution, of equations (25a-b)

They are obtained in [2], and given by:
Gu2(To, Ty) = Wy 3(Ty) - €591 + Wy, 5(Ty) - €592T0 4+ Wy 5 o(T,) - eF ot To

FWaa3(Ty) - et Wot@2)To 4 W, ¢ 5 (T)) - eiom@)To 4 W21.6,3(T1) sl Ho=w2)To 4 CC,) ¥A283)
qw,2 (To, Ty) = W2,1,4(T1) set@rlo 4 W2,2,4(T1) -ehwzlo W2,3,4(T1) -ellorw)To 4

+W2'4’4(T1) . ei'(#0+w2)'To + WZ,5,4(T1) . ei'(#o—wﬂ'To + WZ,6,4(T1) . ei'(ﬂo—wz)'To +cc, (A28b)
with,
Wz,1,j(T1) = Zi=1 [

i'Fk+1,1(Tl)'Cj,k,a'(Mo+2'w1)—i'ﬁk+1,1(T1)'Cj,k,a'#o] +
(ho+w1)?-w? ’
0Fe41,2(T1) Cja o+ w1 +w2) =i Fley1,2(T1)Cj ke q (o~ w1+ W2)
(o +w2)%-w?

+Z;2c=1[ ] +,

+212c=1[

2 1Fit1,4(T1)Cjka (Botw1=w2) =1F1,4(T)Cia (o= w1=®2)] .0 .
+Zha | (ho-w2)?—a? Jwith j=3:4, (A-292)

'Fre+1,3(T1)Cjka o=t Fr41,3(T1) Cjka (Ho—2'w1)

(o—w1)?-w?

[+

Fit1,1(T) Ci b (Hot@1+02)=i-Fieq11(T1)Cj i p (Mo tw1—w3)

Wz,z,j(T1) = Zi:1[ (Hot+®1)2—w3 ] +,

Fre41,2(T1) Cj e (Ro+2:w2) =1 Fr41,2(T1)Cj ke b Ho
(Ho+w2)?—w3

[+

i‘Fk+1,3(Tl)'cj,k.b'(#0_a’1+“’2)_i'F_k+1,3(Tl)‘cj,k,b'(ﬂo_wl_a’z)] n
)

(Ho-w1)2—w3

+Zi:1[

+ Xkt [
Fr+1,4(T)Cj kb Ho—F 41,4 (T1) Cjie b (Bo—2:w2) L

+Ea | s ], with j=3:4, (A29b)

W2,3,j(T1) _ _Zi=1 [i'Fk+1,1(T1)'Cj,k,a(ﬂo+2'w1)+i'Fk+1,1(T1)'5j,k,a'fl0] _

(Ho+w1)?-w?

)

vz [FFra1a(T)Clgeh (ot @14+ @)+ iFra1 (T Cjpp (ot @1 —w2)] . .
| Lt e | withj=3:4,  (A290)



Fotios Georgiades

W2,4,j (T) = )
_ _22 [i'Fk+1,2(T1)'Cj,k,a'(#0+0’1+w2)+i'Fk+1,2(T1)'Cj,k,a'(llo—w1+w2)] _
k=1 (Ho+w2)?~wi !
_ 22 [i'Fk+1,2(Tl)'Cj,k,b'(#o+2'w2)+i'Fk+1,2(Tl)‘éj,k,b'#o] L
k=1 (o +@2)2—w2 , with j=3:4
W,ye (T,) = _Zz [i'Fk+1,3(Tl)'cj,k,a'ﬂ0+i'Fk+1,3(Tl)'éj,k,a'(l‘—o_z'ml)] _
2,5j\U1 k=1 (uo_ml)z_w% )
UFge+1,3(T1) C b (o= @1+ @) +1F ki1 3(T) Cl b (Bo—w1—w2)] . . .
—Zizl[ a ! — ! ],Wlth]=3:4,
(Ho—w1)?-w3
_ 2 [FFr+14(T1)Cjka(Hotw1—w2)+iFi41,4(T1)Cj g q (Ro—w1-w2)
Waei(Ty) = = Zio, | e -
(no-w2)?*-w]
"Fre41,4(T1) Cj b Mot Fr41,4(T1)Cj b (Ro—2w2) 1
—Z,Z{ﬂ[ . —— ] with j=3:4
(#0_("2)2_(1’2 ’

and their parameters are given by,
G310 =1"wy dy dp,
C31p = =i wy by dpy
C324 = _dnz,

C32p = dnz,

Cira = —by dydny,
C4,1,b =by-d;,- dnl,
C4,2,a =—iby- dnz/w1,

Capp =1"dy-dpy/w,
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(A29d)

(A29)

(A29f)

(A30a)
(A30b)
(A30¢)

(A30d)
(A30e)

(A30f)
(A30g)
(A30h)






