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1. Introduction

The paper [92] presented a survey of our work on probabilistic logics [10,18-22,
43,44,52,67-69,76-88,100—-117]. Various variants of probabilistic logics (i.e., finitary
or infinitary, with or without iterations of probabilistic operators, with different
types of probabilistic operators - both for conditional and unconditional proba-
bilities, propositional or first-order, extending classical, intuitionistic or temporal
logics, with different ranges of probability functions, finitely or o-additive, etc.)
were presented there, and the usual model-theoretical and proof-theoretical issues
about compactness, axiomatizations, completeness and decidability were discussed.
That paper also contained a short historical overview of studies relating logic and
probability: from Leibnitz via Jacobus Bernoulli and Boole until the late 1980’s,
and the work of Keisler, Nilsson and Fagin and Halpern [23,24, 35, 55-60, 74, 75].
Interested readers can consult an extensive discussion on this historical topic given
in [34].

After the survey [92] was published, we continued our investigation in several
directions, and presented the obtained results in a number of papers, for example
in [14-17,45-50,71,72,89-92,96-98, 123]. However, here we will not repeat the
approach from [92], and will not present all those results in detail. Rather, we will
briefly mention some of them, and devote the rest of the paper to a particular topic
- development of a first-order probabilistic logic and applications of probabilistic
logic to default reasoning which was briefly addressed in [92, Section 9.1.4].

We will first mention one of our latest papers: in [45] a classification, in a
form of a hierarchy, of probability logics without iterations of probability operators
from [92] was given. The considered logics have different languages, and we say
that the logic L is more expressive than the logic L iff for every L;-formula «
there is a Lo-formula 8 such that the classes of all models of o and 3 coincide.
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The central point in the hierarchy is the logic LPP, which starts from classical
propositional logic with real-valued probability functions and does not allow iter-
ations of the probability operators. The upper part of the hierarchy, in the form
of a non-modular lattice with the smallest element consists of probability logics
with languages richer than the language of LPP, (those languages may contain
probability operators capable to express that the probability of formula belongs to
a particular set). On the other hand, the lower part of the hierarchy, in the form
of an atomic, non-modular lattice, is made of probability logics with probabilistic
functions with finite ranges.

The paper [17] compares several syntactic and semantic approaches to measuring
inconsistency of a set of propositional formulas 7. The syntactic notion of n-
consistency is based on the number of formulas needed to derive a contradiction:
T is said to be n-consistent iff each T" C T of cardinality n is consistent. On the
other hand, T is called n-probable if there is a probability measure p which assigns
the probability higher than 1 — % to every formula of 7. The main result related
to these notions says that n-probability is stronger than n-consistency. Then, a
weaker notion, so-called local n-probability, which requires n-probability of (n + 1)-
element subsets of T, is introduced and proved to be equivalent to n-consistency.
The paper also provides a detailed comparison of introduced notions with Knight’s
n-consistency [61].

The introduced notions are generalized to measure inconsistency of theories in-
corporating beliefs of different agents. This is obtained using the notion of n-
probability of T" modulo a set of formulas {¢1,...,¢r} with the idea to model
situations with k agents, each knowing some fact ¢;, and each formula in T is
believed to be probable by at least one agent. In other words, there exists a prob-
ability measure p such that p(¢1 A--- A @) > 0 and for all p € T, there is an
i €{1,...,k} such that

1
p(plei) > 1 — o

This approach is reasonable if the agent’s beliefs are highly compatible, and thus
the additional constraint p(¢;|¢;) > 1 — % is required. Under those assumptions,
we show that there is the following connection between the conditional and uncon-
ditional versions of n-probability: if theory T is n-probable modulo {¢1,..., o},
then T is (n — k + 1)-probable.

Next, using non-standard probability measures, and the connection between de-
faults and non-standard conditional probability infinitesimally close to 1, relations
between the presented results and default reasoning were investigated. We intro-
duce the notion of strong n-consistency for given rational relation h and say that
a theory T is strongly n-consistent for p, if for any n formulas ¢1, ..., ¢, € T,
K = (1 A+ Ayp). The strong n-consistency for - is shown to be preserved under
default derivations.

Another application of the previous results concerns so-called finite approxima-
tions of defaults. Using the notion “i is n-probable modulo {¢},” the relations v
are defined. It is proved that they satisfy a weak version of System P [54] (which
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is considered as the base for default reasoning and will be discussed below):
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If ¢ b, 1 means “n is the degree of belief that ¢ follows from ¢”, the above rules
determine degradation of this degree in each step of a possible deduction.

In [15] a first-order temporal logic for reasoning about branching time was intro-
duced. Since the corresponding set of valid formulas is not recursively enumerable
and there is no finitary complete axiomatization, a sound and strongly complete
infinitary axiomatization was provided.

Another branching time probability logic with probability operators speaking
about probabilities on branches, and about probabilities on sets of branches with
the same initial state, was discussed in [89].

A sound, strongly complete and decidable probabilistic temporal logic suitable
for reasoning about evidence was provided in [90]. That paper offered a solution
for a problem proposed by Halpern and Pucella in [36].

Other formal systems that considered probability and time were presented in [14].
Actually, they involved also reasoning about space so that the systems were suitable
to model probabilities that objects were in particular locations in particular time
instants.

Probabilistic characterizations for some preferential consequence relations that
are obtained by adding/subtracting rules (determinacy preservation, fragmented
disjunction, conditional excluding middle) to/from System P were given in [16].

The papers [71,72] considered first order conditional probability logics. Beside
infinitary axiom systems which were proved to be sound and strongly complete
with respect to the corresponding classes of models, some decidable fragments of
the logics were determined.

A number of probability logics with not linearly ordered ranges of the corre-
sponding probabilistic functions (i.e., p-adic, complex or monoid-valued probabilis-
tic functions) were given in [46,48-51]. In [46], some logics that generalize various
proposal for capturing uncertainty in propositional framework are introduced. Un-
certainty is modeled by G-valued measures, where G = (G, <, *,0) is a partially
(not necessarily linearly) ordered commutative monoid such that the neutral is the
least element. If F is a Boolean algebra of events (considered as classical propo-
sitional formulas), then G-valued measure is a function m : F — G satisfying the
following conditions: m(@) = 0 and m(A U B) = m(A) * m(B) if A and B are
disjoint.

Examples of structures suitable to be ranges of G-valued measures are:

(1) Additive monoid of nonnegative rational numbers (Q*, <, +,0);
2) ({0, 2 ...,%,1},<,@,0), r®y=min{l,z + y};

'
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(3) ([0,1]q,<,®,0) ([0, 1]¢ is the set of rational numbers from unit real interval
[0,1]);

(4) (Q*(e),<,+,0), where Q7 (¢) is the set of nonnegative elements of the do-
main of the nonarchimedean field Q(g) which is the smallest field obtained
by adding a positive infinitesimal ¢ to rational numbers;

(5) (Q*", <, +,(0,...,0)), Q" = Q" x --- x QT, < is lexicographic order;

—_——
n

(6) (w,<,+,0);

(7) (w, <, max,0);

(8) (Q*, <, max,0).

Starting with a G-valued measure defined on the set of classical propositional
formulas, we extended the language of propositional calculus with a list of modal
(unary) quantitative operators M_,, a € G, and/or (binary) qualitative operators,
e.g. <. The intended meanings of M_,p and ¢ < 9 are ‘the measure of ¢ is a’
and ‘the measure of ¢ is smaller or equal to the measure of v¢’, respectively. The
semantics is based on Kripke-style models with a set of possible worlds W and a
G-measure over the algebra of subsets of W. The main results of the paper concern
complete axiomatizations of the proposed logics. Also, the paper describes in detail
a general method for studying this kind of logics.

An approach, close to ours, is given in [28], where the authors consider plausibil-
ity measures mapping sets from F to elements of some arbitrary partially ordered
set that have no algebraic structures. In contrast, the papers [48-51] discuss the
measures whose ranges are the field of complex numbers C or the fields of p-adic
numbers Qp, for any prime number p. It is well-known that these fields cannot
be turned into ordered fields, and one has to work with such probabilities without
comparing them.

The p-adic probability theory addressed in [48,50,51] is an alternative to the
real valued probabilities which gives the opportunity to work, for example, with
negative probabilities appearing in different settings in physics, or when one is not
able to compare probabilities, as was proposed by J.M. Keynes in A Treatise on
Probability.

In our approach, classical propositional logic is extended with operators of the
form K, ,, with the intended meaning “the probability belongs to the p-adic ball
with the center r and the radius p”. Since it is not possible to compare the p-
adic probabilities of two events, it is not possible to say that “the probability of
« is greater than the probability of 5”7, but we can measure how close are p-adic
probabilities. Namely, the p-adic probabilities of two events « and [ are close
enough, if their p-adic difference is close enough to 0. In the mentioned papers
strongly complete axiomatizations for several p-adic logics are provided, and the
corresponding decidability theorems are proved. It is also shown how logics of this
sort can be used to model processes of thinking.

As it was pointed above, the main part of this paper will be used to present
probability logics suitable to model default reasoning. So, the rest of of the article
is organized as follows.
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In Section 2 we give a propositional background on the connections between
default reasoning in System P and probabilistic reasoning with approximate con-
ditional probabilities. In Section 3, we describe an extension of ordinary first-order
logic which enable us to generalize considerations from the previous section. That
logic was introduced in [47]. We use LF: to denote this logic and to emphasize
that it is an extension of the ordinary first order classical logic L, while P and
I indicate that the values of the probabilistic functions will belong to I. The logic
LPLis completely developed: syntax and semantics are specified, and sound and
complete deductive system is provided. Section 4 contains proofs of decidability
of two fragments of LE;l. In Section 5 we describe how our system can be used
to model default reasoning and analyze some properties of the corresponding de-
fault consequence relation. In Section 6 we discuss how one could straightforwardly
develop some extensions of Ll by adding new (qualitative and/or quantitative)
quantifiers which might be very interesting for further applications. We conclude
in Section 7.

2. Default reasoning

In this section, we give an overview of the relationship between default reasoning
in System P and probabilistic reasoning with approximate conditional probabilities.
For simplicity, in both cases we assume that the underlying language is the classical
propositional language constructed from a set Var of propositional letters (denoted
by lower case latters p, ¢, r, ...) and the usual connectives =, A, V, —. The set of
classical propositional formulas Forc is defined as usual.

Default reasoning in System P. Roughly speaking, nonmonotonic reasoning is a
formalization of reasoning when information is incomplete. If we, human beings,
are forced to make a decision under incomplete information, we use commonsense to
supplement lack of information. Such reasoning does not satisfy the monotonicity
property: we can draw sensible conclusions from what we know, but, faced with
new information, we often have to take back previous conclusions, even when the
new information we gathered in no way made us want to take back our previous
assumptions. For example, we may hold the assumption that most birds fly, but
that penguins are birds that do not fly and learning that Tweety is a bird, we infer
that it flies. Learning that Tweety is a penguin will in no way make us change our
mind about the fact that most birds fly and that penguins are birds that do not fly,
or about the fact that Tweety is a bird. It should make us abandon our conclusion
about its flying capabilities, though. Thus, as the set of assumptions grows, the
set of conclusions (theorems) may shrink. This reasoning is called nonmonotonic in
contrast to standard logic, which is monotonic: as one’s set of assumptions grows,
one’s set of theorems grows as well.

A comprehensive treatment of nonmonotonic reasoning systems is far beyond
the scope of this article. Various researchers have proposed and studied a large
number of nonmonotonic systems which have been mainly suggested by various
problems in computer science and Al. We list just a few early ones: Hintikka’s
theory of various multiple believers [40], Doyle’s truth maintenance system [70],
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Reither’s default logic [119], and Moor’s autoepistemic logic [73] as well as various
versions of negation as failure in extensions of Prolog by Apt, Clark and others [13].
Gabbay [29] was probably the first to suggest to focus the study of nonmonotonic
logics on their consequence relations, defined in the style of Gentzen. Today there
is an extensive work on desired properties of nonmonotonic consequence relations,
but the core of these properties are the postulates proposed by Kraus, Lehmann,
and Magidor [54]. System P is a deductive system studied in that paper and
occupies a central position in the hierarchy of nonmonotonic logical systems ( [93]).
It turns out that System P is a fragment of a conditional logic studied by J.
Burgess [12]. Interestingly, this very fragment had been also considered by E.
Adams in the paper [1] whose purpose was not to study nonmonotonic logic, but
to propose probabilistic semantics for indicative conditionals. Below, we briefly
describe System P.
If a and 3 are classical propositional formulas, then the pair («, 3), denoted?
a ~— B, is called a default rule (default in short)?. A default base is a set A =
{a; — B; | i € T} of default rules. A default base is expected to specify defeasible
information. Default reasoning is described in terms of a consequence relation fop
which determines the set of defaults that are |~p-consequences of a default base.
In [54,62], the relation p is defined by a set of properties, called System P, and
commonly regarded as a core of default reasoning (= denotes classical validity):
REF a — « (reflexivity);
LLE if E a < 8, from a — ~ infer 8 — ~; (left logical equivalence)
RW if = a — g, from v — « infer v — B; (right weakening)
CUT from a A 8- v and a — f infer a — =;
CM from a — 8 and @ — 7 infer a A v — (3 (caution monotonicity)
OR from a — v and 8 — ~v infer a VvV g — 7;
Given a default basis A = {a; — §; | ¢ € I}, the notation A jvp o — 3 denotes
that o — f can be deduced from A using System P.

Example 2.1. Let A = {b— f,p»— b,p — —f} where b stands for ‘birds’, f for
‘flies’, and p for ‘penguin’. Then, A fp b — —p can be proved in System P.

In practice, in addition to a default base, some knowledge described by classical
formulas is often present. A default knowledge base KB contains a finite set of
propositional formulas and a finite set of defaults.

Example 2.2. Let us consider the knowledge base KB = {b — f,p — b,p — —f},
where — is the material implication, and the intended meaning of b, p and f is
as in the previous example. Note that p — b, p — —f are classical formulas, and
b — fis a default. It is easy to see that KB fp b— —p.

INote that the other authors use different symbols (—, pv, for example) to denote the ‘default
implication’. In the present setting those symbols may cause confusion, so we prefer to introduce
a new symbol here.

2Here are some widespread intuitive interpretations of o »— B: ‘from a sensibly conclude 5’;
‘generally, if a then B (possibly having some exception)’; ‘a is a good enough reason to believe
B’; ‘B is plausible consequence of «’; ‘if «, normally 8’; ‘if « is true, I am willing to (defeasibly)
jump to the conclusion that 3 is true’; etc.
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e-semantics for defaults. Semantics for defaults based on infinitesimal probabil-
ities are discussed at length and shown capable of serving as universal core for a
variety of nonmonotonic logics. A probabilistic interpretation of defaults is sug-
gested by Adams [1], and later Pearl [94] and Lehmann and Magidor [62]: a default
« — [ denotes that ‘the probability of S given « is very close to 1’. The meaning
of very close involves probabilities whose range is a non-Archimedean field, i.e., an
ordered field containing infinitesimals: an element x is infinitesimal if || < 1/n, for
every positive integer n. Two elements x and y are infinitely close, denoted = = y,
if x — y is infinitesimal. Thus, x is infinitesimal iff z ~ 0.

Using a proper elementary extension *R of the standard real numbers?, i.e.,
relying on the fundamental results of Robinson’s nonstandard analysis, an *R-
probabilistic model can be defined as a triple (W, F, 1), where W is a set of pos-
sible words (truth assignments to propositional letters), F is a field of subsets of
W containing all sets definable by propositional formulas, and p : F — *R is a
finitely additive *R-valued probability measure. A default a — [ holds in an
*R-probabilistic model if:

e either the probability of « is 0,
e or the conditional probability of 8 given « is infinitely close to 1.

A default base A e-entails a default o« — 3, denoted by A . o — g, if we can
ensure that P(8 | «) is almost 1, by taking the probabilities of defaults in A to be
almost 1.

It turns out that *R is a complicated space for many practical purposes and
can be replaced with a simpler non-Archimedean field. The search for a minimal
non-Archimedean range of probabilities led many authors [37,39] to consider the
ordered field R(e). This field is the smallest field generated by adding to the reals a
single infinitesimal? . Q(¢) is another example of non-Archimedean field extending
the field of rational numbers.

Hardy field Q(¢). Elements of Q(g) are rational expressions of the form 28,

where p(e) and ¢(g) are polynomials in € over Q, and ¢(¢) is not identically equal
to zero. Two rational expressions Z gg and Z iég
and p1(€)q(e) have the same non-zero coefficients. Addition and multiplication are
defined in the usual way. With these definition Q(¢) is a field. Each element n of

Q(e) can be transformed into the normalized form:
agk + 30 i aiE’
1+ Z;nzl bj{:‘j
for some unique integer k and some unique leading coefficient a such that a # 0
unless 7 = 0. Define the ordering < on Q(e) so that n > 0 iff @ > 0. This

makes Q(g) a non-Archimedean ordered field since ¢ is an infinitesimal. Note that
Q & Q(e). The elements of Q(¢) \ Q are called ‘non-standard rational numbers’.

are equal if polynomials p(g)gi(g)

(*) n= Jk<n,0<m

3Such extension exists by basic results in model theory; for example, we could take *R to be
the ultrapower of R with respect to a nonprincipal ultrafilter on N.
40ne can regard ¢ as a positive infinitesimal from *R.
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Given the normalized form (x) of 1, the unique integer k is the order of n, written
ord(n), with ord(0) = oco. If k = 0, then 7 is infinitesimaly different from a non-zero
rational number called the standard part of n and denoted st(n) = a; if k > 0, then
st(n) = 0.
Q(e) has a number of nice properties:
e Q(e) is countable and recursive, i.e., its operations are computable and its
ordering is decidable;
e Q(e) is (isomorphic to) a dense subfield of *R;
e the monad (halo) of a rational ¢ € [0, 1], defined by

monad(z) = {y | y = z},

can be characterized by:

monad(q) = ﬂ [max{o,q— %},min{l,q—i— %H
neNt

In the sequel, we focus on the Q(e)-probabilistic spaces (W, F, 1) with a finitely
additive probability measure p : F — I, where I is the unit interval of Q(¢).

A probabilistic propositional logic with approximate conditional probabilities.
In [117], we developed a probabilistic propositional logic, denoted LPP, by adding
new binary probabilistic operators to build basic probabilistic formulas of the form
CPxr(a | B), CP«r(a | B), r € I and CPry(a | B), ¢ € Q NI, where o and 3 are
classical propositional formulas. The intended meaning of these formulas are ‘the
conditional probability of « given 3 is at least r’, ‘at most r’ and ‘approximately ¢’,
respectively. The set Forp of probabilistic formulas is the set of all Boolean combi-
nations of the basic probabilistic formulas. Relying on Q(¢)-probabilistic spaces, the
corresponding strong completeness theorem is proved for the proposed axiomatic
system denoted Axypp. In that logic, a default a — f is represented by the for-
mula CPx~1(8 | ). Of course, a finite default base A = {a1 — S1,...,Qm — Bm}
is represented by the set A = {CP~1(B1 | a1),...,CP~1(B1 | c1)}. Tt is proved
that the proposed approach gives a characterization of System P.

Theorem 2.1. For every finite default base A and for every default o — [:
A}‘vp (e >—>ﬁ ZﬁA l_AXLPP « >—>ﬁ

A finite default base A = {ay — Bi1,...,m — Bm} can be regarded as the
formula A A = A", CP~1(5; | ;). Using Deduction and Completeness theorems
for LPP [117], we have:

Apbpa—p
iff Fax,pp ANA=CPxi(B] )
iff AA = CP~1(8 ] a) is valid
with respect to the class of Q(e)-probabilistic spaces
iff —(AA = CP~1(8|a)) is not satisfied in any Q(e)-probabilistic space
iff AAA - CPxi(B] ) is not satisfied in any Q(e)-probabilistic space
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For applications, the following result is very important.
Theorem 2.2. The satisfiability problem for LP P-formulas is decidable.

The proof of the theorem is rather long and it is based on a reduction of sat-
isfiability problem to linear programming problem. We illustrate the method on
formulas of the form

8= /\ CPx1(B; | i) A= CPx1 (B | ).

=1

For these considerations the set Var is finite, for definiteness let Var = {p1,...,pn}.

For p € Var, let p' = p and p° = —p. Let &1,..., &y, where N = 27, run through
the 2™ classical formulas of the form p$* A -+ A pér, where e1,...,e, € {0,1}. We
call §;’s atoms, and denote the set of these atoms by At. It is obvious that for a
given atom £ there is a unique valuation ve : Var — {0, 1} such that v¢(§) = 1, and
vice versa. Moreover, for each a € Forg, there is S, C At such that « is classically

equivalent to \/ Sy:

Sou= {6 At| € a} = {€ € At ve(a) = 1},

Thus, when the set of propositional letters is finite, we can only consider Q(e)-
probabilistic spaces of the form (At, P(At), P), where P : P(At) — [ is a finitely
additive probability measure. Each probability measure of this form is completely
determined by its values on the atoms, i.e., by the vector

N
(P(&),...,P(&n)) eD = {fe@(s)N 22 0,1<i<N,Y w = 1},
=1

Conversely, given & € D determines a unique probability measure P’ satisfying

(P'(&1), ..., P'(€n)) = .

The function P’ : Forc — I is defined by P'(a) = 3¢ 5 ;. This 1-1 correspon-
dence between probability measures and points in D is very useful in what follows.
Namely, § = A", CP~1(5; | a;) A= CP~1(B | @) is satisfiable iff the system

2?21 T =1,

1 207"'5$N 205
Z&Esgl xz; >0,.. "Z&ES@,H xTi > 0’257,655 x; >0,

(%)
Z&q,esawﬁl i 1 Zgiesam/\ﬁm, i 1
. I R > T ~ 5
giesg, T g;esg,, Ti
Z&iGSaAﬂ T % 1
qu,esﬁ Ti ’

has a solution in Q(e).
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As shown in the paper [117], the system (x) has a solution in Q(g) iff the system

N

Zi=1 z; =1,

1 20,...,2xy 20,
( ) Z&Esﬁl Ii>0""’zﬁi€5@m Ii>O,ZEi€Sﬁxi>0,
*

Z&-GS T Zg-gs Zi
0<1*%<K5,...,0<1*%’”%<K8,
§i€Sp Tt §i€Spy,
1 Yeiesans P 1
Z&iesa Ti K

has a solution in *R, where € and K are suitably chosen elements of *R: € > 0 is
an infinitesimal, K > 0 is infinitely large and K* - ¢ =~ 0, for every k € N.> More
specific, we solve the system (%) in an ordered field whose elements are rational
expressions in € and K with rational coefficients. We add and multiply in this field
in the usual way. The ordering is generated by the suitable ordering on the set of
polynomials in € and K. Note that each polynomial in Q(e, K) can be expressed
in the form Qo(K)e® + Q1(K)e! + -+ + Qn(K)e™, where Q;(K)’s are polynomials
in K with rational coefficients. Comparison of polynomials Q1 (e, K) and Q2(e, K)
is carried out as follows:
QI(EaK) < QQ(EaK)
iff Quo(K)e” + -+ 4 Qun, (K)e™ < Qao(K)e® + -+ + Qo ny (K)e™
iff Q14(K) < Q2,:(K), for some i < max{ni,ns}, and
Q1,;(K) = Q2,5(K),j <i(Qi(K)=0,i>ny and Q2,(K) =0, > ny)

and
Q1:(K) < Q2,i(K)
it g K™ 4+ @i K+ qui0 < qrim, K™+ 4+ q2i1 K + qai0
iff @14 < g2, for some r < max{my, ma} and q1 ;¢ = qo¢ for t <r
(q1,5,r =0 for r > my and g2, = 0 for r > my)
For example,

1 1 1 1 1 2
(352 +K) + (G + 5K+ K)o+ 2 < (GK2 4+ K) + (K + 5% +1)e

since K2+ K = K2+ K (3 =3,1=1)and 3 K3+ JK*+ K < s K3+ 2K?+1
G=t1<?)
If Qi(e, K) > 0 and Q4(e, K) > 0, then

R < G T QKD Qe ) < Qule ) Q4 (e,

5For example, if we consider the usual construction of a set of hyperreals *R = RN /U, where U
is a nonprincipal ultrafilter on N, then we can choose € and K to be the following U-equivalence
classes: € = <1,2i2,3i3,...,ﬁ,...) and K = (1,2,3,...,n,...).
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It is easy to see that the system (x) is equivalent to a system of linear inequalities
of the form

$1%;, + -+ sy, p 0,

where £ < N, 1 <iy,...,7¢ < N, s;’s are rational functions in € and K, and p €
{<,<,>,>2}. Now, we can perform Fourier—Motzkin elimination, which iteratively
rewrites the starting system into a new system without a variable x; such that two
systems are equisatisfiable. During the procedure, numerators and denominators
of coefficients in inequalities remain polynomials in € and K. When no variables
are left, we have to verify relations between polynomials in € and K.

Example 2.3. In Example 2.1, we prove {b — f,p — b,p — —f}|~p b — —p.
Now we will prove this in a different way in order to illustrate the method described

above.
There are eight atoms that should be considered:

&i=bApAf S =bApA-f E&=bA-pAf &4=bAN-pA-f
& =-bApAf & ="bApA-f Er=—bAN-DpAf g =—bA-pA-f

We have to prove that the formula
CPx1(f | D) ACP1(b | p) ACPri(=f | p) ACPgi(—p | b)

is not satisfied in any Q(e)-probabilistic space, i.e., that the system:

1+ a2+ a3+ x4+ x5 +26 + 27 +28 =1,
xl2073322071'32071'420;1'520533620;3372071'8207

(*) x1+ 2+ 23+ 24 >0, 21+ 22+ 25 + 26 > 0,
z1+w3 ~ T1+To ~ To+we ~1
T1+xotr3tTy ) zitxetrstwe b xi1+TotTste ’
T3+Ty 55
T1+T2+T3+Tg ’

has no solution in Q(e). The first step of the described procedure is the elimination
of the sign =, i.e., the transformation of the system into the following one:

21+ X2+ 23+ T4+ T5 + 26 + 27 + 28 =1,
2120,22020,23 20,24 20,25 20,26 20,27 20, 28 20,
T1+To+ 23+ 24 >0, x1 +22+ 25 + 26 > 0,

_ z1+T3 > _ T1+To > _ zo+Te >
1 r1t+zotastra & 0’ 1 c1+xotzst+ae = 0’1 r1txotrs+ae 7 0’
_ z1+x3 _ 14T _ TotTe
1 T1+T2+T3+T4 < KE’ 1 T1+T2+T5+T6 < KE’ 1 T1+T2+T5+T6 < KE’
1— T3+Ty > 1
T1+z2+x3+T4 K>

which is equivalent to the system of linear inequalities:
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T1+ T2 + T3 +Tg + 25 + 16 + 17+ T8 =1,
20,2020,23 20,24 20,25 20,26 20,27 20, 28 20,

T+ To+ 23+ T4 >0, x1 + 22 + x5 + 26 > 0,

To+x4 20, x5 +26 20, 21 +75 >0,

o+ x4 < Ke(x1 + 22 + 23 + 24),

x5 + a6 < Ke(x1 + 22 + x5 + x6),

21+ 25 < Ke(xy + 2 + x5 + w6),

Ty + 22 > +(21 + 2 + T3 + T4).

Fourier—-Motzkin elimination can be performed in the standard way, and the pro-
cedure will finish with a false condition.

3. Probabilistic first-order logic LE;!

In this section, we describe an extension of ordinary first-order logic, introduced
in [47], which will enable us to generalize considerations from the previous section.
The language of the logic is rich enough so we can represent in it simultaneously
statistical knowledge, imprecise probabilities, beliefs and defaults. We follow the
standard steps in the development of first-order logic.

Syntax. Let L be a first-order language, consisting of predicate and function sym-
bols. As usual, constant symbols are 0-ary function symbols. The logic LI is
an extension of L, where L, denotes the classical first-order logic. In addi-
tion to logical symbols of L., LE;! has new probabilistic quantifiers (CP & > r)
and (CP Z < r), for every r € I, and (CP & = q), for every ¢ € I N Q, where
Z=(x1,...,2y) is a tuple of pairwise distinct variables.

The set of terms and the set of atomic formulas of LE:! are the same as in L,

Definition 3.1. The set of formulas of LP’]I is the least set such that:

each atomic formula of first-order logic is a formula of L%

if o is a formula of LE;!, then =« is a formula of LY

if o and B are formulas of LE;!, then so is a A 3;
if a is a formula of LTI and z is a variable, then Vza is a formula of LET;

if a and B are formulas of LI, and (CP # o) is a quantifier of LE:! (o is
a placeholder for <, >, =), then (CPZor)(a | B) is a formula of LE;L.

The set of formulas is countable and recursive, since the field Q(e) is countable
and recursive.

The connectives V, —, and <, and the quantifier 3 are defined as usual. We
abbreviate o A —a by L, and =1 by T. Also, it is convenient to use the following
abbreviations in LP:

(CPZ < r)(a|B) for =(CPZ = 7) (v |

(CPZ>r)(a | B) for 2(CPZ < 1)(cv | B);

(CPZ=r)(a|p) for (CPZ=7r)(a]|B)A(CPZLr)(a]pB);
(PZor)afor (CPEor)(a|T),ce{,=2,~,<,>}.

B);
6
)
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Note that we allow interleaving of first order quantifiers and probability quanti-
fiers.

The notions of free and bound variables are defined as usual, with the quantifier
(CP Zor) binding all the variables in the tuple Z, ¢ € {<, >, ~}. If Z is a tuple of
pairwise distinct variables that contains all the free variables of «, we write a(Z).
A sentence is a formula having no free variables. A theory is a set of sentences.

Example 3.1. Let L = {U, B}, where U and B are relation symbols, ar(U) = 1

and ar(B) = 2. The following strings are LF;!-formulas:

e (CPy~1)(B(z,y) = U(y) | B(z,y)) (z occurs free in this formula);

e (CPxy =¢)(3z(B(x,z) A B(z,y)) | = y) (this formula is a sentence);

e (Pz=~ 1)(CPy = 1)(B(y,2) V B(z,2) | (CPu > 0.99)(U(u) | B(z,u))),
etc.

The rules for renaming quantified variables in formulas expand the standard first
order rules. Any formula with bound variables has a number of variants obtained by
renaming of its bound variables. Note that if o is a variant of «, then o and o’ have
the same free variables. As we will see later, variants preserve the meaning of the
original formula. Now, we can specify how a term ¢ may be substituted for a variable
2 in any formula a: transform a to a variant o/ which does not have any variable
in common with ¢, and then substitute ¢ for all free occurrences of x in o/. The
new formula which is formed by the substitution process is denoted by a(x := t).
In a similar manner, we specify the procedure for simultaneously replacing several
variables: with a given formula «, pairwise distinct variables & = (z1,...,z,) and
arbitrary terms ¢ = (t1,...,t,), we form a formula (& := 1), which is obtained by
simultaneously substituting ¢1,...,t, for x1,...,x, in a suitable variant of a.

Semantics. The structures to be considered are of the form (2, F,, fin)nen, where
In is a finitely-additive probability on the n-fold product of the domain of a first
order structure 2.

Definition 3.2. A model for LF! is a structure A = (A, Fp, ftn)nen such that

o A= (A S gy is a classical L,,,-model for L;

o forallm > 1, (A™, F,, p) is a finitely additive probability space, where F,,
is a field of subsets of A™ and ., is a finitely additive probability measure
whose domain is F,,, and whose range is I (i.e., pn(X) 2 0, u, (X UY) =
pn(X) + pn(Y) if XNY =0, and p,(A™) = 1); moreover,

— for each n-ary function symbol f of L, the graph of f* is in F, 1;
— for each n-ary relation symbol R of L, R% € F;

— forall i,j <n, {(z1,...,2,) € A" |z = 2;} € Fp;

—if X € F,, then A x X € F,41;

— if X € Fpy1 and IT: A" — A" is the projection map

(21, ..., Tny Tpg1) = (T1,. .., Tn),

then II(X) € Fp;
—if X € Foym and b € A™, then {@ € A" | (d,b) € X} € Fy;
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—if X € Frym, then {@ € A" | pp{b € A™ | (@,b) € X}or} € Fn,
where o € {, >} and r € [, or o =~ and r e INQ;

— each p, is invariant under permutation: for every permutation 7 of
{1,2,...,n} and X € F,, if

XT — {(aw(1)7...,aﬂ(n)) c A" | (al,...,an) S X},

then X7 € F, and pn(X™) = pn(X);
— if X € F,, then pp41(A X X) = pp(X).

Note that we do not assume that the sequence of probabilities (p, : n =1,2,...)
is a sequence of product measures. More specific, instead of the conditions:
(i) Fontn is generated by the set {X xY | X € F,,,,Y € F,}, and
(ii) the measure fiy,t, is the product probability measure of p,, and p,,

frmtn (X X Y) = pi (X) - pn(Y).

we take their weakening:

(1) if X € F,,, then A x X € Fp11,
(2) if X € F,, then p,y1(A x X) = pn(X).

Nevertheless, we can restrict the class of LY;!-models to those structures whose
sequence of probabilities is a sequence of product measures and give a complete
axiomatization for them (Theorem 3.4).

Example 3.2. The weak conditions (1) and (2) are satisfied in the trivial spaces
(A™, {0, A™}, up), where p,(A™) = 1, u,(0) = 0. Note also that for any n, u, is
invariant under permutations: for any permutation 7 : {1,2,...,n} — {1,2,...,n},
(A"M)™ ={(arqy, - xm)) | (a1,...,an) € A"} = A™ and 07 = 0.

Here are more illustrative examples of probability spaces over the finite set A =
{1,2,3,4}. Let us consider the space (A, P(A), u1), where u1 : P(A) — [0,1] is
probability measure defined by a nonuniform distribution on the singletons:

u1<1 e ‘%‘),m(X)Zm({x}),XgA.

5
4 zeX

There are many possibilities to define a probability measure on P(A?) that the
requirements (1) and (2) are fulfilled. Here are two examples defined by distribu-
tions on singletons:

pe |1 2 3 4 My | 1 2 3 4

1]e 0 0 0 Ll e =5 1 3

1-4 e—¢ (1—¢) l—e 1—¢

210 = (1) 0 and 2|5 T . 6 8

310 0 Lo 3|5 o 3 1

410 0 0 1 £ 1—e 1

2 413 3 s 1
Note that uf is the product probability measure: ph(X X Y) = p1(X) - p1(Y),
X,Y C A. Analogously, we can define (A", P(A"), un) and (A", P(A™), ul), for

n = 3.
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An assignment in 2 is a function v whose domain is the set of variables Var and
the range is a subset of A. We use v(Z := @), where & = (21,...,2,) is a tuple of
pairwise distinct variables and @ € A™, for the assignment v" which is the same as
v except that v/(z;) = a;, 1 = 1, k.

If 2 is an LY;'-model, then every assignment v : Var — A is extended to the set
of all terms of LY (i.e., of Lyy) in the standard recursive way. For a term ¢ of

LPI we denote by t%¥ the associated element from the domain A.

Definition 3.3. Let 2 be an L¥;model and v an assignment. We define the
relation 2,v = ¢ (read: the assignment v satisfies the formula ¢ in 2A) for all
assignments v : Var — A and all formulas in the same way as it is defined for L,
with the new clauses:

e AvE= (CPE<r)(al|B)iff pp{dc A" | A v(T:=ad)E B} =0andr=1or
. pnf{d € A" | A,0(Z := @) E a A B} .
R R =V T RTE P =y B
e Avl (CPZE=r)(a|p)iff u{dec A™ |A,v(F:=ad) = B} =0or

. pnf{d € A" | A,0(Z := @) E a A B} .
R R =V T RTE P =y B
e AvE (CPT=q)(a|p)iff u{adec A™ | A, v(Z:=a) = B} =0 and ¢ = lor
pnf{d € A™ | ,v(7 := @) = B} > 0 and

pn{d € A" | A, v(% = a) E a A B}
pnld € A7 |, o(7 = ) 5}

If T is a set of formulas, we write 2,v = I' to mean that A, v | ~ for every
formula v in T'.

pnfd € A™ | A, v(Z

pnfd € A™ | A, v(Z

€ monad(q).

The clause for (CPZ =~ ¢)(« | 8), in the above definition, means that the condi-
tional probability equals either ¢ — ¢’ or ¢ + ¢’ for some infinitesimal &’ € 1. Note
that all clauses are formulated on the assumption that the conditional probability
is 1, whenever the condition has the probability 0. If we had kept the standard def-
inition according to which conditional probability is undefined when the condition
has probability 0, then many formulas would not have truth-values, i.e., for some
formulas the question whether they are satisfied in a given model would make no
sense. Moreover, this approach is fully in line with probabilistic interpretation of
defaults.

As in first order logic, the following technical lemma is important.

Lemma 3.1. Let 2 be an LY;"-model, and o an LE!-formula.

1. If uw and v are assignments in 2 which agree on each free variable of o, then
Aul=a iff v k= a.
2. If & is a variant of a then for every assignment v : Var — A,

AvEa if v Ed.
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3. Ift is a term, and x a variable, then for every assignment v : Var — A
A0 = oz :=t) iff Aov(s:= tﬁ’”) E a.

We omit the proofs since they are similar to their counterparts for L.,.

The first statement of the previous lemma says that only free variables of for-
mulas might alter their meanings. Thus, if a(Z) is a formula, and @ € A™, then for
every two assignments u and v: 2, u(Z := @) = « iff ,v(Z := @) = a; this fact
allows us to adopt the common practice and write 2,@ = a(%) or A = afa]. In
particular, if « is a sentence, we write 2 = «, since the truth value of a sentence
depends only on the underlying structure 2.

The second statement means that the renaming of quantified variables in formu-
las preserves the meaning.

The third statement shows that substitutions in LF;! behave semantically in the
same way as in the first order logic.

If 2 is an LE;l-model, v : Var — A an assignment, Z a tuple of distinct variables,

w

and (%) an LY I-formula, we write [cp]% , for the set {a@ € A™ | A, 0(T = ad) = o).

Example 3.3. The language L = {U, B}, from Example (3.1), is interpreted on
A= {1,2,3,4}: U* = {2,3} and R* = {(1,1),(1,3),(2,4)}. We check whether
some sentences are satisfiable in LF-I-models

A= (A, U, R, P(A™), ftn)ns1 and A = (A, U, R, P(A™), ) n>1,
where p,, and p, are measures defined in Example 3.2. It is not hard to prove that:
e A 3(CPy ~ 1)(B(z,y) — U(y) | Blz,y)), and
—
A = J(CPy ~ 1)(B(z,y) = Uy) | Bz,y));
e« AL (CPay = )(3(B(x,2) A B(2,y)) | 2 = y), and
—
2 (CPay = €)(32(B(z,2) A B(z,y)) |z =y);
e A= (Pz~1)(CPy=1)(B(y,z)V-B(z,2) | (CPu > 0.9)(U(u) | B(z,u))).

Example 3.4. Now, we present some examples of what can be represented by
LPIformulas choosing the suitable language.

e ‘Most birds fly’: (CPz > 0.5)(f1ly(z) | bird(x)), where ‘> 0.5’ corresponds

to ‘Most’,

e ‘90% of birds can fly”: (CPz = 0.9)(f1y(x) | bird(z)),

e ‘Approximately 90% of birds fly’: (CPz =~ 0.9)(f1y(z) | bird(z)),

e ‘More than 90% of birds can fly”: (CPx > 0.9)(fly(x) | bird(z)),

e ‘Almost all birds fly”: (CPz ~ 1)(fly(z) | bird(z)), etc.

Example 3.5. In medicine, two commonly used statistics, when considering some
diagnostic test as an indicator that a patient has some disease, are so called sensi-
tivity and specificity. Sensitivity is defined as the percentage of true positive cases
relative to the sum of true positives and false negatives (i.e., the total number of
tested patients having the disease). Specificity is defined as the percentage of true
negative cases relative to the sum of true negatives and false positives (i.e., the
total number of tasted patients who do not have the disease). Let the formulas
tested(x), positive(z), disease(x) have the following meaning;:
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tested(x): the patient x has been tested,
positive(z): the patient x was positive on the test,
disease(x): the patient = has the disease.

We can express the requirement that the sensitivity of the test is at least 95% by
(CPz > 0.95)(positive(x) | tested(x) A disease(x)).

If we know that the specificity of the test is higher than 90%, this can be stated as
(CPz > 0.9)(—positive(z) | tested(x) A ~disease(x)).

Definition 3.4. Suppose 2 is an LY.!-model, and « a formula. Then A = « (read:
a is true in 2A) if A, v = a for every a551gnment v: Var — A.
A formula is valid if it is true in every LF-l-model.

Note that in the case some free variables occur in a valid formula we treat them
as universally quantified.

Example 3.6. The formula
(Px>0)anN(CPz27)(B|a) = (CPx<1—r)(-8]a)
is LF:lvalid, but
(CPzz2r)(B|a)—= (CPz<1—1)(—0|a)
is not.

Axiomatization. As we shall prove, the set of all valid formulas can be charac-

terized by the following set of axiom schemata:

(FO) all L:instances of the axioms for L,;

(CP1) (CPZ > 0)(a | B);

(CP2) (CPZ < r)(a|p) = (CPE<r)(a]|B),r1 < ro;

(CP3) (CP7 < r)(a | B) = (CPF < r)(a | )

( ) (CPZ=q)(a]|pB) = (CPZ>=q—1/n)(a| B), for every positive integer n

such that 0 < g — 1

(CP5) (CPZ=q)(a|pB) = (CPZ < g+ 1/n)(a]| p), for every positive integer n
such that ¢ + 7 1<

CPé6) (P:c =0)8 — (CP:c =1)(a| B);

(

(CP7) ( — (CPZ= 2)(a|p), rn #0;
(P1) (PZ> 1)(a YRS ﬁ) — ((Pf =r)ja — (PZ=r)p);

(P2) (PEL<r)a+ (PE>21—r)q;

(P3) ((PZ=r)aAPZ=r)BAPT=0)(aAnps)

) =

(Px mm{l r1+r2})(aV B);

(P4) (Pzy---z;--zpor)a v (Pxy---y- - zpor)a(x; :=y), where y is a variable
that does not occur in a, and ¢ € {<, >, ~};

(P5) (Pz1---zp0om)a < (P:c,r(l) Tr(n) © T), Where m is a permutation of
{1,...,n},and o € {\a/a”}?

(P6) (Pxor) (Z) + (PZyor)a(Z), where o € {<, >, =}, and variables § are not
free in «
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(Gen) (generalization) plus the following:

(Vo)a
(Nec) oy =1y

a— (PE#r)B(Z),rel
a— L '
(Approx) For every ¢ € Ig ~ {0,1}
= (CPE>q—L)(a|B)n>1 y—(CP L)@ B8),n >
7= (CP i~ q)(a | ’
(CP:L' 17—)(o<| )
— (CPZ~1)(a | B) ’

(Ran)

and
= (CPZ< ) (a | B),n>1
7= (CPE=0)(a|p)
where the range of the parameter n is the set of naturals N.

Beside the axioms which are analogous to the corresponding ones from [117],
we add several new ones which support the coherent behavior of the sequence of
measures of an LFlstructure: Axiom (P4) captures the fact that variants of a
formula are equivalent, Axiom (P5) enforces the constraint that measures are in-
variant under permutations. Note that the axioms (CP4) and (CP5), and the
rule (Approx) describe the relationship between the standard conditional proba-
bility and the conditional probability infinitesimally close to some rational r. By
Rule (Ran), at the syntax level, we define the range of probability functions to
be the set I. The rules (Ran) and (Approx) are infinitary in the sense that they
have an infinite number of premises (the premises of these rules are not infinite
conjunctions).

The intuition behind the rule (Ran) is the following. Since we want the set I to
be the range of probability functions, the infinitely long formula \/ ,(P% = r)3(Z)
must be valid, i.e. the (meta-)equivalence A, ;(PZ # r)3(Z) < L must be valid.
Our language does not allow infinitary formulas, so the above equivalence may be
replaced by an infinitary rule of inference: given the set of premises (PZ # r)5(%),
r € I, one may infer L. In order to be able to prove Deduction theorem (see the
proof of Theorem 3.2), we modify this rule by adding a prefix ‘a —’ to the premises
and to the conclusion: given the set of premises a« — (PZ # r)3(Z), r € I, one may
infer « — L. Note that in the rule (Ran), the formula « can have free variables in
common with 8. For an example we use the language L = {U, B} from Example 1.
Let 2 be an LF:!-model such that 2 |= U(z) — (Py # r)B(z,y). If U* # 0, choose
any a € U, Then p1({b € Al (a,b) € B¥}) # r, for each r € I, which contradicts
the fact {b € A | (a,b) € B*} € F;. Similarly, the (meta-)equivalence

A(cPiza-Daian A (cPr<a+ D)@l g e CPixg@l 9

1 1
n}; n<— 7

leads to the axioms (CP4) and (CP5), and to the rule (Approx) (taking into
account the mentioned modification needed for Deduction theorem).
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The infinitary rules of inferences are indispensable to the proof of the strong
completeness theorem of our logic. It is easy to see that the logic LE:! is not
compact, i.e., that there is a set of LF;l-sentences T such that every finite subset
of T is satisfiable (has an LF;'-model), but the set T itself is not. Consider the
set T = {(Px # r)U(x) | » € I}, where U is a unary relation symbol. The lack of
compactness forces us to consider infinitary inference rules if we want to solve one
of the main proof-theoretical problem: providing an axiomatic system which would
be strongly complete.

Definition 3.5. A proof of a formula « from a set I' of formulas is a countable
sequence of formulas a, indexed by countable ordinal numbers such that the last
formula is «, and each formula in the sequence is an axiom, or a formula in T" or
it is derived from the preceding formulas by a rule of inference with no application
of (Gen) to a formula when the variable is free in formulas of I". A formula « is
deducible from T' (T' F «) if there is a proof of « from I'. A formula « is a theorem
(F «) if it is deducible from the empty set.

A set T of formulas is consistent if there is at least one LE;! formula that is not
deducible from I', otherwise I' is inconsistent.

A set I is maximal consistent iff I" is consistent and for every formula «, either
a € T or ma € T'. Note that if ' is maximal consistent and I' - « then o € T'.

Many general meta-theorems about deductions can be proven as in L, including
the so called ‘generalization on constants’: if ¢ is a constant symbol, I' is a set of
formulas in which ¢ does not occur, and «(z := ¢) is a formula such that T' F a(z :=
¢), then there is a deduction of (Va)a(z) from T in which ¢ does not occur.

Soundness of our system follows from the soundness of L, and from the prop-
erties of probabilistic measures.

Theorem 3.1 (Soundness theorem). The aziomatic system for LI is sound with
respect to the class of LY:'-models, i.e., each theorem is valid.

Proof. We can show that every instance of an axiom schema is true in every LF:L-
model, while the inference rules preserve truth in a model (if the premise(s) of a
rule are true in a model, then the conclusion of that rule is true in the model). The
proof is straightforward, and we consider only a few cases, as an illustration.

For example, let us consider Axiom (P6) in the case o =>.

Let 2 be an LF;"-model. We have to prove that for every formula a(x1, ..., z,),
which does not have free variables among y1, ..., Ym,

A (PZ > r)o®)  (PEY > r)a(d),

i.e., by Definition 3.4, 2, v = (PZ > r)a(Z) « (PZY > r)a(T), for every assignment
v : Var — A. So, choose and fix an assignment vy. Suppose that 2, vy = (PZ >
r)a(Z). Then, by Definition 3.3, we have un[a]g[i v 2T (Remember that (PZ >

r)a(Z) abbreviates (CP Z > r)(a(Z) | T) and Nn[—l—]% _— pn(A™) =1.) Since

-, -,

{(@,b) € A" | A vo(T:=a,57:=b) Fa}={ac A" | A,v(F:=a) F a} x A™,
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because the variables § are not free in «, it follows (by Lemma 3.1.1) that for all
be A™: W vg(7 := @) | a iff A, ve(Z := @7 := b) = a. From the last clause of
Definition 3.2, we obtain

ﬂner[O‘]%z)o = Nn[a]%,vo >

This proves 2, vy = (PZY > r)a(F). By the similar argumentation, we obtain the
other direction: 2, vy = (PZy = r)a(Z) — (PT = r)a(T).

We now turn to the inference rules and give the proofs only for two of them.

(Gen) Suppose 2 |= «, for any formula a. For any variable x, we prove that
A = Vaa, ie., A,v | Vra, for every assignment v : Var — A (Definition 3.4).
Choose and fix an assignment vg. By the assumption 2 |= «, we have 2, v |= a, for
every assignment v. In particular, 2, vo(x :=a) E a, for all a € A, and this gives
A, vo E Vza.

(Approx) We consider only the case ¢ € (INQ) ~ {0,1}. Assume 2 satisfy the
formulas v — (CPZ > ¢ — 2)(a | B), n > % and vy — (CPZ < ¢+ L)(a | B), n >
ﬁ. We prove A =y — (CPZF~ q)(a | B), i.e., A,v v — (CPF = q)(a|p), for
every assignment v. Choose and fix an assignment vy, and suppose that 2, vo E .
Then, by the above assumption, we have A, vy = (CPZ > ¢ — %)(a | 8), for each
n> %, and 2L vy = (CPZ < ¢+ %)(a | ), for each n > ﬁ. It is not possible that
un[ﬁ]g[:,vo =0, because A, vy = (CPZF< g+ 2)(a| B) and ¢+ + < 1, for n > 1%(1
(see Definition 3.3). Hence, u,[8]Z > 0. For abbreviation, let X = [a A ﬁ]%vo

and Y = [ﬁ]%,vo' Then, Z”(&(; > qgivg, for each n > é, and % <q+ %, for each
n> ﬁ. We thus get an’(; € nEQH [max {O,qf%},min {1,q+%H = monad(q),
ie., Z”(&(; ~ ¢, and so 2, vg = (CPZ =~ q)(a | B). O
Theorem 3.2 (Deduction theorem). If T is a set of formulas and T, F 9, then
I'p—1.

Proof. We use the transfinite induction on the length of the proof of ¢ from T, .
The cases when v is an axiom, or ¢ coincides with v, or ¢ € I' are standard.

Suppose that ¢ = Vz0 is derived from T', by (Gen) with premise §. This
means that x is not free in T, ¢.

Tt 0

'typ—06 [Induction hypothesis (TH)]
I'FVz(p — 0) [(Gen); z is not free in T']
I'F V(e — 0) = (p — Va0) [ is not free in ]
I'F (¢ — Vzb) [Modus Ponens]

Suppose that ¢y = v — (CPZ =~ ¢)(« | f) is derived from T', ¢ by (Approx)
with premises y — (CPZ > ¢ — 3)(a | B), n > ¢, v = (CPZ < g+ 3)(a | B),
1

n>=-—.
1L,.T,obv—= (CPZ>q— 1)(a|p), foreachn}%,
2,. Doy = (CPE< g+ ) (| B), foreachn}l%q,
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3. T = (y—= (CPZ>q— 2)(a]|B)), foreachn> %, [TH]
4,.TFo — (v = (CPZ L q+%)(a|6)), for eachn}ﬁ, [TH]
5,. TF(pAv) = (CPE>q—1)(a]B), foreachn}%,
6,. TF(pAv) = (CPE< g+ 1) (a] B), foreachn}l%q,
7.TH(@AY) = (CPE=q)(a]B) [((Approx)]
8Ty —= (y—= (CPZ=q)(a|p))
Other cases are similar. O

The next lemma gives some auxiliary statements which are needed for the proof

of the completeness theorem.

Lemma 3.2. Let o, € LY. Then:

(1) F(CPZ = r)(a| B) = (CPZ = 12)(a | B),

(2) F(CPZ<r)(a|B) — (CP$<T2)( | B),

(3) F(CPZ =r)(a|B) = ~(CPZ=r2)(a | B),
(4) F(CPZ=r)(a|B) = ~(CPZ = r2)(a | B),
(5) F(CPZ=ri)(a|B) = (CPx<r2)(a|ﬁ),
(6) F(CPT=g)(a]f) = (CPT~q)(a|B), q
(7) F(CPZ~q)(a|B) = ~(CPZ =~ q2) (a|6)
8) FPZ=0)8—=(CPZLr)(a]|fB), r<1

9) F(PZ< 1)

1T > 719
ry <7ro
7"17&7’2
ry <7re
1 > T9
E]I@
q1,q2 € lg, 1 # ¢

Proof. As an illustration, we prove the statement (6). For shortness, we omit details

related to the obvious arguments.

1 (CPF=q)(a | B) & (CPF > g)(a | ) A (CPE < g)(a | f)
2,. (CPZ=q)(a|B) = (CPZ>q— 1) (a|p), n= % [(1) of this lemmal]
3n. (CPZ<Lq)(a|B) = (CPZ< g+ L) (a|B), n= ﬁ [(2) of this lemmal]
4 (CPT=g)(a| B) = (CPZ>q—1L)a|B), n>1
5. (CPT=g)(a| §) > (CPF< g+ L)(a|f), n> i
6. (CPZ = g)(a | B) > (CPZ~ g)(a | §)

[from 4,, n>==and b,, n> ﬁ by (Approx)} O

Note that, by restricting 8 to T, we obtain the analogous statements for uncon-
ditional probabilities (except the statements 8 and 9, of course).

Example 3.7. From ‘Most birds fly’
(CPz > 0.5)(fly(z
and ‘Penguins do not fly’

Vz(penguin(z) — —fly(x

we can deduce ‘Most birds are not penguins’

))7

) | bird(z))

(CPz > 0.5)(—penguin(z) | bird(x)).

In order to prove the completeness theorem for LY

UJUJ’

we follow the Henkin style

procedure and the methodology used in our previous works [92].



First-order probabilistic logics and their applications 23

Theorem 3.3 (Completness theorem). If T is a consistent set of formulas, then
T has a model.

Proof. First, we extend L to a new language L U C' by adding a denumerable set
of new constant symbols C = {¢,, | n =0,1,...}. Let (o, : n=10,1,2,...) be an
enumeration of all (L U C)F;I-formulas.

Next, we extend T to a maximal consistent set of formulas T* which has wit-
nesses, i.e., if Jza € T* then for some constant symbol ¢ € C, a(z := ¢) € T*.
This will be done by defining a sequence (T, : n = 0,1,...) of sets of formulas
such that:

e Tp CTh CTyC -
e T, is consistent for each n;
e only finitely many new constants from C occur in T, for each n.

The sequence T,,, n =0,1,..., is defined as follows:
Let TO =T.
For every n > 0,

(1) If v, is & sentence, and
(a) If T, U {aw,} is consistent, we have:
(i) if oy, is of the form Jza(z), then T4 = T, U {an, a(z := ¢)}, for
some new constant symbol ¢ € C not occurring in any formula of
T, U{ay,}, say the first one under the given well-ordering of all the
new constant symbols,
(ii) otherwise, Tpy1 =T U{an},
(b) otherwise, if T;, U {cv, } is inconsistent, we have:
(i) if ay, is of the form v — (CPZ =~ ¢)(a | B), then T),41 = T,, U
{—an,y = =(CPZ > q — %)(a | B)} or Thy1 = T U {~an,y —
—~(CP# < q+1)(cr | B)}, where k is chosen so that 15,11 is consistent
(we will prove that this is possible below),
(i) otherwise, Tpy1 = T, U {—-a}
(2) otherwise, if v, is an open formula, then T),41 = T, U{(PZ = ), }, where
Z is the tuple of all free variables of «,, and r is chosen to be an element of
I such that T},41 is consistent (we will prove that this is possible below),

Note that at each stage we extend the previous set of formulas by finitely many
formulas.

Let T* = U2y Tn-

Claim 1. T, is consistent for each n.

Proof of Claim 1. We prove this by considering the steps of the previous con-
struction.

Ty is consistent by the assumption of the theorem.

The sets obtained by the steps 1(a)(ii) and 1(b)(ii) are obviously consistent. The
step 1(a)(i) produces a consistent set by ‘the generalization on constants’.

Let us consider the step 1(b)(i).
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Suppose that a,, is of the form v — (CP Z = q)(a(Z) | (%)), and that T,, U{a,}
is inconsistent. Also, let all the sets
1

T, U { a7 = ~(CPF > g — 2 ) (al@) | B(@) |

for every positive integer k such that g — % > 0, and

T, U {—un,’y% ﬂ(CPfg g+ %)(a(f) | 5(5))},

for every positive integer k such that ¢+ % < 1, be inconsistent. Then the following
contradicts consistency of Tj,:

Ty~ y = ~(CPZ > g — %)(a(f) | B(Z)) F L, forevery k,q— % >0,
T —an,y = ~(CPZ < g+ 1)(a(F) | (@) - L, for every kg + 1 <1,
Ty, —an by = (CPZ > g — $)(a(T) | B(Z)), for every k,q— + >0,

Ty, —an by — (CPZ < g+ %)(O‘(f) | B(%)), for every k,q + % <1,
T,,—a, by — (CPZ = q)(a(Z) | 8(Z)) by Rule (Approx).

Finally, we consider the step 2. Suppose that for every r € I, T,, U {(PZ =
r)an(Z)} is inconsistent. Then the following contradicts consistency of Ty,
Ty, (PZ = r)ay, (%) F L, for every r € I, by the hypothesis,

T, F T —= =(P¥=r)a,(Z), for every r € I,
T,+T — L, by Rule (Ran),
T, L.

Thus, the proof of the Claim 1 is completed.

Claim 2. T* is deductively closed.

Proof of Claim 2.

Let ¢ be an LY ! -formula. It can be proved by induction on the length of the
inference that if T - ¢, then ¢ € T*. Note that if T}, F ¢ and ¢ = a,,, it must be
» € T* because Tryax{m,n+1} 1S consistent.

Suppose that the sequence @1, @2, ..., @ forms the proof of ¢ from T*.

If the sequence is finite, there must be a set T, such that T}, - ¢, and ¢ € T*.
Thus, suppose that the sequence is countable infinite. We can show that for every ¢,
if o, is obtained by an application of an inference rule, and all the premises belong
to T, then it must be ¢; € T*.

If the rule is a finitary one, then we conclude ¢; € T* by reasoning as above.
Next we consider infinitary rules. Let ¢; = v — (CPZ = ¢)(a(Z) | B(Z)) be
obtained by Rule (Approx) from the set of premises ¢, of the form v — (CPZ >
g—1/n)(a(Z) | (&), n 21, ¢g—1/n > 0, and ¢;, of the form v — (CPZ <
q+1/n)(a(Z) | B(Z)),n =1, ¢+1/n < 1. Suppose that ¢; ¢ T*. By the step 1(b)(i)
of the construction, there are some k and m such that y — =(CP Z > ¢—1/k)(a(Z) |
B(%)) or v = ~(CPZ < q + 1/k)(a(F) | B(Z)) belongs to T),. Let us suppose the
former case, while the latter one follows similarly. It means that there is some ¢ such
that 7 — (CP 7 > g — 1/k)((@) | B(@)),y — ~(CPF > g 1/k)(a(7) | B(F)) € Tr.
Then, Ty v — L, and Ty v — (CP & = q)(a(Z) | B(Z)). It follows that ¢, € T™*,
a contradiction. The case concerning formulas obtained by Rule (Ran) can be
proved in the same way.
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Claim 3. T* is maximal consistent.

Proof of Claim 3. Let us first observe that T does not contain all formulas.
For a formula ¢, either ¢ € T* or ~¢p € T, and the set T does not contain both.
Thus, T* is consistent. The construction guarantees that it is maximal.

Claim 4. T* has the following properties:

1) T* contains all theorems;

2) If p € T*, then —p & T*;

3) pANYeT*iff peT* and ¢ € T

4) pvy eT* it pe T  or ¢ € T

5) If ¢, 0 — 1p € T, then ¢ € T,

6) If Jza(z) € T*, then there is a constant symbol ¢ such that a(z :=¢) € T*;

7) There exists exactly one r € I, such that (PZ = r)a(Z) € T*;

8) There exists exactly one r € I, such that (CPZ = r)(a(Z) | B(¥)) € T™;

9) If (CPZ > r)(a(&) | B(Z)) € T*, there is 7 € I such that ' > r and

(CPZ =r')(a(?) | B(7)) € T

(10) If (CPZ < r)(a(@) | B(X)) € T™*, there is ' € I such that ' < r and
(CPZ =r')(a(?) | B(7)) € T

(11) If (CPZ = q)(a(¥) | (&) € T*, and ¢ € (INQ) \ {q}, then (CPZ =
)a@) | B@) £ T".

We omit the proof of this claim.

Using T*, we define a model for T.

The construction of the classical model 2 from the constants ¢ € C' by taking

(
(
(
(
(
(
(
(
(

the equivalence classes [c] is standard. If @ = (c1,...,¢,) is a tuple of constant
symbols, we write [c] for the tuple ([¢1],...,[cn]). For every formula (1, ..., z,),
let

(@) ={[d e a"[p(@ = eT*}.

Let F,, be the collection of subsets of A™ of the form (p(Z)), for some formula (Z)
with n free variables. It is easy to prove that each F,, is a field of subsets of A™ and
that all the clauses of Definition 3.2 are fulfilled. Now, we define the probabilities
ot Fp — I
pn((p(Z))) = r iff (PZ =r)p(¥) € T".

For each n, p, is well-defined. Suppose that (o(Z)) = ((Z)). Then, for every

tuple ¢ € C™,
p@:=0) eT"iff Y(¥:=¢)eT".

This equivalence implies (VZ)(p <> ¢) € T™*. If not, then (3%)—(p <> ¢) € T*, and
there would be a tuple ¢ € C™ such that (¢(¢) A ~(€)) V (mp(€) ANY(C)) € T*, ie.,
(p(&)AY(C)) € T™* or (—p(¢)A(€)) € T*, which contradicts the above equivalence.
Thus, we have (PZ = 1)(¢ < ¢) € T*. Axiom (P1) and the definition of u, give

the equality pn ((¢())) = pn ((¢(Z))).
For every n, u, is a finitely additive probability measure.

Let 2 = (A, Fo, ) new-
Claim 5. 2 is an Lzﬂ—model.
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It is clear from the construction of A that s, is defined on each singleton
set of A", since the formula 1 = ¢; A -+ A x, = ¢, defines the singleton set
{([ea], - [en])}-

Claim 6. For every formula (%) and every assignment v : Var — A, v(y;) = [ci],
we have

A v iff o(if:=¢) € T*.

We consider only the case when ¢ begins with a probability quantifier.

Let ¢ be a formula of the form (CP Z > r)(«(Z,¥) | B(Z,)).

Suppose that A, v = (CPZ > r)(a(Z, ) | BZ, 7). If u.((B(Z,&))) = 0, then
(PZ = 0)8(Z,¢) € T*, and by Axiom (CP6) and Lemma 2.1 ( Pa'c’ 2 r)(a(f,g) |
B(7,8)) € T*. So, let in((a(7,3) A B(F.3))) = 5, i ((B(F,)) = ¢, ¢ > 0, and by
Claim 4, s/t > r. By Axiom (CP7) it must be (CP:L' = s/t)(a(Z, _')
and again by the monotonicity of the conditional probability, (CP
8(7,8) € T*.

For the other direction, suppose that (CPZ > r)(a(Z,¢) | B(Z,¢)) € T*. From
Claim 4 there are unique s,t € I such that (PZ = s)(a(Z, ) A B(Z,¢)) € T* and
(PZ = t)B(Z,0) € T, ie., un((a(@,0) A B(Z,0))) = s and pn((B(Z,0))) = t. If
t =0, then A, v |= (CPm > r)(a(f 9) | B(Z, %)) by Definition 4. If t # 0, by Axiom
(CPT), (CPa’c’ =s/t)(a (x E’) | B(Z,¢)) € T*. Tt follows from Claim 4 that s/t > r,
(

The case ¢ = (CP:E' < 7")(04( LY
Finally, let ¢ = (CP Z = ¢)(a(Z, ¥)

)

)-

B(Z, 7)) follows similarly.
| B(Z,7))-

Suppose that 2L, v = (CP Z ~ ¢)(a(Z, 7) | B

Z,%)). Then, for all positive integer

n,msuchthat0<q71/n_<q<q+1/m< , ehave%lv|:(CP:E’>
g—1/n)(a(Z,y) | B(Z,7)) and A, v = (CPZ < q+1/m)(a(Z, ) | B(Z,7)). It follows
that (CPZ > qf 1/”)( (@,9) | B(Z,7)), (CPZ < ¢+ 1/m)(a(,9) | B(Z, 7)) € T

If (CPZ = q)(a(Z,0) | B(Z,C)) & T*, the step 2(b)(i) of the construction of the set
T* guarantees that for some positive integer k, either ~(CP & > ¢ — 1/k)(a(Z, €) |
B(&,¢)) € T* or =(CPZ < q+ 1/k)(a(Z,?) (ac ¢)) € T* which contradicts
consistency of T*. Thus, (CP Z = q)(«(Z,¢) | B(&,¢)) € T*.

For the other direction, suppose that (CP Z ~ ¢)(«(Z,¢) | 5(Z,¢)) € T*. From
Claim 4 there are unique ¢ € I such that (PZ = t)B(z,¢) € T*. If t = 0, by
Axiom (CP6), it must be ¢ = 1, and then 2,v = (CP Z ~ 1)(a(Z, %) | B(Z, %))
t > 0, by Axioms (CP4) and (CP5) (CPZ>=q+1/m)(a,0) | B(Jc @), (CP &
q—1/n)(a(@,€) | B(#,E) € T for all positive integers n,m such that 0 < ¢

(CPzZ
),

\\/\//\r‘h

1/n < ¢ < g+ 1/m < 1. Then reasoning as above, we have Ao =
q = 1/n)(a(Z,y) | B(F, 7)) and A,v = (CPT < g+ 1/m)(a(Z,7) | B(Z,
means that 2, v = (CPZ = q)(a(Z,7) | B(Z, ).

=

whic

O

If we extend the list of axioms and rules of LF:! with the following axiom

(Prod) (PT = r)a(Z) A (PY = s)B(§) = (PTG = rs)(a(@) A B(T)),

provided all variables in &, ¥ are distinct, we are able to prove the completeness
theorem for the class of product LE;!-models.



First-order probabilistic logics and their applications 27

Definition 3.6. A product model is an Lzﬂ—model A = (A, Fon, thn)nen such that
the sequence of probabilities (u, : n = 1,2,...) is a sequence of product measures:
for any two sets X C A™ and Y C A" (m,n € N), and their Cartesian product
XxY CA™ if X € Fyand Y € Fp, then X xY € Fpipn and piyin (X xY) =
tm (X) - pin (V).

Theorem 3.4. If T U {Prod} is consistent, then T has a product LE:T-model.

Proof. The proof of the theorem is almost the same as the proof of Theorem 3.3.
Of course, the definition of the corresponding sequence of theories (T, : n =
0,1,...) begins with Ty = T'U {Prod}. The only new fact that should be proven
in this case is that the sequence of probabilities of the canonical LF;!-model is
a sequence of product measures. But this is evident since every instance of the
axiom (Prod) is true in the canonical model. Let p,({¢(x1,...,2,))) = r and
i ((Y(y1,-..,ym))) = s, provided all variables in #, ¢ are distinct. It is easy to
see that the set (©(Z) A (7)) represents the Cartesian product (¢(z1,...,2s)) X
(WY1, .-, ym)). From (PZ =r)p(Z) € T*, (Py = s)¥(¥) € T*, using the the axiom
(Prod), we have (PZy = r - s)(o(Z) AN(Y)) € T*. O

Example 3.8. Note that even if we consider the axiomatic system with the axiom
(Prod), no two of the sentences

(

(ny > 1/4)3(93, Y),

are equivalent. These facts can be checked by considering structures with three
elements, each singleton having the measure 1/3.

4. Decidable fragments of LF:!

Since first-order classical logic is undecidable, the same holds for the logic LE;!
If we want our logic to be applicable, a compromise has to be made: we should find
a fragment which is decidable but still has significant expressive power. Numerous
fragments of L, were proved decidable (for validity or satisfiability). One of the
best general reference sources here is [11]. Among these fragments we consider some
of the most traditional ones, i.e. collections of prenex formulas defined by restric-
tions on the quantifiers prefix and language. A prenex formula is a formula with
all its quantifiers up front. Recall that there is a simple algorithm for transforming
an arbitrary first-order formula to an equivalent one in the prenex form.

In the search for decidable fragments of LF:!, the idea was to forbid the nesting
of probability quantifiers and try to find a decidable fragment of classical first-
order logic to which a technique for proving decidability, developed in [117], could
be applied. It turned out that the key were the closure conditions from Lemma
4.1 below, i.e., closure under negation, conjunction and existential quantification.
Based on this we defined a subfragment of the fragment defined by Gdédel, Kalmar,
and Schiitte, for which decidability can be proved. Godel, Kalmér, and Schiitte
discovered a decision procedure for the satisfiability of sentences from the class
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[3*V23*, all] which contains the sentences of the form 3z1 ... 3z Vy1Vye321 . .. I2p
where ¢ is quantifier free, contains any number of relation symbols of any arity and
no function symbols of arity > 1, and does not contain equality symbol.

Since the equality may be important for some applications, we also define a
subfragment of the fragment introduced by Shelah, which allows equality. The
proof of decidability is practically the same for both fragments.

Note that both fragments may include individual constants.

Theorem 4.1 (Godel 1932, Kalmér 1933, Schiitte 1934). The satisfiability and the
finite satisfiability problems are decidable for the class [3*V23*, all].

We choose a class G, of first-order formulas (in a language L) in order to find a
class of LY I-sentences for which the satisfiability and validity problems are decid-
able.

Definition 4.1. Let L be a first-order language. By Gy, we denote the class of all
first-order formulas whose prenex form has the quantifier prefix from the set

{3,v,33,3v, v3, vV, 33v, 3vv, ¥33, vv3, 33vv, w33}

Let us fix two variables x and y. Note that we can always transform a formula
from Gy, in the prenex form so that variables x and y go only with universal quan-
tifiers, and the other variables with existential or no quantifiers. So, we suppose
that only formulas in the prenex form containing the quantifiers {Vx,Vy} U {Jv :
v € Var \ {z,y}} belong to Gr..

Lemma 4.1. 1) The class Gy, is closed under negation.
2) The existential closure of a finite conjunction of formulas from Gy, belongs to
the class [3*V23*, all].

Proof. 1) The key idea is to rename variables in a suitable way, as in the following
examples:
—JuIvVaVyp = VeVyTuv-plu = x,v 1= y, 2 := u,y := v,
—VaVyJuIvp = JuFVaVy—plu := x,v =y, := u,y := v).

2) For shortness, we give only an example. Let ¢1, @2, p3 have free variables not
appearing in the scope of any given quantifier.

Juq I VaVypr A VaVyTusFvaps A FugIusVaVyps =
Fuq Foy FuzgFvsVaVyTuaFua (o1 A pa A ps) O

Definition 4.2. Let G¥™" be the class of all LZ;-sentences which are boolean com-
binations of probabilistic formulas of the form (CP Zor)(o(Z) | (X)), ¢(Z), ¥ (Z) €
gr.

Theorem 4.2. Let L be a first-order language without function symbols and equal-
ity sign. The satisfiability problem for G¥™°" is decidable.
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Proof. Let § be a sentence from G5™°". According to Axiom (P6), without loss of
generality, we assume that all probabilistic quantifiers appearing in 8 bound the
same variables. We consider the simplest case when probabilistic quantifiers bound
one variable. The same procedure can be performed when probabilistic quantifiers
in 8 bound a sequence of variables. In that case we obtain the measure u, where
n is the length of the sequence of variables.

Using propositional reasoning it is easy to show that (3 is equivalent to a formula:
DNF(8) = \/I_; AiZy £(CP x 045 i) (i (x) | i (x)), where @y;(x), i;(x) € Gr,
and the prefix + denotes presence (—) or absence (4) of = .

Obviously, to prove decidability of our class of probabilistic sentences, it is
enough to show that satisfiability of probabilistic formulas of the form

k
J\ £(CP 2o 1) (i) | i), 05 € {<, =, ~}

i=1

is decidable. Moreover, an easy verification (see [117]) shows that it is enough to
prove decidability of satisfiability of formulas of the form

~.

8= [i (CP zo;mi)(pi(x) | i(z)) APz > O)wi(x)}, o €{<, =, =}

1

2

Let Cg = {p1(x),...,or(x),Y1(x),...,¥Yr(x)}. Forevery £ :{1,...,2k} — {0,1},
let

k k
ar(we) = \ @il@) @ AN Gilae) D,
i=1 i=1
where ¢, £ = 1,...,22 are variables variables not appearing in formulas from Cs,

and ¢° denotes —p, and ¢! denotes .
For every nonempty subset I = {i1,...,i,} C {1,2,...,22%} by the previous
lemma,

Br = Fwiy -z, (i, (i) A A, (T4,))

belongs to the class [EI*VQE*, all]. Thus, it is decidable if 55 is satisfiable or not.

Let B be the set of all formulas 8; having models. If I’ C I, then 8; — B1-. Thus,
we can suppose that B contains only those 3; indexed by subsets of {1,...,2%"}
which are as maximal as possible.

Next, we reduce the satisfiability problem to linear programming problem. More
precisely, for every 85 € B, we solve a system S; with coefficients in Q(¢) and
unknowns y1, . .., yn, where h = 22*. Note that the same approach is used to prove
decidability in [117].

For every vy(x) € Cg, Iy is the set of all £ € {1,2,.. .,2%k} such that the
exponent of y(z) in ap(z) is 1. We denote Zlelw(z) ye briefly by X(y(x)), and

E(y(x) A d(x))

St by S, o))
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Fix Br. Sy is the following system:

Iy 4+ yn =1,

ye =0, Lel,

ye=0, £&1I,

E(Wi(x)) >0, i=1,....k,

S(p(@),v(x)) =7, if (CP a2 7r)(p(x) | ¥(z)) is a conjunct of B,
Y(p(x),¥(x)) <7, if (-CP w = r)(e(x) | ¥(z)) isa conjunct of 5,
S(p(x),¥(x)) <7, if (CP w < r)(p(x) | ¥(x)) isa conjunct of G,
S(p(x),¥(x)) > r, if 2(CP w < r)(e(x) | ¥(x)) is a conjunct of 3,
S(p(x),¥(x)) =7, if (CP w=7r)(p(x)|(x)) isa conjunct of §,
S(p(x),v(x)) % r, if 2(CP w=r)(p(z)|¥(x)) isa conjunct of 5.

Systems of this kind have been considered in detail in [117]. The decision pro-
cedure on whether such a system is solvable in Q(e) is described in Section 2, and
here we omit it.

It remains to prove that 3 is satisfiable iff there is I C {1,2,...,2%} such that
Br € B and S; has a solution. Note that if B = 0, then it is senseless to look for a
model satisfying 3.

If 5; € B and Sy has a solution, then we define a model (2, p1) such that 2 = 3y,
w1 is defined according to the solution of S;. It is enough to choose an arbitrary
element a,; such that 2 = aylas], and set pi({ac}) = ye, and pi({a}) = 0, for
a # ap and A E ayfa]. Obviously, (U, u1) = B.

For the other direction, suppose that (2, u) = 8. For every £ =1,2,...,2% let

Ar={a € A| U= alal}.

Let I ={¢ : Ay # 0}. Then 2 = 3;. Is is easy to verify that S; has a solution:
ye=p1(Ap), €T and yo=0,¢ & I. O

As we have mentioned, it is possible to find other decidable fragment of our logic.
We define here one, based on a theorem of Shelah, which allows less quantifiers but
admits one unary function symbol and equality, which might make it more suitable
for some applications.

Theorem 4.3 (Shelah 1977). The satisfiability and the finite satisfiability problems
are decidable for the classes [3*VI*, all, (1)]_, i.e., for the class of formulas whose

prenex form has the quantifier prefiz of the form 3*V3* and whose language con-
tains equality sign, arbitrary relation and constant symbols, and at most one unary
function symbol.

Theorem 4.4. Let L be a language with at most one unary function symbol and
no function symbols of arity > 2 (there are no restrictions on relation and constant
symbols). Let Sy, denote the class of all L.,-formulas possibly with equality whose
prenex form has the quantifier prefiz from the set {3,V,3V,V3}, and let SErOb denote



First-order probabilistic logics and their applications 31

the class of all LE;I-sentences which are boolean combinations of probabilistic for-
mulas of the form (CP Zor)(o(Z) | ¥(Z)), where p(Z),y(Z) € Sp,. The satisfiability
problem for SEmb 1s decidable.

The proof is completely analogous to the proof of Theorem 4.2, starting with
the analogue of Lemma 4.1, so we omit it.

5. Applications

The question might be raised whether the fragments gg“’b and SEmb are too
weak for applications. We shall argue here that they are rich enough for most prac-
tical purposes. First, we may claim that iterated probabilities (‘the probability of
probability . ..’) rarely occur in practical considerations, so one probabilistic quan-
tifier should suffice in most situations. On the other hand, the famous ‘empirical
theorem’ of logic that three quantifiers are the limit of human understanding is
only partly a joke. It is only in the most difficult mathematical theorems that we
may see three quantifiers (e.g., Vz3yVz...). While many mathematical statements
really involve many quantifiers, they are always rephrased by replacing existential
quantifiers with new constants and blocks Vx3y with predefined functions, so that
the final statement has two or at most three (blocks of same) quantifiers.

In this section we give a few applications of our decidable fragments to problems
of nonmonotonic reasoning.

In [117] defaults of the form aj~ 8, where a and § are propositional formulas,
are syntactically represented in a propositional probabilistic framework.

It is disputable whether the propositional language properly captures the idea
behind defaults.

For instance, the classical example ‘by default birds fly’ is usually represented
by bird|~ fly, but a better reading might be ‘if z is a bird, then - by default -
x flies’ which can be written as bird(x)|~ flies(x), i.e., it is a part of monadic
first-order logic.

Proper formal analysis should be: Va(bird(x) — flies(z)), but here we may
note two facts:

(1) the entailment — is not the usual material implication,
(2) the quantifier Yz is not the usual universal quantifier (it is rather a kind of
‘almost all’ quantifier).

The first fact has been extensively analyzed and it is generally accepted that the
best description of this entailment is System P introduced by Kraus, Lehmann and
Magidor in [54,62]. The second fact has been neglected and we believe that this is
the main reason why there is a number of problems with defaults as defined by P.
For a list of 6 such problems see [7].

In [47], we proposed to represent the default bird(z)l~ flies(z) by a formula
of our system: (CPz =~ 1)(flies(x) | bird(z)), where (CPz = 1) plays the role
of ‘almost all’ quantifier, and conditional probability replaces the material impli-
cation. This constitutes one of many probabilistic approaches to nonmonotonic
(and, in particular, default) reasoning. In the context of our decidable fragments,
it is possible to apply the same analysis also to more general first-order formulas.
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We may introduce what might be called binary (or n-ary) defaults, namely the
statements of the type a(x,y,...)l b(x,y,...). For example, consider the following
statement ‘Students generally respect their teachers’. This may be formalized as:
(CPxy =~ 1)(Respect(r,y) | Student(y) A Teacher(x,y)).

Let us denote (CPZ = 1)(5 | «) by a ~»z 8 (we will omit the subscript Z when
it is clear from the context). In this new notation, the previous statement would
read Student(y) A Teacher(z,y) ~+,,, Respect(z,y).

Example 5.1. If 2 and A are LPLstructures from Example 3.2, we have:
AP B(2,y) ~ay U@)VU(y) and A = B(a,y) ~ay Ulz) VU(y),

where B(z,y) ~gy U(x) V U(y) can be read ‘almost all pairs (z,y) satisfying
B(z,y), also satisfy U(x) V U(y)’. But, note that formulas

(Py = 1)(B(x,) ~a U@) V U(y)) and Ya(B(z,y) ~, U(z) V U(y))
hold in both models 2[ and ﬁl.

Example 5.2. For an example of a ternary default we may use street basketball:
‘Three people playing on the same street basket team are usually friends’. This
might be formalized as

(CP zyz =~ 1)(Friends(z,y) A Friends(y, z) A Friends(z, z) | Team(x, y, 2)),
or Team(z,y, z) ~>4,y, . Friends(x,y) A Friends(y, z) A Friends(z, ).
It turns out that all the rules of System P are satisfied for this translation.

Theorem 5.1. (We assume that all the free variables of the formulas o, 8,7 are
contained in the fized tuple Z.)

(1) a =7, abk B~y [Right Weakening]
(2) FB~B [Reflexivity]
3) Bep B~akf ~a [Left Logical Equivalence]
(4) B a,ahNB =k By [Cut]
(5) B~a,B~yFBAa~y [Cautions Monotonicity]

Proof. The statements (1)—(3) are obvious.

We use the completeness theorem to get properties (4) and (5). Let 2 be an LY
model, and v a valuation. Set A = [a]%v, B = [ﬁ]%ﬂ, C = [7]%v For shortness
we omit the subscript in the notation of the measure. The claims (4) and (5) are
obviously true if ;(B) = 0. So, suppose that u(B) =b > 0.

(4) Assume that 2 = (CPZ ~ 1)(a(Z) | B(Z)), (CP & ~ 1)(v(Z) | o) A B(T)).
From p(A | B) = 1, we have u(A | B) = 1 — €, where ¢’ is an infinitesimal. Thus,
(AN B) = b—¢€'b. Reasoning in the same manner, we obtain that u(ANBNC) =
b—e'b—e"(b—¢€'b), for some infinitesimal . Now, by the monotonicity of the
probability, we have

b— (e —e"+eeb=pwANBNC) < u(BNC) < u(B) =b,
Thus, u(B N C) ~ b, and hence p(C | B) =~ 1.
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(5) Assume that A = (CPZ ~ 1)(a(Z) | B(Z)), (CPZ ~ 1)(y(%) | B(Z)). Note
that u(AN B) # 0 since u(A | B) ~ 1 and p(B) > 0. From pu(A | B) ~ 1, as in
the proof of the previous statement, we have u(A N B) = b — ¢’'b, where ¢’ is an
infinitesimal, and consequently p(A° N B) = ¢’b. Also, there is an infinitesimal &”
such that u(BNC) =b—¢e"b. It is easy to see that b—e’b—&”’b < p(ANBNC) <
b — €’b. Therefore,

e”b . wWANBNC)

]-7 S
b—e'b (AN B)

<1 (]

One of the problems with System P mentioned above is the so called “inheritance
blocking”. If the elements of some set A have a certain property R, we expect that
the elements of a subset ANC' will “inherit” the property R. However, this would be
in conflict with the essence of nonmonotonicity. Namely, if we were allowed to infer
aAy b B from a p B, for arbitrary «, the system would be monotonous. Therefore,
as expected, System P does not allow such derivations. Still, we would like to be
able to make such derivations in some special cases, under some restrictions, but
such restrictions cannot be formulated in a propositional language. Our first-order
language offers un opportunity to formulate some possible solutions.

Example 5.3. Let us consider the set A consisting of the following two defaults:
“the Swedes are blond” and “the Swedes are tall”, i.e., Swede(z) ~>, blond(z)
and Swede(z) ~», tall(z). Because of the inheritance blocking problem, in P it
is not possible to conclude that Swedes who are not tall are blond (Swede(x) A
—tall(x) ~», blond(z)). In this particular case, it may turn out that the short
Swedes are exactly the ones which are not blond. A solution might be to add
a clause which excludes such possibility, for example: (CPz =~ 0)(—blond(z) |
Swede(z) A —tall(x)).

Example 5.4. We can express in our language things like: ‘Married people with
children do not get divorced’ (a default 100 years ago). We may formalize this as

(CPxy =~ 1)(—Devorced(x,y) | Married(x, y) A 32Child(x,y, z))

(or Married(z,y) A 32Child(x,y, 2) ~>4,, —Devorced(z,y)).
More complicated example would be: ‘Generally, parents hate drug dealers’.
This default may be formalized as

(CP z = 1)(Vy(DrugDealer(y) — Hate(x,y)) | JyParent(x,y))

or
(CP 2y =~ 1)(DrugDealer(y) — Hate(x,y) | IzParent(z, 2)).

Note the slight difference in meaning of the last two formulas. While the first
says that generally, a parent hates every drug dealer, the second is slightly weaker,
saying that that if = is a parent and y is a drug dealer, generally,  will hate vy,
i.e., while the first allows exceptions only among parents, the second allows also
exceptions among drug dealers.

Example 5.5. Let L = {M, R, P} consists of three relation symbols, ar(M) =
ar(R) = 2 and ar(P) = 1. The intended meanings of these symbols might be:
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M (z,y) — ‘x is married to y’, R(z,y) — ‘@ is a relative of y’, and T'(x) — ‘z is a
member of a tribe’. Let us consider the set A of the universal closures of the fol-
lowing formulas: M (z,y) — M(y,x), R(xz,y) — R(y,z), T(x) A M (z,y) — T(y),
T'(z) A R(z,y) = T(y), "T(z) AN M(z,y) = ~T(y), "T(z) A R(z,y) = ~T(y),
BUM(@,5) s ()(M(,5) — ~R(,p), T(x) ~e Gu)M(@1), T()
(Fy)(M(z,y) N R(z,y)). The classical part of the conjunction is obviously sat-
isfiable. We give a model for this part and use it in the further considerations. The
model 2 is defined over the set A = {1,2,2,3,3,4,5,5,6,6}. Let

e -{@2).@2 3
(22),(2.2),(5,5),(5.5)}, P* = {4,5,5.6,6}
For shortness, let @(x) = (Vy)(M(z,y) — —R(x.y)), ¥(x) = (Jy)M(z,y),

0(x) = T(x). Note that ~¢(z) < (Jy)(M(z,y) A R(z,y)).
Now, the probabilistic part of A consists of the formulas:

(CP % 1)((x) | $(x)), (CP & ~ 1)((x) | 6(x)), (CPz = 1)(=p(x) | 0(x),
(Px > 0)¢(z), (Px > 0)0(x).

), (3,3),(3,3),(5,5),(5,5),(6,6), (6,6)}
5,

Since =p(x) — ¢(x), there are six ‘atoms’ that should be considered:

a(z) = =0(z) A~y (x) A p(z),
as(z) = =0(z) Ny (z ) ~p(x),
az(x) = —0(x) N () A p(a),
as(z) = 0(x) A~ (z) A p(a),
as(z) = 0(z) Ap(z) A —p(x),
ag(z) = 0(z) Ap(z) A ().
It is easy to see that 2 = (3x1) - (Jze) /\?=1 a;(z;) (¢ is the witness for a;(x;),
t=1,...,6). The corresponding system is:
Y >O7i:17"'567 y7:y8:O7
8
Dovi=1 yrtys+ys+ys >0, ya+ys+ys >0,
i=1
Y3 + Yo ~1 Ys + Yo ~1 Ys -

Yo+ ys+ys+ys  Yatys+ys  Ya+us+ue

The next step is the elimination of the sign ~, and then the Fourier-Motzkin pro-
cedure which finishes with the true condition. Thus, the probabilistic part of A is
satisfiable. Of course, using the results obtained during the solving of the system,
we can define a measure on A. For example, the structure (2, ) is a model for
A, with the measure defined by u({l}) = és + 322, u({2}) = u({2}) =

n(8)) = p({3) = & — fe— 1e u({a)) = €2 u((8}) = p({5)) = be — de2.
1({6}) = u({6}) = L&
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Example 5.6. Now we consider the set A containing the same classical formulas
as in the previous example and the following probabilistic formulas:
M(2,) ~ay ~R(z,y), and M(z,y) A T(x) AT(y) ~ay R(z,y).

The following six ‘atoms’ should be now considered:

ar(z,y) = ~(M(z,y) NT(x) NT(y)) A —~M(z,y) A =R(z,y),
az(z,y) = ~(M(z,y) NT(x) NT(y)) AN ~M(z,y) A R(z,y),
az(z,y) = ~(M(z,y) NT(2) NT(y)) A M(z,y) A =R(z,y),
ag(z,y) = ~(M(z,y) NT(x) NT(y)) AN M(z,y) A R(z,y),
as(z,y) = (M(z,y) NT(x) NT(y)) A M(z,y) A —R(z,y),

ag(z,y) = (M(z,y) AT (x) NT(y)) A M(z,y) A R(z,y).

If we perform the same procedure as in the previous example, we obtain the

desired measure ji5 on A2 by choosing one solution of the correspondlng system, for

example Yys = Yr = 0 Yo = 27 Ys = 4(1_5)a Ya = 4; Ys = 27 Y2 = 47 Y1 = %

Note that for each i, the value y; can be understood as the basic belief mass
given to ay, i.e., as an amount of belief that supports the fact that the actual pair
(c,d) ‘belongs’ to a;.

6. Some extensions of the logic LP:

Adding qualitative quantifiers is crucial for AI applications. The list of logical
symbols of LE;! can be extended with a range of new binary (qualitative) quantifiers.
Some of them are <z, and <z, with the intended meanings:

o Av <z fBiff pn(a)d,) < pa((Bla.,);
o AvEaLzpifl u,(an —\ﬁ]gw) < pn(fa A 6]5{,1;)7 etc.
The corresponding axiomatic system can be obtained by using the ideas from Sec-
tion 3. All new quantifiers can be described by infinitarly LY. formulas. For
example,
a<l;f & /\(P:E’: q)a — (PZ > q)p.
g€l
Having in mind this meta-equivalence, we add the following axiom schema:
a <z = (PT=qla— (PT>q)f)qel
and the rule:
= (PT=qgla— (PT>q)p), g€l
= a<zf
In a similar manner, we deal with the other quantifiers.

The axiomatic systems, obtained in this way, are sound with the class of LF;I-
models, and the proofs of the completeness theorems are analogous to the proof of
the theorem 3.3.

As it can be seen from the previous section, the quantifiers (CP- =~ 1) and
(CP- = 0) play a central role in modeling nonmonotonic reasoning. We can intro-
duce new quantifiers of finer meanings then (CP - & 0), and significantly increase
the expressive power of the logic LE;!. The idea is to add new quantifiers that will
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be able to express the order of an infinitesimal. We extend the logic LE;! with new
quantifiers (CP - & 0), k € N, whose meaning is given by the following clause:

AR

Mn([a]m,v _ [ﬁ]m,v)> 2 L.
:un([ﬁ];l,y)

Note that (CP - = 0) and (CP - =4 0) are the quantifiers (CP - % 0) and (CP - = 0),

respectively. It is not difficult to see that each (CP - &, 0), k > 2, can be introduced

by an infinitary formula:

(CPx ~4 0)(a | B) & \/(CPz =r")(a | B),

rel

A b= (CP T~ 0)(a | B) iff p1n([Bl5.,) > 0 and ord (

ie.,

=(CPz =, 0)(ar | B) & \(CPx #re¥)(a | B),

rel
since the set of infinitesimals whose order is at least k can be defined by:

{z eQe) | @r e Q(e)) x =re*}.

Having in mind this meta equivalence, we add the following axiom schema:
(CPZ=re")(a|B) = (CP =~ Z)(a | B), r el

and the rule:

v — (CPZ #ref)(a | B),r el
7= =(CP =y &) (| B)
We are now able to introduce new default relations between classical first-order
formulas. Namely, for each k& > 1 we have W§k «a and S wg?k « denoting
respectively

(CPZ = 0)(—a | B) and (CPZ =k)(—a | B).

It is easy to prove that the relations W§k and wgk for each n > 1, satisfy all
the rules of System P. Studying properties of these two relations shows that they
may be useful in characterizations of various types of weakened monotonicity that
are significant in nonmonotonic reasoning. We believe that more detailed research
in this direction will be very fruitful.

Example 6.1. Let us consider again the set A introduced in Example 5.3, con-
sisting of the following two defaults: Swede(x) ~», blond(z) and Swede(z) ~~,
tall(z). If we assume that the starting defaults are of different strength, we
can avoid the inheritance blocking and obtain the desired conclusion. For exam-
ple, from Swede(z) ~~;! tall(x) and Swede(z) ~»;2 blond(x), it follows that

T

Swede(z) A —tall(x) ~», blond(x).
Let us introduce one more binary quantifier <z that may be interesting in formal

treatment of Pearl’s k-calculus [94] with the meaning:

Av = o <z B iff ord(pa([a,,) < ord(ua ([8)5..,))-
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To facilitate the reading in what follows, we use the abbreviation (OZ = k)(«
for (CPz = 0)(a | B) A ~(CPz =k41 0)(a | B), and (OF = k)a for (OF
(a| T). The meta equivalence

a<zBe /\ Jao = (PZ =441 0)5)
keN

A)
k

)

gives the following axiom schema:
a<z0—= (0F=k)a— (P¥ =41 0)8), k€N
and the rule:
(k) from the premises v — ((OF = k)a — (P¥ =p41 0)8), k € N, infer
v = o<z 0.
It is not hard to prove that the axiomatic system extended in this way is sound and

complete with respect to the class of LE;l-models. The proofs are straightforward
modifications of the corresponding proofs for the logic LF;L.

7. Conclusions

In this paper we described some first order logics with probabilistic quantifiers,
provided a strongly complete axiomatization and proved the decidability of its two
fragments which are expressive enough to enable different practical applications.

There are a lot of papers that are closely related to the subject of this paper [3—
6,8,27,32,63,65,94,121,124]. General and detailed comparison of the corresponding
logical systems would be very interesting and useful, but it is left for a future work.

Acknowledgement. The work was partially supported by the Serbian Ministry
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