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Introduction

The idea to control the use of formulae is present in Gentzen’s sequent calculus’
structural rules [23], whereas the idea to control the use of variables can be traced
back to Church’s λI-calculus [13]. Nowadays, the notion of resource awareness
and control has an important role both in theoretical and applicative domains,
from logic and lambda calculus to programming languages and compiler design.
The increased ability to control the quantity of resources, as well as the order in
which they are used, finds its relevance and application in many domains: memory
management that prevents memory leaking [62], construction of compilers [55] and
improvement of multi-core program efficiency for object-oriented languages [48], to
mention some of them.

The control of resources in the λ-calculus is in the focus of our investigation.
Control of resources can be achieved by introducing new operators to the λ-calculus,
namely operators of erasure and duplication, which on the logical side correspond
to thinning and contraction rules, respectively. Explicit control of erasure and
duplication leads to the decomposition of reduction steps into more atomic ones,
hence it changes the structure of a program. It is important to control these parts
of computation which are usually left implicit.

Extending the λ-calculus and the sequent λGtz-calculus with explicit erasure and
duplication provides the Curry–Howard correspondence for intuitionistic natural
deduction and sequent calculus with explicit structural rules, as investigated in
[41, 42, 30].

In this work we give an overview of the most important work in the field of
resource control and present the authors’ contributions in this field. This is the
continuation of the work on computational interpretations of logics in [31].
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Paper overview. In Section 1 we provide some useful background notions on
structural rules in logic (Section 1.1) and summarise the most significant contri-
butions in the field of resource control (Section 1.2). In Section 2 we start our
journey with the presentation of untyped version of the Resource control lambda
calculus λr [28, 24], its syntax and operational semantics (Section 2.1), followed
by its typed versions, both with simple and intersection types (Section 2.2). We
continue with Resource control sequent lambda calculus λGtz

r [30] in Section 3, a
sequent counterpart of the λr-calculus. We again provide the syntax and opera-
tional semantics of its untyped version (Section 3.1), followed by λGtz

r -calculus with
simple and intersection types (Section 3.2). Section 4 deals with computational
interpretations of substructural logics [40] and presents λIr - a calculus without
thinning (Section 4.1) corresponding to a variant of the relevant logic. Finally, we
conclude in Section 5.

1. Background

1.1. Structural rules in logic. In this section we give a brief overview of the
formal systems of natural deduction and sequent calculus, both for intuitionistic and
classical logic, so that the correspondence with the syntax of the calculi presented
later is more clear. We then present the most common structural rules. Only
implicational fragments of these logical systems are in our focus, due to our interest
in the computational interpretations of logics.

1.1.1. Natural deduction: intuitionistic logic and classical logic. We pres-
ent the following Gentzen’s systems: natural deduction for intuitionistic logic (NJ)
and classical logic (NK), as well as sequent calculus for intuitionistic logic (LJ) and
classical logic (LK). More details can be found in [52].

The set of formulae of implicational fragment of propositional logic is given by
the following abstract syntax:

A = X | A → B

where X denotes an atomic formula and capital Latin letters A,B, . . . denote for-
mulae or single propositions. Hence, a formula can be either an atomic formula X
or implication A → B. Sequences of formulae, called antecedents and succedents
are denoted by capital Greek letters Γ,∆, . . . and Γ, A stands for Γ ∪ {A}.

(axiom)
Γ, A ⊢ A

Γ ⊢ A → B Γ ⊢ A
(→ elim)

Γ ⊢ B

Γ, A ⊢ B
(→ intro)

Γ ⊢ A → B

Figure 1. NJ: intuitionistic natural deduction

Gentzen’s natural deduction rules for intuitionistic logic NJ and classical logic
NK are given in Figures 1 and 2, respectively. The systems consist of the axiom rule
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(axiom)
Γ, A ⊢ A,∆

Γ ⊢ A → B,∆ Γ ⊢ A,∆
(→ elim)

Γ ⊢ B,∆

Γ, A ⊢ B,∆
(→ intro)

Γ ⊢ A → B,∆

Figure 2. NK: classical natural deduction

and logical rules (introduction and elimination rules for each connective, in this case
only for implication). Introduction rules have the connective in the conclusion but
not in the premises, whereas elimination rules have the connective in the premises
but not in the conclusion.

1.1.2. Sequent calculus: intuitionistic logic LJ and classical logic LK. As
opposed to natural deduction derivations, sequents in sequent calculus have the
following form:

A1, . . . , An ⊢ B1, . . . , Bm or Γ ⊢ ∆

which corresponds to the formula

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨Bm.

We can again distinguish axiom rule, logical rules (left and right), and the cut rule.
For each connective, as opposed to introduction and elimination rules characteristic
of natural deduction, here we have left and right logical rules, depending on whether
the connective is introduced in antecedent or succedent. The rules of Gentzen’s
sequent calculus intuitionistic logic LJ and classical logic LK are given in Figures 3
and 4, respectively. Right rules in sequent calculus correspond to introduction rules
in natural deduction, whereas left rules correspond to elimination rules.

(axiom)
Γ, A ⊢ A

Γ ⊢ A Γ, B ⊢ C
(→ left)

Γ, A → B ⊢ C

Γ, A ⊢ B
(→ right)

Γ ⊢ A → B

Γ ⊢ A Γ, A ⊢ B
(cut)

Γ ⊢ B

Figure 3. LJ: intuitionistic sequent calculus

Notice the presence of the cut rule which is used to simplify and shorten the
proofs, while at the same time not increasing the number of theorems which can be
proved. Also, the cut rule precludes the proofs reconstruction, since it is impossible
to know which formula was eliminated using the cut rule. Fortunately, Gentzen’s
Cut elimination property (Hauptsatz) proves that it is possible to leave out the cut
rule and still obtain the system with the same set of derivable statements. Also,
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(axiom)
Γ, A ⊢ A,∆

Γ ⊢ A,∆ Γ, B ⊢ ∆
(→ left)

Γ, A → B ⊢ ∆

Γ, A ⊢ B,∆
(→ right)

Γ ⊢ A → B,∆

Γ ⊢ A,∆ Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

Figure 4. LK: classical sequent calculus

a formula is derivable in NJ if and only if it is derivable in LJ and a formula is
derivable in NK if and only if it is derivable in LK.

1.1.3. Structural rules. Structural rules are the inference rules which do not
refer to logical connectives, they rather deal with judgements or sequents directly.
The most common structural rules are the following:

• Thinning (or weakening), where either the hypotheses or the conclusion
may be extended with additional formula.

Γ ⊢ ∆
(ThinL)

Γ, A ⊢ ∆
or

Γ ⊢ ∆
(ThinR)

Γ ⊢ A,∆

• Contraction, where two equal (or unifiable) formulae on the same side of a
turnstyle may be replaced by a single formula.

Γ, A,A ⊢ ∆
(ContL)

Γ, A ⊢ ∆
or

Γ ⊢ A,A,∆
(ContR)

Γ ⊢ A,∆

• Exchange or permutation, where two formulae on the same side of a turnstile
may be swapped.

Γ1, A,B,Γ2 ⊢ ∆
(ExchL)

Γ1, B,A,Γ2 ⊢ ∆
or

Γ ⊢ ∆1, A,B,∆2
(ExchR)

Γ ⊢ ∆1, B,A,∆2

Remark. Although the name weakening is now used more frequently, we prefer
the name thinning because Gentzen denoted by weakening slightly different, more
strict, structural rule:

Γ, A ⊢ ∆
(WeakL)

Γ, A,A ⊢ ∆
or

Γ ⊢ A,∆
(WeakR)

Γ ⊢ A,A,∆

Here we presented structural rules for the classical sequent calculus, whereas in
the intuitionistic setting only left rules exist, and ∆ is restricted to a single formula.

It is possible to define several variants of sequent calculi for both intuitionistic
and classical logic, by considering structural rules explicitly in some variants and
implicitly in others. The basic Gentzen’s sequent systems are denoted by G1, G2
and G3. They were formalized by Kleene in [44] and later revisited by Troelstra
and Schwichtenberg in [57]. Briefly, the essential difference between G1 and G3 is
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the presence/absence of the explicit structural rules. The distinguishing point in
the case of G2 is the use of the mix-rule instead of the more common cut-rule.

Apart from the differences in number and form of rules, these systems also differ
in the treatment of antecedents and succedents Γ, ∆:

• if all three structural rules are explicit, Γ, ∆ are interpreted as lists;
• if exchange rule is implicit, Γ, ∆ are interpreted as multisets;
• if all three structural rules are implicit, Γ, ∆ are interpreted as sets.

Another difference caused by explicit/implicit structural rule of contraction is the
style of presenting the rules with two premises. Context-sharing or additive style
corresponds to systems with implicit contraction (as in the rule (Cut) in Figure 3),
whereas context-splitting or multiplicative style is characteristic for systems with
explicit contraction (as in the rule (Cut) in Figure 5). Finally, explicit/implicit
structural rule of thinning determines the form of axiom rule. Systems with explicit
thinning require minimal axiom (as in the rule (Ax) in Figure 5), whereas a more
general form of axiom is characteristic for systems with implicit thinning (as in the
rule (axiom) in Figure 3).

In Figure 5 we present the sequent calculus system whose computational inter-
pretation will be given in Section 3 of this paper. This system is a variant of the
system G1 for implicative intuitionistic logic, with implicit exchange.

A ⊢ A
(Ax)

Γ, A ⊢ B

Γ ⊢ A → B
(R →)

Γ ⊢ A ∆, B ⊢ C

Γ,∆, A → B ⊢ C
(L →)

Γ, A,A ⊢ B

Γ, A ⊢ B
(Cont) Γ ⊢ B

Γ, A ⊢ B
(Thin)

Γ ⊢ A ∆, A ⊢ B

Γ,∆ ⊢ B
(Cut)

Figure 5. System G1 with implicit exchange

There are also sequent systems in which some of the structural rules are for-
bidden, i.e. they are neither explicitly nor implicitly present. They define various
substructural logics [56, 53]. We distinguish the following substructural logics de-
pending on which structural rules do not hold:

• Relevant logic (also known as relevance or strict logic) was proposed in order to
overcome the paradoxes that existed in the systems with material implication,
which does not require any connection between premises and conclusion. Such
irrelevant implications are discarded by requiring that the variable sharing prin-
ciple between premises and conclusion holds. Proof-theoretically, the notion of
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relevance can be captured by the system of sequent calculus without thinning,
or by natural deduction with tagging (see e.g. [3]).

• Affine logic proof-theoretically corresponds to classical or intuitionistic logic
without the structural rule of contraction. Although usually derived from linear
logic by allowing thinning, it was also used in [34] as a foundation of the set-
theory in which Russell’s paradox cannot be derived.

• Linear logic is a substructural logic proposed as a refinement of classical and
intuitionistic logic [33]. Proof-theoretically, it corresponds to ordinary logic
where the uses of contraction and thinning are carefully controlled and formulae
cannot always be duplicated or discarded without control. Due to interpretation
of formulae as resources instead of traditional classical interpretation as truths,
linear logic found many applications in computer science.

• Ordered logic or non-commutative logic is a logic where neither thinning, nor
contraction, nor exchange are allowed. In the absence of all structural rules, the
order of formulae within context becomes an important feature of the logic. The
most well-known non-commutative logic is Lambek calculus [46], that was pro-
posed in order to model the syntax of natural languages, and as such represents
the foundation of computational linguistics.

Accordingly, in type theory, the type systems designed so that one or more of
the structural properties do not hold are called substructural type systems [62]. We
distinguish the following substructural type systems depending on which properties
do not hold:

• Relevant type systems allow exchange and contraction, but not thinning. This
ensures that every variable is used at least once.

• Affine type systems allow exchange and thinning, but not contraction. This
ensures that every variable is used at most once.

• Linear type systems allow exchange but not thinning or contraction. This en-
sures that every variable is used exactly once.

• Ordered type systems do not allow any of the structural properties. This ensures
that every variable is used exactly once and that it is used in the order in which
it is introduced.

1.2. Control of resources in computation and concurrency. The idea and need
to control the use of variables in λ-calculus, i.e. in computation, can be traced back
to Church’s λI-calculus proposed in [13]. In this calculus, contrary to the standard
λ-calculus (denoted by Church by λK), the variables bound by λ-abstraction should
occur in the body of the term at least once. Therefore, a void λ-abstraction is not
acceptable, and in order to have the abstraction λx.M the variable x has to occur
in M . Chapter 9 in Barendregt [4] provides a detailed account on λI-calculus.

Klop’s extended λ-calculus [45], based on the ideas of Nederpelt [49], is very
simple and elegant: a redex (λx.M)N , with x not being a free variable ofM , reduces
to the pair [M,N ], instead of reducing to M . In this way no subterm is discarded,
and as a consequence, strong normalisation coincides with weak normalisation, as
proved in [45].
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Currently, there are several different lines of research in resource aware term
calculi.

Resource aware lambda calculi. An interesting approach to the resource aware
lambda calculus, motivated mostly by the development of the process calculi, was
investigated by Boudol in [10]. Instead of extending the syntax of λ-calculus with
explicit resource operators, Boudol proposed a non-deterministic calculus with a
generalised notion of application. In his work, a function is applied to a struc-
ture called a bag, having the form (Nm1

1 | . . . |Nmk

k ) in which Ni, i = 1, . . . , k are
resources and mi ∈ N ∪ {∞}, i = 1, . . . , k are multiplicities, representing the
maximum possible number of the resource usage. In this framework, the usual ap-
plication is written as MN∞. The theory was further developed in [11], connected
to linear logic via differential λ-calculus by Ehrhard and Regnier in [16] and typed
with non-idempotent intersection types by Pagani and Ronchi Della Rocha in [50].
An account of this approach is given in [2].

Van Oostrom [59] and later Kesner and Lengrand [41], applying ideas from lin-
ear logic [33], proposed to extend λ-calculus with explicit substitution [41] with
operators to control the use of variables (resources). Their linear λlxr-calculus is an
extension of the λx-calculus [9, 54] with operators for linear substitution, erasure
and duplication which preserves confluence and full composition of explicit substi-
tutions. The simply typed version of this calculus corresponds to the intuitionistic
fragment of linear logic proof-nets, according to Curry-Howard correspondence [37],
and it enjoys strong normalisation and subject reduction. This approach was later
generalised in Kesner and Renaud’s Prismoid of Resources [42, 43], a complex sys-
tem of eight calculi which are obtained by explicit or implicit management of these
three operators.

In the realm of classical logic, resource control for sequent calculus was proposed
by Žunić in [64] and Žunić and Lescanne in [65]. Their ∗X -calculus introduces
terms for explicit erasure and duplication, in the context of explicit substitution.
This calculus features non-confluence and interface preservation. The first attempt
of introducing resource control in intuitionistic sequent λ-calculus can be found
in [30] and we will provide more details in Section 3.1.

Linear logic. In mathematics, the functions which use each argument exactly
once are called linear functions. In linear logic, introduced by Girard [33], thin-
ning and contraction rules in the proofs are made explicit, which corresponds to
explicit copying and erasure operations. Computational interpretations of linear
logic originate from the work of Abramsky [1] and Benton et al. [7].

Substructural type theories. The idea of linear types, stems from Wadler’s
work presented in [60]. The values which have linear types, can be used only
once and cannot be duplicated or destroyed. Hence, there is no need for reference
counting or garbage collection. The values which have non-linear types may have
many pointers to them and do require garbage collection, but enable sharing.

Walker introduces substructural type systems in [62]. With these type systems
it is possible to control how many times and in which order a data structure or an
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operation was used. They are very useful when there is a need to constrain the
access to system resources, such as files, locks and memory, since they provide a
sound static mechanism for tracking state changes and preventing operations on
objects in an invalid state. In particular, he introduces two substructural type
systems: linear type system and ordered type system. Linear type system enables
safe deallocation of data since objects can be used exactly once. Ordered type sys-
tem enables managing memory allocated on the stack by controlling the exchange
property.

Resource awareness and linearity for functional calculi. Resource Aware
ML (RAML) is a functional programming language of Hoffman et al. [36] which
implements the resource analysis that automatically computes polynomial resource
bounds for first-order functional programs. Alves et al. [2] give details and main
results concerning three notions of linearity for functional calculi: syntactical, op-
erational and denotational [20]. For syntactical linearity a linear use of variables
in terms is required. Operational linearity ensures that function arguments are not
duplicated or erased during the evaluation process. In case of denotational linear-
ity, all the functions which can be defined in the language have the corresponding
linear function in a particular model.

Substructural types in concurrency. Several type disciplines for π-calculi have
been proposed so far in which linearity plays a key role. The type system of Caires
and Pfenning [12] is based on a new interpretation of propositions-as-session types
and proofs-as-processes which ensures session fidelity, absence of deadlocks, and a
tight operational correspondence between π-calculus reductions and cut elimination
steps. Gay and Vasconcelos [21] manipulate asynchronous session types by means
of the standard structures of a linear type theory. Wadler [61] relates the two
previous approaches.

Mostrous and Vasconcelos [47] relax the condition of linearity to that of affinity,
by which channels exhibit at most the behaviour prescribed by their types. This
more liberal setting allows to incorporate an elegant error handling mechanism
which simplifies and improves related works on exceptions. However, this treatment
does not affect the progress properties of the language, i.e. sessions never get stuck.

Recent developments in this area by Pfenning and Griffith [51] make the usual
distinction between synchronous and asynchronous communication viewed through
modal logic. Polarizing the substructural propositions into positive and negative
connectives allows to elegantly express synchronization in the type itself.

Intersection types for resource control . Intersection types in the presence of resource
control were first introduced by Ghilezan et al. [24]. Later on non-idempotent
intersection types for λlxr-calculus were introduced by Bernadet and Lengrand in [8]
and used to prove the strong normalisation.

2. Resource control lambda calculus

The resource control lambda calculus, λr [28, 24, 27], is an extension of the
λ-calculus [6] with operators that erase and duplicate variables, thus enabling the
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control of resources involved in the process of computation. It operationally corre-
sponds to the λcw-calculus, one of the calculi of Kesner and Renaud’s Prismoid of
resources [42, 43].

2.1. Untyped λr-calculus.

2.1.1. Syntax. There are two ways to define λr-terms. First is to define a larger
set of λr-pre-terms, and then to extract from it the set of λr-terms by imposing re-
strictions and conditions considering free variables. This approach was used in [24].
The approach presented here eliminates the need for auxiliary notion of pre-terms
and directly defines λr-terms and their free variables using mutual recursion1.

Definition 2.1. (i) The set of λr-terms, denoted by Λr, is defined by infer-
ence rules given in Figure 6.

(ii) The list of free variables of a term M , denoted by Fv[M ], is defined by
inference rules given in Figure 7.

(iii) The set of free variables of a term M , denoted by Fv(M), is obtained from
the list Fv[M ] by unordering.

(iv) The set of bound variables of a term M , denoted by Bv(M), contains all
variables of M that are not free in it, i.e. Bv(M) = V ar(M) r Fv(M).

x ∈ Λr

(var)

M ∈ Λr x ∈ Fv(M)

λx.M ∈ Λr

(abs)
M ∈ Λr N ∈ Λr Fv(M) ∩ Fv(N) = ∅

MN ∈ Λr

(app)

M ∈ Λr x /∈ Fv(M)

x⊙M ∈ Λr

(era)

M ∈ Λr x1, x2 ∈ Fv(M) x1 6= x2 x /∈ Fv(M)r {x1, x2}

x <x1

x2
M ∈ Λr

(dup)

Figure 6. Λr: the set of λr-terms

A λr-term, ranged over by M,N,P, . . . ,M1, . . ., can be a variable from an enu-
merable set Λr (ranged over by x, y, z, x1, . . .), an abstraction λx.M , an application
MN , an erasure x⊙M or a duplication x <x1

x2
M . The abstraction λx.M binds the

variable x in M . The duplication x <x1

x2
M binds the variables x1 and x2 in M and

introduces a free variable x. The erasure x⊙M introduces also a free variable x.
Our notion of terms corresponds to the notion of linear terms in [41], since a

term is well-formed in λr if and only if bound variables appear actually in the term

1We define both lists and sets of free variables, since the notion of a list Fv[M ] is used to
define the substitution evaluation in the case of duplication (see Figure 8) where the order of
variables needs to be controlled, whereas in all other situations, where the order of free variables
is irrelevant, it is more convenient to work with sets.
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Fv[x] = [x]

Fv[M ] = [x1, x2, . . . , xm]

Fv[λxi.M ] = [x1, x2, . . . xi−1, xi+1, . . . , xm]

Fv[M ] = [x1, . . . , xm] Fv[N ] = [y1, . . . , yn]

Fv[MN ] = [x1, . . . , xm, y1, . . . , yn]

Fv[M ] = [x1, . . . , xm]

Fv[x⊙M ] = [x, x1, . . . , xm]

Fv[M ] = [x1, . . . , xm]

Fv[x <xi
xj

M ] = [x, x1, . . . xi−1, xi+1, . . . . . . xj−1, xj+1, . . . , xm]

Figure 7. List of free variables of a λr-term

and variables occur at most once. This assumption is not a restriction, since every
pure λ-term has a corresponding λr-term and vice versa, due to the embeddings
given in Definition 2.2 and 2.3 and illustrated by Example 2.1.

Definition 2.2. The mapping [ ]rc : Λ → Λr is defined in the following way:

[x]rc = x

[λx.t]rc =

{
λx.[t]rc, x ∈ Fv(t)

λx.x ⊙ [t]rc, x /∈ Fv(t)

[ts]rc =

{
[t]rc[s]rc, Fv(t) ∩ Fv(s) = ∅

x <x1

x2
[t[x1/x]s[x2/x]]rc, x ∈ Fv(t) ∩ Fv(s)

Definition 2.3. The mapping [ ]r : Λr → Λ is defined in the following way:

[x]r = x

[λx.M ]r = λx.[M ]r

[M N ]r = [M ]r [N ]r

[x <x1

x2
M ]r = [M ]r[x/x1][x/x2]

[x⊙M ]r = [M ]r

Example 2.1. Pure λ-terms λx.y and λx.xx are not λr-terms, whereas [λx.y]rc =
λx.(x ⊙ y) and [λx.xx]rc = λx.x <x1

x2
(x1x2) are both λr-terms.

(var)
y ∈ Λr x /∈ Fv(y)

(era)
x⊙ y ∈ Λr x ∈ Fv(x⊙ y)

(abs)
λx.x ⊙ y ∈ Λr

...

x1x2 ∈ Λr x /∈ Fv(x1x2)r {x1, x2}x1, x2 ∈ Fv(x1x2)
(dup)

x <x1

x2
(x1x2) ∈ Λr x ∈ Fv(x <x1

x2
(x1x2))

(abs)
λx.x <x1

x2
(x1x2) ∈ Λr



90 S. Ghilezan, J. Ivetić, P. Lescanne, and S. Likavec

2.1.2. Substitution. Tight control of resources also reflects on the treatment of
substitution, which is implicit and linear, because when we substitute N for x
in M , we know that there is exactly one free occurrence of x in M . Here, we
only outline our subtle definition of substitution (see [28] for a detailed account).
The concept of substitution is defined via an auxiliary calculus λ�

r, whose syntax
is equal to the syntax of λr extended with the substitution operator M [N/x],
and whose reduction rules are only the rules of substitution evaluation, given in
Figure 8. We prove that the λ�

r-calculus is terminating, confluent and that its

x[N/x] �−−−−→ N

(λy.M)[N/x] �−−−−→ λy.M [N/x], x 6= y

(MP )[N/x] �−−−−→ M [N/x]P, x ∈ Fv�(M)

(MP )[N/x] �−−−−→ MP [N/x], x ∈ Fv�(P )

(y ⊙M)[N/x] �−−−−→ y ⊙M [N/x], x 6= y

(x ⊙M)[N/x] �−−−−→ Fv(N)⊙M

(y <y1

y2
M)[N/x] �−−−−→ y <y1

y2
M [N/x], x 6= y

(x <x1

x2
M)[N/x] �−−−−→ Fv[N ] <

Fv[N1]
Fv[N2]

M [N1/x1][N2/x2]

Figure 8. Evaluation of the substitution operator in the λ�

r-calculus

normal forms are substitution free, i.e. that they belong to the λr-calculus. We
then define substitution in λr-calculus, denoted by M |||[N///x]|||, as the normal form of
the corresponding λ�

r-term M [N/x]. The normal form exists and is unique due to
termination and confluence. The simultaneous substitution M |||[N1///x1, . . . , Np///xp]|||
is defined as M |||[N1///x1]||| . . . |||[Np///xp]|||, provided that Fv(Ni) ∩ Fv(Nj) = ∅ for i 6= j.

2.1.3. Operational semantics. The operational semantics of λr is defined by
a reduction relation →, given in Figure 9. In the λr-calculus, one works modulo
structural equivalence ≡λr

, defined as the smallest equivalence that satisfies the
axioms given in Figure 10 and closed under α-conversion.

The reduction rules are divided into four groups. The main computational step
is β-reduction. (γ) reductions perform propagation of duplications into the expres-
sion, whereas (ω) reductions extract erasures out of expressions. This discipline
allows us to optimise the computation by delaying duplication of terms on the one
hand, and by performing erasure of terms as soon as possible on the other. Finally,
the rules in the (γω) group explain the interaction between the explicit resource
operators that are of different nature. Notice that in the rule (γω2) the substitution
in Λr is actually a syntactic variable replacement, i.e., renaming. Reduction rules
are sound and preserve free variables during computation.
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(β) (λx.M)N → M |||[N///x]|||

(γ1) x <x1

x2
(λy.M) → λy.x <x1

x2
M

(γ2) x <x1

x2
(MN) → (x <x1

x2
M)N, if x1, x2 6∈ Fv(N)

(γ3) x <x1

x2
(MN) → M(x <x1

x2
N), if x1, x2 6∈ Fv(M)

(ω1) λx.(y ⊙M) → y ⊙ (λx.M), x 6= y
(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)

(γω1) x <x1

x2
(y ⊙M) → y ⊙ (x <x1

x2
M), y 6= x1, x2

(γω2) x <x1

x2
(x1 ⊙M) → M |||[x///x2]|||

Figure 9. Reduction rules

(ǫ1) x⊙ (y ⊙M) ≡λr
y ⊙ (x⊙M)

(ǫ2) x <x1

x2
M ≡λr

x <x2

x1
M

(ǫ3) x <y
z (y <u

v M) ≡λr
x <y

u (y <z
v M)

(ǫ4) x <x1

x2
(y <y1

y2
M) ≡λr

y <y1

y2
(x <x1

x2
M), x 6= y1, y2, y 6= x1, x2

Figure 10. Structural equivalence

2.2. Typed λr-calculus.

2.2.1. Simple types for λr-calculus. Simple types, given by the syntax

α ::= p | α → α

where p ranges over a denumerable set of type atoms, can be assigned to λr-terms
by rules from Figure 11. The system is syntax directed and the rules are context-
splitting, i.e. multiplicative, which is a property characteristic for logical systems
with explicit structural rules. In the obtained system λr →, erasure is explicitly
controlled by the choice of the axiom, whereas the control of the duplication is man-
aged by implementing context-splitting style, i.e. by requiring that Γ,∆ represents
disjoint union of the two bases, defined in the standard way.

x : α ⊢ x : α
(Ax)

Γ, x : α ⊢ M : β

Γ ⊢ λx.M : α → β
(→I)

Γ ⊢ M : α → β ∆ ⊢ N : α

Γ,∆ ⊢ MN : β
(→E)

Γ, x : α, y : α ⊢ M : β

Γ, z : α ⊢ z <x
y M : β

(Cont) Γ ⊢ M : α
Γ, x : β ⊢ x⊙M : α

(Thin)

Figure 11. λr →: λr-calculus with simple types

From the logical point of view, the obtained system λr → corresponds to in-
tuitionistic natural deduction with explicit structural rules, the system that, to
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the best of our knowledge, has not been studied yet. As is the case with the λ-
calculus [6], this system is too restrictive and does not characterise all strongly
normalising λr-terms. For example, λx.x <y

z yz is a normal form of the λr-
calculus that cannot be typed in λr →. Moreover, the duplication operator seems
to be naturally connected to intersection of types, following the intuition that it
should be possible to contract two variables of different types, say x of type α
and y of type β, but then the resulting variable should preserve only information
shared by both x and y, i.e. it should be of type α ∩ β. In order to provide a type
assignment system that characterises the set of strongly normalising λr-terms and
fits better with the resource control operators, particularly with duplication, we
introduce intersection types to λr-calculus.

2.2.2. Intersection types for λr-calculus. The λr-calculus with intersection
types was initially proposed by Ghilezan et al. in [24] as an auxiliary system in
which its sequent counterpart λGtz

r ∩ could be translated in order to prove the strong
normalisation. Here we introduce an intersection type assignment λr∩ system
which assigns strict types to λr-terms. Strict types were proposed in [58] and used
in [19] for characterisation of strong normalisation in λGtz-calculus. See also [25]
for intersection types in the presence of explicit substitution and resource control
and [29].

The syntax of types is defined as follows:

Strict types σ ::= p | α → σ

Types α ::= ∩n
i σi

where p ranges over a denumerable set of type atoms and

∩n
i σi =

{
σ1 ∩ . . . ∩ σn for n > 0

⊤ for n = 0

⊤ being the neutral element for the intersection operator, i.e. σ ∩ ⊤ = σ.
We denote strict types by σ, τ, υ . . ., types by α, β, γ . . . and the set of all types

by Types. The set of strict types is a subset of Types, because each strict type σ
can be written in the form ∩1

i σi. The intersection operator is commutative and
associative and intersection has priority over arrow.

A basic type assignment (declaration), basis and basis extension are defined in
the usual way, so we only give the definition of bases intersection Γ⊓∆ and of Γ⊤:

Γ ⊓∆ = {x : α ∩ β|x : α ∈ Γ & x : β ∈ ∆ & Dom(Γ) = Dom(∆)}

Γ⊤ = {x : ⊤|x ∈ Dom(Γ)}.

Notice that bases intersection is defined only for bases with equal domains, and
that the basis Γ⊤ represents the neutral element for the bases intersection since
Γ⊤ ⊓∆ = ∆ for arbitrary bases Γ and ∆ that can be intersected.

The type assignment system λr∩ is given in Figure 12.
The system λr∩ is characterised by the following properties:

− It is syntax directed, i.e. there is exactly one type assignment rule for each
syntactic category of λr-terms. Therefore, there are no separate rules for



Structural rules and resource control in logic and computation 93

x : σ ⊢ x : σ
(Ax)

Γ, x : α ⊢ M : σ

Γ ⊢ λx.M : α → σ
(→I)

Γ ⊢ M : ∩n
i τi → σ ∆0 ⊢ N : τ0 . . . ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ . . . ⊓∆n ⊢ MN : σ

(→E)

Γ, x : α, y : β ⊢ M : σ

Γ, z : α ∩ β ⊢ z <x
y M : σ

(Cont) Γ ⊢ M : σ
Γ, x : ⊤ ⊢ x⊙M : σ

(Thin)

Figure 12. λr∩: λr-calculus with intersection types

the intersection introduction and for intersection elimination, contrary to
the original way of introducing intersection types to the λ-calculus, pro-
posed by Coppo and Dezani-Ciancaglini in [14]. The intersection is incor-
porated into already existing rules of the simply-typed system λr →.

− It assigns strict types to λr-terms. Indeed, while non-restricted types can
be assigned to variables on the left-hand side of sequents (for instance, in
the rules (→I) or (Cont)), only strict types are assigned to λr-terms on
the right-hand side of sequents.

− The form of the axiom (Ax) (x : σ ⊢ x : σ instead of usual Γ, x : σ ⊢ x : σ)
ensures that in a typeable term each free variable appears at least once.

− The context-splitting rule (→E) ensures that in a typeable term each free
variable appears not more than once.

Assume that we implement these properties in the type system containing only
rules (Ax), (→E) and (→I), then the combinators K = λxy.x and W−1 = λxy.xyy
would not be typeable. This motivates and justifies the introduction of the op-
erators of erasure and duplication and the corresponding typing rules (Thin) and
(Cont), which further maintain the explicit control of resources and enable the
typing of K and W−1, namely of their corresponding λr-terms λxy.y ⊙ x and
λxy.y <y1

y2
xy1y2, respectively. Let us mention that on the logical side, structural

rules of thinning and contraction are present in Gentzen’s original formulation of
LJ , Intuitionistic Sequent Calculus, but not in NJ , Intuitionistic Natural Deduc-
tion [22, 23]. Here instead, the presence of the typing rules (Thin) and (Cont)
completely maintains the explicit control of resources in λr.

In the proposed system, intersection types occur only in two inference rules. In
the rule (Cont) the intersection type is created, this being the only place where this
happens. This is justified because it corresponds to the duplication of a variable.
In other words, the control of the duplication of variables entails the control of the
introduction of intersections in building the type of the term in question. In the
rule (→E), intersection appears on the right hand side of the turnstyle ⊢ which
corresponds to the usage of the intersection type after it has been created by the
rule (Cont) or by the rule (Thin) if n = 0.

Note that ∆0 in the rule (→E) is needed only when n = 0 to ensure that N has
a type, i.e. that N is strongly normalising. In the rule (Thin) the choice of the
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type of x is ⊤, since this corresponds to a variable which does not occur anywhere
in M . Rules (Ax) and (→I) are the same as in the simply typed λ-calculus. Notice
however that the type of the variable in (Ax) is a strict type.

Roles of the variables. In λr, there are three kinds of variables according to the
way they are introduced, and each of them receives a specific type:

• variables as placeholders have a strict type (rule (Ax)),
• variables resulting from a duplication have an intersection type (rule (Cont)),
• variables resulting from an erasure have the type ⊤ (rule (Thin)).

The following examples from [28] in which variables change their role during the
computation process emphasise the sensitivity of the system λr∩ w.r.t. the role
of a variable in a term. When the role of a variable changes, its type in the type
derivation changes as well, so that the correspondence between particular roles and
types is preserved.

Example 2.2. A variable as a “placeholder” becomes an “eraser” variable: this is
the case with the variable z in (λx.x ⊙ y)z, because

(λx.x ⊙ y)z →β (x⊙ y)|||[z///x]||| , (x⊙ y)[z/x] ↓�= z ⊙ y.

Since z : ⊤, y : σ ⊢ z ⊙ y : σ, we want to show that z : ⊤, y : σ ⊢ (λx.x ⊙ y)z : σ.
Indeed:

(Ax)
y : σ ⊢ y : σ

(Weak)
x : ⊤, y : σ ⊢ x⊙ y : σ

(→I)
y : σ ⊢ λx.x ⊙ y : ⊤ → σ

(Ax)
z : τ ⊢ z : τ

(→E).
z : ⊤, y : σ ⊢ (λx.x ⊙ y)z : σ

In the rule (→E), we have n = 0, ∆0 = z : τ and ∆⊤
0 = z : ⊤. Thus, in the previous

derivation, the variable z changed its type from a strict type to ⊤, in accordance
with the change of its role in the bigger term.

Example 2.3. A variable as a “placeholder” becomes a “duplicator” variable: this
is the case with the variable v in (λx.x <y

z yz)v, because

(λx.x <y
z yz)v →β (x <y

z yz)|||[v///x]||| , (x <y
z yz)[v/x] ↓�

= Fv[v] <
Fv[v1]
Fv[v2]

(yz)[v1/y][v2/z] ↓
�= v <v1

v2
v1v2.

Since v : (τ → σ) ∩ τ ⊢ v <v1
v2

v1v2 : σ, we want to show that

v : (τ → σ) ∩ τ ⊢ (λx.x <y
z yz)v : σ.

Indeed:

...
(→I)

⊢ λx.x <y
z yz : ((τ → σ) ∩ τ ) → σ

(Ax)
v : τ ⊢ v : τ

(Ax)
v : τ → σ ⊢ v : τ → σ

(→E).
v : (τ → σ) ∩ τ ⊢ (λx.x <y

z yz)v : σ
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In the rule (→E), we have n = 2, therefore ∆0 ⊢ N : τ0 can be one of the two
existing typing judgements, for instance v : τ ⊢ v : τ . In this case ∆⊤

0 disappears
in the conclusion, because ∆⊤

0 ⊓∆1 ⊓∆2 = v : ⊤⊓ v : τ → σ ⊓ v : τ = v : ⊤∩ (τ →
σ) ∩ τ = v : (τ → σ) ∩ τ . Again, we see that the type of the variable v changed
from strict type to (intersection) type.

Example 2.4. An “eraser” variable becomes a “duplicator” variable: this is the
case with the variable u in (λx.x <y

z yz)(u⊙ v), because

(λx.x <y
z yz)(u⊙ v) →β (x <y

z yz)|||[u⊙ v///x]|||

, (x <y
z yz)[u⊙ v/x] ↓�

= Fv[u⊙ v] <
Fv[u1⊙v1]
Fv[u2⊙v2]

(yz)[u1 ⊙ v1/y][u2 ⊙ v2/z] ↓
�

= u <u1

u2
v <v1

v2
(u1 ⊙ v1)(u2 ⊙ v2).

The situation here is slightly different. Fresh variables u1 and u2 are obtained from
u using the substitution in Λr . The variable u is introduced by thinning, so its
type is ⊤. Substitution in Λr does not change the types, therefore both u1 and u2

have the type ⊤. Finally, u in the resulting term is obtained by contracting u1 and
u2, therefore its type is ⊤∩⊤ = ⊤. Thus we have an interesting situation - the role
of the variable u changes from “eraser” to “duplicator”, but its type remains ⊤.

However, this paradox (if any) is only apparent, as well as the change of the
role. Unlike the previous three examples, in which we obtained normal forms, in
this case the computation can continue:

u <u1

u2
v <v1

v2
(u1 ⊙ v1)(u2 ⊙ v2) →(ω2+ǫ4) v <v1

v2
u <u1

u2
u1 ⊙ v1(u2 ⊙ v2)

→γω2
v <v1

v2
v1((u2 ⊙ v2))|||[u///u2]|||

= v <v1
v2

v1(u ⊙ v2).

So, we see that the actual role of the variable u in the obtained normal form, is
“eraser”, as indicated by its type ⊤.

To conclude the analysis, we point out the following key points:

• The type assignment system λr∩ is constructed in such way that the type
of a variable always indicates its actual role in the term. Due to this, we
claim that the system λr∩ fits naturally to the resource control calculus λr.

• Switching between roles is not reversible: once a variable is meant to be
erased, it cannot be turned back to some other role. Moreover, the infor-
mation about its former role cannot be reconstructed from the type.

The main result involving the system λr∩ is the complete characterisation of
strong normalisation in the λr-calculus by means of typeability, stated by the
following theorem, proved in [28] (see also [32]).

Theorem 2.1. In the λr-calculus, a term is strongly normalising if and only if it
is typeable in the system λr∩.
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3. Resource control sequent lambda calculus

3.1. Untyped λGtz
r -calculus. The resource control lambda Gentzen calculus λGtz

r is

derived from Esṕırito Santo’s λGtz-calculus introduced in [17] (more precisely from
its confluent sub-calculus λGtz

V , proposed in [38]) by adding the explicit operators
for erasure and duplication to both terms and contexts. On the other hand, it
can be seen as a sequent counterpart of the λr-calculus. The first variant of this
calculus was proposed in [30]2.

The main difference between computational interpretations of natural deduction
and sequent calculus is that besides terms, the syntax of sequent term calculi con-
tains a syntactic category of contexts. As pointed out by Esṕırito Santo in [18], the
computational meaning of the contexts is a prescription of what to do next with
an expression which is plugged into it.

There are two kinds of contexts: a selection x̂.t that means “substitute for x
in t”, and a linear left introduction t :: k that means “apply to t and proceed
according to k”. Since an application also represents a plugging of a term t into
a context k, it is in this calculus of the form tk, which is another major difference
with respect to the ordinary λ-calculus, in which application is of the form tt, i.e.
the application of a term to a term. In the presence of resource control operators,
there are two additional kinds of contexts, namely duplication on contexts x <y

z k
and erasure on contexts x ⊙ k. Although there is no real difference between the
resource operators on terms and on contexts, these categories need to be separated
for technical reasons.

If one uses the usual analogy with the function theory, contexts could be roughly
understood as lists of arguments (i.e. terms). A list is constructed starting from
a term by selecting a variable in that term. A new element could be added to the
list using concatenation, performed via the t :: k operator. There are no context
variables - the trivial context is x̂.x, which corresponds to an empty list [ ].

3.1.1. Syntax. As in the case of the λr-calculus, there are two approaches to syn-
tax. Here, we choose to define λGtz

r -expressions via an auxiliary syntactic category

of pre-expressions. The abstract syntax of λGtz
r pre-expressions is the following:

Pre-values F ::= x|λx.f |x⊙ f |x <x1

x2
f

Pre-terms f ::= F |fc

Pre-contexts c ::= x̂.f |f :: c|x⊙ c|x <x1

x2
c

where x ranges over a denumerable set of term variables.
A pre-value can be a variable, an abstraction, a thinning or a duplication; a pre-

term is either a value or a cut (an application). A pre-context is one of the following:
a selection, a context constructor (usually called “cons”), a thinning on pre-context
or a duplication on a pre-context. Pre-terms and pre-contexts are together referred
to as the pre-expressions and will be ranged over by E. Pre-contexts x ⊙ c and
x <x1

x2
c behave exactly as the corresponding pre-terms x ⊙ f and x <x1

x2
f in the

untyped calculus, so they will mostly not be treated separately.

2Where it was named linear lambda Gentzen calculus and denoted by ℓλGtz
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Definition 3.1. (i) The list of free variables of a pre-expression E, denoted by
Fv[E], is defined as follows (where l,m denotes the list obtained by the concate-
nation of the two lists l and m and lr x denotes the list obtained by removing all
occurrences of an element x from the list l):

Fv[x] = x;
Fv[λx.f ] = Fv[f ]r x;
Fv[fc] = Fv[f ], Fv[c];
Fv[x̂.f ] = Fv[f ]r x;
Fv[f :: c] = Fv[f ], Fv[c];
Fv[x⊙ E] = x, Fv[E];
Fv[x <x1

x2
E] = x, ((Fv[E] r x1)r x2).

(ii) The set of free variables of a pre-expressionE, denoted by Fv(E), is extracted
from the list Fv[E], by un-ordering the list and removing multiple occurrences of
each variable, if any.

(iii) The set of bound variables of a pre-expression E, denoted by Bv(E), con-
tains all variables that exist in E, but are not free in it.

For example, let E ≡ z ⊙ u <x1

x2
x(z :: x2 :: x1 :: ŷ.y). Then Fv[E] = z, u, x, z,

Fv(E) = {x, u, z} and Bv(E) = {x1, x2, y}.
Now, using the notion of the set of free variables, we are able to extract the set of

λGtz
r -expressions (namely values, terms and contexts) starting from the set of λGtz

r

pre-expressions. The set of λGtz
r -expressions ΛGtz

r = VGtz
r ∪ TGtz

r ∪ CGtz
r , where VGtz

r

denotes the set of λGtz
r -values, TGtz

r denotes the set of λGtz
r -terms and CGtz

r denotes

the set of λGtz
r -contexts.

Definition 3.2. The set of λGtz
r -expressions denoted by ΛGtz

r , is a subset of the set
of pre-expressions, defined in Figure 13.

In the rest of the chapter, we will use the notation T, T ′, T1 . . . for values; t, u, v . . .
for terms; k, k′, k1 . . . for contexts and e, e′, e1 . . . for expressions.

Informally, we say that an expression is a pre-expression in which in every sub-
expression every free variable occurs exactly once, and every binder binds (exactly
one occurrence of) a free variable. When restricted to terms, this notion corresponds
to the notion of linear terms in [41]. However, this assumption is not a restriction,
since every λGtz-expression has a corresponding λGtz

r -expression.

Definition 3.3. Mapping [ ]rc : Λ
Gtz → ΛGtz

r is defined in the following way:

[x]rc = x

[λx.t]rc =

{
λx.[t]rc, x ∈ Fv(t)

λx.x ⊙ [t]rc, x /∈ Fv(t)

[x̂.t]rc =

{
x̂.[t]rc, x ∈ Fv(t)

x̂.x⊙ [t]rc, x /∈ Fv(t)

[tk]rc =

{
[t]rc[k]rc, Fv(t) ∩ Fv(k) = ∅

x <x1

x2
[t[x1/x]k[x2/x]]rc, x ∈ Fv(t) ∩ Fv(k)
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x ∈ VGtz
r

f ∈ TGtz
r x ∈ Fv(f)

λx.f ∈ VGtz
r

f ∈ TGtz
r c ∈ CGtz

r Fv(f) ∩ Fv(c) = ∅

fc ∈ TGtz
r

F ∈ VGtz
r

F ∈ TGtz
r

f ∈ TGtz
r x ∈ Fv(f)

x̂.f ∈ CGtz
r

f ∈ TGtz
r c ∈ CGtz

r Fv(f) ∩ Fv(c) = ∅

f :: c ∈ CGtz
r

f ∈ TGtz
r x /∈ Fv(f)

x⊙ f ∈ VGtz
r

c ∈ CGtz
r x /∈ Fv(c)

x⊙ c ∈ CGtz
r

f ∈ TGtz
r x1 6= x2 x1, x2 ∈ Fv(f) x /∈ Fv(f)r {x1, x2}

x <x1

x2
f ∈ VGtz

r

c ∈ CGtz
r x1 6= x2 x1, x2 ∈ Fv(c) x /∈ Fv(c)r {x1, x2}

x <x1

x2
c ∈ CGtz

r

Figure 13. ΛGtz
r : λGtz

r -expressions

[t :: k]rc =

{
[t]rc :: [k]rc, Fv(t) ∩ Fv(k) = ∅

x <x1

x2
[t[x1/x] :: k[x2/x]]rc, x ∈ Fv(t) ∩ Fv(k)

The correspondence between λGtz-expressions and λGtz
r -expressions is illustrated

by the following example. Pre-expressions E1 ≡ λx.y, E2 ≡ x̂.y and E3 ≡ λx.x(x ::
ŷ.y) are λGtz-expressions, but are not λGtz

r -expressions. The reason is the presence
of void abstraction or selection in E1 and E2, and two occurrences of the free
variable x in the sub-expression of E3. On the other hand, λx.x ⊙ y, x̂.x ⊙ y and
λx.x <x1

x2
x1(x2 :: ŷ.y) are their corresponding λGtz

r -expressions.

3.1.2. Operational semantics. Reduction system of the λGtz
r -calculus is a mix-

ture of the reduction systems of the λGtz

V -calculus, that reflects the cut-elimination
process, and of the λr-calculus, that optimises the usage of resource control oper-
ators. There are four groups of reductions in the λGtz

r -calculus - (β), (σ), (π) and

(µ) from λGtz

V , (γ1)–(γ6) that propagate duplication, (ω1)–(ω6) for erasure extrac-
tion, and finally (γω1), (γω2) for resource operators interaction. Only the rules that
differ from the rules given in Figure 9 are given in Figure 143.

3Therefore rules (γ1)–(γ3), (ω1)–(ω3), (γω1), and (γω2) are omitted because they look the
same, except for the fact that terms are denoted differently, and that (γω1) and (γω2) hold for
all λGtz

r -expressions, not only for terms.
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(β) (λx.t)(u :: k) → u(x̂.tk)
(σ) T (x̂.v) → v[T/x]
(π) (tk)k′ → t(k@k′)
(µ) x̂.xk → k

(γ4) x <x1

x2
(ŷ.t) → ŷ.(x <x1

x2
t)

(γ5) x <x1

x2
(t :: k) → (x <x1

x2
t) :: k, if x1, x2 /∈ Fv(k)

(γ6) x <x1

x2
(t :: k) → t :: (x <x1

x2
k), if x1, x2 /∈ Fv(t)

(ω4) x̂.(y ⊙ t) → y ⊙ (x̂.t), x 6= y
(ω5) (x ⊙ t) :: k → x⊙ (t :: k)
(ω6) t :: (x⊙ k) → x⊙ (t :: k)

Figure 14. Reduction rules of the λGtz
r -calculus

As in the λGtz-calculus, reductions (π) and (σ) are executed via meta-operators.
The meta-operator for appending two contexts, k@k′, from the rule (π) is now
defined by:

(x̂.t)@k′ , x̂.tk′ (t :: k)@k′ , t :: (k@k′)

(x⊙ k)@k′ , x⊙ (k@k′) (x <x1

x2
k)@k′ , x <x1

x2
(k@k′).

The meta operator [ / ], representing the implicit substitution of free variables,
is treated similarly as in the λr-calculus, i.e. an auxiliary calculus with explicit
substitution is defined and implicit substitution represents its normal form. How-
ever, it should be emphasized that the substitution is here introduced in the (σ)
reduction: T (x̂.v) → v[T/x], which means that we always substitute a value T for
a variable, therefore this calculus supports the call-by-value computational strat-
egy. Also, there are more rules for substitution evaluation in the auxiliary calculus,
which is a consequence of more complex syntax. These are new rules for evaluating
substitution on contexts 4:

(ŷ.t)[T/x] �−−−−→ ŷ.t[T/x], x 6= y

(t :: k)[T/x] �−−−−→ t[T/x] :: k, x /∈ Fv(k)

(t :: k)[T/x] �−−−−→ t :: k[T/x], x /∈ Fv(t)

Besides reductions, operational semantics of the λGtz
r -calculus contains also the

congruence relation defined by the equivalencies obtained from those given in Fig-
ure 10 by replacing λr-term notation M for λGtz

r -expression notation e.

Notice that because we work only with the λGtz
r -expressions, i.e. well-formed

expressions, no variable is lost during the computation, therefore preservation of
free variables holds.

4Rules for duplication and erasure on contexts are omitted here because they completely
correspond to rules for duplication and erasure on contexts.
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3.2. Typed λGtz
r -calculus.

3.2.1. Simple types for λGtz

r
-calculus. The type assignment system that assigns

simple types to λGtz
r -expressions, denoted by λGtz

r →, is given in Figure 15. With

respect to the λGtz →, from which it was derived, the system λGtz
r → has four new

rules, namely (Thint), (Contt), (Think) and (Contk), for assigning types to the
expressions containing explicit operators of erasure and duplication.

On the other hand, the main difference in comparison with the system λr →,
given in Figure 11, is in the structure of typing rules for contexts. These four rules,
namely (Sel), (Cons), (Think) and (Contk), contain the special place between the
symbols ; and ⊢ on the left-hand side of the sequent, called stoup. Stoup is filled
with a selected formula, with which we continue the computation. For example, in
the sequent Γ, x : α;β ⊢ k : γ, formula β is in the stoup. The stoup was introduced
by Girard and used by Herbelin in [35] in order to obtain a restricted form of the
sequent calculus which was isomorphic to natural deduction.

x : α ⊢ x : α
(Ax)

Γ, x : α ⊢ t : β

Γ ⊢ λx.t : α → β
(→R)

Γ ⊢ t : α ∆;β ⊢ k : γ

Γ,∆;α → β ⊢ t :: k : γ
(→L)

Γ ⊢ t : α ∆;α ⊢ k : β

Γ,∆ ⊢ tk : β
(Cut)

Γ, x : α ⊢ t : β

Γ;α ⊢ x̂.t : β
(Sel)

Γ, x : α, y : α ⊢ t : β

Γ, z : α ⊢ z <x
y t : β

(Contt)
Γ ⊢ t : β

Γ, x : α ⊢ x⊙ t : β
(Thint)

Γ, x : α, y : α; γ ⊢ k : β

Γ, z : α; γ ⊢ z <x
y k : β

(Contk)
Γ; γ ⊢ k : β

Γ, x : α; γ ⊢ x⊙ k : β
(Think)

Figure 15. λGtz
r →: simply typed λGtz

r -calculus

This system satisfies standard properties, such as type preservation during com-
putation and strong normalisation of typeable terms. Also, it provides the Curry–
Howard correspondence between intuitionistic sequent calculus with explicit struc-
tural rules of thinning and contraction, and the λGtz

r -calculus. However, for the same

reasons as in the case of the λr-calculus, we introduce intersection types to λGtz
r .

3.2.2. Intersection types for λ
Gtz

r
-calculus. The system that assigns a re-

stricted form of intersection types, namely strict types, to λGtz
r -expressions is called

λGtz
r ∩ and is given in Figure 16. This system essentially represents a sequent coun-

terpart of the system λr∩ from Figure 12, therefore all basic notions are defined
in the same way. It may also be considered as an extension of the strict type
assignment system for the λGtz-calculus, proposed in [19].
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x : σ ⊢ x : σ
(Ax)

Γ, x : α ⊢ t : σ

Γ ⊢ λx.t : α → σ
(→R)

Γ, x : α ⊢ t : σ

Γ;α ⊢ x̂.t : σ
(Sel)

Γ0 ⊢ t : σ0 . . . Γn ⊢ t : σn ∆;∩m
j τj ⊢ k : ρ

Γ⊤
0 ⊓ Γ1 ⊓ . . . ⊓ Γn,∆;∩m

j (∩n
i σi → τj) ⊢ t :: k : ρ

(→L)

Γ0 ⊢ t : σ0 . . . Γn ⊢ t : σn ∆;∩n
i σi ⊢ k : τ

Γ⊤
0 ⊓ Γ1 ⊓ . . . ⊓ Γn,∆ ⊢ tk : τ

(Cut)

Γ, x : α, y : β ⊢ t : σ

Γ, z : α ∩ β ⊢ z <x
y t : σ

(Contt)
Γ ⊢ t : σ

Γ, x : ⊤ ⊢ x⊙ t : σ
(Thint)

Γ, x : α, y : β; γ ⊢ k : σ

Γ, z : α ∩ β; γ ⊢ z <x
y k : σ

(Contk)
Γ; γ ⊢ k : σ

Γ, x : ⊤; γ ⊢ x⊙ k : σ
(Think)

Figure 16. λGtz
r ∩: the λGtz

r -calculus with intersection types

This system satisfies the same properties as the system λr∩ such as syntax-
directness, context-splitting i.e. multiplicative style for rules with more than one
premise, possibility to distinct three roles of variables according to assigned type
etc. It also provides the complete characterisation of strongly normalising λGtz

r -
expressions, which is proved in [39, 24].

Theorem 3.1. In the λGtz
r -calculus, an expression is strongly normalising if and

only if it is typeable in the system λGtz
r ∩.

4. Computational interpretations of substructural logic

In this section we propose a novel approach to obtaining a computational in-
terpretation of some substructural logics, starting from an intuitionistic (i.e. con-
structive) term calculi with explicit control of resources [40, 26].

As explained in Section 1.1, substructural logics [56] are a wide family of logics
obtained by restricting or rejecting some of Gentzen’s structural rules, such as thin-
ning, contraction or exchange. From the computational point of view, structural
rules of thinning and contraction are closely related to to the control of available
resources (i.e. term variables), as elaborated previously. Therefore, it is possible to
use the resource control lambda calculus λr (or its sequent counterpart λGtz

r ) as a
starting point for obtaining computational interpretations of implicative fragments
of some substructural logics.

This approach is different from the usual approach via linear logic. For instance,
if one excludes the (Thin) rule but preserves the axiom that controls the intro-
duction of variables, the resulting system would correspond to the logic without
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thinning and with explicit control of contraction i.e. to the variant of implicative
fragment of relevant logic. Similarly, if one excludes the (Cont) rule, but preserves
context-splitting style of the rest of the system, correspondence would be obtained
with the variant of the logic without contraction and with explicit control of thin-
ning i.e. implicative fragment of affine logic. Naturally, these modifications also
require certain restrictions on the syntactic level, changes in the definition of terms
and modifications of operational semantics as well.

The proposed approach is simpler than the standard one, where the starting
point is Girard’s linear logic and its corresponding calculi. Although the proposed
systems may be seen as naive due to the fact that they only correspond to im-
plicative fragments of relevant and affine logics and therefore are not able to treat
characteristic split conjunction and disjunction connectives, they could be useful
as a simple and neat logical foundation for the design of specific relevant and affine
programming languages.

In the sequel, we will illustrate our approach by providing detailed description
for one of the substructural resource control calculi, namely the λIr-calculus, a
calculus that corresponds to implicative fragment of relevant logic.

4.1. λIr – A calculus without thinning. In order to obtain a term calculus
which corresponds to the intuitionistic implicative logic without (either explicit or
implicit) thinning according to Curry-Howard correspondence [37], the following
steps are employed:

• the λr-calculus is taken as a starting point;
• the erasure operator is removed from its syntax;
• all the corresponding reduction and equivalence rules are removed;
• but the related constraints in the definition of terms and in the type as-
signment rules are kept.

The obtained calculus is the λIr-calculus, corresponding to a variant of the rele-
vant logic.

Syntax and operational semantics of the λIr-calculus. The basic idea in
the construction of the λIr-calculus is that it does not allow void bindings and
“useless” variables in any way. For instance, the term λx.y is a regular term of
the λ-calculus. In the resource control calculus λr it is not a term, but it has
a corresponding term λx.x ⊙ y, in which erasure operator adds useless variable x.
Therefore, even by looking at a sub-term containing x one can conclude that its role
in the term is different from “regular” variables, like y. However, although x can be
considered “useless” in λx.y and λx.x⊙ y, terms with void bindings are not useless
themselves. Without them, it would not be possible to represent all computable
functions by λ-terms, i.e. λ-calculus would not be Turing complete. For example,
term λx.λy.y is the standard representation of number zero via Church numerals.

However, in some situations it might be useful and important to completely
exclude void abstractions, which is strictly more restrictive than to just explic-
itly denote them, as in the λr-calculus. That is a computational motivation for
introducing the λIr-calculus, a strict sub-calculus of both λ and λr calculi.
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λIr-terms and lists (respectively sets) of free variables in λIr are mutually
recursively defined.

Definition 4.1.

(i) The set of λIr-terms, denoted by ΛIr, is defined by inference rules given
in Figure 17.

(ii) The list of free variables of a λIr-term M , denoted by Fv[M ], is defined
by inference rules given in Figure 18.

(iii) The set of free variables of a λIr-term M , denoted by Fv(M), is obtained
from the list Fv[M ] by unordering.

x ∈ ΛIr
(var)

M ∈ ΛIr x ∈ Fv(M)

λx.M ∈ ΛIr
(abs)

M ∈ ΛIr N ∈ ΛIr Fv(M) ∩ Fv(N) = ∅

MN ∈ ΛIr
(app)

M ∈ ΛIr x1, x2 ∈ Fv(M) x1 6= x2 x /∈ Fv(M)r {x1, x2}

x <x1

x2
M ∈ ΛIr

(dup)

Figure 17. ΛIr: the set of λIr–terms

Fv[x] = [x]

Fv[M ] = [x1, x2, . . . , xm]

Fv[λxi.M ] = [x1, x2, . . . xi−1, xi+1, . . . , xm]

Fv[M ] = [x1, . . . , xm] Fv[N ] = [y1, . . . , yn]

Fv[MN ] = [x1, . . . , xm, y1, . . . , yn]

Fv[M ] = [x1, . . . , xm]

Fv[x <xi
xj

M ] = [x, x1, . . . xi−1, xi+1, . . . . . . xj−1, xj+1, . . . , xm]

Figure 18. Lists of free variables of a λIr-term

In both figures, the only difference w.r.t. the syntax of the λr-calculus is the
absence of items related to erasure rule. λIr-calculus is a strict sub-calculus of the
λr-calculus, hence there are λ-terms and λr-terms that cannot be represented in
the λIr-calculus, i.e. λx.y and z <x

y x. It is easy to see, by inspecting the rules
of Figure 17 and Figure 18, that terms with void bindings cannot be built in λIr.
All the rules that introduce binders, namely (abs) and (dup) have conditions that
require presence of free variables (that will be bound) in the sub-term. Moreover,
since erasure operator is not part of the syntax, all these free variables are “regular”
ones, i.e. either introduced by axiom, or by duplication of two “regular” variables.
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Operational semantics of the λIr-calculus represents the part of the operational
semantics of the λr-calculus that does not contain erasure operator. More precisely,
reduction rules are (β), (γ1), (γ2) and (γ3) from Figure 9, structural equivalence
is generated by the rules (ǫ2), (ǫ3) and (ǫ4) from Figure 10, and substitution is
defined analogously as in the λr-calculus, via an auxiliary calculus whose syntax is
the syntax of λIr extended with an operator of substitution M [N/x], and whose
reduction rules are the rules given in Figure 8 except the two rules that define
substitution evaluation in the presence of erasure operator (fifth and sixth rule
from the top).

The λIr-calculus with types. Both simple and intersection types can be in-
troduced to the λIr-calculus. Two type assignment systems, namely λIr → and
λIr∩, are obtained as simple modifications of the corresponding systems for the
λr-calculus: the λr → system defined in Figure 11 and the λr∩ system defined
in Figure 12.

Type assignment system λIr → is presented in Figure 19. It provides Curry-
Howard correspondence between simply typed λIr-calculus and implicative frag-
ment of the relevant logic in the natural deduction format.

x : α ⊢ x : α
(Ax)

Γ, x : α ⊢ M : β

Γ ⊢ λx.M : α → β
(→I)

Γ ⊢ M : α → β ∆ ⊢ N : α

Γ,∆ ⊢ MN : β
(→E)

Γ, x : α, y : α ⊢ M : β

Γ, z : α ⊢ z <x
y M : β

(Cont)

Figure 19. λIr →: λIr-calculus with simple types

It is important to notice that, although (Thin) rule is excluded from λr → in
order to obtain λIr →, due to the absence of erasure operator that corresponds to
the structural rule of thinning at the logical side, the form of the axiom associated
with explicit thinning is preserved. Such choice of the axiom enables tight control
of variable declarations in bases - only declarations of variables that appear as free
variables in the typed term are present in the bases. As expected, this calculus
satisfies strong normalisation i.e. all typeable λIr-terms are terminating, but all
terminating terms can not be assigned types. A typical example is λx.x <y

z yz,
λIr-term corresponding to λ-term λx.xx, which is normal form but cannot be
typed by simple types. Also, the rule (Cont) may be considered too restrictive for
requiring that only two variables of the same type can be contracted. Therefore, in
order to capture all strongly normalising terms on one hand, and in order to enable
less restrictive conditions for typing terms involving duplication operator (that
corresponds to explicit contraction) on the other hand, we introduce intersection
types to the λIr-calculus.

Type assignment system λIr∩ is given in Figure 20.
Definitions of types and associated notions are the same as in the case of the

λr-calculus with intersection types, except for the fact that the type constant ⊤,
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x : σ ⊢ x : σ
(Ax)

Γ ⊢ M : ∩n
i τi → σ∆1 ⊢ N : τ1 . . . ∆n ⊢ N : τn
Γ,∆1 ⊓ . . . ⊓∆n ⊢ MN : σ

(→E)

Γ, x : α ⊢ M : σ

Γ ⊢ λx.M : α → σ
(→I)

Γ, x : α, y : β ⊢ M : σ

Γ, z : α ∩ β ⊢ z <x
y M : σ

(Cont)

Figure 20. λIr∩: λIr-calculus with intersection types

defined as zero intersection i.e., ∩n
i σi for n = 0, is not defined here. Type ⊤ was

assigned only to variables introduced by erasure operator, which does not exist in
the λIr-calculus. Therefore, intersection types in the system λIr∩ are defined as
∩n
i σi = σ1 ∩ . . . ∩ σn for n > 0 where σi, i ∈ {1, . . . , n} are strict types. As a

consequence, the neutral element for the intersection of bases of domain Dom(Γ),
namely Γ⊤, is not defined. Hence, the rule (→E) here is significantly simpler than
in the system λr∩. All the other rules of λIr∩ are the same as the corresponding
rules of λr∩5.

It can be proved that a λIr-term is strongly normalising if and only if it is
typeable in the system λIr∩.

5. Conclusion

This work gives an overview of authors’ contributions in the field of resource
control. It covers the work concerning the Resource control lambda calculus λr [28,
24], the Resource control sequent lambda calculus λGtz

r [30] and the computational
interpretations of substructural logics, such as λIr – a calculus without thinning.

The presence of erasure and duplication operators in term calculi enables the
explicit control of resources, i.e. variables. On the logical side, these operators
correspond to the structural rules of thinning and contraction, respectively. Erasure
indicates that a variable is not present in the term anymore, whereas duplication
indicates that a variable will have two occurrences in the term, each receiving a
specific name to preserve the “linearity” of the term. Indeed, in the spirit of the
λI-calculus, in order to control all resources, void lambda abstractions are not
acceptable, Hence, λx.M is well-formed only if the variable x occurs in M . But
if x is not used in the term M , first the erasure must be performed, by using the
expression x ⊙M . In this way, the term M does not contain the variable x, but
the term x⊙M does. Similarly, a variable should not occur twice. If nevertheless,
two occurrences of the same variable are needed, it has to be duplicated explicitly,
using fresh names and the operator x <x1

x2
M , called duplication which creates two

fresh variables x1 and x2.
For all the calculi we considered both the untyped and typed versions of the

calculus, and in the typed case, we provided an account of type assignment sys-
tems with simple types and with intersection types. In all the cases, the proposed

5Of course, there is no rule that would correspond to the rule (Thin).
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intersection type assignment systems completely characterise the strongly normal-
ising terms of the calculus. Notice that the strict control of the way variables are
introduced determines the way terms are typed in a given environment. Basically,
in a given environment no irrelevant intersection types are introduced. Moreover,
we showed that intersection types fit naturally with resource control, because each
of three kinds of variables (variables as placeholders, variables to be duplicated and
variables to be erased) is associated to different kind of types. Therefore, the type
of a variable provides an information about its role in the term.

The computational content of substructural logics [56, 53] in natural deduction
style and its relation to substructural type systems [62] is an interesting area of
research. The motivation for these logics comes from philosophy (Relevant Logics),
linguistics (Lambek Calculus) and computing (Linear Logic). Formulae-as-types
interpretation of a hierarchy of substructural logics of Wansing [63] can be embodied
in the Resource control lambda calculus, since the basic idea of resource control is
to explicitly handle structural rules, the control operators could be used to handle
the absence of (some) structural rules in substructural logics such as thinning,
weakening, contraction, commutativity, associativity. Also, intersection types are
powerful means for building models of lambda calculus [5, 15] and could be used
for construction of models for substructural type systems.
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[30] S. Ghilezan, J. Ivetić, P. Lescanne, D. Žunić, Intuitionistic sequent-style calculus with ex-
plicit structural rules In: N. Bezhanishvili, S. Löbner, K. Schwabe, and L. Spada eds., 8th
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