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Abstract. We are interested in vibrating systems, with applications 
of nonlinear behavior. The subject of this work deals with a special class 
of  hybrid systems, that is, a  vibrating  system that  combines electrical 
and mechanical drivelines.  This paper is devoted to present a review 
concerning some properties of recent research progresses of non-ideal 
rotary support structures (RNIS) in the recent years restricted, however, 
to English publications only. In summary, we  presented mathematical 
modelling of problems related to (RNIS), which render descriptions 
that are close to real situations found in practice. We were interested 
to what happens to the motor (or electro-mechanical shaker), input, 
output, as the response of the rotary system (RNIS) support structure 
changes, that is, we considered nonlinear resonances, including periodic, 
quasiperiodic, and chaotic characteristics in the steady state motions, 
and energy transfer between the energy sources and the support 
structures. Their possible control approaches are also considered to 
pass to resonance. This work is in honor for MI SANU. 
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1. Introduction 

The subject of this work is deal with a special class of hybrid system, that is, a 
vibrating system that combines electrical and mechanical drivelines in honor for MI 
SANU, though  references [ 1-74].

It is well known that the word vibrations come from Latin vibrationem (“shaking, 
brandishing”). The transmission of vibrations to the human body can cause several 
damages, such as pain, discomfort, loss of efficiency and concentration at work, 
dizziness, nausea, blurred vision, speech disorder, fatigue, neurological or muscular 
disorders, bones and articulations injuries, pathologies in the lumbar region and 
even lesions of the spine. The parts of the human body are sensitive to vibrations 
in many different frequency ranges (values), for instance, in the head around 25Hz; 
eyeballs 30-60 Hz; in the rib cage 60 Hz; in the spine 10-12Hz; on the arm 16-30Hz; 
in the hand 50-150Hz; in the pelvic mass and buttocks 4-8Hz; and in the legs 2-20Hz. 
The risk of exposure to vibration depends on the amplitude, frequency, direction, 
time of exposure and behavior of the vibration over time (continuous, intermittent, 
or transient). This issue of human exposure to vibration is so important that there 
are several international standards that addressing this problem. As an example, the 
ISO 2631-1 (1997) sets out the general requirements regarding human exposure 
to whole-body vibration, covering measurement methods, vibration severity and 
human comfort and possible health effects. Additionally, the ISO 2631-2 (2003) 
standard presents a guide for the application of ISO 2631-1 on the human response 
under the action of building vibration [3].

Differential equations of motion for vibrating systems are commonly differential 
equations for partial derivatives in their generalized spatial and temporal coordinates. 
In the case where the variables of the considered problem are not separable, the 
use of classic methods makes it possible to eliminate variables, simplifying the 
generalized spatial equations, obtaining in this way, a set of ordinary equations in 
the time variable, either time-dependent or time-independent coefficients.
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It is also especially important to analyze the stability of the solutions to the 
obtained governing equations of motion. Usually, the Lyapunov stability definition 
is adopted. It is said that an equilibrium point of the dynamic system is stable if, 
whatever the disturbance imposed to the equilibrium state, the system remains 
sufficiently close to that state; otherwise, there is instability. If the disturbed system 
tends to the state of initial equilibrium over time, it is said that the system equilibrium 
is asymptotically stable [10,13]. 

The conditions of stability, or dynamic instability, are commonly expressed in 
mechanical vibrating theory. Certain relations between the frequencies of external 
excitations and the natural frequencies of the system, called frequency relations, are 
an associated mechanical phenomenon called resonance [12-14].

The steps to be used in solving a resonant vibrating problem are shown 
in the sequence. Establishment of differential equations of motion, obtaining 
time differential equations of motion; use of asymptotic representations of the 
solutions of the equations obtained, this procedure determines the relations of 
resonances; solution of differential equations of motion (analytical or numerical) 
and, determination of the regions related to system stability and instability and 
possible control techniques. It is noteworthy that the resonant vibrations existence 
(resonance relations) or its characteristics (transient or steady state) depends on 
several factors related to systems and external excitation characteristics [12-14]. 

The features commonly found in vibrating engineering are nonlinearities 
(geometric or physical characteristics); Dissipation of energy (internal or external); 
Gyroscopic Systems; Imperfections of material; Stationary and non-stationary 
modes; Unlimited power sources (or Ideal sources (IS)) or limited (non-ideal 
sources (RNIS)) and; Non-conservative dynamic (follower) or forced. 

On the other hand, monitoring the integrity of nonlinear structures and 
machines is an ever-growing concern in modern engineering applications. Better 
knowledge of structural conditions allows optimized maintenance cycles, increasing 
the availability and return of investment, and preventing failure of various systems, 
ranging from manufacturing equipment to air and land vehicles. A way of evaluating 
the integrity of mechanical systems, used in this study and in modern engineering 
applications, is capturing and analyzing vibration signals during operations in 
structures coupled to non-ideal motors (RNIS) (such that the phenomenon of 
resonance capture can occur) [16-29].

We also mention that according  to [30], we may summarize the researches on the 
nonstationary vibrations problems into three groups: the first one is the study of a 
nonstationary vibration of a linear system when the rotor passes through resonance 
with constant acceleration, the second one it the study of the nonstationary 
vibrations of nonlinear systems, and the third one is the study of the phenomena in 
systems which have mutual interaction between a driving source and a rotor motion 
non-Ideal Systems (RNIS).

In summary, the vibrations of nonlinear systems have been studied exhaustively 
over the last years grounded in H. Poincare, W, Ritz, V.G. Galerkin, A. Lyapunov, 
A. Stodola, etc. At the end of 19th and beginning of the 20th century. Around 1920 
appeared the first works of the authors G. Duffing, Van der Pol, M.N. Krylov, N.N. 
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Bogolyuubov, SA, Mitrosposky, J. J. Stoker, N. Minorky , C, Hayashi, H. Kauderer , etc. 
and other significant contributions have been also made to the theory of vibrations 
of nonlinear dynamical systems. However, (RNIS) cannot be completely explained by 
means of the current theory (we discuss them over this paper).

It is also well known that, over the years, the construction of mathematical models 
has played an important part in the discovery and dissemination of knowledge. The 
degree of realism desired from a mathematical model often depends upon many 
considerations. This process involves keeping certain terms, neglecting others, 
and approximating others. There are no best models, only better models. Ideally, 
modeling leads to a complete understanding of the phenomenon being studied. The 
study of problems involving of the coupling of several systems, was widely explored, 
in the last years, essentially in function of the change of constructive characteristics 
of the machines and structures. 

We also remark that in the Design of structures it is necessary to investigate the 
relevant dynamics to predict the structural response due to the excitations. It is well 
known that the integration of mechanical, electromagnetic, and computer elements 
(electro-mechanical) to produce devices and systems that monitor, and control 
machines and structural systems has led to the need for integration of mechanical 
and electrical design, and industrial applications to nonlinear mechatronic systems 
(Industry 4.0).

While the materials used in electro-mechanical designs are often new, the basic 
dynamic principles of Newton and Maxwell still apply. The governing equations of 
motion are then integral forms of the basic PDEs and result in coupled ordinary 
differential equations (ODEs). This methodology will be explored in this paper. 
The analysis of the motion of real electro-mechanical systems (Mechatronics) were 
carried out by means of mathematical models, which have been always simplified 
and therefore describe the “exact” behavior with the same degree of approximations. 

The study of problems, involving the coupling of several vibrating systems 
was widely explored in the recent years, essentially in function of the change of 
constructive characteristics of the machines and the support structures.      

Accordingly, vibrating processes can be divided into the following types: free, 
forced, parametric and self-excited oscillations and we also remark that two or more 
oscillations can interact in the same oscillatory system. This fact is of important 
scientific and practical interest, nowadays.

We also note that many oscillatory (vibrating) phenomena of real systems cannot 
be explained, nor solved, based on linear theory. That is why it is important to 
introduce nonlinear characteristics on the mathematical models of the considered 
vibrating systems (and to electro-mechanical systems). The main difficulty, in 
comparison to linear systems, is due to the absence of the superposition principle. 
This means that every nonlinear vibrating system must be solved individually, and a 
special methodology must be developed for each class of problems.

Fractional stiffness and damping are appearing in different contexts for systems 
with memory and hysteresis. Such damping is defined by a fractional derivative in 
contrast to classical viscous damping term with the first order derivative. As the 
memory of a dynamical system induces extra degree of freedom, for the phase space, 
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the standard methods of dynamical response analysis and system identification, 
which relies on the knowledge of system dimensionality, cannot be used. A review 
on different aspects of Fracional derivatives may be seen in [47-50]

In the industrial environment there are numerous sources of vibration: rotating 
machines, alternative machines, impact processes, conveyors, vehicles, machine 
tools, and others. It is worth highlighting some results of vibrations in the industrial 
environment: excessive noise, premature wear, cracks, loosening of screws, leaks, 
malfunction of machinery, equipment, and structural failures. In the context of 
industrial environment, the imbalance stands out, which is one of the most common 
causes of vibration in rotating equipment, especially in: electric motor rotors, fan 
rotors, blower rotors, turbines, centrifugal pumps, and elastic couplings (mechanical 
couplings). Rotary unbalance is present in numerous Engineering applications, for 
example it is stated that most drive motors have a problem related to mechanical 
vibration, due to the inherent imbalance that exists in the motors. 

With the development of modern technology, machineries and equipment’s 
are becoming more and more complex every day. Among all machineries, we will 
restrict ourselves to a particular rotary one and the full interaction of their support 
structures. The rotary machineries and the full interaction with their support 
structures are a major, and critical component, of many mechatronic systems, in 
industrial plants, aerial and ground transportation vehicles, and in many other 
applications on modern engineering and applied sciences. It is well known that rotor 
unbalance is the most common reason in rotary machineries to present undesirable 
vibrations. Most of the rotary machinery problem, may be solved by using the rotor 
balancing and misalignment. 

The mass unbalance in a rotating system often produces excessive synchronous 
forces, which reduces the life span of various mechanical elements. A very small 
amount of unbalance may cause severe problem in high-speed rotary machinery. 
The vibrations caused by unbalance may destroy critical parts of the machine, such 
as bearings, seals, gears, and couplings. Rotor unbalance is a condition, in which the 
center of mass of a rotary assembly, typically the shaft and its fixed components, like 
disks and blades etc., is not coincident with the center of rotation. In practice, rotors 
can never be perfectly balanced because of manufacturing errors such as porosity in 
casting, non-uniform density of material, manufacturing tolerances and gain or loss 
of material during operation. As a direct result of mass unbalance, a centrifugal force 
is generated and must be reacted against by bearing and support structures. In this 
way, some phenomena were observed in a composed vibrating system supporting 
structures and rotating machines, where the disbalance of the rotating parts is the 
major cause of the vibrations. 

This review paper aims to provide a short forum for the discussion and 
dissemination of the latest approaches, methodologies results and current challenges 
in nonlinear vibrations, and in the field of electro-mechanical systems (EMS). 

The EMS is not just a marriage of electrical and mechanical systems and is more 
than just a control system; it is a complete integration of all of them. Topics of interest 
on (EMS) include Interdisciplinary approaches and complex nonlinear phenomena 
in problems encountered in emergent engineering and science practice. 
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Therefore, this paper attempts to provide a short review of some of the latest 
efforts in the development and applications of recent exciting research progresses 
of rotary non-ideal systems (RNIS) that is considering the full interaction 
between (RNIS) with their support structures. The main purpose is to provide the 
researchers and engineers, who are working in this emergent vibrating field,  with 
a comprehensive knowledge to help them with a better applying of the theory of 
rotary non-ideal systems (RNIS), to solve problems,  related to rotary machines  and 
the interaction with the support structure. and nowadays trends show a marked 
tendency for solutions of vibrating systems analysis of drive systems as early as the 
design stage.

 In this point, it is important to clarify what rotary non-ideal systems (RNIS) 
means, in order, to avoid future confusions. 

Non-ideal systems (RNIS) have appeared in the literature with several meanings; 
as an example: some researchers use the concept of (RNIS) solutions for concentrated 
solutions, that is, the solutions can occur in two ways: when intermolecular forces 
between solute and solvent molecules are less strong than between molecules of 
similar (of the same type) molecules, and when intermolecular forces between 
dissimilar molecules are greater than those between similar molecules. Here, we 
deal with an energy transfer between the energy sources and the support structures 
and their possible control approaches, that is, we are interested to what happens 
to the motor (or electro-mechanical shaker), input, output, as the response to the 
rotary system support structure changes. 

We will organize this work into five parts, including this introduction section. In 
section 2, we will give some aspects of the recent state-of-the art of (RNIS). Section 
3 presents the background on (NIS). Also, in this section, we will provide a brief 
introduction on the so-called Sommerfeld effect and the Saturation phenomenon. 
Then, Section 4 reviews applications of (NIS) rotary machinery and the full interaction 
with their support structures, over the past five years. In Section 5, we discuss some 
models and governing equations of motion After that, Section 6 discusses some new 
trends of (NIS) rotary machineries. Finally, concluding remarks are drawn in Section 
6, and the main bibliographic references are listed. The present work doesn’t claim 
literature completeness since the available literature is dispersed over many distinct 
sources. It is restricted to the main references on the non-ideal vibrating dynamical 
systems and some related papers on this subject

2. A Brief Review towards the State-of-the art on (RNIS)

Carl G. P. de Laval was the first Engineer to perform an experiment with a steam 
turbine [2,3], he observed that quick passage though critical speed would significantly 
reduce the levels of vibration when compared to steady state excitation. This procedure 
would require a DC motor, with enough power to be accelerated quickly in the range 
of resonance frequency. However, in some cases, DC motors have limited power to 
perform such operations, and the angular velocity increases so slowly that the passage 
through resonance becomes a problem. Probably [41], was the first approach to a non-
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ideal rotor described in the literature. We also mention that considered variations 
of the acceleration rate in order to minimize the motion during passage through 
resonance, and three earlier works in [67-68] in the (RNIS) field.  The problem of 
passing through resonance has been investigated independently by Japanese, German 
and American groups leading to important results. 

A large class of problems, related to unbalanced DC motors with limited power 
supply was discussed in a classical book [35], entirely devoted to this subject. In 
[35] presented the first detailed study on the non-ideal problem (RNIS) related to 
the passage through resonance. He noted that they proposed an experiment of a DC 
motor mounted on a flexible wooden table and observed that the energy supplied 
to the DC motor, was partially converted in the form of a table vibration, instead of 
increasing the angular speed of the DC motor.

This observation was used to explain a class of motors called non-ideal energy 
sources (RNIS). The non-ideal energy source (RNIS) has a reciprocal influence on 
the system near the resonance regime. When considering a DC motor, usually the 
angular velocity increases according to the power supplied by the source. However, 
due to the Sommerfeld effect, near the resonance and with additional energy, the 
average angular velocity of the DC motor remains unchanged, until it suddenly jumps 
to a much higher value, upon exceeding a critical input power. Simultaneously, the 
amplitude of oscillations of the excited system jumps to a much lower value. Before 
the Jump, the non-ideal oscillating system (RNIS) cannot pass through the resonance 
frequency of the system or requires an intensive interaction between the vibrating 
system and the energy source to be able to do so.

In summary, Sommerfeld suggested that the structural response or vibrations 
provide an “energy sink” and thus, we pay to vibrate our structure rather than 
operate the machinery [35].

One of the problems often faced by designers is how to drive a system through 
resonance and avoid the “energy sink”, described by Sommerfeld. Note that, however, when 
the interaction above mentioned is present, the final rotation speed of the motor does not 
depend only on the characteristics of the DC motor and of the power supplied, but also on 
the parameters of the beam, as well as on the initial conditions, and on the range of the 
physical parameters, such as, the mass of the motor, the mass of the rotating unbalanced 
disks, the eccentricity of the disks, the moment of inertia of the rotor, the electrical and 
mechanical characteristics of the motor, the mass, the inertia and length of the beam.

The angular velocity can increase up beyond the resonance condition (passage 
through resonance) or remain close to the natural frequency of the dynamical 
system (capture by resonance). 

Obviously, the time instant of the passage through resonance depends also on 
the initial conditions imposed to the imposed to the system. Due to the nonlinear 
stiffness, it presents a complex behavior, and the system’s response is not always 
periodic. Additionally, depending on the angular speed constant of the motor, it is 
possible to find a chaotic (irregular) response. The nonlinear stiffness adopted in 
the mathematical model of mechanical systems that present elastic potential energy, 
with two potential wells (Duffing system), is the characteristic that increases the 
complexity of the observed dynamic response.
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The presence of chaos in the response of (RNIS), can be verified through the 
phase picture and the FFT graphs, which presents a very disturbed spectrum, 
indicating a characteristic of the chaotic response, and verified by the evaluation 
of the Lyapunov exponents, or the 0-1 test [14]. The appearance of chaos in (RNIS) 
was treated, in first time in by [38]. Later in [45] pointed out the scenario of the 
hyperchaotic attractor formation (an attractor with at least two positive Lyapunov 
exponents) in a class of models governed by the Sommerfeld effect.

The Sommerfeld effect is the result of the energy conservation law of physics, 
and  when a dynamical system is coupled to a power source, it acts like an “energy 
sink”, and a  portion of the source’s energy is driven to deform the system, rather 
than to increase the speed. The Sommerfeld effect involves the riddling bifurcation 
which explains the creation of the hyperchaotic attractor.

Recently, a tribute to the scientific heritage of Kononenko was done by [19] and 
by a scientific paper by [11].

An important point is that the interaction in (RNIS) shows a quasi-periodic 
regime movement, since its vibrations are predominant in the capture by 
resonance, i.e., the Sommerfeld Effect, mentioned above. This property of (RNIS) 
enabled the advance of research in engineering applications, as in the case of using, 
as an excitation of the system, an electro-mechanical vibrator instead of a direct 
current motor, in agreement as it does, classically. This property made it possible 
to increase the range of research emergent possibilities on this topic to Macro and 
MEMS scales [11].

An additional property of (RNIS) is the observed fact that when the adopted 
model is calibrated, a 2:1 internal resonance occurs between the frequencies of the 
second mode (the first symmetrical mode) and the first mode (the “sway” mode).  
As an example, in a portal frame, the external resonance is imposed between the 
angular speed of the supported rotating machine and the second natural mode of 
the structure. It is intended to demonstrate that the energy pumped into the system 
via the second mode, leads to the saturation phenomenon [12,46], passing the 
energy balance to the first mode, not directly excited, which starts to develop wide 
amplitudes, potentially dangerous and not predicted in theory. It is also important to 
consider synchronization, in this case, with two unbalanced DC motors.

The (RNIS) subject were studied and presented by a few numbers of authors in 
the current literature. In the following, some are mentioned.

An overview of various aspects on vibrating problems excited by limited power 
supply: as the physical phenomena involved, the adequate methodology to deal 
with them and a report of selected papers published recently, and in the past, on 
non-ideal dynamical systems are shown in the following papers [8-12]; in the book 
chapters of by [ 8, 11], and in the books of [2, 19, 24].

The above-mentioned authors present comprehensive reviews of the (RNIS) 
vibrating problems considering the dynamical coupling between the energy sources 
and structural response, that must not be ignored in real engineering problems since 
real motors have limited output power. The present models, for certain problems, 
render descriptions that are closer to real situations, where the excitation of the 
vibrating system is always limited in two senses: by the characteristic curves of the 
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energy source, and by the dependence of the system’s motion on the energy source, 
i.e., the coupling between the governing equations of motion and the energy source. 
In particular, the saturation phenomenon in [12] used to harvesting energy in the 
works of  [53,54]. In [51] deal with friction induced nonideal vibrations: a source of 
fatigue [29] included a discussion on (RNIS) health monitoring and [50] presented 
comments on nonlinear response of a nonideal systems with shape memory alloy.

Some authors have explored (RNIS) in various other aspects, for example, [16] and 
[17] discussed the motion of an unbalanced rotor when passing through a resonance 
zone, solved by the iteration method, combined with the method of the direct separation 
of motions. The approach presented by [5] can be used to separate the vibration 
from rotations in many other mechanical and mechatronic systems. The behavior of 
the considered non-ideal system near two simultaneously occurring resonances is 
examined using the Krylov–Bogolyubov averaging method. The stability analysis of 
the resonant response is also carried out. The method to avoid resonance capture by 
switching on and off a mechanism, changing the stiffness of an engine mount. A (RNIS) 
was also using similar approach. It was considered a flexible supported vertical shaft 
with damping; it was assumed that the bending stiffness of the shaft could be switched 
from one value to another. The rotational speed of the shaft increased, and the bending 
stiffness was changed at a certain time to avoid passage through resonance. The 
transient motion induced by this change of stiffness could be larger and hence the 
decrease in maximum response may not always be significant.

The dynamic behavior of a rectangular plate excited by two accelerated 
unbalanced DC machines moving along a rectangular plate in opposite direction 
was explored by [21]. The dynamic behavior of a rectangular plate excited by two 
accelerated unbalanced DC machines moving along a rectangular plate in opposite 
direction is explored. Both motors are considered as non-ideal oscillators and act as 
external excitation on a specific straight line of the plate. The effects of the moving 
acceleration of both motors and their initial moving velocities on the plate deflection 
are investigated. The impact of the way of crossing of the motors on the plate 
amplitude is also analyzed, and it was shown that the physical characteristics of the 
motors contribute to the reduction in the plate vibration. The analytical approach 
used leads to some mathematical expressions, which allows to some predictions 
on vibration amplitude in the system. It follows that the reduction in amplitude of 
vibration depends on the characteristics of the DC motors.

In [43] discussed vibrations of the snap-through motions successfully and  in 
[61] deals with the construction attraction basins, used for the analysis of nonlinear 
dynamical systems presenting multistability. Two versions are considered, one for 
multi-core and another for many-core architectures, both based on a SPMD approach. 
The algorithm is tested on three systems, the classic nonlinear Duffing system, a 
non-ideal system (RNIS) exhibiting the Sommerfeld effect and an immunodynamic 
system. The results for all examples demonstrate the versatility of the proposed 
parallel algorithm, showing that the multi-core parallel algorithm using MPI has 
nearly an ideal speedup and efficiency.

In [23] investigated the dynamical behavior of a (RNIS) Duffing oscillator, to 
identify new features on Duffing oscillator parameter space due to the limited 
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power supply. An extensive numerical characterization in the bi-parameter space 
by using Lyapunov exponents is provided. Following this procedure, a remarkable 
new organized distribution of periodic windows is identified, the ones known as 
Arnold tongues and shrimp-shaped structures. In addition, intertwined basins of 
attraction for coexisting multiple attractors connected with tongues are identified. 
In [50] analyzed the dynamic integrity of a (RNIS) considering two different integrity 
measurements, that are used to quantify the magnitude of the safe basin. After 
obtaining the basins of attraction as functions of a variable parameter, the so-called 
erosion profiles are given, which is the key tool for the study of the dynamic integrity. 
The erosion curves for each measure of integrity are constructed numerically and 
compared to each other. The dynamic integrity of the periodic solution is studied, 
and the basin erosion is evaluated. The erosion profiles obtained allows to identify 
the practical thresholds that guarantee a priori a safe project to be developed.

In [73] a (RNIS) with memory due to a fractional damping term is considered, 
to distinguish between periodic and non-periodic behaviors, three different 
mathematical tools are used, namely, the 0-1 test, scale index and wavelet technique. 
In [20] studied the influence of the order of nonlinearity on the dynamic properties of 
the (RNIS). The authors considered the motor with the torque as a cubic function of 
the angular velocity, and the nonlinear oscillator, with a certain order. The numerical 
calculation and analytical solutions were also done.

In [72] discussed an application of the continuous wavelet transformation for the 
characterization of the Sommerfeld effect, and [73] presented the modelling of (NIS) 
composed of a cantilever beam with two motors positioned on the top.

In [4] analyzed a (NIS) pendulum behavior, using bifurcation diagrams, exhibiting 
doubling-period and saddle-node bifurcations, with chaos. In [32] the appearance 
of chaotic behavior due to the coupling of the manipulator with the motors was 
investigated and the feedback control was designed using the state dependent 
Riccati equation to control of the positioning of the manipulator and the torque 
applied on the MR damper.

In [74], it is numerically and experimentally investigated the dynamics of 
a pendulum vertically excited by a crank-shaft-slider mechanism driven by a 
DC motor. The power supplied to the DC is small enough to observe the return 
influence of the pendulum dynamics on the motor angular velocity. In the 
performed experiments, the motor is supplied with constant time voltages. A series 
of experimental periodic solutions allowed to estimate the model parameters and, 
in a further step, predict the bifurcation phenomena observed in the experiment.

In [40] studied the pendulum horizontally excited by a DC motor and a slider-crank 
mechanism. The mathematical modeling is realistic and based on an experimental rig, 
considering details such as friction in the joints as well as a realistic mass distribution 
for the elements of the system. Using basic nonlinear tools as phase portraits, Poincaré 
maps, and Fourier spectra, reporting various solutions including periodic, quasi-
periodic and non-periodic ones. To identify chaotic solutions, the 0-1 test [14] was 
used, and the simulation results were qualitatively confirmed by experiments. 

In [15] it was studied the features of vibrational motion of an orthogonal 
mechanism with disturbances, such as restricted power in the presence of a fixed 
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load on the horizontal link. Dynamic and mathematical models were developed, and 
the fields of existence of the operating conditions for the vibration mechanism in 
terms of the driving power were defined.

In [20]  the authors suggested to develop the control method for the motion in 
the non-ideal mass variable oscillatory system, and in [71] the authors considered 
the application of the time-delayed feedback control in a (RNIS) with cubic 
nonlinearity to suppress chaotic behavior, considering the velocity of the rotating 
angle as a parameter to determine the time delay. In addition, another control was 
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system and the average harvested power were described by expressions related to 
the coupling between the mechanical and electrical domains.

In [53] the authors shown that when the excitation frequency is near to the second 
frequency mode of vibration of the main system, saturation and jump phenomena 
occur and they explore the possibility to harvesting energy from high amplitudes of 
vibration. 

In [27] showed that the vibration transfer and energy harvesting may be achieved 
simultaneously by electricity-generation from auto parametric vibration absorber 
system and a (RNIS). The (RNIS) consisted of a simple portal frame excited by a 
DC motor and located on the top. The results showed the existence of Sommerfeld 
effect in (NIS) and the saturation phenomenon in the (NIS) and on the absorber. The 
portal structure is of two-degrees-of-freedom considering with quadratic coupling 
between the first and second modes of vibration. 2:1 internal resonance between 
the first and second modes is set, which is a special condition of this type of system 
due to the appearance of a saturation phenomenon, as studied by [59] considering 
the contribution of the linear part of the Piezoelectric. 

Also, [27] used the method of Jacobi-Anger expansion in a 2DOF model of 
a flexible portal frame with harmonic force of varying frequency to an energy 
harvester. A good performance of the harvester generator was reported, and the 
authors observed periodic, quasi-periodic or chaotic oscillations, depending on the 
saturation phenomenon.
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characteristics of the motor. The oscillations of the system in resonance zones are 
analyzed, and relations between power input and dissipated power are estimated, 
depending on the system parameters.

3. Modern Rotary non-ideal systems (RNIS) modeling outline

In this section we discuss some possible ways to obtain the governing equations 
of (RNIS).

3.1. Case 1. Formally, the governing equations of the rotary system (RNIS) with n 
degrees of freedom, may be written as [27]:
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Where the functions f�(x, ẋ) are the damping coefficients; the functions f�(x, t) are the 
stiffness coefficients, where 𝜔𝜔��

�  are the natural frequencies (it is possible to have internal 
resonance if, for instance, 𝜔𝜔��

� ≈ 𝑚𝑚 𝜔𝜔��
�  and 𝑗𝑗, 𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The constants f�,� are the 
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c�� are defined by the active interaction between the vibrating system and the excitation 
sources. If a�� = 0, then q�� = Ω��t corresponding to harmonic excitations (IS). In some 
cases, we can take fractional derivatives for both stiffness and damping, in order to 
introduce a memory, in the considered system; for example, the damping device acts with 

a force dF  given by 
v

d v
d xF c
dt

  proportional to the 𝑣𝑣�� derivative of the relative 

displacement. For 𝑣𝑣 = 1 the force is a linear viscous damping force. It is assumed that 
0 ≤ 𝑣𝑣 ≤ 1, in general. 

Using the Jacobi-Anger expansion, the sine and cosine terms can be written as: 

        cos( z sin θ) = ∑ J�(z) cos( kθ)�
����    (2) 

where J�(z) is the ki-th classical Bessel function, then we obtain from (1) and (2): 

𝑥𝑥�̈ + f�(x, ẋ) + f�(x, t) = f�� ∑ J�(a�) cos( Ω�t + kc��)�
����  (3) 

where Ω� = Ω�� + kb��Ω��; i=1,2,n 

It is important to note that (Eq. 3) looks like a system with harmonic excitation for 
each k . It is a generalization important of (RNIS) vibrating governing equations of 
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𝑥𝑥�̈ + f�(x, ẋ) + f�(x, t) = f�� ∑ J�(a�) cos( Ω�t + kc��)�
����  (3) 

where Ω� = Ω�� + kb��Ω��; i=1,2,n 

It is important to note that (Eq. 3) looks like a system with harmonic excitation for 
each k . It is a generalization important of (RNIS) vibrating governing equations of 

 are defined by the active interaction between the 
vibrating system and the excitation sources. If 

A Short Review on Hybrid Vibrating Systems with Limited Power Supply (RNIS) 
181 

the motor. The oscillations of the system in resonance zones are analyzed, and relations 
between power input and dissipated power are estimated, depending on the system 
parameters. 

3 Modern Rotary non-ideal systems (RNIS) modeling outline 

In this section we discuss some possible ways to obtain the governing equations of 
(RNIS). 

3.1 Case 1 

Formally, the governing equations of the rotary system (RNIS) with n degrees of 
freedom, may be written as Felix et al., 2017 as: 
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motion. Note that if in the case of (RNIS) (particular cases of f�(x, ẋ) + f�(x, t) , i=1, k=1) 
from (Eq3), we get 

ẍ + 2ςẋ − ω�
�x + γx� = f� cos( Ω�t − a� cos( b�Ω�t)) (3a) 

then if  a� = 0 the equations are the classical Duffing (RNIS) equation. 

3.2 Case 2 

We reduce the amplitudes of vibrations of the (RNIS) during the occurrence of the 
Sommerfeld effect in both inside and outside resonance region, respectively, using a 
Nonlinear-Energy Sink as a Passive Controller [55]. Then, adding one more equation to 
Eq (1), 

2 2
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
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
  g (4) 

where 𝑚𝑚� is the mass, 𝑐𝑐� is the coefficient of the viscous damping and 𝑦𝑦 is the 
displacement of the (NES), g(y) is the stiffness term of the (NES), V is the potential 
energy associated with the coupling spring. Both g(y) and V  are not necessarily linear.  

3.3 Case 3 

The attenuation of the Sommerfeld effect, may be done by means of a nonlinear 
electromechanical vibration absorber, called (NEVA) [27], taking into account that the 
electric part of the controller consisted of a linear inductor L , a nonlinear capacitor C , 
and nonlinear resistor R . The expression of the voltage over the resistor and the 
condenser were a nonlinear function of the instantaneous electrical charge q . Now we 
consider one more equation with Eq (1): 
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where 0i  is the initial current, in the electrical part, 0C  is the linear value of the 

capacitive characteristic, and the parameters 3 and 5 , are nonlinear coefficients
depending on the capacitor type. T  is the transducer (constant), which relates the current 
in the coil to the magnetic force acting on the considered coil. The transducer constant is 
given by 𝑇𝑇 = 2𝜋𝜋/𝑛𝑛𝑛𝑛𝑛𝑛, where n  is the number of turns of the coil, l  is the radius of the
coil, and B  is the uniform radial magnetic field strength in the annular gap. The 
transducer constant T  also relates the electrical potential e, across the terminals of the 

  from 
Eq. (3), we get
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where 𝑚𝑚� is the mass, 𝑐𝑐� is the coefficient of the viscous damping and 𝑦𝑦 is the 
displacement of the (NES), g(y) is the stiffness term of the (NES), V is the potential 
energy associated with the coupling spring. Both g(y) and V  are not necessarily linear.  

3.3 Case 3 

The attenuation of the Sommerfeld effect, may be done by means of a nonlinear 
electromechanical vibration absorber, called (NEVA) [27], taking into account that the 
electric part of the controller consisted of a linear inductor L , a nonlinear capacitor C , 
and nonlinear resistor R . The expression of the voltage over the resistor and the 
condenser were a nonlinear function of the instantaneous electrical charge q . Now we 
consider one more equation with Eq (1): 

2 2 3 4 5
0 02

0

1 11 0a b
p

Lq R q q q i q i q Tx
i C

 
 

       
 

    (5) 

where 0i  is the initial current, in the electrical part, 0C  is the linear value of the 
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motion. Note that if in the case of (RNIS) (particular cases of f�(x, ẋ) + f�(x, t) , i=1, k=1) 
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 is the uniform radial magnetic field strength in the annular 
gap. The transducer constant T  also relates the electrical potential e, across the 
terminals of the coil to the velocity of the coil, with respect to the permanent magnet. 
In this case Eq (1) must be replaced by:
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coil to the velocity of the coil, with respect to the permanent magnet. In this case Eq (1) 
must be replaced by: 

x�̈ + f�(x, ẋ) + f�(x, t) + Tq̇ = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��) (1b) 

3.4 Case 4 

Now, considering the mathematical model (RNIEH) for energy harvesting, we need 
to replace Eq (1) for the following governing equations of motion: 

x�̈ + f�(x, ẋ) + f�(x, t) +
�(�)
�

q = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��)  (1c) 

where the quantity 1 0M m m   is the total mass of the (NIEH), x  is displacement of
the (RNIEH), P1 and P2 are the  thin film piezoelectric applied layers and the electrical 

charge developed in the coupled circuit given by q, the term 
( )d x q
C

 represents the 

piezoelectric coupling to the mechanical component, with a strain-dependent coupling, 
coefficient 𝑑𝑑(𝑥𝑥). The voltage V  across the piezoelectric material has the form: 

( )d x qV x
C C

   (6) 

where C represents the piezoelectric capacitance, and with V Rq    the (RNIEH) 
coupled governing equations of motion are: 

x�̈ + f�(x, ẋ) + f�(x, t) +
�(�)
�

q = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��)

𝑅𝑅𝑅̇𝑅 − �(�)
�

+ �
�
= 0

(7) 

for I=1,…,n. 

The power of the harvester is 𝑃𝑃 = 𝑅𝑅𝑅̇𝑅 and the average power is 𝑝𝑝 = �
� ∫ 𝑃𝑃(𝛼𝛼)𝑑𝑑𝑑𝑑�

� , 
where T is the period of the vibrations. 

3.5 Case 5 

Another form of (RNIS) governing equation of motion, can be obtained by taking 
into account the action of an electro-dynamical shaker (on the support structure of 
(RNIS)) which consists of a device reproducing harmonic excitations. The interaction of a 
support structure of (RNIS) and the electromechanical shaker, is due to the existence of 
quasi-periodic oscillations, the Sommerfeld effect (Balthazar et al, 2018). The schematics 
of the support of this kind of (RNIS) can be seen in Fig1, where L is the shaker 
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x�̈ + f�(x, ẋ) + f�(x, t) +
�(�)
�

q = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��)  (1c) 

where the quantity 1 0M m m   is the total mass of the (NIEH), x  is displacement of
the (RNIEH), P1 and P2 are the  thin film piezoelectric applied layers and the electrical 

charge developed in the coupled circuit given by q, the term 
( )d x q
C

 represents the 

piezoelectric coupling to the mechanical component, with a strain-dependent coupling, 
coefficient 𝑑𝑑(𝑥𝑥). The voltage V  across the piezoelectric material has the form: 

( )d x qV x
C C

   (6) 

where C represents the piezoelectric capacitance, and with V Rq    the (RNIEH) 
coupled governing equations of motion are: 
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where C represents the piezoelectric capacitance, and with V Rq= −   the (RNIEH) 
coupled governing equations of motion are:
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3.4 Case 4 
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x�̈ + f�(x, ẋ) + f�(x, t) +
�(�)
�

q = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��)  (1c) 

where the quantity 1 0M m m   is the total mass of the (NIEH), x  is displacement of
the (RNIEH), P1 and P2 are the  thin film piezoelectric applied layers and the electrical 

charge developed in the coupled circuit given by q, the term 
( )d x q
C

 represents the 

piezoelectric coupling to the mechanical component, with a strain-dependent coupling, 
coefficient 𝑑𝑑(𝑥𝑥). The voltage V  across the piezoelectric material has the form: 

( )d x qV x
C C

   (6) 

where C represents the piezoelectric capacitance, and with V Rq    the (RNIEH) 
coupled governing equations of motion are: 

x�̈ + f�(x, ẋ) + f�(x, t) +
�(�)
�

q = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��)

𝑅𝑅𝑅̇𝑅 − �(�)
�

+ �
�
= 0

(7) 

for I=1,…,n. 

The power of the harvester is 𝑃𝑃 = 𝑅𝑅𝑅̇𝑅 and the average power is 𝑝𝑝 = �
� ∫ 𝑃𝑃(𝛼𝛼)𝑑𝑑𝑑𝑑�

� , 
where T is the period of the vibrations. 

3.5 Case 5 

Another form of (RNIS) governing equation of motion, can be obtained by taking 
into account the action of an electro-dynamical shaker (on the support structure of 
(RNIS)) which consists of a device reproducing harmonic excitations. The interaction of a 
support structure of (RNIS) and the electromechanical shaker, is due to the existence of 
quasi-periodic oscillations, the Sommerfeld effect (Balthazar et al, 2018). The schematics 
of the support of this kind of (RNIS) can be seen in Fig1, where L is the shaker 
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capacitance, R is the shaker resistance, 
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inductance, C is the Shaker capacitance, R is the shaker resistance, e� is the input voltage 
of the shaker, and I is the electrical current of the shaker circuit. The input voltage of the 
shaker is given by a harmonic force e(t)= e� cos(𝜔𝜔 t). 

 (A)  (B) 

Fig 1- Schematic of the support (RNIS) excited by an electromechanical shaker. (A) scheme of 
device and (B) electrical scheme. 

Therefore, the governing equation of motion are 

x�̈ + f�(x, ẋ) + f�(x, t) + T𝑞̇𝑞 = f�� cos[ Ω��t + a�� sin( b��Ω��t + c��)
𝐿𝐿𝐿̈𝐿 + 𝑅𝑅𝑅̇𝑅 + 𝑇𝑇𝑇𝑇 = 𝑒𝑒� cos(𝜔𝜔𝜔𝜔)

 (8) 

where T is the Transducer gain. 

3.6 Case 6 

Next, we discuss the contribution of nonlinearities of piezoelectric material to 
generate harvesting energy. 

Because of the constitutive characteristics of piezoelectric materials, the role of 
nonlinearities must be taken into account in the electro-mechanical coupling of energy 
harvesting system design [1] and [22].  

The behavior of the piezo-electric element was checked experimentally by [18], 
and the function to the dimensionless piezo-electric coupling coefficient was suggested by 
[70], where the dimensional coefficient piezo-electric d(x) was approximated by: 

 𝑑𝑑(𝑥𝑥) = 𝑑𝑑������(1 + 𝑑𝑑���������|𝑥𝑥|), x = Material’s deformation  (9) 

having defined the dimensionless counterpart as 

𝑑𝑑�(𝑥𝑥) = 𝜃𝜃(1 + Θ|𝑥𝑥|) (10)
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where the piezoelectric coefficient is constituted by a linear part represented 
by Θ  and a nonlinear part represented by Θ . Recently [59] analyzed the behavior 
of a (RNS) Portal Frame instability with the parameter Θ . For 0Θ ≠  instability 
and resonance were observed, with catastrophic displacements for the portal 
frame system. It was also observed that the system has a reduction in the energy 
production when increasing Θ .

The contribution of the nonlinear part of the piezoelectric was also discussed in 
[54, 55]. It was found that the energy harvested is dependent on the piezoelectric 
linear and nonlinear coefficients, changing the average power generated. However, 
further research on this subjected is needed. 

4. Conclusions 

This chapter presented an overview of various aspects on a special class of 
hybrid vibrating problems excited by a limited power supply (RNIS). We discussed, 
concerning to (RNIS), and as the physical phenomena was involved, the adequate 
methodology to deal with them, and reported a selection of papers recently 
published, for recent and emergent studies.

A new phenomenon was addressed, concerning structures supporting 
unbalanced machines, capable of a limited output power, that is, Rotary Non-Ideal 
Systems (RNIS), and the motion of an oscillating structure under the action of such 
energy source was accompanied by a full interaction between these non-ideal 
motors and their supports. 
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We also analyzed possible and practical applications concerning unbalanced non-
ideal DC motor type foundation structure (RNIS) in the presence of the Sommerfeld 
Effect, getting stuck at resonance (energy imparted to the motor being used to excite 
large amplitude motions on the supporting structure). 

Finally, some relevant models in the study of (RNIS) were presented, showing 
that the nonlinear piezoelectric coupling has relevant contributions to the system, 
depending on the value of the linear piezoelectric coupling. It is important to note 
that the coupling makes the system become close to the real movement of the system, 
so that the simulations results are close to the real problem. 

Additionally, this paper did not exhaust the subject, showing the need for further 
research on piezoelectric (RNIS).
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