
Fotios Georgiades1

 
DYNAMICS OF A SPINNING SHAFT WITH NON-CONSTANT ROTATING 

SPEED, LEADING TO THEOREMS IN MECHANICS 
 

Abstract. Recent developments in nonlinear dynamic analysis of 
mechanical systems are discussed. The nonlinear dynamic analysis of 
a spinning shaft with non-constant rotating speed, as a specific type 
of hybrid system, in various ways is done. Due to rigid body angular 
rotation, this type of hybrid system admits rigid body modes associated 
with zero eigenvalues. Therefore the Lyapunov approximation of the 
nonlinear dynamics behaviour with the underlying linear system modes 
for low energies is not necessarily valid, and the presented two analyses 
are becoming more valuable. The first analysis is the well-established 
multiple scales nonlinear dynamic analysis. In the 2nd analysis, rigid 
body motion’s backbone curves have been determined and lead to 
additional information. The nonlinear dynamic analysis of the spinning 
shaft expanded further, including the new concept of perpetual points, 
leading to the preliminary conclusion that mechanical system’s perpetual 
points are associated with rigid body motions. Although the nonlinear 
dynamics analysis of the spinning shaft is extensive in mathematical 
formulation, a concrete outcome for critical situations is not established 
yet, and more work is needed. 

Moreover, based on the observation for the perpetual points, two 
theorems proved that the perpetual points are associated with the rigid 
body motions in linear natural, unforced systems, and they are forming 
the perpetual manifolds. With some new definitions in mechanics, a 
third theorem and one corollary proved with the significant outcome 
the conditions of wave-particle motion of flexible mechanical systems. 
The presented work is significant in two directions; the first is about 
examining the dynamics of nonlinear systems with the underlying 
linear system with zero eigenvalues, associated with mechanical 
systems with rigid body angular rotations with non-constant rotating 



speed. The 2nd direction is developing the perpetual mechanic’s theory, 
with the significant 3rd theorem in mathematics, physics/mechanics, 
and mechanical engineering. In mathematics, the theorem provides 
solutions in non-autonomous N-degrees of freedom systems. In physics/
mechanics the particle-wave motion is of high significance. Finally in 
mechanical engineering the rigid body motion without any oscillation is 
the ultimate possible type of motion, e.g., trains, cars, etc. 
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1. Introduction

This invited review article summarizes the latest research of the author’s outcome 
relevant to the concept of the hybrid systems developed by Prof. K.R. (Stevanovic) 
Hedrih. The concept of hybrid systems defined in [1], formed by several subsystems, 
is examined in a hybrid system (particular type), a spinning shaft with non-constant 
rotating speeds. The rigid body acceleration is a generalized coordinate of the shaft 
coupled with the elastic deformation generalized coordinates on this system.

Starting from the model of the spinning shaft, then nonlinear dynamic analysis 
in two ways is presented. 

The outcome of applying the very well-established multiple scales analysis 
developed in [2] up to two-time scales in the spinning shaft dynamics is presented. 
In the main text, the systems of differential equations describing the motions are 
shown. The associated solutions, alongside the system of differential equations in 
the main text, are referenced and in Appendix-A explicitly are shown.

Through a different approach developed in [3], the dynamic analysis of the spinning 
shaft, by examining particular points relevant to the dynamics of the spinning shaft in 
two ways, is extended. The first type of points arises by considering a restricting system 
that describes the motion of the spinning shaft [3]. Chaotic dynamics of the spinning 
shaft is discussed in [4]. Moreover, to expand the dynamic analysis characteristics, the 
concept of perpetual points (PPs) is employed. Prasad has defined the PPs in [5], and 
mainly to identify hidden attractors in, e.g. [6], are used.   



Dynamics of a Spinning Shaft With Non-constant Rotating Speed, Leading to Theorems in Mechanics266

Linearization around the fixed points of the restricted system or otherwise stated around 
the PPS is performed and leads to three different sets describing the motion for different 
rigid body angular velocities. The eigenvalues of the dynamical systems, determined in 
[3], are shown. A 3D plot of all the perpetual points with the associated eigenvalues of the 
linearized dynamical systems is shown. Moreover, using the linearized system’s eigenvalues, 
the normal modes of the spinning shaft, determined in [3], are explained.

The significance of the nonlinear dynamic analyses, with multiple scales and the 
linearization around the perpetual points of the spinning shaft, are discussed.  

The observation that the perpetual points of the spinning shaft are associated 
with rigid body motions leads to further development of theory relevant to perpetual 
points as follows. Two theorems about the nature of perpetual points in linear 
natural mechanical unforced systems stated and proved in [7-8] are presented. 
Based on these theorems, some new definitions for mechanical systems [9] herein 
are presented. These definitions lead to the statement of a theorem in [10], which 
makes the proof very easy in [9]. The theorem herein is presented, and an analytical 
and numerical example is certified. Before the conclusions, there is a discussion for 
the already developed theory about the perpetual points.   

2. Spinning shaft with non-constant rotating speed

A spinning shaft with a non-constant rotating speed, as a hybrid system, is 
considered. The hybrid system description is in the sense that the rigid body rotation 
due to not necessarily zero acceleration forms a generalized coordinate coupled 
with the generalized coordinates that describe the elastic deformation of the shaft. 

In §2.1, there is the model of the spinning shaft, and then in the subsequent sections, 
the nonlinear dynamic analysis with two ways is presented. The multiple scales 
nonlinear dynamic analysis is in §2.2, and an alternative nonlinear dynamic analysis is 
in §2.3. The analytical findings in §2.4 with numerical simulations are verified. Finally, 
in §2.4, there is a summary of the research outcome with future research directions.

2.1. Model of the spinning shaft. A flexible shaft with length ‒L, made of a 
material with density ‒ρ ,Young’s (shear) modulus ‒E (G) and internal (external) 
diameter ‒Di (Do), is considered. The distributed mass ‒m and the inertia coefficient 
for torsion ‒I1 are given by,
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the nonlinear dynamic analysis with two ways is presented. The multiple scales non-
linear dynamic analysis is in §2.2, and an alternative nonlinear dynamic analysis is in 
§2.3. The analytical findings in §2.4 with numerical simulations are verified. Finally,
in §2.4, there is a summary of the research outcome with future research directions.

2.1 Model of the spinning shaft 

A flexible shaft with length−𝐿𝐿,  made of a material with density −𝜌𝜌,Young’s (shear) 
modulus−𝐸𝐸 (𝐺𝐺) and internal (external) diameter−𝐷𝐷�  (𝐷𝐷�), is considered. The distrib-
uted mass−𝑚𝑚 and the inertia coefficient for torsion−𝐼𝐼� are given by, 

𝑚𝑚 = 𝜌𝜌𝜌𝜌 = 𝜋𝜋𝜌𝜌 ���
����

�

�
�, (1a) 

𝐼𝐼� = 𝜌𝜌𝐼𝐼 = 𝜋𝜋𝜌𝜌 ���
����

�

��
�, (1b) 

whereas 𝜌𝜌 is the area of the cross section, and 𝐼𝐼 is the second moment of the area of 
the cross section of the shaft. 

The shaft considered as an Euler-Bernoulli linearly deformed beam with defor-
mation indicated in Figure 1. The lateral bending (𝑣𝑣, 𝑤𝑤) deformations are coupled 
with the torsional (𝜑𝜑) deformation and the rigid body angular rotation (𝜃𝜃), noting that 
the axial deformation is fully decoupled from the rest, as in [2] is shown. 

,       
(1a)
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,       
(1b)

whereas  A is the area of the cross section, and I is the second moment of the area of 
the cross section of the shaft.

The shaft considered as an Euler-Bernoulli linearly deformed beam with 
deformation indicated in Figure 1. The lateral bending (v, w) deformations are 
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coupled with the torsional (φ) deformation and the rigid body angular rotation (θ), 
noting that the axial deformation is fully decoupled from the rest, as in [2] is shown.

A first attempt in modelling a spinning shaft with the non-constant rotating 
speed was in [11], but there are missing terms in the partial differential equation 
defining the torsion, and the complete derivation repeated in [2].
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to the modal lateral bending generalized coordinates (𝑞𝑞�𝑣 𝑞𝑞�), and lead to the follow-
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whereas, overdot means derivative in time, and the rigid body angular generalized 
coordinate as 𝜃𝜃 is denoted. Also the constants in equations (2) are given by,  
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��∙��∙�����∙�
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𝜔𝜔� = �
�∙�

∙ �
�∙�
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. (3d) 

The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 

Figure 1. The configuration of the spinning shaft, with the coupled generalized 
coordinates of deformations (v, w, φ), their associated modal generalized 
coordinates (qv, qw, qφ), and the associated direction of the angular rigid body 
coordinate (θ), velocity ( ), and acceleration (Ӫ).

The system of equations describing the motion, apart from the partial differential 
equations (PDEs), includes an integrodifferential equation as shown in [2]. 
Considering hinged-hinged (fixed position-free rotation) boundary conditions for 
the lateral bending motions and fixed-free for the torsional motion, PDEs, solve the 
eigenvalue problem and then using Bubnov-Galerkin approximation, in their first 
mode shapes are projected [2]. The deformation in torsion (φ), to the ‘modal’ torsional 
generalized coordinate ‒qφ, is projected, and the lateral bending deformations (v, w) 
are projected to the modal lateral bending generalized coordinates (qv, qw), and lead 
to the following system of ‘modal’ equations,
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whereas, overdot means derivative in time, and the rigid body angular generalized 
coordinate as θ is denoted. Also the constants in equations (2) are given by, 
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The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 
considered boundary conditions. The shaft angular deformation, by the sum of the 
rigid body angular position (𝜃𝜃) adding the local torsional deformation (𝜑𝜑), is defined, 
noting that the actual natural frequency in torsion with free-free boundary conditions 
must be defined; therefore, is not by the equation (3d), and this is the reason of the 
punctuation in ‘modal’ displacements for torsion.   

The system of equations (2) can be written in matrix form, 
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𝑚𝑚� 𝑞𝑞� −𝑞𝑞� −2 ∙ 𝐹𝐹
𝑞𝑞� (1 −𝑀𝑀) 0 0
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with, 
𝑚𝑚� = 2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 + 𝑞𝑞�� + 𝑞𝑞�� + 2 ∙ 𝑞𝑞�� .      (5) 

Considering the inverse of inertia matrix, then the equations (4) are taking the form, 
{�̈�𝜃 �̈�𝑞� �̈�𝑞� �̈�𝑞�}� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� ∙ {ℎ� ℎ� ℎ� ℎ�}� ,      (6) 

which, is the Cauchy form of differential equations (2). The inverse of the nonsingular 
inertia matrix is given by, 
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,(7a) 
𝛿𝛿 = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� + 2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� > 0,  (7b) 

Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
change of variables [3,12],  
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�
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the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
�
�
∙ [0,0,0,0, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�]�,      (9)

with, 
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𝛿𝛿 = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� + 2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� > 0,  (7b) 

Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
change of variables [3,12],  

{𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥�}� = 
= �𝜃𝜃 𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��

�
,        (8)

the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
�
�
∙ [0,0,0,0, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�]�,      (9)

with, 

.           (3d)

The last two formulas correspond to the natural frequencies obtained by solving 
the PDE’s  eigenvalue problem of lateral bending motion (ωb) and torsion (ωT) for 
the considered boundary conditions. The shaft angular deformation, by the sum of 
the rigid body angular position (θ) adding the local torsional deformation (φ), is 
defined, noting that the actual natural frequency in torsion with free-free boundary 
conditions must be defined; therefore, is not by the equation (3d), and this is the 
reason of the punctuation in ‘modal’ displacements for torsion.  

The system of equations (2) can be written in matrix form,
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The last two formulas correspond to the natural frequencies obtained by solving the 
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considered boundary conditions. The shaft angular deformation, by the sum of the 
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must be defined; therefore, is not by the equation (3d), and this is the reason of the 
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,(7a) 
𝛿𝛿 = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� + 2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� > 0,  (7b) 

Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
change of variables [3,12],  
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the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
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�
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with, 
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Considering the inverse of inertia matrix, then the equations (4) are taking the form,
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𝛿𝛿 = 𝛿(1 −𝑀𝑀)(𝐼𝐼�𝐿𝐿 − 𝐿𝐿�) − 𝑀𝑀𝑞𝑞�� − 𝑀𝑀𝑞𝑞�� + 𝛿(1 −𝑀𝑀)𝑞𝑞�� > 0,   (7b) 

9. Before equation (13) in the paragraph the format has a problem “𝜀𝜀-scale orders” 

10. Equation (14d), has a box, see the following snapshot,  
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The first normal mode for small deformations (for the validity of 1st order 
approximation) is defined, and for angular velocity ‒ 0,T,cr,1(=4507.95 rad/s). 
Perturbation of” 

17. In page 295 equation number (75) has been added. 

18. Page 304 there is typographic error instead of “Table 4” it was written “Table 4n”. 

19. Please find attached Figures 2-8 in higher resolution 

,   (6)

which, is the Cauchy form of differential equations (2). The inverse of the nonsingular 
inertia matrix is given by,
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The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 
considered boundary conditions. The shaft angular deformation, by the sum of the 
rigid body angular position (𝜃𝜃) adding the local torsional deformation (𝜑𝜑), is defined, 
noting that the actual natural frequency in torsion with free-free boundary conditions 
must be defined; therefore, is not by the equation (3d), and this is the reason of the 
punctuation in ‘modal’ displacements for torsion.   

The system of equations (2) can be written in matrix form, 
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Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
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the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
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The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 
considered boundary conditions. The shaft angular deformation, by the sum of the 
rigid body angular position (𝜃𝜃) adding the local torsional deformation (𝜑𝜑), is defined, 
noting that the actual natural frequency in torsion with free-free boundary conditions 
must be defined; therefore, is not by the equation (3d), and this is the reason of the 
punctuation in ‘modal’ displacements for torsion.   

The system of equations (2) can be written in matrix form, 
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the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
�
�
∙ [0,0,0,0, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�]�,      (9)

with, 

,(7a)

2 
 

��̈�𝜃 �̈�𝑞� �̈�𝑞� �̈�𝑞��
�
= [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� ∙ {ℎ� ℎ� ℎ� ℎ�}�,   (6) 

8. In equations (7b), by my mistake the used variables defined later on, using the current variables should 
be replaced by the following, 

𝛿𝛿 = 𝛿(1 −𝑀𝑀)(𝐼𝐼�𝐿𝐿 − 𝐿𝐿�) − 𝑀𝑀𝑞𝑞�� − 𝑀𝑀𝑞𝑞�� + 𝛿(1 −𝑀𝑀)𝑞𝑞�� > 0,   (7b) 

9. Before equation (13) in the paragraph the format has a problem “𝜀𝜀-scale orders” 

10. Equation (14d), has a box, see the following snapshot,  

 

and the box should be replaced by, 

−𝐿𝐿 ∙ 𝐹𝐹��𝜃𝜃� + 𝐹𝐹��𝑞𝑞�,� − (𝐹𝐹�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝛿 ∙ 𝐿𝐿 ∙ 𝐹𝐹�𝐹𝐹�𝜃𝜃�,       (14d) 

11. Before and in the beginning of equation (15a) the alignment with the term 𝜀𝜀� has a format problem. 

12. Equation (41) should be in separate line (format). 

13. In page 287 equation 71 should be renumbered to 70b and it’s reference in page 288 (as indicated with red in the 
pdf file), because in the following section the number 71a is used. 

14. In page 289 equation 71a should be renumbered to 71 

15. Page 290 format of ratios in Table 1. 

16. In page 293 for no reason the following text is in bold,  
 
“Two normal modes identified in torsion, the first one arises with perturbation of 1st PM and the 2nd 

normal mode arises with perturbation of 
the 3rd PM. 
The first normal mode for small deformations (for the validity of 1st order 
approximation) is defined, and for angular velocity ‒ 0,T,cr,1(=4507.95 rad/s). 
Perturbation of” 

17. In page 295 equation number (75) has been added. 

18. Page 304 there is typographic error instead of “Table 4” it was written “Table 4n”. 

19. Please find attached Figures 2-8 in higher resolution 

,   (7b)

Some observations of the above systems eqs. (4), (6) are necessary before 
presenting any nonlinear dynamic analysis of the equations (2) or (4). Considering 
the following change of variables [3,12],
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𝜔𝜔� = � ��∙�∙�
��∙��∙�����∙�

 , (3c) 

𝜔𝜔� =
�
�∙�

∙ �
�∙�
��

. (3d) 

The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 
considered boundary conditions. The shaft angular deformation, by the sum of the 
rigid body angular position (𝜃𝜃) adding the local torsional deformation (𝜑𝜑), is defined, 
noting that the actual natural frequency in torsion with free-free boundary conditions 
must be defined; therefore, is not by the equation (3d), and this is the reason of the 
punctuation in ‘modal’ displacements for torsion.   

The system of equations (2) can be written in matrix form, 

�

𝑚𝑚� 𝑞𝑞� −𝑞𝑞� −2 ∙ 𝐹𝐹
𝑞𝑞� (1 −𝑀𝑀) 0 0
−𝑞𝑞� 0 (1 −𝑀𝑀) 0
−𝐹𝐹 0 0 1

� ∙ �

�̈�𝜃
�̈�𝑞�
�̈�𝑞�
�̈�𝑞�

� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕] ∙ �

�̈�𝜃
�̈�𝑞�
�̈�𝑞�
�̈�𝑞�

� = �

ℎ�
ℎ�
ℎ�
ℎ�

� , (4) 

with, 
𝑚𝑚� = 2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 + 𝑞𝑞�� + 𝑞𝑞�� + 2 ∙ 𝑞𝑞�� .      (5) 

Considering the inverse of inertia matrix, then the equations (4) are taking the form, 
{�̈�𝜃 �̈�𝑞� �̈�𝑞� �̈�𝑞�}� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� ∙ {ℎ� ℎ� ℎ� ℎ�}� ,      (6) 

which, is the Cauchy form of differential equations (2). The inverse of the nonsingular 
inertia matrix is given by, 

[𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� =
�
�
∙

⎣
⎢
⎢
⎢
⎢
⎡
(1 − 𝑀𝑀) −𝑞𝑞� 𝑞𝑞� 2 ∙ (1 − 𝑀𝑀) ∙ 𝐹𝐹

−𝑞𝑞� 𝑚𝑚� −
���

(���)
− 2 ∙ 𝐹𝐹� − ��∙��

(���)
−2 ∙ 𝐹𝐹 ∙ 𝑞𝑞�

𝑞𝑞� − ��∙��
(���)

𝑚𝑚� −
���

(���)
− 2 ∙ 𝐹𝐹� 2 ∙ 𝐹𝐹 ∙ 𝑞𝑞�

𝐹𝐹 ∙ (1 − 𝑀𝑀) −𝐹𝐹 ∙ 𝑞𝑞� 𝐹𝐹𝑞𝑞� (1 − 𝑀𝑀) ∙ 𝑚𝑚� − 𝑞𝑞�� − 𝑞𝑞�� ⎦
⎥
⎥
⎥
⎥
⎤

,(7a) 
𝛿𝛿 = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� + 2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� > 0,  (7b) 

Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
change of variables [3,12],  

{𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥�}� = 
= �𝜃𝜃 𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��

�
,        (8)

the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
�
�
∙ [0,0,0,0, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�]�,      (9)

with, 
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 , (3c) 

𝜔𝜔� =
�
�∙�

∙ �
�∙�
��
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The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 
considered boundary conditions. The shaft angular deformation, by the sum of the 
rigid body angular position (𝜃𝜃) adding the local torsional deformation (𝜑𝜑), is defined, 
noting that the actual natural frequency in torsion with free-free boundary conditions 
must be defined; therefore, is not by the equation (3d), and this is the reason of the 
punctuation in ‘modal’ displacements for torsion.   

The system of equations (2) can be written in matrix form, 

�

𝑚𝑚� 𝑞𝑞� −𝑞𝑞� −2 ∙ 𝐹𝐹
𝑞𝑞� (1 −𝑀𝑀) 0 0
−𝑞𝑞� 0 (1 −𝑀𝑀) 0
−𝐹𝐹 0 0 1

� ∙ �

�̈�𝜃
�̈�𝑞�
�̈�𝑞�
�̈�𝑞�

� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕] ∙ �

�̈�𝜃
�̈�𝑞�
�̈�𝑞�
�̈�𝑞�

� = �

ℎ�
ℎ�
ℎ�
ℎ�

� , (4) 

with, 
𝑚𝑚� = 2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 + 𝑞𝑞�� + 𝑞𝑞�� + 2 ∙ 𝑞𝑞�� .      (5) 

Considering the inverse of inertia matrix, then the equations (4) are taking the form, 
{�̈�𝜃 �̈�𝑞� �̈�𝑞� �̈�𝑞�}� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� ∙ {ℎ� ℎ� ℎ� ℎ�}� ,      (6) 

which, is the Cauchy form of differential equations (2). The inverse of the nonsingular 
inertia matrix is given by, 

[𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� =
�
�
∙

⎣
⎢
⎢
⎢
⎢
⎡
(1 − 𝑀𝑀) −𝑞𝑞� 𝑞𝑞� 2 ∙ (1 − 𝑀𝑀) ∙ 𝐹𝐹

−𝑞𝑞� 𝑚𝑚� −
���

(���)
− 2 ∙ 𝐹𝐹� − ��∙��

(���)
−2 ∙ 𝐹𝐹 ∙ 𝑞𝑞�

𝑞𝑞� − ��∙��
(���)

𝑚𝑚� −
���

(���)
− 2 ∙ 𝐹𝐹� 2 ∙ 𝐹𝐹 ∙ 𝑞𝑞�

𝐹𝐹 ∙ (1 − 𝑀𝑀) −𝐹𝐹 ∙ 𝑞𝑞� 𝐹𝐹𝑞𝑞� (1 − 𝑀𝑀) ∙ 𝑚𝑚� − 𝑞𝑞�� − 𝑞𝑞�� ⎦
⎥
⎥
⎥
⎥
⎤

,(7a) 
𝛿𝛿 = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� + 2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� > 0,  (7b) 

Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
change of variables [3,12],  

{𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥�}� = 
= �𝜃𝜃 𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��

�
,        (8)

the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
�
�
∙ [0,0,0,0, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�]�,      (9)

with, 

,   (8)

the system of equations (2) or (4), (6) can be written as 1st order dynamical system 
with the following form [3,12],
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The last two formulas correspond to the natural frequencies obtained by solving the 
PDE’s  eigenvalue problem of lateral bending motion (𝜔𝜔�) and torsion (𝜔𝜔�) for the 
considered boundary conditions. The shaft angular deformation, by the sum of the 
rigid body angular position (𝜃𝜃) adding the local torsional deformation (𝜑𝜑), is defined, 
noting that the actual natural frequency in torsion with free-free boundary conditions 
must be defined; therefore, is not by the equation (3d), and this is the reason of the 
punctuation in ‘modal’ displacements for torsion.   

The system of equations (2) can be written in matrix form, 

�

𝑚𝑚� 𝑞𝑞� −𝑞𝑞� −2 ∙ 𝐹𝐹
𝑞𝑞� (1 −𝑀𝑀) 0 0
−𝑞𝑞� 0 (1 −𝑀𝑀) 0
−𝐹𝐹 0 0 1

� ∙ �

�̈�𝜃
�̈�𝑞�
�̈�𝑞�
�̈�𝑞�

� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕] ∙ �

�̈�𝜃
�̈�𝑞�
�̈�𝑞�
�̈�𝑞�

� = �

ℎ�
ℎ�
ℎ�
ℎ�

� , (4) 

with, 
𝑚𝑚� = 2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 + 𝑞𝑞�� + 𝑞𝑞�� + 2 ∙ 𝑞𝑞�� .      (5) 

Considering the inverse of inertia matrix, then the equations (4) are taking the form, 
{�̈�𝜃 �̈�𝑞� �̈�𝑞� �̈�𝑞�}� = [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� ∙ {ℎ� ℎ� ℎ� ℎ�}� ,      (6) 

which, is the Cauchy form of differential equations (2). The inverse of the nonsingular 
inertia matrix is given by, 

[𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]�� =
�
�
∙

⎣
⎢
⎢
⎢
⎢
⎡
(1 − 𝑀𝑀) −𝑞𝑞� 𝑞𝑞� 2 ∙ (1 − 𝑀𝑀) ∙ 𝐹𝐹

−𝑞𝑞� 𝑚𝑚� −
���

(���)
− 2 ∙ 𝐹𝐹� − ��∙��

(���)
−2 ∙ 𝐹𝐹 ∙ 𝑞𝑞�

𝑞𝑞� − ��∙��
(���)

𝑚𝑚� −
���

(���)
− 2 ∙ 𝐹𝐹� 2 ∙ 𝐹𝐹 ∙ 𝑞𝑞�

𝐹𝐹 ∙ (1 − 𝑀𝑀) −𝐹𝐹 ∙ 𝑞𝑞� 𝐹𝐹𝑞𝑞� (1 − 𝑀𝑀) ∙ 𝑚𝑚� − 𝑞𝑞�� − 𝑞𝑞�� ⎦
⎥
⎥
⎥
⎥
⎤

,(7a) 
𝛿𝛿 = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� + 2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� > 0,  (7b) 

Some observations of the above systems (eq. 4,6) are necessary before presenting any 
nonlinear dynamic analysis of the equations (2) or (4). Considering the following 
change of variables [3,12],  

{𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥�}� = 
= �𝜃𝜃 𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��

�
,        (8)

the system of equations (2) or (4,6) can be written as 1st order dynamical system with 
the following form [3,12], 

{�̇�𝒙𝒊𝒊} = [𝑪𝑪] × {𝒙𝒙𝒊𝒊} +
�
�
∙ [0,0,0,0, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�, 𝐺𝐺�]�,      (9)

with, 
,     (9)
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  

 

,      (10a)

and,
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  

 

,     (10b)
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  

 

 

Fotios Georgiades 
282 

[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  

 

,   (10c)
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
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⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  

 

,      (10d)
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[𝑪𝑪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =

⎣
⎢
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⎢
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⎡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0⎦
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⎥
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⎥
⎥
⎥
⎤

,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  

 
+ �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�

�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�,   (10c) 
 

𝐺𝐺� =
�∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑥𝑥�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −
�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� −  

 
− �∙�

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
−2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� ∙ 𝑥𝑥�,         (10d) 
 

𝐺𝐺� = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 𝑀𝑀 ∙ 𝑥𝑥�� ∙ 𝑥𝑥� ∙ 𝑥𝑥�� +  
 
+2 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�

� ∙ 𝑥𝑥� + 𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�� ∙ 𝑥𝑥� +  
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[𝑪𝑪] =
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0 0 0 0 0 0 0 0⎦
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⎥
⎥
⎥
⎥
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,       (10a) 

and, 
𝐺𝐺� = 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ 𝑀𝑀 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
 

+2 ∙ 𝐹𝐹 ∙ (1 −𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�,      (10b) 

 
𝐺𝐺� = − �∙�

(���)
∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 4 ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� ∙ 𝑥𝑥� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥�� −  

 
− �

(���)
∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −

�
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� + 2 ∙ 𝑥𝑥� ∙ 𝑥𝑥�� ∙ 𝑥𝑥�� −  
 

−2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� +

�∙��
�∙(���)

(���)
∙ 𝑥𝑥�� +  

 

+��
�∙�∙(���)
(���)

∙ 𝑥𝑥� ∙ 𝑥𝑥�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑥𝑥�� ∙ 𝑥𝑥� − 4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑥𝑥� ∙ 𝑥𝑥� +  
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The first term in the right-hand side of equation (9) is the linear term of the system, and 
examining the explicit form of the matrix−[𝑪𝑪]given by equation (10a) is easy to find 
out that it has many zero eigenvalues, which means that the Lyapunov linear modes 
approximation of the nonlinear system in small energies is not necessarily valid [12]. 
Therefore the linearized approximation of the nonlinear system cannot help much in 
obtaining nonlinear solutions. All the methods relying on the natural frequencies of the 
underlying linear system developed for this nonlinear system will not necessarily lead 
to a good approximation of the original system.    
In the following two sections, two different methods for the nonlinear dynamic analysis 
of the shaft identifying critical situations developed in [2-3,12], are explained. More 
precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
��

= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 

��

��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 

 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,   (12b) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,  (12c) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

.     (10e)

The first term in the right-hand side of equation (9) is the linear term of the system, 
and examining the explicit form of the matrix ‒[C] given by equation (10a) is easy 
to find out that it has many zero eigenvalues, which means that the Lyapunov linear 
modes approximation of the nonlinear system in small energies is not necessarily 
valid [12]. Therefore the linearized approximation of the nonlinear system cannot 



Dynamics of a Spinning Shaft With Non-constant Rotating Speed, Leading to Theorems in Mechanics270

help much in obtaining nonlinear solutions. All the methods relying on the natural 
frequencies of the underlying linear system developed for this nonlinear system will 
not necessarily lead to a good approximation of the original system.   

In the following two sections, two different methods for the nonlinear dynamic 
analysis of the shaft identifying critical situations developed in [2-3,12], are 
explained. More precisely, the multiple scales nonlinear dynamic analysis developed 
in [2]; and linearization around the equilibrium manifolds of a restricted system 
or otherwise stated through the linearization around the system’s (4) perpetual 
manifolds are shown.

2.2. Multiple scales dynamic analysis. The multiple scales perturbation 
method, developed by Nayfeh in [13], used for the nonlinear dynamic analysis of the 
spinning shaft in [2], in this section is presented.

This method is based on the dynamic analysis of the nonlinear differential 
equations, with different time scales ‒Ti as follows,
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𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
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= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 
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��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 
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Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

,         (11a)
therefore, the derivatives are given by,
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precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 
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= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
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whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
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�
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2) in the following form,
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,         (11b)

whereas Dk  indicates the derivative in Tk‒ time scale.
The accelerations are given by,
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2) in the following form,
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The multiple scales approach leads to the solutions of the ‘modal’ equations 

system eq. (2) in the following form,

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
283 

+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

� ∙ 𝑥𝑥� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

�. (10e) 

The first term in the right-hand side of equation (9) is the linear term of the system, and 
examining the explicit form of the matrix−[𝑪𝑪]given by equation (10a) is easy to find 
out that it has many zero eigenvalues, which means that the Lyapunov linear modes 
approximation of the nonlinear system in small energies is not necessarily valid [12]. 
Therefore the linearized approximation of the nonlinear system cannot help much in 
obtaining nonlinear solutions. All the methods relying on the natural frequencies of the 
underlying linear system developed for this nonlinear system will not necessarily lead 
to a good approximation of the original system.    
In the following two sections, two different methods for the nonlinear dynamic analysis 
of the shaft identifying critical situations developed in [2-3,12], are explained. More 
precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
��

= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 

��

��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 

 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,   (12b) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,  (12c) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

,      (12a)
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+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

� ∙ 𝑥𝑥� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

�. (10e) 

The first term in the right-hand side of equation (9) is the linear term of the system, and 
examining the explicit form of the matrix−[𝑪𝑪]given by equation (10a) is easy to find 
out that it has many zero eigenvalues, which means that the Lyapunov linear modes 
approximation of the nonlinear system in small energies is not necessarily valid [12]. 
Therefore the linearized approximation of the nonlinear system cannot help much in 
obtaining nonlinear solutions. All the methods relying on the natural frequencies of the 
underlying linear system developed for this nonlinear system will not necessarily lead 
to a good approximation of the original system.    
In the following two sections, two different methods for the nonlinear dynamic analysis 
of the shaft identifying critical situations developed in [2-3,12], are explained. More 
precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
��

= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 

��

��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 

 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,   (12b) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,  (12c) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

,          (12b)
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+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

� ∙ 𝑥𝑥� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

�. (10e) 

The first term in the right-hand side of equation (9) is the linear term of the system, and 
examining the explicit form of the matrix−[𝑪𝑪]given by equation (10a) is easy to find 
out that it has many zero eigenvalues, which means that the Lyapunov linear modes 
approximation of the nonlinear system in small energies is not necessarily valid [12]. 
Therefore the linearized approximation of the nonlinear system cannot help much in 
obtaining nonlinear solutions. All the methods relying on the natural frequencies of the 
underlying linear system developed for this nonlinear system will not necessarily lead 
to a good approximation of the original system.    
In the following two sections, two different methods for the nonlinear dynamic analysis 
of the shaft identifying critical situations developed in [2-3,12], are explained. More 
precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
��

= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 

��

��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 

 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,   (12b) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,  (12c) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

,        (12c)
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+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

� ∙ 𝑥𝑥� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

�. (10e) 

The first term in the right-hand side of equation (9) is the linear term of the system, and 
examining the explicit form of the matrix−[𝑪𝑪]given by equation (10a) is easy to find 
out that it has many zero eigenvalues, which means that the Lyapunov linear modes 
approximation of the nonlinear system in small energies is not necessarily valid [12]. 
Therefore the linearized approximation of the nonlinear system cannot help much in 
obtaining nonlinear solutions. All the methods relying on the natural frequencies of the 
underlying linear system developed for this nonlinear system will not necessarily lead 
to a good approximation of the original system.    
In the following two sections, two different methods for the nonlinear dynamic analysis 
of the shaft identifying critical situations developed in [2-3,12], are explained. More 
precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
��

= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 

��

��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 

 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,   (12b) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,  (12c) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

.         (12d)

Also, following the multiple scales approach, the system of equations (2) for the 
various ε-scale orders (up to the 2nd order) is taking the form:

ε0,  
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+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

� ∙ 𝑥𝑥� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑥𝑥�

�. (10e) 

The first term in the right-hand side of equation (9) is the linear term of the system, and 
examining the explicit form of the matrix−[𝑪𝑪]given by equation (10a) is easy to find 
out that it has many zero eigenvalues, which means that the Lyapunov linear modes 
approximation of the nonlinear system in small energies is not necessarily valid [12]. 
Therefore the linearized approximation of the nonlinear system cannot help much in 
obtaining nonlinear solutions. All the methods relying on the natural frequencies of the 
underlying linear system developed for this nonlinear system will not necessarily lead 
to a good approximation of the original system.    
In the following two sections, two different methods for the nonlinear dynamic analysis 
of the shaft identifying critical situations developed in [2-3,12], are explained. More 
precisely, the multiple scales nonlinear dynamic analysis developed in [2]; and lineari-
zation around the equilibrium manifolds of a restricted system or otherwise stated 
through the linearization around the system's (4) perpetual manifolds are shown. 

2.2 Multiple scales dynamic analysis 

The multiple scales perturbation method, developed by Nayfeh in [13], used for the 
nonlinear dynamic analysis of the spinning shaft in [2], in this section is presented. 
This method is based on the dynamic analysis of the nonlinear differential equations, 
with different time scales−𝑇𝑇�  as follows, 

𝑇𝑇� = 𝜀𝜀� ∙ 𝑡𝑡, (11a) 
therefore, the derivatives are given by, 

�
��

= ∑ 𝜀𝜀� ∙ 𝐷𝐷�
�
��� , (11b) 

whereas 𝐷𝐷� indicates the derivative in 𝑇𝑇� −time scale. 
The accelerations are given by, 

��

��� = ∑ ∑ 𝜀𝜀��� ∙ 𝐷𝐷�𝐷𝐷�
�
���

�
��� . (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 
2) in the following form,

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝑇𝑇, (12a) 

 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,   (12b) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇,  (12c) 

𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝑇𝑇.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-
ous 𝜀𝜀-scale orders (up to the 2nd order) is taking the form: 

𝜀𝜀�, 
 𝐷𝐷�

�𝜃𝜃� = 0   ⇔     𝐷𝐷�𝜃𝜃� = 𝛺𝛺   ⇔      𝜃𝜃� = 𝛺𝛺 ∙ 𝑇𝑇� + 𝑐𝑐𝑡𝑡, (13) 
𝜀𝜀�, 

,    (13)

ε1,  
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    2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = −4 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,          (14a) 
 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14b) 

 
−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −  
 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14c) 
 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,       (14d) 

 
𝜀𝜀�,  

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 
= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 
𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 
−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 
+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 
Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝑇𝑇� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
The equation (16) provides a very helpful expression to eliminate the other secular 
terms in equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash no-
tation instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first 
pair of equations describes the rigid body angular position with torsional ‘modal’ 
displacement, and the second pair comprised of the two equations describing the lateral 
bending modal displacements. Therefore the multiple scales nonlinear dynamic analysis 
of the spinning shaft is divided into two analyses. The 1st one is about the dynamics of 
the spinning shaft in rotation, which involves rigid body angular and torsional motion 
presented in the following subsection. The 2nd analysis is related to lateral bending 
motions that are presented just after the following subsection.   

,   (14a)
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    2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = −4 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,          (14a) 
 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14b) 

 
−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −  
 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14c) 
 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,       (14d) 

 
𝜀𝜀�,  

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 
= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 
𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 
−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 
+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 
Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝑇𝑇� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
The equation (16) provides a very helpful expression to eliminate the other secular 
terms in equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash no-
tation instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first 
pair of equations describes the rigid body angular position with torsional ‘modal’ 
displacement, and the second pair comprised of the two equations describing the lateral 
bending modal displacements. Therefore the multiple scales nonlinear dynamic analysis 
of the spinning shaft is divided into two analyses. The 1st one is about the dynamics of 
the spinning shaft in rotation, which involves rigid body angular and torsional motion 
presented in the following subsection. The 2nd analysis is related to lateral bending 
motions that are presented just after the following subsection.   
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    2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = −4 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,          (14a) 
 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14b) 

 
−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −  
 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14c) 
 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,       (14d) 

 
𝜀𝜀�,  

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 
= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 
𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 
−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 
+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 
Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝑇𝑇� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
The equation (16) provides a very helpful expression to eliminate the other secular 
terms in equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash no-
tation instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first 
pair of equations describes the rigid body angular position with torsional ‘modal’ 
displacement, and the second pair comprised of the two equations describing the lateral 
bending modal displacements. Therefore the multiple scales nonlinear dynamic analysis 
of the spinning shaft is divided into two analyses. The 1st one is about the dynamics of 
the spinning shaft in rotation, which involves rigid body angular and torsional motion 
presented in the following subsection. The 2nd analysis is related to lateral bending 
motions that are presented just after the following subsection.   

,      (14b)
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    2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = −4 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,          (14a) 
 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14b) 

 
−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −  
 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14c) 
 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,       (14d) 

 
𝜀𝜀�,  

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 
= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 
𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 
−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 
+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 
Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝑇𝑇� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
The equation (16) provides a very helpful expression to eliminate the other secular 
terms in equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash no-
tation instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first 
pair of equations describes the rigid body angular position with torsional ‘modal’ 
displacement, and the second pair comprised of the two equations describing the lateral 
bending modal displacements. Therefore the multiple scales nonlinear dynamic analysis 
of the spinning shaft is divided into two analyses. The 1st one is about the dynamics of 
the spinning shaft in rotation, which involves rigid body angular and torsional motion 
presented in the following subsection. The 2nd analysis is related to lateral bending 
motions that are presented just after the following subsection.   
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    2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = −4 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,          (14a) 
 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14b) 

 
−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −  
 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 0,           (14c) 
 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃�,       (14d) 

 
𝜀𝜀�,  

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 
= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 
𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 
−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 
+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 
−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 
+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 
Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝑇𝑇� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
The equation (16) provides a very helpful expression to eliminate the other secular 
terms in equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash no-
tation instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first 
pair of equations describes the rigid body angular position with torsional ‘modal’ 
displacement, and the second pair comprised of the two equations describing the lateral 
bending modal displacements. Therefore the multiple scales nonlinear dynamic analysis 
of the spinning shaft is divided into two analyses. The 1st one is about the dynamics of 
the spinning shaft in rotation, which involves rigid body angular and torsional motion 
presented in the following subsection. The 2nd analysis is related to lateral bending 
motions that are presented just after the following subsection.   

,        (14c)
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This method is based on the dynamic analysis of the nonlinear differential equations, 

with different time scales−  as follows,  =  ∙ ,           (11a) 

therefore, the derivatives are given by,  = ∑  ∙  ,          (11b) 

whereas  indicates the derivative in  −time scale. 

The accelerations are given by, 

      
 = ∑ ∑  ∙  .       (11c) 

The multiple scales approach leads to the solutions of the ‘modal’ equations system 

(eq. 2) in the following form,  =  ∙    ∙    ∙   ,         (12a) 

   =  ∙ ,   ∙ ,  ,            (12b)  =  ∙ ,   ∙ ,  ,           (12c) 

   =  ∙ ,   ∙ ,  .            (12d) 

Also, following the multiple scales approach, the system of equations (2) for the vari-

ous -scale orders (up to the 2
nd

 order) is taking the form: , 

   = 0   ⇔      =    ⇔       =  ∙   ,     (13) , 

    2 ∙  ∙  ∙  − 2 ∙  ∙ , = −4 ∙  ∙  ∙ ,          (14a)  ∙ ,  1 −  ∙ , −  ∙ ,   ∙ 1 −  ∙ ,  2 ∙  ∙ , = 0,           (14b) − ∙ ,  1 −  ∙ , −  ∙ ,   ∙ 1 −  ∙ , − −2 ∙  ∙ , = 0,           (14c) − ∙   , −  ∙ ,   ∙ , = 2 ∙  ∙ ,       (14d) ,  2 ∙  ∙  ∙  − 2 ∙  ∙ , =  = = −2 ∙  ∙  ∙ 2 ∙   2 ∙    −  ∙ , −  ∙ , − −2 ∙  ∙ ,  4 ∙  ∙ ,  , ∙ , − , ∙ , − −2 ∙  ∙ , ∙ , − 2 ∙  ∙ , ∙ , − 4 ∙  ∙ , ∙ ,,  (15a)  ∙ ,  1 −  ∙ , −  ∙ ,   ∙ 1 −  ∙ ,  2 ∙  ∙ , =  = − ∙ , − 2 ∙  ∙ , − −2 ∙ 1 −  ∙ ,  2 ∙  ∙  ∙ ,  2 ∙  ∙  ∙ , − −2 ∙  ∙ , − 2 ∙  ∙ , − 2 ∙  ∙ ,,(15b) − ∙ ,  1 −  ∙ , −  ∙ ,   ∙ 1 −  ∙ , − −2 ∙  ∙ , =  =  ∙ ,  2 ∙  ∙ , − 2 ∙ 1 −  ∙ ,  2 ∙  ∙  ∙ ,  2 ∙  ∙  ∙ ,  2 ∙  ∙ ,  2 ∙  ∙ ,  2 ∙  ∙ ,,    (15c) − ∙   , −  ∙ ,   ∙ , =  =  ∙ 2 ∙   2 ∙    − 2 ∙ ,  2 ∙  ∙  ∙ ,  2 ∙  ∙  ∙ ,.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

,   (14d)
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 

 

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
283 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 

, (15a)
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 

,(15b)
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 

 

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
283 

The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 

,   (15c)
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
in the following form, 

𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) 

.       (15d)

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2],
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The multiple scales approach leads to the solutions of the ‘modal’ equations system (eq. 2) 
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𝜃𝜃 = 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝜀𝜀� ∙ 𝜃𝜃� + 𝐻𝐻𝐻𝐻𝐻𝐻, (12a) 
 𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12b) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻,  (12c) 
𝑞𝑞� = 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝜀𝜀� ∙ 𝑞𝑞�,� + 𝐻𝐻𝐻𝐻𝐻𝐻.  (12d) 

Also, following the multiple scales approach, the system of equations (2) for the various 𝜀𝜀-
scale orders (up to the 2nd order) is taking the form: 
𝜀𝜀�, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝐷𝐷��𝜃𝜃� − 2 ∙ 𝐹𝐹 ∙ 𝐷𝐷��𝑞𝑞�,� = 𝐹𝐹� = 

= −2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� − 

−2 ∙ 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,�� + 4 ∙ 𝐹𝐹 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 𝑞𝑞�,� ∙ 𝐷𝐷��𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,� − 4 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� ∙ 𝑞𝑞�,�,  (15a) 

𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� +  

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = −𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� −  

−2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� − 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,(15b) 

−𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + (1 − 𝑀𝑀) ∙ 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� −

−2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� = 𝐹𝐹� = 𝐷𝐷��𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� +

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝑞𝑞�,�,    (15c) 

−𝐹𝐹 ∙ 𝐷𝐷��𝜃𝜃� + 𝐷𝐷��𝑞𝑞�,� − (𝐷𝐷�𝜃𝜃�)� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ 𝑞𝑞�,� = 𝐹𝐹� = 𝐹𝐹 ∙ (2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� +

+2 ∙ 𝐷𝐷�𝐷𝐷�𝜃𝜃� + 𝐷𝐷��𝜃𝜃�) − 2 ∙ 𝐷𝐷�𝐷𝐷�𝑞𝑞�,� + 2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,� + 

+2 ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝐷𝐷�𝜃𝜃� ∙ 𝑞𝑞�,�.           (15d) 

Eliminating secular terms in equation (14a) and considering equation (13) leads to [2], 

𝐷𝐷�𝐷𝐷�𝜃𝜃� = 0 ⇔ 𝐷𝐷�𝛺𝛺 = 0 ⇔ 𝐷𝐷�𝛺𝛺 ∙ 𝐻𝐻� = 𝐷𝐷�𝜃𝜃� = 0.      (16) .     (16)

The equation (16) provides a very helpful expression to eliminate the other secular 
terms in equations (14)-(15).

The expressions simplified with the over-dot notation instead of D0 and the dash 
notation instead of D1, in the following sections.

On the left side of the equations (14)-(15), the coupled equations in pairs. The 
first pair of equations describes the rigid body angular position with torsional 
‘modal’ displacement, and the second pair comprised of the two equations 
describing the lateral bending modal displacements. Therefore the multiple scales 
nonlinear dynamic analysis of the spinning shaft is divided into two analyses. The 
1st one is about the dynamics of the spinning shaft in rotation, which involves 
rigid body angular and torsional motion presented in the following subsection. The 
2nd analysis is related to lateral bending motions that are presented just after the 
following subsection. 

Multiple scales analysis, the equations describing torsional with rigid body 
angular motions. In this subsection, the systems of equations of motion describing 
the dynamics of torsional with rigid body motion at different scales are shown, with 
referenced their solutions that in Appendix-A, are explicitly shown. More precisely, 
the multiple scales dynamic analysis in this section involves the solution of the 1st 
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order approximation, without and with amplitude modulations, and the 2nd order 
approximation without amplitude modulation.

The 1st order approximation system describing torsional motion 
The 1st order approximation equations describing torsional with rigid body angular 

motions in T0‒ time scale by equations (14a,d) are obtained [2], and they are given by,
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The equation (16) provides a very helpful expression to eliminate the other secular terms in 
equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash notation 
instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first pair of 
equations describes the rigid body angular position with torsional ‘modal’ displacement, and 
the second pair comprised of the two equations describing the lateral bending modal 
displacements. Therefore the multiple scales nonlinear dynamic analysis of the spinning 
shaft is divided into two analyses. The 1st one is about the dynamics of the spinning shaft in 
rotation, which involves rigid body angular and torsional motion presented in the following 
subsection. The 2nd analysis is related to lateral bending motions that are presented just after 
the following subsection.   

Multiple scales analysis, the equations describing torsional with rigid body angular 
motions 
In this subsection, the systems of equations of motion describing the dynamics of torsional 
with rigid body motion at different scales are shown, with referenced their solutions that in 
Appendix-A, are explicitly shown. More precisely, the multiple scales dynamic analysis in 
this section involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing torsional motion  
The 1st order approximation equations describing torsional with rigid body angular motions 
in 𝑇𝑇� −time scale by equations (14a,d) are obtained [2], and they are given by, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ �̈�𝜃� − 2 ∙ 𝐹𝐹 ∙ �̈�𝑞�,� = 0 ⇔ �̈�𝜃� =
�
��∙�

∙ �̈�𝑞�,�, (17a) 

−𝐹𝐹 ∙ �̈�𝜃� + �̈�𝑞�,� + (𝜔𝜔�
� − 𝛺𝛺�) ∙ 𝑞𝑞�,� = 0 ⇔ �̈�𝑞�,� +

��∙�∙���
�����

(��∙����)
∙ 𝑞𝑞�,� = 0.  (17b)

The solution of this system, obtained in [2], by the equations (A.1a-b) in Appendix-A, is 
given. The natural frequency−𝜇𝜇� by the equation (A.2) is defined.  

In case that the rigid body angular velocity (Ω) is equal to the ‘torsional frequency’ (ω�), 
then the oscillatory frequency (μ�) in equations (A.1a-b) becomes zero. 

The amplitude modulation equations of the 1st order approximation describing torsional 
motion  
The amplitude modulation equations by the 𝑇𝑇� −time scale arise, with the elimination of the 
secular terms in equations (15a,d) [2], and they are given by: 

𝐴𝐴�,�� = −𝜇𝜇� ∙ 𝐴𝐴�,�, (18a) 

𝐴𝐴�,�� = 𝜇𝜇� ∙ 𝐴𝐴�,�. (18b) 

,     (17a)

Fotios Georgiades 
284 

The equation (16) provides a very helpful expression to eliminate the other secular terms in 
equations (14-15). 

The expressions simplified with the over-dot notation instead of 𝐷𝐷� and the dash notation 
instead of 𝐷𝐷�, in the following sections. 

On the left side of the equations (14-15), the coupled equations in pairs. The first pair of 
equations describes the rigid body angular position with torsional ‘modal’ displacement, and 
the second pair comprised of the two equations describing the lateral bending modal 
displacements. Therefore the multiple scales nonlinear dynamic analysis of the spinning 
shaft is divided into two analyses. The 1st one is about the dynamics of the spinning shaft in 
rotation, which involves rigid body angular and torsional motion presented in the following 
subsection. The 2nd analysis is related to lateral bending motions that are presented just after 
the following subsection.   

Multiple scales analysis, the equations describing torsional with rigid body angular 
motions 
In this subsection, the systems of equations of motion describing the dynamics of torsional 
with rigid body motion at different scales are shown, with referenced their solutions that in 
Appendix-A, are explicitly shown. More precisely, the multiple scales dynamic analysis in 
this section involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing torsional motion  
The 1st order approximation equations describing torsional with rigid body angular motions 
in 𝑇𝑇� −time scale by equations (14a,d) are obtained [2], and they are given by, 

2 ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ �̈�𝜃� − 2 ∙ 𝐹𝐹 ∙ �̈�𝑞�,� = 0 ⇔ �̈�𝜃� =
�
��∙�

∙ �̈�𝑞�,�, (17a) 

−𝐹𝐹 ∙ �̈�𝜃� + �̈�𝑞�,� + (𝜔𝜔�
� − 𝛺𝛺�) ∙ 𝑞𝑞�,� = 0 ⇔ �̈�𝑞�,� +

��∙�∙���
�����

(��∙����)
∙ 𝑞𝑞�,� = 0.  (17b)

The solution of this system, obtained in [2], by the equations (A.1a-b) in Appendix-A, is 
given. The natural frequency−𝜇𝜇� by the equation (A.2) is defined.  

In case that the rigid body angular velocity (Ω) is equal to the ‘torsional frequency’ (ω�), 
then the oscillatory frequency (μ�) in equations (A.1a-b) becomes zero. 

The amplitude modulation equations of the 1st order approximation describing torsional 
motion  
The amplitude modulation equations by the 𝑇𝑇� −time scale arise, with the elimination of the 
secular terms in equations (15a,d) [2], and they are given by: 

𝐴𝐴�,�� = −𝜇𝜇� ∙ 𝐴𝐴�,�, (18a) 

𝐴𝐴�,�� = 𝜇𝜇� ∙ 𝐴𝐴�,�. (18b) 

.  (17b)

The solution of this system, obtained in [2], by the equations (A.1a-b) in 
Appendix-A, is given. The natural frequency ‒μ0 by the equation (A.2) is defined. 

In case that the rigid body angular velocity (Ω) is equal to the ‘torsional frequency’ 
(ωT), then the oscillatory frequency (μ0) in equations (A.1a-b) becomes zero.

The amplitude modulation equations of the 1st order approximation describing 
torsional motion 

The amplitude modulation equations by the T1‒ time scale arise, with the 
elimination of the secular terms in equations (15a,d) [2], and they are given by:
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equations describes the rigid body angular position with torsional ‘modal’ displacement, and 
the second pair comprised of the two equations describing the lateral bending modal 
displacements. Therefore the multiple scales nonlinear dynamic analysis of the spinning 
shaft is divided into two analyses. The 1st one is about the dynamics of the spinning shaft in 
rotation, which involves rigid body angular and torsional motion presented in the following 
subsection. The 2nd analysis is related to lateral bending motions that are presented just after 
the following subsection.   

Multiple scales analysis, the equations describing torsional with rigid body angular 
motions 
In this subsection, the systems of equations of motion describing the dynamics of torsional 
with rigid body motion at different scales are shown, with referenced their solutions that in 
Appendix-A, are explicitly shown. More precisely, the multiple scales dynamic analysis in 
this section involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing torsional motion  
The 1st order approximation equations describing torsional with rigid body angular motions 
in 𝑇𝑇� −time scale by equations (14a,d) are obtained [2], and they are given by, 
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−𝐹𝐹 ∙ �̈�𝜃� + �̈�𝑞�,� + (𝜔𝜔�
� − 𝛺𝛺�) ∙ 𝑞𝑞�,� = 0 ⇔ �̈�𝑞�,� +
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The solution of this system, obtained in [2], by the equations (A.1a-b) in Appendix-A, is 
given. The natural frequency−𝜇𝜇� by the equation (A.2) is defined.  

In case that the rigid body angular velocity (Ω) is equal to the ‘torsional frequency’ (ω�), 
then the oscillatory frequency (μ�) in equations (A.1a-b) becomes zero. 

The amplitude modulation equations of the 1st order approximation describing torsional 
motion  
The amplitude modulation equations by the 𝑇𝑇� −time scale arise, with the elimination of the 
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The equation (16) provides a very helpful expression to eliminate the other secular terms in 
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The solution of this system, obtained in [2], by the equations (A.1a-b) in Appendix-A, is 
given. The natural frequency−𝜇𝜇� by the equation (A.2) is defined.  

In case that the rigid body angular velocity (Ω) is equal to the ‘torsional frequency’ (ω�), 
then the oscillatory frequency (μ�) in equations (A.1a-b) becomes zero. 

The amplitude modulation equations of the 1st order approximation describing torsional 
motion  
The amplitude modulation equations by the 𝑇𝑇� −time scale arise, with the elimination of the 
secular terms in equations (15a,d) [2], and they are given by: 

𝐴𝐴�,�� = −𝜇𝜇� ∙ 𝐴𝐴�,�, (18a) 
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The solution of equations (18a-b) defines the modulation amplitudes, and their 
explicit form obtained in [2] by the equations (A.6a-d) in Appendix-A is given. The 
overall 1st order approximation solution, also considering the amplitude modulation, 
by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency(μ1) by the 
equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency ‒μ0 since the torsional 
frequency is a denominator, and in these cases, becomes zero.

The 2nd order approximation system describing torsional motion
The system of equations describing the 2nd order approximations describing the 

motion in T0‒ time scale by the equations (15a,d) are obtained [2], and they are given by:
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
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quency is a denominator, and in these cases, becomes zero.  
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+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
, (20a) 

𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
, (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5, (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,  (20d) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5, (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�), (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)], (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],  (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],  (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
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−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)], (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 
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𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
285 

by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 
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𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 
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The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,         (20a)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 
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with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
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 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 
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𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,       (20b)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 
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 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)], (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],  (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],  (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)], (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

 , with j=2:5,     (20c)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�, (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
, (20a) 

𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
, (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5, (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,  (20d) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5, (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�), (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)], (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],  (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],  (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)], (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,      (20d)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�, (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
, (20a) 

𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
, (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5, (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,  (20d) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5, (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�), (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)], (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],  (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],  (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)], (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,  with j=2:5,      (20e)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�, (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
, (20a) 

𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
, (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5, (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,  (20d) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5, (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�), (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)], (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],  (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],  (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)], (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,      (21a)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�, (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
, (20a) 

𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
, (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5, (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,  (20d) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5, (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�), (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)], (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],  (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],  (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)], (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�). (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,     (21b)

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
285 

by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�,     (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,    (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
,            (20a) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
,         (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5,        (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,         (20d) 

 𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5,        (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)],      (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],   (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)],   (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,    (21c)

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
285 

by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�,     (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,    (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
,            (20a) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
,         (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5,        (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,         (20d) 

 𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5,        (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)],      (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],   (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)],   (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�,     (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,    (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =
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�

��∙�
,            (20a) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
,         (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5,        (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,         (20d) 

 𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5,        (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)],      (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],   (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)],   (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,   (21d)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�,     (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,    (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
,            (20a) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
,         (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5,        (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,         (20d) 

 𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5,        (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)],      (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],   (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)],   (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�,     (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,    (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
,            (20a) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
,         (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5,        (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,         (20d) 

 𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5,        (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)],      (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],   (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)],   (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

,   (21e)
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by the equations (A.8a-b) of Appendix-A, is given. The detuning frequency (𝜇𝜇�) by 
the equation (A.6) is given. The detuning frequency is not defined whenever the rigid 
body angular velocity is equal to the torsional frequency−𝜇𝜇� since the torsional fre-
quency is a denominator, and in these cases, becomes zero.  

The 2nd order approximation system describing torsional motion 
The system of equations describing the 2nd order approximations describing the 
motion in 𝑇𝑇� −time scale by the equations (15a,d) are obtained [2], and they are given 
by: 

�̈�𝜃� = 𝑆𝑆� ∙ 𝑞𝑞�,� + [𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑆𝑆�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐�,     (19a) 

�̈�𝑞�,� + 𝜇𝜇�� ∙ 𝑞𝑞�,� = 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 
+𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑉𝑉�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,    (19b) 

whereas cc means complex conjugate, and also, 
𝑆𝑆� =

��∙��
�

��∙�
,            (20a) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)��∙�∙��,�(��)

�∙(��∙����)
,         (20b) 

 𝑆𝑆�(𝑇𝑇�) =
��,�(��)

�∙(��∙����)
 , with j=2:5,        (20c) 

𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)��∙��∙�∙��,�(��)

�∙(��∙����)
,         (20d) 

 𝑉𝑉�(𝑇𝑇�) =
�∙��,�(��)

�∙(��∙����)
,  with j=2:5,        (20e) 

with, 

𝐹𝐹�,�(𝑇𝑇�) = −4 ∙ 𝛺𝛺 ∙ 𝜇𝜇� ∙ 𝑖𝑖 ∙ 𝐴𝐴��� (𝑇𝑇�),         (21a) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐶𝐶��� (𝑇𝑇�) + 𝐶𝐶��� (𝑇𝑇�)],      (21b) 
 𝐹𝐹�,�(𝑇𝑇�) = −2 ∙ 𝛺𝛺 ∙ 𝜔𝜔� ∙ 𝑖𝑖 ∙ [𝐷𝐷��� (𝑇𝑇�) + 𝐷𝐷��� (𝑇𝑇�)],     (21c) 

𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�
� − 𝜔𝜔�

�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)] − 
−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� + 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷��(𝑇𝑇�)],   (21d) 
𝐹𝐹�,�(𝑇𝑇�) = (𝜔𝜔�

� − 𝜔𝜔�
�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) − 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)] − 

−2 ∙ 𝛺𝛺 ∙ 𝑖𝑖 ∙ (𝜔𝜔� − 𝜔𝜔�) ∙ [𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�) + 𝐶𝐶��(𝑇𝑇�) ∙ 𝐷𝐷���(𝑇𝑇�)],   (21e) 
𝐹𝐹�,�(𝑇𝑇�) = 2 ∙ 𝛺𝛺 ∙ 𝐴𝐴��(𝑇𝑇�) ∙ 𝐴𝐴��(𝑇𝑇�).       (21f) 

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is explicit-
ly defined.  

Multiple scales analysis, the equations describing the lateral bending motions 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation. 

.      (21f)

The solution is obtained in [2] and in equations (A.9, A.11) of Appendix-A is 
explicitly defined. 

Multiple scales analysis, the equations describing the lateral bending motions. 
In this subsection, the systems of equations of motion describing the dynamics of the 
two lateral bending motions at different scales are shown, with referenced solutions. 
The multiple scales dynamic analysis in this section, consistent with the previous 
subsection dynamic analysis, involves the solution of the 1st order approximation, 
without and with amplitude modulations, and the 2nd order approximation without 
amplitude modulation.

The 1st order approximation system describing lateral bending motions 
The 1st order approximation equations that describe lateral bending motion in 

T0‒ time scale arise by equations (14b,c) [2], and given by:
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analysis, involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing lateral bending motions  
The 1st order approximation equations that describe lateral bending motion in 𝑇𝑇� −time scale 
arise by equations (14b,c) [2], and given by: 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�

� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0,                 (22a) 
 

(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�
� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0.              (22b) 

 
These equations coincide with those obtained when constant parameter angular velocity is 
considered, which are the well-known equations examined in the literature for steady states 
to obtain the Campbell diagram. Considering most of the shaft’s configurations that their 
geometry obeys the ratio given by equation A.14b, and also for low rotating speeds the ine-
quality (A.14d) is valid, then the eigenvalues of the system of equations (22a-b) are pure 
imaginary, and by the equations (A.17a-d) are given. As mentioned in [2], not all these nat-
ural frequencies lead to normal modes since the periodicity conditions must be fulfilled and 
the following equation, 

𝜃𝜃0�𝑇𝑇0,𝑇𝑇� − 𝜃𝜃0,0 = 0 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛺𝛺 ∙ 𝑇𝑇0,𝑇𝑇, 2 ∙ 𝜋𝜋� = 𝑚𝑚𝑚𝑚𝑚𝑚 �2∙𝜋𝜋∙𝛺𝛺

𝜔𝜔1,2
, 2 ∙ 𝜋𝜋� = 0,  (23) 

is required, which is valid only for 𝜔𝜔𝑖𝑖 = 𝑛𝑛𝛺𝛺 (with 𝑛𝑛 any integer), which leads to the shaft’s 
critical speeds in steady states, and also defines the shaft’s normal modes.  For purely 
imaginary eigenvalues, the equation’s solution of (22a-b) by the equations (A.20a-d) is 
given.     

The amplitude modulation equations of the 1st order approximation describing lateral 
bending motions 
The amplitude modulation equations of the 1st order approximation in lateral bending 
motions by the 𝑇𝑇� −time scale arise, with elimination of the secular terms in equations 
(15b,c), and they are defined by: 
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analysis, involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing lateral bending motions  
The 1st order approximation equations that describe lateral bending motion in 𝑇𝑇� −time scale 
arise by equations (14b,c) [2], and given by: 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�

� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0,                 (22a) 
 

(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�
� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0.              (22b) 

 
These equations coincide with those obtained when constant parameter angular velocity is 
considered, which are the well-known equations examined in the literature for steady states 
to obtain the Campbell diagram. Considering most of the shaft’s configurations that their 
geometry obeys the ratio given by equation A.14b, and also for low rotating speeds the ine-
quality (A.14d) is valid, then the eigenvalues of the system of equations (22a-b) are pure 
imaginary, and by the equations (A.17a-d) are given. As mentioned in [2], not all these nat-
ural frequencies lead to normal modes since the periodicity conditions must be fulfilled and 
the following equation, 

𝜃𝜃0�𝑇𝑇0,𝑇𝑇� − 𝜃𝜃0,0 = 0 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛺𝛺 ∙ 𝑇𝑇0,𝑇𝑇, 2 ∙ 𝜋𝜋� = 𝑚𝑚𝑚𝑚𝑚𝑚 �2∙𝜋𝜋∙𝛺𝛺

𝜔𝜔1,2
, 2 ∙ 𝜋𝜋� = 0,  (23) 

is required, which is valid only for 𝜔𝜔𝑖𝑖 = 𝑛𝑛𝛺𝛺 (with 𝑛𝑛 any integer), which leads to the shaft’s 
critical speeds in steady states, and also defines the shaft’s normal modes.  For purely 
imaginary eigenvalues, the equation’s solution of (22a-b) by the equations (A.20a-d) is 
given.     

The amplitude modulation equations of the 1st order approximation describing lateral 
bending motions 
The amplitude modulation equations of the 1st order approximation in lateral bending 
motions by the 𝑇𝑇� −time scale arise, with elimination of the secular terms in equations 
(15b,c), and they are defined by: 
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.              (22b)

These equations coincide with those obtained when constant parameter angular 
velocity is considered, which are the well-known equations examined in the literature 
for steady states to obtain the Campbell diagram. Considering most of the shaft’s 
configurations that their geometry obeys the ratio given by equation A.14b, and also 
for low rotating speeds the inequality (A.14d) is valid, then the eigenvalues of the 
system of equations (22a-b) are pure imaginary, and by the equations (A.17a-d) are 
given. As mentioned in [2], not all these natural frequencies lead to normal modes 
since the periodicity conditions must be fulfilled and the following equation,
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analysis, involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing lateral bending motions  
The 1st order approximation equations that describe lateral bending motion in 𝑇𝑇� −time scale 
arise by equations (14b,c) [2], and given by: 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�

� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0,                 (22a) 
 

(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�
� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0.              (22b) 

 
These equations coincide with those obtained when constant parameter angular velocity is 
considered, which are the well-known equations examined in the literature for steady states 
to obtain the Campbell diagram. Considering most of the shaft’s configurations that their 
geometry obeys the ratio given by equation A.14b, and also for low rotating speeds the ine-
quality (A.14d) is valid, then the eigenvalues of the system of equations (22a-b) are pure 
imaginary, and by the equations (A.17a-d) are given. As mentioned in [2], not all these nat-
ural frequencies lead to normal modes since the periodicity conditions must be fulfilled and 
the following equation, 

𝜃𝜃0�𝑇𝑇0,𝑇𝑇� − 𝜃𝜃0,0 = 0 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛺𝛺 ∙ 𝑇𝑇0,𝑇𝑇, 2 ∙ 𝜋𝜋� = 𝑚𝑚𝑚𝑚𝑚𝑚 �2∙𝜋𝜋∙𝛺𝛺

𝜔𝜔1,2
, 2 ∙ 𝜋𝜋� = 0,  (23) 

is required, which is valid only for 𝜔𝜔𝑖𝑖 = 𝑛𝑛𝛺𝛺 (with 𝑛𝑛 any integer), which leads to the shaft’s 
critical speeds in steady states, and also defines the shaft’s normal modes.  For purely 
imaginary eigenvalues, the equation’s solution of (22a-b) by the equations (A.20a-d) is 
given.     

The amplitude modulation equations of the 1st order approximation describing lateral 
bending motions 
The amplitude modulation equations of the 1st order approximation in lateral bending 
motions by the 𝑇𝑇� −time scale arise, with elimination of the secular terms in equations 
(15b,c), and they are defined by: 
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,  (23)

is required, which is valid only for ωi = nΩ (with n any integer), which leads to the 
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shaft’s critical speeds in steady states, and also defines the shaft’s normal modes.  For 
purely imaginary eigenvalues, the equation’s solution of (22a-b) by the equations 
(A.20a-d) is given.    

The amplitude modulation equations of the 1st order approximation describing 
lateral bending motions

The amplitude modulation equations of the 1st order approximation in lateral 
bending motions by the T1‒ time scale arise, with elimination of the secular terms in 
equations (15b,c), and they are defined by:
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analysis, involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing lateral bending motions  
The 1st order approximation equations that describe lateral bending motion in 𝑇𝑇� −time scale 
arise by equations (14b,c) [2], and given by: 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�

� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0,                 (22a) 
 

(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�
� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0.              (22b) 

 
These equations coincide with those obtained when constant parameter angular velocity is 
considered, which are the well-known equations examined in the literature for steady states 
to obtain the Campbell diagram. Considering most of the shaft’s configurations that their 
geometry obeys the ratio given by equation A.14b, and also for low rotating speeds the ine-
quality (A.14d) is valid, then the eigenvalues of the system of equations (22a-b) are pure 
imaginary, and by the equations (A.17a-d) are given. As mentioned in [2], not all these nat-
ural frequencies lead to normal modes since the periodicity conditions must be fulfilled and 
the following equation, 

𝜃𝜃0�𝑇𝑇0,𝑇𝑇� − 𝜃𝜃0,0 = 0 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛺𝛺 ∙ 𝑇𝑇0,𝑇𝑇, 2 ∙ 𝜋𝜋� = 𝑚𝑚𝑚𝑚𝑚𝑚 �2∙𝜋𝜋∙𝛺𝛺

𝜔𝜔1,2
, 2 ∙ 𝜋𝜋� = 0,  (23) 

is required, which is valid only for 𝜔𝜔𝑖𝑖 = 𝑛𝑛𝛺𝛺 (with 𝑛𝑛 any integer), which leads to the shaft’s 
critical speeds in steady states, and also defines the shaft’s normal modes.  For purely 
imaginary eigenvalues, the equation’s solution of (22a-b) by the equations (A.20a-d) is 
given.     

The amplitude modulation equations of the 1st order approximation describing lateral 
bending motions 
The amplitude modulation equations of the 1st order approximation in lateral bending 
motions by the 𝑇𝑇� −time scale arise, with elimination of the secular terms in equations 
(15b,c), and they are defined by: 
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analysis, involves the solution of the 1st order approximation, without and with amplitude 
modulations, and the 2nd order approximation without amplitude modulation. 

The 1st order approximation system describing lateral bending motions  
The 1st order approximation equations that describe lateral bending motion in 𝑇𝑇� −time scale 
arise by equations (14b,c) [2], and given by: 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�

� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0,                 (22a) 
 

(1 − 𝑀𝑀) ∙ �̈�𝑞�,� + [𝜔𝜔�
� ∙ (1 − 𝑀𝑀) − 𝛺𝛺�] ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 0.              (22b) 

 
These equations coincide with those obtained when constant parameter angular velocity is 
considered, which are the well-known equations examined in the literature for steady states 
to obtain the Campbell diagram. Considering most of the shaft’s configurations that their 
geometry obeys the ratio given by equation A.14b, and also for low rotating speeds the ine-
quality (A.14d) is valid, then the eigenvalues of the system of equations (22a-b) are pure 
imaginary, and by the equations (A.17a-d) are given. As mentioned in [2], not all these nat-
ural frequencies lead to normal modes since the periodicity conditions must be fulfilled and 
the following equation, 

𝜃𝜃0�𝑇𝑇0,𝑇𝑇� − 𝜃𝜃0,0 = 0 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛺𝛺 ∙ 𝑇𝑇0,𝑇𝑇, 2 ∙ 𝜋𝜋� = 𝑚𝑚𝑚𝑚𝑚𝑚 �2∙𝜋𝜋∙𝛺𝛺

𝜔𝜔1,2
, 2 ∙ 𝜋𝜋� = 0,  (23) 

is required, which is valid only for 𝜔𝜔𝑖𝑖 = 𝑛𝑛𝛺𝛺 (with 𝑛𝑛 any integer), which leads to the shaft’s 
critical speeds in steady states, and also defines the shaft’s normal modes.  For purely 
imaginary eigenvalues, the equation’s solution of (22a-b) by the equations (A.20a-d) is 
given.     

The amplitude modulation equations of the 1st order approximation describing lateral 
bending motions 
The amplitude modulation equations of the 1st order approximation in lateral bending 
motions by the 𝑇𝑇� −time scale arise, with elimination of the secular terms in equations 
(15b,c), and they are defined by: 
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,  (24)

where as, j=1 corresponds to the system arising from first frequency (ω1) and j=2 
to the system arising from the second frequency (ω2 ). Considering the detuning 
frequencies arising by the amplitude modulation equations (24), only the left side of 
equation (23) defines the critical speeds, and the explicit expression of periodicity 
becomes very complicated. The system of equations (24) is becoming singular for,
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 

,        (25)
corresponding to angular velocity very close to the ‘critical speed’ of the shaft 
defined by considering the equations (22a,b) and describing the spinning shaft 
dynamics for constant rotating speed. In case of neglecting rotary inertia terms 
(M = 0), then the system of equations (24) becomes singular for angular velocity 
on the ‘critical speed’ of the shaft with dynamics described only by equations 
(22a,b). 

The solution of equations (24), obtained in [2], by equations (A.24a-d) in 
Appendix-A, explicitly are provided. The detuning frequencies by the equations 
(A.23a-d) are defined. In the angular velocity on the ‘critical speed’ of the 1st order 
approximation defined by the equations (22a,b), two of the detuning frequencies 
given by the equations (A.23a,c) cannot be defined since these equations are 
becoming singular.  

The total solution, arising with the combination of the 1st order approximation 
solution with the detuning frequencies from the amplitude modulation, in 
Appendix-A by the equations (A.27a-b) is given.

The 2nd order approximation system describing lateral bending motions 
The 2nd order approximation equations describing the lateral bending motion in 

T0‒ time scale [2] obtained by considering equations (15a,b), and they are given by:
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 

,      (26a)
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 

,      (26b)

with,
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) 

, (27a)
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whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to the 
system arising from the second frequency (𝜔𝜔�). Considering the detuning frequencies arising 
by the amplitude modulation equations (24), only the left side of equation (23) defines the 
critical speeds, and the explicit expression of periodicity becomes very complicated. The 
system of equations (24) is becoming singular for, 
 

(1 − 𝑀𝑀)𝜔𝜔� − 𝛺𝛺 = 0,            (25) 
 

corresponding to angular velocity very close to the ‘critical speed’ of the shaft defined by 
considering the equations (22a,b) and describing the spinning shaft dynamics for constant 
rotating speed. In case of neglecting rotary inertia terms(𝑀𝑀 = 0), then the system of 
equations (24) becomes singular for angular velocity on the ‘critical speed’ of the shaft with 
dynamics described only by equations (22a,b).  
The solution of equations (24), obtained in [2], by equations (A.24a-d) in Appendix-A, ex-
plicitly are provided. The detuning frequencies by the equations (A.23a-d) are defined. In 
the angular velocity on the ‘critical speed’ of the 1st order approximation defined by the 
equations (22a,b), two of the detuning frequencies given by the equations (A.23a,c) cannot 
be defined since these equations are becoming singular.   
The total solution, arising with the combination of the 1st order approximation solution with 
the detuning frequencies from the amplitude modulation, in Appendix-A by the equations 
(A.27a-b) is given. 

The 2nd order approximation system describing lateral bending motions  
The 2nd order approximation equations describing the lateral bending motion in 𝑇𝑇� −time 
scale [2] obtained by considering equations (15a,b), and they are given by: 
 

(1 −𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑞𝑞�,� + 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 

 
= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 

 
+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26a) 

 
(1 − 𝑀𝑀) ∙ �̈�𝑞�,� − 𝛺𝛺� ∙ 𝑞𝑞�,� + 𝜔𝜔�

� ∙ (1 −𝑀𝑀) ∙ 𝑞𝑞�,� − 2 ∙ 𝛺𝛺 ∙ �̇�𝑞�,� = 𝐹𝐹� = 
 

= 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 
 

+𝐹𝐹�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐,         (26b) 
 

with, 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,   
   (27a) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, (27b) , (27b)
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𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

,  (27c)
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𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

, (27d)
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𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

, (27e)
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𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

, (27f)

Fotios Georgiades 
288 

 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

, (27g)
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𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

, (27h)

whereas it is profound that the right-hand side of equations (26a,b) defined by the 
terms given by equations (27) are becoming zero for,
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𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�, (27c) 
 

𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �−𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 
(27d) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27e) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�,(27f) 

 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐶𝐶��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐶𝐶��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐶𝐶��(𝑇𝑇�)�,(27g) 
 
𝐹𝐹�,�(𝑇𝑇�) = 𝐴𝐴��(𝑇𝑇�) ∙ �𝑖𝑖 ∙ 𝜇𝜇� ∙ 𝐷𝐷��(𝑇𝑇�) + 2 ∙ 𝛺𝛺 ∙ 𝐷𝐷��(𝑇𝑇�) − 2 ∙ 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝐷𝐷��(𝑇𝑇�)�, 

(27h) 
whereas it is profound that the right-hand side of equations (26a,b) defined by the terms 
given by equations (27) are becoming zero for, 
 

𝐴𝐴��(𝑇𝑇�) = 0,              (28) 
 

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), this hap-
pens for zero initial conditions of torsional initial ‘modal’ amplitude and velocity.  

The solution of the system of equations (26a-b) in [2] is derived, and by the equations 
(A.28a-b) is given. 

All the individual solutions of the systems of differential equations given in Appendix-A, 
in [2] numerically, are verified. 

In [2], the explicit equations defining the periodicity conditions had not obtained. How-
ever, for a shaft with explicitly defined configuration, they can be obtained through the ex-
tended Campbell diagram defined by using the plot of the 1st order approximation frequen-
cies adding the detuning frequencies plotted with respect to the rigid body angular velocity 
and the points that a line with slope one is crossing the frequencies curve are the points with 
critical speed velocity and corresponds to the normal modes of the system.   

2.3 Alternative dynamic analysis through the perpetual points of the system 

In this section, a different approach for nonlinear dynamic analysis is presented. Initially, 
the equations of a restricted system describing the motion of the spinning shaft and the 
equations defining the perpetual points of the dynamical system describing the motion of the 
spinning shaft are presented. Then the fixed points of the restricted system and the perpetual 
points of the system describing the dynamics of the spinning shaft are shown, and they form 
the backbone lines of rigid body modes of the spinning shaft. Linearization of the spinning 
shaft motion equations around the perpetual points in the next subsection is presented, and 
the eigenvalues of the linearized dynamical systems are shown. Then in the following 

,         (28)

or otherwise stated by considering the equations (A.5c-d) with the equation (A.4b), 
this happens for zero initial conditions of torsional initial ‘modal’ amplitude and 
velocity. 

The solution of the system of equations (26a-b) in [2] is derived, and by the 
equations (A.28a-b) is given.

All the individual solutions of the systems of differential equations given in 
Appendix-A, in [2] numerically, are verified.

In [2], the explicit equations defining the periodicity conditions had not obtained. 
However, for a shaft with explicitly defined configuration, they can be obtained 
through the extended Campbell diagram defined by using the plot of the 1st order 
approximation frequencies adding the detuning frequencies plotted with respect to 
the rigid body angular velocity and the points that a line with slope one is crossing 
the frequencies curve are the points with critical speed velocity and corresponds to 
the normal modes of the system. 
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2.3. Alternative dynamic analysis through the perpetual points of the 
system. In this section, a different approach for nonlinear dynamic analysis is 
presented. Initially, the equations of a restricted system describing the motion of 
the spinning shaft and the equations defining the perpetual points of the dynamical 
system describing the motion of the spinning shaft are presented. Then the fixed 
points of the restricted system and the perpetual points of the system describing 
the dynamics of the spinning shaft are shown, and they form the backbone lines 
of rigid body modes of the spinning shaft. Linearization of the spinning shaft 
motion equations around the perpetual points in the next subsection is presented, 
and the eigenvalues of the linearized dynamical systems are shown. Then in the 
following subsection, the backbone lines of the rigid body modes, incorporating the 
eigenvalues of the linearized systems around the PPs, for a discussion are presented. 
In the last subsection, there are the normal modes of the spinning shaft obtained 
from linearization around the PPs.

Determination of the perpetual points and the fixed points of a restricted 
system. The determination of the fixed points of a restricted system, and the original 
system’s (4), (6) perpetual points, are defined on this subsection. Initially, the equations 
of the restricted system are presented, then the equations defining the PPs, and finally, 
the fixed points of the restricted system and the PPs are shown.

Equations of the restricted system
In [3], recognizing that the rigid body angular position (x1 = θ) is not involved 

explicitly in any of the equations (4), (6), without losing any information, it can be 
neglected by using the following change of variables,
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subsection, the backbone lines of the rigid body modes, incorporating the eigenvalues of the 
linearized systems around the PPs, for a discussion are presented. In the last subsection, there 
are the normal modes of the spinning shaft obtained from linearization around the PPs. 

Determination of the perpetual points and the fixed points of a restricted system 
The determination of the fixed points of a restricted system, and the original system's  (4,6)  
perpetual points, are defined on this subsection. Initially, the equations of the restricted sys-
tem are presented, then the equations defining the PPs, and finally, the fixed points of the 
restricted system and the PPs are shown. 

Equations of the restricted system 
In [3], recognizing that the rigid body angular position (𝑥𝑥� = 𝜃𝜃) is not involved explicitly 
in any of the equations (4,6), without losing any information, it can be neglected by using 
the following change of variables, 
 

{𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦�}� = �𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��
�

,  (29) 
 

which leads to the following 1st order restricted system of differential equations that de-
scribes the motion, 

�̇�𝑦1 = 𝑦𝑦5,              (30a) 
 

�̇�𝑦2 = 𝑦𝑦6,              (30b) 
 

�̇�𝑦3 = 𝑦𝑦7,              (30c) 
 

{�̇�𝑦� �̇�𝑦� �̇�𝑦� �̇�𝑦�}� =
�
�
∙ {𝐹𝐹� 𝐹𝐹� 𝐹𝐹� 𝐹𝐹�}�.        (30d) 

 
Since the equation describing the motion is decoupled from the equations (30), the rigid 
body angular displacement can be easily determined with the direct integration of the 
expression defining the rigid body angular velocity �𝑦𝑦� = �̇�𝜃�,.  

The explicit form of the right-hand side of the vector field in equation (30d) arise by using 
the explicit form of the multiplication of the inverse of the inertia matrix with the vector, 
using the above change of variables (eq. 29), and  is given by [3], 

 
𝐹𝐹1 = 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�,     (31a) 

 

𝐹𝐹2 = − 2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 4 ∙ 𝑦𝑦2 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

,  (29)
which leads to the following 1st order restricted system of differential equations that 
describes the motion,
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subsection, the backbone lines of the rigid body modes, incorporating the eigenvalues of the 
linearized systems around the PPs, for a discussion are presented. In the last subsection, there 
are the normal modes of the spinning shaft obtained from linearization around the PPs. 

Determination of the perpetual points and the fixed points of a restricted system 
The determination of the fixed points of a restricted system, and the original system's  (4,6)  
perpetual points, are defined on this subsection. Initially, the equations of the restricted sys-
tem are presented, then the equations defining the PPs, and finally, the fixed points of the 
restricted system and the PPs are shown. 

Equations of the restricted system 
In [3], recognizing that the rigid body angular position (𝑥𝑥� = 𝜃𝜃) is not involved explicitly 
in any of the equations (4,6), without losing any information, it can be neglected by using 
the following change of variables, 
 

{𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦�}� = �𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��
�

,  (29) 
 

which leads to the following 1st order restricted system of differential equations that de-
scribes the motion, 

�̇�𝑦1 = 𝑦𝑦5,              (30a) 
 

�̇�𝑦2 = 𝑦𝑦6,              (30b) 
 

�̇�𝑦3 = 𝑦𝑦7,              (30c) 
 

{�̇�𝑦� �̇�𝑦� �̇�𝑦� �̇�𝑦�}� =
�
�
∙ {𝐹𝐹� 𝐹𝐹� 𝐹𝐹� 𝐹𝐹�}�.        (30d) 

 
Since the equation describing the motion is decoupled from the equations (30), the rigid 
body angular displacement can be easily determined with the direct integration of the 
expression defining the rigid body angular velocity �𝑦𝑦� = �̇�𝜃�,.  

The explicit form of the right-hand side of the vector field in equation (30d) arise by using 
the explicit form of the multiplication of the inverse of the inertia matrix with the vector, 
using the above change of variables (eq. 29), and  is given by [3], 

 
𝐹𝐹1 = 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�,     (31a) 

 

𝐹𝐹2 = − 2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 4 ∙ 𝑦𝑦2 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

,       (30a)
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subsection, the backbone lines of the rigid body modes, incorporating the eigenvalues of the 
linearized systems around the PPs, for a discussion are presented. In the last subsection, there 
are the normal modes of the spinning shaft obtained from linearization around the PPs. 

Determination of the perpetual points and the fixed points of a restricted system 
The determination of the fixed points of a restricted system, and the original system's  (4,6)  
perpetual points, are defined on this subsection. Initially, the equations of the restricted sys-
tem are presented, then the equations defining the PPs, and finally, the fixed points of the 
restricted system and the PPs are shown. 

Equations of the restricted system 
In [3], recognizing that the rigid body angular position (𝑥𝑥� = 𝜃𝜃) is not involved explicitly 
in any of the equations (4,6), without losing any information, it can be neglected by using 
the following change of variables, 
 

{𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦�}� = �𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��
�

,  (29) 
 

which leads to the following 1st order restricted system of differential equations that de-
scribes the motion, 

�̇�𝑦1 = 𝑦𝑦5,              (30a) 
 

�̇�𝑦2 = 𝑦𝑦6,              (30b) 
 

�̇�𝑦3 = 𝑦𝑦7,              (30c) 
 

{�̇�𝑦� �̇�𝑦� �̇�𝑦� �̇�𝑦�}� =
�
�
∙ {𝐹𝐹� 𝐹𝐹� 𝐹𝐹� 𝐹𝐹�}�.        (30d) 

 
Since the equation describing the motion is decoupled from the equations (30), the rigid 
body angular displacement can be easily determined with the direct integration of the 
expression defining the rigid body angular velocity �𝑦𝑦� = �̇�𝜃�,.  

The explicit form of the right-hand side of the vector field in equation (30d) arise by using 
the explicit form of the multiplication of the inverse of the inertia matrix with the vector, 
using the above change of variables (eq. 29), and  is given by [3], 

 
𝐹𝐹1 = 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�,     (31a) 

 

𝐹𝐹2 = − 2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 4 ∙ 𝑦𝑦2 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

,       (30b)
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subsection, the backbone lines of the rigid body modes, incorporating the eigenvalues of the 
linearized systems around the PPs, for a discussion are presented. In the last subsection, there 
are the normal modes of the spinning shaft obtained from linearization around the PPs. 

Determination of the perpetual points and the fixed points of a restricted system 
The determination of the fixed points of a restricted system, and the original system's  (4,6)  
perpetual points, are defined on this subsection. Initially, the equations of the restricted sys-
tem are presented, then the equations defining the PPs, and finally, the fixed points of the 
restricted system and the PPs are shown. 

Equations of the restricted system 
In [3], recognizing that the rigid body angular position (𝑥𝑥� = 𝜃𝜃) is not involved explicitly 
in any of the equations (4,6), without losing any information, it can be neglected by using 
the following change of variables, 
 

{𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦�}� = �𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��
�

,  (29) 
 

which leads to the following 1st order restricted system of differential equations that de-
scribes the motion, 

�̇�𝑦1 = 𝑦𝑦5,              (30a) 
 

�̇�𝑦2 = 𝑦𝑦6,              (30b) 
 

�̇�𝑦3 = 𝑦𝑦7,              (30c) 
 

{�̇�𝑦� �̇�𝑦� �̇�𝑦� �̇�𝑦�}� =
�
�
∙ {𝐹𝐹� 𝐹𝐹� 𝐹𝐹� 𝐹𝐹�}�.        (30d) 

 
Since the equation describing the motion is decoupled from the equations (30), the rigid 
body angular displacement can be easily determined with the direct integration of the 
expression defining the rigid body angular velocity �𝑦𝑦� = �̇�𝜃�,.  

The explicit form of the right-hand side of the vector field in equation (30d) arise by using 
the explicit form of the multiplication of the inverse of the inertia matrix with the vector, 
using the above change of variables (eq. 29), and  is given by [3], 

 
𝐹𝐹1 = 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�,     (31a) 

 

𝐹𝐹2 = − 2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 4 ∙ 𝑦𝑦2 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

,       (30c)
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subsection, the backbone lines of the rigid body modes, incorporating the eigenvalues of the 
linearized systems around the PPs, for a discussion are presented. In the last subsection, there 
are the normal modes of the spinning shaft obtained from linearization around the PPs. 

Determination of the perpetual points and the fixed points of a restricted system 
The determination of the fixed points of a restricted system, and the original system's  (4,6)  
perpetual points, are defined on this subsection. Initially, the equations of the restricted sys-
tem are presented, then the equations defining the PPs, and finally, the fixed points of the 
restricted system and the PPs are shown. 

Equations of the restricted system 
In [3], recognizing that the rigid body angular position (𝑥𝑥� = 𝜃𝜃) is not involved explicitly 
in any of the equations (4,6), without losing any information, it can be neglected by using 
the following change of variables, 
 

{𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦� 𝑦𝑦�}� = �𝑞𝑞� 𝑞𝑞� 𝑞𝑞� �̇�𝜃 �̇�𝑞� �̇�𝑞� �̇�𝑞��
�

,  (29) 
 

which leads to the following 1st order restricted system of differential equations that de-
scribes the motion, 

�̇�𝑦1 = 𝑦𝑦5,              (30a) 
 

�̇�𝑦2 = 𝑦𝑦6,              (30b) 
 

�̇�𝑦3 = 𝑦𝑦7,              (30c) 
 

{�̇�𝑦� �̇�𝑦� �̇�𝑦� �̇�𝑦�}� =
�
�
∙ {𝐹𝐹� 𝐹𝐹� 𝐹𝐹� 𝐹𝐹�}�.        (30d) 

 
Since the equation describing the motion is decoupled from the equations (30), the rigid 
body angular displacement can be easily determined with the direct integration of the 
expression defining the rigid body angular velocity �𝑦𝑦� = �̇�𝜃�,.  

The explicit form of the right-hand side of the vector field in equation (30d) arise by using 
the explicit form of the multiplication of the inverse of the inertia matrix with the vector, 
using the above change of variables (eq. 29), and  is given by [3], 

 
𝐹𝐹1 = 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�,     (31a) 

 

𝐹𝐹2 = − 2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 4 ∙ 𝑦𝑦2 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

.     (30d)

Since the equation describing the motion is decoupled from the equations 
(30), the rigid body angular displacement can be easily determined with the direct 
integration of the expression defining the rigid body angular velocity (y4= ). 

The explicit form of the right-hand side of the vector field in equation (30d) arise 
by using the explicit form of the multiplication of the inverse of the inertia matrix 
with the vector, using the above change of variables (eq. 29), and  is given by [3],
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subsection, the backbone lines of the rigid body modes, incorporating the eigenvalues of the 
linearized systems around the PPs, for a discussion are presented. In the last subsection, there 
are the normal modes of the spinning shaft obtained from linearization around the PPs. 

Determination of the perpetual points and the fixed points of a restricted system 
The determination of the fixed points of a restricted system, and the original system's  (4,6)  
perpetual points, are defined on this subsection. Initially, the equations of the restricted sys-
tem are presented, then the equations defining the PPs, and finally, the fixed points of the 
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Equations of the restricted system 
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expression defining the rigid body angular velocity �𝑦𝑦� = �̇�𝜃�,.  
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−2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�
�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�,          (31b) 
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� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� −  
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�
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∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� + 4 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� +  
 

+2 ∙ 𝐹𝐹 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� ∙ 𝑦𝑦�,       (31c) 

 
𝐹𝐹4 = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  
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+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�

� ∙ 𝑦𝑦��.       (31d) 

 

Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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The equations of jerks by differentiation of equations (4) with respect to time can be ob-
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Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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∙ 𝑦𝑦�� ∙ 𝑦𝑦�� + 2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 
+4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� −

�∙�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� + 4 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� +  
 

+2 ∙ 𝐹𝐹 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� ∙ 𝑦𝑦�,       (31c) 

 
𝐹𝐹4 = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� + 𝑀𝑀 ∙ 𝜔𝜔�

� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� +  

 

+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�

� ∙ 𝑦𝑦��.       (31d) 

 

Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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+2 ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −
�

(���)
∙ 𝑦𝑦�� ∙ 𝑦𝑦�� −

�
(���)

∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 

+2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� + 

 

+�∙��
�∙(���)
(���)

∙ 𝑦𝑦�� +
��
�∙�∙(���)
(���)

∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� −  

 
−4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� +

�∙�∙���

(���)
∙ 𝑦𝑦� ∙ 𝑦𝑦� − 4 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −  

 

−2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�
�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�,          (31b) 

 

𝐹𝐹3 =
2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝑦𝑦1 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −  
 
− �

(���)
∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −

�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦�� + 2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 
+4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� −

�∙�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� + 4 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� +  
 

+2 ∙ 𝐹𝐹 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� ∙ 𝑦𝑦�,       (31c) 

 
𝐹𝐹4 = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� + 𝑀𝑀 ∙ 𝜔𝜔�

� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� +  

 

+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�

� ∙ 𝑦𝑦��.       (31d) 

 

Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 

,     (31c)
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+2 ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −
�

(���)
∙ 𝑦𝑦�� ∙ 𝑦𝑦�� −

�
(���)

∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 

+2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� + 

 

+�∙��
�∙(���)
(���)

∙ 𝑦𝑦�� +
��
�∙�∙(���)
(���)

∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� −  

 
−4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� +

�∙�∙���

(���)
∙ 𝑦𝑦� ∙ 𝑦𝑦� − 4 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −  

 

−2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�
�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�,          (31b) 

 

𝐹𝐹3 =
2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝑦𝑦1 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −  
 
− �

(���)
∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −

�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦�� + 2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 
+4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� −

�∙�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� + 4 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� +  
 

+2 ∙ 𝐹𝐹 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� ∙ 𝑦𝑦�,       (31c) 

 
𝐹𝐹4 = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� + 𝑀𝑀 ∙ 𝜔𝜔�

� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� +  

 

+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�

� ∙ 𝑦𝑦��.       (31d) 

 

Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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+2 ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −
�

(���)
∙ 𝑦𝑦�� ∙ 𝑦𝑦�� −

�
(���)

∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 

+2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� + 
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��
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(���)

∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝜔𝜔�
� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� −  

 
−4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� +

�∙�∙���

(���)
∙ 𝑦𝑦� ∙ 𝑦𝑦� − 4 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −  

 

−2 ∙ 𝐹𝐹 ∙ (𝑦𝑦�� − 𝜔𝜔�
�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�,          (31b) 

 

𝐹𝐹3 =
2∙𝑀𝑀

(1−𝑀𝑀)
∙ 𝑦𝑦1 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝑦𝑦1 ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 −  

 
−2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦� + 𝜔𝜔�
� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� + 𝜔𝜔�

� ∙ 𝑀𝑀 ∙ 𝑦𝑦�� −  
 
−2 ∙ 𝜔𝜔�

� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� + 2 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −  
 
− �

(���)
∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −

�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦�� + 2 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� +  
 
+4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� −

�∙�
(���)

∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� + 4 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦� +  
 

+2 ∙ 𝐹𝐹 ∙ 𝑦𝑦� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 2 ∙ 𝐹𝐹 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� ∙ 𝑦𝑦�,       (31c) 

 
𝐹𝐹4 = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� − 𝑀𝑀 ∙ 𝑦𝑦�� ∙ 𝑦𝑦� ∙ 𝑦𝑦�� +  

 

+2 ∙ (1 −𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦�� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦� + 𝑀𝑀 ∙ 𝜔𝜔�

� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� +  

 

+𝑀𝑀 ∙ 𝜔𝜔�
� ∙ 𝑦𝑦�� ∙ 𝑦𝑦� − 2 ∙ (1 − 𝑀𝑀) ∙ 𝜔𝜔�

� ∙ 𝑦𝑦��.       (31d) 

 

Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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+2 ∙ (𝐼𝐼�𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦�� −
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� ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦�� ∙ 𝑦𝑦� −  

 
−4 ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) ∙ 𝑦𝑦� ∙ 𝑦𝑦� +
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𝐹𝐹4 = 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦1 ∙ 𝑦𝑦4 ∙ 𝑦𝑦5 + 2 ∙ 𝐹𝐹 ∙ 𝑀𝑀 ∙ 𝑦𝑦2 ∙ 𝑦𝑦4 ∙ 𝑦𝑦6 − 4 ∙ 𝐹𝐹 ∙ (1 − 𝑀𝑀) ∙ 𝑦𝑦3 ∙ 𝑦𝑦4 ∙ 𝑦𝑦7 +  
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Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
tem’s (4,6) perpetual points, by setting accelerations and jerks equal to zero, are determined. 
The equations of jerks by differentiation of equations (4) with respect to time can be ob-
tained, and in an explicit form, they are given by, 
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Equations defining the perpetual points 
Before proceeding with linearization around the restricted system’s fixed points, the sys-
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The equations of jerks by differentiation of equations (4) with respect to time can be ob-
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.     (31d)
Equations defining the perpetual points
Before proceeding with linearization around the restricted system’s fixed points, 

the system’s (4), (6) perpetual points, by setting accelerations and jerks equal to 
zero, are determined. The equations of jerks by differentiation of equations (4) with 
respect to time can be obtained, and in an explicit form, they are given by,
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 
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The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 
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The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 

.   (32)

Considering that for the determination of the perpetual points the accelerations 
are equal to zero, then lead to,
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 

⎩
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⎧ 𝜃𝜃�
𝑞𝑞�
𝑞𝑞�
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⎬
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⎪
⎨
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⎫
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⎪
⎧−2 ∙ �̇�𝜃 ∙ �̇�𝑞�

� − 2 ∙ �̇�𝜃 ∙ �̇�𝑞�� − 4 ∙ �̇�𝜃 ∙ �̇�𝑞��

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
�� ∙ �̇�𝑞� ⎭

⎪
⎬

⎪
⎫

.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 

.  (33)

The perpetual points in [7], by setting the accelerations given by the equations 
(6), and the equations (33), equal to zero, are determined for non-zero velocities.

Perpetual manifolds and the sets of fixed points of the restricted system
The sets of PPs of the original system eq. (6) with the sets defining the equilibria 

of the restricted system of equations (30a-d) coincide. The following three sets of 
points define them:

1. The first set of perpetual points (y1,0), is given by,
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 
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⎬

⎪
⎫

.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 
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.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 

,with 
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 
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.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 

,  (34a)

which is a set for arbitrary values of the rotating speed but all the rest deformations 
and velocities of the shaft are zero. 

2. The second set of perpetual points (y2,0) is given by,
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⎪
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.       (32) 

Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 

⎩
⎨

⎧ 𝜃𝜃�
𝑞𝑞�
𝑞𝑞�
𝑞𝑞�⎭
⎬

⎫
= [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]��
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⎪
⎨

⎪
⎧ℎ̇�
ℎ̇�
ℎ̇�
ℎ̇�⎭
⎪
⎬

⎪
⎫
= [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]��

⎩
⎪
⎨

⎪
⎧−2 ∙ �̇�𝜃 ∙ �̇�𝑞�

� − 2 ∙ �̇�𝜃 ∙ �̇�𝑞�� − 4 ∙ �̇�𝜃 ∙ �̇�𝑞��

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
�� ∙ �̇�𝑞� ⎭

⎪
⎬

⎪
⎫

.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) 
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.       (32) 

Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 

⎩
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𝑞𝑞�
𝑞𝑞�
𝑞𝑞�⎭
⎬

⎫
= [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]��

⎩
⎪
⎨

⎪
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ℎ̇�
ℎ̇�⎭
⎪
⎬

⎪
⎫
= [𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕]��

⎩
⎪
⎨

⎪
⎧−2 ∙ �̇�𝜃 ∙ �̇�𝑞�

� − 2 ∙ �̇�𝜃 ∙ �̇�𝑞�� − 4 ∙ �̇�𝜃 ∙ �̇�𝑞��

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
�� ∙ �̇�𝑞� ⎭

⎪
⎬

⎪
⎫

.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b)  
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.       (32) 

Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 

⎩
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𝑞𝑞�
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⎫
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ℎ̇�⎭
⎪
⎬

⎪
⎫
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⎩
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⎪
⎧−2 ∙ �̇�𝜃 ∙ �̇�𝑞�

� − 2 ∙ �̇�𝜃 ∙ �̇�𝑞�� − 4 ∙ �̇�𝜃 ∙ �̇�𝑞��

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
� ∙ (1 − 𝑀𝑀)� ∙ �̇�𝑞�

��̇�𝜃� − 𝜔𝜔�
�� ∙ �̇�𝑞� ⎭
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⎪
⎫

.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) , with 
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Considering that for the determination of the perpetual points the accelerations are equal to 
zero, then lead to, 
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.  (33) 

 
The perpetual points in [7], by setting the accelerations given by the equations (6), and the 
equations (33), equal to zero, are determined for non-zero velocities. 

Perpetual manifolds and the sets of fixed points of the restricted system 
The sets of PPs of the original system (eq. 6) with the sets defining the equilibria of the 
restricted system of equations (30a-d) coincide. The following three sets of points define 
them: 

1. The first set of perpetual points �𝑦𝑦𝟏𝟏,��, is given by, 

2.  

𝑦𝑦𝟏𝟏,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = �0,0,0, �̇�𝜃�, 0,0,0�,with �̇�𝜃� ∈ ℝ,   (34a) 
 

which is a set for arbitrary values of the rotating speed but all the rest deformations and 
velocities of the shaft are zero.  

3. The second set of perpetual points �𝑦𝑦𝟐𝟐,�� is given by, 

4.  

𝑦𝑦𝟐𝟐,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �𝑞𝑞�,�, 𝑞𝑞�,�, 0, ±𝜔𝜔� ∙ �(1 − 𝑀𝑀), 0,0,0�, with �𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ�,    (34b) ,   (34b)

which is a family for a rotating speed correlated with the natural frequency of lateral 
bending deformation, and the shaft can have any arbitrary values for lateral bending 
deformation, but the torsional position and all the velocities are zero. 

3. The third set of perpetual points (y3,0) is given by,
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which is a family for a rotating speed correlated with the natural frequency of lateral bending 
deformation, and the shaft can have any arbitrary values for lateral bending deformation, but 
the torsional position and all the velocities are zero.  

3. The third set of perpetual points �𝑦𝑦𝟑𝟑,�� is given by, 
 
𝑦𝑦𝟑𝟑,0 = �𝑦𝑦0,1, 𝑦𝑦0,2, 𝑦𝑦0,3, 𝑦𝑦0,4, 𝑦𝑦0,5, 𝑦𝑦0,6, 𝑦𝑦0,7� =  
 
= �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� =  
 

= �0,0, 𝑞𝑞�,�, ±𝜔𝜔�, 0,0,0�, with 𝑞𝑞�,� ∈ ℝ,        (34c) 
 

a set accepting arbitrary values for torsional deformation of the shaft, a specific value of 
rotating speed relative to the torsional frequency, but the lateral bending deformation and all 
the velocities are zero. 

The PPs of the original system (eq. 4,6) or otherwise stated the equilibria of the restricted 
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Therefore, these solutions form families of normal modes with the rigid body motions of the 
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-The first set of the PPs/equilibria given by equation (34a) defines dynamics that the shaft is 
spinning with any constant angular velocity (�̇�𝜃0 ∈ ℝ) in rigid body rotation without any 
deformation and forms the 1st PM. 

-The second set of the PPs/equilibria given by equation (34b) defines dynamics that the shaft 
is spinning with a specific constant value of angular velocity ��̇�𝜃0 = ±𝜔𝜔𝑏𝑏 ∙ �(1 − 𝑀𝑀)� in 

,     (34c)

a set accepting arbitrary values for torsional deformation of the shaft, a specific 
value of rotating speed relative to the torsional frequency, but the lateral bending 
deformation and all the velocities are zero.

The PPs of the original system eqs. (4), (6) or otherwise stated the equilibria of 
the restricted system of equations (30a-d) are not just a few points, but they are 
infinite points, and they form manifolds that in case of equilibria they are called 
equilibrium manifolds as explained in [14]. Similarly, the sets of PPs with infinite 
points are called Perpetual Manifolds (PMs).

The considered restricted system is fully decoupled by the equation describing 
the rigid body angular position’s motion. So a fixed point in the restricted system 
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considering the constant value of the rigid body angular velocity as defined by the 
equilibria,
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which is a family for a rotating speed correlated with the natural frequency of lateral bending 
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form manifolds that in case of equilibria they are called equilibrium manifolds as explained 
in [14]. Similarly, the sets of PPs with infinite points are called Perpetual Manifolds (PMs). 

The considered restricted system is fully decoupled by the equation describing the rigid 
body angular position's motion. So a fixed point in the restricted system considering the 
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𝑦𝑦0,4 = 𝑥𝑥5 = �̇�𝜃0 = 𝑐𝑐𝑐𝑐,           (35a) 

 
and then through the first equation of the system of equations (9) the angular position 𝜃𝜃 ∈
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which are periodic rigid body motions of the spinning shaft with period, 
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Therefore, these solutions form families of normal modes with the rigid body motions of the 
spinning shaft. More precisely, 

-The first set of the PPs/equilibria given by equation (34a) defines dynamics that the shaft is 
spinning with any constant angular velocity (�̇�𝜃0 ∈ ℝ) in rigid body rotation without any 
deformation and forms the 1st PM. 

-The second set of the PPs/equilibria given by equation (34b) defines dynamics that the shaft 
is spinning with a specific constant value of angular velocity ��̇�𝜃0 = ±𝜔𝜔𝑏𝑏 ∙ �(1 − 𝑀𝑀)� in 

,        (35a)

and then through the first equation of the system of equations (9) the angular 
position θ ∈ S1 is given by,
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which is a family for a rotating speed correlated with the natural frequency of lateral bending 
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a set accepting arbitrary values for torsional deformation of the shaft, a specific value of 
rotating speed relative to the torsional frequency, but the lateral bending deformation and all 
the velocities are zero. 

The PPs of the original system (eq. 4,6) or otherwise stated the equilibria of the restricted 
system of equations (30a-d) are not just a few points, but they are infinite points, and they 
form manifolds that in case of equilibria they are called equilibrium manifolds as explained 
in [14]. Similarly, the sets of PPs with infinite points are called Perpetual Manifolds (PMs). 

The considered restricted system is fully decoupled by the equation describing the rigid 
body angular position's motion. So a fixed point in the restricted system considering the 
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Therefore, these solutions form families of normal modes with the rigid body motions of the 
spinning shaft. More precisely, 

-The first set of the PPs/equilibria given by equation (34a) defines dynamics that the shaft is 
spinning with any constant angular velocity (�̇�𝜃0 ∈ ℝ) in rigid body rotation without any 
deformation and forms the 1st PM. 

-The second set of the PPs/equilibria given by equation (34b) defines dynamics that the shaft 
is spinning with a specific constant value of angular velocity ��̇�𝜃0 = ±𝜔𝜔𝑏𝑏 ∙ �(1 − 𝑀𝑀)� in 
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which are periodic rigid body motions of the spinning shaft with period,
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Therefore, these solutions form families of normal modes with the rigid body motions of the 
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-The first set of the PPs/equilibria given by equation (34a) defines dynamics that the shaft is 
spinning with any constant angular velocity (�̇�𝜃0 ∈ ℝ) in rigid body rotation without any 
deformation and forms the 1st PM. 
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.         (35c)

Therefore, these solutions form families of normal modes with the rigid body 
motions of the spinning shaft. More precisely,

- The first set of the PPs/equilibria given by equation (34a) defines dynamics 
that the shaft is spinning with any constant angular velocity ( 0 ∈ ℝ)  in rigid body 
rotation without any deformation and forms the 1st PM.

- The second set of the PPs/equilibria given by equation (34b) defines dynamics 
that the shaft is spinning with a specific constant value of angular velocity 
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
 

, but with zero torsional deformation, and forms the 
2nd PM.

- The third set of the PPs/equilibria given by equation (34c) defines dynamics 
that the shaft is spinning with a specific constant value of angular velocity ( 0 = �ωT) 
in rigid body rotation with any constant torsional deformation (q0,� ∈ ℝ)  value, but 
with zero lateral bending deformation, and forms the 3rd PM.

Linearization around the perpetual points/fixed points of the restricted system
Therefore, in the previous subsection, the two ways to determine the rigid body 

modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by eq. (32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.    

The linearization is performed to the restricted system using the following 
perturbations (
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
 

,  (36)

lead to,
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
 

, 

with i=1,2,3 ,        (37)

and the Jacobian (Jy) can be split into upper (Jy,u) and lower (Jy,l) parts as follows,
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍
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The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
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�
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.         (38)
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The upper part of the Jacobian matrix ‒[Jy,u] is given by,
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
 

,     (39)

and the lower part of the Jacobian matrix ‒[Jy,l]  is given by,
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 ��𝑞𝑞�,�, 𝑞𝑞�,�� ∈ ℝ��, but with zero torsional deformation, and forms the 2nd PM. 
-The third set of the PPs/equilibria given by equation (34c) defines dynamics that the 
shaft is spinning with a specific constant value of angular velocity(�̇�𝜃0 = ±𝜔𝜔𝑇𝑇) in 
rigid body rotation with any constant torsional deformation �𝑞𝑞�,� ∈ ℝ� value, but 
with zero lateral bending deformation, and forms the 3rd PM.  

Linearization around the perpetual points/fixed points of the restricted system 
Therefore, in the previous subsection, the two ways to determine the rigid body 
modes/motions of the spinning shaft are shown. The linearization equations around 
the three sets of points/PMs, given by (Eq. 32), using equations (30) or equations (9) 
are the same with the only difference that in the latter, there is the existence of one 
more decoupled equation that defines the rigid body angular position.     

The linearization is performed to the restricted system using the following pertur-
bations (𝜉𝜉�, 𝑖𝑖 = 1,…7) [3], 

𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �𝑞𝑞�, 𝑞𝑞�, 𝑞𝑞�, �̇�𝜃, �̇�𝑞�, �̇�𝑞�, �̇�𝑞�� =  
 

= �𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉�, 𝑦𝑦�,� + 𝜉𝜉��,  (36) 
 

lead to, 
 

{𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇ 𝜉𝜉�̇}� = �𝑱𝑱𝒚𝒚����(�)
∙ {𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉� 𝜉𝜉�}�,  

 
 with 𝑖𝑖 = 1,2,3,           (37) 

 
and the Jacobian (𝐽𝐽�) can be split into upper (𝐽𝐽�,�) and lower (𝐽𝐽�,�) parts as follows, 
 

�𝑱𝑱𝒚𝒚� = �
𝑱𝑱𝒚𝒚,𝒖𝒖
𝑱𝑱𝒚𝒚,𝒍𝒍

�.             (38) 

 
The upper part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒖𝒖� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒖𝒖� = �
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

� = 𝑐𝑐𝑐𝑐,       (39) 

 
and the lower part of the Jacobian matrix−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍� = �− �
��

∙ ��
���

∙ 𝐹𝐹� +
�
�
∙ ���
���

�,         (40) 

 
it should be noted,  

𝐹𝐹� = 0.             (41) 
 

,       (40)

it should be noted,  
Fi = 0.        (41)
Therefore, the lower part of the Jacobian ‒[Jy,l] is given by,
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

.       (42)

with regards to the Hessian since the upper part of the Jacobian is constant  ([Jy,u] = ct) 
the determinant of the Hessian is zero, therefore; all the equilibria of the restricted system 
are degenerate.

Linearization around the 1st perpetual manifold
Linearization around the 1st PM of the restricted system, with the perturbations 

denoted by adding the 1 as first bold-index (
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

) resulting in the 
following sets of differential equations [3]:

The linearized equations that describe the motion are given by,
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
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⎩
⎪
⎨

⎪
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𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

,         (43a)
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 
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whereas, 
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(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

,          (43b)
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

.          (43c)
that lead to,
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

,       (44)
and the lateral bending motions are described by,
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

,        (45)

whereas,
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

,      (46a)
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0

(1−𝑀𝑀).             (46d) 

,       (46b)
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Therefore, the lower part of the Jacobian−�𝑱𝑱𝒚𝒚,𝒍𝒍� is given by, 
 

�𝑱𝑱𝒚𝒚,𝒍𝒍��
��

= ��
�

∙ ���
���

��
��

.          (42) 

 
with regards to the Hessian since the upper part of the Jacobian is constant 
��𝑱𝑱𝒚𝒚,𝒖𝒖� = 𝑐𝑐𝑐𝑐� the determinant of the Hessian is zero, therefore; all the equilibria of the 
restricted system are degenerate. 

Linearization around the 1st perpetual manifold 
Linearization around the 1st PM of the restricted system, with the perturbations 
denoted by adding the 1 as first bold-index (𝜉𝜉𝟏𝟏,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 

The linearized equations that describe the motion are given by, 
 

�̇�𝜉𝟏𝟏,3 = 𝜉𝜉𝟏𝟏,7,             (43a) 
 

�̇�𝜉𝟏𝟏,4 = 𝐹𝐹 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3,              (43b) 
 

�̇�𝜉𝟏𝟏,7 = 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3.             (43c) 
 

that lead to, 
�̈�𝜉𝟏𝟏,3 − 𝐼𝐼1 ∙ 𝐿𝐿 ∙ 𝑎𝑎2 ∙ 𝜉𝜉𝟏𝟏,3 = 0,               (44) 

 
and the lateral bending motions are described by, 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜉𝟏𝟏,1

�̇�𝜉𝟏𝟏,2

�̇�𝜉𝟏𝟏,5

�̇�𝜉𝟏𝟏,6⎭
⎪
⎬

⎪
⎫

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 0 0 −𝑎𝑎3
0 𝑎𝑎1 𝑎𝑎3 0

 � ∙

⎩
⎪
⎨

⎪
⎧𝜉𝜉𝟏𝟏,1

𝜉𝜉𝟏𝟏,2
𝜉𝜉𝟏𝟏,5
𝜉𝜉𝟏𝟏,6⎭

⎪
⎬

⎪
⎫

,          (45) 

whereas, 
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�),        (46a) 
 

𝑎𝑎1(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)�

(1−𝑀𝑀) ,          (46b) 

 

𝑎𝑎2(�̇�𝜃0) =
��̇�𝜃0

2
−𝜔𝜔𝑇𝑇

2�

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�
,            (46c) 

 

𝑎𝑎3(�̇�𝜃0) = 2∙�̇�𝜃0
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⎪
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section [3], 
is described. More precisely, the differential equation (44) of the linearized system 
that describes the perturbed torsional modal displacement (q�), then with the 
exchange of the notation of the variable �1,3 with q�, and considering equation (46c) 
in equation (44) leads to the equation (17a) that describes the same motion in 1st 
order approximation in multiple scales analysis. 

Similarly, the system of equations (22a-b) that describes the lateral bending motions 
in 1st order approximation of multiple-scale analysis is the same as the system eq. (45) 
describing the perturbed lateral bending modal displacements of the linearized equations 
with the 1st set of equilibrium points. Considering the equation (45), this can become 
profound by exchanging the perturbation velocities 
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The system of differential equations is given by, 
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�̇�𝜉𝟐𝟐,1 = 𝜉𝜉𝟐𝟐,5,            (47f) 
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𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 
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denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 
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equation (46c) in equation (44) leads to the equation (17a) that describes the 
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
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equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
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tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 
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The system of differential equations is given by, 
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
[3], is described. More precisely, the differential equation (44) of the linearized 
system that describes the perturbed torsional modal displacement �𝑞𝑞��, then 
with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 

Linearization around the 2nd perpetual manifold 
Linearization around the 2nd PM of the restricted system, with the perturbations 
denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 

�̇�𝜉𝟐𝟐,3 = 𝜉𝜉𝟐𝟐,7,              (47a) 
 

�̇�𝜉𝟐𝟐,4 = 𝑐𝑐9 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6,         (47b) 
 

�̇�𝜉𝟐𝟐,5 = − 𝑐𝑐8 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,4 − 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,5 − 𝑐𝑐4 ∙ 𝜉𝜉𝟐𝟐,6,     (47c) 
 

�̇�𝜉𝟐𝟐,6 = 𝑐𝑐8 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,4 + 𝑐𝑐5 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,6 ,      (47d) 
 

�̇�𝜉𝟐𝟐,7 = 𝑐𝑐6 ∙ 𝜉𝜉𝟐𝟐,3 + 𝐹𝐹 ∙ 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝐹𝐹 ∙ 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6 ,         (47e) 
 

and then, the other perturbed variables arise with direct integration of, 
 

�̇�𝜉𝟐𝟐,1 = 𝜉𝜉𝟐𝟐,5,            (47f) 
 

�̇�𝜉𝟐𝟐,2 = 𝜉𝜉𝟐𝟐,6.             (47g) 
 

whereas, 

𝑐𝑐1�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48a) 

 resulting in the 
following sets of differential equations [3]:

The system of differential equations is given by,
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
[3], is described. More precisely, the differential equation (44) of the linearized 
system that describes the perturbed torsional modal displacement �𝑞𝑞��, then 
with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 

Linearization around the 2nd perpetual manifold 
Linearization around the 2nd PM of the restricted system, with the perturbations 
denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 

�̇�𝜉𝟐𝟐,3 = 𝜉𝜉𝟐𝟐,7,              (47a) 
 

�̇�𝜉𝟐𝟐,4 = 𝑐𝑐9 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6,         (47b) 
 

�̇�𝜉𝟐𝟐,5 = − 𝑐𝑐8 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,4 − 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,5 − 𝑐𝑐4 ∙ 𝜉𝜉𝟐𝟐,6,     (47c) 
 

�̇�𝜉𝟐𝟐,6 = 𝑐𝑐8 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,4 + 𝑐𝑐5 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,6 ,      (47d) 
 

�̇�𝜉𝟐𝟐,7 = 𝑐𝑐6 ∙ 𝜉𝜉𝟐𝟐,3 + 𝐹𝐹 ∙ 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝐹𝐹 ∙ 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6 ,         (47e) 
 

and then, the other perturbed variables arise with direct integration of, 
 

�̇�𝜉𝟐𝟐,1 = 𝜉𝜉𝟐𝟐,5,            (47f) 
 

�̇�𝜉𝟐𝟐,2 = 𝜉𝜉𝟐𝟐,6.             (47g) 
 

whereas, 

𝑐𝑐1�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48a) 

,         (47a)
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
[3], is described. More precisely, the differential equation (44) of the linearized 
system that describes the perturbed torsional modal displacement �𝑞𝑞��, then 
with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 

Linearization around the 2nd perpetual manifold 
Linearization around the 2nd PM of the restricted system, with the perturbations 
denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 

�̇�𝜉𝟐𝟐,3 = 𝜉𝜉𝟐𝟐,7,              (47a) 
 

�̇�𝜉𝟐𝟐,4 = 𝑐𝑐9 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6,         (47b) 
 

�̇�𝜉𝟐𝟐,5 = − 𝑐𝑐8 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,4 − 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,5 − 𝑐𝑐4 ∙ 𝜉𝜉𝟐𝟐,6,     (47c) 
 

�̇�𝜉𝟐𝟐,6 = 𝑐𝑐8 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,4 + 𝑐𝑐5 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,6 ,      (47d) 
 

�̇�𝜉𝟐𝟐,7 = 𝑐𝑐6 ∙ 𝜉𝜉𝟐𝟐,3 + 𝐹𝐹 ∙ 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝐹𝐹 ∙ 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6 ,         (47e) 
 

and then, the other perturbed variables arise with direct integration of, 
 

�̇�𝜉𝟐𝟐,1 = 𝜉𝜉𝟐𝟐,5,            (47f) 
 

�̇�𝜉𝟐𝟐,2 = 𝜉𝜉𝟐𝟐,6.             (47g) 
 

whereas, 

𝑐𝑐1�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48a) 

,      (47b)
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
[3], is described. More precisely, the differential equation (44) of the linearized 
system that describes the perturbed torsional modal displacement �𝑞𝑞��, then 
with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 

Linearization around the 2nd perpetual manifold 
Linearization around the 2nd PM of the restricted system, with the perturbations 
denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 

�̇�𝜉𝟐𝟐,3 = 𝜉𝜉𝟐𝟐,7,              (47a) 
 

�̇�𝜉𝟐𝟐,4 = 𝑐𝑐9 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6,         (47b) 
 

�̇�𝜉𝟐𝟐,5 = − 𝑐𝑐8 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,4 − 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,5 − 𝑐𝑐4 ∙ 𝜉𝜉𝟐𝟐,6,     (47c) 
 

�̇�𝜉𝟐𝟐,6 = 𝑐𝑐8 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,4 + 𝑐𝑐5 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,6 ,      (47d) 
 

�̇�𝜉𝟐𝟐,7 = 𝑐𝑐6 ∙ 𝜉𝜉𝟐𝟐,3 + 𝐹𝐹 ∙ 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝐹𝐹 ∙ 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6 ,         (47e) 
 

and then, the other perturbed variables arise with direct integration of, 
 

�̇�𝜉𝟐𝟐,1 = 𝜉𝜉𝟐𝟐,5,            (47f) 
 

�̇�𝜉𝟐𝟐,2 = 𝜉𝜉𝟐𝟐,6.             (47g) 
 

whereas, 

𝑐𝑐1�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48a) 

,    (47c)
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
[3], is described. More precisely, the differential equation (44) of the linearized 
system that describes the perturbed torsional modal displacement �𝑞𝑞��, then 
with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 

Linearization around the 2nd perpetual manifold 
Linearization around the 2nd PM of the restricted system, with the perturbations 
denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 

�̇�𝜉𝟐𝟐,3 = 𝜉𝜉𝟐𝟐,7,              (47a) 
 

�̇�𝜉𝟐𝟐,4 = 𝑐𝑐9 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6,         (47b) 
 

�̇�𝜉𝟐𝟐,5 = − 𝑐𝑐8 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,4 − 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,5 − 𝑐𝑐4 ∙ 𝜉𝜉𝟐𝟐,6,     (47c) 
 

�̇�𝜉𝟐𝟐,6 = 𝑐𝑐8 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,4 + 𝑐𝑐5 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,6 ,      (47d) 
 

�̇�𝜉𝟐𝟐,7 = 𝑐𝑐6 ∙ 𝜉𝜉𝟐𝟐,3 + 𝐹𝐹 ∙ 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝐹𝐹 ∙ 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6 ,         (47e) 
 

and then, the other perturbed variables arise with direct integration of, 
 

�̇�𝜉𝟐𝟐,1 = 𝜉𝜉𝟐𝟐,5,            (47f) 
 

�̇�𝜉𝟐𝟐,2 = 𝜉𝜉𝟐𝟐,6.             (47g) 
 

whereas, 

𝑐𝑐1�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48a) 

,    (47d)

Fotios Georgiades 
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The dynamics, by the same systems of differential equations obtained with the 
1st order approximation of the multiple scales analysis of the previous section 
[3], is described. More precisely, the differential equation (44) of the linearized 
system that describes the perturbed torsional modal displacement �𝑞𝑞��, then 
with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 

Linearization around the 2nd perpetual manifold 
Linearization around the 2nd PM of the restricted system, with the perturbations 
denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 

�̇�𝜉𝟐𝟐,3 = 𝜉𝜉𝟐𝟐,7,              (47a) 
 

�̇�𝜉𝟐𝟐,4 = 𝑐𝑐9 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐1 ∙ 𝜉𝜉𝟐𝟐,5 + 𝑐𝑐2 ∙ 𝜉𝜉𝟐𝟐,6,         (47b) 
 

�̇�𝜉𝟐𝟐,5 = − 𝑐𝑐8 ∙ 𝑦𝑦0,2 ∙ 𝜉𝜉𝟐𝟐,3 + 𝑐𝑐3 ∙ 𝑦𝑦0,1 ∙ 𝜉𝜉𝟐𝟐,4 − 𝑐𝑐7 ∙ 𝜉𝜉𝟐𝟐,5 − 𝑐𝑐4 ∙ 𝜉𝜉𝟐𝟐,6,     (47c) 
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with the exchange of the notation of the variable 𝜉𝜉𝟏𝟏,3 with 𝑞𝑞� , and considering 
equation (46c) in equation (44) leads to the equation (17a) that describes the 
same motion in 1st order approximation in multiple scales analysis.  
Similarly, the system of equations (22a-b) that describes the lateral bending mo-
tions in 1st order approximation of multiple-scale analysis is the same as the sys-
tem (eq. 45) describing the perturbed lateral bending modal displacements of 
the linearized equations with the 1st set of equilibrium points. Considering the 
equation (45), this can become profound by exchanging the perturbation veloci-
ties  𝜉𝜉�̇�𝟏,�, with �̇�𝑞� , 𝜉𝜉�̇�𝟏,� with �̇�𝑞� , and the perturbations 𝜉𝜉𝟏𝟏,�, with 𝑞𝑞�, and 𝜉𝜉𝟏𝟏,� with 
𝑞𝑞�  respectively, by also taking into account the explicit definitions of constants 
that are given by the equations (46b,d). 
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equation (46c) in equation (44) leads to the equation (17a) that describes the 
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that are given by the equations (46b,d). 
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denoted by adding the 2 as the first index (𝜉𝜉𝟐𝟐,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 7) resulting in the 
following sets of differential equations [3]: 
The system of differential equations is given by, 
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 
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� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

,    (48j)
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

.      (48k)
The eigenvalues of the Jacobian are given by,
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

,         (49a-c)
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

.    (49d-g)

whereas,
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

,        (50a)
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

,     (50b)
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

,       (50c)
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 

,        (50d)
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𝑐𝑐2�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

𝛿𝛿�𝑦𝑦0
(2)�

,        (48b) 

𝑐𝑐3 =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)
,             (48c) 

𝑐𝑐4�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,1

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48d) 

 𝑐𝑐5�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)∙�2∙(1−𝑀𝑀)∙�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2�−𝑀𝑀∙𝑦𝑦0,2

2 �

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

,     (48e) 

 𝑐𝑐6�𝑦𝑦0,1, 𝑦𝑦0,2� =
�2∙(1−𝑀𝑀)∙𝐼𝐼1∙𝐿𝐿−𝑀𝑀∙𝑦𝑦0,1

2 −𝑀𝑀∙𝑦𝑦0,2
2 ��𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇2�

𝛿𝛿�𝑦𝑦0
(2)�

,    (48f) 

 𝑐𝑐7�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝑀𝑀∙𝑦𝑦0,1∙𝑦𝑦0,2∙𝜔𝜔𝑏𝑏∙�(1−𝑀𝑀)

(1−𝑀𝑀)∙𝛿𝛿�𝑦𝑦0
(2)�

 ,        (48g) 

 𝑐𝑐8�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,         (48h) 

𝑐𝑐9�𝑦𝑦0,1, 𝑦𝑦0,2� =
2∙𝐹𝐹∙(1−𝑀𝑀)∙�𝜔𝜔𝑏𝑏

2∙(1−𝑀𝑀)−𝜔𝜔𝑇𝑇
2�

𝛿𝛿�𝑦𝑦0
(2)�

,        (48i) 

and,  
𝛿𝛿�𝑦𝑦�

(�)� = 2 ∙ (1 − 𝑀𝑀) ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − 𝑀𝑀 ∙ 𝑦𝑦�,�� − 𝑀𝑀 ∙ 𝑦𝑦�,�� ,     (48j) 
 

𝑓𝑓� = 𝜔𝜔�
� − 𝜔𝜔�

� ∙ (1 − 𝑀𝑀).         (48k) 
 

The eigenvalues of the Jacobian are given by, 
𝜂𝜂1÷3 = 0,            (49a-c) 

 

𝜂𝜂4÷7(𝑧𝑧) = ±𝑖𝑖 ∙ �
𝑝𝑝0+𝑝𝑝1∙𝑧𝑧∓�(𝑟𝑟1∙𝑧𝑧−𝑟𝑟2)2+𝑟𝑟3

2∙𝑧𝑧

2∙𝛿𝛿
= ±𝑖𝑖 ∙ 𝐻𝐻1÷2.    (49d-g) 

whereas, 
𝑧𝑧 = 𝑦𝑦�,�� + 𝑦𝑦�,�� ,            (50a) 

 
𝑝𝑝� = 8 ∙ 𝜔𝜔�

� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) + 2 ∙ (1 − 𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�,      (50b) 
 

𝑝𝑝� = −𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�
� + 𝑓𝑓�),           (50c) 

 
𝑟𝑟� = 𝑀𝑀 ∙ (4 ∙ 𝜔𝜔�

� − 𝑓𝑓�),           (50d) 
 

𝑟𝑟� = 2 ∙ [4 ∙ 𝜔𝜔�
� ∙ (𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹�) − (1 −𝑀𝑀) ∙ 𝐼𝐼� ∙ 𝐿𝐿 ∙ 𝑓𝑓�],       (50e) 

 
,    (50e)
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� ∙ 𝑓𝑓� ∙ 𝐹𝐹�.            (50f) 

Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

.       (50f)
Linearization around the 3rd perpetual manifold
Linearization around the 3rd PM of the restricted system lead to, with the 

perturbations denoted by adding the 3 as first index (
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� ∙ 𝑓𝑓� ∙ 𝐹𝐹�.            (50f) 

Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

) resulting 
in the following sets of differential equations [3]:

The systems of differential equations are given by,
- First system
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� ∙ 𝑓𝑓� ∙ 𝐹𝐹�.            (50f) 

Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,         (51)
- Second system
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� ∙ 𝑓𝑓� ∙ 𝐹𝐹�.            (50f) 

Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,       (52a)
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� ∙ 𝑓𝑓� ∙ 𝐹𝐹�.            (50f) 

Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,      (52b)

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement.

- Third system
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Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,         (53a)
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Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,         (53b)
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Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,      (53c)
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Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

.      (53d)

which describes the lateral bending motions. The parameters are given by,
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Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,       (54a)
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� ∙ 𝑓𝑓� ∙ 𝐹𝐹�.            (50f) 

Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,         (54b)
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Linearization around the 3rd perpetual manifold 
Linearization around the 3rd PM of the restricted system lead to, with the pertur-
bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 

�̇�𝜉𝟑𝟑,4 = 𝑏𝑏1 ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,4 − 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52a) 
 

�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
 

�̇�𝜉𝟑𝟑,6 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,2 + 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,5.       (53d) 
 

which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
𝜇𝜇1 = 0,             (55a) 

𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

.       (54c)
The eigenvalues are given by,
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bations denoted by adding the 3 as first index (𝜉𝜉𝟑𝟑,𝑖𝑖, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 7) resulting in 
the following sets of differential equations [3]: 

The systems of differential equations are given by, 
-First system 

�̇�𝜉𝟑𝟑,3 = 𝜉𝜉𝟑𝟑,7,            (51) 
-Second system 
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�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
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�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
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which describes the lateral bending motions. The parameters are given by, 
 

𝑏𝑏1(𝑦𝑦0,3) =
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
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2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,         (55a)
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�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
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�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
,             (54b) 

 
𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
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𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  

,   (55b)
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-Second system 
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�̇�𝜉𝟑𝟑,7 = 𝑏𝑏1 ∙ 𝑏𝑏3 ∙ 𝜉𝜉𝟑𝟑,4 − 𝐹𝐹 ∙ 𝑏𝑏1 ∙ 𝜉𝜉𝟑𝟑,7,        (52b) 
 

which describes coupled motions of rigid body angular velocity with torsional 
‘modal’ displacement. 
-Third system 

�̇�𝜉𝟑𝟑,1 = 𝜉𝜉𝟑𝟑,5,            (53a) 
 

�̇�𝜉𝟑𝟑,2 = 𝜉𝜉𝟑𝟑,6,            (53b) 
 

�̇�𝜉𝟑𝟑,5 = 𝑏𝑏2 ∙ 𝑓𝑓1 ∙ 𝜉𝜉𝟑𝟑,1 − 2 ∙ 𝑏𝑏2 ∙ 𝜔𝜔𝑇𝑇 ∙ 𝜉𝜉𝟑𝟑,6,       (53c) 
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2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

�𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

,           (54a) 

 
𝑏𝑏2 = 1

(1−𝑀𝑀)
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𝑏𝑏3(𝑦𝑦0,3) = 𝐼𝐼1 ∙ 𝐿𝐿 + 𝑦𝑦0,3

2 .           (54c) 
 

The eigenvalues are given by, 
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𝜇𝜇2,3(𝑦𝑦0,3) = ±𝑏𝑏1 ∙ �(𝐹𝐹2 − 𝑏𝑏3) = ±𝑖𝑖 ∙
2∙𝜔𝜔𝑇𝑇∙𝑦𝑦0,3

��𝐼𝐼1∙𝐿𝐿−𝐹𝐹2+𝑦𝑦0,3
2 �

= ±𝑖𝑖 ∙ 𝑀𝑀1,    (55b) 

𝜇𝜇4÷7 = ± 𝑖𝑖

(1−𝑀𝑀)
∙  
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

 

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
297 

∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

.      (55c) 
The explicit solution of the second system eq. (52a,b) is given by [3],

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
297 

∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

,      (56a)
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

,      (56b)
with,
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

,         (56c)
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

,        (56d)

and
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

,         (56e)
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

.       (56f)

The last perturbed variable (�3) is given through direct integration of equation 
(122b) and it is given by,
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2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

.     (56g)
The final solution is given by,
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∙ �(1 + 𝑀𝑀) ∙ 𝜔𝜔𝑇𝑇
2 + (1 − 𝑀𝑀)2 ∙ 𝜔𝜔𝑏𝑏

2 ∓ 2 ∙ 𝜔𝜔𝑇𝑇 ∙ �𝑀𝑀 ∙ 𝜔𝜔𝑇𝑇
2 + 𝜔𝜔𝑏𝑏

2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

.  (57)
This system can also be considered as a perturbed linearized system of the 1st 

family of fixed points at rotating velocity ( 0 = ωT) with 
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2 ∙ (1 − 𝑀𝑀)2 =  

 
= ±𝑖𝑖 ∙ 𝑀𝑀�÷� = 𝑐𝑐𝑐𝑐.          (55c)  

 
The explicit solution of the second system (eq. 52a,b) is given by [3], 
 

𝜉𝜉𝟑𝟑,4 = (𝐴𝐴𝑅𝑅 + 𝑖𝑖 ∙ 𝐴𝐴𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56a) 
 

𝜉𝜉𝟑𝟑,7 = (𝐵𝐵𝑅𝑅 + 𝑖𝑖 ∙ 𝐵𝐵𝐼𝐼) ∙ 𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐,        (56b) 
 

with, 

𝐴𝐴𝑅𝑅 =
𝜉𝜉4(0)
2

,             (56c) 

 

 𝐴𝐴𝐼𝐼 =
�𝜉𝜉𝟑𝟑,7(0)−𝐹𝐹∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
,          (56d) 

and 

𝐵𝐵𝑅𝑅 =
𝜉𝜉𝟑𝟑,7(0)

2
,            (56e) 

 

 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹2
.         (56f) 

 
The last perturbed variable (𝜉𝜉3) is given through direct integration of equation 
(122b) and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑐𝑐 + 𝑐𝑐𝑐𝑐.      (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 

This system can also be considered as a perturbed linearized system of the 1st 
family of fixed points at rotating velocity (�̇�𝜃0 = 𝜔𝜔𝑇𝑇) with 𝑦𝑦3 = 𝜉𝜉𝟏𝟏,3 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐, 
therefore it is expected that positive perturbation of the angular velocity 
(𝜉𝜉𝟑𝟑,4(0) > 0) leads to a non-periodic solution of the original system, but negative 
perturbations can lead to periodic orbits.  

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The ei-
genvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

, therefore 
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it is expected that positive perturbation of the angular velocity (�3,4 (0) > 0) leads to 
a non-periodic solution of the original system, but negative perturbations can lead 
to periodic orbits. 

In the 3rd PM, all the eigenvalues of the Jacobian are purely imaginary. The 
eigenvalues associated with lateral bending motions are constant on the 3rd PM, 
therefore with the same eigenvalues of the 1st PM on this rotating speed, and the 
motion is described by the equations (A.20a-d). 

Backbone lines of the rigid body modes with the eigenvalues of the linearized 
systems around them. As in the previous section is shown, the equilibrium 
manifolds of the restricted system are the same as the perpetual manifolds of the 
original system, and they are given by the equations (32a-c). They are three PMs and 
define the rigid body modes of the shaft spinning with non-constant rotating speed. 
The physical deformation of the shaft in the lateral bending motion, by the radial 
deformation is defined by combining the two lateral bending modal deformations 
(y01, y02). Therefore the two lateral bending deformation modal displacements can 
be considered together without losing any information, and considering all the rest 
generalized coordinates that form the PMs, a 3D plot, that is, the projection of the 
PMs, can be drawn. In Figure 2, the projected to 3D PMs are plotted, and they form 
the backbone lines of the rigid body modes. In Figure-2, the 1st-PM is formed by 
the line with any value of rigid body angular velocity and all the generalized rest 
coordinates being zero. 

The 2nd-PM is the line with angular velocity 
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 𝐵𝐵𝐼𝐼 =
�𝐹𝐹∙𝜉𝜉𝟑𝟑,7(0)−𝑏𝑏3∙𝜉𝜉𝟑𝟑,4(0)�

2∙�𝑏𝑏3−𝐹𝐹
2 .         (56f) 

The last perturbed variable (𝜉𝜉3) is given through direct integration of equation (122b) 
and it is given by, 

𝜉𝜉𝟑𝟑,3 =
𝜉𝜉𝟑𝟑,3(0)

2
− 𝐵𝐵𝐼𝐼

𝑀𝑀1
− 𝑖𝑖∙(𝐵𝐵𝑅𝑅+𝑖𝑖∙𝐵𝐵𝐼𝐼)

𝑀𝑀1
𝑒𝑒𝑖𝑖∙𝑀𝑀1∙𝑡𝑡 + 𝑐𝑐𝑐𝑐.     (56g) 

The final solution is given by, 
𝑦𝑦 = (𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�, 𝑦𝑦�) = �0,0, 𝑦𝑦�,�,�� + 𝜉𝜉𝟑𝟑,�, 𝜔𝜔� + 𝜉𝜉𝟑𝟑,�, 0,0, 𝜉𝜉𝟑𝟑,��.  (57) 
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around them, indicating the stability regions, and incorporating the two regions (‘Green 
zone’, and ‘Cyan line’) that the eigenvalues are changing qualitatively with respect to the 
angular velocity. 
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locity, 
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that the 1st PM describes the motion. The eigenvalues that are associated with 
the lateral bending motion as long as the angular velocity is less than the given 
by equation (58) value, that the trajectory is on the ‘Line (side-),’ are purely im-
aginary 𝜆𝜆�÷��𝑦𝑦�,�� = ±𝑖𝑖 ∙ 𝑖𝑖�,�. As long as the trajectory is crossing the cyan line 
and move to the  ‘Line (side+),’ the eigenvalues associated with lateral bending 
dynamics are not pure imaginary any longer �𝜆𝜆�÷� = ±(𝛬𝛬� ± 𝑖𝑖 ∙ 𝛬𝛬�)� .  

The second region is the green ‘Zone,’ centred in the angular velocity �̇�𝜃� = 𝑖𝑖�. 
There is a qualitative change of the eigenvalues of the dynamical system describ-
ing the dynamics in torsion from pure imaginary to real.  
The system's eigenvalues describing the torsional/rigid body angular velocity 
dynamics near this region are with bold green fonts. For almost zero values of 
torsional ‘modal’ displacement, the motion is described by the linearization 
around the 1st-PM. For smaller values of the angular velocity than 𝑖𝑖� that the 
system is in ‘Zone (1-)’ the eigenvalues are pure complex �𝜆𝜆�,� = ±𝑖𝑖 ∙ 𝑖𝑖��. Whe-
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Figure 2. Perpetual manifolds (PMs)/backbone curves of the rigid body 
normal modes overall manifold projected to 3D, with the associated 
eigenvalues of the linearized system around them, indicating the stability 
regions, and incorporating the two regions (‘Green zone’, and ‘Cyan line’) that 
the eigenvalues are changing qualitatively with respect to the angular velocity.

 
The second region is the green ‘Zone,’ centred in the angular velocity 0 = ωT. 

There is a qualitative change of the eigenvalues of the dynamical system describing 
the dynamics in torsion from pure imaginary to real. 

The system’s eigenvalues describing the torsional/rigid body angular velocity 
dynamics near this region are with bold green fonts. For almost zero values of 
torsional ‘modal’ displacement, the motion is described by the linearization around 
the 1st-PM. For smaller values of the angular velocity than ωT that the system is in 
‘Zone (1-)’ the eigenvalues are pure complex (
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is crossing the threshold for angular velocity equal to ωT they become zero and 
then for greater values of angular velocity that the trajectory is in ‘Zone (1+)’ they 
become real (λ2,3 = �Λ5). Also, as long as the part of the trajectory corresponds to 
high values of torsional ‘modal’ displacement, and with angular velocity close to ωT, 
then the trajectory is in green ‘Zones (±3)’, and the dynamics is described by the 3rd 
set of PM, with eigenvalues (μ2,3 = �i  · M1). Therefore there is a qualitative difference 
in the solutions of the trajectory, for the torsional and rigid body angular velocity 
dynamics, at different parts of the green ‘Zone’. 

The positive real eigenvalues in the differential equations solution are called 
Lyapunov exponents, and they are associated with chaotic motion.  A trajectory 
that crosses all the regions of the green ‘zone’ in fig. 2 with different qualitative 
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eigenvalues means the motion is chaotic with variant Lyapunov exponents. The 
torsional/rigid body angular velocity dynamic analysis in [4] has been done based 
on this observation. More precisely, the different solutions of the torsional motion 
on green region considered and the trajectory they form on each zone of this region 
is determined as follows.  

The systems of differential equations that describe the motions around the 1st 
and 3rd PM are used for the projection to the phase space by parameterizing time 
with respect to the perturbation in torsional position (�1,3, and �3,3, respectively). 

Using the linearized equations (43b-c) and (44) with �1,i perturbations around 
the 1st PM, and parameterization of time leads to [4],
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whereas, 𝜉𝜉𝟏𝟏,� ≠ 0. The zero value corresponds to the local extrema of perturba-
tion of torsional position (𝜉𝜉𝟏𝟏,�), and they can be neglected without changing the 
qualitative characteristics of the analysis. Angular velocity greater than 𝜔𝜔�  cor-
responds to a family of hyperbolas with center (0,0) in phase space, and they 
approximate well the orbit near the region defined by the green ‘Zone (1+)’ of fig. 
2 which corresponds to almost zero torsional modal displacements. Whenever 
the angular velocity is equal to 𝜔𝜔�  lead to a constant perturbation in torsional 
velocity �𝜉𝜉𝟏𝟏,�� and finally for angular velocity less than  𝜔𝜔�  the orbit are crossing 
the region of green ‘Zone (1-)’ of fig. 2 with almost zero torsional modal dis-
placements. A family of ellipses with center (0,0) in phase space, is describing 
this part of the orbit. Using equation (60b), the constant of integration A can be 
determined. Rearrangement of equation (60c) lead to [4], 

,                                  (59)
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whereas, �1,7 ≠ 0 . The zero value corresponds to the local extrema of perturbation of 
torsional position (�1,3), and they can be neglected without changing the qualitative 
characteristics of the analysis. Angular velocity greater than ωT corresponds to a 
family of hyperbolas with center (0,0) in phase space, and they approximate well the 
orbit near the region defined by the green ‘Zone (1+)’ of fig. 2 which corresponds to 
almost zero torsional modal displacements. Whenever the angular velocity is equal to 
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whereas for angular velocity greater than 𝜔𝜔� corresponds to a family of hyper-
bolas with centre (�̇�𝜃� + 𝐵𝐵,0). Initial angular velocity ��̇�𝜃�� equal to 𝜔𝜔� leads to a 
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ty smaller than 𝜔𝜔� lead to a family of ellipses with center (�̇�𝜃� + 𝐵𝐵,0) in phase 
space.   

The linearized namely 3rd PM with angular velocity equal to 𝜔𝜔�  is surrounded 
by periodic orbits. The constant perturbations in torsional and rigid body angu-
lar velocities obtained from equations (62) and (63) respectively are not describ-
ing the orbits in this region. In this region near the green ‘Zones (±3)’ of fig.2, 
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whereas the points corresponding to local extrema of the torsional velocity (𝜉𝜉𝟑𝟑,�) 
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Using any pair of values, the constant of integration C can be determined by the 
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then using equation (61) in equation (59), and integrating while considering the 
original system state space variables lead to [4],
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The linearized namely 3rd PM with angular velocity equal to 𝜔𝜔�  is surrounded 
by periodic orbits. The constant perturbations in torsional and rigid body angu-
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whereas the points corresponding to local extrema of the torsional velocity (𝜉𝜉𝟑𝟑,�) 
are neglected (without changing qualitative the conclusions of this analysis) with 
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Using any pair of values, the constant of integration C can be determined by the 
following rearranged equation [4], 
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with B being the integration constant, and they correspond to the following families 
of orbits [4],
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by periodic orbits. The constant perturbations in torsional and rigid body angu-
lar velocities obtained from equations (62) and (63) respectively are not describ-
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whereas the points corresponding to local extrema of the torsional velocity (𝜉𝜉𝟑𝟑,�) 
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Using any pair of values, the constant of integration C can be determined by the 
following rearranged equation [4], 
 
�𝐼𝐼� ∙ 𝐿𝐿 + 𝑦𝑦�,�� �
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∙ 𝜉𝜉𝟑𝟑,�� + �𝐼𝐼� ∙ 𝐿𝐿 + 𝑦𝑦�,�� � ∙ 𝜉𝜉𝟑𝟑,�� − 2 ∙ �𝐼𝐼� ∙ 𝐿𝐿 + 𝑦𝑦�,�� � ∙ 𝐹𝐹 ∙ 𝜉𝜉𝟑𝟑,� ∙ 𝜉𝜉𝟑𝟑,� −  

 

,      (63)

whereas for angular velocity greater than ωT  corresponds to a family of hyperbolas 
with centre ( 0 + B,0). Initial angular velocity ( 0) equal to ωT  leads to a solution with 
constant rigid body angular velocity ( ). Finally for angular velocity smaller than ωT 
lead to a family of ellipses with center ( 0 + B,0) in phase space.  

The linearized namely 3rd PM with angular velocity equal to ωT is surrounded 
by periodic orbits. The constant perturbations in torsional and rigid body angular 
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velocities obtained from equations (62) and (63) respectively are not describing the 
orbits in this region. In this region near the green ‘Zones (±3)’ of fig.2, with different 
than zero torsional modal displacements (�y3� = �q�� > 0), a better approximation 
of the orbits by the linearization around the 3rd EM can be obtained. The orbits 
associated with the linearization around the 3rd EM with �3,i ‒ perturbations, by 
parametrizing time with the perturbation in torsional position (�3,3) using the 
equations (52a,b), are determined. Firstly, the differential equation [4],
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whereas the points corresponding to local extrema of the torsional velocity (𝜉𝜉𝟑𝟑,�) 
are neglected (without changing qualitative the conclusions of this analysis) with 
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Using any pair of values, the constant of integration C can be determined by the 
following rearranged equation [4], 
 
�𝐼𝐼� ∙ 𝐿𝐿 + 𝑦𝑦�,�� �
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.                (64)

whereas the points corresponding to local extrema of the torsional velocity (�3,7) are 
neglected (without changing qualitative the conclusions of this analysis) with  (I1 · L + 
y0,

2
3) · �3,4 ≠ F · �3,7 . Solving equation (64) lead to [4],
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Using any pair of values, the constant of integration C can be determined by the 
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Using any pair of values, the constant of integration C can be determined by the 
following rearranged equation [4],
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which is forming an ellipse. 
The 2nd  equation, for 𝜉𝜉𝟑𝟑,� ≠ 0, is given by [4], 
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using (eq. 65) and direct integration lead to [4], 
 

𝜉𝜉𝟑𝟑,� = ∓ �
�∙��∙��,�

∙ �−�𝐼𝐼� ∙ 𝐿𝐿 − 𝐹𝐹� + 𝑦𝑦�,�� � ∙ 𝜉𝜉𝟑𝟑,�� + 𝐶𝐶 + 𝐷𝐷,    (68) 

 
or using state space variables of the original system and with rearrangement 
lead to the following family phase space curves [4], 
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which are ellipsis centered at (𝑦𝑦�, 𝑦𝑦�) = �𝑦𝑦�,� + 𝐷𝐷, 0� [3].  
 

Rearrangement of equation (69) for a solution of perturbation of ‘modal’ tor-
sional velocity with respect to perturbation of ‘modal’ torsional position lead to 
[4], 
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and replacing (eq. 70) in (eq. 65) using state space variables of the original sys-
tem lead to [4], 
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�
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±
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and written as a 2nd order, that forms a family of ellipsis with  
 
center at �𝑞𝑞�, �̇�𝜃� = �𝑦𝑦�,� + 𝐷𝐷,𝜔𝜔��, can be easily concluded.  
 
The curves in phase space, associated with each solution (eq. 61,69,71), with real 
and imaginary eigenvalues, in each zone, in [4] with the numerical solutions are 
compared. The analytical solutions approximate the trajectories, within the re-
gion of their validity, and they were in good agreement. The analytical verifica-
tion of the variant Lyapunov exponents with numerical simulations in [4] is 
done, but further work for a thorough examination of chaotic motions of the 
spinning shaft e.g. domain of attraction of chaos etc,  is needed. 

,         (66)
which is forming an ellipse.

The 2nd  equation, for �3,7 ≠ 0, is given by [4],
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which are ellipsis centered at (y3, y7) = (y0,3 + D,0) [3]. 
Rearrangement of equation (69) for a solution of perturbation of ‘modal’ torsional 

velocity with respect to perturbation of ‘modal’ torsional position lead to [4],
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and replacing eq. (70a) in eq. (65) using state space variables of the original system 
lead to [4],
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and written as a 2nd order, that forms a family of ellipsis with  
 
center at �𝑞𝑞�, �̇�𝜃� = �𝑦𝑦�,� + 𝐷𝐷,𝜔𝜔��, can be easily concluded.  
 
The curves in phase space, associated with each solution (eq. 61,69,71), with real 
and imaginary eigenvalues, in each zone, in [4] with the numerical solutions are 
compared. The analytical solutions approximate the trajectories, within the re-
gion of their validity, and they were in good agreement. The analytical verifica-
tion of the variant Lyapunov exponents with numerical simulations in [4] is 
done, but further work for a thorough examination of chaotic motions of the 
spinning shaft e.g. domain of attraction of chaos etc,  is needed. 

,   (70b)
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verification of the variant Lyapunov exponents with numerical simulations in [4] 
is done, but further work for a thorough examination of chaotic motions of the 
spinning shaft e.g. domain of attraction of chaos etc,  is needed.

Normal modes from linearization around the perpetual manifolds. In [3], based 
on the linearization around the perpetual manifolds, the associated normal modes 
are determined, and they are given by,

Normal modes, around the 1st perpetual manifold 
They are associated with:
1) Perturbations in torsional motion have periodic solutions for the following 

critical speed [3],
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that must be perturbed for periodic lateral bending motions. 
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𝑞𝑞𝜙𝜙,𝑐𝑐𝑐𝑐 = 𝑦𝑦0,3,𝑐𝑐𝑐𝑐 = �𝐼𝐼1∙𝐿𝐿−𝐹𝐹2

3
,        (73) 

which defines the equilibrium point that must be perturbed to find torsional 
periodic motions. This normal mode cannot directly obtained from the multiple 
scales analysis since, the associated equations of motion are not explicitly corre-
lated with the 1st order approximation with the multiple scale analysis. 
In the next section, the analytical findings with numerical simulations of the orig-
inal system are compared and discussed. 

2.4 Numerical results from theoretical analysis 

On this section, the verification of the theoretical findings of the previous sec-
tions, with numerical simulations are shown. 
A shaft with configuration, material, dimensions, that is following the Euler-
Bernoulli beam assumptions, used in [2,3] is considered. It is a 1 m length (L) 
shaft with internal and external radii 𝑐𝑐𝑖𝑖 = 0.028 m  and 𝑐𝑐𝑜𝑜 = 0.03 m, respective-
ly. It is made of stainless steel with the following material properties: density =
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,       (73)
which defines the equilibrium point that must be perturbed to find torsional 
periodic motions. This normal mode cannot directly obtained from the 
multiple scales analysis since, the associated equations of motion are not 
explicitly correlated with the 1st order approximation with the multiple scale 
analysis.

In the next section, the analytical findings with numerical simulations of the 
original system are compared and discussed.
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2.4. Numerical results from theoretical analysis. On this section, the 
verification of the theoretical findings of the previous sections, with numerical 
simulations are shown.

A shaft with configuration, material, dimensions, that is following the Euler-
Bernoulli beam assumptions, used in [2,3] is considered. It is a 1 m length (L) shaft 
with internal and external radii ri = 0.028 m and rO = 0.03 m, respectively. It is made 
of stainless steel with the following material properties: density = 7850 Kg/m3, 
Young’s (shear) modulus E = 200 GPa (G = 76.9 GPa) , and Poisson’s ratio v = 0.3, 
which leads to the following parameters: I1 · L = 12.04 · 10-4 Kg · m, F = 31.24 · 10-3 
m · �KG, and M = ‒41.55 · 10-4.

All the numerical results are mainly to confirm the theoretical analysis and 
identify its limitations. It should be highlighted that the initial angular position (Ѳ0)
can be arbitrarily defined since the origin of the fixed coordinates system that the 
angular initial position is related can have any orientation in space. The selected set 
of initial conditions for lateral bending motions corresponds to all instances with the 
same radial amplitude, obtained by combining the two deformations of the lateral 
bending motions.

Since this article is a review article, to make sense the findings of different 
publications, the best way is to start from the simple results and then move on to 
the more complex ones. Therefore, in the next subsection, before the examination of 
the normal modes solutions, the PMs solutions as rigid body modes of the spinning 
shaft numerically are examined. Then in the next subsection, the analytical findings 
relevant to other types of normal modes obtained through linearization around the 
PMs, that in many cases coincide with the 1st order approximation with numerical 
simulations are presented. Finally the validity of the multiple scales analysis with 
the existence of detuning frequencies in the dynamics of the spinning shaft, in the 
third numerical subsection is shown.

Numerical results confirming rigid body motions on PMs. The following 3-sets 
of initial conditions (ICs), associated with each one of the three perpetual manifolds, 
are considered:

-The 1st set of ICs associated with the 1st PM (eq. 34a),
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tify its limitations. It should be highlighted that the initial angular position (𝜃𝜃0) 
can be arbitrarily defined since the origin of the fixed coordinates system that 
the angular initial position is related can have any orientation in space. The se-
lected set of initial conditions for lateral bending motions corresponds to all in-
stances with the same radial amplitude, obtained by combining the two defor-
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more complex ones. Therefore, in the next subsection, before the examination of 
the normal modes solutions, the PMs solutions as rigid body modes of the spin-
ning shaft numerically are examined. Then in the next subsection, the analytical 
findings relevant to other types of normal modes obtained through linearization 
around the PMs, that in many cases coincide with the 1st order approximation 
with numerical simulations are presented. Finally the validity of the multiple 
scales analysis with the existence of detuning frequencies in the dynamics of the 
spinning shaft, in the third numerical subsection is shown.  

Numerical results confirming rigid body motions on PMs 
The following 3-sets of initial conditions (ICs), associated with each one of the 
three perpetual manifolds, are considered: 

-The 1st set of ICs associated with the 1st PM (eq. 34a), 
 
 �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = (0,0,0,10,0,0,0),  
 
and corresponds to a  
 
period 𝑇𝑇� = 0.6283 𝑠𝑠, as given by (eq. 35c). 
-The 2nd set of ICs associated with the 2nd PM (eq. 34b), 
 
�𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = (8,10,0,1022.16,0,0,0),  
 
and corresponds to a period 𝑇𝑇� = 0.0061 𝑠𝑠. 
-The 3rd set of ICs associated with the 3rd PM (eq. 34c), 
 
�𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = (0,0,5,4916.41,0,0,0),  
 
and corresponds to a period 𝑇𝑇� = 0.0013 𝑠𝑠. 
The initial angular position (𝜃𝜃�) is selected to be zero. 

, and corresponds to a period T1 
= 0.6283 s, as given by (eq. 35c).

-The 2nd set of ICs associated with the 2nd PM (eq. 34b),
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period T2 = 0.0061 s.

-The 3rd set of ICs associated with the 3rd PM (eq. 34c),
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mations of the lateral bending motions. 
Since this article is a review article, to make sense the findings of different publi-
cations, the best way is to start from the simple results and then move on to the 
more complex ones. Therefore, in the next subsection, before the examination of 
the normal modes solutions, the PMs solutions as rigid body modes of the spin-
ning shaft numerically are examined. Then in the next subsection, the analytical 
findings relevant to other types of normal modes obtained through linearization 
around the PMs, that in many cases coincide with the 1st order approximation 
with numerical simulations are presented. Finally the validity of the multiple 
scales analysis with the existence of detuning frequencies in the dynamics of the 
spinning shaft, in the third numerical subsection is shown.  

Numerical results confirming rigid body motions on PMs 
The following 3-sets of initial conditions (ICs), associated with each one of the 
three perpetual manifolds, are considered: 

-The 1st set of ICs associated with the 1st PM (eq. 34a), 
 
 �𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = (0,0,0,10,0,0,0),  
 
and corresponds to a  
 
period 𝑇𝑇� = 0.6283 𝑠𝑠, as given by (eq. 35c). 
-The 2nd set of ICs associated with the 2nd PM (eq. 34b), 
 
�𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = (8,10,0,1022.16,0,0,0),  
 
and corresponds to a period 𝑇𝑇� = 0.0061 𝑠𝑠. 
-The 3rd set of ICs associated with the 3rd PM (eq. 34c), 
 
�𝑞𝑞�,�, 𝑞𝑞�,�, 𝑞𝑞�,�, �̇�𝜃�, �̇�𝑞�,�, �̇�𝑞�,�, �̇�𝑞�,�� = (0,0,5,4916.41,0,0,0),  
 
and corresponds to a period 𝑇𝑇� = 0.0013 𝑠𝑠. 
The initial angular position (𝜃𝜃�) is selected to be zero. 

, and corresponds to a 
period T3 = 0.0013 s.

The initial angular position (Ѳ0) is selected to be zero.
In Figures 3a-c, the numerically determined transient responses, of equations (9) are 

depicted. The transient responses obtained with initial conditions associated with the 1st 
PM in Figure (3a) are depicted, with only rigid body angular (Ѳ) motion and period T1 
= 0.6283 s which is the same as the analytically defined period of the rigid body angular 
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motion. In Figure (3b) the transient responses associated with the 2nd PM are depicted. 
Examination indicates only rigid body angular motion with fixed lateral bending 
deformation and the same as the analytically defined period of T2 = 0.0061 s. Finally, the 
3rd PM initial conditions lead to the transient responses depicted in Figure (3c). There is 
only rigid body angular periodic motion with fixed torsional ‘modal’ deformation with 
period of T3 = 0.0013 s, which is the same as the analytical value.

Numerical results confirming normal modes solutions defined by perpetual 
manifolds. The validity of the four theoretically determined normal modes 
obtained with linearization around the PMs of §2.3, through numerical simulations 
is discussed on this subsection. 

Based on the parameters defining the spinning shaft configuration, in Table 
1, the characteristic values on the spinning shaft dynamics are presented. The 
two characteristic values of the angular velocities that define the 2nd 
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In Figures 3a-c, the numerically determined transient responses, of equations 
(9) are depicted. The transient responses obtained with initial conditions associ-
ated with the 1st PM in Figure (3a) are depicted, with only rigid body angular (𝜃𝜃) 
motion and period  𝑇𝑇� = 0.6283 s which is the same as the analytically defined 
period of the rigid body angular motion. In Figure (3b) the transient responses 
associated with the 2nd PM are depicted. Examination indicates only rigid body 
angular motion with fixed lateral bending deformation and the same as the ana-
lytically defined period of 𝑇𝑇�= 0.0061 s. Finally, the 3rd PM initial conditions lead 
to the transient responses depicted in Figure (3c). There is only rigid body angu-
lar periodic motion with fixed torsional ‘modal’ deformation with period of 
𝑇𝑇� =0.0013 s, which is the same as the analytical value. 

Numerical results confirming normal modes solutions defined by perpetu-
al manifolds 
The validity of the four theoretically determined normal modes obtained with 
linearization around the PMs of §2.3, through numerical simulations is discussed 
on this subsection.  

Based on the parameters defining the spinning shaft configuration, in Table 1, 
the characteristic values on the spinning shaft dynamics are presented. The two 
characteristic values of the angular velocities that define the 2nd �𝜔𝜔� ∙ √1 − 𝑀𝑀� and 
the 3rd PM (𝜔𝜔�), and the characteristic value of the angular velocity 

 �𝜔𝜔� ∙ (1 − 𝑀𝑀)/√−𝑀𝑀� that in the 1st PM the eigenvalues for lateral bending mo-
tions are qualitatively changing from pure imaginary to complex with nonzero 
real parts. Also, the characteristic values determining the normal modes (period-
ic motions) of the system, obtained by the linearization around the perpetual 
manifolds, are shown.  
Considering the 1st PM, there are 3 normal modes associated with particular 
critical speeds, one for torsional motion ��̇�𝜽𝟎𝟎,𝑻𝑻,𝒄𝒄𝒄𝒄,𝟏𝟏�  and two for lateral bending 
motion ��̇�𝜽𝟎𝟎,𝑩𝑩,𝒄𝒄𝒄𝒄,𝐣𝐣, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑗𝑗 = 1,2�. All of them coincide with the 1st order approxi-
mation of multiple scales analysis without considering the amplitude modulation 
equations.  
In Table 1 is clear that the qualitative change of the eigenvalues describing lat-
eral bending motions �𝜔𝜔� ∙ (1 − 𝑀𝑀)/√−𝑀𝑀� corresponds to much higher angular 
velocities than these that correspond to normal modes  ��̇�𝜽𝟎𝟎,𝑩𝑩,𝒄𝒄𝒄𝒄,𝐣𝐣, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑗𝑗 = 1,2� . 
The fourth normal mode is obtained by the linearization of the 3rd PM, with an-
gular velocity equal to the torsional characteristic frequency (𝝎𝝎𝑻𝑻), and the tor-
sional modal displacement �𝒒𝒒𝝓𝝓,𝒄𝒄𝒄𝒄� as by the equation (6) is defined, and  in Table 1 
is indicated. Noting that this normal mode cannot easily obtained from the mul-
tiple scale analysis, therefore forms add-on information provided by the PMs 
approach.  
 
Table 1. Characteristic values on the dynamics of the spinning shaft based on solutions 
around the PMs [3].  

and the 3rd PM (ωT), and the characteristic value of the angular velocity 
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In Figures 3a-c, the numerically determined transient responses, of equations 
(9) are depicted. The transient responses obtained with initial conditions associ-
ated with the 1st PM in Figure (3a) are depicted, with only rigid body angular (𝜃𝜃) 
motion and period  𝑇𝑇� = 0.6283 s which is the same as the analytically defined 
period of the rigid body angular motion. In Figure (3b) the transient responses 
associated with the 2nd PM are depicted. Examination indicates only rigid body 
angular motion with fixed lateral bending deformation and the same as the ana-
lytically defined period of 𝑇𝑇�= 0.0061 s. Finally, the 3rd PM initial conditions lead 
to the transient responses depicted in Figure (3c). There is only rigid body angu-
lar periodic motion with fixed torsional ‘modal’ deformation with period of 
𝑇𝑇� =0.0013 s, which is the same as the analytical value. 

Numerical results confirming normal modes solutions defined by perpetu-
al manifolds 
The validity of the four theoretically determined normal modes obtained with 
linearization around the PMs of §2.3, through numerical simulations is discussed 
on this subsection.  

Based on the parameters defining the spinning shaft configuration, in Table 1, 
the characteristic values on the spinning shaft dynamics are presented. The two 
characteristic values of the angular velocities that define the 2nd �𝜔𝜔� ∙ √1 − 𝑀𝑀� and 
the 3rd PM (𝜔𝜔�), and the characteristic value of the angular velocity 

 �𝜔𝜔� ∙ (1 − 𝑀𝑀)/√−𝑀𝑀� that in the 1st PM the eigenvalues for lateral bending mo-
tions are qualitatively changing from pure imaginary to complex with nonzero 
real parts. Also, the characteristic values determining the normal modes (period-
ic motions) of the system, obtained by the linearization around the perpetual 
manifolds, are shown.  
Considering the 1st PM, there are 3 normal modes associated with particular 
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mation of multiple scales analysis without considering the amplitude modulation 
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The fourth normal mode is obtained by the linearization of the 3rd PM, with an-
gular velocity equal to the torsional characteristic frequency (𝝎𝝎𝑻𝑻), and the tor-
sional modal displacement �𝒒𝒒𝝓𝝓,𝒄𝒄𝒄𝒄� as by the equation (6) is defined, and  in Table 1 
is indicated. Noting that this normal mode cannot easily obtained from the mul-
tiple scale analysis, therefore forms add-on information provided by the PMs 
approach.  
 
Table 1. Characteristic values on the dynamics of the spinning shaft based on solutions 
around the PMs [3].  

 that in the 1st PM the eigenvalues for lateral bending motions 
are qualitatively changing from pure imaginary to complex with nonzero real 
parts. Also, the characteristic values determining the normal modes (periodic 
motions) of the system, obtained by the linearization around the perpetual 
manifolds, are shown. 

Considering the 1st PM, there are 3 normal modes associated with particular 
critical speeds, one for torsional motion ( 0,T,cr,1) and two for lateral bending motion  
( 0,T,cr,j, with j = 1,2). All of them coincide with the 1st order approximation of multiple 
scales analysis without considering the amplitude modulation equations. 

In Table 1 is clear that the qualitative change of the eigenvalues describing lateral 
bending motions 
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In Figures 3a-c, the numerically determined transient responses, of equations 
(9) are depicted. The transient responses obtained with initial conditions associ-
ated with the 1st PM in Figure (3a) are depicted, with only rigid body angular (𝜃𝜃) 
motion and period  𝑇𝑇� = 0.6283 s which is the same as the analytically defined 
period of the rigid body angular motion. In Figure (3b) the transient responses 
associated with the 2nd PM are depicted. Examination indicates only rigid body 
angular motion with fixed lateral bending deformation and the same as the ana-
lytically defined period of 𝑇𝑇�= 0.0061 s. Finally, the 3rd PM initial conditions lead 
to the transient responses depicted in Figure (3c). There is only rigid body angu-
lar periodic motion with fixed torsional ‘modal’ deformation with period of 
𝑇𝑇� =0.0013 s, which is the same as the analytical value. 

Numerical results confirming normal modes solutions defined by perpetu-
al manifolds 
The validity of the four theoretically determined normal modes obtained with 
linearization around the PMs of §2.3, through numerical simulations is discussed 
on this subsection.  

Based on the parameters defining the spinning shaft configuration, in Table 1, 
the characteristic values on the spinning shaft dynamics are presented. The two 
characteristic values of the angular velocities that define the 2nd �𝜔𝜔� ∙ √1 − 𝑀𝑀� and 
the 3rd PM (𝜔𝜔�), and the characteristic value of the angular velocity 
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tions are qualitatively changing from pure imaginary to complex with nonzero 
real parts. Also, the characteristic values determining the normal modes (period-
ic motions) of the system, obtained by the linearization around the perpetual 
manifolds, are shown.  
Considering the 1st PM, there are 3 normal modes associated with particular 
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mation of multiple scales analysis without considering the amplitude modulation 
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In Table 1 is clear that the qualitative change of the eigenvalues describing lat-
eral bending motions �𝜔𝜔� ∙ (1 − 𝑀𝑀)/√−𝑀𝑀� corresponds to much higher angular 
velocities than these that correspond to normal modes  ��̇�𝜽𝟎𝟎,𝑩𝑩,𝒄𝒄𝒄𝒄,𝐣𝐣, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑗𝑗 = 1,2� . 
The fourth normal mode is obtained by the linearization of the 3rd PM, with an-
gular velocity equal to the torsional characteristic frequency (𝝎𝝎𝑻𝑻), and the tor-
sional modal displacement �𝒒𝒒𝝓𝝓,𝒄𝒄𝒄𝒄� as by the equation (6) is defined, and  in Table 1 
is indicated. Noting that this normal mode cannot easily obtained from the mul-
tiple scale analysis, therefore forms add-on information provided by the PMs 
approach.  
 
Table 1. Characteristic values on the dynamics of the spinning shaft based on solutions 
around the PMs [3].  

 corresponds to much higher angular velocities than 
these that correspond to normal modes ( 0,B,cr,j, with j = 1,2).

The fourth normal mode is obtained by the linearization of the 3rd PM, with 
angular velocity equal to the torsional characteristic frequency (ωT), and the 
torsional modal displacement (q�cr) as by the equation (6) is defined, and  in 
Table 1 is indicated. Noting that this normal mode cannot easily obtained from the 
multiple scale analysis, therefore forms add-on information provided by the PMs 
approach. 

Table 1. Characteristic values on the dynamics of the spinning shaft based on 
solutions around the PMs [3].
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displacement , as by the equation (6) is defined, and  in Table 1 is indicated. 

Noting that this normal mode cannot easily obtained from the multiple scale analysis, 

therefore forms add-on information provided by the PMs approach.  
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In [2], the Campbell diagram for lateral bending motions obtained from FEA 

(ANSYS) and incorporating the analytical results is examined. More precisely, the 

analytical frequencies (,    = 1,2) obtained from the first-order approximation, 

neglecting the detuning frequencies, are in good agreement with those obtained from 

FEA, and the critical speed is on 4878 R.P.M.  ,,,, which is validating the 1
st
 

order approximation analysis and the PPs linearization analysis presented herein, that 

are associated with the steady states of the spinning shaft. 

Transient responses of normal modes for lateral bending motion 

Normal modes for lateral bending motion, identified only around 1
st
 PM for two criti-

cal speeds as in Table 1 are shown.  

Firstly, a perturbation of the 1
st
 PM, for ,,,= 510.82 rad/s, with initial condi-

tions of ,, , = ,, , = 10, 10 and the rest of the perturbations 

being zero, is considered. This perturbation is resulting 1.2 mm radial initial defor-

mation of the shaft [3]. In Figures 4a-b, the transient responses obtained from direct 

numerical simulations of equations (9), and those defined by the analytical solution 

(eqs A.1a-b and A.20a-b) [3]. In Figure 4a, the analytically, and the numerically de-

termined rigid body angular velocity-  and lateral bending modal displacement− , 

are depicted, and they are in very good agreement. The rigid body angular velocity is 

constant. Figure 4b, depicts, the torsional ‘modal’ displacement− and the lateral 

bending modal displacement− , numerically and analytically determined. The nu-

merical with the analytical results are in very good agreement.  

Considering the 2
nd

 critical speed  ,,,= 15857.33 rad/s, the analytical solu-

tion (eqs A.1a-b and A.20a-b), even for very small values of perturbations, is in high 

disagreement with the numerical simulations, as in [3] is shown. 
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Figure 3. Numerically determined transient responses, (a) with the 1st set of initial 
conditions, (b) with the 2nd set of the initial conditions and, (c) with the 3rd set of initial 
conditions [3].

The theoretical analysis of normal modes in two sets of numerical simulations 
is presented. The 1st set considers only the linearization around the PMs/1st order 
approximation of multiple scales analysis neglecting the detuning frequencies, and the 
2nd set considering also the amplitude modulation equations.

In [2], the Campbell diagram for lateral bending motions obtained from FEA 
(ANSYS) and incorporating the analytical results is examined. More precisely, the 
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analytical frequencies (fi , for j = 1,2) obtained from the first-order approximation, 
neglecting the detuning frequencies, are in good agreement with those obtained 
from FEA, and the critical speed is on 4878 R.P.M. ( 0,B,cr,1), which is validating the 1st 
order approximation analysis and the PPs linearization analysis presented herein, 
that are associated with the steady states of the spinning shaft.

Figure 4. Transient responses at first critical speed 0,B,cr,1=510.82 rad/s. a) rigid 
body angular velocity ‒  and the lateral bending modal displacement ‒qv with c0 = 
2.9365 x 10-6, b) torsional ‘modal’ displacement ‒q� and the lateral bending modal 
displacement ‒qw [3].
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Transient responses of normal modes for lateral bending motion
Normal modes for lateral bending motion, identified only around 1st PM for two 

critical speeds as in Table 1 are shown. 
Firstly, a perturbation of the 1st PM, for 0,B,cr,1(=510.82 rad/s), with initial 

conditions of (q0,v, q0,w) = (�0,1, �0,2) = (10-3, 10-3) and the rest of the perturbations 
being zero, is considered. This perturbation is resulting 1.2  mm radial initial 
deformation of the shaft [3]. In Figures 4a-b, the transient responses obtained 
from direct numerical simulations of equations (9), and those defined by the 
analytical solution eqs (A.1a-b) and (A.20a-b) [3]. In Figure 4a, the analytically, 
and the numerically determined rigid body angular velocity ‒  and lateral bending 
modal displacement ‒qv , are depicted, and they are in very good agreement. The 
rigid body angular velocity is constant. Figure 4b, depicts, the torsional ‘modal’ 
displacement ‒q� and the lateral bending modal displacement ‒qw numerically 
and analytically determined. The numerical with the analytical results are in very 
good agreement. 

Considering the 2nd critical speed 0,B,cr,1 (=15857.33 rad/s), the analytical 
solution eqs (A.1a-b) and (A.20a-b), even for very small values of perturbations, is in 
high disagreement with the numerical simulations, as in [3] is shown.

Transient responses of normal modes for torsional motion
Two normal modes identified in torsion, the first one arises with perturbation 

of 1st PM and the 2nd normal mode arises with perturbation of the 3rd PM.
The first normal mode for small deformations (for the validity of 1st order 

approximation) is defined, and for angular velocity ‒ 0,T,cr,1(=4507.95 rad/s). 
Perturbation of torsional modal angle q0,� = �0,3 = 10-3 is considered and the rest 
of the perturbations being zero. In Figure 5, the transient responses obtained from 
direct numerical simulations of equation (9) and the analytical solutions given 
by equations (A.1a-b and A.20a-b), are depicted [3]. In Figure 5a, the torsional 
‘modal’ displacements are depicted and the numerical results are in very good 
agreement with the numerical. The numerically determined lateral bending modal 
displacements are in very good agreement with the analytically determined, shown 
in Figure 5b. This is a torsional normal mode , with the lateral bending modal 
displacements coalescence as Figure 5b is shown. In Figure 5c the numerically and 
the analytically determined rigid body angular velocity, are depicted, and they are in 
very good agreement.

The 2nd normal mode in torsion arise by the 3rd PM, 0(0) = ωT  + �3,4(0) = 4906.41 
rad/s (�3,4(0)= ‒10 rad/s), torsional angle q�(0) = y0,3,cr + �3,3(0) = 0.009721 (�3(0) = 
10-3

 ), and a large perturbation of angular velocity �(0) = �3,7(0)= 0.1. In Figures 6a-d, 
the transient responses obtained from direct numerical integration of equation (9) are 
depicted, incorporating those obtained by the equations (56a-b), (57) and (A.20a-d), 
and they are in very good agreement. In Figure 6a, the torsional ‘modal’ displacement 
is depicted, and seems that it is an unstable motion, since for the first time instances, 
the numerical responses are coincide with the analytical ones. However, after some 
cycles of oscillations the numerical solution is deviating from the analytical solution. 
Figure 6b depicts, the two modal lateral bending displacements, they are coalescence, 
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and there is a good agreement between the numerical with the analytical results. In 
Figure 6c the torsional modal velocities are depicted, the good agreement between 
the numerical with the analytical results in early stages is obvious, and the instability 
of this normal mode is further confirmed. In Figure 6d the rigid body angular velocity 
is depicted, and similarly in early stages there is agreement between numerical with 
analytical results and then their disagreement due to the instability of the normal 
mode is becoming profound.    

Figure 5. Transient responses for torsional critical speed 0,T,cr,1,2 =4507.95 rad/s, a) 
torsional angle ‒q�, b) lateral bending motions qv and qw, c) angular velocity ‒  [3].
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Figure 6. Transient responses for torsional normal mode of the linearized 
system of the 3rd family of equilibrium points with 0 = 4906.41 rad/s, torsional 
angle q� =0.009721 and torsional velocity q� = 0.1. a) torsional angle ‒q�, b) 
lateral bending motions qv and qw, c) torsional velocity ‒q�, and d) angular 
velocity‒  [3].

Numerical results confirming the solutions from multiple time scales analysis. 
On this subsection the multiple scales nonlinear dynamic analysis, through numerical 
simulations is discussed.

In [2] numerical simulations, 4 angular velocities considered, but only for small 
angular velocity with value a (0) = 104.72 rad/s (=1000 R.P.M.) there is a confirmation 
of the analytical results. The following set of initial conditions considered,
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Fig. 6. Transient responses for torsional normal mode of the linearized system of the 
3rd family of equilibrium points with �̇�𝜃�=4906.41 rad/s, torsional angle 𝑞𝑞�=0.009721 and 
torsional velocity �̇�𝑞�=0.1. a) torsional angle -𝑞𝑞�, b) lateral bending motions 𝑞𝑞� and 𝑞𝑞� , c) 
torsional velocity- �̇�𝑞�, and d) angular velocity-�̇�𝜃 [3].  

Numerical results confirming the solutions from multiple time scales 
analysis 
On this subsection the multiple scales nonlinear dynamic analysis, through nu-
merical simulations is discussed. 
In [2] numerical simulations, 4 angular velocities considered, but only for small 
angular velocity with value �̇�𝜃𝑎𝑎(0) = 104.72 rad/s (=1000 R.P.M.) there is a con-
firmation of the analytical results. The following set of initial conditions consid-
ered, 

𝑞𝑞𝑣𝑣(0) = 1, 𝑞𝑞𝑤𝑤(0) = 1, �̇�𝑞𝑣𝑣(0) = 0, �̇�𝑞𝑤𝑤(0) = 0, 𝑞𝑞�(0) = 0, �̇�𝑞𝜙𝜙(0) = 0. 
 

 
 

 . (74)

The above initial conditions resulting a very high initial deformation but it is a good 
set for examining the theoretical analysis.  

In Figure 7, the numerically obtained responses are depicted, incorporating the 
analytical solutions obtained from a) 1st order approximation without detuning 
frequencies, equations (A.1a-b) and (A.20a-b) and b) 1st order approximation with 
detuning frequencies given by equations (A.8a-b), (A.27a-b). 

In lateral bending motions (fig. 7a-b) the 1st order approximation with the 
detuning frequencies are in very good agreement with the numerical solution, since 
the detuning frequencies are not zero the 1st order approximation without detuning 
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frequencies is not capturing the dynamics. The torsional ‘modal’ displacement and 
rigid body angular velocity are approximated as an envelope without capturing the 
numerical simulation’s details, as in Figure 7c-d, are depicted.

Figure 7. Comparison of the direct numerical integration responses with 
the multiple scales solution for a (0) = 104.72 rad/sec: a) bending motion in 
y-direction (qv(t)), b) bending motion in z-direction (qw(t)), c) torsional modal 
angle (q�(t)) and, d) angular velocity (  (t)) [2].

Highlighting that the numerical simulation presented herein is for 1000 R.P.M, which 
is much smaller from the 1st and 2nd critical speeds. Therefore further analysis is needed 
for identifying the detuning frequencies in critical situations for the spinning shaft.

2.5. Discussion of this section. On this section nonlinear dynamic analysis of a 
spinning shaft with non-constant rotating speed, with two ways, has been presented. 
The system of equations describing the motion as highlighted in [4], is a system with 
zero eigenvalues associated with the underlying linear system, and they are associated 
with rigid body modes. In this case, the Lyapunov solutions, in low energies the nonlinear 
system’s dynamics, is described by the underlying linear modes is not necessarily valid. 
Therefore the methods with development relying to the underlying linear modes most 
likely cannot provide accurate results. Typical practice in discrete systems with rigid 
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body modes is a change of variables such that the system becomes ‘grounded’ in one of 
the generalized coordinates, and the rigid body modes are disappearing. In our system, 
the original equations are PDEs. The ‘grounding’ in one of the deformation variables 
makes the system very complicated, e.g. the torsional deformation with rigid body 
motion, leading to coupling of the lateral bending with torsional motion, through the 
Coriolis and the centrifugal forces. 

The 1st method of nonlinear dynamic analysis, is the well-established multiple 
scales analysis, and herein the results arose by incorporating two time scales with 
detuning frequencies from the steady states solutions.

The 2nd approach was performed with linearization around the PMs that form 
the backbone lines of rigid body modes. The analytical results obtained with the 
linearization around the 1st PM, overlap with the analytical results obtained with the 
1st order approximation from the multiple-scale analysis. The combination of the 3 
PMs of rigid body modes, and the eigenvalues associated with the dynamical systems 
arising from the linearization of the original system around the PMs, leads to several 
observations. In a plot that is the projection of the backbone lines, of the rigid body 
motions of the spinning shaft with non-constant rotating speed, to 3D make some 
things very clear. There is qualitative change of the eigenvalues, for different values 
of the angular velocity associated with the linear systems around 1st PM, and leads to 
trajectories associated with variant Lyapunov exponents and chaotic motions.

Moreover four sets of normal modes that define critical situations have been 
determined. The three of them coincide with multiple scale analysis. The fourth one 
is a torsional normal mode that  through the PMs linearization can directly obtained.

Apart of the normal modes, that define the critical situations, the regions in the 
backbone lines of rigid body modes with the dynamical systems associated with 
eigenvalues having positive real parts, means that the solutions are escape to infinity, 
and this form another type of critical situations, that can be examined further on.

Although the mathematical analysis is extensive, the definition of the critical situations, 
of the spinning shaft with non-constant rotating speed, needs more work, for the definition 
of the normal modes e.g. away from the PMs and in the regions that the dynamics is 
described by linear dynamical systems associated with eigenvalues with positive real parts. 

Also, the full chaotic motions analysis is still incomplete, e.g. the determination of 
the basins of attraction, and therefore further work is needed.

The above mentioned nonlinear dynamic analysis through the observation that 
the PPs  are associated with the rigid body modes paved the way for developing the 
theorems presented in the subsequent sections.

3. Theorems in mechanics about rigid body motions

3.1. Theorems about perpetual points of mechanical systems. The first 
analysis of determining the spinning shaft’s perpetual points leads to a preliminary 
conclusion that the perpetual points are associated with rigid body motions in 
mechanical systems. Later on, simpler mechanical systems have been examined to verify 
it. In Figure 8, the configuration of a 2 degrees of freedom mechanical system is shown.



Dynamics of a Spinning Shaft With Non-constant Rotating Speed, Leading to Theorems in Mechanics298

Figure 8. Configuration of the 2 degrees of freedom mechanical system.
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Since in all sets the generalized coordinates can have any real value and the 
generalized velocities any non-zero real value, they are infinite points and they are 
forming manifolds in state space, the perpetual manifolds [8]. The two first sets are 
associated with rigid body motions.

In case that the system is linear (k2 = 0), only the first set of perpetual points 
exists as in [7] without damping (c1 = 0) and in [8] with damping (c1 ≠ 0), are shown. 
In considering nonlinearities but without damping (c1 = 0), only the 1st and the 2nd 
sets of perpetual points exist and they are associated with rigid body motions [7]. 

The 2nd  set of perpetual points, extended to N-Degrees of Freedom (dof) systems,
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The 2nd  set of perpetual points, extended to N-Degrees of Freedom (dof) sys-
tems, 

 
 𝑆𝑆 = {(𝑞𝑞�(𝑡𝑡), … , 𝑞𝑞�(𝑡𝑡), �̇�𝑞�, … , �̇�𝑞�), (𝑞𝑞�(𝑡𝑡), … , 𝑞𝑞�(𝑡𝑡), �̇�𝑞�) ∈ ℝ� × ℝ∗},   (78a) 

 
is forming the perpetual manifolds of rigid body motions [9], that all the inertia 
elements are moving with constant not necessarily zero distance with the same 
velocities.  
The 1st  set of perpetual points, extended to N-dof systems, 
 

𝑈𝑈 = {(𝑞𝑞�(𝑡𝑡), … , 𝑞𝑞�(𝑡𝑡), �̇�𝑞�, … , �̇�𝑞�), (𝑞𝑞�(𝑡𝑡), �̇�𝑞�) ∈ ℝ × ℝ∗},                           (78b) 
 

is forming the perpetual manifolds of exact rigid body motions [9]. 
 
In [7], the following theorem about the perpetual points of conservative linear 
natural mechanical systems proved: 

Theorem-1 
“The perpetual points in linear conservative natural mechanical systems are de-
fined by the rigid body motions and the inverse.” [7] 

 
In [8], for dissipative linear natural mechanical systems, another theorem proved 
and stated: 
 
 
 

Theorem-2  
“The perpetual points in linear natural mechanical discrete systems with viscous 
damping excepting any externally applied load, are defined by the rigid body mo-
tions and they exist if both stiffness and damping matrices are positive semi-
definite.” [8] 

And, 

Inverse of theorem-2 
 “The rigid body motions define the perpetual points in linear natural mechanical 
discrete systems with viscous damping excepting any externally applied load, if and 
only if the damping matrix is positive semi-definite.” [8] 
The connection of perpetual points of mechanical systems with their rigid body 
motions leads to some definitions in mechanics and the proof of a theorem, that 
in the following section, is presented. 
 

,   (78a)
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is forming the perpetual manifolds of exact rigid body motions [9].

In [7], the following theorem about the perpetual points of conservative linear 
natural mechanical systems proved:

Theorem 1. The perpetual points in linear conservative natural mechanical systems 
are defined by the rigid body motions and the inverse. [7]

In [8], for dissipative linear natural mechanical systems, another theorem proved 
and stated:

Theorem 2. The perpetual points in linear natural mechanical discrete systems with 
viscous damping excepting any externally applied load, are defined by the rigid body 
motions and they exist if both stiffness and damping matrices are positive semi-
definite. [8]

And,

Inverse of theorem 2. The rigid body motions define the perpetual points in linear 
natural mechanical discrete systems with viscous damping excepting any externally 
applied load, if and only if the damping matrix is positive semi-definite. [8]

The connection of perpetual points of mechanical systems with their rigid body 
motions leads to some definitions in mechanics and the proof of a theorem, that in 
the following section, is presented.

3.2. Definitions of perpetual mechanical systems, augmented perpetual 
manifolds, and a relevant theorem with a corollary. The main observation 
that the perpetual points are associated with rigid body motions, that whereas exist on 
the mechanical systems, lead to the preliminary idea, as stated in the conclusions of [7], 
that the perpetual points formalism can be used for exciting only the rigid body modes, 
without any oscillations.

Recalling in mathematical terms the definition of perpetual points of a mechanical 
system,
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3.2 Definitions of perpetual mechanical systems, augmented perpetual 
manifolds, and a relevant theorem with a corollary 

The main observation that the perpetual points are associated with rigid body 
motions, that whereas exist on the mechanical systems, lead to the preliminary 
idea, as stated in the conclusions of [7], that the perpetual points formalism can 
be used for exciting only the rigid body modes, without any oscillations. 

Recalling in mathematical terms the definition of perpetual points of a me-
chanical system, 

�̈�𝑞1 = �̈�𝑞2 = ⋯ = �̈�𝑞𝑁𝑁 = 0,      (79a) 
and, 

�⃛�𝑞1 = �⃛�𝑞2 = ⋯ = �⃛�𝑞𝑁𝑁 = 0,       (79b) 
leads to the following question: 

Is it possible only the left-hand side of these equations (79a-b) to be valid by 
means without necessarily being zero or constant accelerations?         

The question's address leads to developing the framework in [10] and [9] for 
triggering rigid body modes, or otherwise stated external excited flexible N-dof 
systems to move as rigid body without any oscillations. In [10], the description of 
some definitions are written, that they are mathematically strictly defined in [9]. 
Moreover, the theorem's statement in [10] is written, and in [9] is proved. 

Definition of Perpetual Mechanical Systems 
 “A discrete dissipative mechanical system, without any external forcing that is 

described by the following equations of motion, 

�𝑴𝑴𝒊𝒊𝒊𝒊�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� × {�̈�𝒒𝒊𝒊(𝑡𝑡)} + �𝑪𝑪𝒊𝒊𝒊𝒊� × {�̇�𝒒𝒊𝒊(𝑡𝑡)} +  
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𝑖𝑖 = 1, … , 𝑁𝑁, 𝑗𝑗 = 1, … , 𝑁𝑁, 𝑙𝑙, 𝑚𝑚, 𝑛𝑛, 𝑜𝑜 ∈ {1,2, … , 𝑁𝑁}, and 
 

 �𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡), �̈�𝑞�(𝑡𝑡)� ∈ ℝ�,         (80) 
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�𝑴𝑴𝒊𝒊𝒊𝒊�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� is a real 𝑁𝑁 × 𝑁𝑁 state-dependent matrix with elements that 
may be nonsmooth and nonlinear functions, and nonzero all the sums of rows, 
�𝑲𝑲𝒊𝒊𝒊𝒊�  and �𝑪𝑪𝒊𝒊𝒊𝒊�, are real 𝑁𝑁 × 𝑁𝑁 constant, stiffness and proportional to velocity 
vector, matrices, respectively,  
�𝑭𝑭𝑵𝑵𝑵𝑵,𝒊𝒊�, is a 𝑁𝑁 × 1 vector with elements state-dependent nonlinear functions 
which can also be nonsmooth but singled valued for rigid body motions, 
is called discrete Perpetual Mechanical System if admits as perpetual points 
the exact perpetual manifolds of rigid body motions._” [9] 

,      (79a)
and,
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is called discrete Perpetual Mechanical System if admits as perpetual points 
the exact perpetual manifolds of rigid body motions._” [9] 

,       (79b)

leads to the following question:
Is it possible only the left-hand side of these equations (79a-b) to be valid by 

means without necessarily being zero or constant accelerations?        
The question’s address leads to developing the framework in [10] and [9] for 

triggering rigid body modes, or otherwise stated external excited flexible N-dof 
systems to move as rigid body without any oscillations. In [10], the description of 
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some definitions are written, that they are mathematically strictly defined in [9]. 
Moreover, the theorem’s statement in [10] is written, and in [9] is proved.

Definition of Perpetual Mechanical Systems. A discrete dissipative mechanical 
system, without any external forcing that is described by the following equations of 
motion,
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�⃛�𝑞1 = �⃛�𝑞2 = ⋯ = �⃛�𝑞𝑁𝑁 = 0,       (79b) 
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Is it possible only the left-hand side of these equations (79a-b) to be valid by 
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�𝑴𝑴𝒊𝒊𝒊𝒊�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� × {�̈�𝒒𝒊𝒊(𝑡𝑡)} + �𝑪𝑪𝒊𝒊𝒊𝒊� × {�̇�𝒒𝒊𝒊(𝑡𝑡)} +  
 

+�𝑲𝑲𝒊𝒊𝒊𝒊� × {𝒒𝒒𝒊𝒊(𝑡𝑡)} + �𝑭𝑭𝑵𝑵𝑵𝑵,𝒊𝒊�𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� = {0}, for 
 

𝑖𝑖 = 1, … , 𝑁𝑁, 𝑗𝑗 = 1, … , 𝑁𝑁, 𝑙𝑙, 𝑚𝑚, 𝑛𝑛, 𝑜𝑜 ∈ {1,2, … , 𝑁𝑁}, and 
 

 �𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡), �̈�𝑞�(𝑡𝑡)� ∈ ℝ�,         (80) 
 

whereas, 
�𝑴𝑴𝒊𝒊𝒊𝒊�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� is a real 𝑁𝑁 × 𝑁𝑁 state-dependent matrix with elements that 
may be nonsmooth and nonlinear functions, and nonzero all the sums of rows, 
�𝑲𝑲𝒊𝒊𝒊𝒊�  and �𝑪𝑪𝒊𝒊𝒊𝒊�, are real 𝑁𝑁 × 𝑁𝑁 constant, stiffness and proportional to velocity 
vector, matrices, respectively,  
�𝑭𝑭𝑵𝑵𝑵𝑵,𝒊𝒊�, is a 𝑁𝑁 × 1 vector with elements state-dependent nonlinear functions 
which can also be nonsmooth but singled valued for rigid body motions, 
is called discrete Perpetual Mechanical System if admits as perpetual points 
the exact perpetual manifolds of rigid body motions._” [9] 
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,       (80)
whereas,
[Mij(t,ql(t), qm(t))] is a real N × N state-dependent matrix with elements that may 

be nonsmooth and nonlinear functions, and nonzero all the sums of rows,
[Kij]  and [Cij], are real N × N constant, stiffness and proportional to velocity 

vector, matrices, respectively, 
{FNL,i}, is a N × 1 vector with elements state-dependent nonlinear functions which 

can also be nonsmooth but singled valued for rigid body motions,
is called discrete Perpetual Mechanical System if admits as perpetual points 

the exact perpetual manifolds of rigid body motions. [9]

Definitions of Augmented Perpetual Manifolds. The 2N +1 dimensional 
Augmented Perpetual Manifolds, e.g., Ma of an N-dof mechanical discrete system, 
with generalized coordinates qi that admits solutions of perpetual manifolds arise 
when, 
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Definitions of Augmented Perpetual Manifolds 
“The 2N +1 dimensional Augmented Perpetual Manifolds, e.g., 𝑀𝑀� of an N-dof 
mechanical discrete system, with generalized coordinates 𝑞𝑞� that admits solu-
tions of perpetual manifolds arise when,  
 

�̈�𝑞�(𝑡𝑡) = �̈�𝑞�(𝑡𝑡),    for = 1, … , 𝑁𝑁, 𝑎𝑎𝑎𝑎𝑎𝑎  �̈�𝑞�(𝑡𝑡) ∈ ℝ,          (81) 
 

and the solutions of the system in state space, define them, as, 
 

𝑀𝑀� = ��𝑡𝑡, 𝑞𝑞�,�(𝑡𝑡) + 𝑐𝑐� ∙ (𝑡𝑡 − 𝑡𝑡�) + 𝑎𝑎�, … , 𝑞𝑞�,�(𝑡𝑡) + 𝑐𝑐� ∙ (𝑡𝑡 − 𝑡𝑡�) + 𝑎𝑎�,  
 
�̇�𝑞�,�(𝑡𝑡) + 𝑐𝑐�, … , �̇�𝑞�,�(𝑡𝑡) + 𝑐𝑐��:   
 

�𝑡𝑡, 𝑞𝑞�,�(𝑡𝑡), �̇�𝑞�,�(𝑡𝑡)� ∈ ℝ�∙���, (𝑐𝑐�, … , 𝑐𝑐�, 𝑎𝑎�, … , 𝑎𝑎�) ∈ ℝ�∙�},  (82a) 
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In the exact augmented perpetual manifolds, the system is moving like a particle.   
After the definition of the exact augmented perpetual manifolds the proof of the 
following theorem, is straightforward as in [9] is shown. 
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�𝑡𝑡, 𝑞𝑞�,�(𝑡𝑡), �̇�𝑞�,�(𝑡𝑡)� ∈ ℝ�∙���, (𝑐𝑐�, … , 𝑐𝑐�, 𝑎𝑎�, … , 𝑎𝑎�) ∈ ℝ�∙�},  (82a) 
 

whereas the constants are given by considering the initial conditions as follows, 
 

�̇�𝑞�(𝑡𝑡�) = �̇�𝑞�,�(𝑡𝑡�) + 𝑐𝑐� ,    for 𝑖𝑖 = 1, … , 𝑁𝑁,   (82b) 
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𝑞𝑞�(𝑡𝑡�) = 𝑞𝑞�,�(𝑡𝑡�) + 𝑎𝑎� ,      for 𝑖𝑖 = 1, … , 𝑁𝑁.   (82c)” [9] 
 

“Further on, in case that the constants−𝑐𝑐� (𝑖𝑖 = 1, … , 𝑁𝑁) in equation (82a) are 
equal to zero, lead to the augmented perpetual manifolds, e.g., 𝑊𝑊�  of rigid body 
motions, which are given by, 
 

𝑊𝑊� = ��𝑡𝑡, 𝑞𝑞�,�(𝑡𝑡) + 𝑎𝑎�, … , 𝑞𝑞�,�(𝑡𝑡) + 𝑎𝑎�, �̇�𝑞�(𝑡𝑡), …,  
 

�̇�𝑞�(𝑡𝑡)�: �𝑡𝑡, 𝑞𝑞�,�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� ∈ ℝ���, (𝑎𝑎�, … , 𝑎𝑎�) ∈ ℝ�∙�}.  (83) 
 

In the augmented perpetual manifolds of rigid body motion, each part of the sys-
tem moves together with the rest of the system, maintaining not necessarily zero 
but a constant distance of the relative positions.” [9] 

“In case that all the constants−𝑐𝑐�, 𝑎𝑎� (𝑖𝑖 = 1, … , 𝑁𝑁), in equation (82a) are equal 
to zero, then the augmented perpetual manifolds of rigid body motions are called 
Exact Augmented Perpetual Manifolds (𝑋𝑋�), which are given by, 

 

𝑋𝑋𝑎𝑎 = ��𝑡𝑡, 𝑞𝑞𝑎𝑎(𝑡𝑡), … , 𝑞𝑞𝑎𝑎(𝑡𝑡), �̇�𝑞𝑎𝑎(𝑡𝑡), … , �̇�𝑞𝑎𝑎(𝑡𝑡)� : �𝑡𝑡, 𝑞𝑞𝑎𝑎(𝑡𝑡), �̇�𝑞𝑎𝑎(𝑡𝑡)� ∈ ℝ𝟑𝟑�.  (84)”  
 

[9] 
In the exact augmented perpetual manifolds, the system is moving like a particle.   
After the definition of the exact augmented perpetual manifolds the proof of the 
following theorem, is straightforward as in [9] is shown. 
 

.                 (82c) [9]

Further on, in case that the constants   ̶ ci (i = 1, ..., N) in equation (82a) are equal 
to zero, lead to the augmented perpetual manifolds, e.g., Wa of rigid body motions, 
which are given by,

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
317 

Definitions of Augmented Perpetual Manifolds 
“The 2N +1 dimensional Augmented Perpetual Manifolds, e.g., 𝑀𝑀� of an N-dof 
mechanical discrete system, with generalized coordinates 𝑞𝑞� that admits solu-
tions of perpetual manifolds arise when,  
 

�̈�𝑞�(𝑡𝑡) = �̈�𝑞�(𝑡𝑡),    for = 1, … , 𝑁𝑁, 𝑎𝑎𝑎𝑎𝑎𝑎  �̈�𝑞�(𝑡𝑡) ∈ ℝ,          (81) 
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following theorem, is straightforward as in [9] is shown. 
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[9] 
In the exact augmented perpetual manifolds, the system is moving like a particle.   
After the definition of the exact augmented perpetual manifolds the proof of the 
following theorem, is straightforward as in [9] is shown. 
 

.   (83)
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In the augmented perpetual manifolds of rigid body motion, each part of the 
system moves together with the rest of the system, maintaining not necessarily zero 
but a constant distance of the relative positions. [9]

In case that all the constants −ci, di (i = 1, ..., N), in equation (82a) are equal to 
zero, then the augmented perpetual manifolds of rigid body motions are called 
Exact Augmented Perpetual Manifolds (Xa), which are given by,
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 .               (84) [9]

In the exact augmented perpetual manifolds, the system is moving like a particle.  
After the definition of the exact augmented perpetual manifolds the proof of the 

following theorem, is straightforward as in [9] is shown.

Theorem 3. Any N(≥2)-degrees of freedom discrete mechanical system with generalized 
coordinates qi(t) that can be written as a perpetual mechanical system with external 
forcing that is described by the following system of differential equations,

Fotios Georgiades 
318 

 

Theorem-3 
“Any 𝑁𝑁(≥ 2)-degrees of freedom discrete mechanical system with generalized 
coordinates 𝑞𝑞�(𝑡𝑡) that can be written as a perpetual mechanical system with ex-
ternal forcing that is described by the following system of differential equations, 
 

�𝑴𝑴𝒊𝒊,𝒋𝒋�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� × {�̈�𝒒𝒊𝒊(𝑡𝑡)} + �𝑪𝑪𝒊𝒊,𝒋𝒋� × {�̇�𝒒𝒊𝒊(𝑡𝑡)} + �𝑲𝑲𝒊𝒊,𝒋𝒋� × {𝒒𝒒𝒊𝒊(𝑡𝑡)} +  
 

+�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵�𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)�� = �𝑭𝑭𝒊𝒊 �𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)��, for 

 
𝑖𝑖 = 1, … , 𝑁𝑁, 𝑗𝑗 = 1, … , 𝑁𝑁, 𝑙𝑙, 𝑚𝑚, 𝑛𝑛, 𝑜𝑜, 𝑝𝑝, 𝑞𝑞 ∈ {1,2, … , 𝑁𝑁}, 

 
�𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡), �̈�𝑞�(𝑡𝑡)� ∈ ℝ�,    (85) 

 
and admits unique solutions for the following matrices, 
�𝑴𝑴𝒊𝒊,𝒋𝒋� is a real 𝑁𝑁 × 𝑁𝑁 inertia matrix with elements that can be, nonsmooth, non-
linear, time and state dependent, functions but having at least one nonzero sum 
of k-row for all time instants,  
�𝑲𝑲𝒊𝒊,𝒋𝒋�  and �𝑪𝑪𝒊𝒊,𝒋𝒋�, are real 𝑁𝑁 × 𝑁𝑁 constant, stiffness and proportional to velocity 
vector, matrices,  
�𝑭𝑭𝒊𝒊

𝑵𝑵𝑵𝑵� is a 𝑁𝑁 × 1 vector of nonlinear internal forces with elements state depend-
ent nonlinear functions which can be nonsmooth but single-valued for rigid body 
motions, and 
 
 𝐹𝐹�

��(𝑞𝑞�, 0) = 0 for 𝑞𝑞� ∈ ℝ, 
  
{𝑭𝑭𝒊𝒊} is a real 𝑁𝑁 × 1  vector of external forces with elements, time and state de-
pendent, maybe nonlinear and nonsmooth functions,  
if the external forces (𝐹𝐹�) with the reference k-inertia external force (𝐹𝐹�) are 
related as follows, 
 

𝐹𝐹��𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� =
∑ ��,���,��(�),�̇�(�)��

��� ∙����,��(�),�̇�(�)�

∑ ��,���,��(�),�̇�(�)��
���

, for 

 
 𝑖𝑖, 𝑘𝑘 ∈ {1,2, … , 𝑁𝑁}, and 𝑞𝑞�(𝑡𝑡) = 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡) = �̇�𝑞�(𝑡𝑡),   (86) 

 
then, the solution of any of the following differential equations, 
 

�̈�𝑞�(𝑡𝑡) = ����,��(�),�̇�(�)�
∑ ��,���,��(�),�̇�(�)��

���
= 𝐺𝐺�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� ,   (87) 

 
with vector field G, for the following set of initial conditions at the time instant 𝑡𝑡�,  
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time and state dependent, functions but having at least one nonzero sum of k-row for 
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{Fi
NL}  is a N × 1 vector of nonlinear internal forces with elements state dependent 

nonlinear functions which can be nonsmooth but single-valued for rigid body motions, 
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NL(qs,0) = 0 for qs ∈ ℝ, 
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as follows,
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 𝐹𝐹�
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��� ∙����,��(�),�̇�(�)�

∑ ��,���,��(�),�̇�(�)��
���

, for 
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∑ ��,���,��(�),�̇�(�)��

���
= 𝐺𝐺�𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� ,   (87) 

 
with vector field G, for the following set of initial conditions at the time instant 𝑡𝑡�,  

,     (87)

with vector field G, for the following set of initial conditions at the time instant t0, 
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𝑞𝑞�(𝑡𝑡�) = 𝑞𝑞�(𝑡𝑡�), for  𝑖𝑖 = 1, … , 𝑁𝑁, and,   𝑞𝑞�(𝑡𝑡�) ∈ ℝ,   (88a) 
 

�̇�𝑞�(𝑡𝑡�) =  �̇�𝑞�(𝑡𝑡�), for 𝑖𝑖 = 1, … , 𝑁𝑁, and,   �̇�𝑞�(𝑡𝑡�) ∈ ℝ,  (88b) 
 

is defining the generalized coordinates-𝑞𝑞�  and their velocities in the exact aug-
mented perpetual manifold, 
 

𝑋𝑋� = ��𝑡𝑡, 𝑞𝑞�(𝑡𝑡), … , 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡), … , �̇�𝑞�(𝑡𝑡)�, �𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� ∈ ℝ𝟑𝟑�.      
 

  (89)” [9-10] 
After the above theorem the following corollary in [9] is stated and proved. 

Corollary 
“In an externally forced discrete perpetual mechanical system, if the exact aug-
mented perpetual manifold is formed, by a harmonic  
motion, even though the system is flexible, the system behaves in dual mode as a 
wave-particle.”[9] 
 

Example for the analytical and the numerical verification of the theorem 
Herein the application of the theorem using the 1st example of [9] follows. 
A 5-dof mechanical system is considered with the following equations of motion 
[9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� × {�̈�𝒙𝒊𝒊} + �𝑪𝑪𝒊𝒊,𝒋𝒋� × {�̇�𝒙𝒊𝒊} + �𝑲𝑲𝒊𝒊,𝒋𝒋� × {𝒙𝒙𝒊𝒊} + �𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� = �𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆,𝒊𝒊(𝑡𝑡)�, 

 
 for  𝑛𝑛, 𝑜𝑜 ∈ {1,2, … ,5}, 𝑖𝑖 = 1, … ,5.      (90) 

 
The mass matrix is defined by [9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑚𝑚� 0 0 0 0
0 𝑚𝑚� 0 0 0
0 0 𝑚𝑚� 0 0
0 0 0 𝑚𝑚� 0
0 0 0 0 𝑚𝑚�⎦

⎥
⎥
⎥
⎤

,            (91a) 

 
with 𝑚𝑚� (𝑖𝑖 = 1, . . ,5)  being positive constants. 

The stiffness matrix is given by [9], 
 

�𝑲𝑲𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡

𝑘𝑘� −𝑘𝑘� 0 0 0
−𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0 0

0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0
0 0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘�
0 0 0 −𝑘𝑘� 𝑘𝑘� ⎦

⎥
⎥
⎥
⎤

.    (91b) 

 
The damping matrix is given by [9], 

,   (88a)
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⎥
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.    (91b) 

 
The damping matrix is given by [9], 

,   (88b)

is defining the generalized coordinates −qi and their velocities in the exact augmented 
perpetual manifold,
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⎥
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The damping matrix is given by [9], 

.                (89) [9-10]

After the above theorem the following corollary in [9] is stated and proved.

Corollary. In an externally forced discrete perpetual mechanical system, if 
the exact augmented perpetual manifold is formed, by a harmonic motion, 
even though the system is flexible, the system behaves in dual mode as a wave-
particle. [9]

Example for the analytical and the numerical verification of the theorem. 
Herein the application of the theorem using the 1st example of [9] follows.

A 5-dof mechanical system is considered with the following equations of motion [9],
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⎥
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,
 for 
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 for  𝑛𝑛, 𝑜𝑜 ∈ {1,2, … ,5}, 𝑖𝑖 = 1, … ,5.      (90) 

 
The mass matrix is defined by [9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑚𝑚� 0 0 0 0
0 𝑚𝑚� 0 0 0
0 0 𝑚𝑚� 0 0
0 0 0 𝑚𝑚� 0
0 0 0 0 𝑚𝑚�⎦

⎥
⎥
⎥
⎤

,            (91a) 

 
with 𝑚𝑚� (𝑖𝑖 = 1, . . ,5)  being positive constants. 

The stiffness matrix is given by [9], 
 

�𝑲𝑲𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡

𝑘𝑘� −𝑘𝑘� 0 0 0
−𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0 0

0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0
0 0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘�
0 0 0 −𝑘𝑘� 𝑘𝑘� ⎦

⎥
⎥
⎥
⎤

.    (91b) 

 
The damping matrix is given by [9], 

.       (90)
The mass matrix is defined by [9],
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𝑞𝑞�(𝑡𝑡�) = 𝑞𝑞�(𝑡𝑡�), for  𝑖𝑖 = 1, … , 𝑁𝑁, and,   𝑞𝑞�(𝑡𝑡�) ∈ ℝ,   (88a) 
 

�̇�𝑞�(𝑡𝑡�) =  �̇�𝑞�(𝑡𝑡�), for 𝑖𝑖 = 1, … , 𝑁𝑁, and,   �̇�𝑞�(𝑡𝑡�) ∈ ℝ,  (88b) 
 

is defining the generalized coordinates-𝑞𝑞�  and their velocities in the exact aug-
mented perpetual manifold, 
 

𝑋𝑋� = ��𝑡𝑡, 𝑞𝑞�(𝑡𝑡), … , 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡), … , �̇�𝑞�(𝑡𝑡)�, �𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� ∈ ℝ𝟑𝟑�.      
 

  (89)” [9-10] 
After the above theorem the following corollary in [9] is stated and proved. 

Corollary 
“In an externally forced discrete perpetual mechanical system, if the exact aug-
mented perpetual manifold is formed, by a harmonic  
motion, even though the system is flexible, the system behaves in dual mode as a 
wave-particle.”[9] 
 

Example for the analytical and the numerical verification of the theorem 
Herein the application of the theorem using the 1st example of [9] follows. 
A 5-dof mechanical system is considered with the following equations of motion 
[9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� × {�̈�𝒙𝒊𝒊} + �𝑪𝑪𝒊𝒊,𝒋𝒋� × {�̇�𝒙𝒊𝒊} + �𝑲𝑲𝒊𝒊,𝒋𝒋� × {𝒙𝒙𝒊𝒊} + �𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� = �𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆,𝒊𝒊(𝑡𝑡)�, 

 
 for  𝑛𝑛, 𝑜𝑜 ∈ {1,2, … ,5}, 𝑖𝑖 = 1, … ,5.      (90) 

 
The mass matrix is defined by [9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑚𝑚� 0 0 0 0
0 𝑚𝑚� 0 0 0
0 0 𝑚𝑚� 0 0
0 0 0 𝑚𝑚� 0
0 0 0 0 𝑚𝑚�⎦

⎥
⎥
⎥
⎤

,            (91a) 

 
with 𝑚𝑚� (𝑖𝑖 = 1, . . ,5)  being positive constants. 

The stiffness matrix is given by [9], 
 

�𝑲𝑲𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡

𝑘𝑘� −𝑘𝑘� 0 0 0
−𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0 0

0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0
0 0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘�
0 0 0 −𝑘𝑘� 𝑘𝑘� ⎦

⎥
⎥
⎥
⎤

.    (91b) 

 
The damping matrix is given by [9], 

,               (91a)

with mi (i = 1, ..., 5) being positive constants.
The stiffness matrix is given by [9],
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𝑞𝑞�(𝑡𝑡�) = 𝑞𝑞�(𝑡𝑡�), for  𝑖𝑖 = 1, … , 𝑁𝑁, and,   𝑞𝑞�(𝑡𝑡�) ∈ ℝ,   (88a) 
 

�̇�𝑞�(𝑡𝑡�) =  �̇�𝑞�(𝑡𝑡�), for 𝑖𝑖 = 1, … , 𝑁𝑁, and,   �̇�𝑞�(𝑡𝑡�) ∈ ℝ,  (88b) 
 

is defining the generalized coordinates-𝑞𝑞�  and their velocities in the exact aug-
mented perpetual manifold, 
 

𝑋𝑋� = ��𝑡𝑡, 𝑞𝑞�(𝑡𝑡), … , 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡), … , �̇�𝑞�(𝑡𝑡)�, �𝑡𝑡, 𝑞𝑞�(𝑡𝑡), �̇�𝑞�(𝑡𝑡)� ∈ ℝ𝟑𝟑�.      
 

  (89)” [9-10] 
After the above theorem the following corollary in [9] is stated and proved. 

Corollary 
“In an externally forced discrete perpetual mechanical system, if the exact aug-
mented perpetual manifold is formed, by a harmonic  
motion, even though the system is flexible, the system behaves in dual mode as a 
wave-particle.”[9] 
 

Example for the analytical and the numerical verification of the theorem 
Herein the application of the theorem using the 1st example of [9] follows. 
A 5-dof mechanical system is considered with the following equations of motion 
[9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� × {�̈�𝒙𝒊𝒊} + �𝑪𝑪𝒊𝒊,𝒋𝒋� × {�̇�𝒙𝒊𝒊} + �𝑲𝑲𝒊𝒊,𝒋𝒋� × {𝒙𝒙𝒊𝒊} + �𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� = �𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆,𝒊𝒊(𝑡𝑡)�, 

 
 for  𝑛𝑛, 𝑜𝑜 ∈ {1,2, … ,5}, 𝑖𝑖 = 1, … ,5.      (90) 

 
The mass matrix is defined by [9], 

�𝑴𝑴𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑚𝑚� 0 0 0 0
0 𝑚𝑚� 0 0 0
0 0 𝑚𝑚� 0 0
0 0 0 𝑚𝑚� 0
0 0 0 0 𝑚𝑚�⎦

⎥
⎥
⎥
⎤

,            (91a) 

 
with 𝑚𝑚� (𝑖𝑖 = 1, . . ,5)  being positive constants. 

The stiffness matrix is given by [9], 
 

�𝑲𝑲𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡

𝑘𝑘� −𝑘𝑘� 0 0 0
−𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0 0

0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘� 0
0 0 −𝑘𝑘� 𝑘𝑘� + 𝑘𝑘� −𝑘𝑘�
0 0 0 −𝑘𝑘� 𝑘𝑘� ⎦

⎥
⎥
⎥
⎤

.    (91b) 

 
The damping matrix is given by [9], 

.     (91b)

The damping matrix is given by [9],
Fotios Georgiades 

320 

�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

.    (91c)

The nonlinear forces vector is [9],

Fotios Georgiades 
320 

�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 
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�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

.   (91d)

The external forcing vector is [9],
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�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

.   (91e)

The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10],
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�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

.        (92)

Two types of external forces considered in [9]:
1. Linear time-varying force 
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�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

,
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�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� + 𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�)
−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧

𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)�

−𝑐𝑐��,� ∙ (�̇�𝑥� − �̇�𝑥�)� + 𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)�
−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

.    (93a)

The velocity (xa (t)), is given by [9],
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�𝑪𝑪𝒊𝒊,𝒋𝒋� =

⎣
⎢
⎢
⎢
⎡
𝑐𝑐� −𝑐𝑐� 0 0 0
−𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0 0
0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐� 0
0 0 −𝑐𝑐� 𝑐𝑐� + 𝑐𝑐� −𝑐𝑐�
0 0 0 −𝑐𝑐� 𝑐𝑐� ⎦

⎥
⎥
⎥
⎤

.           (91c) 

 
The nonlinear forces vector is [9], 

�𝑭𝑭𝒊𝒊
𝑵𝑵𝑵𝑵(𝑥𝑥�, �̇�𝑥�)� =

⎩
⎪
⎨

⎪
⎧
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−𝑘𝑘��,� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥� − 𝑥𝑥�) + 𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)�

−𝑘𝑘��,� ∙ (𝑥𝑥� − 𝑥𝑥�)� ⎭
⎪
⎬

⎪
⎫

+ 

 

+

⎩
⎪
⎨

⎪
⎧
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−𝑐𝑐��,� ∙ 𝑡𝑡𝑡𝑡𝑠𝑠ℎ�𝑏𝑏 ∙ (�̇�𝑥� − �̇�𝑥�)� ⎭

⎪
⎬

⎪
⎫

 ,for    𝑠𝑠, 𝑜𝑜 ∈ {1,2, … ,5}.  (91d) 

 
The external forcing vector is [9], 
 

 �𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊(𝑡𝑡)�
�
= �1 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� 𝑚𝑚� 𝑚𝑚�� � ∙ 𝐹𝐹���,�(𝑡𝑡).  (91e) 

 
The system is fulfilling the theorem’s conditions, and the solution the  in exact 
augmented perpetual manifolds is given by [9-10], 
 

�̈�𝑥�(𝑡𝑡) =
����,�(�)

��
.          (92) 

 
Two types of external forces considered in [9]: 
 

1. Linear time-varying force �𝐹𝐹���,�
(�) (𝑡𝑡)�, 

2.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 ∙ 𝑡𝑡 + 𝑐𝑐,  with    (𝜂𝜂, 𝑐𝑐) ∈ ℝ�. (93a) 

 
The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 

 
�̇�𝑥�,�(𝑡𝑡) =

�
�∙∑ ��,�

�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

∑ ��,�
�
���

∙ (𝑡𝑡 − 𝑡𝑡�) + �̇�𝑥�,�(𝑡𝑡�),   (93b) 

 
and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

 

,   (93b)

and the response (xa,1 (t)), is given by [9],
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𝑥𝑥�,�(𝑡𝑡) =
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) −  

 

−� �∙��
�

�∙∑ ��,�
�
���

+ �∙��
∑ ��,�
�
���

− �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) + 𝑥𝑥�,�(𝑡𝑡�).   (93c) 

 
3. Single frequency harmonic forces (𝐹𝐹�

(�)),  

4.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝐴𝐴�� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��), with (𝐴𝐴��, 𝜃𝜃��) ∈ ℝ� and, 𝜔𝜔�� ∈ ℝ��, (94a) 

 
whereas, 𝐴𝐴�� is the excitation amplitude, the external frequency and phase, are 
denoted as 𝜔𝜔��  and 𝜃𝜃�� , respectively. The velocity (�̇�𝑥�,�(𝑡𝑡)) is given by [9], 
 
�̇�𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

∙ cos(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�),        (94b) 

 
and the response (𝑥𝑥�,�(𝑡𝑡)), is [9], 
 
𝑥𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

� ∙ sin(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 

+����∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

� + 𝑥𝑥�,�(𝑡𝑡�).       (94c) 

 
The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
 

𝑤𝑤𝑤𝑤 = ���∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�).        (94d) 

 
The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   
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𝑥𝑥�,�(𝑡𝑡) =
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) −  

 

−� �∙��
�

�∙∑ ��,�
�
���

+ �∙��
∑ ��,�
�
���

− �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) + 𝑥𝑥�,�(𝑡𝑡�).   (93c) 

 
3. Single frequency harmonic forces (𝐹𝐹�

(�)),  

4.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝐴𝐴�� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��), with (𝐴𝐴��, 𝜃𝜃��) ∈ ℝ� and, 𝜔𝜔�� ∈ ℝ��, (94a) 

 
whereas, 𝐴𝐴�� is the excitation amplitude, the external frequency and phase, are 
denoted as 𝜔𝜔��  and 𝜃𝜃�� , respectively. The velocity (�̇�𝑥�,�(𝑡𝑡)) is given by [9], 
 
�̇�𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

∙ cos(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�),        (94b) 

 
and the response (𝑥𝑥�,�(𝑡𝑡)), is [9], 
 
𝑥𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

� ∙ sin(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 

+����∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

� + 𝑥𝑥�,�(𝑡𝑡�).       (94c) 

 
The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
 

𝑤𝑤𝑤𝑤 = ���∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�).        (94d) 

 
The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   

 
 
 
 
 

.   (93c)

2. Single frequency harmonic forces (Fk
(2)), 
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𝑥𝑥�,�(𝑡𝑡) =
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) −  

 

−� �∙��
�

�∙∑ ��,�
�
���

+ �∙��
∑ ��,�
�
���

− �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) + 𝑥𝑥�,�(𝑡𝑡�).   (93c) 

 
3. Single frequency harmonic forces (𝐹𝐹�

(�)),  

4.  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝐴𝐴�� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��), with (𝐴𝐴��, 𝜃𝜃��) ∈ ℝ� and, 𝜔𝜔�� ∈ ℝ��, (94a) 

 
whereas, 𝐴𝐴�� is the excitation amplitude, the external frequency and phase, are 
denoted as 𝜔𝜔��  and 𝜃𝜃�� , respectively. The velocity (�̇�𝑥�,�(𝑡𝑡)) is given by [9], 
 
�̇�𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

∙ cos(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�),        (94b) 

 
and the response (𝑥𝑥�,�(𝑡𝑡)), is [9], 
 
𝑥𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

� ∙ sin(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 

+����∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

� + 𝑥𝑥�,�(𝑡𝑡�).       (94c) 

 
The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
 

𝑤𝑤𝑤𝑤 = ���∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�).        (94d) 

 
The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   

 
 
 
 
 

, (94a)
whereas, Aex is the excitation amplitude, the external frequency and phase, are 
denoted as ωex and Ѳex, respectively. The velocity (xa,2(t)) is given by [9],
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𝑥𝑥�,�(𝑡𝑡) =
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) +
�

�∙∑ ��,�
�
���

∙ (𝑡𝑡� − 𝑡𝑡��) −  

 

−� �∙��
�

�∙∑ ��,�
�
���

+ �∙��
∑ ��,�
�
���
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3. Single frequency harmonic forces (𝐹𝐹�

(�)),  

4.  

𝐹𝐹���,�
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whereas, 𝐴𝐴�� is the excitation amplitude, the external frequency and phase, are 
denoted as 𝜔𝜔��  and 𝜃𝜃�� , respectively. The velocity (�̇�𝑥�,�(𝑡𝑡)) is given by [9], 
 
�̇�𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

∙ cos(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�),        (94b) 

 
and the response (𝑥𝑥�,�(𝑡𝑡)), is [9], 
 
𝑥𝑥�,�(𝑡𝑡) = − ���

∑ ��,�
�
��� ∙���

� ∙ sin(𝜔𝜔�� ∙ 𝑡𝑡 + 𝜃𝜃��) +  

 

+����∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�)� ∙ (𝑡𝑡 − 𝑡𝑡�) +  

 
+���∙���(���∙������)

∑ ��,�
�
��� ∙���

� + 𝑥𝑥�,�(𝑡𝑡�).       (94c) 

 
The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
 

𝑤𝑤𝑤𝑤 = ���∙���(���∙������)
∑ ��,�
�
��� ∙���

+ �̇�𝑥�,�(𝑡𝑡�).        (94d) 

 
The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   
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denoted as 𝜔𝜔��  and 𝜃𝜃�� , respectively. The velocity (�̇�𝑥�,�(𝑡𝑡)) is given by [9], 
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�
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The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
 

𝑤𝑤𝑤𝑤 = ���∙���(���∙������)
∑ ��,�
�
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The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   

 
 
 
 
 

,      (94b)

and the response (xa,2(t)), is [9],
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The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
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The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   
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The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 
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The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the 
same displacements and the same velocities; therefore the system's motion with 
harmonic forcing is particle-wave motion.   
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.      (94c)

The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (wv) is given by the last two terms of equation (94b) [9],
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.      (94d)

The zero wave velocity leads to a standing wave motion, and the nonzero leads 
to a longitudinal wave motion. The 5 masses for this excitation force have the same 
displacements and the same velocities; therefore the system's motion with harmonic 
forcing is particle-wave motion. 

Table 2. Values of the parameters forming the structural matrices [9].

Table 3. Values of the parameters of the nonlinear forces [9].

Table 4. Initial conditions and the external forcing parameters [9].

In the numerical simulations, the used values of the parameters, of the linear 
structural matrices, are in Table 2. The values of the parameters of the nonlinear 
forces are in Table 3. The external forcing parameters are in Table 4. 
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𝐹𝐹���,�
(�) (𝑡𝑡) = 𝜂𝜂 𝜂 𝑡𝑡 𝜂 𝜂𝜂,  with    (𝜂𝜂, 𝜂𝜂) ∈ ℝ�. (93a) 

The velocity (�̇�𝑥�(𝑡𝑡)), is given by [9], 
�̇�𝑥�,�(𝑡𝑡) = �

�𝜂∑ ��,�
�
���

𝜂 (𝑡𝑡� − 𝑡𝑡�
�) 𝜂 �

∑ ��,�
�
���

𝜂 (𝑡𝑡 − 𝑡𝑡�) 𝜂 �̇�𝑥�,�(𝑡𝑡�),   (93b) 

and the response �𝑥𝑥�,�(𝑡𝑡)�, is given by [9], 

𝑥𝑥�,�(𝑡𝑡) =
𝜂𝜂

6 𝜂 ∑ 𝑀𝑀�,�
�
���

𝜂 (𝑡𝑡� − 𝑡𝑡�
�) 𝜂

𝜂𝜂
2 𝜂 ∑ 𝑀𝑀�,�

�
���

𝜂 (𝑡𝑡� − 𝑡𝑡�
�) − 

− � �𝜂��
�

�𝜂∑ ��,�
�
���

𝜂 �𝜂��
∑ ��,�

�
���

− �̇�𝑥�,�(𝑡𝑡�)� 𝜂 (𝑡𝑡 − 𝑡𝑡�) 𝜂 𝑥𝑥�,�(𝑡𝑡�).   (93c) 

2. Single frequency harmonic forces (𝐹𝐹�
(�)),  

𝐹𝐹���,�
(�) (𝑡𝑡) = 𝑡𝑡�� 𝜂 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔�� 𝜂 𝑡𝑡 𝜂 𝑡𝑡��), with (𝑡𝑡��, 𝑡𝑡��) ∈ ℝ� and, 𝜔𝜔�� ∈ ℝ��, (94a) 

whereas, 𝑡𝑡�� is the excitation amplitude, the external frequency and phase, are denot-
ed as 𝜔𝜔��  and 𝑡𝑡��, respectively. The velocity (�̇�𝑥�,�(𝑡𝑡)) is given by [9], 

�̇�𝑥�,�(𝑡𝑡) = −
𝑡𝑡��

∑ 𝑀𝑀�,�
�
��� 𝜂 𝜔𝜔��

𝜂 cos(𝜔𝜔�� 𝜂 𝑡𝑡 𝜂 𝑡𝑡��) 𝜂 

𝜂 ���𝜂���(���𝜂������)
∑ ��,�

�
��� 𝜂���

𝜂 �̇�𝑥�,�(𝑡𝑡�),        (94b) 

and the response (𝑥𝑥�,�(𝑡𝑡)), is [9], 

𝑥𝑥�,�(𝑡𝑡) = −
𝑡𝑡��

∑ 𝑀𝑀�,�
�
��� 𝜂 𝜔𝜔��

� 𝜂 sin(𝜔𝜔�� 𝜂 𝑡𝑡 𝜂 𝑡𝑡��) 𝜂 

𝜂 �
𝑡𝑡�� 𝜂 cos(𝜔𝜔�� 𝜂 𝑡𝑡� 𝜂 𝑡𝑡��)

∑ 𝑀𝑀�,�
�
��� 𝜂 𝜔𝜔��

𝜂 �̇�𝑥�,�(𝑡𝑡�)� 𝜂 (𝑡𝑡 − 𝑡𝑡�) 𝜂 

𝜂 ���𝜂���(���𝜂������)
∑ ��,�

�
��� 𝜂���

� 𝜂 𝑥𝑥�,�(𝑡𝑡�).       (94c) 

The form of equation (94c) is harmonic; with a wave solution in space. The wave 
velocity (𝑤𝑤𝑤𝑤) is given by the last two terms of equation (94b) [9], 

𝑤𝑤𝑤𝑤 = ���𝜂���(���𝜂������)
∑ ��,�

�
��� 𝜂���

𝜂 �̇�𝑥�,�(𝑡𝑡�).        (94d) 

The zero wave velocity leads to a standing wave motion, and the nonzero leads to a 
longitudinal wave motion. The 5 masses for this excitation force have the same dis-
placements and the same velocities; therefore the system's motion with harmonic 
forcing is particle-wave motion.   

 
Table 2. Values of the parameters forming the structural matrices [9]. 

𝑴𝑴𝒊𝒊,𝒋𝒋 𝑲𝑲𝒊𝒊,𝒋𝒋 𝑪𝑪𝒊𝒊,𝒋𝒋 

𝑚𝑚� = 2000 𝑘𝑘𝑘𝑘 𝑘𝑘� = 1 𝜂 10�𝑁𝑁/𝑚𝑚 𝜂𝜂� = 1008.99 𝑁𝑁 𝜂 𝑠𝑠/𝑚𝑚 
𝑚𝑚� = 1000 𝑘𝑘𝑘𝑘 𝑘𝑘� = 1.4 𝜂 10�𝑁𝑁/𝑚𝑚 𝜂𝜂� = 1412.58 𝑁𝑁 𝜂 𝑠𝑠/𝑚𝑚 
𝑚𝑚� = 1500 𝑘𝑘𝑘𝑘 𝑘𝑘� = 1.3 𝜂 10�𝑁𝑁/𝑚𝑚 𝜂𝜂� = 1311.68 𝑁𝑁 𝜂 𝑠𝑠/𝑚𝑚 
𝑚𝑚� = 1200 𝑘𝑘𝑘𝑘 𝑘𝑘� = 1.2 𝜂 10�𝑁𝑁/𝑚𝑚 𝜂𝜂� = 1210.78 𝑁𝑁 𝜂 𝑠𝑠/𝑚𝑚 
𝑚𝑚� = 500 𝑘𝑘𝑘𝑘 − − 

 
Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 

317 

Table 3. Values of the parameters of the nonlinear forces [9]. 
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In the numerical simulations, the used values of the parameters, of the linear structural 
matrices, are in Table 2. The values of the parameters of the nonlinear forces are in 
Table 3. The external forcing parameters are in Table 4n.  

Figure 9a, depicts selected numerical displacements and the analytical solution, 
whereas the analytical solution is in good agreement with the numerical simulations. 
In first time interval from 0-1s, the system’s motion is a rigid body curvilinear one, 
and later on wave-particle motion. More precisely in the 2nd time interval, from 1-2s, 
the motion is wave-particle with zero wave velocity. In the 3rd time interval, 2-3s, the 
motion is wave particle but with −3.303 𝑚𝑚/𝑠𝑠 wave velocity. Therefore, in the 2nd and 
the 3rd time intervals, the mechanical system moves in dual mode, as wave-particle. 
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Figure 9a, depicts selected numerical displacements and the analytical solution, 
whereas the analytical solution is in good agreement with the numerical simulations. 
In first time interval from 0-1s, the system’s motion is a rigid body curvilinear one, 
and later on wave-particle motion. More precisely in the 2nd time interval, from 1-2s, 
the motion is wave-particle with zero wave velocity. In the 3rd time interval, 2-3s, the 
motion is wave particle but with −3.303 m/s wave velocity. Therefore, in the 2nd and 
the 3rd time intervals, the mechanical system moves in dual mode, as wave-particle.

Figure 9. Displacements of selected generalized coordinates, incorporating 
the analytical solution [10].

3.3. Discussion of this section. The perpetual points in mathematics defined 
recently, and herein their application in mechanics and mechanical engineering is 
discussed. The PMs in linear natural systems are associated with rigid body motions, 
and this is proved in 2 theorems [7,8].

Further on, based on some new definitions of mechanical systems, and their 
solutions, the proof of another theorem is straightforward. This theorem defines the 
conditions that a N-dof flexible mechanical system is moving as a rigid body, and 
in this case the state space is forming the exact augmented perpetual manifolds. In 
case of harmonic excitation that leads to a solution in the exact augmented perpetual 
manifold, the motion of the N-dof mechanical flexible system is a wave particle 
motion.

The analysis of zero internal forces in the exact augmented perpetual manifolds 
are in a corollary with proof in [10] and the analysis of the energies in a theorem 
proved is in an under review article, indicating that flexible dissipative mechanical 
systems in the exact augmented perpetual manifolds might behave as perpetual 
machines of 2nd and 3rd kind.  Under review articles, have more corollaries and more 
theorems under preparation, and combining them might lead to the development of 
the perpetual mechanics theory.
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tems are associated with rigid body motions, and this is proved in 2 theorems [7,8]. 
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the proof of another theorem is straightforward. This theorem defines the conditions 
that a N-dof flexible mechanical system is moving as a rigid body, and in this case the 
state space is forming the exact augmented perpetual manifolds. In case of harmonic 
excitation that leads to a solution in the exact augmented perpetual manifold, the mo-
tion of the N-dof mechanical flexible system is a wave particle motion. 
The analysis of zero internal forces in the exact augmented perpetual manifolds are in 
a corollary with proof in [10] and the analysis of the energies in a theorem proved is 
in an under review article, indicating that flexible dissipative mechanical systems in 
the exact augmented perpetual manifolds might behave as perpetual machines of 2nd 
and 3rd kind.  Under review articles, have more corollaries and more theorems under 
preparation, and combining them might lead to the development of the perpetual me-
chanics theory.  

4 Conclusions 

In this review article, starting from examining the dynamics of a hybrid system, theo-
rem’s development relative to perpetual points applied in mechanics is shown. The 
dynamic analysis of the hybrid system, a spinning shaft with non-constant rotating 
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4. Conclusions

In this review article, starting from examining the dynamics of a hybrid system, 
theorem’s development relative to perpetual points applied in mechanics is shown. 
The dynamic analysis of the hybrid system, a spinning shaft with non-constant 
rotating speed, through the traditional multiple scales analysis enhanced with 
a dynamic analysis through linearization around the perpetual points defining 
the rigid body modes, is performed. Although the nonlinear dynamic analysis 
formalism is extensive, identifying spinning shaft's critical situations requires 
further work.

The observation that the perpetual points of the spinning shaft are associated 
with the rigid body modes, lead to the proof of two theorems, that the pps of 
linear natural mechanical unforced systems are associated with rigid body modes. 
Further on some new definitions, such as perpetual mechanical systems, and the 
augmented perpetual manifolds, lead to the proof of a theorem that defines the 
conditions for a N-dof flexible mechanical system to move as a rigid body, with 
state space given by the exact augmented perpetual manifolds. Moreover, if the 
exact augmented perpetual manifolds arise through harmonic excitation, as 
a proved corollary states, the N-dof flexible mechanical system moves in dual 
mode, as wave particle. The last theorem is of high significance in mathematics, 
mechanics, and mechanical engineering. Since it provides a particular solution 
of non-autonomous mechanical systems and the system might have dual-mode 
wave particle motion, which is highly significant in physics. Finally, the rigid body 
motion without any other vibrations is the ultimate motion in many mechanical 
engineering applications.

As a continuation of this work, further developments need to identify the 
spinning shaft's critical situations for non-constant rotating speed, normal modes 
away from the linearization, and rigid body angular velocities the system's dynamics 
associated with eigenvalues with positive real part. Moreover the chaotic motions of 
the spinning shaft needs more work.

There are several directions to be followed for the development of the perpetual 
mechanics theory e.g. internal energies of the perpetual mechanical systems in the 
exact augmented perpetual manifolds that lead to perpetual machines behavior, the 
physics of particle wave motion, properties of the augmented perpetual submanifolds 
etc., highlighting that many of them are currently in under review articles.
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Appendix A

A.1 Solution of torsional with rigid body angular motion, equations.
1st order approximation solution of equations (17a-b)
They are obtained in [2,3]:
For Ω2 < ωT,
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,       (A.1a)
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Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,        (A.2)

and amplitudes given by,
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,      (A.3)
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,       (A.4a)
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

.    (A.4b)

In case of Ω2 ≥ ωT, then the eigenvalues are real and given by,
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,        (A.5)

and there is no oscillatory motion in torsion, therefore they are not associated with 
any NNMs or critical situations.

Amplitudes modulation of 1st order approximation. They are obtained by solving 
in [2] the equations (18a,b), and they are given :
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,     (A.6a)

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
321 

𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,     (A.6b)
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,     (A.6c)
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) 

,     (A.6d)

with,
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𝑞𝑞�,�(𝑇𝑇�) = 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐 ,     (A.1a) 
 

�̇�𝜃�(𝑇𝑇�) = 𝐴𝐴�� + 𝐴𝐴�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,      (A.1b) 
 

with, 

𝜇𝜇� = ���∙�∙���
�����

(��∙����)
,       (A.2) 

 
and amplitudes given by, 

𝐴𝐴�� =
��,�(�)

�
− 𝑖𝑖 ∙ �̇�,�

(�)

�∙��
= 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�,    (A.3) 

 

𝐴𝐴�� = �̇�𝜃�(0) −
�
��∙�

∙ �̇�𝑞�,�(0),       (A.4a) 

 

 𝐴𝐴�� =
�

�∙��∙�
∙ �̇�𝑞�,�(0) + 𝑖𝑖 ∙ �∙��

�∙��∙�
∙ 𝑞𝑞�,�(0) = 𝐴𝐴�,� − 𝑖𝑖 ∙ 𝐴𝐴�,�.  (A.4b) 

 

In case of 𝛺𝛺� ≥ 𝜔𝜔�
� , then the eigenvalues are real and given by, 

 

Λ� = ±���∙�∙��̇�����
��

(��∙����)
,         (A.5) 

 

and there is no oscillatory motion in torsion, therefore they are not associated with 

any NNMs or critical situations. 

Amplitudes modulation of 1st order approximation.  

They are obtained by solving in [2] the equations (18a,b), and they are given : 

 

𝐴𝐴�,�(𝑇𝑇�) =
�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6a) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6b) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) + 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6c) 

 
𝐴𝐴�,�(𝑇𝑇�) =

�
�
∙ �𝐴𝐴�,�(0) − 𝑖𝑖 ∙ 𝐴𝐴�,�(0)� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.6d) 

with, 
𝜇𝜇� =

��∙�∙�∙���
��∙(��∙����)

,           (A.7) ,        (A.7)

and in case of μ0 equal to zero equation (A.7) becomes singular.
Lead to the following 1st order approximation solution,
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+ ��(��)∙(��������)

�∙��∙�(�����)����
��
+  

 
− ���(��)∙(��������)

�∙��∙�(�����)������
+ ��(��)∙(��������)����(��)∙(��������)

�∙��∙�(�����)������
, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10c) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10d) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

,    (A.8a)
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+ ��(��)∙(��������)

�∙��∙�(�����)����
��
+  

 
− ���(��)∙(��������)

�∙��∙�(�����)������
+ ��(��)∙(��������)����(��)∙(��������)

�∙��∙�(�����)������
, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10c) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10d) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

.  (A.8b)
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2nd order approximation solution of equations (19a-b)
It is given by [2]:
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+ ��(��)∙(��������)

�∙��∙�(�����)����
��
+  

 
− ���(��)∙(��������)

�∙��∙�(�����)������
+ ��(��)∙(��������)����(��)∙(��������)
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
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 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

, (A.10a)
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  
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+ ��(��)∙(��������)����(��)∙(��������)

�∙��∙�(�����)������
, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10c) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10d) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

,        (A.10b)
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  
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, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)
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,          (A.10c) 
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,          (A.10d) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)
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,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

,        (A.10c)
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  
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, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 
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,          (A.10d) 
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,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

,        (A.10d)

Fotios Georgiades 
322 

and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =
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� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+ ��(��)∙(��������)

�∙��∙�(�����)����
��
+  

 
− ���(��)∙(��������)

�∙��∙�(�����)������
+ ��(��)∙(��������)����(��)∙(��������)

�∙��∙�(�����)������
, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
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� ,          (A.10b) 
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�(�����)����
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.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

,      (A.10e)
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  
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.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

.       (A.10f)

and,
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and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+ ��(��)∙(��������)

�∙��∙�(�����)����
��
+  

 
− ���(��)∙(��������)

�∙��∙�(�����)������
+ ��(��)∙(��������)����(��)∙(��������)

�∙��∙�(�����)������
, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10c) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10d) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, 

Fotios Georgiades 
322 

and in case of 𝜇𝜇� equal to zero equation (A.7) becomes singular. 
Lead to the following 1st order approximation solution, 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐,    (A.8a) 
 

�̇�𝜃�(𝑇𝑇�, 𝑇𝑇�) =
���
�
+ 𝐴𝐴��(0) ∙ 𝑒𝑒�∙(��∙����∙��∙��) + 𝑐𝑐𝑐𝑐.  (A.8b) 

 
2nd order approximation solution of equations (19a-b) 
It is given by [2]: 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 
+𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑅𝑅�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, (A.9) 
 

with, 
𝑅𝑅�,�(𝑇𝑇�) =

�
�∙��

� [3 ∙ 𝑉𝑉�(𝑇𝑇�) − 𝑉𝑉��(𝑇𝑇�)] +  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+  

 
+��(��)∙(�∙�����)����(��)∙(�∙�����)

�∙��∙��∙��
����

��
+ ��(��)∙(��������)

�∙��∙�(�����)����
��
+  

 
− ���(��)∙(��������)

�∙��∙�(�����)������
+ ��(��)∙(��������)����(��)∙(��������)

�∙��∙�(�����)������
, (A.10a) 

 
 

𝑅𝑅�,�(𝑇𝑇�) = −��(��)
�∙��

� ,          (A.10b) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10c) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

��∙��
����

��
,          (A.10d) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

,        (A.10e) 

 
 𝑅𝑅�,�(𝑇𝑇�) = − ��(��)

�(�����)����
��

.         (A.10f) 

 
and, 

�̇�𝜃�(𝑇𝑇�) = 𝑈𝑈�,�(𝑇𝑇�) + 𝑈𝑈�,�(𝑇𝑇�)𝑒𝑒�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� +  
 

+𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙�∙��∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑈𝑈�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐, , (A.11)
with,
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,      (A.12c) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12d) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,       (A.12e) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,      (A.12f) 

 

𝑈𝑈�,�(𝑇𝑇�) = −∑ 𝑈𝑈�,�(𝑇𝑇�)�
��� .        (A.12g) 

A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
 

��

(�������)
> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

,       (A.12a)
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,      (A.12c) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12d) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,       (A.12e) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,      (A.12f) 

 

𝑈𝑈�,�(𝑇𝑇�) = −∑ 𝑈𝑈�,�(𝑇𝑇�)�
��� .        (A.12g) 

A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
 

��

(�������)
> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

,       (A.12b)
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,      (A.12c) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12d) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,       (A.12e) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,      (A.12f) 

 

𝑈𝑈�,�(𝑇𝑇�) = −∑ 𝑈𝑈�,�(𝑇𝑇�)�
��� .        (A.12g) 

A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
 

��

(�������)
> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

,      (A.12c)
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,      (A.12c) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12d) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,       (A.12e) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,      (A.12f) 

 

𝑈𝑈�,�(𝑇𝑇�) = −∑ 𝑈𝑈�,�(𝑇𝑇�)�
��� .        (A.12g) 

A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
 

��

(�������)
> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

,      (A.12d)
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,      (A.12c) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12d) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,       (A.12e) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,      (A.12f) 

 

𝑈𝑈�,�(𝑇𝑇�) = −∑ 𝑈𝑈�,�(𝑇𝑇�)�
��� .        (A.12g) 

A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
 

��

(�������)
> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

,       (A.12e)
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,      (A.12c) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12d) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,       (A.12e) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
(�����)

,      (A.12f) 

 

𝑈𝑈�,�(𝑇𝑇�) = −∑ 𝑈𝑈�,�(𝑇𝑇�)�
��� .        (A.12g) 

A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
 

��

(�������)
> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

,      (A.12f)
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(A.11) 
with, 

𝑈𝑈�,�(𝑇𝑇�) = − �∙��∙��,�(��)
��

,         (A.12a) 

 

 𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
�∙��

,       (A.12b) 

 

𝑈𝑈�,�(𝑇𝑇�) = − �∙���∙��,�(��)���(��)�
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A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =
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∙ � �∙��

(���)�
+ 𝜔𝜔�
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The first parameter (𝜂𝜂�) is negative for, 
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> ��

�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

.      (A.12g)
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parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)

(���)�
∙ Ω�,        (A.13a) 

and, 
𝜂𝜂� =

�∙��

(���)�
∙ � �∙��

(���)�
+ 𝜔𝜔�

��,       (A.13b) 
 

The first parameter (𝜂𝜂�) is negative for, 
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,       (A.13b)

The first parameter (η1) is negative for,
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A.2 Solution of lateral bending motion equations. 

1st order approximation solution, of equations (22a-b) 
 

The eigenvalues that lead to natural frequencies are depended in the following two 
parameters [2]: 

𝜂𝜂� = −𝜔𝜔�
� − (���)
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and, 
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�
≅ 2.5 ⇔ 𝐿𝐿� > 2.5 ∙ (𝑟𝑟�� + 𝑟𝑟��).     (A.14a) 

 
Rule of thumb for Euler-Bernoulli solid beams is, 
 

.     (A.14a)

Rule of thumb for Euler-Bernoulli solid beams is,
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��
> 10 ⟹ 𝐿𝐿� > 100 ∙ 𝑟𝑟�

� > 2.5 ∙ 𝑟𝑟�
�,       (A.14b) 

 
therefore, for all solid Euler-Bernoulli beams  𝜂𝜂� < 0. 
In case of hollow beams a practical consideration could be, 
 

��

(�������)
> ��

�∙��� > ��

�
⟹ 𝐿𝐿 > 2.22 ∙ 𝑟𝑟�.       (A.14c) 

 
In conclusion, the parameter 𝜂𝜂� is negative for sufficient small dimension of the cross 
section with respect to the shaft length that applies in many Euler Bernoulli shaft 
configurations.  
Considering positive angular velocity, the 2nd parameter (𝜂𝜂�) is positive as long as, 
 
𝜂𝜂� > 0 ⟺ �∙��

(���)� + 𝜔𝜔�
� > 0 ⟺ −|𝑀𝑀| ∙ 𝛺𝛺� + (1 − 𝑀𝑀)� ∙ 𝜔𝜔�

� > 0 ⟺  
 

⟺ |𝑀𝑀| ∙ 𝛺𝛺� < (1 − 𝑀𝑀)� ∙ 𝜔𝜔�
� ⟺ 𝛺𝛺� < (���)�∙��

�

|�|
⟹ 𝛺𝛺 < (���)∙��

√��
.   (A.14d) 

 
The eigenvalues are given by, 

𝜆𝜆 = ±�𝜂𝜂� ± �𝜂𝜂�.           (A.15) 

 
Considering equations (A.13a,b) in equation (A.15) then the following three cases for 
the definitions of the eigenvalues might happen [2], 
 

Case 1  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� < 0.  
 
Case 2  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� > 0.  
 
Case 3  𝜂𝜂� < 0. 
 

In [3] different definitions of parameters are used and makes profound that the 2nd 
case can never exist, as follows,   

𝜂𝜂� = ����
���∙���

�
,           (A.16a) 

 

𝜂𝜂� = ���
���∙���

�
��∙��

�

�
,          (A.16b) 

which lead to, 

𝜂𝜂� + �𝜂𝜂� = ����
���∙���

�
+ ����

���∙���
�

��∙��
�

�
< 0,    (A.16c) 

 
whereas the parameters 𝑎𝑎� and 𝑎𝑎� by equations (46b) and (46d) respectively are de-
fined (using the consistent notation of 𝛺𝛺 = �̇�𝜃�). 

,      (A.14b)

therefore, for all solid Euler-Bernoulli beams η1 < 0.
In case of hollow beams a practical consideration could be,
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In conclusion, the parameter 𝜂𝜂� is negative for sufficient small dimension of the cross 
section with respect to the shaft length that applies in many Euler Bernoulli shaft 
configurations.  
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The eigenvalues are given by, 

𝜆𝜆 = ±�𝜂𝜂� ± �𝜂𝜂�.           (A.15) 

 
Considering equations (A.13a,b) in equation (A.15) then the following three cases for 
the definitions of the eigenvalues might happen [2], 
 

Case 1  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� < 0.  
 
Case 2  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� > 0.  
 
Case 3  𝜂𝜂� < 0. 
 

In [3] different definitions of parameters are used and makes profound that the 2nd 
case can never exist, as follows,   

𝜂𝜂� = ����
���∙���

�
,           (A.16a) 

 

𝜂𝜂� = ���
���∙���

�
��∙��

�

�
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���∙���

�
+ ����

���∙���
�

��∙��
�

�
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whereas the parameters 𝑎𝑎� and 𝑎𝑎� by equations (46b) and (46d) respectively are de-
fined (using the consistent notation of 𝛺𝛺 = �̇�𝜃�). 

.      (A.14c)

In conclusion, the parameter η1 is negative for sufficient small dimension of the 
cross section with respect to the shaft length that applies in many Euler Bernoulli 
shaft configurations. 

Considering positive angular velocity, the 2nd parameter (η2) is positive as long as,
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The eigenvalues are given by, 

𝜆𝜆 = ±�𝜂𝜂� ± �𝜂𝜂�.           (A.15) 

 
Considering equations (A.13a,b) in equation (A.15) then the following three cases for 
the definitions of the eigenvalues might happen [2], 
 

Case 1  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� < 0.  
 
Case 2  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� > 0.  
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�

��∙��
�

�
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whereas the parameters 𝑎𝑎� and 𝑎𝑎� by equations (46b) and (46d) respectively are de-
fined (using the consistent notation of 𝛺𝛺 = �̇�𝜃�). 
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The eigenvalues are given by, 

𝜆𝜆 = ±�𝜂𝜂� ± �𝜂𝜂�.           (A.15) 

 
Considering equations (A.13a,b) in equation (A.15) then the following three cases for 
the definitions of the eigenvalues might happen [2], 
 

Case 1  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� < 0.  
 
Case 2  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� > 0.  
 
Case 3  𝜂𝜂� < 0. 
 

In [3] different definitions of parameters are used and makes profound that the 2nd 
case can never exist, as follows,   
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which lead to, 
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�

��∙��
�

�
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whereas the parameters 𝑎𝑎� and 𝑎𝑎� by equations (46b) and (46d) respectively are de-
fined (using the consistent notation of 𝛺𝛺 = �̇�𝜃�). 

.   (A.14d)

The eigenvalues are given by,
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In conclusion, the parameter 𝜂𝜂� is negative for sufficient small dimension of the cross 
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The eigenvalues are given by, 

𝜆𝜆 = ±�𝜂𝜂� ± �𝜂𝜂�.           (A.15) 

 
Considering equations (A.13a,b) in equation (A.15) then the following three cases for 
the definitions of the eigenvalues might happen [2], 
 

Case 1  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� < 0.  
 
Case 2  𝜂𝜂� > 0, 𝜂𝜂� + �𝜂𝜂� > 0.  
 
Case 3  𝜂𝜂� < 0. 
 

In [3] different definitions of parameters are used and makes profound that the 2nd 
case can never exist, as follows,   
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whereas the parameters 𝑎𝑎� and 𝑎𝑎� by equations (46b) and (46d) respectively are de-
fined (using the consistent notation of 𝛺𝛺 = �̇�𝜃�). 

.        (A.15)

Considering equations (A.13a,b) in equation (A.15) then the following three 
cases for the definitions of the eigenvalues might happen [2],

Case 1  
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whereas the parameters a1 and a3 by equations (46b) and (46d) respectively are 
defined (using the consistent notation of Ω = 0).

Summarizing the eigenvalue analysis of [2] and [3], then, only the 1st and 3rd case 
exist as follows:

Case I, η2 ≥ 0, then the eigenvalues are purely imaginary and they are given by,
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and this is true for rigid body angular velocities that obey inequality (A.14d). 
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(���)�
− 𝑖𝑖�

� ± 𝑖𝑖 �
(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d).  
Further on, for pure imaginary eigenevalues (case I) the solutions are given by, 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20a) 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20b) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.20c) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,  (A.20d) 

 
 

With, 
𝐶𝐶�� = −𝑑𝑑�� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  
 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑖𝑖�

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21a) 

,       (A.17b)
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Summarizing the eigenvalue analysis of [2] and [3], then, only the 1st and 3rd case 
exist as follows: 
Case I, 𝜂𝜂� ≥ 0, then the eigenvalues are purely imaginary and they are given by, 
 

𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17a) 

 

   𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17b) 

 

 𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = 𝑖𝑖𝑖𝑖�,          (A.17c) 

 

    𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = 𝑖𝑖𝑖𝑖�.          (A.17d) 

 
with natural frequencies given by, 
 

𝑖𝑖�÷� = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓�÷� = �𝑖𝑖�
� + (���)

(���)�
∙ 𝛺𝛺� ∓ �∙�

(���)
∙ � �∙��

(���)�
+ 𝑖𝑖�

�.  (A.18a-b) 

 
and this is true for rigid body angular velocities that obey inequality (A.14d). 
Case II, 𝜂𝜂� ≥ 0, then the eigenvalues are not purely imaginary any longer and they 
are given by [3], 

𝜆𝜆�÷���̇�𝜃�� = ±�� ����

(���)�
− 𝑖𝑖�

� ± 𝑖𝑖 �
(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d).  
Further on, for pure imaginary eigenevalues (case I) the solutions are given by, 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20a) 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20b) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.20c) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,  (A.20d) 

 
 

With, 
𝐶𝐶�� = −𝑑𝑑�� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  
 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑖𝑖�

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21a) 

,       (A.17c)
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Summarizing the eigenvalue analysis of [2] and [3], then, only the 1st and 3rd case 
exist as follows: 
Case I, 𝜂𝜂� ≥ 0, then the eigenvalues are purely imaginary and they are given by, 
 

𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17a) 

 

   𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17b) 

 

 𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = 𝑖𝑖𝑖𝑖�,          (A.17c) 

 

    𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = 𝑖𝑖𝑖𝑖�.          (A.17d) 

 
with natural frequencies given by, 
 

𝑖𝑖�÷� = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓�÷� = �𝑖𝑖�
� + (���)

(���)�
∙ 𝛺𝛺� ∓ �∙�

(���)
∙ � �∙��

(���)�
+ 𝑖𝑖�

�.  (A.18a-b) 

 
and this is true for rigid body angular velocities that obey inequality (A.14d). 
Case II, 𝜂𝜂� ≥ 0, then the eigenvalues are not purely imaginary any longer and they 
are given by [3], 

𝜆𝜆�÷���̇�𝜃�� = ±�� ����

(���)�
− 𝑖𝑖�

� ± 𝑖𝑖 �
(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d).  
Further on, for pure imaginary eigenevalues (case I) the solutions are given by, 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20a) 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20b) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.20c) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,  (A.20d) 

 
 

With, 
𝐶𝐶�� = −𝑑𝑑�� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  
 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑖𝑖�

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21a) 

.       (A.17d)

with natural frequencies given by,
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Summarizing the eigenvalue analysis of [2] and [3], then, only the 1st and 3rd case 
exist as follows: 
Case I, 𝜂𝜂� ≥ 0, then the eigenvalues are purely imaginary and they are given by, 
 

𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17a) 

 

   𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17b) 

 

 𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = 𝑖𝑖𝑖𝑖�,          (A.17c) 

 

    𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = 𝑖𝑖𝑖𝑖�.          (A.17d) 

 
with natural frequencies given by, 
 

𝑖𝑖�÷� = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓�÷� = �𝑖𝑖�
� + (���)

(���)�
∙ 𝛺𝛺� ∓ �∙�

(���)
∙ � �∙��

(���)�
+ 𝑖𝑖�

�.  (A.18a-b) 

 
and this is true for rigid body angular velocities that obey inequality (A.14d). 
Case II, 𝜂𝜂� ≥ 0, then the eigenvalues are not purely imaginary any longer and they 
are given by [3], 

𝜆𝜆�÷���̇�𝜃�� = ±�� ����

(���)�
− 𝑖𝑖�

� ± 𝑖𝑖 �
(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d).  
Further on, for pure imaginary eigenevalues (case I) the solutions are given by, 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20a) 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20b) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.20c) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,  (A.20d) 

 
 

With, 
𝐶𝐶�� = −𝑑𝑑�� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  
 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑖𝑖�

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21a) 

.              (A.18a-b)

and this is true for rigid body angular velocities that obey inequality (A.14d).

Case II, η2 ≥ 0, then the eigenvalues are not purely imaginary any longer and they 
are given by [3],

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
325 

Summarizing the eigenvalue analysis of [2] and [3], then, only the 1st and 3rd case 
exist as follows: 
Case I, 𝜂𝜂� ≥ 0, then the eigenvalues are purely imaginary and they are given by, 
 

𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17a) 

 

   𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17b) 

 

 𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = 𝑖𝑖𝑖𝑖�,          (A.17c) 

 

    𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = 𝑖𝑖𝑖𝑖�.          (A.17d) 

 
with natural frequencies given by, 
 

𝑖𝑖�÷� = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓�÷� = �𝑖𝑖�
� + (���)

(���)�
∙ 𝛺𝛺� ∓ �∙�

(���)
∙ � �∙��

(���)�
+ 𝑖𝑖�

�.  (A.18a-b) 

 
and this is true for rigid body angular velocities that obey inequality (A.14d). 
Case II, 𝜂𝜂� ≥ 0, then the eigenvalues are not purely imaginary any longer and they 
are given by [3], 

𝜆𝜆�÷���̇�𝜃�� = ±�� ����

(���)�
− 𝑖𝑖�

� ± 𝑖𝑖 �
(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d).  
Further on, for pure imaginary eigenevalues (case I) the solutions are given by, 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20a) 

 
𝑞𝑞�,�(𝑇𝑇�) = 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,    (A.20b) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,   (A.20c) 

 
�̇�𝑞�,�(𝑇𝑇�) = 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐶𝐶�� ∙ 𝑒𝑒�∙��∙�� + 𝑖𝑖 ∙ 𝑖𝑖� ∙ 𝐷𝐷�� ∙ 𝑒𝑒�∙��∙�� + 𝑐𝑐𝑐𝑐,  (A.20d) 

 
 

With, 
𝐶𝐶�� = −𝑑𝑑�� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  
 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝑖𝑖� ∙ 𝑖𝑖�

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21a) 

,               (A.19a-d)

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d). 

Further on, for pure imaginary eigenevalues (case I) the solutions are given by,
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Summarizing the eigenvalue analysis of [2] and [3], then, only the 1st and 3rd case 
exist as follows: 
Case I, 𝜂𝜂� ≥ 0, then the eigenvalues are purely imaginary and they are given by, 
 

𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17a) 

 

   𝜆𝜆�,� = −𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = −𝑖𝑖𝑖𝑖�,         (A.17b) 

 

 𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� − �𝜂𝜂� = 𝑖𝑖𝑖𝑖�,          (A.17c) 

 

    𝜆𝜆�,� = 𝑖𝑖�−𝜂𝜂� + �𝜂𝜂� = 𝑖𝑖𝑖𝑖�.          (A.17d) 

 
with natural frequencies given by, 
 

𝑖𝑖�÷� = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓�÷� = �𝑖𝑖�
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(���)�
+ 𝑖𝑖�

�.  (A.18a-b) 

 
and this is true for rigid body angular velocities that obey inequality (A.14d). 
Case II, 𝜂𝜂� ≥ 0, then the eigenvalues are not purely imaginary any longer and they 
are given by [3], 

𝜆𝜆�÷���̇�𝜃�� = ±�� ����

(���)�
− 𝑖𝑖�

� ± 𝑖𝑖 �
(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 

and this is true as long as the rigid body angular velocities do not  obey inequality 
(A.13d).  
Further on, for pure imaginary eigenevalues (case I) the solutions are given by, 
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and this is true for rigid body angular velocities that obey inequality (A.14d). 
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(���)� = ±(Λ� ± 𝑖𝑖Λ�),   (A.19a-d) 
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(A.13d).  
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� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21a) 

,   (A.20d)
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Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
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the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,   (A.21d)
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,      (A.22a)
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,       (A.22b)

Fotios Georgiades 
326 

𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,    (A.22c)
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =
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(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

.      (A.22d)

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23)

The eigenvalues of this system are given by [2],
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,    (A.23a)
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,     (A.23b)
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

,        (A.23c)
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

.        (A.23d)
whereas, j=1 corresponds to the system arising from first frequency (ω1) and j=2 to 
the system arising from the second frequency (ω2). 

Then, the solution of the system eq. (23) is given by,
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𝐷𝐷�� = 𝑑𝑑�� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝜔𝜔� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�,(A.21b) 

 
𝐶𝐶�� = −𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝜔𝜔�

� ∙ 𝑞𝑞�,�(0) +  
 

+𝑖𝑖 ∙ �−𝑑𝑑�� ∙ �
��
��
� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ �

��∙��
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21c) 
 

𝐷𝐷�� = 𝑑𝑑�� ∙ 𝑏𝑏� ∙ 𝑑𝑑� ∙ �̇�𝑞�,�(0) − 𝑑𝑑�� ∙ 𝜔𝜔�
� ∙ 𝑑𝑑� ∙ 𝑞𝑞�,�(0) +  

 
+𝑖𝑖 ∙ �𝑑𝑑�� ∙ �

��
��
� ∙ �̇�𝑞�,�(0) + 𝑑𝑑�� ∙ �

����
��

� ∙ 𝑞𝑞�,�(0)� = 𝐵𝐵��,� + 𝑖𝑖 ∙ 𝐵𝐵��,�, (A.21d) 
 

𝑏𝑏� =
����(���)∙���

����
��

�∙�
,        (A.22a) 

 

𝑑𝑑� =
����(���)∙���

����
��

�∙�
,        (A.22b) 

 
𝑑𝑑�� =

�
�����(���)∙���

����
���∙��

�������(���)∙���
����

���∙��
�,  (A.22c) 

 
 𝑑𝑑�� =

�
(���)∙���

����
��

.       (A.22d) 

Amplitudes modulation of 1st order approximation, determined by the solution 
of the systems of equations (23) 
The eigenvalues of this system are given by [2], 
 

𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �
����

(���)∙����
� ∙ 𝑖𝑖 = 𝜔𝜔���,�,� ∙ 𝑖𝑖,      (A.23a) 

 
 𝜆𝜆�,�,� = −𝐴𝐴�� ∙ �

����
(���)∙����

� ∙ 𝑖𝑖 = −𝜔𝜔���,�,� ∙ 𝑖𝑖,       (A.23b) 

 
𝜆𝜆�,�,� = −𝜔𝜔���,�,� ∙ 𝑖𝑖,           (A.23c) 

 
   𝜆𝜆�,�,� = 𝜔𝜔���,�,� ∙ 𝑖𝑖.           (A.23d) 

 
whereas, j=1 corresponds to the system arising from first frequency (𝜔𝜔�) and j=2 to 
the system arising from the second frequency (𝜔𝜔�).  

Then, the solution of the system (eq. 23) is given by, 
 

Bv1,j(𝑇𝑇�) = �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑄𝑄��,� + 𝑖𝑖 ∙ 𝑄𝑄��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
(A.24a) 

, (A.24a)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,  (A.24b)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

, (A.24c)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,  (A.24d)
with amplitudes for: 
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

 given by,
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,   (A.25a)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25b)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,   (A.25c)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25d)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

 given by,
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,     (A.25e)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,     (A.25f)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,     (A.25g)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,      (A.25h)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

 given by,
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25i)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25j)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25k)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25l)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

 given by,
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,                   (A.25m)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25n)
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Bv2,j(𝑇𝑇�) = �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑃𝑃��,� + 𝑖𝑖 ∙ 𝑃𝑃��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24b) 

 
Bw1,j(𝑇𝑇�) = �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑈𝑈��,� + 𝑖𝑖 ∙ 𝑈𝑈��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 

(A.24c) 
 

Bw2,j(𝑇𝑇�) = �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + �𝑆𝑆��,� + 𝑖𝑖 ∙ 𝑆𝑆��,�� ∙ 𝑒𝑒�∙����,�,�∙�� + 𝑐𝑐𝑐𝑐, 
 (A.24d) 

with amplitudes for:  
 
Bv1,j(𝑇𝑇�) given by, 

𝑄𝑄��,� = 𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25a) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25b) 
 

𝑄𝑄��,� = −𝑓𝑓�,� ∙ 𝑝𝑝�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑝𝑝�,� ∙ Bw2,j(0),   (A.25c) 
 

 𝑄𝑄��,� = 𝑒𝑒�,� ∙ 𝑝𝑝�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑝𝑝�,� ∙ Bw1,j(0),    (A.25d) 
 

Bv2,j(𝑇𝑇�) given by, 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) − ℎ�,� ∙ Bw1,j(0),    (A.25e) 

 
 𝑃𝑃��,� = −𝑓𝑓�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ Bw2,j(0),    (A.25f) 

 
𝑃𝑃��,� = 𝑒𝑒�,� ∙ Bv2,j(0) + ℎ�,� ∙ Bw1,j(0),     (A.25g) 

 
 𝑃𝑃��,� = 𝑓𝑓�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ Bw2,j(0),     (A.25h) 

Bw1,j(𝑇𝑇�) given by, 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25i) 

 
 𝑈𝑈��,� = −𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25j) 

 
𝑈𝑈��,� = 𝑒𝑒�,� ∙ 𝑟𝑟�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑟𝑟�,� ∙ Bw1,j(0),    (A.25k) 

 
𝑈𝑈��,� = 𝑓𝑓�,� ∙ 𝑟𝑟�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑟𝑟�,� ∙ Bw2,j(0),    (A.25l) 

 
Bw2,j(𝑇𝑇�) given by, 

𝑆𝑆��,� = 𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) − 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),    (A.25m) 
 

𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) − ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0),    (A.25n) 
 

𝑆𝑆��,� = −𝑓𝑓�,� ∙ 𝑞𝑞�,� ∙ Bv1,j(0) + 𝑔𝑔�,� ∙ 𝑞𝑞�,� ∙ Bw2,j(0),  (A.25o) 
 

,    (A.25o)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

.    (A.25p)

And the parameters are given by,
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,        (A.26a)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,       (A.26b)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,        (A.26c)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,         (A.26d)

Fotios Georgiades 
328 

 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,       (A.26e)

Fotios Georgiades 
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,       (A.26f)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,        (A.26g)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,       (A.26h)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,       (A.26i)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,         (A.26j)

Fotios Georgiades 
328 

 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,   (A.26k)

Fotios Georgiades 
328 

 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,       (A.26l)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

,                      (A.26m)
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 𝑆𝑆��,� = 𝑒𝑒�,� ∙ 𝑞𝑞�,� ∙ Bv2,j(0) + ℎ�,� ∙ 𝑞𝑞�,� ∙ Bw1,j(0).    (A.25p) 
 

And the parameters are given by, 
𝑝𝑝�,� =

��,�

��,�∙����,�,�
,          (A.26a) 

 
  𝑞𝑞�,� =

��,�

��,�∙����,�,�
,         (A.26b) 

 
𝑟𝑟�,� =

��,�

��,�
, with k=1,2,        (A.26c) 

 
𝑒𝑒�,� =

��,�∙��,�

��,�
,           (A.26d) 

 
 𝑒𝑒�,� =

���,�∙��,�

��,�
,         (A.26e) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26f) 

 
 𝑓𝑓�,� =

��,�∙��,�∙����,�,�

��,�
,         (A.26g) 

 
𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26h) 

 
 𝑔𝑔�,� =

��,�∙��,�∙����,�,�

��,�
,        (A.26i) 

 
 ℎ�,� =

��,�∙��,�

��,�
,           (A.26j) 

 
 𝑑𝑑�,� = 𝑎𝑎�,�

� ∙ 𝜔𝜔���,�,�
� ∙Ω-2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝑐𝑐�,� + 𝑏𝑏�

�∙Ω+𝑐𝑐�,�
� ∙Ω-𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,   (A.26k) 
 

𝑗𝑗�,� = 𝑎𝑎�,�
� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏�

� ∙ 𝑐𝑐�,� − 𝑐𝑐�,�
� +  

 
+𝑐𝑐�,� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26l) 
 

𝑘𝑘�,� = 𝑎𝑎�,�
� ∙ 𝑏𝑏� ∙ 𝜔𝜔���,�,�

� − 2∙𝑎𝑎�,� ∙ 𝑐𝑐�,� ∙ 𝜔𝜔���,�,�
� ∙Ω+𝑏𝑏� ∙ 𝑐𝑐�,�

� − 𝑏𝑏�
� +  

 
+𝑏𝑏� ∙ 𝜔𝜔���,�,�

� ∙ 𝛺𝛺�,         (A.26m) 
 

𝑙𝑙�,� = 𝑎𝑎�,�
� ∙ 𝜔𝜔���,�,�

� − 𝑎𝑎�,� ∙ 𝑏𝑏�
� − 𝑎𝑎�,� ∙ 𝑐𝑐�,�

� − 𝑎𝑎�,� ∙ 𝜔𝜔���,�,�
� ∙ 𝛺𝛺�+2∙𝑏𝑏� ∙ 𝑐𝑐�,�·Ω,  

 
  (A.26n) 

 

, (A.26n)
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,      (A.26o)
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

.      (A.26p)

Combining both scales solutions lead to [2],
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,  (A.27a)
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,  (A.27b)

2nd order approximation solution, of equations (25a-b) 
They are obtained in [2], and given by:
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,  (A.28a)

Dynamics of a spinning shaft with non-constant rotating speed, leading to ….. 
329 

𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,  (A.28b)
with,
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, 

,
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𝑚𝑚�,� = 2 ∙ �𝑑𝑑�,� ∙ 𝑙𝑙�,� − 𝑑𝑑�,� ∙ 𝑙𝑙�,��,      (A.26o) 
 

 𝑚𝑚�,� = 2 ∙ �𝑗𝑗�,� ∙ 𝑘𝑘�,� − 𝑗𝑗�,� ∙ 𝑘𝑘�,��.     (A.26p) 
 

Combining both scales solutions lead to [2], 
 

𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑄𝑄��,� − 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����
���

�
��� −  

 
−2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑄𝑄��,� + 𝑃𝑃��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑃𝑃��,� − 𝑄𝑄��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,  (A.27a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 2 ∙ ∑ ∑ ��𝑈𝑈��,� − 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� + 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� +  

 
+2 ∙ ∑ ∑ ��𝑈𝑈��,� + 𝑆𝑆��,�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� −  

 
−2 ∙ ∑ ∑ ��𝑆𝑆��,� − 𝑈𝑈��,�� ∙ 𝑐𝑐𝑠𝑠𝑠𝑠�𝜔𝜔� ∙ 𝑇𝑇� − 𝜀𝜀 ∙ 𝜔𝜔���,�,� ∙ 𝑇𝑇����

���
�
��� ,   (A.27b) 

 
2nd order approximation solution, of equations (25a-b)  
They are obtained in [2], and given by: 
 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

 
              (A.28a) 

 
𝑞𝑞�,�(𝑇𝑇�, 𝑇𝑇�) = 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙��∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� +  

 
+𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑊𝑊�,�,�(𝑇𝑇�) ∙ 𝑒𝑒�∙(�����)∙�� + 𝑐𝑐𝑐𝑐  

,              (A.28b) 
with, 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� +, ,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

, (A.29a)

Fotios Georgiades 
330 

+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

, with j=3:4,   (A.29b)
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,  (A.29c)
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

, with j=3:4   (A.29d)
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,  (A.29e)
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,

Fotios Georgiades 
330 

+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,  (A.29f)

and their parameters are given by,
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,       (A.30a)
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) 

,       (A.30b)
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+ ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4,(A.29a) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙�����,�(��)∙��,�,�∙��

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙�����,�(��)∙��,�,�∙(��������)

(�����)����
� ��

��� +, 

 
+ ∑ �

�∙����,�(��)∙��,�,�∙����∙�����,�(��)∙��,�,�∙(����∙��)

(�����)����
� ��

��� ,  with j=3:4, (A.29b) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�(����∙��)��∙����,�(��)∙��̅,�,�∙��

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� , with j=3:4 (A.29c) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = 

= − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(����∙��)��∙����,�(��)∙�̅�,�,�∙��

(�����)����
� ��

��� ,   with j=3:4 (A.29d) 

 
𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙��̅,�,�∙(��������)

(�����)����
� ��

��� ,with j=3:4 (A.29e) 

 
 

𝑊𝑊�,�,�(𝑇𝑇�) = − ∑ �
�∙����,�(��)∙��,�,�∙(��������)��∙����,�(��)∙�̅�,�,�∙(��������)

(�����)����
� ��

��� −, 

 
− ∑ �

�∙����,�(��)∙��,�,�∙����∙����,�(��)∙��̅,�,�∙(����∙��)

(�����)����
� ��

��� , with j=3:4 (A.29f) 

 
and their parameters are given by, 

𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30a) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝜔𝜔� ∙ 𝑏𝑏� ∙ 𝑑𝑑��,        (A.30b) 
 

 𝐶𝐶�,�,� = −𝑑𝑑��,          (A.30c) ,        (A.30c)
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 𝐶𝐶�,�,� = 𝑑𝑑��,          (A.30d) 
 

𝐶𝐶�,�,� = −𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30e) 
 

 𝐶𝐶�,�,� = 𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,         (A.30f) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝑏𝑏� ∙ 𝑑𝑑��/𝜔𝜔�,       (A.30g) 
 

 𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝑑𝑑� ∙ 𝑑𝑑��/𝜔𝜔�.       (A.30h) 
 
 
 
 
 
 
 
 

,        (A.30d)
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 𝐶𝐶�,�,� = 𝑑𝑑��,          (A.30d) 
 

𝐶𝐶�,�,� = −𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30e) 
 

 𝐶𝐶�,�,� = 𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,         (A.30f) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝑏𝑏� ∙ 𝑑𝑑��/𝜔𝜔�,       (A.30g) 
 

 𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝑑𝑑� ∙ 𝑑𝑑��/𝜔𝜔�.       (A.30h) 
 
 
 
 
 
 
 
 

,       (A.30e)
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 𝐶𝐶�,�,� = 𝑑𝑑��,          (A.30d) 
 

𝐶𝐶�,�,� = −𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30e) 
 

 𝐶𝐶�,�,� = 𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,         (A.30f) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝑏𝑏� ∙ 𝑑𝑑��/𝜔𝜔�,       (A.30g) 
 

 𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝑑𝑑� ∙ 𝑑𝑑��/𝜔𝜔�.       (A.30h) 
 
 
 
 
 
 
 
 

,       (A.30f)
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 𝐶𝐶�,�,� = 𝑑𝑑��,          (A.30d) 
 

𝐶𝐶�,�,� = −𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30e) 
 

 𝐶𝐶�,�,� = 𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,         (A.30f) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝑏𝑏� ∙ 𝑑𝑑��/𝜔𝜔�,       (A.30g) 
 

 𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝑑𝑑� ∙ 𝑑𝑑��/𝜔𝜔�.       (A.30h) 
 
 
 
 
 
 
 
 

,       (A.30g)
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 𝐶𝐶�,�,� = 𝑑𝑑��,          (A.30d) 
 

𝐶𝐶�,�,� = −𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,        (A.30e) 
 

 𝐶𝐶�,�,� = 𝑏𝑏� ∙ 𝑑𝑑� ∙ 𝑑𝑑��,         (A.30f) 
 

 𝐶𝐶�,�,� = −𝑖𝑖 ∙ 𝑏𝑏� ∙ 𝑑𝑑��/𝜔𝜔�,       (A.30g) 
 

 𝐶𝐶�,�,� = 𝑖𝑖 ∙ 𝑑𝑑� ∙ 𝑑𝑑��/𝜔𝜔�.       (A.30h) 
 
 
 
 
 
 
 
 

.      (A.30h)




