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Abstract. This paper, loosely described as the variations on the Euler–
Kirchhoff elastic theme, focuses on the class of variational problems on an
orthonormal frame bundle of a Riemannian space of constant curvature
and introduces optimal control theory as an important ingredient for their
solutions. The fundamental spaces are the Euclidean space, the sphere
and the hyperboloid, and their orthonormal frame bundles coincide with
the isometry groups SEn(R), SOn+1(R) and SO(1, n).

In each of these cases, the underlying manifold Mϵ with its curvature
ϵ = 0,±1 can be realized as the quotient Mep = Gϵ/K, where Gϵ denotes
the appropriate isometry group and where K = SOn(R). The pair (Gϵ,K)
induces a Cartan decomposition gϵ = pϵ + k of the Lie algebra gϵ of Gϵ,
where k is the Lie algebra of K and where pϵ is the orthogonal complement
of k relative to the Cartan–Killing form on gϵ.

Kirchhoff’s formalism used to model the equilibrium configurations of a
thin elastic rod subject to bending and twisting torques at its ends admits
natural formulation on these groups as an optimal control problem of opti-

mizing the energy integral 1
2

∫ T
0
⟨u(t), Qu(t)⟩ dt over the trajectories of the

control system dg
dt = g(t)(A+ u(t)) that satisfy fixed boundary conditions

in Gϵ. Here, A a fixed element in pϵ, u(t) is an arbitrary curve in k, Q is a
positive definite n× n matrix and ⟨X,Y ⟩ = − 1

2 Tr(XY ), X,Y ∈ k.
The paper then singles out the integrable cases of the Hamiltonians

associated with these optimal problems obtained by the Maximum Prin-
ciple. The paper also defines a symplectic structure over quasi-periodiic
curves on three dimensional spaces of constant curvature and shows that
the Heisenberg’s magnetic equation corresponds to the Hamiltonian flow

associated with 1
2

∫ T
0
κ2(s) ds over such curves with κ equal to the curvature

of the curve. Finally, the paper gives the exact correspondence between the
Heisenberg’s magnetic equation and the nonlinear Schroedinger’s equation
and relates the soliton solutions to the elastic curves.
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1. Introduction

This exposition fuses optimal control theory with integrable Hamiltonian systems
through a class of variational problems loosely inspired by the theory of elastic rods.
This selection of problems apart of its own intrinsic importance also serves several
larger mathematical objectives. To begin with, it demonstrates the significance
of elastic problems for the theory of integrable Hamiltonian systems an area of
mathematics traditionally associated with problems of Riemannian geometry and
Lagrangian mechanics. Secondly, it illuminates the conceptual novelty of optimal
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control theory for problems of the calculus of variations. Thirdly, it makes a com-
pelling and original case for Lie groups and Lie algebras in the study of integrable
systems.

The class of problems, called elastic for referential convenience, has its origins in
a study of Daniel Bernoulli, who in 1742 suggested to L. Euler that the differential
equation for the equilibrium shape of a thin elastic inextensible beam subject to
bending torques at its ends could be found by making the integral of the square
of of the curvature along the beam a minimum. Euler, acting on this suggestion,
obtained the differential equation for this problem in 1744 and was able to describe
its solutions, known since then as elastica, well before the discovery of elliptic
functions, [10, 30].

Since a thin inextensible beam could be naturally modeled by a parametrized
curve γ(s) in R2 subject to the constraint that

∥∥dγ
ds

∥∥ = 1, i.e., a curve parametrized
by its arc length, in which case the bending moments at its ends are represented by
fixed tangential directions at γ(0) and γ(L) with L equal to the length of the beam.
Hence, Euler’s problem could be reformulated as a geometric problem of finding the

minimum of the integral 1
2

∫ L
0
κ2(s) ds, where κ is equal to the curvature of γ, over

the space of curves parametrized by arc length having fixed tangential directions
at their end points. As such this problem has natural extensions to arbitrary
Riemannian manifolds.

The passage from Euler’s work on elastica to more general theory of elastic
plates and rods required new theoretical concepts, and this new subject matter
attracted the attention of some of the best mathematical minds of the 19th century
(see the Historical introduction to the Mathematical Theory of Elasticity by Love
[30]). In this formative period of the theory, the work of A. Cauchy in 1822 on
stresses and strains was of central importance for the subsequent generalizations
of Euler’s elastica to spacial rods, in which the most notable contribution was due
to G. Kirchhoff. Kirchhoff in his remarkable paper of 1859 Kirchhoff not only
wrote the differential equations for the equilibrium configurations of an elastic rod
in R3 subject to bending and twisting torques at its ends, but he also likened the
elastic equations to the motions of the heavy top, a statement known ever since as
“Kirchhoff’s kinetic analogue” (see [30] for exact reference).

Kirchhoff’s elastic rods were modeled by a curve γ(s) that corresponds to the cen-
tral line of the rod and an oriented orthonormal frame F (s) = (v1(s), v2(s), v3(s))
along γ that measures the amount of twisting and bending along the central line.
The frame deformations were assumed to be confined to the plane perpendicular to
the central line of the rod, which meant that the frame was adapted to the curve
via the relation dγ

ds (s) = v1(s) for all s ∈ (0, L), where L stands for the length of
the rod. The bending and twisting torques at the ends of the rod were modeled
by assigning fixed values to F (0) and F (L). The elastic energy E of the rod was
defined by three functions u1(s), u2(s), u3(s), called strains, and three constants
c1, c2, c3 reflecting the physical and geometric characteristics of the rod, and was
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assumed to be of the form

E =
1

2

∫ L

0

(
c1u

2
1(s) + c2u

2
2(s) + c3u

2
3(s)

)
ds.

The strains are induced via the deformations of the frames according to the follow-
ing formulas:

dv1
ds

= −u2v3 + u3v2,
dv2
ds

= −u3v1 + u1v3,
dv3
ds

= −u1v2 + u2v1.

Similar to Euler’s elastica, Kirchhoff’s elastic model admits a simple geometric
formulations as on the oriented orthonormal frame bundle of R3, which coincides
with the group of motions SE3(R). More explicitly, the frame curve F (s) can be
represented by a curveR(s) with the identificationRei = vi, i = 1, 2, 3, and then the

central line γ(s) and the frame R(s) can be represented by a curve g(s) =
(

1 0
γ(s) R(s)

)
in the semi-direct product G = R3 o SO3(R). The relations

dγ

ds
(s) = v1(s),

dR

ds
(s) = R(s)

 0 −u3(s) u2(s)
u3(s) 0 −u1(s)
u2(s) u1(s) 0


are then expressed by a single equation on G

(1)
dg

ds
(s) = g(s)(E1 +

3∑
i=1

ui(s)Ai(s)), with E1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

where A1, A2, A3 denotes the standard basis in so3(R) imbedded in the Lie algebra
of G. The preceding equation can be also written as

(2)
dg

ds
(s) = X0(g(s)) +

3∑
i=1

ui(s)Xi(g(s)),

where each Xi is a left invariant vector field on G (X0(g) = gE1, Xi(g) = gAi,

i = 1, 2, 3). The elastic energy E = 1
2

∫ L
0
(c1u

2
1(s)+c2u

2
2(s)+c3u

2
3(s)) ds can be also

written as 1
2

∫ L
0
∥u(s)∥2 ds, where ∥ ∥ is the norm induced by a positive definite

quadratic form ⟨u, v⟩ = c1u1v1 + c2u2v2 + c3u3v3 on R3. So Kirchhoff’s elastic
problem can be seen as a left invariant optimal (control) problem of minimizing the

integral 1
2

∫ L
0
∥u(s)∥2ds over the trajectories g(s) of control system (2) that satisfy

fixed boundary conditions g(0) = g0 and g(L) = g1 with the strain functions playing
the role of controls. The significance of control theoretic view will be made more
explicit later on in the paper; instead, let us single out some special cases relevant
for the theory of curves:

1. Serret–Frenet frames. The Serret–Frenet equations

(3)
dγ

dt
= v1(t),

dv1
dt

= −κ(t)v2(t),
dv2
dt

= κ(t)v1(t)+τ(t)v3(t),
dv3
dt

= −τ(t)v2(t),
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can be considered as a particular Kirchhoff system with u1(t) = τ(t), u2(t) = 0 and
u3(t) = κ(t). The associated elastic energy E is given by the integral

E =
1

2

∫ L

0

(c1τ
2(t) + c3κ

2(t)) dt

In this light, 1
2

∫ L
0
(κ2(t)+τ2(t)) dtmay be thought of as the “natural elastic energy”

of a curve γ(t).

2. Auto-parallel frames. The frame v1(t), v2(t), v3(t) that is adapted to the curve

γ(t) by dγ
dt (t) = v(t) and deforms according to

(4)
dv1
dt

= u2(t)v2(t) + u3(t)v3(t),
dv2
dt

= −u1(t)v1(t),
dv3
dt

= −u3(t)v1(t)

is called auto-parallel in the literature on differential geometry. It is a special case

of Kirchhoff’s system with an additional constraint that u1(t) = 0. Since d2γ
dt2 = dv1

dt ,

κ2(t) =
∥∥d2γ
dt2

∥∥2 = u22(t)+u
2
3(t). Hence, the elastic energy with c2 = c3 = 1 coincides

with the Euler’s functional E = 1
2

∫ L
0
κ2(t) dt.

It is therefore natural to consider Kirchhoff’s problem in this restricted class
of curves as an extension of Euler’s planar elastic problem to spacial curves with
one important modification. For Euler’s elastic problem it is natural to fix only
the tangential directions at the end points of the curve, and not the entire frame
as was done in the problem of Kirchhoff. To reconcile this difference we may
replace the boundary conditions γ(0) = x0,

dγ
dt (0) = v0, γ(L) = x1,

dγ
dt (L) = v1

with an initial manifold S0 =
{ (

1 0
x0 R

)
: Re1 = v0

}
and a terminal manifold

S1 =
{ (

1 0
x1 R

)
: Re1 = v1

}
, and then consider the minimum of 1

2

∫ L
0
(u22(t)+u

2
3(t)) dt

over the solutions g(t) of system (2) (with u1(t) = 0) which satisfy g(0) ∈ S0 and
g(L) ∈ S1. We will refer to this problem as the Euler’s elastic problem in R3. Of
course, Euler’s elastic problem can be naturally defined in its own right on any
Riemannian manifold without any reference to Kirchhoff’s problem as follows.

Let M denote any Riemannian manifold. Then the geodesic curvature of any
curve x(t), parameterized by arc length can be expressed in terms of the Levi–Civita
connection as κ(t) =

∥∥∇x(t)
dx
dt

∥∥. So it is natural to think of the elastic problem as

a variational problem on the unit tangent bundle T 1M as follows: let v0 ∈ T 1
x0
M

and v1 ∈ T 1
x1
M be given and let A denote the class of curves x(t) inM defined over

an interval [0, L], subject to certain smoothness assumptions to be specified later,
such that

∥∥dx
dt

∥∥ = 1 for all t and dx
dt (0) = v0 and dx

dt (L) = v1. The elastic problem
of Euler then can be defined in this more general context as:

Definition 1.1. The Euler–Griffiths elastic problem (EG). For a fixed pair of
tangential directions v0 and v1 and a fixed length L find a curve x ∈ A that

minimizes 1
2

∫ L
0
∥∇x(t)

dx
dt ∥

2dt over all other curves in A. The elastic problem is
said to be free if the requirement of fixed length is dropped, and is said to be
relaxed if the terminal condition dx

dt (L) = v1 is omitted.

Remark 1.1. Elastic problem in non-Euclidean spaces was first treated by Griffiths
in his book on Exterior Differential Systems and the Calculus of Variations [13] and
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later more generally in [28]. For the class of problems treated in that study, as well
in the related contemporary literature, the Eulere-Lagrange equation for the elastic
problem is obtained through the variations in the class of smooth curves(shown later
in Section 4). Absolutely continuous curves are natural for problems of optimal
control, and are actually needed to describe extrema for problems with bounds on
the curvature, as will be made clear below.

Kirchhoff’s elastic problem could also be defined in a more general setting over
the curves F (s) = (v1(s), . . . , vn(s)) in the bundle of positively orthonormal frames
of a Riemannian manifold M that are adapted to the projected curve γ(t) ∈ M

by dγ
dt (t) = v1(t) but we will not go into this generalizations beyond the spaces of

constant curvature.
In what follows we will provide a detailed discussion of the solutions of these

problems both in the Euclidean and the non-Euclidean settings. To emphasize
further the relevance of optimal control for problems of geometry we will include
the problems involving the bounds on controls. The most classical of these, known
as the problem of Delaunay, consists of finding the shortest curve that connects
two fixed points with fixed tangential directions in the class of curves having con-
stant curvature. Classically, this problem was considered as a particular case of
the variational problems known as the problems of Lagrange and, according to
Caratheodory, Weierstrass was the first to successfully obtain the Euler–Lagrange
equation for this problem (Caratheodory [7, p. 373]). Delauney’s problem can be

naturally recast as an optimal control problem of minimizing the integral
∫ L
0
dt

over the solutions g(t) of

dg

dt
(t) = g(t)(E1 + u2(t)A2 + u3(t)A3), with u

2
2(t) + u23(t) = c

satisfying g(0) ∈ S0 and g(L) ∈ S1. Here, E1, A2, A3 have the same meaning as in
equation (1) and S0 and S1 have the same meaning as in the paragraph above.

However, as it stands, Delauney’s problem is not well defined, because of the
lack of convexity: a geodesic, whose curvature is zero, is the uniform limit of
concatenations of curves having constant curvature. To remedy this situation, one
needs to convexify the problem, and allow the curves whose curvature is less or
equal to the given bound, that is, replace the sphere u22 + u23 = c with the ball
u22 + u23 6 c.

In R2 the convexified Delauney problem is known as the problem of Dubins [9].
As demonstrated in Dubins paper, optimal solutions are the concatenations of
segments of straight lines and circles, a prototype of a more general situation where
the optimal solutions are concatenations of solutions generated by controls that
take values on the boundary and those that that are generated by controls in the
interior of the control set. Such solutions are not obtainable by the usual Lagrangian
methods.

This class of problems introduced above and their extensions to arbitrary Rie-
mannian manifolds together with some solutions forms a core of this paper. As
already stated earlier, the exposition is biased in the direction of optimal control
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as a way of getting to the integrable systems and hence is somewhat novel, consid-
ering that optimal control theory has not yet found its proper place in the classical
calculus of variations. To help the reader navigate more easily through through the
exposition it may be helpful to give an overview of the material presented in the
paper.

Section 2 introduces control systems and discusses the basic topological proper-
ties of their reachable sets in terms of certain Lie algebraic criteria with the ultimate
goal of establishing the existence of solutions that connect any two points in the
state space. This theory is then applied to a selection of geometric problems that
includes the non-Euclidean extensions of the elastic problems defined above. The
exposition then proceeds to optimality, the existence of optimal solutions and the
associated Hamiltonians obtained by the Maximum Principle of Pontryagin and his
collaborators.

On spaces of constant curvature, the orthonormal frame bundle, on which the
elastic problems are defined, is a Lie group. Section 3 is therefore devoted to left
invariant Hamiltonians on the cotangent bundle T ∗G of a Lie group G. To preserve
the left invariant symmetries of the elastic problems, the cotangent bundle T ∗G is
realized as the product G × g∗, where g∗ is the dual of the Lie algebra g of G.
Then the Hamiltonian equations of a left-invariant Hamiltonian can be integrated
by quadratures once the solution of the projection of the equations on g∗ is known.
This observation makes contact with the theory of integrable systems on the Lie
algebra g whenever g can be identified with g∗ via an invariant quadratic form
(usually a multiple of the Cartan–Killing form).

In this setting the Poisson structure of g∗ plays an important role and there is a
substantial discussion of symmetries, coadjoint orbits and their invariance proper-
ties. This formalism is then used to provide a detailed analysis of the Hamiltonians
associated with the problem of Kirchhoff, their relation to the equations of the
heavy top and the classification of the integrable cases. This material is divided
into two sections: Section 4 deals with the geometric case and the elastic curves,
while Section 5 deals with general problem on six dimensional Lie groups and the
relation to the equations of the heavy top (The kinetic analogue of Kirchhoff).

Section 6 deals with infinite dimensional Hamiltonian systems. It is shown
that the space of anchored periodic curves on a three dimensional space of con-
stant curvature can be given a symplectic structure. It is then shown that the
Heisenberg’s magnetic equation corresponds to the Hamiltonian flow associated

with 1
2

∫ L
0
κ2(s) ds. In order to connect with the Schroedinger’s equation, Heisen-

berg’s magnetic equation is then represented in the space of Hermitian 2 × 2 ma-
trices. Then the adjoint action of SU2 on the space of Hermitian matrices reveals
a correspondence between the Heisenberg’s magnetic equation and Schroedinger’s
nonlinear equation. The section concludes with a discussion of soliton solutions
of the nonlinear Schroedinger’s equation and their relation to the elastic curves.
Section 7 contains concluding remarks and a brief suggestion of open problems.
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2. Control systems. Controllability and Optimality

For the purposes of this paper it will be convenient and sufficient to introduce
control theory through a particular class of systems, known as control affine sys-
tems. They are defined as follows:

(5)
dx

dt
= X0(x) +

m∑
i=1

ui(t)Xi(x),

where

1. X0, . . . , Xm are given smooth vector fields on a smooth n dimensional manifold
M , which for extra convenience will be assumed complete in the sense that their
integral curves are defined globally on (−∞,∞). Vector field X0 is called the
drift and the remaining vector fields X1, . . . , Xm are called controlled vector
fields.

2. The control functions u(t) = (u1(t), . . . , um(t)) take values in a prescribed set
C ⊆ Rm, which could be a open or closed, possibly governed by inequalities,
or even dependent on the time variable t. In what follows C will be assumed
symmetric about the origin i.e., that it satisfies u ∈ C ⇔ −u ∈ C.

3. The control functions u(t) are assumed to belong to L∞[t0, t1] on any interval
[t0, t1].

It then follows from the theory of differential equations that for each control u(t),
any initial state x0 and any initial time t0 there exists an absolutely continuous
curve x(t) inM defined on some interval [t0, T ] that satisfies (1) almost everywhere
in [t0, T ] [6]. Such a curve is called a trajectory generated by a control u(t).

Since (1) is defined by time invariant vector fields the initial time t0 can be trans-
lated to t0 = 0. Problems of optimality are usually stated as two point boundary

value problems, that is, they concern the minima of an integral
∫ t1
0
f(u(t), x(t))dt,

where f : C×M → R is a given smooth function, called the cost, over the solutions
of (1) that initiate at x0 at time t0 = 0 and terminate at x1 at time t1. Both the
initial state x0 and the terminal state x1 are given a priori while the terminal time
t1 could be either fixed or variable. In some situations the initial and the final
states are replaced by submanifolds S0 and S1 of M .

Controls that result in optimal trajectories are called optimal. In order to ensure
that the above optimal problem is well posed it is necessary first to demonstrate
that there are trajectories that connect the given boundary conditions before any
discussion of optimality could take place. This issue, known as the controllability
problem, forms an integral part of optimal control theory and will be addressed
below in more detail.

2.1. Controllability and Accessibility. A control system is an extension of a dy-
namical system where a single vector field X is replaced by a family of vector fields
F . In the case of affine control systems F = {X0 +

∑m
i=1 uiXi, u ∈ C}. Analogous

to the theory of dynamical systems, with its principal object an understanding of
the orbits of the one parameter group of diffeomorphisms {Φt, t ∈ R} induced by
X, the main object of control theory is the study of the reachable or accessible
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sets. There are several types of reachable sets: A(x0, T ), the set of points in M
reachable by the trajectories of (9) at exactly T units of time, A(x0,6 T ), the
set of points reachable in time T or less, and A(x0), the set of points reachable in
any positive time. If the control functions are restricted to the class of piecewise
constant functions with values in U , then the reachable set can be described by the
semi-flows {Φt : t > 0} of vector fields in F . For instance, when F consists of two
fields X and Y then the points reachable in time T from x0 are of the form{

ΦXtp · ΦYtp−1
· · ·ΦYt1(x0), t1 + t2 + · · ·+ tp = T, ti > 0

}
,

where {ΦXt : t ∈ R} and {ΦYt : t ∈ R} denote the one parameter groups correspond-
ing to X and Y . In contrast to the theory of dynamical systems, where the time
parameter can be negative or positive, reachable sets of control systems are defined
only for positive time, which essentially reduces their study to a study of orbits
of semi-groups of diffeomorphisms, rather than the groups of diffeomorphisms as
is the case in the theory of dynamical systems. Since it is mathematically easier
to deal with groups, rather than semigroups, it is natural to relax the requirement
that the time be positive and consider first the group of diffeomorphisms generated
by the flows defined by the elements of F and its action on the points of M .

To be more precise, let {ΦXt : t ∈ R} denote the one-parameter group of diffeo-
morphisms induced by a vector field X and let GF denote the subgroup of Diff(M)
generated by {ΦXt : t ∈ R, X ∈ F}. A typical element Φ of GF is of the form

Φ = ΦXm
tm ◦ ΦXm−1

tm−1
· · · ◦ ΦX1

t1 , Xi ∈ F , ti ∈ R, i = 1, . . . ,m.

Then GF (x) = {Φ(x) : Φ ∈ GF} is called the orbit of GF through a point x ∈ M .
Remarkably, each orbit of GF (x) is an immersed submanifold of M [42].

There is a large class of families of vector fields, called Lie determined for which
the tangent spaces of orbits are determined by the Lie brackets of elements of F ,
and as a consequence, the reachable sets of such systems exhibit nice mathematical
properties that serve as a basis for geometric control theory. To explain in more
detail, let [X,Y ] denote the Lie bracket of vector fields X and Y , and let Lie(F)
denote the Lie algebra generated by the family F . Elements of Lie(F) are linear
combinations of iterated Lie brackets of vector fields in F . In general, Lie(F) is an
infinite dimensional sub-Lie algebra of the Lie algebra of all vector fields on M .

Let Liex(F) denote the evaluation of Lie(F) at x, i.e., Liex(F) = {X(x) : X ∈
Lie(F)}. Each Liex(F) is a linear subspace of the tangent space TxM . It is simple
to show that Lie(F) is tangent to each orbit of GF , that is, Liey(F) ⊆ Ty(GF (x))
for all points y in an orbit GF (x). Then Lie determined families are those for which
Liey(F) = Ty(GF (x)) for all y ∈ GF (x) and for each orbit GF (x). In the class of
Lie determined families each reachable set A(x,6 T ) has a nonempty interior in
the topology of the orbit GF (x) for each T > 0 (see [20]). In particular, A(x,6 T )
has a nonempty interior in M whenever the dimension of Liex(F) is equal to the
dimension of M . Systems for which Liex(F) = TxM for all x ∈M are said to have
the accessibility property.

Families of analytic vector fields on an analytic manifoldM are Lie determined, a
fact known as the Hemann–Nagano Theorem [20]. In this paper all control systems
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will be analytic, so the subsequent discussion will be restricted to Lie determined
systems. Then it follows from the above remarks that a necessary and sufficient
condition that A(x0,6 T ) has a nonempty interior in M is that Liex(F) = TxM
[20, Chapter 3].

Control system is said to be controllable if A(x0) =M for each x0 in M , that is,
whenever any point x1 can be reached from x0 for some time T > 0. In general it
is very difficult to ascertain if a given control system is controllable. Nevertheless,
there are some controllability criteria which can be applied successfully in some
situations. One such criterion is based on the notion of the Lie saturate.

The Lie saturate LS(F) of F is the largest (in the sense of set inclusion) family of
vector fields included in Lie(F) which leaves the closure of A(x) invariant. Then it
can be shown that F is controllable if and only if LS(F) = Lie(F) [20, Chapter 3].
The Lie saturate is invariant under the following enlargement procedures:

1. If Y1, Y2, . . . , Yp are any set of vector fields in LS(F), then the positive affine
hull {α1Y1 + · · ·+ αpYp : αi > 0, i = 1, . . . , p} is also contained in LS(F).

2. If V is a vector space of vector fields in LS(F), then Lie(V) is in LS(F).
3. If ±Y is in LS(F), then (ΦYλ )∗XΦY−λ is in LS(F) for any λ ∈ R and any

X ∈ LS(F), where {ΦYλ : λ ∈ R} denotes the flow of Y and Φλ∗ denotes its
tangent map.

In the case of affine control systems with no constraints on the control set U , then
it is easy to show that the vector space spanned by X1, . . . , Xm is a subspace of
the Lie saturate of F . Then by (1) and (3) above, the affine hull spanned by

{(ΦXi

−λ)∗X0Φ
Xi

λ : λ ∈ R} is in the Lie saturate of F . A systematic exploitation of
these properties could ultimately lead to proving controllability as illustrated by
the examples below (There is an extensive discussion of the Lie saturate in [20]).

2.2. Examples. It may be relevant to state the convention adopted in this paper
concerning the sign of the Lie bracket: both [X,Y ] = Y ◦ X − X ◦ Y and its
negative appear in the literature and each choice carries its own signs in regard to
various geometric objects related to the Lie bracket. In this paper, the Lie bracket
is taken as [X,Y ] = Y ◦X −X ◦ Y which means that in local coordinates, the i-th

coordinate of [X,Y ] is given by the formula
∑n
j=1

(
∂Xi

∂xj
Y j− ∂Y i

∂xj
Xj
)
. It also means

that the Lie bracket of left invariant vector fields X = gA and Y (g) = gB is given
by [X,Y ](g) = g(BA − AB), while the Lie bracket of right invariant vector fields
X(g) = Ag and Y (g) = Bg is given by [X,Y ](g) = (AB − BA)g. Since only left
invariant vector fields appear in this paper, the commutator of matrices is defined
by [A,B] = BA−AB for any matrices A and B.

1.Linear control systems. Control system

(6)
dx

dt
= Ax+Bu(t),

with A an n× n matrix and B a matrix with columns b1, . . . , bm, central to linear
control theory, may be viewed as an affine system with a linear driftX0(x) = Ax and
constant controlled vector fieldsXi = bi, i = 1, . . . ,m. Then it follows from the pre-
ceding remarks that the vector space of constant vector fields spanned by b1, . . . , bm
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is in LS(F). Since ΦXi

λ (x) = x+ λbi, Yλ(x) = (ΦXi

−λ)∗X0Φ
Xi

λ (x) = Ax+ λAbi is in

LS(F) for each λ. It then follows that limλ→±∞
1
|λ| (Ax + λAbi) = ±Abi. There-

fore, the vector space spanned by constant vector fields b1, . . . , bm, Ab1, . . . , Abm is
in LS(F).

Successive repetitions of these arguments show that each constant vector field
±Akbj , k > 0, j = 1, . . . ,m is in LS(F). We leave it to the reader to show that this
linear span is equal to the evaluation of Lie(F) at the origin. This fact shows that
(6) is controllable if and only if the linear span of {Akbj , k > 0, j = 1, . . . ,m} is
equal to Rn. As a consequence of the Cayley–Hamilton theorem each Ak for k > n
is linearly dependent on I,A, . . . , An−1. Hence, (6) is controllable if and only if the
n × nm matrix (BABA2B · · ·An−1B) is of rank n. This matrix is known as the
controllability matrix in linear control theory.

2. Serret–Frenet systems. The differential system dγ
dr = R(t)e1,

dR
dt = R(t)Ω(t)

with Ω(t) =
∑n−1
i=1 κi(t)ei ∧ ei+1 that is associated with geometric invariants of

curves in Rn can be also regarded as an affine control system in the group of motions
SEn(R) with κ1, . . . , κn−1 playing the role of controls. The state variable g =

(
1 0
γ R

)
satisfies the equation dg

dt = g(t)(E1 + Ω̃(t)), where Ω̃ denotes the embedding of Ω

in the Lie algebra of SEn(R), i.e., Ω̃ = ( 0 0
0 Ω ) and E1 = e1 ⊗ e0 . Therefore, a

Serret–Frenet system can be written as a left invariant control system

(7)
dg

dt
= X0(g) +

n−1∑
i=1

ui(t)Xi(g),

where X0(g) = gE1, X1(g) = g(e2 ∧ e1), . . . , Xn−1(g) = g(en ∧ en−1).
Since the Lie brackets of left invariant vector fields correspond to the com-

mutators of matrices, Lieg(F) = g(Lie(Γ)), where Γ = {E1, A1 . . . , An−1} with
Ai = ei+1 ∧ ei, i = 1, . . . , n − 1, and Lie(Γ) denotes the Lie algebra generated by
the commutators of matrices in Γ. Then Lieg(F) = TgG if and only if Lie(Γ) = g,
where g denotes the Lie algebra of G.

It is easy to verify that the Lie algebra generated by the matrices A1, . . . , An−1

is isomorphic to son(R), and that the orbit of E1 under the adjoint action by
SOn(R) is equal to the sphere Sn. This implies that Lie(Γ) = g. It is known that a
family of left (or right) invariant vector fields on a semi-direct product G = V oK
is controllable if and only if Lie(Γ) = g. This fact implies that the Serret–Frenet
system (7) is controllable and remains controllable even if the controls are restricted
to the sphere ∥u∥ 6 1 [20, p. 179].

3. Non-Euclidean elastic problems. The elastic problems on the sphere Sn =
{x ∈ Rn+1 : ∥x∥ = 1} and the hyperboloid Hn = {x ∈ Rn+1 : x20 −

∑n
i=1 x

2
i = 1,

x0 > 0} can be described simultaneously in terms of a single parameter ϵ through
the quadratic forms

(x, y)ϵ = x0y0 + ϵ

n∑
i=1

xiyi, ϵ = ±1.
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For that reason it will be convenient to write Snϵ with Sn1 = Sn and Sn−1 = Hn, and
it will be convenient also to refer to Snϵ as the unit sphere, Euclidean or hyperbolic.
Then x ⊗ϵ y denotes rank one matrix defined (x ⊗ϵ y)z = (y, z)ϵx, z ∈ Rn+1, and
x ∧ϵ y denotes the rank two matrix x⊗ϵ y − y ⊗ϵ x.

Let Gϵ = SOϵ denote the connected component through the group identity of
the group Oϵ that leaves the form ( , )ϵ invariant. It follows that Gϵ is equal to
SOn+1(R) for ϵ = 1 and to SO(1, n) for ϵ = −1. Each of these groups acts on
the points x in Rn+1 via the matrix multiplication (g, x) → gx for g ∈ Oϵ. It
follows that each sphere {x : ⟨x, x⟩ϵ} is invariant under this action. Since Gϵ acts
transitively on the spheres, Snϵ can be realized as the orbit of Gϵ through any point
x0 of Snϵ .

In this paper we will identify Snϵ with the orbit through e0. Then each g ∈ Gϵ
defines a point x = π(g) = ge0 in Snϵ and the remaining columns of g, v1 =
ge1, . . . , vn = gen define an orthonormal frame (v1, . . . , vn) at x. Conversely, each
orthonormal frame at a point x of Snϵ can be identified with a unique matrix g in
Oϵ. An orthonormal frame is said to be positively oriented if the corresponding g
belongs to SOϵ. This identification shows that Gϵ can be regarded as the positively
oriented orthonormal frame bundle of Snϵ .

Let K denote the subgroup of Gϵ that leaves e0 invariant, i.e., Ke0 = e0. It
follows that K consists of matrices of the form

(
1 0
0 g

)
with g ∈ SOn(R), hence is

independent of ϵ. We will write K = {1}× SOn(R) and similarly k = {0}× son(R)
for the Lie algebra k of K.

Each curve g(t) in Gϵ projects onto the curve x(t) = g(t)e0 in Snϵ . Then it follows
that

dx

dt
=
dg

dt
e0 = g(t)Λ(t)e0 =

n∑
i=1

g(t)Λi0(t)ei =
n∑
i=1

Λi0(t)vi(t),

where the curve of matrices Λ(t) in the Lie algebra gϵ of Gϵ is defined by Λ(t) =
dg
dt (t)g

−1(t). The framed curve satisfies dx
dt = v1 if and only if Λi0 = e1. It follows

that the most general framed curve g(t) adapted to the projected curve x(t) = g(t)e0
via dx

dt = v1 is a solution of

(8)
dg

dt
= g(t)(Eϵ + U(t)),

with Eϵ = e1 ∧ϵ e0 and U(t) =
∑n
i,j=1 uij(t)(ej ∧ ei). The most general frame

v1(t), . . . , vn(t) adapted to the projected curve x(t) via the relation dx
dt (t) = v1(t) is

called Darboux frame. The corresponding system of equations (13) will be referred
to as a Darboux system.

Each Darboux system lends itself to control theoretic interpretations with the
deformation matrix U(t) playing the role of a control function as a left invariant
affine control system

(9)
dg

dt
= X0(g) +

n∑
i,j=1

uij(t)Xij(g),
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where X0(g) = gEϵ and Xij(g) = gAij , Aij = ej ∧ ei and the controls u(t) ∈ Rm,
m = 1

2n(n− 1).
We will now reveal additional geometric structure in the Lie algebra gϵ that is

of relevance for framed curves and their controllability properties. In what follows
⟨ , ⟩ denote the quadratic form on gϵ defined by ⟨A,B⟩ = −1

2 Tr(AB), where Tr(X)
stands for the trace of X. This quadratic form is called the trace form. The trace
form satisfies:
1. ⟨A,B⟩ =

∑
i>j aijbij for any skew-symmetric matrices A = (aij) and B = (bij),

2. ⟨A,B⟩ = −
∑
i>j aijbij for any symmetric matrices A = (aij) and B = (bij),

3. ⟨A,B⟩ = 0 if A is a symmetric and B is a skew-symmetric matrix.
The trace form identifies pϵ =

∑n
i=1 pi(e0 ∧ϵ ei), p = (p1, . . . , pn) ∈ Rn as the

orthogonal complement of the subalgebra k. It follows that gϵ = pϵ ⊕ k. We leave
it to the reader to show that

(10) [pϵ, pϵ] = k, [pϵ, k] = pϵ, [k, k] ⊆ k

The preceding decomposition of gϵ, subject to the Lie algebraic relations (15) is
known as the Cartan decomposition. With (10) at our disposal, consider control-
lability of (9). Let Γ = {Eϵ +

∑
i,j=1 uijAij} and let LS(Γ) denote the family of

matrices induced by the Lie saturate LS(F) through LS(F)(g) = g(LS(Γ)). It
follows the earlier remarks that the vector space spanned by the controlled vector
fields is in the Lie saturate which implies that k ⊆ LS(Γ). Then e−λAijEϵe

λAij

belongs to LS(Γ) for each λ (by property 3 of LS(F)). For i = 1 and j = 2,

e−λAijEϵe
λAij = cosλEϵ − sinλ(e0 ∧e pe2).

The preceding expression is equal to −Eϵ for λ = π. Therefore the vector space
spanned by Γ is in LS(Γ), which implies that Lie(Γ) ⊆ LS(Γ). It is easy to show
that adEϵ(k) = pϵ, from which it follows that LS(Γ) = gϵ. Hence, (9) is controllable.

For two dimensional spheres, Darboux curves coincide with the Serret–Frenet
curves and are the solutions of

(11)
dg

dt
= g(t)

0 −ϵ 0
1 0 −u(t)
0 u(t) 0

 .

It is easy to show that parameter u(t) is equal to the curvature of x(t) relative to
the Riemannian metric ϵ⟨ , ⟩ϵ. The argument is simple: first, ∥dxdt ∥

2
ϵ = ϵ⟨dxdt ,

dx
dt ⟩ϵ =

ϵ⟨g(t)e1, g(t)e1⟩ = 1 and hence x(t) is parametrized by its arc length. Secondly, the
covariant derivative Dx

dt v(t) of a tangent vector v(t) along a curve x(t) is given by

Dx

dt
v(t) =

dv

dt
+
⟨
v(t),

dx

dt

⟩
ϵ
x(t),

where d
dt denotes the standard derivative in R3 [22]. Therefore,

Dx

dt

dx

dt
(t) =

d

dt
g(t)e1 + ϵx(t) = u(t)v2(t).

This shows that u(t)2 =
∥∥Dx

dt
dx
dt (t)

∥∥2 and hence u(t) is the geodesic curvature of
x(t).
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In higher dimensions, Serret–Frenet systems are subsystems of Darboux systems
in which controls U(t) are restricted to

U(t) =



0 −u1(t) 0 · · · · · ·
u1(t) 0 −u2(t) 0 · · ·
0 u2(t) 0 0 · · ·
...

...
...

...
...

0 · · · un−2(t) 0 −un−1(t)
0 · · · 0 un−1(t) 0


.

Controls (u1(t), . . . , un−1(t)) coincide with the curvatures κ1(t), . . . , κn−1(t) of the

projected curve x(t) whenever the covariant derivatives
Dk

x

dtk
(dxdt ), k = 1, . . . , n− 1

are linearly independent. In the case that
Dk

x

dtk
(dxdt ) is linearly dependent on dx

dt ,
Dx

dt (
dx
dt ), . . . ,

Dk−1
x

dtk−1 (
dx
dt ) for some k < n−1, then u1(t) = κ1(t), . . . , uk−1(t) = κk−1(t)

and the remaining parameters uk(t), . . . , un(t) are arbitrary and bear no rela-
tion to the projected curve x(t). In particular, Serret–Frenet curves generated
by the controls U(t), with u1(t) = 0 project onto the geodesics around which the
frames v2(t), . . . , vn(t) spin arbitrarily (a geodesic does not generate a Serret–Frenet
frame). Sets of points reachable by controls U(t) with u1(t) = 0, P. Griffiths termed
strange integral manifolds in his book on the calculus of variations[13].

Due to these defficiencies, Serret–Frenet systems may not offer an ideal settings
for studying variational problems involving geometric invariants of curves, as in the
Euler–Griffiths or in the Delauney–Dubins problems. For these problems there is
another, more suitable, choice of frames, called auto-parallel, defined by the controls
U(t) of the form

U(t) =


0 −u1(t) −u2(t) · · · −un−1(t)

u1(t) 0 0 · · · 0
u2(t) 0 0 · · · 0
...

...
...

...
...

un−1(t) 0 0 · · · 0

 .

Every curve x(t) in Snϵ can be lifted to a unique curve of auto-parallel frames
and, moreover, the geodesic curvature κ(t) of x(t) is given by

κ2(t) = u21(t) + u22(t) + · · ·+ u2n−1(t) [22].

One can show, using the techniques of the Lie Saturate, that both the Serret–Frenet
and the auto-parallel system of frames, adapted to the projected curve x(t) via the
relation dx

dt = v1(t), are controllable on Gϵ. These systems remain controllable if
the controls are further restricted to any ball of radius r > 0 in the case ϵ = 1. In
the hyperbolic case, the system remains controllable only whenever the radius r is
greater than the absolute value of the curvature of the space (the curvature of a
hyperbolic spaces is negative).
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2.3. Optimal problems and the existence of solutions. Kirchhoff’s elastic rod
problem has a natural formulation on Snϵ as the problem of minimizing the integral

of 1
2

∫ T
0
⟨QU(t), U(t)⟩ dt over the solutions of (9) in the fixed time interval [0, T ]

subject to the fixed boundary conditions g(0) = g0 and g(T ) = g1, where Q is a
positive linear operator on k relative to the trace form. Any diagonal matrix D =
diag(d1, d2, . . . , dn) with positive diagonal entries defines a positive definite operator

Q(U) = DUD relative to the trace form. For n = 3 with U =
( 0 −u3 u2
u3 0 −u1
u2 u1 0

)
,

⟨DUD,U⟩ = d3d2u
2
1 + d1d3u

2
2 + d1d2u

2
3.

It then follows by a simple calculation, that for any positive numbers c1, c2, c3 there
is a unique matrix D such that c1 = d3d2, c2 = d1d3, c3 = d1d2.

Analogous formulations over the Serret–Frenet framed curves, or over the auto-
parallel framed curves could be considered as minor variations of the original elastic
problem of Kirchhoff. In dimension 2 all these problems coalesce to the Euler–
Griffiths problem, but not so in larger dimensions. On the spheres Snϵ the Euler–
Griffiths problem has a natural formulation over the auto-parallel framed curves as
follows.

The boundary conditions (x0, v0) and (x1, v1) for the problem of Euler–Griffiths
define submanifolds S0 = {f ∈ Gϵ : fe0 = x0, fe1 = v0} and S1 = {f ∈ Gϵ :
fe0 = x1, fe1 = v1} in Gϵ. Auto-parallel framed curves are the solutions of

(12)
dg

dt
= g(t)(Eϵ + U(t)) with U(t) =

n−1∑
i=1

ui(t)(e1 ∧ ei).

Matrices U(t) can be written also as U(t) =
(

0 −uT (t)
u(t) 0

)
, where uT denotes the

vector transpose (row vector) of the column vector u. Consider now

Definition 2.1. Lifted Euler–Griffiths Problem. Let T > 0 be given. Find the
solution g(t) of (13) in the interval [0, T ] that satisfies g(0) ∈ S0, G(t) ∈ S1 and

minimizes the integral 1
2

∫ T
0
⟨U(t), U(t)⟩ dt among all other solutions of (AP) that

conform to the same boundary conditions.

Since every curve x(t) in Snϵ that is parametrized by its arc length is the pro-
jection of a curve g(t) that is a solution of (12) and since ⟨U(t), U(t)⟩ = κ2(t), it
is easy to show that x(t) is a solution for the Euler–Griffiths problem if and only
if x(t) is the projection of the solution for the lifted Euler–Griffiths problem. The
Dubins–Delauney problem can be also phrased in terms of the auto-parallel framed
curves as the problem of connecting the initial manifold S0 to the terminal manifold
S1 in the least possible time via the solutions of (12) generated by the controls U(t)
subject to the constraint ⟨U(t), U(t)⟩ 6 1.

All of the above “energy” problems are controllable in the sense that for any
boundary conditions h1 and h2 there exists a time T and a trajectory g(t) that
satisfies g(0) = h1 and g(T ) = h2. We will show later that, even for a more general

class of problems, there are optimal solutions (ĝ(t), Û(t)) on any such interval

[0, T ] with Û(t) a square summable function on [0, T ]. Time optimal solutions for
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problems of Dubins–Delauney type also exist because the reachable sets A(x0,6 T )
of the associated control systems are closed [20, p. 119].

2.4. The Maximum Principle. We now come to the necessary conditions of op-
timality and Pontryagin’s Maximum Principle. For simplicity of exposition we will
confine the discussion to control affine systems (5) and consider the optimal problem

of minimizing a functional of the type
∫ T
0
f(x(t), u(t)) dt over its solutions subject

to the given boundary conditions. The boundary conditions could consist either of
single points, or submanifolds of the state space M . We will be principally inter-
ested in the minimal energy problems in which f(x, u) is a given quadratic form
⟨u,Qu⟩ and the minimization is done under no constraints on the control functions,
and the time optimal problems (f = 1) with controls constrained to the unit ball
∥u∥ 6 1.

The Maximum Principle states that each optimal trajectory x(t) is the projec-
tion of an extremal curve ξ(t) in the cotangent bundle T ∗(M) which, moreover,
is an integral curve of an appropriate Hamiltonian system on T ∗M . To be more
precise, let π denote the natural projection T ∗M →M defined by π(ξ) = x for any
ξ ∈ T ∗

x (M), and let ω denote the canonical symplectic form on T ∗(M). For each

function h on T ∗M let h⃗ denote the Hamiltonian vector field induced by h, i.e.,

defined by dh = ih⃗ω, where ih⃗ denotes the contraction along h⃗.
Let h0, . . . , hm denote the Hamiltonians defined by the vector fields X0, . . . , Xm

in (5) by hi(ξ) = ξ(Xi(x)), x = π(ξ). Then control system (5) together with the
cost functional f can be lifted to the cotangent bundle T ∗M via the time varying
Hamiltonians

(13) hλ(u(t), ξ) = −λf(u(t), π(ξ)) +
m∑
i=1

ui(t)hi(ξ), ξ ∈ T ∗(M),

according to the parameter λ which can be either equal to 1 or equal to 0.

Definition 2.2. Control function u(t), t ∈ [0, t1] is called extremal if there exist a
curve ξ(t) in T ∗(M) such that

1. dξ
dt = h⃗λ(u(t), ξ(t)) for almost all t ∈ [0, t1]; 2. ξ(t) ̸= 0 if λ = 0;

3. hλ(u(t), ξ(t)) > hλ(v, ξ(t)) for all v ∈ U and almost all t ∈ [0, T ].
The curve ξ(t) is called an extremal curve. It is called normal if λ = 1 and

abnormal if λ = 0. The pair (ξ(t), u(t)) as usually referred to as an extremal pair.

Theorem 2.1 (The Maximum Principle). Each optimal trajectory pair (x(t), u(t))
on an interval [0, t1] is the projection of an extremal curve ξ(t) generated by u(t).
If the terminal time is fixed, then the Hamiltonian h(ξ(t), u(t)) is constant on the
interval [0, t1], but if the terminal time t1 is variable, then h(ξ(t), u(t)) = 0.

If the boundary conditions consist of an initial submanifold S0 and a termial sub-
manifold S1, then the extremal curve ξ(t) must, in addition, satisfy the transver-
sality conditions: ξ(0)(Tx0S0) = 0 and ξ(t1)(Tx1S1) = 0, where x0 = π(ξ(0)) and
x1 = π(ξ(t1)).

To understand the mysterious appearance of the multiplier λ one needs to go to
the fundamental facts upon which the Maximum Principle is based. The principle
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is based on the fact that an optimal trajectory pair (x(t), u(t)) must be on the

boundary of the reachable set from (0, x0) in the extended space M̃ = R ×M of
the “cost extended” system:

(14)
dx0
dt

= f(x(t), u(t)),
dx

dt
= X0(x(t)) +

m∑
i=1

ui(t)Xi(x(t)),

The cotangent bundle T ∗M̃ is equal to the product T ∗R × T ∗M . Since T ∗R is
trivial, it can be realized as the product R2 with coordinates (x0, λ). Then the

Hamiltonian lift h̃(u(t), ξ) of (14) in T ∗M̃ is formally the same as (13). Since

h̃(u(t), ξ) does not explicitly depend on the variable x0, the variable λ is cyclic, in
the sense that it is constant along an integral curve of the Hamiltonian vector field
defined by h̃(u(t), ξ). The Maximum Principle then provides a necessary condition,

in terms of h̃(u(t), ξ), that (x(t), u(t)) be on the boundary of the reachable set.
Then, it follows from the proof of the Maximum Principle, that the associated
coordinate λ must be nonpositive because the cost is minimal. If λ is negative,
then it can be normalized to −1. Since h(u, ξ) is the projection of h̃(u), ξ on T ∗M ,
λ appears as an extra parameter.

Abnormal extremals may occur only when the number of controlled fields is less
that the dimension ofM because of conditions 2 and 3 that define extremal curves.
For when λ = 0, the maximality condition implies that

(15) h1(ξ(t)) = · · · = hm(ξ(t)) = 0

along an abnormal extremal ξ(t). When m = n and X1(x(t)), . . . , Xn(x(t)) are
linearly independent, then (15) implies that ξ(t) = 0, which contradicts condition 2.
But when the number of controlled fields is less that dim(M), then it may happen
that either an optimal trajectory is the projection of both a normal and an abnormal
extremal, or it may also happen that an optimal trajectory is the projection of an
abnormal extremal only.

In general, there may be additional constraints on the abnormals encountered
by further differentiations of (15). The ultimate resolution of these constraints
and the determination of the corresponding extremal control could result in an
involved procedure, often reminiscent of Dirac’s reduction of Hamiltonian systems
under constraints. However, for the problems considered in this paper abnormal
extremals do not play a significant role and their presence will be ignored.

For the “energy” problems f(x, u) = 1
2 ⟨u,Qu⟩, Q > 0 with no bounds on the

controls, normal extremal controls maximize the expression

h(u, ξ) = −1

2
⟨u,Qu⟩+ h0(ξ) +

m∑
i=1

uihi(ξ)

over the control set U . Hence, they are necessarily solutions of ∂h
∂u (u, ξ) = 0, i.e.,

they satisfy

(16) −
m∑
j=1

Qijuj(t) + hi(ξ(t)) = 0, i = 1, . . . ,m,
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Since Q > 0 this linear system of equations yields u(t) = Q−1h(ξ(t)), where h =
(h1, . . . , hm)T . It follows that the normal extremals corresponding to such extremal
controls are the integral curves of a single Hamiltonian H given by

(17) H(ξ) =
1

2

(
Q−1h(ξ), h(ξ)

)
+ h0(ξ).

For time optimal problems with controls in the unit ball ∥u∥2 6 1, the Hamil-
tonian lift is given by

(18) h(u, ξ) = λ+ h0 +

m∑
i=1

uihi, λ = 0,−1.

The maximality condition of the Maximum Principle determines the extremal con-
trol only when (h1(ξ(t)), . . . , h(ξ(t))) ̸= 0. For when (h1(ξ(t)), . . . , h(ξ(t))) ̸= 0 the
extremal control is of the form

(19) u =
1√

h21 + · · ·+ h2m
(h1(ξ), . . . , hm(ξ)),

i.e, it belongs to the boundary of the unit ball and remains there on an open time
interval by the continuity of ξ. The surface

(20) S = {ξ : h1(ξ) = h2(ξ) = · · · = hm(ξ) = 0}

is called the switching surface. Extremals ξ(t) which reside on the switching surface
on open intervals of time, together with the controls that generate them are called
singular. Singular controls belong to the interior of the unit ball. In addfition to
conforming to hi(ξ(t)) = 0, singular extremals also conform to {h, hi}(ξ(t)) = 0
which generates another set of constraints

(21) {h0, hi}+
m∑
j=1

{hj , hi}uj(t) = 0, i = 1, . . . ,m.

In the simplest case, the matrix {hi, hj} is nonsingular, and the preceding system of
equations is solvable for u in terms of h0, . . . , hm. Otherwise equations (21) imply
further constraints and further Poisson brackets are needed before getting a closed
form solution for u(t). For instance, for problems with scalar controls (m = 1)
equation (21) reduces to {h0, h1}(ξ(t)) = 0. Then

(22) {h, {h0, h1}}(ξ(t)) = {h0, {h0, h1}(ξ(t))}+u(t){h1, {h0, h1}(ξ(t))}(ξ(t)) = 0.

In the case of Dubins–Delauney problem on S2ϵ , equation (22) implies u(t) = 0.
Therefore, the singular extremals for the problem of Dubins–Delauney project onto
the geodesics of S2ϵ .

An extremal curve ξ(t) that belongs to the complement Sc of S for some time t
belongs to Sc on an open interval centered around t by continuity of ξ(t). Hence,
{t : ξ(t) ∈ Sc} is an open set. On this set, the control u(t) that generates ξ(t) is
a boundary control and is given by (19). This extremal may or may not cross the
switching surface, and if it does cross, it may cross it transversally or tangentially.
In the case of transversal crossing ξ(t), the extremal control leaves S immediately
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after the crossing and the control maintaiins the form given by (19). In the tan-
gential case, however, the extremal may remain on the switching surface, in which
case the extremal control becomes singular. An extremal may cross the switching
surface several times.

In the problem of Dubins–Delauney on the sphere S2ϵ , the boundary of the sphere
∥u∥ 6 1 consisits of two points u = ±1. In that case, the extremals are the
concatenations of the integral curves of

h+ = λ+ h0 + h1 (u = 1), h− = λ+ h0 − h1 (u = −1), or h0 (u = 0).

The projections of these extremal curves consist of circles of curvature ±1 and the
geodesics. It is known that optimal curves are the projections of normal extremals
with at most two switches (for instance, see [22] and [33]).

Let us now turn our attention to the Hamiltonian equations and their solutions.
Since solvability of Hamiltonian equations is intimately linked with symmetries, and
since the elastic problems with all their variants admit left invariant representations
on Lie groups it is important to choose coordinates that are suitably adapted to
these symmetries. The section below deals with Lie groups and their cotangent
bundles as a natural setting for variational problems with symmetries.

3. Lie groups and left-invariant Hamiltonians

The elastic problems discussed earlier fit naturally into a larger class of left-
invariant optimal problems on any Lie group G that admits an involutive automor-
phism σ. Since much of the subsequent exposition about the Hamiltonian systems
associated with elastic problems is equally valid for this larger class, and since this
larger class is central for the theory of integrable systems, it seems worthwhile to
digress briefly, and introduce the relevant terminology.

3.1. Lie groups with involutive automorphism and the affine problem. An
involutive automorphism σ on a Lie group G is an analytic mapping σ : G → G
that satisfies 1. σ(g2g1) = σ(g2)σ(g1) for all g1, g2 in G; 2. σ2 = I, σ ̸= I.

Such automorphisms identify a Lie subgroup K0 consisting of fixed points of σ,
i.e., K0 = {g : σ(g) = g}, and their tangent maps σ∗ define a direct sum decompo-
sition g = p+ k of the Lie algebra g with

(23) p = {M : σ∗(M) = −M} and k = {M : σ∗(M) =M}.
The latter decomposition follows from the fact that σ∗ is an involutive Lie algebra
automorphism of g, in the sense that σ∗([A,B]) = [σ∗(A), σ∗(B)]. Since σ2

∗ = I,
(σ∗ + I)(σ∗ − I) = 0, and hence, ±1 are the only eigenvalues of σ∗ with k with p
the corresponding eigenspaces. The above implies that

(24) [p, p] ⊆ fk, [k, p] ⊆ p, [k, k] ⊆ k,

and hence, the Cartan decomposition on space forms (10) is valid in a more general
context. Relations (24) imply that k is a Lie subalgebra of g. It can be easily shown
that k is the Lie algebra of K0. Since K0 may not be connected, it will be more
convenient to pass to the group K, the connected component of K0 that contains
the group identity I.
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Vector space p is called the Cartan space. It is invariant under the adjoint action
of K in view of the Lie bracket condition [p, k] ⊆ p. This fact will be noted by

(25) AdK(p) ⊆ p,

Since K acts linearly on p by (25), it defines the semidirect product Gs = p oK.
The semidirect product Gs is the Cartesian product p ×K together with the the
group operation (A1, h1) · (A2, h2) = (A1 +Adh1(A2), h1h2). It is a Lie group, and
its Lie algebra consists of points in p× k with the Lie bracket [ , ]s given by

[(A1, B1), (A2, B2)]s =
(
ad(B1)(A2)− ad(B2)(A1), [B1, B2]

)
for all (Ai, Bi) ∈ po k, i = 1, 2.

If (A,B) in po k is identified with the sum A+B, then p× k is identified with
p ⊕ k. Hence, [(A1, B1), (A2, B2)]s is identified with [B1, A2] − [B2, A1] + [B1, B2].
This shows that g as a vector space carries two Lie algebras: the semisimple Lie
algebra and the semidirect Lie algebra. The semisimple Lie bracket [ , ] is related
to the semidirect Lie bracket [ , ]s according to

[A1 +B1, A2 +B2] = [A1, A2] + [A1 +B1, A2 +B2]s for any Ai ∈ fp, Bi ∈ k.

In what follows ⟨ , ⟩ will denote the scalar multiple of the Killing form ⟨A,B⟩ =
Trace(ad(A) ◦ ad(B)) that is positive definite on k and coincides with the trace
form on gϵ defined in the previous section. It is easy to show that ⟨ , ⟩ is invariant
relative to any automorphism ϕ on g in the sense that ⟨A,B⟩ = ⟨ϕ(A), ϕ(B)⟩. This
invariance implies that ⟨ , ⟩ is AdK invariant, and secondly, it implies that p and k
are orthogonal because ⟨A,B⟩ =

⟨
σ∗(A), σ∗(B)

⟩
= ⟨−A,B⟩ = −⟨A,B⟩. Moreover,

0 =
d

dt
(⟨Adexp tC(A),Adexp tC(B)⟩)|t=0 = ⟨[C,A], B⟩+ ⟨A, [C,B]⟩

for any elements A,B,C in g. Therefore, ⟨[A,B], C⟩ = ⟨A, [B,C]⟩.
A Lie group G is said to be semisimple if the Killing form is nondegenerate on g.

For Lie groups that admit involutive automorphisms semisimplicity on g implies
semisimplicity on k. Therefore, K is semisimple as well. In addition, K will be
assumed compact with finite center. This assumption implies that the Killing form
is negative definite on k [17] and it also implies that there exists a scalar multiple
of the Killing form for which ⟨ , ⟩ is positive definite on K.

Semisimplicity of G implies stronger relations in (24), namely, [p, k] = p. It is
important to note that ⟨ , ⟩, as a scalar multiple of the Killing form, is degenerate
on the semidirect Lie algebra gs.

In the literature of symmetric spaces [17] the pair (G,K) with K a closed sub-
group of G obtained as by an involutive automorphism is called a symmetric pair.
If in addition this pair admits a positive definite AdK invariant quadratic form on
the Cartan space p, then the pair is called Riemannian symmetric pair. We will
not go further into the theory of these spaces; the interested reader should see [17]
or [11] (also see [25] for examples). An element A in p is said to be regular if
{X ∈ p : [X,A] = 0} is an abelian algebra. Alternatively, A is regular if there is a
maximal abelian algebra that contains A.
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With these theoretic ingredients at our disposal we come to the fundamental
control problems on G, a natural extension of Kirchhoff’s elastic problem:

Definition 3.1 (The Affine Problem). Minimize 1
2

∫ T
0
⟨Qu(t), u(t)⟩ dt over the tra-

jectories of

(26)
dg

dt
= g(t)(B + U(t)), U(t) ∈ k,

that satisfy g(0) = g0 and g(T ) = g1, where B is a regular element in p, Q a positive
definite linear mapping on k and g0 and g1 given points in G.

Remark 3.1. System (26) is formally the same as system (8) when U(t) is written
as U(t) =

∑n
i,j=1 uij(t)Aij with Aij : 1 6 i, j 6 n.

Remark 3.2. The affine control problem has an identical formulation on the semidi-
rect product Gs = poK with the boundary conditions on G replaced by the bound-
ary conditions on Gs. The affine control problem on Gs is always a “shadow” of
the affine problem on G.

Theorem 3.1 (The Existence Theorem). Given any pair g0 and g1 in G, there
exist a positive number T and an optimal trajectory (g(t), U(t)) on [0, T ] of (26)
relative to g0, g1 and T . The same holds for the affine problem on the semidirect
product Gs relative to g0 and g1 in Gs.

Proof. We will merely outline the main points in the proof, since the inclusion of
details would take us too far from the central topic of this paper, the relevance to
integrable systems.

1. Controllability. Regularity of B implies that the positive affine hull generated
by {Adh(B) : h ∈ K} is equal to p. Therefore, both p and k are in the Lie saturate
of the set Γ = {B + U : U ∈ k}. Hence, system (26) is controllable.

2. Optimality. Let Tr(T, g0, g1) denote the set of all trajectories of (26) that
satisfy g(0) = g0, g(T ) = g1. It follows from above that there exists T > 0 such
that Tr(T, g0, g1) is not empty. Let U0(t) denotes any control whose trajectory is

in Tr(T, g0, g1), let c0 denote its cost
∫ T
0
⟨QU0(t), U0(t)⟩ dt.

Let (gn, Un) denote a sequence in Tr(T, g0, g1) so that
∫ T
0
⟨QUn(t), Un(t)⟩ dt 6 c0

and

lim

∫ T

0

⟨QUn(t), Un(t)⟩ dt = lim inf

{∫ T

0

⟨QU(t), U(t)⟩ dt, (g, U) ∈ Tr(T, g0, g1)

}
.

The sequence Un belongs to the closed ball {U(t); t∈ [0, T ],
∫ T
0
⟨QU(t), U(t)⟩ dt 6 c0}

in the Hilbert space H consisting of square summable functions U(t) on [0, T ] with
values in k. Since closed balls in a Hilbert space are weakly compact, the sequence
{Un} has a weakly convergent subsequence. So there is no loss in generality in as-
suming that {Un} itself is weakly convergent. It then follows that the corresponding
trajectories converge uniformly [20]. If g(t) denotes the uniform limit of {gn}, then
g(t) is the trajectory generated by the weak limit U(t) of {Un}. This argument
shows that optimal trajectories exist, but the argument only shows that they are
generated by the controls in H. �
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Remark 3.3. The above shows that the optimal control is only square summable on
the interval [0, T ]. So additional arguments are needed to show that the Maximum
Principle is applicable, since, as it stands, the Maximum Principe is valid only for
essentially bounded controls.

3.2. Left-invariant Hamiltonians. For left invariant optimal control problems on
a Lie group G it is natural to consider T ∗G as the product G×g∗, where g∗ denotes
the dual of g, with each ξ in T ∗

gG identified with (g, l) ∈ G × g∗ via the formula
ξ(gA) = l(A) for every gA ∈ TgG. If g is semisimple, then the Killing form is
nondegenerate, and hence ⟨ , ⟩ is also nondegenerate and can be used to identify g∗

with g via the formula

ℓ ∈ g∗ ⇔ L ∈ g if and only if ⟨L,X⟩ = ℓ(X), X ∈ g.

The duals p∗ and k∗ of p and k will be identified with the annihilators k0 = {l ∈ g :
l(A) = 0, A ∈ k} and p0 = {l ∈ g : l(A) = 0, A ∈ p}. Because p and k are
orthogonal, p0 is identified with p and k0 is identified with k. The above implies
that if ℓp ∈ p∗ corresponds to Lp ∈ p and if ℓk ∈ k∗ corresponds to Lk ∈ k, then
ℓ = ℓp + ℓk corresponds to L = Lp + Lk.

The Poisson structure on g∗ inherited from the symplectic structure of T ∗G =
G × g∗ is defined in terms of the Poisson bracket {f, h}(ℓ) = ℓ([df, dh]), ℓ ∈ g∗,
for functions f and h on g∗. Functions on g∗ can be identified with the functions
on G × g∗ that are invariant under the left translations by the elements of G,
and for that reason, will be called left invariant Hamiltonians. Any left invariant

Hamiltonian h generates a Hamiltonian vector field h⃗ on G×g whose integral curves
(g(t), l(t)) are the solutions of

(27)
dg

dt
= gdh(l(t)),

dl

dt
= −ad∗dh(l(t))(l(t)),

where ad∗(X) : g∗ → g∗ is defined by ad∗(X)(l) = l ◦ ad(X). On semisimple Lie
groups equations (28) can be rephrased as

(28)
dg

dt
= gdh(L(t)),

dL

dt
= [dh(L(t)), L(t)],

due to the invariance of ⟨ , ⟩ (formula (25)). In terms of the decomposition L =
Lp + Lk equations (28) take on the following form

(29)
dg

dt
= gdh(l(t)),

dLk

dt
= [dhk, Lk] + [dhp, Lp],

dLp

dt
= [dhk, Lp] + [dhp, Lk],

where dhp and dhk denote the projections of dh on p and k.
For Lie groups with an involutive automorphism functions on g∗ may be con-

sidered as functions on the dual of the semidirect product gs and vice versa.
The Hamiltonian equations of functions on g∗s are different from the Hamilton-
ian equations on g∗ because of the difference in the Poisson structures. Recall that
[X,Y ]s = [Xp, Yk] + [Xk, Yp] + [Xk, Yk], where Xp, Xk and Yp, Yk denote the appro-

priate projections of X and Y on p and k. Therefore, equation dl
dt = −ad∗(dh)(l(t))
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relative to the semidirect product implies that⟨dL
dt
,X
⟩
=
⟨dLp

dt
,Xp

⟩
+
⟨dLk

dt
,Xk

⟩
= −

⟨
Lp, [dhp, Xk] + [dhk, Xp]

⟩
−
⟨
Lk, [dhk, Xk]

⟩
=
⟨
[dhp, Lp] + [dhk, Lk], Xk

⟩
+
⟨
[dhk, Lp], Xp

⟩
.

Hence,

(30)
dLk

dt
= [dhk, Lk] + [dhp, Lp],

dLp

dt
= [dhk, Lp].

Together with dg
dt = g(t) dh(l(t)) equations (30) constitute the Hamiltonian equa-

tions of a function h on the semidirect product p o k. It will be convenient to
combine (29) and (30) into a single equation
(31)
dg

dt
= g dh(l(t)),

dLk

dt
= [dhk, Lk] + [dhp, Lp],

dLp

dt
= [dhk, Lp] + s[dhp, Lk], s = 0, 1

3.3. Hamiltonian equations of the Affine problem. It follows from our discus-
sion of the Maximum Principle that the normal extremals for the Affine problem
(Aff) are the integral curves of H = 1

2 ⟨Q
−1h(ξ), h(ξ)⟩ + h0(ξ), where h(ξ) is the

matrix with entries hij(ξ) = ξ(gAij) (equation 17). The covector ξ in T ∗
gG is iden-

tified with (g, ℓ) ∈ G × g∗ and hence, hij(ξ) = ℓ(Aij). Similarly, h0(ξ) = ℓ(B).
Therefore, H is a left-invariant Hamiltonian on g∗.

Since we are in a semisimple case, ℓ is identified with L ∈ g. In the notations
used above L = Lk + Lp and ⟨Lk, X⟩ = ℓk(X) for all X ∈ k. Hence, ⟨Lk, Aij⟩ =
ℓk(Aij) = hij(ξ). This means that h is identified with Lk and h0(ξ) is identified
with ⟨Lp, B⟩. It follows that H as a function on g is given by

(32) H =
1

2
⟨Q−1Lk, Lk⟩+ ⟨Lp, B⟩

(remember, p and k are orthogonal). Then, dHk = Q−1Lk and dHp = B and the
Hamiltonian equations (31) take on the following form

dg

dt
= g(B +Q−1Lk),

dLk

dt
= [Q−1Lk, Lk] + [B,Lp],(AffHam)

dLp

dt
= [Q−1Lk, Lp] + s[B,Lk], s = 0, 1.

4. Kirchhoff’s problem on space forms with Q = I.

4.1. Elastic curves. Let us begin analyzing the solutions of the Affine Hamiltonian
system in the simplest case: Q = I and G = Gϵ, ϵ = ±1. Since these groups
are the positively oriented orthonormal frame bundles of the homogeneous space
Snϵ = Gϵ/K, with K = {1} × SOn(R) the Hamiltonian in (32) stands for the
equilibrium energy associated with non-Euclidean Kirchhoff’s elastic rod. It will
be shown below that when Q = I, (AffHam) not only recovers the solutions to the
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Euler–Griffiths elastic problem but makes an interesting link with the equations of
the heavy top (Lagrange’s top).

To set the stage for this analysis, it will be helpful, particularly to the reader
not familiar with optimal control, first to digress briefly into the Euler–Lagrange
equation associated the Euler–Griffiths problem and acquaint the reader with the
known results. The approach will that of Langer and Singer [28].

4.2. The Euler–Lagrange equation. Let us begin with an arbitrary Riemannian
manifoldM and let∇ denote the Levi–Civita connectionM and let R(X,Y ) denote
the Riemannian curvature tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for any vector fields X,Y, Z on M . First, recall the following relations (well known
in the literature on Riemannian geometry, for instance see [8])
1. ∇XY −∇YX = [X,Y ], for any vector fields X and Y .
2. ∇fX = f∇X for any function f and any vector field X.
3. ∇X(fY ) = f∇XY +X(f)Y for any function f and any vector fields X and Y .
4. ⟨R(X,Y )Z,W ⟩ = ⟨R(W,Z)Y,X⟩ for any vector fields X,Y, Z,W .
Then

Proposition 4.1. Let T (s)denote the tangent vector of a curve γ(s) that is a crit-

ical point for the Euler–Griffiths functional 1
2

∫ L
0
∥∇TT∥2 ds. Then T (s) satisfies

(33) (∇T )
3T +∇T

(3
2
κ2 − λ

)
T +R(∇TT, T )T ⟩ = 0.

with λ a constant.

Equation (33) is known as the Euler–Lagrange equation. A curve γ(s) is called
elastic if its tangent vector is a solution of the Euler–Lagrange equation.

Proof. Let Γ(w, t) denote a family of two parameter smooth regular curves γw(t) =
Γ(w, t), with 0 6 t 6 1, |w| < ϵ, for some ϵ > 0 of fixed length L that satisfy fixed
boundary conditions:

γw(0) = x0, γ(1) = x1,
dγw
dt

(0) = v0,
dγw
dt

(1) = v1.

Define V (w, t) = ∂Γ
∂t (w, t) and W (w, t) = ∂Γ

∂w (w, t), and let v(w, t) = ∥V (w, t)∥.
The preceding boundary conditions imply

W (w, 0) =W (w, 1) = 0 and
∂W

∂t
(w, 0) =

∂W

∂t
(w, 1) = 0.

Since each curve γw(t) is regular, v(w, t) ̸= 0 and there is a well defined unit tangent
vector T (w, t) = 1

v(w,t)V (w, t). If s denotes the arc length, then vdt = ds. In terms

of the Levi–Civita connection, ∇T = ∂
∂s and ∇W = ∂

∂w . In particular, ∇TT = ∂T
∂s

and therefore, κ2 = ∥∇TT∥2.
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Since each curve γw is of fixed length, Γ satisfies
∫ 1

0
(v(w, t)−L) dt = 0. Consider

now the critical points of the functional

F =

∫ L

0

1

2
κ2(s) ds+ λ

(∫ L

0

ds− L

)
=

∫ 1

0

(1
2
κ2(t) + λ

)
v dt− λL

over the curves γw induced by Γ, where λ is a Lagrange multiplier due to the
constraint on the arc length. Then γ(t) = Γ(0, t) is a critical point of F over Γ if

dF|w=0 =
∂

∂w

∫ 1

0

(1
2
κ2(t) + λ

)
v dt− λL|w=0 = 0.

Then,

Lemma 4.1. ∂
∂w (

1
2κ

2) = ⟨(∇T )
2W,∇TT ⟩ − 2⟨∇TW,T ⟩vκ2 + ⟨R(W,T )T,∇TT ⟩.

Proof. First a few auxiliary facts: ∂
∂w

∂
∂tΓ = ∂

∂t
∂
∂wΓ implies that [V,W ] = 0. Sec-

ondly, v2 = ⟨V, V ⟩ implies that v ∂v∂w = ⟨∂V∂w , V ⟩ = ⟨ ∂∂tW,V ⟩ = ⟨v∇TW,V ⟩. Hence,
∂v
∂w = ⟨∇TW,T ⟩v. Furthermore, [W,T ] = [W, 1vV ] = W ( 1v )V + 1

v [W,V ] = − ∂v
∂wT ,

and therefore, ∇WT = ∇TW + [W,T ] = ∇TW − ∂v
∂wT . So,

∂

∂w

(1
2
κ2
)
= ⟨∇W∇TT,∇TT ⟩

= ⟨∇T∇WT,∇TT ⟩+ ⟨R(W,T )T,∇TT ⟩+ ⟨∇[W,T ]T,∇TT ⟩

=
⟨
∇T

(
∇TW− ∂v

∂w
T
)
,∇TT

⟩
+
⟨
R(W,T )T,∇TT

⟩
+
⟨
− ∂v

∂w
∇TT,∇TT

⟩
=
⟨
(∇T )

2W,∇TT
⟩
− 2

∂v

∂w
κ2 +

⟨
R(W,T )T,∇TT

⟩
. �

It follows that

dF|w=0 =
∂

∂w

∫ 1

0

(1
2
κ2(t)+λ

)
v dt−λL|w=0 =

∫ 1

0

( ∂

∂w

(1
2
κ2
)
+
(1
2
κ2 + λ

) ∂v
∂w

)
dt

=

∫ 1

0

(
⟨(∇T )

2W,∇TT ⟩ −
3

2
⟨∇TW,T ⟩κ2 + ⟨R(W,T )T,∇TT ⟩+ λ⟨∇TW,T ⟩

)
v dt

=

∫ L

0

(
⟨(∇T )

2W,∇TT ⟩ −
3

2
⟨∇TW,T ⟩κ2 + ⟨R(W,T )T,∇TT ⟩+ λ⟨∇TW,T ⟩

)
ds

After the appropriate integrations by parts, the boundary terms vanish and the
preceding reduces to:

dF|w=0 =

∫ L

0

⟨
W, (∇T )

3T +∇T

(3
2
κ2 − λ

)
T +R(∇TT, T )T

⟩
ds = 0,

because ⟨R(W,T )T,∇TT ⟩ = ⟨R(∇TT, T )T,W ⟩ by property (4) listed above. But
then ⟨

W, (∇T )
3T +∇T

(3
2
κ2 − λ

)
T +R(∇TT, T )T

⟩
= 0,

provided that the class of variations is sufficiently large. (This part os glossed over
in the existing literature). �
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Proposition 4.2. Let M be a space form and suppose that there is a well defined
Serret–Frenet frame v1, . . . , vn along an elastic curve γ. Let κ1 = κ, κ2 = τ ,
κ3, . . . , κn−1 denote the associated curvatures defined by dγ

dt = v1(t), ∇v1v1 = κ1v2,
∇v1v2 = −κ1v1 + κ2v3, ∇v1vk = −κivi−1 + κi+1vi+1, . . . , ∇v1vn = −κn−1vn−1.
The Euler–Lagrange equation is given by

(34)
(
κss +

1

2
κ3 − κτ2 + (ϵ− λ)κ

)
v2 +

(
κsτ +

d

ds
(κτ)

)
v3 + κτκ3v4 = 0,

Proof. It follows that

∇TT = κv2,

(∇T )
2T = κsv2 + κ∇T v2 = −κ21v1 + κsv2 + κτv3,

(∇T )
3T = −3κκsv1 + (κss − κτ2 − κ3)v2 +

(
κsτ +

d

ds
(κτ)

)
v3 + κτκ3v4,

On space forms, R(∇TT, T )T = ϵ∇TT , where ϵ = ±1, 0 is the curvature of the
underlying space. Therefore, equation (33) becomes(

κss +
1

2
κ3 − κτ2 + (ϵ− λ)κ

)
v2 +

(
κsτ +

d

ds
(κτ)

)
v3 + κτκ3v4 = 0. �

Corollary 4.1. κ2(s)τ(s) = c and κi = 0 for i = 3, . . . , (n− 1). It ξ = κ2, then

(35)
dξ

ds

2

+ ξ3 + 4(ϵ− λ)ξ2 − 4c1ξ + 4c2 = 0,

for some constant c1

Proof. It follows from above that

κss +
1

2
κ3 − κτ2 + (ϵ− λ)κ = 0, κsτ +

d

ds
(κτ) = 0, κτκ3 = 0.

Therefore, 0 = κ(κsτ +
d
ds (κτ)) =

d
ds (κ

2τ), hence κ2τ = c, c a constant and κ3 = 0.

The first equation after a multiplication by 2κs and the substitution κτ2 = c2

κ3

becomes
d

ds
(κ2s) + 2κ3κs − 2

c2

κ3
κs + 2(ϵ− λ)κκs = 0,

and can be written in integrated form as

(36) κ2s +
1

4
κ4 +

c2

κ2
+ (ϵ− λ)κ2 = c1.

Equation (36), upon a multiplication by 4κ2 leads to (35) after the substitution
ξ = κ2. �

Equation (35) is integrable in terms of elliptic functions. Then the torsion τ(s)
is determined through ξτ = c. Since all the higher curvatures are zero, each elastic
curve resides on a three dimensional manifold defined by the Serret–Frenet triad
T (s), N(s), B(s). This three dimensional system is integrable by quadratures, as
demonstrated in [29] and [22].



CONTROL AND INTEGRABLE SYSTEMS 117

4.3. Elastic curves – Hamiltonian view. Let use now return to the space forms
Snϵ = Gϵ/K and the Hamiltonian H in (32). When Q = I this Hamiltonian reduces
to H = 1

2 ⟨Lk, Lk⟩ + ⟨Lp, B⟩ and the associated Hamiltonian equations (AffHam)
reduce to

(37)
dg

dt
= g(B + Lk),

dLk

dt
= [B,Lp],

dLp

dt
= [Lk, Lp] + [B,Lk].

We will now identify two types of functions, called integrals of motion, which are
constant along the solutions of (37). Equations

(38)
dLk

dt
= [B,Lp],

dLp

dt
= [Lk, Lp] + [B,Lk]

can be written as

(39)
L(λ)

dt
= [M(λ), L(λ)],

where M(λ) = 1
λ (Lp − B) and L(λ) = Lp − λLk + (λ2 − 1)B, and therefore, the

spectral invariants of L(λ) are integrals of motion for (38) and (39). The fact is
easily verified by noticing that g(t)L(λ)g−1(t) is constant for g(t) a solution of
dg
dt (t) = gM(λ). These integrals of motion are called isospectral.

To identify the second type of integrals, let kB = {X ∈ k : [X,B] = 0} and
let k⊥B denote its orthogonal complement in k relative to the trace form. It is easy
to see that kB is a Lie subalgebra of k and that [B, pϵ] ∈ k⊥B since ⟨kB , [B, pϵ]⟩ =
⟨[kB , B], pϵ⟩ = 0. This means that the projection LkB of Lk on kB is constant along
the solutions of (37).

For the rest of this section we will be interested in the case that LkB=0.

Proposition 4.3. Suppose that the drift matrix B in (40) satisfies ⟨B,B⟩ = ϵ.
Then the projections of solutions in (37) on Snϵ that correspond to LkB = 0 are
elastic. Conversely, every elastic curve in Snϵ is the projection of such a solution.

It will be convenient to adopt the language of principal fiber bundles and regard
Gϵ as the principal bundle over Snϵ with K as the structure group. In the termi-
nology of principal bundles, the left invariant distribution Pϵ(g) = {gΛ : Λ ∈ pϵ} is
called a connection over Snϵ and the integral curves of Pϵ are called horizontal [26].
If g(t) is a horizontal curve so is g̃(t) = g(t)h for any h in the isotropy group K.
Moreover, both g(t) and g̃(t) project onto the same curve x in the base manifold Snϵ .
Conversely, every parametrized curve x(t) in Snϵ is the projection of a horizontal
curve g(t) in Gϵ.

The Riemannian length of the tangent curve dx
dt is given by∥∥∥dx

dt

∥∥∥2 = ϵ
⟨dx
dt
,
dx

dt

⟩
ϵ
=

n∑
i=1

dxi
dt

2

+ ϵ
dx0
dt

2

.

If g(t) is a horizontal curve that projects onto x(t), i.e., x(t) = g(t)e0, then
dx
dt = dg

dt e0 = g(t)Λ(t)e0, where Λ(t) = a ∧ϵ e0 =
(
0 −ϵaT
a 0

)
. Hence, ∥dxdt ∥

2 =∑n
i a

2
i (t) = ϵ⟨Λ(t),Λ(t)⟩ = −ϵ 12 Tr(Λ

2). Thus dx
dt is a unit tangent vector if and

only if ⟨Λ,Λ⟩ = ϵ.
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Suppose now that v(t) is a curve of tangent vectors along a curve x(t) in Snϵ .
Let g(t) be any horizontal curve that projects onto x(t), i.e., x(t) = g(t)e0. Then
there exists a curve of matrices V (t) in p such that v(t) = g(t)V (t)e0. Then the
covariant derivative Dx

dt v(t) of v(t) along x(t) is given by

(40)
Dx

dt
v(t) = g(t)

dV

dt
e0.

In particular, if dxdt = g(t)Λ(t)e0 for a horizontal curve g(t) with Λ(t) = dg
dt g

−1, then
Dx

dt (
dx
dt ) = g(t)dΛdt e0. If furthermore, ⟨Λ,Λ⟩ = ϵ, then ϵ⟨dΛ,dt ,

dΛ
dt ⟩ is the curvature of

x(t).
With this terminology at our disposal we come to the proof of the proposition.

Proof. Let ḡ(t) be any solution of equations (37) and let x(t) = ḡ(t)e0 be the
projection on Snϵ . Let h(t) denote the curve inK that is the solution of dhdt = h(t)Lk,

h(0) = I. Then g(t) = ḡ(t)h(t) is a horizontal curve with h(t)Bh−1(t) = Λ(t) =
dg
dt g

−1(t) that projects onto the same curve x(t). Since ⟨Λ,Λ⟩ = ⟨B,B⟩ = ϵ,

∥dxdt ∥ = 1 and therefore, the curvature κ(t) of x(t) satisfies κ2 = ϵ⟨dΛdt ,
dΛ
dt ⟩.

It follows that dΛ
dt = h[B,Lk]h

−1 = [Λ, Q] with Q = hLkh
−1. Further differ-

entiations show that dQ
dt = [Λ, P ] with P = hLph

−1, and dP
dt = [Λ, Q]. Hence P

and Λ differ by a constant matrix in pϵ. These equations will be referred to as the
associated equations of (37).

Recall now the earlier notations a ∧ϵ b for the wedge product relative to the
quadratic form ( , )ϵ. In this notation, B is equal b∧ϵ e0 for a vector b =

∑n
i=1 biei.

The following formulas will be useful for some of the computations below.

[a ∧ϵ b, c ∧ϵ d] = ⟨b, c⟩ϵa ∧ϵ d+ ⟨c, a⟩ϵd ∧ϵ b+ ⟨b, d⟩ϵc ∧ϵ a+ ⟨a, d⟩ϵb ∧ϵ c(41a)

h(a ∧ϵ b)h−1 = ha ∧ϵ hb.(41b)

We will also make use of the following lemma whose proof will be left to the
reader:

Lemma 4.2. Lk = l ∧ϵ b for some vector l =
∑n
i=1 liei orthogonal to b when

LkB = 0.

Then Λ = hBh−1 = h(b ∧ϵ e0)h−1 = λ ∧ϵ e0, where λ = hb, and Q =
h(l ∧ϵ b)h−1 = hl ∧ϵ hb = q ∧ϵ λ with q = hl. Since h is orthogonal, q and λ
are orthogonal. It follows that [Λ, Q] = [λ∧ϵ e0, q∧ϵ λ] = (λ, λ)ϵe0 ∧ϵ q = ϵ(e0 ∧ϵ q).

Therefore,

κ2 = ϵ⟨[Λ, Q], [Λ, Q]⟩ = ϵ⟨e0 ∧ϵ q, e0 ∧ϵ q⟩ = ∥q∥2 = ∥Q∥2.

Since ∥Q∥2 = ∥Lk∥2 the Hamiltonian H in (32) can be also expressed as

(42) H =
1

2
κ2 + ⟨B,Lp⟩ =

1

2
κ2 + ⟨Λ, P ⟩.

We will show next that Λ is the lifted version of the Euler–Lagrange equation (33).
Easy calculations show that [[Λ, Q], Q] = −∥Q∥2Λ and [Λ, [Λ, P ]] = ⟨Λ, P ⟩Λ − ϵP .
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Hence,

d2Λ

dt2
= [[Λ, Q], Q] + [Λ, [Λ, P ]] = (⟨Λ, P ⟩ − ∥Q∥2)Λ− ϵP =

(3
2
κ2 +H

)
Λ− ϵP.

But then,

d3Λ

dt3
=

d

dt

(3
2
κ2 +H

)
Λ− ϵ

dΛ

dt

since dP
dt = dΛ

dt . It follows that the projected tangent vector T (t) = g(t)Λ(t)e0
satisfies the Euler–Lagrange equation (33) with R(∇TT )T = ϵ∇TT . �

Let us now recover the contents of the corollary to Proposition 4.2 in a “Hamil-
tonian” way. Since the spectrum of Lµ = Lp−µLk+(µ2−1)B and that of hLµh

−1

are the same, it follows that the spectral invariants of Lµ = P − µQ + (µ2 − 1)Λ
are constants of motion for the associated system.

The characteristic polynomial of the above matrix is given by s4+ c1s
2+ c2 = 0,

with c1 = ϵ(µ2− 1)H + ϵ⟨q, q⟩ϵ+ ⟨p, p⟩ϵ, c2 = µ2(∥q∥2∥p∥2)−⟨q, q⟩ϵ⟨λ, p⟩2ϵ −⟨q, p⟩2ϵ .
The above shows that in addition to the Hamiltonian H there are two other

integrals of motion I1 = ϵ⟨q, q⟩ϵ+ ⟨p, p⟩ϵ and I2 = ∥q∥2∥p∥2− (q, q)ϵ⟨λ, p⟩2ϵ −⟨q, p⟩2ϵ .
These integrals of motion can be expressed more suscinctly as

I1 = ∥P∥2 + ϵ∥Q∥2, I2 = ∥P∥2∥Q∥2 − ∥[P,Q]∥2,

where all the norms are induced by the quadratic form ⟨ , ⟩ϵ defined by

⟨X1 + Y1, X2 + Y2⟩ϵ = ϵ⟨X1, X2⟩+ ⟨Y1, Y2⟩ for any Xi ∈ pϵ, Yi ∈ k, i = 1, 2.

The first integral I1, a universal integral also known as a Casimir, is an integral
of motion for any left invariant Hamiltonian on gϵ. However, I2 is a particular
integral of motion which, together with the Hamiltonian H and I1 is sufficient to
recover equation (35). The proof is as follows:

Proof. Since κ2 = ∥Q∥2, dκ
2

dt = 2⟨Q, dQdt ⟩ = 2⟨Q, [Λ, P ]⟩ = −2ϵ⟨q, p⟩ϵ. Hence,

dξ

dt

2

=
(dκ2
dt

)2
= 4(p, q)2ϵ = 4

(
− I2 + ∥P∥2∥Q∥2 − ∥Q∥2⟨Λ, P ⟩2

)
= 4
(
− I2 + ∥Q∥2(I1 − ϵ∥Q∥2)− ∥Q∥2

(
H − 1

2
∥Q∥2

)2)
= −4I2 + 4∥Q∥2I1 − 4ϵ∥Q∥4 − 4∥Q∥2

(
H2 −H∥Q∥2 + 1

4
∥Q∥2

)
= −ξ3 + 4(H − ϵ)ξ2 + 4(I1 −H2)ξ − 4I2. �

The equation

(43)
dξ

dt

2

+ ξ3 + 4(ϵ−H)ξ2 − 4(I1 −H2)ξ + 4I0 = 0,

is the same as the corresponding equation (38) with λ = H, c1 = I1 − H2, and
c2 = I2. We leave it to the reader to show that (κ2τ)2 = I2.
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Remark 4.1. The Euler–Griffiths problem could have been attacked more directly

as the problem of minimizing 1
2

∫ T
0
∥U(t)∥2ϵ dt over the solutions g(t) of auto-parallel

system dg
dt (t) = g(t)(Eϵ + U(t)) that originate in S0 = {g : ge0 = x0, ge1 = v0} at

t = 0 and terminate on S1 = {g : ge0 = x1 ge1 = v1} as done in [22] and JuPM.
The presentation in this paper makes a better link between the elastic problem and
the mechanical systems as we will see in the following section.

5. The Kinetic Analogue

Consider now the affine Hamiltonian H = 1
2 ⟨Lk, Lk⟩+⟨Lp, B⟩ on six dimensional

Lie groups Gϵ, SO4(R), SO(1, 3) and the semidirect product SE3 = R3 o SO3.
These groups are both the isometry groups of and the orthonormal frame bundles
(positively oriented) of the three dimensional space forms S3

ϵ , ϵ = ±1 and E3, and
hence the affine Hamiltonian H could be considered as the elastic energy for the
equilibrium configurations of the “generalized” elastic problem of Kirchhoff, in the
sense that the center line x(t) of the rod is adapted to the frame deformations of
the rod via a general relation

dx

dt
(t) = b1v1(t) + b2v2(t) + b3v3(t),

rather than just dx
dt = v1.

As before, ⟨A1+B1, A2+B2⟩ϵ = ⟨A1, A2⟩+ϵ⟨B1, B2⟩ for any matrices Ai ∈ k and
Bi ∈ pϵ, i = 1, 2, where ⟨ , ⟩ denotes the trace form on gϵ. Then, {Bi = ei∧ϵ e0, i =
1, 2, 3} is an orthonormal basis for pϵ and Ai = e3 ∧ e2, A3 = e1 ∧ e3, A3 = e2 ∧ e1
is an orthonormal basis for k relative to ⟨ , ⟩ϵ. To make the connection with the
equations of the heavy top it will be helpful to express the Hamiltonian equations
(AffHam) in terms of the coordinates defined by the above basis. Then each matrix

L =


0 −ϵp1 −ϵp2 −ϵp3
p1 0 −m3 m2

p2 m3 0 −m1

p3 −m2 m1 0


in gϵ will be represented by the pair of vectors (M̂, P̂ ), where M̂ = (m1,m2,m3)

T

and P̂ = (p1, p2, p3)
T .

The basis elements satisfy the following Lie bracket table:

Table 1. ϵ = ±1, s = 0, 1.

[ ] A1 A2 A3 B1 B2 B3

A1 0 −A3 A2 0 −B3 B2

A2 A3 0 −A1 B3 0 −B1

A3 −A2 A1 0 −B2 B1 0
B1 0 −B3 B2 0 −sϵA3 sϵA2

B2 B3 0 −B1 sϵA3 0 −sϵA1

B3 −B2 B1 0 −sϵA2 sϵA1 0
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It follows that the coordinate vector (M̂, P̂ ) of the Lie bracket [L1, L2] is given by

M̂ = M̂2 × P̂1 + ϵ(P̂2 × P̂1), P̂ = P̂2 × M̂1 + M̂2 × P̂1,

where × denotes the vector product in R3 and where (M̂1, P̂1) and (M̂2, P̂2) are
the coordinate vectors of L1 and L2.

The matrix Lp which figures in equations (AffHam) is of the form Lp =
(

0 −pT
ϵp 0

)
,

hence its coordinate vector is given by ϵP̂ . Recall that Lp corresponds to ℓ ∈ p∗

via the trace form rather than via ⟨ , ⟩ϵ. In what follows Q−1Lk will be assumed

of the form Q−1Lk ==
∑3
i=1

1
λi
miAi with λ1, λ2, λ3 arbitrary positive numbers.

Than Ω̂ =
(

1
λ1
q1,

1
λ2
q2,

1
λ3
q3
)T

will denote its coordinate vector. In terms of the

coordinates (M̂, ϵP̂ ),

(44) H =
1

2

( 1

λ1
m2

1 +
1

λ2
m2

2 +
1

λ3
m2

3

)
+ b1p1 + b2p2 + b3p3,

and (AffHam) associated with H is given by:

(45)
dM̂

dt
= M̂ × Ω̂ + P̂ × B̂,

dP̂

dt
= P̂ × Ω̂ + sϵ(M̂ × B̂), B̂ =

b1b2
b3

 ,

together with dg
dt = g(t)(B +Q−1Lk).

On the semidirect product pϵ o k the above equations reduce to

(46)
dM̂

dt
= M̂ × Ω̂ + P̂ × B̂,

dP̂

dt
= P̂ × Ω̂

which formally looks the same as the equation of the heavy top with λ1, λ2, λ3
playing the role of the principal moments of inertia of the body, and b1, b2, b3
corresponding to the coordinates of the center of gravity relative to the fixed point
of the body. This discovery forms the basis for the “Kinetic Analogue” of Kirchhoff
in which he likened the equations of the elastic rod to the motions of the top.

As remarkable as Kirchhoff’s observation was, it nevertheless,went in the wrong
direction: it is the top that follows the equations of the elastic rod, rather than the
other way around, since the equations of the top form an invariant subsystem of the
elastic system. Indeed, this observation justifies the long standing ad-hoc practice
of treating the equations of the top as the equations in the semidirect product. Let
us digress briefly into the equations of the top in order to make this point more
explicit.

5.1. The heavy top. A rigid body in a three dimensional Euclidean space that is
free to rotate around a fixed point under a constant gravitational force is known as
a heavy top. Its equations of motion are expressed through a rotation matrix R(t)
in SO3(R) that measures the movements of an orthonormal frame a1(t), a2(t), a3(t)
centered at a fixed point O on the body relative to an absolute orthonormal frame
e1, e2, e3 in the ambient space R3. The absolute frame may be rotated so that the

gravitational force is of the form F⃗ = −Ce1, with C the gravitational constant.
Then R(t) is the isometry that relates the moving frame to the absolute frame.
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More precisely, if q = (q1, q2, q3)
T denotes the coordinate vector of a point O⃗P in

the absolute space, and if Q = (Q1, Q2, Q3)
T denotes the coordinate vector of the

same point relative to the moving frame, then q = RQ.
With each movement of the body a point q(t) undergoes velocity dq

dt = dR
dt Q.

Since R(t) is a curve in SO3(R),
dR
dt = V (t)R(t) for some skew-symmetric matrix

V (t). The kinetic energy then is given by 1
2m
∥∥dq
dt

∥∥2 = 1
2m∥V (t)R(t)Q∥2. The total

kinetic energy of the body is the aggregate of the contributions due to point masses
and can be expressed as a 3-dimensional integral in terms of the mass density ρ as
follows:

T =
1

2

∫
Body

∥V (t)R(t)Q∥2ρ(Q) dQ =
1

2

∫
Body

∥R−1V (t)R(t)Q∥2ρ(Q) dQ.

To simplify the preceding integral let U(t) = R−1(t)V (t)R(t) = R−1 dR
dt . Matrix

U(t) is called the angular velocity of the body relative to the moving frame (in
contrast to V which is the angular velocity relative to the absolute frame). This
transformation of angular velocities transforms right-invariant paths drdt = V (t)R(t)

into left-invariant paths dR
dt = R(t)U(t) with the associated kinetic energy given by

1
2

∫
Body

∥U(t)Q∥2ρ(Q) dQ.

The kinetic energy may be related to the positive definite left-invariant quadratic
form ⟨⟨U1, U2⟩⟩ in the Lie algebra so3(R)

⟨⟨U1, U2⟩⟩ =
∫
Body

(U1Q,U2Q)ρ(Q) dQ,

defined by the shape of the body, where ( , ) denotes the Euclidean product in E3.

Then, T (U) =
1

2
⟨⟨U,U⟩⟩ = 1

2 ⟨QU,U⟩, where Q is a positive definite linear operator

on so3(R) and ⟨ , ⟩ is the trace form on so3(R). In the literature on mechanics,
operator Q is called the inertia tensor and its eigenvalues λ1, λ2, λ3 are called the
principal moments of inertia [3].

To find the expression for the potential energy it is convenient to introduce the
center of mass q defined by q

∫
Body

ρ(Q) dQ =
∫
Body

Qρ(Q) dQ. Then the potential

energy is V is given by

V = C

∫ t

0

∫
Body

(
e1,

dR

dτ
Q
)
ρ(Q) dQdτ = Cm(e1, R(t)q),

where m =
∫
Body

ρ(Q) dQ stands for the total mass of the body.

The Principle of Least Action states that actual motions minimize the action

integral
∫ T
0
(T − V ) dt. We will paraphrase the Principle of east Action as the

optimal control problem of minimizing the action integral

(47)

∫ T

0

(T − V ) dτ =

∫ T

0

(1
2
⟨QU(t), U(t)⟩ − Cm

(
R−1(t)e1, q

))
dt

over all trajectories (R(t), U(t)) of the left-invariant system dR(t)
dt = R(t)U(t).

By choosing a basis A1, A2, A3 in so3(R) that is orthonormal relative to the
trace form such that ⟨QAi, Aj⟩ = λjδij each angular velocity U(t) can be written
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as U(t) = u1(t)A1 + u2(t)A2 + u3(t)A3 and the preceding optimal problem can be
rephrased as the problem of minimizing the integral∫ T

0

(1
2

3∑
i=1

λiu
2
i (t) + Cm(R−1e1, q)

)
dt

over the trajectories of the left-invariant control system dR
dt (t) =

∑3
i=1 ui(t)R(t)Ai.

Then

hu(t)(ξ) = −1

2

3∑
i=1

λiu
2
i (t) + Cm(R−1e1, q) +

3∑
i=1

uiξ(RAi), ξ ∈ T ∗
R SO3(R)

is the corresponding Hamiltonian lift of (47). The Maximum Principle then iden-
tifies the maximal Hamiltonian

(48) H(ξ) =
1

2

3∑
i=1

1

λi
m2
i (ξ) + Cm(R−1e1, q)

in the cotangent bundle T ∗(SO3(R)) as the energy Hamiltonian that determines
the motions of the top, in the sense that each motion of the top is the projection of

an integral curve of the corresponding Hamiltonian vector field H⃗. In this notation
each momentum mi is equal to mi(ξ) = ξ(RAi), ξ ∈ T ∗

R(SO3(R)) and the extremal
angular velocities are related to the momenta mi via the relation ui = 1

λi
mi,

i = 1, 2, 3.
In order to be able to make a connection with the elastic problem and the Kinetic

Analogue of Kirchhoff trivialize the cotangent bundle T ∗ SO3(R) from the left and
consider it as the product SO3(R) × so∗3(R). To facilitate this connection further,
letK denote SO3(R) and let k to denote its Lie algebra so3(R). In this realization of
T ∗ SO3(R) each momentum mi becomes a linear function on k and m1,m2,m3 can
be regarded as the coordinates of any ℓ ∈ k∗ relative to the dual basis A∗

1, A
∗
2, A

∗
3.

The extremal control U =
∑3
i=1

1
λi
miAi is recognized as a linear mapping from k∗

onto k.
Since H is not left-invariant the Hamiltonian equations are not given by (28),

rather, they are given by:

(49)
dR

dt
(t) = R(t)U(ℓ(t)),

dℓ

dt
(X) = −Cm(R−1e1, Xq)−ad∗Ω(ℓ(t))(ℓ(t)), X ∈ k,

(See [20] or [22] for additional details).
The linear function X → −Cm(R−1e1, Xq) is the torque-momentum due to the

potential energy. This torque-momentum is zero precisely when the center of grav-
ity coincides with the fixed point. In that case, the heavy top is no longer “heavy”
and turns into “the top of Euler”. Since SO3(R) is simple, the Hamiltonian equa-
tions on the dual of the Lie algebra can be expressed on the Lie algebra via the trace

form. Then each point ℓ ∈ k∗ corresponds to the matrix Lk =
( 0 m3 m2

m3 0 −m1
−m2 m1 0

)
, U(ℓ))

corresponds to Q−1Lk and the linear function X → −Cm(R−1e1, Xq) corresponds
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to the matrix (CmR−1e1) ∧ q. Hence,

(50)
dR

dt
(t) = R(t)Q−1Lk,

dLk

dt
(t) = [Q−1Lk, Lk(t)] + (CmR−1e1) ∧ q

are the corresponding Hamiltonian equations for the top. In the literature on
mechanics, these equations are usually written in terms of the vector product as

(51)
dM̂

dt
= M̂(t)× Ω̂(t) + P̂ (t)× q,

dP̂

dt
(t) = P̂ (t)× Ω̂(t), Ω̂(t) =

 1
λ1
m1

1
λ2
m2

1
λ3
m3


and P̂ = CmR−1e1.

Hamiltonian equations (50) can be extended to the semidirect product E3 o
SO3(R) by identifying the center of mass q with B̂. Then the curve x(t) =∫ t
0
R(τ)Q0dτ can be be interpreted as the central line of the rod, which together

with the rotation matrix R can then be embedded in a curve g(t) =
(

1 0
x(r) R(t)

)
in

E3 o SO3(R). It is easy to check that g(t) satisfies dg
dt = g(t)(B + Q−1Lk) which,

in turn, implies that equations (51) can be interpreted as the Hamiltonian system
of Kirchhoff’s elastic rod.

The passage from the top to the elastic problem of KIrchhoff, although formally
correct, seems in many ways mysterious. To begin with, the Hamiltonian for the
top is neither left nor right invariant on T ∗S3(R), but its extension to the the
semidirect product R3 o SO3(R) is left-invariant. So why should the left-invariant
symmetries of the elastic problem be relevant for the equations of the top? Further,
why is P̂ (t) significant for the purposes of integration of the top since it is not a
dependent variable in its configuration space?

Nevertheless, the connection with the elastic problem of Kirchhoff illuminates
much of the theory of the top. The passage to the semidirect product gives credence
to the long standing tradition in the literature of the top to regard equations (51)
as a system of equations in six variables m1,m2,m3, p1, p2, p3 with six parameters
q1, q2, q3, λ1, λ2, λ3. It will be shown below that the Lie algebraic symmetries of the
elastic problem clarify much of the integrability theory of the top.

5.2. Symmetry, Coadjoint orbits and Integrals of motion. A Hamiltonian func-
tion H on a symplectic manifold M of dimension 2n is said to be integrable (or
completely integrable) if there exist functions φ2, . . . , φn on M that together with
φ1 = H satisfy the following two properties:

(i) φ1, . . . , φn are functionally independent. Functional independence is under-
stood in the local sense, that is, that the differentials dφ1, . . . , dφn are linearly
independent for an open (often dense) subset of M .

(ii)The functions φ1, . . . , φn are in involution, that is, they Poisson commute
among each other.

Recall that the Poisson bracket {φ,ψ} is a function defined by the symplectic
form ω on M through the following equivalent conditions:

{φ,ψ}(x) = ωx
(
φ⃗(x), ψ⃗(x)

)
=

d

dt

(
φ · exp tψ⃗

)
(x)
∣∣
t=0
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with φ⃗ and ψ⃗ denoting the Hamiltonian vector fields induced by the functions φ
and ψ.

In the literature on mechanics, a function φ is called an integral of motion for

the Hamiltonian H if {φ,H} = 0, that is, if φ is constant along the flow of H⃗.
In this terminology then functions φ1, . . . , φn, defined by (ii) above are integrals
of motion for each other. The maximal number of functions φ1, . . . , φm that are
functionally independent and in involution is equal to 1

2 dimM .
If H is an integrable system, then each level set {x : φ1(x) = c1, . . . , φn(x) = cn}

is an n-dimensional submanifold of M . Such submanifolds are called Lagrangian.
They are submanifolds of M of maximal dimension on which the symplectic form
vanishes. The connected component through each point x0 of each level set {x :
φi(x) = ci i 6 n} is equal to the orbit through x0 of the commutative family of
Hamiltonian vector fields {φ⃗1, . . . , φ⃗n}.

In the case that ω is the canonical symplectic form on the cotangent bundle of a
manifoldM then a vector field X onM is said to be a symmetry for a Hamiltonian
H if the Hamiltonian lift hX of X satisfies {H,hX} = 0. The Hamiltonian lifts
hX and hY of any vector fields X and Y on M conform to the following formula:
{hX , hY } = h[X,Y ]. Hence, any commuting vector fields on M are symmetries for
their Hamiltonian lifts.

On Lie groups the Lie bracket of a right and a left invariant vector field is
zero since their flows commute. Therefore, their Poisson brackets in the cotangent
bundle are in involution. It is a consequence of this symmetry that in the left
tirivialization of the cotangent bundle of G the left-invariant Hamiltonian systems
evolve on coadjoint orbits of G, while in the right trivialization, right-invariant
Hamiltonian systems evolve on coadjoint orbits of G. Below are the relevant details.

In the left-trivialization Hamiltonian lifts of left-invariant vector fields are linear
functions on g∗ while the Hamiltonian lifts hX of the right-invariant vector fields
X(g) = Ag are given by hX(ℓ, g)) = ℓ(g−1Ag). If A1, . . . , An is any basis in g, then
the Hamiltonian lifts h1, . . . , hn of the corresponding left-invariant vector fields are
given by hi(ℓ) = ℓ(Ai), i = 1, . . . , n and can be regarded as the coordinates in
g∗ relative to the dual basis A∗

1, . . . , A
∗
n. If hX is any Hamiltonian lift of a right

invariant vector field, then {hi, hX} = 0 by the remarks above. It follows that any
left invariant Hamiltonian H can be regarded as a function of h1, . . . , hn, in which
case

{H,hX} =
n∑
i=1

∂H

∂hi
{hi, hX} = 0,

and hence hX(g(t), ℓ(t)) = ℓ(t)(g(t)Ag−1(t)) is constant along the motions (g(t), ℓ(t))

of H⃗. Since, ℓ(g−1Ag) = ℓ ◦Adg(A) = (Ad∗g(ℓ))(A), it follows that Ad
∗g(t)(ℓ(t)) =

Ad∗g(0)(ℓ(0)). This implies that ℓ(t) evolves on the coadjoint orbit {Ad∗g(ℓ(0)) :
g ∈ G}.

We finally recall one more fact that each coadjoint orbit is symplectic with its
symplectic form induced by the Poisson structure of g [3].

Return now to the left-invariant Hamiltonian systems (AffHam). On six di-
mensional Lie algebras gϵ equations (46) can be represented on so3(R) × so3(R)
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as

(52)
dM

dt
= [Ω,M ] + [B,P ],

dP

dt
= [Ω, P ] + sϵ[B,M ],

under the isomorphism

X̂ =

x1x2
x3

⇐⇒ X =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 and ˆ[Y,X] = X̂ × Ŷ .

Moreover, the Euclidean inner product (X̂, Ŷ ) is the same as the trace product
⟨X,Y ⟩ = −1

2 Tr(XY ).
Let us now address the integrability properties of (52):

1.Casimirs: I1 = ∥P∥2 + sϵ∥M∥2 and I2 = ⟨M,P ⟩ = ∥M∥2∥P∥2 − ∥[M,P ]∥2
are integrals of motion as can be easily checked. We have already remarked in the
previous section, that they are integrals of motion for any left invariant Hamiltonian
on gϵ.

2. Right invariant Hamiltonians. A Cartan algebra h is a maximal commutative
sub algebra of a Lie algebra g. It is known that all Cartan sub-algebras of a semi-
simple Lie algebra are conjugate, and hence all have the same dimension. The
dimension of any Cartan algebra is called the rank of g. The rank of gϵ is two as
can be easily verified from Table 1. Hence there two right invariant Hamiltonians h1
and h2 that Poisson commute with each other and also Poisson commute with any
left invariant Hamiltonians. In particular, they Poisson commute with I1 and I2.
On the semidirect product the situation is slightly different since p is a commutative
algebra, hence the rank of the semidirect product R3 o so3(R) is three. However,
their Hamiltonians are functionally dependent and generate only two functionally
independent Hamiltonians. So in all cases there are two functionally independent
integrals of motion in involution with each other.

3. The Hamiltonian H itself is also a constant of motion. So there are always five
functionally independent integrals of motion all in involution with each other. The
maximal number of such integrals of motion is six, since the cotangent bundle of
SOϵ is 12 dimensional. Thus H is completely integrable whenever there is another
left-invariant integral of motion (it is automatically in involution with all others).

4. On these three Lie algebras, generic coadjoint orbits are 4 dimensional. Hence,
complete integrability on on T ∗G is equivalent on complete integrability on coad-
joint orbits (the Casimirs are constant on coadjoint orbits).

Definition 5.1. System (51) is said to be algebraically integrable if the solutions
of its complexified system are meromorphic functions of complex time.

This definition has its origins in Kowalewska’s famous paper of 1889 in which
she discovers an extra integral of motion for the top by classifying the solutions of
the complexified equations of the top which are meromorphic functions of complex
time. Remarkably, this procedure yields an extra integral of motion for the problem
of Kirchhoff, much in the same way as it did in the original paper of Kowalewska.

Proposition 5.1. The following are the only algebraically integrable cases:
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1. B = 0. Euler’s case. Both ∥M∥2 and ∥P∥2 are constant. The solutions are
the intersections of the energy ellipsoid H = 1

2 (
1
λ1
m1 + 1

λ2
m2 + 1

λ3
m3) and the

momentum sphere ∥M∥2 = m2
1 + m2

2 + m2
3. These solutions coincide with the

solutions for the top of Euler on the surface P = 0.
2. Spherical pendulum. B ̸= 0, λ1 = λ2 = λ3. Then dM

dt = [B,P ] as in the Euler–
Griffiths case. Then kB = {M : [B,M ] = 0} is one dimensional and the projection
of M on kB is constant. If this constant is zero we are in the Euler–Griffiths case.
Otherwise, the equations coincide with the equations of the spherical pendulum.

3. Lagrange’s case. λ2 = λ3, b2 = b3 = 0. Then I3 = m1 is an integral of motion.
The corresponding top is known as the top of Lagrange.

4. Kowalewski’s case. λ1 = λ2 = 2λ3, b3 = 0. Then

I3 = (z2 − b(w − sϵb))(z̄2 − b̄(w̄ − sϵb̄))

is an integral of motion where z = 1
2 (m1 + im2), w = p1 + ip2, b = b1 + ib2.

6. Infinite dimensional Hamiltonian systems:
Elastic Problem and the nonlinear Schroedinger’s equation

This remarkable extension of Hamiltonian theory to infinite dimensional systems
is based on the general theory of Fréchet manifolds developed by Hamilton [14].
Here are the essential theoretic ingredients required for the main results of the
section.

Recall first that a topological Hausdorff vector space V is called a Fréchet space
if its topology is induced by a countable family of semi-norms {pn} and if it is
complete relative to the semi-norms in {pn}. A Fréchet manifold is a topological
Hausdorff space equipped with an atlas whose charts take values in open subsets
of a Fréchet space V such that any change of coordinate charts is smooth.

The paper of Hamilton [14] singles out an important class of Fréchet mani-
folds, called tame, in which the implicit function theorem is true. One of the
main theorems is that the set of smooth mappings from a compact interval into
a finite-dimensional Riemannian manifold M is a tame Fréchet manifold. Hamil-
ton’s theorem remains true if Riemannian manifold is replaced by a sub-Riemannian
manifold (Hamilton’s arguments carry over to the sub-Riemannian case with minor
alterations).

It then follows from the implicit function theorem that closed subsets of tame
Fréchet manifolds M, defined by the zero sets of finitely many smooth functions
on M are tame sub-manifolds of M.

Return now to the horizontal curves inGϵ over the spheres S
3
ϵ discussed in section

4. Each horizontal curve can be given its sub-Riemannian length
∫ T
0
∥Λ(t)∥ϵ dt,

where Λ(t) = dg
dt g

−1(t). This length coincides with the Riemannian length of the

projected curve x(t) = g(t)e0 in S3
ϵ . In what follows Hϵ(L) will denote the space

of horizontal curves g(t) in Gϵ on a fixed interval [0, L] that satisfy:

(53) g(0) = I,
∥∥∥g−1(t)

dg

dt
(t)
∥∥∥
ϵ
= 1, t ∈ [0, L], and g−1(0)

dg

dt
(0) = Λ0,
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where Λ0 is a fixed element in pϵ. Since the isotropy group K acts transitively (by
conjugation) on the sphere {Λ ∈ pϵ : ∥Λ∥ = 1} there is no loss in generality in
assuming that Λ0 = B1 = e1 ∧ϵ e0. These curves will be called anchored horizontal
curves of length L. They are the solutions of

dg

dt
= g(t)Λ(t), g(0) = I, ∥Λ(t)∥ = 1, Λ(0) = B1,

on a fixed interval [0, L]. Curves g(t) in Hϵ(L) generated by periodic curves Λ(t) of
period L are called quasi-periodic and will be denoted by PHϵ(L). Then we have
the following proposition

Proposition 6.1. The space of anchored horizontal curves of length L is an infi-
nite dimensional tame Frećhet manifold. The space of quasi-periodic curves, when
restricted to the interval [0, L] is a tame submanifold of Hϵ(L).

This proposition is a simple consequence of the general remarks about Hamilton’s
theorem.

In general, tangent vectors and tangent bundles of Fréchet manifolds are defined
in the same manner as for finite dimensional manifolds. In particular tangent
vectors at a point x in a Fréchet manifold M are the equivalence classes of curves
σ(t) in M all emanating from x (i.e., σ(0) = x), and all having the same tangent
vector dσ

dt (0) in each equivalence class. The set of all tangent vectors at x denoted
by TxM constitutes the tangent space at x.

The tangent bundle of a Fréchet manifold M is a Fréchet manifold. A vector
field X on M is a smooth mapping from M into the tangent bundle TM such that
X(x) ∈ TxM for each x ∈ M. On tame Fréchet manifolds vector fields can be
defined as derivations in the space of smooth functions on M. With these concepts
at our disposal then

Proposition 6.2. Let g(s) be a curve in Hϵ(L) defined by Λ(s) = g−1(s)dgds (s).
The tangent space Tg(Hϵ(L) at g(s) consists of curves v(s) = g(s)V (s) such that

V (s) ∈ pϵ, V (0) = dV
ds (0) = 0, and ⟨Λ(s), dVds (s)⟩ϵ = 0. For quasi-periodic curves

the curve dV
ds (s) must be smoothly periodic having the period equal to L (dVds (L) =

dV
ds (0) = 0).

Proof. Let h(s, t) = ht(s) denote a family of anchored horizontal curves such that
h(s, 0) = g(s). Then v(s) = ∂h

∂t (s, t)t=0 is a tangent vector at g(s). It follows that
v(0) = 0 since h(0, t) = I.

Let x(s, t) = h(s, t)e0 and let Z(s, t) and W (s, t) denote the matrices in gϵ
defined by

Z(s, t) = h(s, t)−1 ∂h

∂s
(s, t), W (s, t) = h(s, t)−1 ∂h

∂t
(s, t).

It follows that ∂x
∂s = h(s, t)Z(s, t)e0, and

∂x
∂t = h(s, t)W (s, t)e0, and Λ(s) = Z(s, 0)

and v(s) = g(s)V (s) with V (s) =W (s, 0).
On any Riemannian manifold the mixed derivatives Dx

∂s
∂x
∂t and

Dx

∂t
∂x
∂s are equal to

each other. Therefore, ∂Z∂t (s, t) =
∂W
∂s (s, t). For t = 0 the above equation reduces



CONTROL AND INTEGRABLE SYSTEMS 129

to dV
ds (s) = ∂W

∂s (s, 0) = ∂Z
∂t (s, 0). Then ⟨Z(s, t), Z(s, t)⟩ϵ = 1, and Z(0, t) = B1

imply that ⟨Z(s, t), ∂Z∂t (s, t)⟩ϵ = 0 and ∂Z
∂t (0, t) = 0. At t = 0, Z = Λ and ∂Z

∂t = dV
ds ,

hence ⟨Λ(s), dVds ⟩ϵ = 0 and dV
ds (0) = 0. For quasi-periodic curves there is an extra

condition dV
ds (L) = 0.

It remains to show that any curve V (s) that satisfies the conditions above can
be realized by the perturbations h(s, t). Define h(s, t) the solution of ∂h

∂s (s, t) =
h(s, t)Z(s, t), h(0, t) = I, where

Z(s, t) =
1

1 + ϕ2(t)
∥∥dV
ds

∥∥2(Λ(s) + ϕ(t)
dV

ds

)
for some function ϕ that satisfies ϕ(0) = 0 and dϕ

dt (0) = 1. It is easy to verify that

Z(s, t) is a unit vector in pϵ for each s and t and that ∂Z
∂t (s, 0) =

dV
ds . �

We will next show that bothHϵ(L) and PHϵ(L) may be considered as symplectic
Frećhet manifolds. The basic notions of symplectic geometry of infinite-dimensional
Fréchet manifolds are defined through differential forms in the same manner as for
the finite-dimensional situations. In particular, differential forms ω of degree n are
the mappings ω : X (M) × · · · × X (M)n → C∞(M) that are C∞(M) multilinear
and skew-symmetric where X (M) denotes the space of all smooth vector fields on
M. Then the exterior derivative dω of a form of degree n is a differential form of
degree n+ 1 defined by

dω(X1, . . . , Xn+1) =
n+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂1, . . . , Xn))

−
∑
i<j

(−1)i+jω([Xi, Xj ], . . . X̂i, . . . X̂j , Xn+1),

where the roof sign above an entry indicates its absence from the expression (i.e.,

w(X̂1, X2) = w(X2) and w(X1, X̂2) = w(X1)).
A differential form ω is said to be closed if its exterior derivative dω is equal

to zero. A differential form ω of degree 2 is said to be symplectic whenever it is
closed and nondegenerate, in the sense that the induced form (iXω)(Y ) = ω(X,Y )
is nonzero for each nonzero vector field X.

The differential df of a smooth function f is a form of degree one defined by
df(v) = d

dtf◦σ(t)|t=0 for any smooth curve inM such that σ(0) = x, and dσ
dt (0) = v.

A vector field X is said to be Hamiltonian if there exists a smooth function f
such that df(Y ) = ω(X,Y ) for all vector fields Y on M. The dependence of X on
f shall be noted explicitly by Xf .

Our principal objective is to demonstrate that Hϵ(L) and PHϵ(L) are infinite
dimensional symplectic manifolds. We will first need some notations. We will
continue with the notations used in the previous section and denote each matrix
L =

∑3
i=1 piBi +miAi by the pair of vectors (M̂, P̂ ), where M̂ = (m1,m2,m3)

T

and P̂ = (p1, p2, p3)
T .

We will make use of this fact that pϵ and k are of the same dimension and
introduce the mapping ϕ : k → pϵ defined by ϕ(M) = m1B1 +m2B2 +m3B3, for
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anyM = m1A1+m2A2+m3A3. Then for any P ∈ pϵ and anyM ∈ k, ⟨P, ϕ(M)⟩ϵ is
equal to the Euclidean inner product P̂ ·M̂ in R3. Moreover, the following equality
holds

(54) ⟨P1, ϕ([P2, P3])⟩ϵ = ϕ([P1, P2]), P3⟩ϵ,
for any P1, P2, P3 in pϵ.

Proposition 6.3. 6 Let g(s) denote a horizontal curve in either Hϵ(L) or in
PHϵ(L) and let g(s)V1(s) and g(s)V2(s) denote a pair of tangent vectors at g(s).

Suppose that Λ(s) = g−1(s)dgds (s). Then

(55) ωΛ(V1, V2) =

∫ L

0

⟨
Λ(s), ϕ

([dV1
ds

,
dV2
ds

])⟩
ϵ
ds =

∫ L

0

Λ̂(s) ·
(dV̂1
ds

× dV̂2
ds

)
ds,

is a symplectic form on Hϵ(L) (respectively on PHϵ(L)).

The proof of this proposition can be found in [21] with the minor difference that
S3
ϵ in that paper is represented by SU2 and SL2(C)/SU2, rather than Gϵ/K as in

this paper.

6.1. The Hamiltonian flow of 1
2

∫ L
0
κ2(s) ds and Heisenberg’s magnetic equa-

tion. Consider now the function f(Λ) = 1
2

∫ L
0

∥∥dΛ
ds

∥∥2 ds on PHϵ(L) and its Hamil-
tonian vector field Xf induced by the form ω in (55).

To calculate the directional derivative dfΛ, let g(s)V (s) denote a tangent vector
at g(s) in PHϵ(L). Let ht(s) = h(s, t)) denote a family of curves in PHϵ(L) that
are the solutions of ∂h

∂s = h(s, t)Γ(s, t) such that h(s, 0) = g(s), Γ(s, 0) = Λ(s),
∂Γ
∂t (s, 0) =

dV
ds (s). The directional derivative dfΛ(V ) is given by

dfΛ(V ) =
1

2

∂

∂t

∫ L

0

⟨∂Γ
∂s

(s, t),
∂Γ

∂s
(s, t)

⟩
ds
∣∣∣
t=0

=
1

2

∂

∂t

∫ L

0

⟨∂Γ
∂s

(s, t),
∂Γ

∂s
(s, t)

⟩
ds
∣∣∣
t=0

=

∫ L

0

⟨∂Γ
∂s

(s, t),
∂

∂s

∂Γ

∂t
(s, t)

⟩
ds
∣∣∣
t=0

=

∫ L

0

⟨dΛ
ds
,
d

ds

(dV
ds

)⟩
ds

= −
∫ L

0

⟨d2Λ
ds2

,
dV

ds

⟩
ds+

⟨dΛ
ds
,
dV

ds

⟩∣∣∣s=L
s=0

= −
∫ L

0

⟨d2Λ
ds2

,
dV

ds

⟩
ds.

The Hamiltonian vector field Xf is of the form Xf (g) = gF for some matrices

{F (s), s ∈ [0, L]} in pϵ that satisfy F (0) = 0 and
⟨
Λ(s), dFds (s)

⟩
ϵ
= 0. Then it

follows from (55) that

dfΛ(V ) =

∫ L

0

⟨
Λ(s), ϕ

([dF
ds
,
dV

ds

])⟩
ϵ
ds =

∫ L

0

⟨
ϕ
([

Λ(s),
dF

ds

])
,
dV

ds

⟩
ϵ
ds

which implies that ∫ L

0

⟨d2Λ
ds2

+ ϕ
([

Λ(s),
dF

ds

])
,
dV

ds

⟩
ds,

and since V (s) is an arbitrary tangent vector

d2Λ

ds2
+ ϕ

([
Λ(s),

dF

ds

])
= 0.
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Then
[
Λ, ϕ−1 d2Λ

ds2 ] +
[
Λ,
[
Λ, dFds

]]
= 0. On spaces of curvature ϵ,

[
Λ,
[
Λ, dFds

]]
=

−ϵdFds . Also, note that [Q,ϕ−1P ] = ϵϕ([Q,P ]) for any P,Q in pϵ. The above imply
that

(56) F = ϵ
[
Λ, ϕ−1 d

2Λ

ds2

]
= ϕ

[
Λ,
d2Λ

ds2

]
.

Hence F (s) =
∫ s
0
ϕ
([
Λ(x), d

2Λ
dx2

])
dx since F (0) = 0.

The integral curves Xf (g)(s) = g(s)ϕ
([
Λ(s), d

2Λ
ds2 (s)

])
of the Hamiltonian vector

field are the solutions of the following system of equations:

∂g

∂t
(s, t) = g(s, t)

∫ s

0

ϕ
([

Λ(x, t),
d2Λ

dx2
(x, t)

])
dx,

∂g

∂s
(s, t) = g(s, t)Λ(s, t).

The equality of mixed partial derivatives
Dg

ds

(
∂g
∂t

)
=

Dg

dt

(
∂g
∂s

)
implies that the

matrices Λ(s, t) evolve according to

(57)
∂Λ

∂t
(s, t) = ϕ

([
Λ(s, t),

∂2Λ

∂s2

])
.

Equation (57) can be also expressed in terms of the coordinate vector λ = (λ1, λ2, λ3)
relative to the basis B1, B2, B3 as

∂λ

∂t
(s, t) = ϵ

(∂2λ
∂s2

(s, t)× λ(s, t)
)
.

In the hyperbolic case ϵ = −1, and

(58)
∂λ

∂t
(s, t) = λ(s, t)× ∂2λ

ds2
(s, t)

Equation (58) can be also considered as an equation in the space of Hermitian
matrices of the form

(59)
∂Λ

∂t
(s, t) = i

[∂2Λ
∂s2

(s, t),Λ(s, t)
]
,

because, as we have already remarked before, the hyperboloid H3 can be realized as
the quotient SL2(C)/SU2, in which case the horizontal distribution p is identified
with the Hermitian matrices in sl2(C). Then the basis elements B1, B2, B3 then
correspond to the Pauli matrices

B1 =
1

2

(
1 0
0 −1

)
, B2 =

1

2

(
0 −i
i 0

)
, B3 =

1

2

(
0 1
1 0

)
,

matrix Λ takes on the form 1
2

(
λ1 λ2−iλ3

λ2+iλ3 −λ1

)
, and the bijection ϕ corresponds to

the matrix multiplication by i.
Equation (59) is known as continuous isotropic Heisenberg’s ferromagnetic equa-

tion [12]. This equation is also related to the vortex filament equation

(60)
∂γ

∂t
(s, t) = κ(s, t)B(s, t),
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where γt(s) = γ(s, t) is a continuum of curves γt in R3 parametrized by arc length,
κ(s, t) is the geodesic curvature and B(s, t) is the binormal vector in the Serret–
Frenet triad associated with γ. This equation can be also rephrased as

(61)
∂γ

∂t
(s, t) =

∂γ

∂s
× ∂2γ

∂s2

since ∂γ
∂s = T , ∂2γ

∂s2 = ∂T
∂s = κN and B = T × N . Then the tangent vector

T (s, t) = ∂γ
∂s (s, t) satisfies equation (58).

6.2. The nonlinear Schroedinger equation. We come back once more to the
adjoint action of the isotropy group K on the unit sphere S2 = {Λ : ∥Λ∥ϵ = 1} in
pϵ. Our aim is to show the relation between the nonlinear Schroedinger equation
and the Heisenberg’s magnetic equation. It will be convenient to represent the
Heisenberg’s magnetic equation in the space of Hermitian matrices as explained in
the previous section. Then it is natural to replace K by SU2. Since K is isomorphic
to SO3(R), SU2 is a double cover of K, but for our purposes this fact will be
irrelevant. The isotropy subgroup K0 of SU2 that leaves the matrix B1 = 1

2

(
1 0
0 −1

)
fixed is isomorphic to SO2(R). It consists of matrices of the form ( z 0

0 z̄ ) with |z| = 1.
Then S2 will be considered as the quotient SU2/SO2(R). This realization of S2

identifies a left invariant connection with values in the two dimensional vector space
k1 =

{
U = 1

2 (
0 ū
u 0 ) : u ∈ C

}
.

Then for each curve Λ(s) in S2 such that Λ(0) = B1 there exists a curve R(s) in
SU2 such that Λ(s) = R(s)B1R

∗(s) for all s ∈ [0, L]. Any two such curves R1(s)
and R2(s) differ by a curve R0(s) in K0, i.e., R2(s) = R1(s)R0(s). However, if R(s)
is restricted to curves which are solutions of dRds = R(s)U(s) such that U(s) takes
values in k1 subject to fixed initial condition R(0) = I, then R(s)B1R

∗(s) = Λ(s)
has a unique solution R(s). In particular, each solution Λ(s, t) of Heisenberg’s
magnetic equation generate a family of matrices R(s, t), R(0, t) = I, through the
relations Λ(s, t) = R(s, t)B1R

∗(s, t). Curves R(s, t) then evolve according to

∂R

∂s
(s, t) = R(s, t)U(s, t) and

∂R

∂t
= R(s, t)V (s, t)

for some matrices U(s, t), V (s, t) in g = su2, which further conform to V (0, t) = 0
for all t because of the boundary condition R(0, t) = I. Matrices U and V satisfy

(62)
∂U

∂t
(s, t)− ∂V

∂s
(s, t) + [U(s, t), V (s, t)] = 0,

known as the zero curvature equation [12]. The zero curvature equation is a con-
sequence of two facts: the first fact is that the covariant derivative of a curve of
tangent vectors v(s) = R(s)V (s) along a curve R(s) in SU2 is given by

(63)
DR

ds
(V )(s) = R(s)

(dU
ds

+
1

2
[V (s),Λ(s)]

)
,

where Λ(s) = R∗(s)dRds (s), and the second fact, that on any Riemannian manifold

∂Dx(s,t)

∂s

∂x

∂t
=
∂Dx(s,t)

∂t

∂x

∂s

for any field of curves x(s, t).
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Proposition 6.4. Let Λ(s, t) denote a solution of Heisenberg’s magnetic equa-
tion and let R(s, t) denote a field of matrices in SU2 with T (0, t) = I such that
R(s, t)B1R

∗(s, t) = Λ(s, t). If U(s, t) = 1
2

(
u1 ū
u −u1

)
is the matrix defined by U(s, t)

= R∗(s, t)∂R∂s (s, t), then ψ(s, t) = u(s, t) exp
(
i
∫ s
0
u1(x, t) dx

)
is a solution of the

nonlinear Schroedinger’s equation

∂

∂t
ψ(s, t) = i

∂2ψ

∂s2
(s, t) + i

(1
2
|ψ(s, t)|2 + c

)
ψ(s, t) with c(t) = −1

2
|u(0, t)|2.

Proof. As before B1, B2, B3 denote the Hermitian Pauli matrices. Then A1 = iB1,
A2 = iB2, A3 = −B3 are the skew-Hermitian Pauli matrices. The reader can
readily check that the Lie brackets of Pauli matrices are given by Table 1 with
ϵ = −1 and s = 1. This observation simplifies the calculations of Lie brackets
below

∂Λ

∂t
=

∂

∂t
(R(s, t)B1R

∗(s, t)) = R[B1, V ]R∗,

∂Λ

∂s
=

∂

∂s
(R(s, t)B1R

∗(s, t)) = R[B1, U ]R∗,

∂2Λ

∂s2
= R

(
[[B1, U ], U ] +

[
B1,

∂U

∂s

])
R∗.

Then ∂Λ
∂t (s, t) = i

[
∂2Λ
∂s2 (s, t),Λ(s, t)

]
implies that

(64) [B1, V ] = i
([

[[B1, U ], U ], B1

]
+
[[
B1,

∂U

∂s

]
, B1

])
.

An easy computation shows that[
[B1, U ], U

]
= ⟨U,B1⟩iU − ⟨U,U⟩B1 = −(u22 + u23)B1 + u1u2B2 +B3u1u3,

and
[
[[B1, U ], U ], B1

]
= u1u3A2 − u1u2A3. Similarly,[

B1,
∂U

∂s

]
=
∂u3
∂s

B2 −
∂u2
∂s

B3 and
[[
B1,

∂U

∂s

]
, B1

]
= −∂u3

∂s
A3 −

∂u2
∂s

A2.

Equation (64) then reduces to

[B1, V ] = i
(
u1(u3A2 − u2A3)−

∂u3
∂s

A3 −
∂u2
∂s

A2

)
= −u1(u3B2 − u2B3) +

∂u3
∂s

B3 +
∂u2
∂s

B2.

If V = v1A1 + v2A2 + v3A3, then [B1, V ] = v3B2 − v2B3, which, when combined
with the above, yields v2 = −u1u2 − ∂u3

∂s and v3 = −u1u3 + ∂u2

∂s . These relations

can be rephrased as v(s, t) = −u1(s, t)u(s, t) + i∂u∂s (s, t), where u = u2 + iu3 and
v = v2 + iv3.

The zero curvature equation implies that

∂u1
∂t

=
∂v1
∂s

+
1

2

∂

∂s
(u22 + u23),(65)

∂u

∂t
= i

∂2u

∂s2
− 2u1

∂u

∂s
− ∂u1

∂s
u− i(v1 + u21)u.(66)



134 VELIMIR JURDJEVIĆ

Equation (65) implies that

∂

∂t

∫ s

0

u1(x, t) dx = v1(s, t) +
1

2

(
u22(s, t) + u23(s, t)

)
+ c(t),

where c(t) = −v1(0, t) − 1
2 (u

2
2(0, t) + u23(0, t)) = − 1

2 (u
2
2(0, t) + u23(0, t)), since

V (0, t) = 0. The substitution of v1(s, t) = ∂
∂t

∫ s
0
u1(x, t) dx − 1

2 |u(s, t)|
2 − c into

(57) leads to

(67)
∂u

∂t
+ iu

∂

∂t

∫ s

u1(t, x) dx = i
∂2u

∂s2
− 2u1

∂u

∂s
− u

∂u1
∂s

− i
(
− 1

2
|u|2 − c+ u21

)
u.

After the multiplication by exp
(
i
∫ s
0
u1(x, t) dx

)
(67) can be expressed as

∂

∂t
ψ(s, t) =

(
i
∂2u

∂s2
−2u1

∂u

∂s
−u∂u1

∂s
−i
(
u21−

1

2
|u|2−c

)
u
)
exp

(
i

∫ s

0

u1(x, t) dx

)
e−ict,

where ψ(s, t) = u(s, t) exp (i
∫ s
0
u1(x, t) dx). In addition

i
∂2ψ

∂s2
=
(
i
∂2u

∂s2
− 2u1

∂u

∂s
− u

∂u1
∂s

− iu21u
)
exp

(
i

∫ s

0

u1(x, t) dx

)
.

as can be verified by differentiating ∂ψ
∂s =

(
∂u
∂s + iuu1

)
exp

(
i
∫ s
0
u1(x, t) dx

)
. There-

fore,

�(68)
∂

∂t
ψ(t, s) = i

∂2ψ

∂s2
+ i
(1
2
|ψ|2 + c(t)

)
ψ.

The steps taken in the passage from Heisenberg’s equation to the Schroedinger’s
equation are reversible. Any solution ψ(s, t) of (68) generates matrices

U =
1

2

(
0 ψ

−ψ 0

)
and V =

1

2

(
−1

2 i(|ψ|
2 + c(t)) i∂ψ∂s

i∂ψ̄∂s
1
2 i(|ψ|

2 + c(t))

)
that satisfy the zero-curvature equation. Therefore, there exist unique curvesR(s, t)
in SU2 with boundary conditions R(0, t) = I that evolve according to the differen-
tial equations:

∂R

∂s
(s, t) = R(s, t)U(s, t),

∂R

∂t
(s, t) = R(s, t)V (s, t).

Such curves define Λ(s, t) through familiar formulas Λ(s, t) = R(s, t)B1R
∗(s, t). It

then follows that Λ is a solution of the Heisenberg’s magnetic equation because
ψ = u and v = i∂u∂s .

The transformation ψ(s, t) = u(s, t) exp
(
i
∫ s
0
u1(x, t) dx

)
is a slight generaliza-

tion of the Hasimoto function κ(s, t) exp
(
i
∫ s
0
τ(x, t) dx

)
, for when R(s, t) corre-

sponds to the Serret–Frenet frame, u1 is equal to the torsion of the projected curve
([15] and [21]). The reduced curves are defined by u1 = 0, and they set up a bijec-
tive correspondence between Heisenberg’s equation and the nonlinear Schroedinger
equation via the map Λ = RB1R

∗.
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6.3. Soliton solutions and the elastic curves. For mechanical systems the Hamil-
tonian function represents the total energy of the system and its critical points
correspond to the equilibrium configurations. In an infinite-dimensional setting the
behavior of a Hamiltonian system at a critical point of a Hamiltonian system seem
does not lend itself to such simple characterizations. For the Hamiltonian function

f = 1
2

∫ L
0
k2ds it is natural to expect that the critical points correspond to the

Hamiltonian associated with the Euler–Griffiths problem, with one minor excep-
tion: curves in PHϵ(L) satisfy fixed boundary conditions in Gϵ, while the curves
that project onto elastic curves are only partially fixed at the terminal points. To
reconcile these differences it will be necessary to consider the Hamiltonian equations
associated with a minor variant of the EulerGriffiths problem, called Euler–Griffiths

problem 2 in [22], in which the integral 1
2

∫ L
0
(u22(t)+u

2
3(t)) dt is minimized over the

solutions g(s) in Gϵ of
dg
ds = g(s)(B1+u2(s)A2+u3(s)A3) that satisfy the boundary

conditions g(0) = I, g(L) = g1 (rather than g(0) ∈ S0 and g(L) ∈ S1 as explained
in the earlier sections). It turns out that the extremal curves of this modified
Euler–Griffiths problem form traveling waves, known as solitons, for the nonlinear
Heisenberg’s equation.

It is easy to see that the Hamiltonian associated with the preceding problem is
given by H = 1

2 (m
2
2 +m2

3) + p1, where the variables m2,m3 and p1 have the same
meaning as in (46).

Remarkably, this Hamiltonian coincides with the Hamiltonian for the spherical
pendulum [22]. The Hamiltonian equations take on the same form as equations (45)

with Ω̂ = (0,m2,m3)
T and B = B1. More explicitly, for ϵ = −1 these equations are

(69)

dm1

ds
= 0,

dm2

ds
= −m3m1 + p3,

dm3

ds
= m2m1 − p2,

dp1
ds

= m3p2 −m2p3,
dp2
ds

= −m3p1 −m3,
dp3
ds

= m2p1 +m2.

It follows that m1 is a constant of motion for (69). The remaining solutions define
complex functions u(s) = m2(s) + im3(s) and w(s) = p2(s) + ip3(s). Then,

Proposition 6.5. Let u(s) = m2(s)+im3(s). Then ψ(s, t) = u(s+ξt) is a solution
of the nonlinear Schroedinger’s equation with c = 0 precisely when H = −1 and
ξ = −m1.

Proof. It follows from equations (69) that du
ds (s) = im1u(s) − iw(s) and dw

ds =
i(p1 + 1)u(s). Therefore,

∂ψ

∂t
= iξ(m1ψ − w) and

∂2ψ

∂s2
= −m2

1ψ +m1w + (p1 + 1)ψ.

Since H = 1
2 |ψ|

2 + p1,
1
2 |ψ|

2ψ = (H − p1)ψ and

−i∂ψ
∂t

−
(∂2ψ
∂s2

+
1

2
|ψ|2ψ

)
= ξ(m1ψ−w)− (−m2

1ψ +m1w + (p1+1)ψ + ψ(H−p1))

= −(ξ +m1)w + (ξm1 +m2
1 +H + 1)ψ.

The above is equal to zero when ξ = −m1 and H = −1. �
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Thus the extremals which reside on energy level H = −1 generate soliton so-
lutions of the nonlinear Schroedinger’s equation traveling with speed equal to the
constant of motion m1 = −ξ. These soliton solutions degenerate to the stationary
solution when m1 = 0, i.e., when the projected curve is elastic.

6.3.1. Complete Integrability. It has been known now for some time that the
nonlinear Heisenberg’s equation is integrable relative to the solutions u(s, t) that
vanish at infinity [41] and [12]. The paper Shabat and Zacharov exhibited an infinite
family {C1, C2, C3, . . . } of integrals of motion all in involution with each other with

C1 =

∫ ∞

−∞
|u(s, t)|2ds, C2 =

∫ ∞

−∞

(
u(s, t) ˙̄u(s, t)− ū(s, t) u̇(s, t)

)
ds,

C3 =

∫ ∞

−∞

(∣∣∣∂u
∂s

(s, t)
∣∣∣2 − 1

4
|u(s, t)|4

)
ds,

corresponding to the total number of particles, their momentum and the energy.
Subsequently, Magri gave a recursive scheme for generating these integrals of motion
and he showed that these integrals of motion must necessarily Poisson commute
with each other [31]. Quite remarkably, these physical integrals of motion are in
a correspondence with the functionals reflecting the geometric invariants of curves
in H3, as first noticed by Langer and Perline [27] for curves that vanish rapidly at
infinity. It turns out that these findings are unaltered when the boundary conditions
at infinity are replaced by the quasi-periodic conditions of this paper, as will be
shown in the paragraph below.

For that purpose let f1(Λ), f2(Λ), f3(Λ), . . . denote the functionals in PHϵ(L)
that are related to C1(u), C2(u), C3(u), . . . via the relations

Λ(s) = R(s)B1R
∗(s),

dR

ds
= R(s)U(s), U(s) = u2(s)A2 + u3(s)A3.

Then,

f1(Λ) =
1

2

∫ L

0

∥Λ̇(s)∥2ds = 1

2

∫ L

0

∥[B1, U(s)]∥2ds = 1

2

∫ L

0

|u(s)|2ds = 1

2
C1.

To show that C2 is a scalar multiple of f2(Λ) =
∫ L
0
κ2(s)τ(s) ds note that

κ2τ = −i
⟨[

Λ,
dΛ

ds

]
,
d2Λ

ds2

⟩
.

Therefore,∫ L

0

κ2(s)τ(s) ds = i

∫ L

0

⟨[
Λ,
dΛ

ds

]
,
d2Λ

ds2

⟩
= i

∫ L

0

⟨[
[B1, U ], [B1, U̇ ]

]
, B1

⟩
ds

=

∫ L

0

Im(ūu̇) ds =
1

2i

∫ L

0

(u(s) ˙̄u(s)− ū(s)u̇(s)) ds =
1

2i
C2.

We leave it to the reader to show that

f3(Λ) =

∫ L

0

(
∥Λ̈(s)∥2 − 5

4
∥Λ̇(s)∥4

)
ds =

∫ L

0

(∂κ
∂s

(s)2 + κ2(s)τ2(s)− 1

4
κ4(s)

)
ds

corresponds to C3.
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My earlier paper [21] shows several intriguing facts related to integrability prop-
erties of the Heisenberg’s equation. To begin with, it shows that f1, f2, f3 Poisson
commute relative to the symplectic form in PHϵ(L). Furthermore, it demonstrates
that the Hamiltonian flow of f3 is given by

∂Λ

∂t
= 2
(∂3Λ
∂t3

−
⟨∂3Λ
∂t3

,Λ
⟩
Λ
)
− 3
⟨
Λ,
∂2Λ

∂t2

⟩∂Λ
∂t
,

which is in correspondence with ∂u
∂t − 3|u|2 ∂u∂s − 2∂

3u
∂s3 = 0, an equation that bears

striking resemblance to the modified Korteweg–de Vries equation (Abraham and
Marsden [1]).

Finally, it shows that the functional f(τ) = −i
∫ L
0

1
κ2

⟨[
Λ, dΛds

]
, d

2Λ
ds2

⟩
is in the

hierarchy {f1, f2, f3, . . . } and generates the curve shortening equation

∂Λ

∂t
(s, t) =

∂Λ

∂s
(s, t) = κ(s, t)N(s, t).

These findings are in accordance with the results of Langer and Perline, and sug-
gest that the recursive scheme of Magri could be translated into the realm of the
Heisenberg’s equation, with the ultimate goal of demonstrating its bi-Hamiltonian
character. In such a case, complete integrability of Heisenberg’s equation would
automatically follow. But, more generally, it seems that the symplectic formalism
of this paper could be exploited for other equations of mathematical physics, such
as, for instance, the Korteweg–de Vries equation.

7. Concluding Remarks and Open Problems

The exposition of this paper, loosely described as “the variations on the Euler-
Kirchhoff elastic theme”, focuses on the class of variational problems on an or-
thonormal frame bundle of a Riemannian space which is a Lie group (notably spaces
of constant curvature), as prototypes of differential systems with symmetries, and
introduces optimal control theory as an important ingredient required for its solu-
tions. With the exception of the last section on infinite dimensional Hamiltonian
systems, which stands somewhat apart from the rest of the material, it is shown
that all these variational problems could be seen as the variants of the generalized
problem of Kirchhoff and could be formulated in terms of a single left invariant
optimal control problem on Lie group Gϵ which is either the group of motions of
the Euclidean space, or the rotation group or SO(1, n) in the case of hyperboloid.
In the special case when the elastic energy is defined by the Cartan-Killing form
and when certain constants of motion are equal to zero (LkB = 0), this problem re-

duces to the Euler–Griffiths problem of minimizing the integral 1
2

∫ T
0
κ2(t) dt. The

corresponding Hamiltonian system is integrable and the solutions are found by
quadrature in terms of elliptic functions. The projections of these solutions on the
underlying space forms are known as the elastic curves in the existing literature.

The “elastic bias” reveals the significance of six dimensional Lie groups SE3(R),
SO4(R) and SO(1, 3) for equations of mathematical physics. To begin with, these
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groups provide the natural settings for understanding the solvability of the equa-
tions of the heavy top, as explained in Section 5 on the “kinetic analogue” of Kirch-
hoff, and secondly, they provide the appropriate symplectic structure required for
understanding the Hamiltonian character of the Heisenberg’s magnetic equation
and its relation to the Schroedinger’s nonlinear equation. In this context, it should
be noted that the existence of the symplectic structure is crucially dependent on
the fact that the dimension of the Cartan space pϵ is equal to the dimension of the
isotropy algebra k.

Regrettably, the problem of Dubins–Dealauney did not get as much attention in
this paper as it deserves since it is the only problem in the paper that can be tackled
only by control theoretic methods: optimal solutions which are the concatenations
of singular and boundary controls are outside the scope of the classical calculus
of variations. In contrast to the two dimensional situation, where the optimal
solutions are known to consist of at most three arcs, no such results are available
for the three dimensional system and its optimal synthesis still remains as an open
problem. The interested reader may consult [22] for a (very) partial analysis of the
solutions.

It may be fitting to remark that the Affine Problem remains very relevant for the
theory of integrable systems beyond the spaces of constant curvature, even though
the contact with the elastic problem of Kirchhoff is lost. The spectral matrix Lλ =
−Lp − λLk + (λ2 − 1)B is of central importance in the loop algebras and the work
of Reyman and Semenov Tian Shansky [39], although it is still unknown exactly
how many functionally independent spectral invariants it produces. Remarkably,
on coadjoint orbits of low dimensions in sln(R) the affine Hamiltonian is completely
integrable and reduces to the Hamiltonian associated to the mechanical problem
of Newmann [36], see also [38] and [25]. In general, however, the solutions of the
affine Hamiltonian system remain largely unknown.
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