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1. Introduction

Results about families of finite subsets of integers show up naturally in many
fields of mathematics. From a structural point of view, they have been studied in
infinite combinatorics. Perhaps the most well-known result of this type is a result of
Ramsey that gives us a pigeonhole for families of the form [N]k := {s ⊆ N : #s = k}.
In a naive way, one would like to know how any such family F looks like. The first
thing to do is to clarify what we mean by “looks like”. As Ramsey result suggests,
more than the family F we will study its version in some infinite subset M of N.
There are two natural versions of F in M . The first one is the restriction F � M
of F to M , and it consists of all elements of F which are subsets of M . The second
is the trace F [M ] of F to M , whose elements are all intersections s∩M for s ∈ F .
The next to do is to fix the properties to study. There are two basic relations
between subsets of N, the inclusion relation ⊆ and the initial part relation ⊑.
Related to them, one studies when families are antichains with respect to ⊆ or to
⊑, called Sperner and thin, respectively, or when they are hereditary in both senses
(see the beginning of the next section for the definitions). Interestingly, the main
tool for this study is the Ramsey property of a family. This was first discovered
by Nash-Williams [Na], who made clear the relation between the Sperner and the
Ramsey properties, and introduced the central concept of a barrier. We expose
here this work and what we call the structural theorem for restrictions, together
with contribution of Pudlák and Rödl on uniform families.
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The next part is devoted to study when families are hereditary. It turns out
that small families (such as, for example the precompact families) always have
some hereditary trace. This is not the case for an arbitrary family, as it can be
easily seen by considering simple families of finite intervals of N. Nevertheless, in
our structural theorem on traces, we expose a trichotomy that in particular explains
when traces of a family are never hereditary. We present this as a consequence of
auxiliary results on families of finite sets of doubletons.

Although restrictions and traces of families give fundamental information of
them, they obviously do not fully characterize the families. In Subsection 3.2 we give
an example of a compact and hereditary family F where traces are hereditarily very
simple, as they are of the form [N ]63, but globally F is equivalent to the Schreier
family and, moreover, F has a particular density property which the family [N ]63

is far to have.
In the last part of the paper, we go one step further and we consider families

consisting on vectors of c0. This choice is not arbitrary, as hereditary properties on
this new families correspond to the well-know properties of weakly-null sequences
in Banach spaces. Among the results that we present there are Mazur’s Lemma,
Odell’s Schreier unconditionality result, and Rosenthal’s ℓ1-Theorem.

Finally, we want to mention that most of the work presented here comes from
several collaborations with Stevo Todorcevic listed in our reference list.

2. Families of finite subsets of N

By a family we mean a collection of finite subsets of N. We say that F is
hereditary when s ⊆ t ∈ F implies that s ∈ F . The family F is ⊑-hereditary
(hereditary for initial subsets) when s ⊑ t ∈ F implies that t ∈ F . On the opposite
direction, a family is called Sperner when there are no s  t both in F . The
family F is thin when there are no s @ t both in F .

Given J ⊆ I, let

F � J := {s ∈ F : s ⊆ J} = F ∩ P(J) and F [J ] := {s ∩ J : s ∈ F}.
F � J and F [J ] are in general different families. It is clear from definition that
F � J ⊆ F [J ]; but, in contrast to F � J , the traces F [J ] has tendency of being
hereditary. To see this, let F := [N]n, let J := 2N. Then F � J = [J ]n which is
Sperner, while F [J ] = [J ]6n is hereditary. Recall that the Classical Ramsey theo-
rem states that if we partition [N]n into finitely many colors then one of the colors
must contain some [N ]n. Generalizing this property, Nash-Williams introduced in
[Na] the following. A family F is Ramsey when for every partition F = F0∪· · ·∪Fn

there is M such that there is at most one 0 6 i 6 n such that Fi �M is nonempty.
It is easy to see that hereditary families does not have, in general the Ramsey prop-
erty (consider the parity of cardinality as coloring). One of the main achievements
in this field is the work of Nash-Williams where the Ramsey and the Sperner prop-
erties are proved to be the same. We call this result the First Structural Theorem
(see Theorem 2.2). The proof we present here is not the original one from [Na].
Instead, we will combine ideas by Pudlák and Rödl and some basic topological
techniques.
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Given two sets of integers A and B, we write A < B to denote that maxA <
minB, and A/B := {n ∈ A : maxB < n}. Recall that a family F of finite sets of
N has a natural topology by simply identifying a set s ∈ F with its characteristic
function 1s ∈ 2N, and then using the product topology in 2N. It is not difficult
to see that every sequence (sn)n of finite subsets of N has a subsequence (sn)n∈M

forming a ∆-system with root r, that is sm ∩ sn = r for every m < n in M and
r < (smr r) < (snr r) for every m < n in M , or a subsequence (sn)n∈M and some
infinite subset L ⊆ N, such that for every t ⊑ L there is nt such that t ⊑ sn for
every n > nt. Observe that in the first case, (sn)n∈M converges to t, while in the
second one (sn)n∈M converges to L. The (topological) closure F of a family F is
simply F together with the limit sets of sequences in F .

Definition 2.1. A family F in N is called precompact when F consists only of
finite subsets of N.

Equivalently, a family F is precompact when every sequence in F has a subse-
quence forming a ∆-system.

There are various ways to associate an ordinal index to a precompact family F
of finite subsets of N. For example, one may consider the Cantor–Bendixson index
r(F), the minimal ordinal α for which the iterated Cantor–Bendixson derivative
∂α(F) is equal to ∅. Recall that ∂F is the set of all proper accumulation points of
F and that ∂α(F) =

∩
ξ<α ∂(∂

ξ(F)). Observe that ∂(F) = ∂(F). So, the Cantor–

Bendixson index is well defined since F is countable and therefore a scattered
compactum and consequently the sequence (∂ξ(F))ξ of iterated derivatives must
vanish for some countable ordinal ξ. Observe that if F is a nonempty compact,
then necessarily r(F) = r(F) is a successor ordinal.

2.1. Uniform families. Mappings on uniform families. We pass now to present
the families introduced by Pudlák and Rödl in [Pu-Ro].

Definition 2.2. Given a countable ordinal α, the family F is called α-uniform on
M provided that:
(a) α = 0 implies F = {∅},
(b) α = β+1 implies that F{n} := {s ∈ FIN : n < s, {n}∪ s ∈ F} is β-uniform on
M/n,
(c) α > 0 limit implies that there is an increasing sequence {αn}n∈M of ordinals
converging to α such that F{n} is αn-uniform on M/n for all n ∈M .

F is called uniform on M if it is α-uniform on M for some countable ordinal α.
This ordinal α is called the uniform rank of F .

Examples of uniform families are [N]n := {s ∈ FIN : #s = n} which is n-
uniform, or S := {s ∈ FIN : #s = min s+ 1} which is ω-uniform, and it is usually
called the Schreier barrier. Its ⊆-closure S := {s ∈ FIN : #s 6 min s+1} is called
the Schreier family.

It follows from the definition that if F is uniform on M , then for every finite set
t the family Ft := {u : t < u and t ∪ u ∈ F} is uniform on M/t, and that F � N
is uniform on N for every N ⊆ M . The following is proven easily by induction on
the uniform rank of a uniform family.
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Proposition 2.1. Every uniform family is Ramsey. �

A very important property of a uniform family F on a given set M is that every
infinite subset ofM has an initial part that belongs to F . This can be easily proved
by induction on the uniform rank of the family. Another property of F is that it is
thin, also proved by induction. Families with these two properties are called front.

Definition 2.3. A family F ⊆ P(M) is called a front in M when F is thin and
every infinite subset of M has a (unique) initial part in F . If in addition F is
Sperner, then the family F is called a barrier on M .

Proposition 2.2. Fronts are precompact. In fact, B = B⊑
for every front B in M .

Proof. Suppose that B is a front on M , and let t ∈ B⊑ r B. Let s0 ∈ B be such
that t @ s0. Now let s1 ∈ B be such that s1 ⊑ t ∪ (M/s0). By the thin property
of B, t @ s1, and so on. In this manner we can find a sequence (sn)n in B forming
a ∆-system with root t. Now suppose that A ∈ B. We see first that A is finite;
otherwise, using that B is a front on M , we can find s ⊑ A, s ∈ B. Let t ∈ B
be such that t ∩ [0, n] = A ∩ [0, n], where n = minM/s. It follows that s @ t,

contradicting the fact that B is thin. It is clear now that B ⊆ B⊑
. �

Uniform families are comparable in the following sense:

Proposition 2.3. Suppose that B and C are uniform on some M . Then there is

some N ⊆M such that either B � N ⊆ (C � N)
⊑

or C � N ⊆ (B � N)
⊑
.

Proof. Color each element s of B by 1 if there is some t ∈ C such that t ⊑ s and
by 0 otherwise, and similarly color the elements of C with respect to B. By the
Ramsey property of B, there is some N ⊆ M where both colorings are constant
with values ε0, ε1 ∈ {0, 1} respectively. Observe that ε0 = ε1 = 0 is impossible:
Let s ∈ B and t ∈ C be such that s, t ⊑ N . Hence either s ⊑ t, contradicting the
color 0 of t, or t ⊑ s, contradicting the color 0 of s. Suppose that ε0 = ε1 = 1.
Then, given s ∈ B � N there is t ⊑ s and u ∈ B � N such that u ⊑ t. This means
that s = u = t, and consequently B � N ⊆ C � N and similarly B � N = C � N .
The cases ε0 = 0, ε1 = 1 and ε0 = 1, ε1 = 0 are symmetric one of the other. So,

suppose that ε0 and ε1 = 1. We claim that B � N ⊆ C � N⊑
. Fix s ∈ B � N , and

let t ∈ C be such that t ⊑ s ∪ (N/s). It follows that t ⊑ s or s ⊑ t, and the first
case is impossible because ε0 = 0. �

Proposition 2.4. Suppose that F is a α-uniform family onM . Then ∂(α)(F) = {∅}
and consequently, r(F) = α+ 1.

To prove this fact, we use the following.

Proposition 2.5. Suppose that F is precompact. Then for every n and every
α < ω1 one has that ∂(α)(F{n}) = (∂(α)(F)){n}. Consequently, for every A ⊆ N
and every α, A ∈ ∂(α)(A) if and only if Ar {minA} ∈ ∂(α)

(
A{minA}

)
.



150 J. LOPEZ-ABAD

Proof. To simplify the notation, let us assume thatM = N. For each n, F{n} is αn-
uniform on N/n, where αn+1 = α for every n if α is successor, or (αn)n is increasing
and supn αn = α when α is limit. By inductive hypothesis, ∂(αn)(F{n}) = {∅} for

every n. Let us prove first that ∂(α)(F) ⊆ {∅}. Otherwise, let ∅  s ∈ ∂(α)(F),
and let n := min s. Then, by Proposition 2.5, s r {n} ∈ ∂(α)(F{n}) = ∅, which
is impossible. Let us prove now that ∅ ∈ ∂(α)(F). Since ∅ ∈ ∂(αn)(F{n}) for

each n, it follows from Proposition 2.5 that {n} ∈ ∂(αn)(F) for every n. Since
∂(αn)(F) ⊆ ∂(αm)(F) for every n > m, it follows then that ∅ = limn→∞{n} ∈∩

n∈N ∂(∂
(αn)(F)) = ∂(α)(F). �

Definition 2.4. A mapping φ : F → FIN defined on a family F is called is
uniform when for every s, u ∈ F and every t ⊑ s, u we have that

min(sr t) ∈ φ(s) ⇔ min(ur t) ∈ φ(u).

We say that φ is Lipschitz iff for every s, u ∈ F , if t ⊑ s, u then φ(s)∩t = φ(u)∩t.

So, uniform mappings are those φ : F → FIN such that given s ∈ F and n ∈ s,
the value of χφ(s)(n) ∈ {0, 1} only depends on the initial part s ∩ [0, n) of s, while
Lipschitz mappings are those that the value of φ(s) � t only depends on t for every
t ⊑ s ∈ F . The notion of Lipschitzness has a natural metric interpretation when
we consider in FIN the standard distance d defined by d(s, t) = 1/2min(s△t), where
s△t = (srt)∪(trs) is the symmetric difference of s and t. This metric defines the
topology on FIN we explained in the introduction. With this metric it is easy to see
that the Lipschitz notion defined above coincides with the metric 1-Lipschitz con-
dition associated to d. The notion of uniformness has more combinatorial nature.
It is easy to see that uniform mappings are always Lipschitz.

The following generalizes the Ramsey property of uniform families.

Proposition 2.6. Suppose that B is uniform on M and φ : B → FIN is an
arbitrary mapping. Then there is N ⊆M such that φ � (B � N) is uniform.

Proof. By the Ramsey property of Bt for every t ∈ [M ]<∞ and using a simple
diagonal one can find an infinite subset N ⊆M such that for every t ∈ [N ]<∞ the
mappings ft : Bt � N → {0, 1} defined by ft(u) = χφ(t∪u)(minu) are all constant.
This means that N has the property required. �

A consequence of this is that the selection of an initial part of every element of
a uniform family, defines essentially a uniform family. More precisely,

Corollary 2.1. Suppose that B is uniform on M and suppose that φ : B → FIN
is such that φ(s) ⊑ s for every s ∈ B. Then there is N ⊆ M such that φ′′(B � N)
is a uniform on N .

Proof. The proof is done by induction on the uniform rank of B. Let N ⊆ M be
such that φ is uniform on B � N and such that either φ(s) = ∅ for all s ∈ B � N
or φ(s) ̸= ∅ for all s ∈ B � N . In the first case φ′′(B � N) = {∅} is a uniform
family on N . Suppose that φ(s) ̸= ∅ for all s ∈ B � N . For each n ∈ N , let
φn : B{n} → FIN be defined by φn(t) := φ({n} ∪ t) r {n} for each t ∈ B{n}.
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By inductive hypothesis, and the fact that φ (hence φn) is uniform, we can find
P ⊆ N such that φ′′

n(Bn � P/n) is αn-uniform on P/n for every n ∈ P . Now choose
Q ⊆ P such that either (αn)n∈Q is constant with value α, or else (αn)n∈Q is strictly
increasing, with limit α. Since by uniformness of φ we have that

φ′′
n(Bn � P/n) � Q/n = φ′′

n(Bn � Q/n),
we obtain that φ′′(B � Q) is α+ 1-uniform on Q in the first case, or α-uniform on
Q, in the second one. �

Definition 2.5. We say that a mapping φ : F → FIN is inner when φ(s) ⊆ s for
every s ∈ B.

Mapping φ : B → FIN defined on a barrier whose range is precompact is “al-
most” inner, as the next shows.

Lemma 2.1. Let B be a barrier on M , and suppose that φ : B → FIN is such that
its range is a precompact family. Then there is some infinite subset N ⊆ M such
that φ(s) ∩N ⊆ s for every s ∈ B � N .

Proof. By changing φ with s 7→ φ(s)r s, we may assume that φ(s)∩ s = ∅, and we
have to find N ⊆M such that φ(s)∩N = ∅ for every s ∈ B � N . Now the proof is
by induction on the uniform rank of B. Using the inductive hypothesis, we can find
M0 ⊆ M such that for every s ∈ B � M0 one has that φ(s) ∩M0 ⊆ M0 ∩min s. It
follows from this, and the Ramsey property of barriers that there is M1 ⊆M0 such
that φ(s)∩M0 = φ(t)∩M0 provided that min s = min t and s, t ∈ B �M1. For each
n ∈ M1, let tn := φ(sn) ∩M0 for some (any) sn ∈ B � M1 with min sn = n. Since
φ′′(B) is precompact, there is M2 ⊆ M1 such that (tn)n∈M2 forms a ∆-sequence
with root r. Now find N ⊆M3 ⊆M2 such that N ∩

∪
n∈M3

tn = ∅. We check that
φ(s) ∩N = ∅ for every s ∈ B � N : φ(s) ∩N ⊆ tn for n = min s, and N ∩ tn = ∅.
Hence φ(s) ∩N = ∅. �

Combining Proposition 2.6 and Lemma 2.1 we obtain the following.

Corollary 2.2. Let B be a barrier on M , and suppose that φ : B → FIN is such
that its range is a precompact family. Then there is some infinite subset N ⊆ M
such that the mapping s ∈ B � N 7→ φ(s) ∩N is inner and uniform. �

Perhaps the importance of inner mappings is reflected in the following structural
result by Pudlák and Rödl on arbitrary mappings defined on barriers. We refer the
reader to the original paper [Pu-Ro] and to [Ar-To].

Theorem 2.1 (Pudlák-Rödl). Suppose that f : B → X is a mapping defined on
a barrier B on M . Then there is N ⊆ M , a barrier C on N , and an inner and
uniform mapping g : B � N → C such that for every s, t ∈ B � N one has that
f(s) = f(t) iff g(s) = g(t).

2.2. Restrictions of families. The next is the structural result on families modulo
restrictions. It is due to Nash-Williams [Na], except the part about uniform families,
which was done by Pudlák and Rödl [Pu-Ro].
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Theorem 2.2 (Structural Theorem for Restrictions). The following are equivalent
for a family F of finite subsets of N:
(a) There is an infinite M ⊆ N such that F �M is either empty or uniform on M .
(b) There exists an infinite M ⊆ N such that F �M is Ramsey.
(c) There is an infinite M ⊆ N such that F �M is Sperner.
(d) There is an infinite M ⊆ N such that F �M is thin.
(e) There is an infinite M ⊆ N such that F �M is either empty or a front on M .
(f) There is an infinite M ⊆ N such that F �M is either empty or a barrier onM .

We note that the fact that Barriers have the Ramsey property is equivalent to
the Ramsey property of clopen subsets of N[∞].

Proof. We have already proved that uniform families have the Ramsey property.

(b) implies (c): Suppose that F has the Ramsey property. Let F0 be the sub-
family of F consisting of the ⊆-minimal subsets of F . By the Ramsey property
of F , there is M such that either F � M = F0 � M or F0 � M = ∅. In the first
case, F �M is Sperner, and in the second one F �M = ∅ (hence Sperner), because
otherwise, if s ∈ F � M then there is a ⊆-minimal t ∈ F which is subset of s, and
then t ∈ F0 �M , a contradiction.

(c) implies (a): Now suppose that F is Sperner. If we can find N ⊆M such that
G � N = ∅, then we are done. Otherwise, F must be precompact; if not, let M be
a limit point of F , and let t ∈ F � M . Let n ∈ M/t and let s ∈ F be such that
s ⊑ M , n ∈ s. It follows that t  s, contradicting the fact that F is Sperner. Let
α := r(F). Let H be any α-uniform family on M . Let θ0 : H → 2 be the coloring
defined by θ0(s) = 0 if and only if there is t ∈ F such that s ⊑ t. Let N ⊆ M
be such that θ0 is constant on H � N with value ε = 0, 1. Then ε = 1 because

otherwise H � N ⊆ F⊑
, hence

(2.1) ∂(α)(H � N) ⊆ ∂(α)(G⊑
) = ∂(α)(G)

for every α. Since H � N is α-uniform on N , r(H � N) = α+ 1, and consequently
it follows from (2.1) that r(F) > α + 1, a contradiction. Let θ1 : H � N → 2 be
the coloring defined by θ1(s) = 1 if and only if there is t ∈ F such that t ⊑ s. Let
P ⊆ N and ε ∈ 2 be such that θ2 is constant in H � P with value ε. Then ε = 1:
We are assuming that F � R ̸= ∅ for every R ⊆ M . Let t ∈ F � P . Let Q ⊆ P
be such that t ⊑ Q. Since H is a front in M , there is some s ∈ H (in fact unique)
such that s ⊑ Q. Consequently, either t ⊑ s or s ⊑ t. The second alternative is
impossible as θ0 is constant in H � N with value 1. So, t ⊑ s, hence ε = 1. Now we
can naturally define a mapping φ : H � P → FIN such that φ(s) ⊑ s. By Corollary
2.1, there is some Q ⊆ P such that φ′′(H � Q) is uniform on Q. It is easy to see
that φ′′(H � Q) = F � Q.

(c) implies (d) trivially.

(d) implies (c): Suppose that F is thin. Let F0 be the family of all ⊆-minimal
elements of F . Let M be such that either F0 �M = ∅ or F0 �M is uniform on M .
In the first case, it easily follows that F �M = ∅. Suppose that F0 �M is uniform
on M . We claim that F0 � M = F � M . Let t ∈ F � M . Let s ∈ F0 � M be such



FAMILIES OF FINITE SUBSETS OF N 153

that s ⊑ t ∪ (M/t). Consequently, s ⊑ t or t ⊑ s. Since F is thin, it follows that
t = s ∈ F0 �M .

Once we have established the equivalence of (a)–(d), equivalence (a)–(f) follows
trivially. �

3. Traces of families

As we have already said, the traces of families tends to be hereditary in some
sense, in contrast to what happens with restrictions. Although it is not true that
every family have some trace which is hereditary (take for example F := {[0, n] :
n ∈ N}, or see Theorem 4.6 for a very strong counterexample), we are going to
see that every family has a trace which is ⊑-hereditary, i.e., hereditary for initial
subsets.

Theorem 3.1. Let F be a family of finite subsets of N. Then there is M ⊆ N such
that F [M ] is ⊑-closed.

Proof. Suppose otherwise that for every M there is a triple (tM , uM , vM ) with the
property that

(a) tM ∈ F , (b) tM ∩M = uM , (c) vM @ uM and vM /∈ F [M ].

For each M let sM := M ∩ (max tM + 1). So, sM is the minimal initial part of
M containing tM ∩M . Let B be the set of ⊑-minimal elements of F . Observe
that B is a front: It is clear by definition that B is thin. On the other hand,
given M we know that sM ⊑ M , so the ⊑ minimal initial part of sM in F is
in fact in F and it is clearly an initial part of M . For each s ∈ B, fix M (s)

be such that s = sM(s) and set (ts, us, vs) := (tM(s) , uM(s) , vM(s)). Observe that
ts ∩ s = ts ∩M (s) = us. Let N be such that s ∈ B � N → vs is Lipschitz. Now fix
s ∈ B � N . Let w1 := {m ∈ s : vs < m}, and w0 = s r w1. This is well defined
because vs @ ts ∩M (s) ⊆ s. Let s̄ ∈ B � N be such that w0 ⊑ s̄ and s < s̄rw0. By
the Lipschitzness, we have that vs̄ = vs. Since in addition s̄ ⊑M (s̄) it follows that

ts ∩M (s̄) = ts ∩ s̄ = ts ∩ s ∩ s̄ = us ∩ s̄ = (us ∩ w0) ∪ (us ∩ (s̄r w0)) = vs = vs̄.

Consequently, vM(s̄) = vs̄ ∈ F [M (s̄)], which is contradictory with (c) above. �

Examples of families without hereditary traces are collections of intervals.

Definition 3.1. A subset s⊆M is called anM -interval when s = [min s,max s]∩M .

The following classifies families of intervals.

Proposition 3.1. Suppose that F is a family of intervals of some M . Then there
is N ⊆M such that one and only one of the following occurs:

(a) F [N ] = {∅}.
(b) F [N ] = [N ]61.
(c) F [N ] = {t ∈ FIN : t @ N}.
(d) F [N ] = {t ∈ FIN : t @ N} ∪ [N ]61.
(e) F [N ] = Int(N).
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Proof. Let c be the color of pairs of M that assign to each pair s color c(s) = 0 if
there is some t ∈ F such that s ⊆ t and c(s) = 1 otherwise. LetN ⊆M be such that
c � [N ]2 is constant with color ε = 0, 1. Suppose that ε = 1. Then F [N ] ⊆ [N ]61. It
is not difficult to find P ⊆ N such that F [P ] = {∅} or F [P ] = [P ]61. Suppose that
ε = 0. It is easy to find P ⊆ N such that {t ∈ FIN : t @ P} ⊆ F [P ]. Now color
triples s of P by d(s) = 0 if there is t ∈ F such that ∗s ⊆ t and min s /∈ t, and by
d(s) = 1 otherwise. Let Q ⊆ P be such that d is constant in [Q]3 with value δ = 0, 1.
Now if δ = 1 then F [Q] = {s ∈ FIN : s @ Q} or F [Q] = {s ∈ FIN : s @ Q}∪ [Q]61.
If otherwise δ = 0, then it is easy to find R ⊆ Q such that F [R] = Int(R). �

Note that the five possibilities in the previous proposition are preserved by taking
further traces.

3.1. Traces of precompact families. We start with the following structural result
for traces of precompact families.

Theorem 3.2. Suppose that F ⊆ FIN is a precompact family. Then for every N
there is an infinite set M ⊆ N such that F [M ] is the closure of a uniform barrier
on M , and in particular hereditary.

In order to understand traces of precompact families is essential to study the
traces of barriers.

Proposition 3.2. For every N ⊆ M such that M r N is infinite we have that
B[N ] = B � N , and in particular B[N ] is downwards closed.

Proof. Let s ∈ B[N ], and let t ⊑ s ∪ (N/s), t ∈ B. It follows that s ⊑ t, since
otherwise, t @ s ⊆ u ∈ B, contradicting the fact that B is Sperner. We have seen

in Proposition 2.2 that B � N = B � N⊑
. So, let t ∈ B � N⊑

. Let s ∈ B be such
that s ⊑ t ∪ ((M rN)/t). It follows that s ∩M = t. �

Proposition 3.3. Suppose that F is an arbitrary family of finite subsets of N.
Then for every M there is N ⊆M such that F � N has the property that for every
t < m < n with t ∪ {m,n} ⊆ N , one has that t ∪ {m} ∈ F iff t ∪ {n} ∈ F .

Proof. Otherwise, fix M and choose for each N ⊆ M tN < mN ̸= nN such that
tM ∪ {mN , nN} ⊆ N , tM ∪ {mN} ∈ F and tM ∪ {nN} ∈ F . Let G be the set of
⊆-minimal elements of {tN ∪ {mN , nN}}N⊆M . It follows from the first structural
theorem that there is N ⊆ M such that B := G � N is a barrier on N . Write each
s ∈ B as t = ts ∪ {ks, ls} where ts < ks < ls. By the Ramsey property of B, and
the Corollary 2.1 there is P ⊆ N such that

(a) either for every s ∈ B � P one has that ts ∪ {ks} ∈ F and ts ∪ {ls} /∈ F or
for every s ∈ B � P one has that ts ∪ {ks} /∈ F and ts ∪ {ls} ∈ F .

(b) {ts : s ∈ B � P} is a barrier on P .

Now fix s ∈ B � P . And let u ∈ B � P be such that u ⊑ ts ∪ {ls} ∪ (P/s). Since ts
and tu are ⊑-comparable and {tv}v∈B�P is a barrier on P , it follows that ts = tu.
Hence, ls = ku, which is a contradiction by (a). �
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Proof of Theorem 3.2. Fix F and M . Suppose first that F is hereditary. Let
N ⊆ M be such that F � N has the property exposed in Proposition 3.3. Let B
be the set of ⊑-maximal elements in F � N . Because of the property of F � N in
Proposition 3.3, B is a front inN . Let P ⊆ N be such that B � P is a uniform barrier
on P . By the ⊑-maximality of elements in B and the fact that F is hereditary, one

has that F [P ] = F � P = B⊆
, as desired. Now let F be an arbitrary precompact

family. Set G := F⊆
. We have just proved that there is some N ⊆ M and some

uniform barrier B on N such that G[N ] = B. Then

(3.1) B ⊆ F [N ] ⊆ B :

The first inclusion is clear because F ⊆ G. For the second, we fix an arbitrary
s ∈ B. Let t ∈ F be such that s ⊆ t. Then s ⊆ t ∩ N ∈ F [N ] ⊆ B. Hence,
s = t ∩N , and we are done.

Now we use Proposition 3.2 to find P ⊆ N such that B � N = B[N ]. By (3.1)
we obtain that

B � P = B[P ] ⊆ F [N ][P ] = F [P ] ⊆ B � P = B � P . �

The following explains traces of an arbitrary family.

Theorem 3.3 (Structural Theorem for Traces). Let F be a family of finite subsets
of N. Then for every N there exists M ⊆ N such that F [M ] is ⊑-hereditary and
one, and only one, of the following three alternatives holds:

(a) F [M ] = [M ]<ω.
(b) F [M ] is the closure of a barrier in M .

(c) M ∈ F [M ]r FIN ⊆ {N ∈ [M ]∞ :M rN is finite}.

It follows that if F does not have hereditary traces, then it has a trace F [M ]
whose closure is a countable compacta, and consequently homeomorphic to the
closure of a barrier.

The proof of this theorem is based on a study of finite families of doubletons
similar to the one for families of finite subsets of N. We introduce some definitions
and notation for it.

Definition 3.2. Let (N[2])[6∞] ⊆ P(N[2]) be the set of block sets of doubletons ,
i.e., the set of those A ⊆ P (N[2]) such that for every s, t ∈ A, either s < t or t < s.
Then (N[2])[6∞] is naturally a compact space because it is a closed subspace of
P(N[2]), where N[2] is endowed with the discrete topology. Let

FIN2 = {A ∈ (N[2])[6∞] : A is finite}.

We say that U ⊆ FIN2 is precompact iff U ⊆ FIN2. We say that U is hereditary
iff A ⊆ B ∈ U implies that A ∈ U . Given U ⊆ FIN2 and M ⊆ N infinite, we define

U [M ] := {A ∩M [2] : A ∈ U}

U �M := U ∩ P(M [2])

U⊆
:= {B ∈ FIN2 : B ⊆ A ∈ U}.
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We have the following dichotomy for these families.

Lemma 3.1. [Lo-To] For every U ⊆ FIN2 there is M ⊆ N infinite such that either

(a) U [M ] is precompact or else, (b) FIN2 �M ⊆ U⊆
.

The proof uses the following classical result of Galvin in [Ga] stating that open
subsets of [N]∞ have the Ramsey property.

Lemma 3.2 (Galvin’s Lemma). For every family F ⊆ FIN and every infinite set
N there exists an infinite M ⊆ N such that the restriction F � M is either empty
or it contains a barrier. �

Proof of Lemma 3.1. Let G =
{∪

A : A ∈ FIN2 r U⊆}
. By Galvin’s Lemma,

there is M such that either G � M contains a barrier on M or else G � M = ∅.
Suppose first that G � M contain a barrier on M . We claim that in this case
U [M ] is precompact. Suppose otherwise that A ∈ (FIN2 � M) ∩ U [M ], and set
N =

∪
A ⊆M . Since G �M contain a barrier, there is s ∈ G �M such that s ⊑ N .

Let B ∈ FIN2 r U⊆
such that s =

∪
B. Since A ∈ U [M ], we can find B ∈ U [M ]

such that A ⊆ B, and consequently A ⊆ B ⊆ C for some C ∈ U , i.e., A ∈ U⊆
,

which is impossible. If G �M = ∅, then FIN2 �M ⊆ U⊆
. �

Corollary 3.1. Suppose that U0,U1 ⊆ FIN2 and M ⊆ N are such that

(3.2) FIN2 �M ⊆ {A0 ∪A1 : A0 ∈ U0, A1 ∈ U1}.

Then there is infinite N ⊆M and i = 0, 1 such that FIN2 �M ⊆ Ui
⊆
.

Proof. Suppose that (3.2) holds. Observe that FIN2 × FIN2 → FIN2, (A,B) 7→
A ∪B is continuous, so the desired result follows from Lemma 3.1. �

We give now a proof of the second structural theorem.

Proof of Theorem 3.3. Let U be the family of doubletons A = {s1 < · · · < sn} such
that there is s ∈ F with the property that {min si}ni=1 ⊆ s and {max si}ni=1 ∩ s = ∅.
This is clearly a hereditary family. We use Lemma 3.1, and the fact that U is
hereditary, to find M such that either U [M ] = FIN2 �M or else U [M ] is compact.
Suppose that U [M ] = FIN2 �M . Then if N ⊆M is such that minM < minN and
]n0, n1[ ∩M ̸= ∅ for every n0 < n1 in N , then it is easy to conclude that F [N ] =
[N ]<∞. Suppose that U [M ] is compact. Then, since the mapping A ∈ U [M ] 7→
({min s}s∈A, {max s}s∈A) is continuous. It follows that G0 := {{min s}s∈A : A ∈
U [M ]} and G1 := {{max s}s∈A : A ∈ U [M ]} are both compact families. We note
that the fact that G0 does not necessarily mean that the corresponding trace F [M ]
is precompact. Now if F [M ] is precompact, then, by Lemma 3.2, we obtain that
F [N ] is the closure of a uniform barrier on some N ⊆M ; otherwise, there is some

N ⊆ M such that N ∈ F [M ]. This implies that indeed N ∈ F [N ]. Now the fact

that U [M ] is compact implies that F [N ]r FIN ⊆ {P ⊆ N : N r P is finite}. �
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3.2. Beyond traces. Of course restrictions/traces does not give full information
of families. It is rather easy to find for every integer n a compact and hereditary
family F of rank n + 1 such that for every infinite set M there is N ⊆ M such
that F � N = F [N ] = [N ]61: Take a partition M0 ∪ M1 · · · ∪ Mn−1 of N into
infinite sets, and let F be the hereditary closure of the collection of finite sets
{m0 < · · · < mn−1} such that mi ∈ Mi. From this, an easy diagonal argument
gives a compact and hereditary family of rank ω + 1 and such that its traces are
hereditarily of rank 2, i.e., of the form [N ]61.

There is a natural way to produce families of rank ω+1: Take a finite-to-one onto
mapping φ : N → N, and now consider the family {s ∈ FIN : φ′′s ∈ S}. Observe
that φ is nothing else but an infinite partition {In}n∈N of N into finite subsets of
N, by declaring In := φ−1{n} for each n ∈ N. On the other hand, it is quite easy
to see that those families have (hereditarily) traces with rank ω + 1. In order to
correct this, and produce a family F0 of rank ω+1 and traces of rank 2 hereditarily,
one can proceed as follows. For each n, let Sn := S � n = {s ⊆ {0, 1, ..., n − 1} :
#s 6 min s+ 1}. It is nice exercise to prove that #Sn = fn+1, where fn is the nth

Fibonacci number. Let (In)n∈N be the sequence of consecutive intervals of integers
such that #In = #Sn = fn+2. Let θn : Sn → fn+1 be a bijection for every n. We
are going to define F : S → FIN satisfying

(a) F (t) ⊆
∪

n∈t In and #(F (t) ∩ In) = 1 for every t ∈ S and every n ∈ t.
(b) For every t0, t1 ∈ S and every n ∈ t0 ∩ t1 r t0 ∧ t1 one has that F (t0) ∩

F (t1) ∩ In = ∅, where t0 ∧ t1 is the maximal initial part of both t0 and t1.
(c) For every t0 ⊑ t1 in S one has that F (t0) ⊑ F (t1).

We define F � Sn recursively on n. Suppose defined F � Sn. Let t ∈ Sn+1rSn. This
means that n ∈ t. We define F (t) := F (tr{n})∪{θn+1(tr{n})}. It is easy to prove
that F has the properties (a) and (c) above. We prove that F � Sn has the property
(b) for every n by induction on n. Suppose then that F � Sn has the property (b).
Let t0, t1 ∈ Sn+1, and let l ∈ t0∩t1rt0∧t1. Set t̄i := tir{n}, i = 0, 1. Suppose first
that l = n. Then, since t0 ̸= t1, and n ∈ t0∩t1 it follows that t̄0 ̸= t̄1. By definition,
F (t0) ∩ In = {θn+1(t̄0)}, F (t1) ∩ In = {θn+1(t̄1)} and θn+1(t0) ̸= θn+1(t1), since
θn+1 is 1-1, and we are done. Suppose that l < n. Since t0 ∧ t1 ⊆ n, it follows that
t0 ∧ t1 = t̄0 ∧ t̄1, and consequently, it follows that l ∈ t̄0 ∩ t̄1r t̄0 ∧ t̄1. By definition
and by inductive hypothesis, F (t0) ∩ Il = F (t̄0) ∩ Il ̸= F (t̄1) ∩ Il = F (t1) ∩ Il and
since #F (ti) ∩ Il = 1, i = 0, 1, we are done.

Let F0 be the ⊆-closure of ImF , and let φ := φI : N → N be the mapping
canonically defined by the partition I = (In)n; that is, φ(k) = n if and only if
k ∈ In. It follows by the property (a) above that F0 ⊆ {s ∈ FIN : φ′′s ∈ S}. In
addition, φ̄ : F0 → S, φ̄(s) := φ′′(s) is onto, since φ̄(F (t)) = t for every t ∈ S.
Clearly, φ̄ is finite-to-one, hence, F0 has the same rank ω + 1 than S. We finally
prove that for every M ⊆ N there is N ⊆ M such that F0 � N = F0[N ] = [N ]61.
Otherwise, by Proposition 2.3, Proposition 3.2 and the fact that F0 is hereditary,
we can find M such that [M ]2 ⊆ F0 � M . For each s ∈ [M ]2 let ts ∈ S be such
that s ⊆ F (ts). By the property (c) above, we assume that max ts = φ(max s) for
every s ∈ [M ]2. A simple argument gives some N ⊆M such that
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(d) for every s0, s1 ∈ [N ]2 with the same minimum n one has that
min ts0 = min ts1 = kn, and

(e) either (kn)n is strictly increasing or constant.

Suppose first that (kn)n∈N is strictly increasing. Let n0 < n1 < n2 be in N . Then
min t{n0,n1} = kn0 < kn1 = min t{n1,n2}, hence t{n0,n1} ∧ t{n1,n2} = ∅. On the
other hand, k1 ∈ F (t{n0,n1})∩F (t{n1,n2})∩ Iφ(k1) and this contradicts that, by the
property (b) above, we know that F (t{n0,n1}) ∩ F (t{n1,n2}) ∩ Iφ(k1) = ∅.

Suppose now that kn = k for every n ∈ N . Let n0 < · · · < nk+1 be in N .
Then there must be i < j < k + 1 such that t{ni,nk+1} ̸= t{nj ,nk+1}, since oth-
erwise, {n0, . . . , nk+1} ⊆ t{n0,nk+1}, that is impossible since #t{n0,nk+1} 6 k + 1.
Observe that φ(nk+1) /∈ t{ni,nk+1} ∧ t{nj ,nk+1}, because otherwise, since we are
assuming that max t{ni,nk+1} = φ(nk+1) = max t{nj ,nk+1}, we would have that
t{ni,nk+1} = t{nj ,nk+1}. Since in addition φ(nk+1) ∈ t{ni,nk+1} ∩ t{nj ,nk+1}, it fol-
lows that F (t{ni,nk+1}) ∩ F (t{nj ,nk+1}) ∩ Iφ(nk+1) = ∅ and this obviously forbids
that nk+1 ∈ F (t{ni,nk+1}) ∩ F (t{nj ,nk+1}) ∩ Iφ(nk+1).

A partition I = (In)n gives the opportunity to define the following density
notions.

Definition 3.3. Given 0 < λ < 1 and s ∈ FIN let us define

s[+] := {n ∈ N : s ∩ In ̸= ∅} = φI(s)

s[λ] := {n ∈ N : #(s ∩ In) > λ#In}.
Given a family F , let

G+(F) := {s[+] : s ∈ F} = φI(F) and Gλ(F) := {s[λ] : s ∈ F}.

The example F0 above satisfies that G+(F0) = S but Gλ(F0) = {∅, {0}} for
every λ > 1. We present now for every 0 < λ < 1 an example of a family Fλ such
that Gλ(Fλ) = S, yet the rank of the traces of Fλ is, hereditarily, 4. We point
out that if a family F is such that Gλ(F) = S, then the rank of its traces is, at
least 3; it seems possible to us that our example is sharp. This family is defined in
[Lo-Ru-Tra] where the family Fλ is used to find a weakly compact set of a Banach
space with the Banach-Saks property, and contrary to its convex hull.

In order to put this is the right context, we introduce some concepts. In what
follows, N =

∪
n∈N In is a partition of N into finite intervals In. A transversal

(relative to (In)n) is an infinite subset T of I such that #(T ∩ In) 6 1 for all n.
The construction of this family is based on the previous example F0 and on a

classical counterexample by Erdős and Hajnal [Er-Ha] to the natural generalization
of Gillis’ Lemma to double-indexed sequences of large measurable sets.

Lemma 3.3. For every ε > 0 there is r := r(ε) ∈ N such that for every n ∈ N
there is probability space (Ω,Σ, µ) and a sequence (Ai,j)16i<j6n with µ(Ai,j) > ε
for every 1 6 i < j 6 n such that for every s ⊆ {1, . . . , n} of cardinality strictly
bigger than r one has that

∩
{i,j}∈[s]2 Ai,j = ∅.

Proof. Given ε > 0, let r ∈ N be such that 1 − 1/r > ε. Now, given n ∈ N
let Ω := {1, . . . , r}n, and let µ be the probability counting measure on Ω. Given
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1 6 i < j 6 n we define the subset of n-tuples

(3.3) A
(n,r)
i,j := {(al)nl=1 ∈ {1, . . . , r}n : ai ̸= aj}.

This is the desired counterexample. �

This example is a discrete version of the original construction by Erdős and
Hajnal in the unit interval [0, 1] with the Lebesgue measure: Given ε > 0, consider
as above r ∈ N such that 1 − 1/r > ε, and for two integers i ̸= j, let Bi,j be the
set of all real numbers θ ∈ [0, 1] whose ith and jth terms in its 1/r-expansion are
different (i.e., if θ =

∑∞
k=1 ak(1/r)

k with ak ∈ {0, . . . , r − 1}, then ai ̸= aj). This
is a Borel set, and it is easy to see that it has Lebesgue measure bigger than ε. On
the other hand, if s ⊆ N has cardinality bigger than r+1, then

∩
{i,j}∈[s]2 Bi,j = ∅.

We come back to the construction of Fλ. For practical reasons we will define
such family not in N but in a more appropriate countable set I. Fix 0 < λ < 1.
We define first the disjoint sequence (In)n. For each m ∈ N, m > 4, let rm be such
that (

1− 1/rm
)(m−2

2 ) > λ.

Let 4 6 m 6 n be fixed. Let Im,n := {1, . . . , rm}n×[{2,...,m−1}]2 . Let In = {n} for
n = 1, 2, 3. For n > 4 let

In :=
∏

46m6n

Im,n =
∏

46m6n

{1, . . . , rm}n×[{2,...,m−1}]2 .

Observe that for n ̸= n′ one has that In ∩ In′ = ∅. Let I :=
∪

n In. Now, given

4 6 m0 6 n and 2 6 i0 < j0 6 m0 − 1, let π
(n,m0)
i0,j0

: In → {1, 2, . . . , rm0}n be the
natural projection,

π
(n,m0)
i0,j0

((
(b

(l,m)
i,j )

)
46m6n, 16l6n, 26i<j6m−1

)
:= (b

(l,m0)
i0,j0

)nl=1 ∈ {1, 2, . . . , rm0}n.

We start with the definition of the family F on I. Recall that S := {s ⊆ N : #s =
min s} is the Schreier barrier. We define F : S → [I]<∞ such that F (u) ⊆

∪
n∈u In

and then we define Fλ as the image of F . Fix u = {n1 < · · · < nn1} ∈ S:

(i) For u = {1}, let F (u) := I1.
(ii) For u := {2, n}, 2 < n, let F (u) := I2 ∪ In.
(iii) For u := {3, n1, n2}, 3 < n1 < n2, let F (u) := I3 ∪ In1 ∪ In2 .
(iv) For u = {n1, . . . , nn1} with 3 < n1 < n2 < · · · < nn1 , then let

F (u) ∩ Ink
:= Ink

for k = 1, 2, 3,

and for 3 < k 6 n1, let

(3.4) F (u) ∩ Ink
:=

∩
1<i<j<k

(
π
(nk,n1)
i,j

)−1(
A

(nk,rn1 )
ni,nj

)
Where the A’s are as in (3.3). Explicitly,

F (u) ∩ Ink
=

{(
(b

(l,m)
i,j )

)
46m6nk, 16l6nk, 26i<j6m−1

∈ Ink
: b

(ni,n1)
i,j ̸= b

(nj ,n1)
i,j

for every 1 < i < j < k
}
.
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Observe that it follows from (3.4) that

π
(nk,n1)
i,j

(
F (u) ∩ Ink

)
= A

(nk,rn1 )
ni,nj ⊂ {1, 2, . . . , rn1}nk

for every 1 < i < j < k. It is rather easy to see that Gλ(Fλ) = S. It is less trivial
to prove that the traces of Fλ have rank 4, hereditarily. We refer the reader to
[Lo-Ru-Tra] for full details.

4. Extensions of finite sets. Compact and bounded subsets of RN

Let RN be endowed with its natural product topology (i.e. determined by the
pointwise convergence). We intend to present results extending some of the results
we presented for families of finite subsets of N. To do this, first we introduce some
well-known notions and notation. Given f ∈ RN and n ∈ N we write (f)n to
denote f(n). Given U ⊆ R and A ⊆ N, finite or infinite, we identify UA with
{f ∈ RN : supp f ⊆ A and Im f ⊆ U}, where supp f := {n ∈ N : (f)n ̸= 0}.

Recall c0 is the subset of RN consisting of the sequences (fn)n converging to zero.
We equip c0 with the induced topology in RN. Let c00 be the subset of c0 consisting
of the eventually zero sequences. A subset N of c0 is compact when every sequence
in N has a pointwise convergent subsequence in N . N is precompact (or relatively
compact) when every sequence in N has a converging subsequence with limit in c0.

Given M ⊆ N we will denote a mapping f : M → R sequentially as (fn)n∈M .
Given A ⊆ N, finite or infinite, and f ∈ RN, let f � A := f · 1A, pointwise
multiplication, be the restriction of f to A; that is, (f � A)n = f(n) when n ∈ A
and (f � A)n = 0 otherwise. Given N ⊆ RN and A ⊆ N, finite or infinite, let
N [A] := {f � A : f ∈ N}.

Recall that the ℓ1-norm of a summable sequence f ∈ RN is defined as ∥f∥ℓ1 :=∑
n |(f)n|. Given N ⊆ RN and C > 0, let

(N )C := {f ∈ RN : there exists g ∈ N such that ∥f − g∥ℓ1 6 C}
C · N := {f ∈ RN : there exists λ 6 C such that λf ∈ N}.

We say that N is (pointwise) bounded when there is K such that N ⊆ [−K,K]N.
Compact and bounded subsets of c0 are exactly the weakly compact subsets of c0
when considered as Banach space.

Definition 4.1. [Lo-To] Let F ⊆ FIN be an arbitrary family, and let f : F → c0.
(a) f is inner if for every s ∈ F one has that supp f(s) ⊆ s.
(b) f is uniform if for every t ∈ FIN one has |{f(s)(min(s/t)) : t ⊑ s, s ∈ F}| = 1
(c) f is called a U -mapping if F if it is inner and uniform.

The following is a generalization of Corollary 2.2 concerning mappings on barriers
with precompact range.

Theorem 4.1. [Lo-To] Suppose that B is a barrier on M , N is a compact and
bounded subset of c0 and suppose that f : B → N . Then for every ε > 0 there is
N ⊆ M and there is a U -mapping g : B � N → c00 such that for every s ∈ B � N
one has that ∥f(s) � N − g(s)∥ℓ1 6 ε.
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A compact subsetN has associated naturally compact families of finite subsets of
N as follows. Given ε > 0, the family of all {n ∈ N : |(f)ε| > ε}, f ∈ N is compact.
Now, Theorem 4.1 follows from the following generalization of Lemma 2.1. We refer
the reader to [Lo-To] for more details.

Lemma 4.1. Suppose that {Bl}l∈N is a collection of uniform barriers on M , and
suppose that for every k ∈ N we have φl : Bl → FIN with precompact range. Then
there is some infinite subset N of M such that (φl(s)rs)∩N ⊆ N ∩ [0, n] for every
n ∈ N , l 6 n, and every s ∈ Bl � N. �

We pass now to present some results concerning hereditary properties of subsets
of RN. We introduce more terminology. Given N ⊆ RN, let

N⊑
:= {f � I : f ∈ N and I is an initial interval of N}

N⊆
:= {f � A : f ∈ N and A ⊆ N}.

The following is a very useful result in this context.

Lemma 4.2 (Matching Lemma). Suppose that B and C are two barriers on M and
φ : B → C is an internal mapping. Then there is an infinite subset N of M and a
mapping σ : B � N → B such that σ(s) ∩N = φ(s) = φ(σ(s)) for every s ∈ B � N .

Proof. First of all, color each t ∈ C by 1 when there is s ∈ B such that φ(s) = t, and
otherwise. By the Ramsey property of C there is some P ⊆ M such that C � P is
monochromatic, with color i = 0, 1. As for every s ∈ B � P , φ(s) ∈ C � N is colored
by 1, i must be equal to 1. Define now ψ : C � P → B by ψ(t) ∈ B is such that
φ(ψ(t)) = t. Apply Lemma 2.1 to ψ to get some N ⊆ P such that ψ(t)∩N ⊆ t for
every t ∈ C � N . Observe that this is equivalent to say that ψ(t) ∩N = t (t ⊆ ψ(t)
because t = φ(ψ(t)) ⊆ ψ(t) by the properties of φ). Finally define σ : B � N → B
by σ(s) = ψ(φ(s)) for each s ∈ B � N . Then, for s ∈ B � N we have

φ(σ(s)) = φ(ψ(φ(s))) = φ(s),

σ(s) ∩N = ψ(φ(s)) ∩N = φ(s),

as desired. �

4.1. Partial unconditionality.

Theorem 4.2 (Mazur). Let N be a compact bounded subset of c0 ⊆ RN. Then for

every ε > 0 there is M such that N [M ]
⊑
⊆ (N [M ])ε.

Proof. Fix all data. Suppose that the desired result is false. For every M ⊆ N,
let tM ⊑ M and fM ∈ N be such that fM � tM /∈ (N [M ])ε. Since N is compact,
it follows that for every M ⊆ N there exists tM ⊑ sM ⊑ M such that fM �
tM /∈ (N [sM ])ε. Let F be the set of minimal elements of {sM}M⊆N. By the first
structural theorem, there exists M0 ⊆ N such that B := F �M0 is a barrier in M0.
For each s ∈ B chooseMs ⊆M0 such that s ⊑Ms, and set ts := tMs and fs := fMs .
It follows that

(4.1) ts ⊑ s and fs � ts /∈ (N [s])ε for every s ∈ B.
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We use Theorem 4.1 to find M ⊆M0 and a U-mapping g : B �M → c00 such that
∥fs � M − g(s)∥ℓ1 6 ε/3 and such that φ and s ∈ B 7→ ts are uniform on B � M .
Now let s0 ∈ B � M and let s1 ∈ B � M be such that s1 ⊑ ts0 ∪M/s0. Since
ts ⊑ s always, it follows from the uniformness of s 7→ ts and g that ts0 = ts1 and
g(s1) � ts0 = g(s0) � ts0 . We claim that ∥fs0 � ts0 − fs1 � s0∥ℓ1 6 ε, contradicting
(4.1):

∥fs0 � ts0 − fs1 � s0∥ℓ1 6 ∥fs0 � ts0 − g(s1) � ts0∥ℓ1 + ∥g(s1) � ts0 − fs1 � s0∥ℓ1
= ∥fs0 � ts0 − g(s0) � ts0∥ℓ1 + ∥g(s1) � ts0 − fs1 � s0∥ℓ1
6 ∥fs0 �M − g(s0) �M∥ℓ1 + ∥g(s1) � ts0 − fs1 � s0∥ℓ1
6 ε

3
+ ∥g(s1) � ts0 − fs1 � ts0∥ℓ1

+ ∥fs1 �M r s1 − g(s1) � (M r s1)∥ℓ1 6 ε

where for the last inequality we have used that g is inner and consequently g(s1) �
(M r s1) = 0. �

Remark 4.1. The previous result corresponds to the classical theorem by Mazur
stating that every nontrivial weakly null sequence in a Banach space has a (1+ ε)-
basic subsequence.

Theorem 4.3 (Odell’s unconditionality). Suppose that N is a compact and bounded
subset of c0. Then for every ε > 0 there is M = {m0 < m1 < · · · < mk < · · · }
such that

(4.2) for every k and every s ∈ [{ml}l>k]
k one has that N [s] ⊆ (N [{ml}l>k])ε.

Consequently, there is {m0 < m1 < · · · < mk < · · · } such that for every k and
every s ∈ [{ml}l>k]

k one has that N [s] ⊆ (N [M ]−N [M ])ε.

Proof. We prove first the last part of the statement assuming the first one. By

Mazur’s Theorem, let M0 be such that N [M0]
⊑
⊆ (N [M0])ε. Let now M = {m0 <

m1 < · · · < mk < · · · } ⊆ M0 be such that (4.2) holds for ε/2. Then given k ∈ N,
s ∈ [{ml}l>k]

k, and f ∈ N , we fix g, h ∈ N such that ∥f � s−g � {ml}l>k∥ℓ1 6 ε/2
and ∥g � {m0, . . . ,mk−1} − h � M∥ℓ1 6 ∥g � {m0, . . . ,mk−1} − h � M0∥ℓ1 6 ε/2.
Then

∥f � s− (g − h) �M∥ℓ1 6 ∥f � s− g � {ml}l>k∥ℓ1
+ ∥g � {m0, . . . ,mk−1} − h �M∥ℓ1 6 ε.

We pass now to prove the first part of the statement. Observe that if s ⊆ N ⊆ M
and f � s ∈ (N [M ])ε, then f � s ∈ (N [N ])ε. So, instead of proving the desired
result in the statement of the theorem, it suffices to prove that for every n and every
M there exists N ⊆M such that for every t ∈ [N ]n one has that N [t] ⊆ (N [N ])ε.
Going towards a contradiction, fix M and n ∈ N such that for every N ⊆M there
exists t ∈ [N ]n such that N [t] ̸⊆ (N [N ])ε. For each N ⊆ M , choose tN ∈ [N ]n

and fN ∈ N such that fN � tN /∈ (N [N ])ε. Since N is compact, this last relation
means that we can fix also for each N ⊆M an initial part tN ⊆ sN ⊑ N such that
fN � tN /∈ (N [sN ])ε. Let F be the set of ⊑-minimal elements of {sN : N ⊆M}, and
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let M0 ⊆ M be such that B := F � M0 is a barrier on M0. For each s ∈ B choose
N ⊆ M such that s = sNs , and set ts := tNs , fs := fNs . We use Theorem 4.1 and
the Ramsey property of B to findM1 ⊆M0 and a U-mapping g : B �M1 → c00 such
that ∥fs �M1−g(s)∥ℓ1 6 ε/2 for every s ∈ B �M1, and such that for every s0, s1 ∈
B �M1 if {k(j)0 < · · · < k

(j)
n−1} = tsj , j = 0, 1, then

∑
i<n |(fs0)k(0)

i

−(fs1)k(1)
i

| 6 ε/2.

Now we use Lemma 4.2 to find s0, s1 ∈ B �M1 such that ts0 = ts1 = s0∩s1. Hence,

∥fs0 � ts0 − fs1 � s0∥ℓ1 6 ∥fs0 � ts0 − fs1 � ts0∥ℓ1
+ ∥fs1 � (M1 r s1)− g(s1) � (M1 r s1)∥ℓ1 6 ε,

so fs0 � ts0 ∈ (N [s0])ε, a contradiction. �
Remark 4.2. The previous Theorem corresponds to the well-known result by Odell
in [Od] stating that every every non-trivial weakly null sequence has a Schreier-
unconditional basic subsequence.

Theorem 4.4. Suppose that N ⊆ c0 is precompact and bounded such that

inf{(f)n : f ∈ N , n ∈ supp f} = δ > 0.

Then there is a subset M of N such that N [M ]
⊆
⊆ K/δ conv(N [M ]), where K =

supf∈N ∥f∥∞.

Proof. Consider the family F whose elements are {n ∈ N : (f)n > δ}, f ∈ N . It
follows that F is a precompact family. Let M be such that F [M ] is hereditary. In
particular, given s ∈ F [M ] and t ⊆ s there exists f ∈ N such that supp f � M =
{n ∈ M : (f)n ̸= 0} = {n ∈ M : (f)n > δ} = t. This means that, given s ∈ F [M ]
there is for each t ∈ s, ft ∈ N such that supp ft = t and (ft)n > δ for every n ∈ t;
it follows that [0, δ]s ⊆ conv({ft � M}t⊆s) ⊆ convN [M ]. Hence, given f ∈ N and
N ⊆ M , we know that f � N ⊆ [0,K]s, where s = supp f � M . This means that
f � N ⊆ K/δ convN [M ]. �
Remark 4.3. This results is equivalent to the fact that if (xn)n is a weakly-null
sequence in ℓ∞ such that inf{|(xn)k| : n ∈ N and (xn)k ̸= 0} > 0 then it has an
unconditional subsequence.

Theorem 4.5 (Elton’s unconditionality). Let N be a compact and bounded subset
of c0, ε > 0. Then there is some M such that for every f ∈ N and every t ⊆ s ⊆M
such that f has constant sign on t there exists g ∈ N and u ⊆ t such that

(a) g has constant sign on u,
(b) |

∑
n∈t(f)n| 6 (1 + ε)|

∑
n∈u(g)n|

(c)
∑

n∈sru,n>minu |(g)n| 6 ε.

It readily follows the following.

Corollary 4.1. Let N be a compact and bounded subset of c0, ε > 0. Then there
is some M such that for every f ∈ N and every t ⊆ s ⊆M there exists g ∈ N such
that

(a) ∥f � t∥ℓ1 6 (1 + ε)∥g � t∥ℓ1
(b) ∥g � {n ∈ sr t : n > min t}∥ℓ1 6 ε.



164 J. LOPEZ-ABAD

Proof. Apply the previous theorem to the compact and bounded set {(|(f)n|)n :
f ∈ N}. �

We use the following fact extracted from [Di-Od-Sch-Zsa].

Proposition 4.1. Let X be a bounded subset of c0. Then for every ε > 0 there is
θ : X → FIN and φ : N→ N such that

(a) θ(x) is a final subset of suppx for every x ∈ X.
(b) ∥x∥ℓ1 6 (1+ ε)∥x � θ(x)∥ℓ1 and ∥x � θ(x)∥ℓ1 6 φ(min θ(x)) for every x ∈ X.

Proof. Let D > 0 be such that X ⊆ [−D,D]N. Let n0 be such that

n2 +Dn 6 (1 + ε)(n− 1)2 for every n > n0 and n20 −
D

ε
n0 > D

ε
.

Let φ0(n) := n2 if n > n0, and φ0(n) := n20 otherwise. Observe that

(4.3) D(n+ 1) + φ0(n) 6 (1 + ε)φ0(n− 1) for every n > 0.

Set φ(n) := φ0(n) +D for every n. Given x ∈ X, let kx ∈ N be such that∑
n>kx

(x)n 6 φ(kx).

observe that kx exists because φ is unbounded. Define then θ(x) := suppx∩[kx,∞[.
Let us prove that θ and φ have the desired properties: Fix x ∈ X. Suppose first
that kx = 0. Then θ(x) = suppx and∑

n

(x)n =
∑

n∈θ(x)

(x)n 6 (x)0 + φ0(0) 6 φ(0) 6 φ(min θ(x)).

Suppose now that kx > 0. It follows from (4.3) that∑
n

(x)n =
∑
n6kx

(x)n +
∑
n>kx

(x)n 6 D(kx + 1) + φ(kx)

6 (1 + ε)φ(kx − 1) 6 (1 + ε)
∑
n>kx

(x)n,∑
n>kx

(x)n 6 (x)kx + φ0(kx) 6 φ(kx) 6 φ(min θ(x)). �

Proof of Theorem 4.5. Suppose otherwise, and for each M fix tM ⊆ sM ⊆ M and
fM ∈ N such that fM has constant sign on tM and such that (a), (b) and (c) in the
statement of Theorem does not work hold for any g ∈ N . Use now Proposition 4.1
to find φ : N→ N and for each M a final subset uM ⊆ tM such that

(4.4)
1

1 + ε

∣∣∣∣ ∑
n∈tM

(fM )n

∣∣∣∣ 6 ∣∣∣∣ ∑
n∈uM

(fM )n

∣∣∣∣ 6 φ(minuM ).

For each M , let rM := sM ∩ [minuM ,∞[. Let now B be the set of ⊑-minimal
subsets of {rM}M , and for each r ∈ B, fix Mr such that r = rMr . It follows from
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(4.4) and the Ramsey property of B that there is some M such that

max

{
∥fMr � uMr∥ℓ1
∥fMp � uMp∥ℓ1

,
∥fMp � uMp∥ℓ1
∥fMr � uMr∥ℓ1

}
6 1 + ε for every r, p ∈ B �M(4.5)

with min r = min p

Let C be the set of minimal elements of {uMr : r ∈ B � M}. For every u ∈ C,
choose ru ∈ B � M such that u = uMru

. It follows from Theorem 4.1 that there is
N ⊆M such that ∥fMru

� (N r u)∥ℓ1 6 ε for every u ∈ C � N . Now let r ∈ B � N .
Let u ∈ C � N be such that u ⊑ uMr

. Since min ru = minu = minuMr
= min r, it

follows from (4.5) that

∥fMr � uMr∥ℓ1 6 (1 + ε)∥fMru
� u∥ℓ1 6 (1 + ε)∥fMru

� tMru
∥ℓ1 .

Since in addition ∑
n∈sMrru,n>min tMr

|(fMru
)n| 6 ∥fMru

� (N r u)∥ℓ1 6 ε,

the vector g := fMru
and u contradict the fact that sMr , tMr and fMr are a coun-

terexample to (a), (b) and (c). �

Remark 4.4. The previous theorem is the combinatorial core of the result of Elton
[El] stating that for every δ > 0 every normalized weakly null sequence (xn)n has
a subsequence (yn)n such that∥∥∥∥∑

n∈t

anyn

∥∥∥∥ 6 17
(
log2(1/δ) + 1

)∥∥∥∥∑
n

anyn

∥∥∥∥
for every sequence of scalars (an)n such that supn |an| 6 1 and every t ⊆ {n ∈ N :
|an| > δ}. The proof goes as follows: Fix δ < 1, and fix a normalized weakly null
sequence (xn)n in some Banach space X. Let ε > 0 be small enough such that

ε
(
log2(1/δ) + 1

)
6 1

16(1 + ε)2
− 1

17
.

Apply Mazur’s Theorem 4.2 and Theorem 4.5 to N := {(x∗(xn))n : x∗ ∈ BX∗} and
εδ/(2(1+ε)) to find an infinite setM with the properties (a), (b) and (c) in Theorem
4.5 and such that (xn)n∈M is a (1 + ε)-basic sequence. We claim that (xn)n∈M is
the desired subsequence: Fix scalars (an)n∈s, s ⊆ M , with maxn∈s |an| 6 1 and
t ⊆ {n ∈ s : |an| > δ}. Let f ∈ BX∗ be such that

f

(∑
n∈t

anxn

)
=

∥∥∥∥∑
n∈t

anxn

∥∥∥∥.
Let n0 := L2(1/δ). We discretize the log function by considering for x > 1, L2(x)
as the minimal integer n such that x 6 2n. Observe that L2(x) 6 log2(x) + 1. Let
u ⊆ t be such that

1. f(xn) · f(xm) > 0 for every m,n ∈ u.
2. an · am > 0 for every m,n ∈ u.
3. maxm,n∈u |an|/|am| 6 2.
4. |

∑
n∈u anf(xn)| > 1/(4L2(1/δ))f(

∑
n∈t anxn) = 1/(4L2(1/δ))∥

∑
n anxn∥.
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Now use the properties ofM to find g ∈ BX∗ and v ⊆ u such that g(xn) ·g(xm) > 0
for every m,n ∈ v, |

∑
n∈u f(xn)| 6 (1 + ε)|

∑
n∈v g(xn)n|, and in addition such

that
∑

n∈srv,n>min v f(xn)| 6 ε/δ(2(1 + ε)). Observe that it follows∑
n∈srv,n>min v

|g(xn)| 6
εδ

2(1 + ε)
6 ε

∥∥∥∥∑
n∈t

anxn

∥∥∥∥,
since (xn)n∈M is (1+ ε)-basic, and minn∈t |an| > δ. Use 3. to find 0 6 k < L2(1/δ)
such that 1/2k+1 6 |an| 6 1/2k for every k ∈ u. Hence,∥∥∥∥∑

n∈s

anxn

∥∥∥∥ > 1

2(1 + ε)

∥∥∥∥ ∑
n>min v

anxn

∥∥∥∥
> 1

2(1 + ε)

∣∣∣∣g( ∑
n>min v

anxn

)∣∣∣∣
> 1

2(1 + ε)

∣∣∣∣∑
n∈v

ang(xn)

∣∣∣∣− ε

∥∥∥∥∑
n∈t

anxn

∥∥∥∥
> 1

2(1 + ε)2k+1

∣∣∣∣∑
n∈v

g(xn)

∣∣∣∣− ε

∥∥∥∥∑
n∈t

anxn

∥∥∥∥
> 1

2(1 + ε)22k+1

∣∣∣∣∑
n∈u

f(xn)

∣∣∣∣− ε

∥∥∥∥∑
n∈t

anxn

∥∥∥∥
> 1

4(1 + ε)2

∣∣∣∣∑
n∈u

anf(xn)

∣∣∣∣− ε

∥∥∥∥∑
n∈t

anxn

∥∥∥∥
> 1

16(1 + ε)2L2(1/δ)

∥∥∥∥∑
n∈t

anxn

∥∥∥∥− ε

∥∥∥∥∑
n∈t

anxn

∥∥∥∥
> 1

17L2(1/δ)

∥∥∥∥∑
n∈t

anxn

∥∥∥∥
> 1

17(log2(1/δ) + 1)

∥∥∥∥∑
n∈t

anxn

∥∥∥∥.
Problem 1. Does there exist a constant C such that for every δ > 0 every nor-
malized weakly null sequence (xn)n has a subsequence (yn)n such that∥∥∥∥∑

n∈t

anyn

∥∥∥∥ 6 C

∥∥∥∥∑
n

anyn

∥∥∥∥
for every sequence of scalars (an)n such that supn |an| 6 1 and every t ⊆ {n ∈ N :
|an| > δ}?

4.2. Maurey–Rosenthal example. We give now an example of a compact subset
without hereditary traces in a very strong sense.

Theorem 4.6. There exists a compact and bounded subset N ⊆ c0 such that for

every M ⊆ N one has that N [M ]
⊆
̸⊆ C · conv(±N [M ]) for every C > 0.
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Proof. Choose a fast increasing sequence (mi) such that

∞∑
i=0

∑
j ̸=i

min
(√

mi/mj ,
√
mj/mi

)
6 1.

Let FIN[<∞] be the collection of all finite block sequences s0 < s1 < · · · < sk of

nonempty finite subsets of N. Now choose a 1–1 function σ : FIN[<∞] → {mi}
such that σ((si)

n
i=0) > sn for all (si) ∈ FIN[<∞]. Now let BMR be the family of

unions s0 ∪ s1 ∪ · · · ∪ sn of finite sets such that
(a) n = min s0 = #s0,
(b) (si) is block and
(c) #(si) = σ(s0, . . . , si−1) (1 6 i 6 n).
It is not difficult to see that BMR is a ω2-uniform barrier on N. Observe that by

definition, every s ∈ BMR has a unique decomposition s = s0 ∪ · · · ∪ sn satisfying
(a), (b) and (c) above. Now define the mapping φ : BMR → c00,

φ(s) =
n∑

i=0

1

(#si)1/2
1si .

Then φ is a U-mapping. It follows easily that φ extends uniquely to a U-mapping

φ̄ : BMR
⊑ → c00. Let N := φ̄′′(BMR

⊑
). Fix M ⊆ N and C > 0. We work to prove

that N [M ]
⊆
̸⊆ C · conv(N [M ]). Now let s = s0 ∪ · · · ∪ sn ∈ BMR �M be such that

n > 6C + 2. Suppose that g :=
∑

i6n, i even(#si)
−1/2

1si ∈ C · conv(N [M ]). Let

f1, . . . fk ∈ N , a1, . . . , ak be such that |a1|+ · · ·+ |ak| 6 C and be such that

(4.6)

∥∥∥∥g − ( k∑
i=1

aifi

)
� s

∥∥∥∥
ℓ1

6 1

Notice that ⟨
g,

n∑
i=0

(−1)i
1

(#si)1/2
1si

⟩
= ⌈n/2⌉

Set f := (
∑k

i=1 aifi) � s and x :=
∑n

i=0(−1)i(#si)
−1/2

1si . It follows from (4.6)
that |⟨f, x⟩|>⌈n/2⌉−ε. So, there must be i 6 k such that |⟨fi, x⟩|>(2/C)(⌈n/2⌉−1),
because it can be proved that for every h ∈ N one has that |⟨h, x⟩| 6 3 We refer
the reader to [Lo-To] for more details. �

Remark 4.5. The previous example corresponds to the first in literature weakly-
null sequence in a Banach space without unconditional subsequences by Maurey
and Rosenthal [Ma-Ro].

4.3. Rosenthal’s ℓ1-dichotomy. The following is an structural result for compact
and bounded families. It corresponds to the classical result by Rosenthal [Ro] stat-
ing that every bounded sequence in a Banach space has a subsequence equivalent
to the unit basis of ℓ1 or a weakly-Cauchy subsequence. The proof we present here
is extracted from [Lo-To], and it uses some of the results on FIN2 we exposed in
Subsection 3.1.
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Theorem 4.7 (Rosenthal’s ℓ1-dichotomy). Suppose that N ⊆ RN is compact and
bounded. Then there is an infinite subset M ⊆ N such that

(a) either every sequence in N is convergent in M
(i.e., ((f)n)n∈M is convergent for every f ∈ N ), or

(b) there is a closed non-trivial interval I ⊆ R such that IM ⊆ (conv(N [M ])).

Proof. Let U be the collection of all A ∈ FIN2 with the property that there is some
(xn)n ∈ N such that |xmin s − xmax s| > 1/2minminA. This is clear an hereditary
family, so we use Lemma 3.1 to find M ⊆ N such that either U � M is compact
or U � M = FIN2 � M . Suppose first that U � N is compact. We claim that
(xn)n∈M is convergent for every (xn)n ∈ N . Otherwise, we could find ε > 0 and
{kn}n∈N ⊆M such that |xk2n − xk2n+1 | > ε. Going to a subsequence if needed, we

assume that ε > (2−k0). This means that {{k2n, k2n+1}}n6m ∈ U � M for every
m, and consequently, U �M is not compact.

Suppose now that U � M = FIN2 � M . Let m0 < m1 be the first two elements
of M , and let M0 =M r {m0,m1}. Let Uε be the collection of all A ∈ FIN2 such
that there is some (xn)n ∈ N with the property that |xmin s − xmax s| > ε for every
s ∈ A. It follows from our assumptions that Uε � M0 = FIN2 � M0. Let D be a
finite ε/3-net of the interval [−K,K], where K > 0 is such that N ⊆ [−K,K]N.
We define, for (d0, d1) ∈ D[2], the sets

U<
(d0,d1)

= {A ∈ FIN2 �M0 : there is (xn)n ∈ N
with xmin s 6 d0 and xmax s > d1 ∀s ∈ A}.

U>
(d0,d1)

= {A ∈ FIN2 �M0 : there is (xn)n ∈ N
with xmin s > d1 and xmax s 6 d0 ∀s ∈ A}.

Observe that every A ∈ FIN2 � M0 is the union of elements of U(d0,d1)’s, and that

each U(d0,d1) is hereditary. By Corollary 3.1 there is N ⊆ M0 and (d0, d1) ∈ D[2]

and ∗ ∈ {<,>} such that FIN2 � P = U∗
(d0,d1)

� P . We assume that ∗ is <, because

the other case when ∗ is > is treated in a similar manner. Now set P = {n2k+1}k,
where {nk}k is the increasing enumeration of N . We claim that for every disjoint
s, t subsets of N there is (xn)n ∈ N such that

xn 6 d0 and xm > d1 for every n ∈ s and m ∈ t:

This follows from the fact that there is A ∈ FIN2 � N such that s = P ∩ {minu :

u ∈ A} and t = P ∩ {maxu : u ∈ A}. This implies that [d0, d1]
P ⊆ (conv(N [P ])),

because it follows that for every sequence (εn)n∈P of 0, 1 there exists (xn)n ∈ N
such that xn > dεn if εn = 1 and xn 6 dεn if εn = 0 for every n ∈ P . Consequently,
for every s ⊑ P , every (tn)n∈s ∈ [d0, d1]

s, and every sequence of 0, 1 (εn)n∈P/s there

is (xn)n ∈ conv(N ) such that xn = tn if n ∈ t, and xn 6 d0 if εn = 0 and xn > d1

if εn = 1 for every n ∈ P/t. This easily implies that [d0, d1]
P ⊆ conv(N [P ]) =

conv(N [P ]). �
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