
Miloš S. Kurilić*
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Abstract. This is a survey of some recent results concerning several
classifications of relational structures related to the properties of their
self-embedding monoids. For example, if ≼R is the right Green’s pre-
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and the properties of their posets of copies, and the corresponding
classification of structures and classification of posets representable
in this way will be presented.
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1. Introduction

This paper is a survey of some recent results concerning the partial orders of
copies of relational structures. More precisely, assuming that L = ⟨Ri : i ∈ I⟩
is a relational language, where arL(Ri) = ni ∈ N, for i ∈ I, that X is a non-
empty set, ⟨ρi : i ∈ I⟩ ∈

∏
i∈I P (X

ni) = IntL(X) an interpretation of L and
X = ⟨X, ⟨ρi : i ∈ I⟩⟩ ∈ ModL(X) the corresponding L-structure, by P(X) we
denote the set of domains of substructures of X isomorphic to X, that is

P(X) =
{
A ⊂ X :

⟨
A, ⟨ρi ∩Ani : i ∈ I⟩

⟩ ∼= X
}
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and order it by the inclusion. Clearly we have {X} ⊂ P(X) ⊂ [X]|X| so the partial
order ⟨P(X),⊂⟩ is a suborder of the Boolean lattice ⟨P (X),⊂⟩. Since P(X) =
{f [X] : f ∈ Emb(X)}, where Emb(X) is the set of self-embeddings of the structure
X, and since the poset ⟨P(X),⊂⟩ is isomorphic to the antisymmetric quotient of the
inverse of the right Green’s preorder on the monoid ⟨Emb(X), ◦, idX⟩ (see [21]) the
investigation of posets of copies can be regarded as a part of the investigation of
self-embedding monoids of stuctures, but this aspect will be ignored in this survey.

The correspondence X 7→ ⟨P(X),⊂⟩ can be extended to a functor Π from the
category Mod of all relational structures and isomorphisms into its subcategory
POSET of all posets: for a structure X, Π(X) = ⟨P(X),⊂⟩ and, for f ∈ Iso(X,Y),
the isomorphism Π(f) ∈ Iso(⟨P(X),⊂⟩, ⟨P(Y),⊂⟩) is given by Π(f)(A) = f [A], for
all A ∈ P(X). In the sequel, in order to simplify notation, instead of ⟨P(X),⊂⟩, we
will write P(X) whenever the context admits.

Generally speaking we investigate the posets of copies of specific structures, the
interplay between the properties of structures and the properties of their posets of
copies, and, finally, the corresponding classification of structures and classification
of posets representable in this way. In order to obtain a coarse classification of
representable posets we transform them into complete Boolean algebras. Namely,
to each structure we adjoin a complete Boolean algebra in the following natural
way. We remind the reader that a partial order P = ⟨P,6⟩ is called separative
iff for each p, q ∈ P satisfying p ̸6 q there is r ∈ P such that r 6 p and r ⊥ q.
The separative modification of P is the preorder smP = ⟨P,6∗⟩, where p 6∗ q iff
∀r 6 p ∃s 6 r s 6 q. The separative quotient of P is the separative partial order
sqP = ⟨P/=∗,E⟩, where p =∗ q ⇔ p 6∗ q∧q 6∗ p and [p] E [q] ⇔ p 6∗ q. If P is a
separative partial order, by roP we will denote its Boolean completion. Thus, if Sep
denotes the subcategory of the category POSET containing all separative posets
and CBA+ its subcategory determined by all complete Boolean algebras without
zero, then, according to the following diagram,

Mod
Π−→ POSET

sq−→ Sep
ro+−→ CBA+

to each relational structure X we adjoin the posets P(X), sqP(X) and (ro sqP(X))+.
Again, since an isomorphism of posets generates an isomorphism of their separa-
tive quotients which generates an isomorphism of their Boolean completions, the
mappings sq, ro+ and ro+ ◦ sq ◦ Π : Mod → CBA+ can be regarded as functors.

Now, if C ⊂ Mod is a class of structures, a poset P will be called representable
(resp. sq-representable, ro-representable) over C iff P is isomorphic to the poset
P(X) (resp. sqP(X), ro sqP(X)) for some X ∈ C. Clearly a natural question is:
Which posets are representable (sq-representable, ro-representable) over Mod or
over a given class C?

Although the problem of characterization of representable posets seems to be too
general and out of reach, there are some natural restrictions. We remind the reader
that a partial order with a largest element P = ⟨P,6, 1P⟩ is called homogeneous iff
it is isomorphic to the principal ideal p↓:= {q ∈ P : q 6 p}, for each p ∈ P .
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Example 1.1. If X is the ordinal ω with the natural linear ordering, ⟨ω,<⟩, then,
clearly, P(X) = [ω]ω and, clearly again, ⟨P(X),⊂⟩ is a homogeneous partial order.

The homogeneity of the poset of copies of the structure from Example 1.1 is, in
fact, a general rule. Moreover we have the following restrictions.

Theorem 1.1. [14] For each relational structure X the poset ⟨P(X),⊂⟩ is
(a) homogeneous,
(b) of size 1 or infinite,
(c) atomic or atomless.

If, in particular, X is a countable set, then the set P(X) is
(d) analytic, regarded as a subset of the Cantor cube, 2X ,
(e) of size 1 or ω or c,
(f) equal to [X]ω or a nowhere dense set in the poset ⟨[X]ω,⊂⟩.

The following statement gives one restriction for Boolean algebras.

Theorem 1.2. [20] The algebra ro sqP(X) is a homogeneous complete Boolean
algebra, for each relational structure X.

Thus all representable Boolean algebras must be homogeneous and

(ro+ ◦ sq ◦ Π)[Mod] ⊂ HCBA+,

where HCBA+ denotes the category of homogeneous complete Boolean algebras
without zero. Hence the investigation of the algebras representable over the class
of relational structures can be regarded as a part of the investigation of the class
of homogeneous complete Boolean algebras.

Concerning the problem of representability of Boolean algebras, we note that
Theorem 1.2 has the following consequence, which gives a possibility to use the
methods of forcing in our investigation. We remind the reader that, if V is a
model of set theory, then preorders P and Q belonging to V are said to be forcing
equivalent, in notation P ≡ Q, iff P and Q produce the same generic extensions. It
is well known that P ≡ sqP ≡ ro sqP, for each poset P.

Theorem 1.3. [20] Let X and Y be relational structures. Then

ro sqP(X) ∼= ro sqP(Y) ⇔ P(X) ≡ P(Y).

Thus representable Boolean algebras are isomorphic iff the corresponding posets
of copies are forcing-equivalent.

We make one more remark concerning the algebras representable over the class
of indivisible structures. (A structure X is called indivisible iff for each partition
X = A ∪B there is C ∈ P(X) such that C ⊂ A or C ⊂ B).

Theorem 1.4. [14] A relational structure X is indivisible iff

IX := {I ⊂ X : I does not contain a copy of X} is an ideal in P (X).

Theorem 1.5. [14] If X is an indivisible relational structure, then

(a) ro sqP(X) ∼= ro(P (X)/IX)+.
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If, in addition, X is a countable structure, then

(b) IX = Fin or IX is a co-analytic tall ideal;
(c) sqP(X) is an atomless partial order of size c.

So, the investigation of the algebras representable over the class of countable
indivisible structures can be regarded as a part of the investigation of the Boolean
algebras of the form P (ω)/I, where I ⊂ P (ω) is a co-analytic tall ideal.

Four binary structures (that is, the structures of the form X = ⟨X, ρ⟩, where
ρ ⊂ X2) considered in Example 1.2 and the corresponding posets P(X), sqP(X)
and (ro sqP(X))+ are described in Figure 1.
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Figure 1. Functors Π, sq and ro+

Example 1.2. (a) For the linear order ⟨ω,<⟩ we have P(⟨ω,<⟩) = [ω]ω and, hence,
sq⟨P(⟨ω,<⟩),⊂⟩ ∼= (P (ω)/Fin)+.

(b) For the linear graph Gω = ⟨ω, ρ⟩, where mρn iff |m − n| = 1, we have
P(Gω) = {[n,∞)ω : n ∈ ω}, the poset ⟨P(Gω),⊂⟩ is isomorphic to the linear order
ω∗ which is an atomic poset and, hence, sqP(Gω) ∼= (ro sqP(Gω))

+ ∼= 1.
(c) Let D<ω2 be the digraph ⟨<ω2, ρ⟩, where ρ = {⟨φ,φai⟩ : φ ∈ <ω2 ∧ i ∈ 2}.

It is easy to check (see [14]) that P(D<ω2) = {Aφ : φ ∈ <ω2}, where the sets Aφ,
φ ∈ <ω2, are defined by Aφ = {ψ ∈ <ω2 : φ ⊂ ψ}, and that ⟨P(D<ω2),⊂⟩ is a
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separative poset isomorphic to the reversed binary tree ⟨<ω2,⊃⟩ (the forcing which
adds one Cohen real). So sq⟨P(D<ω2),⊂⟩ ∼= ⟨<ω2,⊃⟩ and ro sq⟨P(D<ω2),⊂⟩ ∼=
Borel /M.

(d) Let GZ = ⟨Z, ρ⟩ be the linear graph, where mρn iff |m − n| = 1. Then
|P(GZ)| = 1, which implies sqP(GZ) ∼= (ro sqP(GZ))

+ ∼= 1.

Concerning the ro-representability of Boolean algebras, we note that three simple
structures from Figure 1, Gω, D<ω2 and ⟨ω,<⟩, determine three Boolean algebras
generated by a large subclass of the class of countable binary structures, especially
under CH. Namely, in [14], on the basis of Theorems 1.1, 1.4 and some additional
statements and examples, the classification of countable binary structures related
to the properties of their posets of copies and described in Figure 2 is obtained.
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Figure 2. A classification of countable binary structures
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So, the posets of copies of the structures from column A (resp. B; D) are forcing
equivalent to the trivial poset (resp. to the Cohen forcing, ⟨<ω2,⊃⟩; to a separative
atomless ω1-closed poset, and under CH to (P (ω)/Fin)+).

By the results of Section 2 (see Remark 2.1) several statements concerning count-
able binary structures can be transformed into general ones and, hence, in Sections
4–8 we consider these structures following their classification from Figure 2.

2. Different similarities

The functors Π, sq ◦Π and ro ◦ sq ◦Π induce coarse classifications of relational
structures; for example, conditions P(X) = P(Y), P(X) ∼= P(Y), sqP(X) ∼= sqP(Y),
ro sqP(X) ∼= ro sqP(Y) and P(X) ≡ P(Y) define equivalence relations (“similari-
ties”) on the class Mod of all relational structures and their interplay with the
similarities defined by X = Y, X ∼= Y and X � Y (equimorphism) was consid-
ered in [20]. First, it is natural to ask whether a similarity of structures implies a
similarity of their posets of copies, and in particular we have

Theorem 2.1. [20] If X and Y are structures of the same relational language, then

(a) X ∼= Y ⇒ P(X) ∼= P(Y)
(b) X � Y ⇒ P(X) ≡ P(Y).
In general, Figure 3 describes the implications between the mentioned forms of

similarity of relational structures; for example, line n denotes the statement that
equimorphic structures have forcing-equivalent posets of copies (Theorem 2.1(b)).

Of course we can restrict our consideration to smaller classes of structures. For
example, if L = ⟨Ri : i ∈ I⟩ is a relational language and X is a set, then restricting
our similarity relations to the set ModL(X) or equivalently, to the corresponding
set of interpretations, IntL(X), we obtain the following equivalence relations: for
ρ = ⟨ρi : i ∈ I⟩, σ = ⟨σi : i ∈ I⟩ ∈ IntL(X) (writing P(ρ) instead of ⟨P(⟨X, ρ⟩),⊂⟩,
ρ ∼= σ instead of ⟨X, ρ⟩ ∼= ⟨X,σ⟩ and similarly for ρ� σ)
ρ ∼0 σ ⇔ ρ = σ,
ρ ∼1 σ ⇔ P(ρ) = P(σ) ∧ ρ ∼= σ,
ρ ∼2 σ ⇔ P(ρ) = P(σ) ∧ ρ� σ,
ρ ∼3 σ ⇔ ρ ∼= σ,
ρ ∼4 σ ⇔ P(ρ) = P(σ),
ρ ∼5 σ ⇔ P(ρ) ∼= P(σ) ∧ ρ� σ,
ρ ∼6 σ ⇔ P(ρ) ∼= P(σ),
ρ ∼7 σ ⇔ sqP(ρ) ∼= sqP(σ) ∧ ρ� σ,
ρ ∼8 σ ⇔ sqP(ρ) ∼= sqP(σ),
ρ ∼9 σ ⇔ ρ� σ,
ρ ∼10 σ ⇔ P(ρ) ≡ P(σ),
ρ ∼11 σ ⇔ 0 = 0.

Then the diagram of implications on the set ModL(X) is displayed in Figure 4 and
it is natural to ask are there more implications in it (except the ones which follow
from the transitivity)? Are some of the implications a–o, in fact, equivalences?

Concerning the last question the class of all relational structures splits into three
parts:
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��������
HHHHHHHH

��������
��������

HHHHHHHH
HHHHHHHH

��������
��������

HHHHHHHH

r
r
r r

r r
r r
r r

r
r

X = Y

P(X) = P(Y)

X ∼= Y

P(X) ∼= P(Y)

X � YsqP(X) ∼= sqP(Y)

ro sqP(X) ∼= ro sqP(Y) ⇔ P(X) ≡ P(Y)

P(X) = P(Y) ∧ X ∼= Y
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sqP(X) ∼= sqP(Y) ∧ X � Y

the full relation
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Figure 3. The hierarchy of similarities between relational structures

– Finite structures,
– Infinite structures of unary languages,
– Infinite structures of non-unary languages.

(A language L = ⟨Ri : i ∈ I⟩ is called unary iff ar(Ri) = 1, for all i ∈ I.)

2.1. Finite structures. For finite structures the posets of copies are trivial and
the diagram from Figure 4 collapses significantly. Let us call a class C of structures
a Cantor–Schröder–Bernstein (CSB) class iff

∀X,Y ∈ C (X � Y ⇒ X ∼= Y).

Theorem 2.2. [20] For any relational language L and any finite set X we have
(a) P(X) = {X}, for each X ∈ ModL(X);
(b) ModL(X) is a CSB class;
(c) Figure 5 describes the hierarchy of the similarities ∼k on the set ModL(X),

for |X| > 1. In addition, ∼0=∼1 iff |X| = 1.
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Figure 4. The hierarchy of similarities on ModL(X)

r
r
r ∼4 = ∼6 = ∼8 = ∼10 = ∼11 = the full relation

∼1 = ∼2 = ∼3 = ∼5 = ∼7 = ∼9 = the isomorphism

∼0 = the equality

Figure 5. The hierarchy of the similarities for finite structures

2.2. Infinite unary structures. The class of posets representable over the class of
unary structures is very limited. The following theorem gives a characterization of
such partial orders.

Theorem 2.3. [20] Let L be a unary relational language and κ > ω a cardinal.
Then
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(a) If 2|L| < κ, then a poset P is representable over ModL(κ) iff

(2.1) P ∼=
∏
j∈J

⟨[κj ]κj ,⊂⟩

for a family of infinite cardinals {κj :j ∈ J} such that |J |62|L| and
∑

j∈J κj = κ;

(b) If 2|L| > κ, then a poset P is representable over ModL(κ) iff P ∼= 1 or (2.1)
holds for some family of infinite cardinals {κj : j ∈ J} such that

∑
j∈J κj 6 κ.

Concerning the problem of representability of Boolean algebras we note that

ro sq
∏

j∈J⟨[κj ]κj ,⊂⟩ = ro
∏

j∈J(P (κj)/[κj ]
<κj )+.

In particular, under GCH, the posets of copies of all L structures of size κ > 2|L|

are forcing equivalent to one or two collapsing algebras. More precisely, we have

Theorem 2.4. [20] (GCH) Let L be a unary relational language and κ > 2|L|

an infinite cardinal. Then a complete Boolean algebra B is ro-representable over
ModL(κ) iff

B ∼=


Coll(ω1, ω1) if ω = κ,

Coll(ω, κ+) if ω < cf κ = κ,

Coll(ω, κ+) if ω < cf κ < κ ∧ 2|L| < cf κ,

Coll(ω, κ+) or Coll(ω1, κ
+) if cf κ < κ ∧ (ω = cf κ ∨ 2|L| > cf κ).

Regarding the similarities of infinite unary structures we have

Theorem 2.5. [20] For any unary language L and infinite cardinal κ we have
(a) ModL(κ) is a CSB class;
(b) Figure 6 describes the hierarchy of the similarities ∼k, for k ̸= 8, 10, on

ModL(κ). If κ is a regular cardinal and 2κ = κ+, then ∼8 ̸= ∼10.
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∼4

= the equality of P(X)
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∼3 = ∼5 = ∼7 = ∼9

= the isomorphism = the equimorphism

∼0 = the equality

Figure 6. The hierarchy of similarities for unary structures

The following theorem shows that the equivalence of the similarities ∼8 (the
isomorphism of sqP(X)) and ∼10 (the isomorphism of ro sqP(X)) is independent of
ZFC even for the simplest unary language.
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Theorem 2.6. [20] If L is the language containing only one unary relational sym-
bol, then on ModL(ω) we have ∼8 = ∼6 and

∼10 =

{
∼11 if the poset (P (ω)/Fin)+ is forcing equivalent to its square,

∼6 otherwise.

So, under CH, a complete Boolean algebra B is representable over ModL(ω) iff
B ∼= roP (ω)/Fin.

2.3. Infinite non-unary structures. For infinite structures of non-unary languages
the diagram from Figure 4 does not collapse at all. Namely we have

Theorem 2.7. [20] If L is a non-unary relational language and κ an infinite car-
dinal, then in the diagram from Figure 4 describing the similarities ∼k on the set
ModL(κ) all the implications a–o are proper and there are no new implications
(except the ones which follow from transitivity).

Concerning the proof of the previous theorem we note that first we prove the
statement for countable binary structures (constructing, for example, structures
X and Y such that sqP(X) ∼= sqP(Y) but P(X) ̸∼= P(Y)) and then we apply the
following statement, which is of independent interest. Let Lb be the language with
exactly one binary relational symbol, λ an infinite cardinal and Int∗Lb

(λ) ⊂ IntLb
(λ)

the set of binary relations ρ ⊂ λ2 such that ρrst = λ2 (where ρrst is the minimal
equivalence relation on λ containing ρ, see the next section) and ρ ∩∆λ ̸= ∅.

Theorem 2.8. [20] If κ > λ is a cardinal and L = ⟨Ri : i ∈ I⟩ a non-unary
relational language, then there is a mapping τ : Int∗Lb

(λ) → IntL(κ) such that
(a) P(κ, τ(ρ)) ∼= P(λ, ρ), for each ρ ∈ Int∗Lb

(λ);
(b) τ preserves all the relations ∼k from Figure 4, that is for each k 6 11

∀ρ, σ ∈ Int∗Lb
(λ) (ρ ∼k σ ⇔ τ(ρ) ∼k τ(σ)).

(c) Each poset representable over the class ModLb
(λ) is representable over the

classes Mod∗Lb
(λ) and ModL(κ).

The previous theorem has the following consequence related to the problem of
representability of posets.

Corollary 2.1. [20] If a poset P is representable over the class of countable binary
structures, then it is representable over the class ModL(κ), for each non-unary
relational language L and each infinite cardinal κ.

Remark 2.1. By the results of this section, concerning the representability of
posets and the hierarchy of similarities over the classes of finite or unary structures
we have a sufficiently clear picture. Thus infinite structures of non-unary languages
(whose diagram of similarities is given in Figure 4) remain to be explored. By
Theorem 2.8(c), the posets representable over the class of binary structures of size
λ are representable over the class ModL(κ), for any non-unary relational language
L and any cardinal κ > λ, so, it is reasonable to consider binary structures first.
So in the rest of the paper we are mainly concerned with binary structures and, in
particular, with countable ones, whose rough classification is given in Figure 2.
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3. Intermezzo: copies of disconnected binary structures

It turns out that the following natural concept of connectedness of a relational
structure (similar to the corresponding concepts in topology and graph theory) gives
us an efficient tool for investigation of posets of copies of structures, especially for
constructing examples. If X = ⟨X, ρ⟩ is a binary structure, then the transitive
closure ρrst of the relation ρrs = ∆X ∪ρ∪ρ−1 (given by x ρrst y iff there are n ∈ N
and z0 = x, z1, . . . , zn = y such that zi ρrs zi+1, for each i < n) is the minimal
equivalence relation on X containing ρ. For x ∈ X the corresponding element of the
quotient X/ρrst will be denoted by [x] and called the component of X containing
x. The structure X will be called connected iff |X/ρrst| = 1.

If Xi = ⟨Xi, ρi⟩, i ∈ I, are binary structures and Xi ∩ Xj = ∅, for different
i, j ∈ I, then the structure

∪
i∈I Xi =

⟨∪
i∈I Xi,

∪
i∈I ρi

⟩
will be called the disjoint

union of the structures Xi, i ∈ I. By [14] we have

Fact 3.1. [14] If X = ⟨X, ρ⟩ is a binary structure, then
(a)

⟨∪
x∈X [x],

∪
x∈X ρ[x]

⟩
is the unique representation of X as a disjoint union

of connected structures;
(b) at least one of the structures X and Xc is connected.

Fact 3.2. [14] Let ⟨X, ρ⟩ and ⟨Y, τ⟩ be binary structures and f : X → Y an
embedding. Then for each x ∈ X

(a) f [[x]] ⊂ [f(x)];
(b) f | [x] : [x] → f [[x]] is an isomorphism;
(c) If, in addition, f is an isomorphism, then f [[x]] = [f(x)].

So, roughly speaking, embeddings of structures must respect their components.
In addition, for the embeddings of disconnected structures and their copies, we
have the following descriptions from [14].

Theorem 3.1. [14] Let {Xi : i ∈ I} and {Yj : j ∈ J} be families of disjoint
connected binary structures and X = ⟨X, ρ⟩ and Y = ⟨Y, σ⟩ their unions. Then

(a) F is an embedding of X into Y if and only if there is a mapping f : I → J
and there are embeddings gi : Xi ↪→ Yf(i), for i ∈ I, such that F =

∪
i∈I gi and

∀{i, i′} ∈ [I]2 ∀x ∈ Xi ∀y ∈ Xi′ ¬ gi(x)σrs gi′(y).

(b) C ∈ P(X) if and only if there is a mapping f : I → I and there are embeddings
gi : Xi ↪→ Xf(i), for i ∈ I, such that C =

∪
i∈I gi[Xi] and

∀{i, i′} ∈ [I]2 ∀x ∈ Xi ∀y ∈ Xi′ ¬ gi(x) ρrs gi′(y).

For some structures (for example, for the disjoint union
∪

n∈NGn of linear graphs
(paths) Gn of size n) there are self-embeddings which map more components into
one, which produces a chaotic picture of the set of copies. But this is impossible
in the three classes of structures described below (and containing some important
subclasses) where the investigation of posets of copies and their forcing equivalents
becomes easier. Applications of the following three theorems will be given in the
rest of the paper.
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3.1. Structures with embedding-incomparable components. Relational struc-
tures X and Y will be called embedding-incomparable, in notation X ∥ Y, iff
X ̸↪→ Y and Y ̸↪→ X. Since each self-embedding of a structure with embedding-
incomparable components must map each component into itself we have

Theorem 3.2. [14] Let {Xi : i ∈ I} be a family of disjoint connected and pairwise
embedding-incomparable binary structures and X its union. Then the elements of
P(X) are of the form

∪
i∈I Ci, where Ci ∈ P(Xi), for i ∈ I, and, hence

P(X) ∼=
∏
i∈I

P(Xi) and sqP(X) ∼=
∏
i∈I

sqP(Xi)

3.2. Structures with maximally embeddable components. We will say that a
structure X is maximally embeddable into a structure Y if P(X,Y) = [Y ]|X|. Clearly,
equivalence relations are structures with maximally embeddable components and
the following theorem is related to the posets of copies of such structures. We
recall that Fin×Fin denotes the Fubini product of the ideal Fin = [ω]<ω, that
∆ := {⟨m,n⟩ ∈ N× N : n 6 m} and that the ideal EDfin ⊂ P (∆) is defined by

EDfin = {S ⊂ ∆ : ∃r ∈ N ∀m ∈ N |S ∩ ({m} × {1, 2, . . . ,m})| 6 r}.
Let h(P) denote the distributivity number of a separative poset P and let hn =
h(((P (ω)/Fin)+)n); thus h = h1. The following results will be used in the sequel.

Theorem 3.3. (a) (P (ω × ω)/(Fin×Fin))+ is an ω1-closed, but not ω2-closed
poset (Szymański and Zhou [36]).

(b) Con[h((P (ω × ω)/(Fin×Fin))+) < h] (Hernández-Hernández [9]).
(c) Con[hn+1 < hn], for each n ∈ N (Shelah and Spinas [34, 35]).
(d) Con[h((P (∆)/EDfin)

+) < h] (Brendle [2]).

Theorem 3.4. [15] Let the components Xi, i ∈ I, of a countable binary structure
X = ⟨X, ρ⟩ be pairwise maximally embeddable and such that for each i, j ∈ I and
each A,B ∈ [Xj ]

|Xi| there are a ∈ A and b ∈ B such that a ρrs b. If we define
N = {|Xi| : i ∈ I}, Nfin = N r {ω}, Iκ = {i ∈ I : |Xi| = κ}, for κ ∈ N , |Iω| = µ
and Y =

∪
i∈IrIω

Xi, then sqP(X) is an ω1-closed atomless poset of size c and

sqP(X) ∼=


(P (ω)/Fin)+)µ if 1 6 µ < ω, |Nfin| < ω, |Y | < ω,
((P (ω)/Fin)+)µ+1 if 0 6 µ < ω, |Nfin| < ω, |Y | = ω,
P× ((P (ω)/Fin)+)µ if 0 6 µ < ω, |Nfin| = ω,
(P (ω × ω)/(Fin×Fin))+ if µ = ω,

where P is an ω1-closed atomless poset, forcing equivalent to (P (∆)/EDfin)
+. The

structure X is indivisible iff N ∈ [N]ω or N = {1} or |I| = 1 or |Iω| = ω. Also

If X satisfies P(X) is sq P(X) is ZFC ⊢ sq P(X)
forcing equivalent to is h-distributive

µ < ω ∧ |Nfin| < ω ((P (ω)/Fin)+)n, for some n ∈ N t-closed yes iff n = 1

µ < ω ∧ |Nfin| = ω (P (∆)/EDfin)
+ × ((P (ω)/Fin)+)µ ω1-closed no

µ = ω (P (ω × ω)/(Fin×Fin))+ ω1 but not ω2-closed no

where n = 1 iff N ∈ [N]<ω ∨ (|Y | < ω ∧ µ = 1).
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3.3. Structures with strongly connected components. A connected binary struc-
ture X = ⟨X, ρ⟩ will be called strongly connected iff for each A,B ∈ P(X) there are
a ∈ A and b ∈ B such that a ρrs b. It is easy to check that linear orders, full rela-
tions, complete graphs and connected copy-atomic structures (see the next section)
are strongly connected. The binary tree ⟨<ω2,⊃⟩ is a connected, but not strongly
connected partial order.

Theorem 3.5. [18] Let κ be a cardinal and X=
∪

α<κ Xα the union of pairwise
disjoint, isomorphic and strongly connected binary structures. Then

(a) P(X) ∼= P(X0)
κ and sqP(X) ∼= (sqP(X0))

κ, if κ < ω;
(b) sqP(X) is an atomless poset, if κ > ω;
(c) sqP(X) is an ω1-closed poset, if κ = ω;
(d) sqP(X) ≡ (P (ω)/Fin)+, if κ = ω and |P(X0)| 6 2ω = ω1.

The following examples show that for infinite cardinals κ the statements of The-
orem 3.5 are the best possible.

Example 3.1. κ = ω and |P(X0)| 6 2ω, but the poset sqP(X) is not ω2-closed and
it is consistent that P(X) ̸≡ (P (ω)/Fin)+.

If X =
∪

i<ω Xi, where Xi=⟨Xi, <i⟩, i < ω, are disjoint copies of the linear order
⟨ω,<⟩, then the components of X are isomorphic, strongly connected and maximally
embeddable, so, by Theorem 3.4 we have sqP(X) ∼= (P (ω × ω)/(Fin×Fin))+, this
poset is not ω2-closed and, consistently, not h-distributive and, hence, not forcing
equivalent to (P (ω)/Fin)+.

Example 3.2. Uncountable sums. Let κ > ω and X =
∪

α<κ Xα, where Xα =
⟨{α}, ∅⟩, for α < κ. Then, clearly, P(X) = [κ]κ and sqP(X) = (P (κ)/[κ]<κ)+. It
is known [1, p. 377] that, under the GCH, the Boolean completion of the algebra
P (κ)/[κ]<κ is isomorphic to the algebra

– Coll(ω, 2κ), if cf(κ) > ω; then the poset sqP(X) is not ω1-closed;
– Coll(ω1, 2

κ), if cf(κ) = ω; then the poset sqP(X) is not ω2-closed.

In the sequel we consider countable binary structures following their classification
from Figure 2.

4. Column A

The column A is the class of countable binary structures X such that the poset
P(X) is atomic and such structures will be called copy-atomic. First we consider
its subclass A1.

4.1. A1: copy-minimal structures. A1 is the class of countable binary structures
X having only the trivial copy (i.e., satisfying P(X) = {X}) and such structures will
be called copy-minimal. Concerning the hierarchy of similarities on the class A1 (a
subclass of ModLb

(ω), see Figure 4), the relation ∼4 is the full relation and, hence,
the same holds for ∼k, for k ∈ {6, 8, 10, 11}. In addition, if X and Y are equimorphic
structures from A1 and f : X ↪→ Y and g : Y ↪→ X, then g◦f : X ↪→ X is a surjection
which implies that g is a surjection and, hence, an isomorphism; thus X ∼= Y and
A1 is a CSB class. Consequently, the relations ∼k, for k ∈ {1, 2, 3, 5, 7, 9}, are equal
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and the hierarchy of the similarities ∼k on the class A1 is the same as the hierarchy
for the class of finite structures, see Figure 5. So, restricted to the class A1, all the
similarities from Figure 4 except the isomorphism are trivial.

We comment on some properties of structures related to the copy-minimality. A
relational structure X is called:

– rigid iff Aut(X) = {idX};
– copy-minimal iff P(X) = {X} (iff Emb(X) = Aut(X));
– embedding-rigid iff Emb(X) = {idX} (iff it is rigid and copy-minimal);
– endomorphism-rigid iff End(X) = {idX};
– a Jónsson structure iff {A ⊂ X : A ≺ X ∧ |A| = |X|} = {X}.

First we note that there are copy-minimal structures of arbitrary size, which follows
from the following stronger statement.

Theorem 4.1 (Vopěnka, Pultr, Hedrĺın [37]). On any cardinal κ there is a binary
relation ρ such that ⟨κ, ρ⟩ is an endomorphism-rigid structure.

Concerning the relationship between the rigidity and copy-minimality, we note
that the linear order ⟨Z, <⟩ is neither rigid nor copy-minimal; the graph GZ =
⟨Z, ρ⟩ (see Example 1.2) is copy-minimal, but not rigid; the linear order ⟨ω,<⟩ is
a rigid Jónsson structure but not copy-minimal. A simple embedding-rigid (and,
hence rigid and copy-minimal) structure is constructed in Example 4.1(c), using the
following characterization of rigid, copy-minimal and embedding-rigid disconnected
structures.

Theorem 4.2. [19] Let X = ⟨X, ρ⟩ be a disconnected binary structure. Then
(a) X is rigid iff its components are rigid and pairwise non-isomorphic;
(b) X is copy-minimal iff its components are copy-minimal and there is no se-

quence ⟨Xn : n ∈ ω⟩ of different components of X such that Xn ↪→ Xn+1, for each
n ∈ ω.

(c) X is embedding-rigid iff its components are embedding-rigid, pairwise noniso-
morphic and there is no sequence ⟨Xn : n ∈ ω⟩ of different components of X such
that Xn ↪→ Xn+1, for each n ∈ ω.

Example 4.1. Applications of Theorem 4.2.
(a) The disjoint union X =

∪
n∈N Ln, where Ln is a chain of size n, is a rigid,

but not a copy-minimal poset, since by Theorem 3.4, the poset P(X) is forcing
equivalent to the poset (P (∆)/EDfin)

+ and, under CH, to the poset (P (ω)/Fin)+.
(b) The union of disjoint copies of cycle graphs Cn, n > 3, is a copy-minimal,

but not a rigid structure.
(c) Let X be the union of disjoint copies of the digraphs Xn = ⟨n, ρn⟩, n > 3,

where ρn =
{
⟨k, k + 1⟩ : 0 6 k 6 n − 2

}
∪
{
⟨0, n − 1⟩

}
. Since the digraphs

Xn are embedding-rigid, connected and pairwise embedding-incomparable, X is an
embedding-rigid countable structure.

By Theorem 4.2(b), the class A1 is closed under finite disjoint unions but, by
Example 4.1(a), it is not closed under infinite disjoint unions. The class A1 is not
closed under substructures since, for example, the countable empty graph embeds
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in GZ. The following theorem shows that the class A1 is not closed under infinite
products.

Theorem 4.3. [19] If κ is an infinite cardinal and X a binary structure of size
> 1, then the power Xκ is not a copy-minimal structure.

Finally, the following theorem shows that the subclass of the class A1 consist-
ing of (embedding-)rigid structures contains c many nonisomorphic elements and,
hence, the quotient A1/ ∼= is of cardinality c. A binary structure X = ⟨X, ρ⟩ will
be called very connected iff for each two different elements x and y of X we have
xρy and yρx, or there is z ∈ X such that x ρ z, z ρ x, y ρ z, and z ρ y.

Theorem 4.4. [19] For each infinite cardinal κ less than the first strongly in-
accessible cardinal there is a family of 2κ-many irreflexive, embedding-rigid, very
connected, and pairwise embedding-incomparable binary structures of size κ.1

Although the only nontrivial similarity from Figure 4 over the class A1 is the
isomorphism, there are natural, coarser classifications. Namely, if X ∼b Y denotes
that the structures X and Y are quantifier free bi-interpretable, then, by [21],

X ∼= Y ⇒ X ∼b Y ⇒ Emb(X) ∼= Emb(Y) ⇒ P(X) ∼= P(Y),
which in A1 means X ∼= Y ⇒ X ∼b Y ⇒ Aut(X) ∼= Aut(Y) ⇒ 0 = 0. So we obtain
new similarities between the isomorphism and the full relation. The following, more
general theorem describes the automorphism group of the disconnected structures
from the class A1.

Theorem 4.5. [19] Let X =
∪

α<κ Xα be a copy-minimal structure, ∼ ⊂ κ × κ,
where α1 ∼ α2 iff Xα1

∼= Xα2 and κ/∼= {[αβ ] : β < λ}. Then nβ := |[αβ ]| < ω,
for all β < λ, and Aut(X) ∼=

∏
β<λ(Sym(nβ)×Aut(Xαβ

)nβ ).

For example, if X is the disjoint union of one oriented triangle, two oriented
quadrangles, etc., then Aut(X) ∼=

∏
n>3(Sym(n− 2)× (Z/n)n−2).

4.2. Other copy-atomic structures. By Theorem 4.3(b) of [14] the poset P(X) is
atomic iff sqP(X) ∼= 1. So, restricting the similarities from Figure 4 to the class A,
we have ∼8=∼10=∼11= the full relation and ∼7=∼9 is the equimorphism. From
the following simple example from [20] it follows that the class A is not a CSB
class.

Example 4.2. The implications b and f in Figure 4 can not be reversed.

X = ⟨ω, {⟨n, n+ 1⟩ : n ∈ ω} ∪ {⟨2n, 2n⟩ : n ∈ ω}⟩,
Y = ⟨ω, {⟨n, n+ 1⟩ : n ∈ ω} ∪ {⟨2n+ 1, 2n+ 1⟩ : n ∈ ω}⟩.

Then P(X) = P(Y) = {[2n,∞) : n ∈ ω} and X � Y but X ̸∼= Y.
With some extra work (see [19]), it can be shown that Figure 7 describes the

hierarchy of the similarities ∼k on the class A (that is, all the implications are
proper).

1by Theorem 4.4, there are copy-minimal structures of size c and, since it is relatively consistent
that c is a Jónsson cardinal (i.e., that Jónsson structures of size c do not exist; see [7]), it is relatively
consistent that these structures are not Jónsson.



POSETS OF ISOMORPHIC SUBSTRUCTURES OF RELATIONAL STRUCTURES 133

��������
HHHHHHHH

��������
��������

HHHHHHHH
HHHHHHHH

r
r
r r

r r
r r
r

ρ ∼0 σ

ρ = σ

ρ ∼1 σ

P(ρ) = P(σ) ∧ ρ ∼= σ

ρ ∼2 σ

P(ρ) = P(σ) ∧ ρ � σ

ρ ∼3 σ

ρ ∼= σ

ρ ∼4 σ

P(ρ) = P(σ)
ρ ∼5 σ

P(ρ) ∼= P(σ) ∧ ρ � σ

ρ ∼6 σ

P(ρ) ∼= P(σ) ∼7 = ∼9 = the equimorphism

∼8 = ∼10 = ∼11 = the full relation

a

b c

d e f

g h i

j k

Figure 7. The hierarchy of similarities on the class A

The following theorem provides a new tool for the analysis of copy-minimal
structures. We recall that, for a set X ̸= ∅, a nonempty family B ⊂ [X]|X| is called
a uniform filter base on X iff for each A,B ∈ B there is C ∈ B such that C ⊂ A∩B.
Then FB = {F ⊂ X : ∃B ∈ B B ⊂ F} is a uniform filter on X.

Theorem 4.6. [14] A relational structure X is copy-atomic iff the set P(X) is a
uniform filter base on X. Then we have

∩
P(X) ∈ P(X) iff X is copy-minimal.

Thus, refining our analysis, we can say that copy-atomic structures X and Y
are similar if the corresponding filters FP(X) and FP(Y) are similar (in a way).
We remind the reader that the character of a filter F ⊂ P (X) is the cardinal
χ(F) = min{|B| : B ⊂ F ∧ B is a base for F}. For a filter F on a countable
set which does not contain a pseudointersection of F let us define the cardinal
p(F) = min{|P| : P ⊂ F ∧ ¬∃F ∈ F ∀P ∈ P |F r P | < ω}.

Example 4.3. (a) If X is a copy-minimal structure, then FP(X) = {X}.
(b) The linear graphGω from Example 1.2(b) is copy-atomic and the set P(Gω) =

{[n,∞)ω : n ∈ ω} is a base for the Frechét filter on ω.
(c) The graph X = C3 ∪Gω is copy-atomic since P(X) = {C3 ∪ [n,∞)ω : n ∈ ω}

and P(X) ∼= ω∗. Here we have FP(X) = {C3 ∪ (ω rK) : K ∈ [ω]<ω}.
(d) Let X be the union of n disjoint copies of the graph Gω. Since the graph

Gω is strongly connected, by Theorem 3.5(a) we have P(X) ∼= (ω∗)n. Thus P(X)
is an atomic poset (a lattice) and X is a copy-atomic structure. Here FP(X) is the
Frechét filter on X.
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(e) Let X = ⟨X, ρ⟩, where X = (ω × 3)r {⟨0, 2⟩} and

ρ = {⟨⟨m, 0⟩, ⟨m+ 1, 0⟩⟩ : m ∈ ω} ∪ {⟨⟨0, 0⟩, ⟨0, 1⟩⟩}

∪
∪
m>1

{⟨⟨m,n⟩, ⟨m, k⟩⟩ : 0 6 n < k 6 2}.

It is easy to see that the poset P(X) is isomorphic to the poset ⟨P,E⟩ where P =
(ω×2)r{⟨0, 1⟩} and ⟨p, q⟩E ⟨p′, q′⟩ iff q′ 6 q. Thus P(X) is not a lattice and FP(X)
is the Frechét filter on X again and, clearly, χ(FP(X)) = ω.

(f) For n ∈ ω let Xn be the digraph obtained by gluing an oriented (n + 3)-
angle to each node of Gω and let X be the disjoint union of these digraphs. By
Theorem 3.2 the poset P(X) is isomorphic to the lattice (ω∗)ω thus X is a copy-
atomic structure and P(X) = c. It is easy to see that the copies of X are coded
by functions f : ω → ω and that χ(FP(X)) = d and p(FP(X)) = b where d (resp. b)
is the dominating (resp. unbounding) number, the minimal size of a dominating
(resp. unbounded) family in the preorder ⟨ωω,6∗⟩.

Concerning the representability of filters by countable binary structures from
column A, we note that, by Theorem 3.1(b) of [14], for a countable relational
structure X the set P(X)↑= {S ⊂ X : ∃B ∈ P(X) B ⊂ S} is analytic. Thus FP(X)
is never an ultrafilter.

It is easy to prove that the class of copy-atomic structures is closed under finite
disjoint unions but it is not closed under countable unions. Generally, we have

Theorem 4.7. [19] If κ is an infinite cardinal and X =
∪

α<κ Xα a disjoint union
of isomorphic, connected and copy-atomic structures, then the poset P(X) is densely
embeddable in the poset ⟨[κ]κ,⊂⟩ and, hence, P(X) ≡ (P (κ)/[κ]<κ)+.

Example 4.4. Let X be the union of ω disjoint copies of the graph Gω. By
Theorem 4.7, P(X) ≡ (P (ω)/Fin)+ and, hence, X is not a copy-atomic structure.

5. Column C

Column C contains the countable binary structures X such that the poset sqP(X)
is uncountable atomless separative but not ω1-closed. It can be shown that restrict-
ing the similarities ∼k, k 6 11, to the class C, we obtain the same picture as in
Figure 4 (all the implications are proper) and we can use all of them for classifica-
tion.

5.1. C4: forcing with P (ω)/I. The structures from the class C4 are indivisible
and the corresponding posets of copies are forcing equivalent to the posets of the
form (P (ω)/I)+, where I is a co-analytic tall ideal on ω. The class C4 contains,
for example, the rational line ⟨Q, <⟩, and, moreover, all countable non-scattered
linear orders. The following two theorems are obtained in collaboration with Stevo
Todorčević in [26, 27, 28] and the first of them is related to the similarity class [Q]∼10

determined by the relation ∼10 (isomorphism of Boolean completions adjoined to
a structure) and containing all countable non-scattered linear orders. Thus, if S
denotes the Sacks forcing and sh(S) the size of the continuum in the Sacks extension,
then, as a consequence of the main result of [26] we have the following statement.
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Theorem 5.1. [26] For each countable nonscattered linear order L, we have

P(L) ≡ S ∗ π,

where 1S 
 “π is a separative atomless and ω1-closed poset”. If the equality
sh(S) = ℵ1 or PFA holds in the ground model, then

P(L) ≡ S ∗ π1,

where 1S 
 π1 = (P (ω̌)/Fin)+.

Thus restricted to the class of countable non-scattered linear orders, the similar-
ities ∼9 and ∼10 are equal to the full relation. Moreover, it can be shown (see [20])
that, for example, the linear orders X = ⟨(0, 1)Q, <⟩ and Y = ⟨(0, 1]Q, <⟩ are similar
in a stronger way: sqP(X) ∼= sqP(Y) that is X ∼8 Y. But ∼6 sees the difference:
P(X) ̸∼= P(Y), since the poset P(Y) is not chain complete.

While the previous theorem is related to the rational line, characterized as the
unique countable ultrahomogeneous universal linear order or as the Fräıssé limit
of the amalgamation class of all finite linear orders, the following statement shows
that the poset of copies of the corresponding object in the class of graphs, the
countable random graph (the Rado graph, the Erdős Rényi graph) introduced by
Erdős and Rényi [8] (see also [3]) has similar properties. More generally we have

Theorem 5.2. [27, 28] Let G be a countable graph containing a copy of the count-
able random graph. Then

P(G) ≡ P ∗ π,
where 1P 
 “π is an ω-distributive forcing” and the forcing P adds a generic real,
has the ℵ0-covering property (thus preserves ω1), has the 2-localization (and, hence,
the Sacks) property and does not produce splitting reals.

5.2. C3: divisible structures. The class C3 contains divisible structures from col-
umn C. Since an indivisible binary structure is reflexive or irreflexive, it is easy to
construct structures from C3, for example we can reflexify one point of the rational
line. The class C3 also contains structures having posets of copies with extreme forc-
ing theoretic properties, for example a structure X such that the algebra ro sqP(X)
is isomorphic to the collapsing algebra Coll(ω, 2ω) (see [14]). We note that the
class C contains a large diversity of structures, even when the ultrahomogeneous
structures are in question; for example the class C3 contains the posets Bn, n ∈ N,
from the Schmerl list (see Section 7).

6. Column D

The separative quotients of the posets of copies of the structures from column D
are atomless and ω1-closed and, under CH, all of these posets are forcing equivalent
(for example, to the poset (P (ω)/Fin)+) and have Boolean completions isomorphic.
Thus, restricting the similarities from Figure 4 to the class D, under CH, we have
∼10=∼11= the full relation. But in the analysis of the structures from column
D we can use the remaining similarities. For example, the structures X = ⟨ω,<⟩
and Y = ⟨ω, ∅⟩ are not equimorphic but P(X) = P(Y) and, hence, the implications
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d, h, k, and n in the diagram for the class D are proper. The same holds for the
implications b and f , which implies that the classD is not a CSB class. Namely, if X
and Y are the structures from Example 4.2, Kω is the complete graph on ω, and X1

and Y1 are the disjoint unions X∪Kω and Y∪Kω respectively, then P(X1) = P(Y1)
and, by Theorem 3.2, sqP(X1) ∼= 1× (P (ω)/Fin)+ (and both structures are in the
class D3); in addition, X1 � Y1 but X1 ̸∼= Y1. If G′

ω and G′′
ω are disjoint copies

of Gω, then for the structures X = G′
ω ∪ Kω and Y = G′

ω ∪ G′′
ω ∪ Kω we have

sqP(X) ∼= sqP(Y) but P(X) ̸∼= P(Y) and the implications i and j are proper and so
on.

In the sequel we show that column D contains several basic relational structures
and that it is consistent that the posets of copies of some of these structures are
not forcing equivalent.

6.1. Countable scattered linear orders. First, concerning linear orders, we note
that in the simplest case, if L is the ordinal ω, then ⟨P(L),⊂⟩ = ⟨[ω]ω,⊂⟩ is a
homogeneous atomless partial order of size c and its separative quotient, the poset
(P (ω)/Fin)+, is ω1-closed. In [16] using a well known theorem of Laver [31] (stating
that a countable scattered linear order is a finite sum of hereditarily indecomposable
linear orders) it is shown that the same holds for each countable scattered linear
order.

Theorem 6.1. [16] For each countable scattered linear order L the poset ⟨P(L),⊂⟩
is homogeneous, atomless, of size c and its separative quotient is ω1-closed.

By Theorems 5.1 and 6.1, concerning the forcing equivalence of posets of copies
of countable linear orders under CH we have a clear picture: For each countably
infinite linear order L we have

P(L) ≡

{
(P (ω)/Fin)+ if X is scattered,

S ∗ π if X is nonscattered,

where S is the Sacks forcing and 1S 
 “π = (P (ω̌)/Fin)+”.

6.2. Countable ordinals. By [17], if α is a countable ordinal, then the poset
sq⟨P(α),⊂⟩ is isomorphic to a forcing product of iterated reduced products of
Boolean algebras of the form P (ωγ)/Iωγ , where γ is a countable limit ordinal
or 1. In order to state this we introduce the following notation. For a Boolean
lattice B = ⟨B,6⟩, by rp(B), we will denote the reduced power ⟨Bω/ ≡,6≡⟩, where
for ⟨bi⟩, ⟨ci⟩ ∈ Bω, ⟨bi⟩ ≡ ⟨ci⟩ (resp. [⟨bi⟩]≡ 6≡ [⟨ci⟩]≡) iff bi = ci (resp. bi 6 ci),
for all but finitely many i ∈ ω. For n ∈ ω we define rpn(B) by: rp0(B) = B and
rpn+1(B) = rp(rpn(B)).

Theorem 6.2. [17] If α = ωγn+rnsn + · · · + ωγ0+r0s0 + k is a countable ordinal
presented in the Cantor normal form, where k ∈ ω, ri ∈ ω, si ∈ N, γi ∈ Lim∪{1}
and γn + rn > · · · > γ0 + r0, then

sq⟨P(α),⊂⟩ ∼=
n∏

i=0

((
rpri(P (ωγi)/Iωγi )

)+)si
.
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By Theorem 6.2, the poset sq⟨P(α),⊂⟩ is generated by Boolean algebras of the
form P (ωγ)/Iωγ . Considering such algebras as forcing notions we assume that
γ > ω is a countable limit ordinal, ⟨δn : n ∈ ω⟩ a fixed increasing cofinal sequence
in γr {0} and L = ⟨L,<⟩ =

∑
n∈ω⟨Ln, <n⟩, where ⟨Ln, <n⟩ ∼= ⟨ωδn ,∈⟩, for n ∈ ω,

and Lm ∩ Ln = ∅, for m ̸= n. For A ⊂ L and m ∈ ω let

Sm
A = {n ∈ ω : type(A ∩ Ln) > ωδm} and suppA = {n ∈ ω : A ∩ Ln ̸= ∅}.

The ideal IL = {A ⊂ L : L ̸↪→ A} will be denoted by I and, if G ⊂ P (ω) is
an ultrafilter, let IG := {A ⊂ L : ∃I ∈ I supp(A r I) ̸∈ G}. Γ will be the
canonical name for a (P (ω)/Fin)+-generic filter over the ground model V and
q : P (ω) → P (ω)/Fin the quotient mapping. Then concerning forcing with posets
of copies of countable ordinals we have

Theorem 6.3. [17] For each countable limit ordinal γ we have

⟨P(ωγ),⊂⟩ ≡ (P (ωγ)/Iωγ )+ ≡ (P (ω)/Fin)+ ∗
( ˇP (L)/Ǐq̌−1[Γ]

)+
and [ω] 
 “

( ˇP (L)/Ǐq̌−1[Γ]

)+
is a separative, atomless and ω1-closed poset”.

Theorem 6.4. [17] For each countable ordinal α > ω + ω we have

⟨P(α),⊂⟩ ≡ (P (ω)/Fin)+ ∗ π,

where [ω] 
 “π is a separative, atomless and ω1-closed forcing”. If, in particular,
h = ω1, then ⟨P(α),⊂⟩ ≡ (P (ω)/Fin)+, for each countable ordinal α > ω.

Example 6.1. If hn = h(((P (ω)/Fin)+)n), then, clearly, h > h2 > h3 > . . . > ω1

and, by Theorem 6.2, h(sq⟨P(ωn),⊂⟩) = hn. By Theorem 3.3(c), it is consistent
that hn+1 < hn and, hence, ⟨P(ωn),⊂⟩ ̸≡ ⟨P(ω(n+ 1)),⊂⟩ is consistent as well.

The ideals Iωδ = {I ⊂ ωδ : ωδ ̸↪→ I}, where 0 < δ < ω1, are called ordinal
or indecomposable ideals. Let hωδ = h((P (ωδ)/Iωδ)+) and tωδ = t((P (ωδ)/Iωδ)+).
Then we have

Theorem 6.5. [17] For each γ ∈ Lim∪{1} we have
(a) h > hωγ > hωγ+1 > . . . > hωγ+r > . . . > ω1 and, hence, there is r0 ∈ ω such

that hωγ+r = hωγ+r0 , for each r > r0;
(b) t > tωγ > tωγ+1 > . . . > tωγ+r > . . . > ω1 and, hence, there is r0 ∈ ω such

that tωγ+r = tωγ+r0 , for each r > r0.

Example 6.2. It is easy to show that Iω2 ∼= Fin×Fin and, consequently, hω2 =
h((P (ω×ω)/(Fin×Fin))+). In [9] Hernández-Hernández proved that in the Math-
ias model h((P (ω×ω)/(Fin×Fin))+) = ω1, while h = c = ω2. So, by Theorem 6.5,
in this model we have ω2 = c = h = hω1 > hω2 = hω3 = · · · = ω1.

By Theorem 3.3(a) the poset (P (ω × ω)/(Fin×Fin))+ is not ω2-closed. Thus,
by Theorem 6.5(b), tω2 = tω3 = · · · = ω1 holds in ZFC.

The position of countable linear orders in the A1–D5 classification (Figure 2) is
described in Figure 8.
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Figure 8. Countable linear orders

6.3. Equivalence relations and similar structures. The structures satisfying the
assumptions of Theorem 3.4 belong to column D and here we list some typical
classes of such structures (see [15]).

Example 6.3. Equivalence relations on countable sets. If X = ⟨X, ρ⟩, where ρ
is an equivalence relation on a countable set X, then, clearly, the components Xi,
i ∈ I, of X are the equivalence classes determined by ρ and for each i ∈ I the
restriction ρXi is the full relation on Xi, which implies that the assumptions of
Theorem 3.4 are satisfied. Thus the poset sqP(X) is ω1-closed and atomless and,
hence, X belongs to the column D. Some examples of such structures are given in
Figure 9, where

∪
m Fn denotes the union of m disjoint copies of the full relation

on a set of size n.
We note that X is a ultrahomogeneous structure iff all equivalence classes are of

the same size, so the following countable equivalence relations are ultrahomogeneous
and by Theorem 3.4 have the given properties.∪

ω Fn. It is indivisible iff n = 1 (the diagonal) and the poset sqP(X) is isomor-
phic to the poset (P (ω)/Fin)+, which is t-closed and h-distributive.∪

n Fω. It is indivisible iff n = 1 (the full relation) and the poset sqP(X) is
isomorphic to the poset ((P (ω)/Fin)+)n, which is t-closed, but, by Theorem 3.3(b),
for n > 1 not h-distributive in, for example, the Mathias model.∪

ω Fω (the ω-homogeneous-universal equivalence relation). It is indivisible and
the poset sqP(X) is isomorphic to the poset (P (ω × ω)/(Fin×Fin))+, which is
ω1-closed, but not ω2-closed and consistently neither t-closed nor h-distributive.

Example 6.4. Disjoint unions of complete graphs. The same picture as in Example
6.3 is obtained for the countable graphs X =

∪
i∈I Xi, where Xi = ⟨Xi, ρi⟩, i ∈ I,
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X ultrahomogeneous
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1 Fω
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∪
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∪
ω F2∪
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F3 ∪
∪

ω F2D3

D4

D5

Figure 9. Equivalence relations on countable sets

are disjoint complete graphs (that is ρi = (Xi × Xi) r ∆Xi) since, clearly, the
assumptions of Theorem 3.4 are satisfied. Also, by a well known characterization
of Lachlan and Woodrow [30] all disconnected countable ultrahomogeneous graphs
are of the form

∪
mKn (the union of m-many complete graphs of size n), where

mn = ω and m > 1. So in Figure 9 we can replace Fn with Kn.

Example 6.5. Disjoint unions of ordinals 6 ω. A similar picture is obtained for
the countable partial orders X =

∪
i∈I Xi, where Xi’s are disjoint copies of ordinals

αi 6 ω. (Clearly, linear orders are strongly connected and P(α, β) = [β]|α|, for
each two ordinals α, β 6 ω.) So in Figure 9 we can replace Fn with Ln, where
Ln

∼= n 6 ω, but these partial orderings are not ultrahomogeneous.

6.4. D5: copy-maximal structures. The class D5 consists of countable binary
structures X having the maximal possible set of copies, [X]ω. Generally, a relational
structure X = ⟨X, . . .⟩ will be called copy-maximal iff P(X) = [X]|X|. The following
statement is a generalization of Theorem 6.1 of [14] (characterizing copy-maximal
countable binary structures).

Theorem 6.6. If κ is an infinite cardinal, then for a binary relational structure
X = ⟨κ, ρ⟩ the following conditions are equivalent:

(a) P(X) = [κ]κ;
(b) P(X) is a dense set in ⟨[κ]κ,⊂⟩;
(c) X = ⟨κ, ρ⟩ is isomorphic to one of the following relational structures:
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1 The empty relation, ⟨κ, ∅⟩,
2 The complete graph, ⟨κ, κ2 r∆κ⟩,
3 The natural strict linear order on κ, ⟨κ,<⟩,
4 The inverse of the natural strict linear order on κ, ⟨κ,<−1⟩,
5 The diagonal relation, ⟨κ,∆κ⟩,
6 The full relation, ⟨κ, κ2⟩,
7 The natural linear order on κ, ⟨κ,6⟩,
8 The inverse of the natural linear order on κ, ⟨κ,6−1⟩;

(d) P(X) is a somewhere dense set in ⟨[κ]κ,⊂⟩;
(e) IX = [κ]<κ.

7. Nonbiconnected ultrahomogeneous structures

Roughly speaking, the main result of [18] is that a classification of posets of
copies of biconnected ultrahomogeneous digraphs would provide such classification
inside a much wider class of structures. We recall that a structure X = ⟨X, ρ⟩ is
a directed graph (digraph) iff ρ is an irreflexive and asymmetric binary relation on
X. If, in addition, xρy ∨ yρx, for each different x, y ∈ X, then X is a tourna-
ment. The countable ultrahomogeneous digraphs have been classified by Cherlin
[4, 5], see also [32]. Cherlin’s list is infinite and includes Schmerl’s list of countable
ultrahomogeneous strict partial orders [33]:

– Aω, a countable antichain (that is, the empty relation on ω),
– Bn = n×Q, for n ∈ [1, ω], where ⟨i1, q1⟩ < ⟨i2, q2⟩ ⇔ i1 = i2 ∧ q1 <Q q2,
– Cn = n×Q, for n ∈ [1, ω], where ⟨i1, q1⟩ < ⟨i2, q2⟩ ⇔ q1 <Q q2,
– D, the unique countable homogeneous universal poset (the random poset),

and Lachlan’s list of ultrahomogeneous tournaments [29]:
– Q, the rational line,
– T∞, the countable universal ultrahomogeneous tournament,
– S(2), the circular tournament (the local order).

Also we recall the classification of countable ultrahomogeneous graphs given by
Lachlan and Woodrow [30]:

– Gµ,ν , the union of µ disjoint copies of Kν , where µν = ω,
– GRado, the unique countable homogeneous universal graph, the Rado graph,
– Hn, the unique countable homogeneous universal Kn-free graph, for n > 3,
– the complements of these graphs.

For convenience we introduce the following notation. If X = ⟨X, ρ⟩ is a binary
structure, then its complement, ⟨X, ρc⟩, where ρc = X2 r ρ, will be denoted by
Xc, its inverse, ⟨X, ρ−1⟩, by X−1, its reflexification, ⟨X, ρ ∪ ∆X⟩, by Xre and its
irreflexification, ⟨X, ρr∆X⟩, by Xir. The binary relation ρe on X defined by

x ρe y ⇔ x ρ y ∨ (x ̸= y ∧ ¬x ρ y ∧ ¬ y ρ x)

will be called the enlargement of ρ and the corresponding structure, ⟨X, ρe⟩, will
be denoted by Xe. A structure X will be called biconnected iff both X and Xc

are connected structures. Using Ramsey’s theorem and Theorem 3.5 the following
statements are proved in [18].
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Theorem 7.1. [18] For each countable ultrahomogeneous reflexive or irreflexive
binary structure X we have

• either X is biconnected
• or there is an ultrahomogeneous digraph Y and a cardinal 2 6 κ 6 ω such
that X is isomorphic to one of the following structures:

∪
κ Ye, (

∪
κ Ye)

c,
(
∪

κ Ye)re, ((
∪

κ Ye)re)
c.

In the second case we have

• either P(X) ∼= P(Z)n, for some biconnected Z from Cherlin’s list and n > 2,
• or sqP(X) is an atomless ω1-closed poset (and X belongs to column D).

Theorem 7.2. [18] An irreflexive disconnected binary structure is ultrahomoge-
neous iff its components are isomorphic to the enlargement of an ultrahomogeneous
digraph.

Example 7.1. The posets Bn, n ∈ [2, ω], from the Schmerl list are disconnected
ultrahomogeneous digraphs (they are disjoint unions of copies of Q) and, by The-
orem 7.2, the structures of the form

∪
κ(Bn)e (or its other three variations given

in Theorem 7.2) are ultrahomogeneous. For example, by Theorems 7.1 and 5.1 we
have P(

∪
3(B2)e) ∼= P(Q)6 ≡ (S ∗ π)6. Also under CH we have P((

∪
ω(B2)e)

c) ≡
P(((

∪
2(Bω)e)re)

c) ≡ (P (ω)/Fin)+.

Example 7.2. For a cardinal ν, the empty structure of size ν, Aν = ⟨ν, ∅⟩, can be
regarded as an (empty) digraph with ν components. Then (Aν)e ∼= Kν and for the
graphs Gµ,ν from the Lachlan and Woodrow list we have Gµ,ν =

∪
µ(Aν)e. The

posets of copies of these graphs were considered in Example 6.4.

Let U denote the class of all countable reflexive or irreflexive ultrahomogeneous
binary structures, B = {X ∈ U : X is biconnected}, D = {X ∈ U : X is a digraph},
De = {Xe : X ∈ D}, G = {X ∈ U : X is a graph}, and let T = {X ∈ U :
X is a tournament}. By Theorem 7.3, the relations between these classes are dis-
played in Figure 10.

Theorem 7.3. [18] Let Y ∈ D. Then
(a) Y ∈ B iff Y is connected iff Ye ∈ B;
(b) Y ∈ De iff Y is a tournament;
(c) Y ∈ G iff Y = Aω iff Ye = Kω iff Ye ∈ G.

By Theorem 7.1, the class D of digraphs generates all structures from UrB in a
very simple way and a classification of the posets P(X) for the structures X ∈ D∩B
would provide a classification for the structures X belonging to a much wider class:
D∪Dre ∪De ∪ (De)re ∪U rB (where Xre := {Xre : X ∈ X}). So, if, in addition, we
obtain a corresponding classification for X ∈ G∩B and hence, for G∪Gre, it remains
to investigate the posets P(X) for biconnected irreflexive structures X which are not:
graphs (and, hence, T2 ↪→ X), digraphs (and, hence, K2 ↪→ X), enlarged digraphs
(and, hence, A2 ↪→ X), thus they do not have forbidden substructures of size 2.
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Figure 10. Countable reflexive or irreflexive ultrahomogeneous
binary structures

8. Maximal chains and antichains of copies

The general concept – to explore the class of posets of copies of relational struc-
tures and to obtain the corresponding classifications – can be developed in several
ways. Regarding the order-theoretic aspect, one of the extensively investigated
order invariants of a poset P is the class of order types of its maximal chains,
M(P). We mention three related results. Sabine Koppelberg in [10] characterized
the class M(Intalg[0, 1)R) as the class of types of dense σ-compact subsets of [0, 1]R
containing 0 and 1. By a theorem of Kuratowski [11], the class M(P (κ)) is the
class of types of the orders ⟨Init(L),⊂⟩, for linear orders L of size κ, where Init(L)
denotes the set of all initial segments of L. Day in [6] proved that a linear order is
isomorphic to a maximal chain in a < κ-complete atomic Boolean algebra iff it is
< κ-complete, has 0 and 1 and has dense jumps.

Regarding the partial orders of the form P(X), where X is a relational structure,
the equality M(P(X)) = M(P(Y)) defines a certain similarity of structures and
induces their classification. Concerning the class of countable binary structures,
the class M(P(X)) was characterized for (in particular) copy-maximal structures
[12], for the rational line [13], for the Rado graph [22], and, finally, for all ultraho-
mogeneous posets (Schmerl’s list) [23] and all ultrahomogeneous graphs (the list of
Lachlan and Woodrow) [24]. The last three are joint results with Borǐsa Kuzeljević.
In order to state these results we introduce the following notation. Let R be the
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real line, CR the class of order types of sets of the form Kr{minK}, where K ⊂ R
is a compact set, such that minK is an accumulation point of K and let BR be
the subclass of CR determined by nowhere dense sets. Now, if X is a copy-maximal
countable structure, then M(P(X)) = BR and for the ultrahomogeneous graphs
and posets we have

Theorem 8.1. [24] For a countable ultrahomogeneous graph X we have

M(P(X)) =

{
CR if X = GRado or X = Hn, for some n > 3,

BR if X = Gµ,ν , where µν = ω.

Theorem 8.2. [23] For a countable ultrahomogeneous partial order X we have

M(P(X)) =

{
CR if X = Bn or X = Cn, or X = D,
BR if X = Aω.

One more invariant of a poset P is the set of cardinalities of maximal antichains
in P. This cardinal invariant was investigadted in a collaboration with Petar
Marković in [25] and, in particular, it is shown that the poset of copies of the
Rado graph contains maximal antichains of size c, ω and n, for each positive in-
teger n. It is easy to see that the same holds for the rational line, while, clearly,
in the posets of copies of the countable copy-maximal binary structures, maximal
antichains of size ω do not exist.
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