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Abstract. The aim of our contribution is to draw attention to the
fact, which so far has rarely absorbed theoreticians studying contin-
uous media, that a moving surface may carry not only disturbances,
but also physical properties different from those of the surrounding
media.

Here, we present a unified view of the theory of non-relativistic
thermodynamics incorporating phenomena with singularities. These
singularities will present as discontinuous functions or their deriva-
tives, and in the form of the discontinuity in respect to the Lebesgue
measure of physical quantities.

A special focus exists on the fracture at interfaces. Current topics
include the role of thermal residual or processing induced stresses,
the detailed role of plasticity, and geometric effects on interface crack
driving forces.

We model a situation of this kind by the movement of a surface
separating two well-behaved material media, while attributing to the
surface the physical properties of a phase change.

For a proper understanding of interfacial (transport) processes,
one needs to be familiar with the basic geometrical description of a
surface, we present here.
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1. Introduction

The objective of this contribution is to present perspective of physics of interfaces
from stand point of continuum physics. This approach develops the foundations
more carefully than the traditional approach where there is a tendency to hurry on
to the applications, and moreover, provides a background for later advanced study
in modern nonlinear continuum physics. Our ultimate intension was to present
the subject matter in a sound manner as clear as possible. We hope that the text
provides enough insights for understanding of terminology used scientific state-of-
the art papers and to find the “right and straightforward path” in the scientific
world of material surface phenomena.

In what follows a few words of general meaning are worthwhile.
While at one time certain theoretical statements were regarded as “laws” of

physics, nowadays many theories prefer to regard each theory as a mathematical
model of some aspect of nature. But, any mathematical theory of physics must
idealized nature. Then, every theory is only “approximate” in respect to nature
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itself. Particularly, it stands for continuous distribution of matter which is the
principle assumption of continuum physics.

In physical theory, mathematical rigor is of the essence. Than, a theory is tested
by experiment. In this sense, a given theory is “good”, if a range of application is
greater than another’s, it is “better” of the two. This holds as well for a continuum
physics approach.

Having these in mind, we organize the text as follows.
The text consists of six sections:
Section 1 - Introduction
In Section 2 - “Interface in problems of continuum physics”, is designed to cover

the essential features of interfaces problems in continuum physics.
For those who have not been exposed to necessary mathematics we have included

a Section 3 “Basic notion of geometry and kinematics of surface”, since, for proper
understanding of the subject matter requires knowledge of tensor calculus.

In Section 4 - “Material displacement derivative”, we concentrated on notion of
displacement derivative, the quantity which is of most importance in problems of
interfaces.

In Section 5 - “The theory of singular surfaces”, the basic techniques for study
of propagation of interfaces is derived.

In Section 6 - “Balances laws of bulk material and interface”, we start with the
formulation of a general equation of balance and proceed by listing special cases
that are of particular interest in continuum mechanics and surface of discontinuity.

Finally, in writing this part of the monograph, it has been our hope to make
available to the physical and material scientist and engineer some of the more
sophisticated mathematical techniques.

2. Interface in Problems of Continuum Physics

Continuum physics is concerned with the description of physical phenomena
as observed at the macroscopic level, with no reference to the underlying micro-
structure of the matter constituting the medium in which the phenomena occur.
The medium itself is regarded as a continuous distribution of matter and is referred
to as a continuous medium (or simply continuum). Physical quantities (such as
mass or velocity) are distributed through the medium, and in mathematical terms
are treated as fields. These fields are subject to a number of physical laws which
express general principles common to all forms of matter.

The balance laws are formulated as integral equations governing fields defined
on regions of space occupied by a material body in motion. A disturbance in the
continuity of a phenomenon or physical field is termed a singularity. The aim
of our contribution is to present a unified view of the theory of non-relativistic
thermodynamics incorporating phenomena with singularities. These singularities
will present as discontinuous functions or their derivatives, and in the form of
the discontinuity in respect to the Lebesgue measure of physical quantities. The
examples of the first type of singularity are shock and acceleration waves. The
second type is usually associated with surface concentrations of physical quantities.
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Discontinuities in fields may be caused by discontinuities in material properties or
by some discontinuous behavior of the source which gives rise to the fields. In most
problems discontinuities in the source function propagate through the medium, and
if the source function is prescribed at the boundary, that is on some initial surface,
the carrier of the discontinuity is a moving surface in the medium, which in chemical
physics are called interfaces.

Our aim is to draw attention to the fact, which so far has rarely absorbed
theoreticians studying continuous media, that a moving surface may carry not only
disturbances, but also physical properties different from those of the surrounding
media. As an example we consider the direct interaction of two different phases of a
material. The phases are usually defined so that we can imagine an interfacial region
between the phases. We can model a situation of this kind by the movement of a
surface separating two well-behaved material media, while attributing to the surface
the physical properties of a phase change. Thus, the term interphase mass transfer
simply means the transfer of a component between two or more phases in contact
with each other. The component being transferred can undergo reactions in one or
both of the phases, or it can be conservative (i.e., nonreactive). Other examples
may be provided by phenomena such as the motion of surface dislocations, or the
propagation of cracks. In fluid mechanics the surface tension of drops provides an
example.

Since the pioneering paper by Gibbs [1], phase transformation phenomena in
three-dimensional (3D) continua have been also described by introducing into the
body a movable singular surface separating two different material phases in ther-
modynamic equilibrium state. The phase transformation phenomenon manifests
itself best in thin layers of matter: films, membranes, plates, and shells. For exam-
ple, thin films made of shape-memory alloys like NiTi, NiMnGa, NiTiCu, or NiAl
can considerably alter their shapes under appropriate stress and/or temperature
changes. Full analysis of the phenomenon in such thin-walled structures is often
infeasible if one wants to apply the 3D continuum model. The mechanical descrip-
tion of behavior of such structures can conveniently be based on various 2D models
consisting of a base surface endowed with various fields modelling an additional
microstructure. Then the notion of a movable surface curve separating 2D regions
with different material phases in an appropriate and convenient tool for modelling
the phase interface in thin-walled shell structures.

A special focus exists on the fracture at interfaces. Current topics include the
role of thermal residual or processing induced stresses, the detailed role of plasticity,
and geometric effects on interface crack driving forces. Of particular note in a few
of the papers is the focus on multi-scale modelling, a critical link for complete
material behavior descriptions. The research described is fundamental by nature,
but has engineering relevance in the following areas: thin films, multilayers and
assemblies in the semiconductor industry, thermal barrier coatings, and structural
engineering composites. It is clear that many research opportunities exist in this
field, and it is expected that new contributions will provide direction for this future
work (Eshelby [2], Maugin [3], Gurtin [4]).
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Great effort has been devoted in recent years to determining the bending rigidity
K. Conceptually, two different approaches can be distinguished. In the mechani-
cal approach, the response of the membrane to an applied force is measured, from
which the bending rigidity is deduced. The extreme softness of these systems is
exploited by the second type of method where the bending rigidity is derived from
the thermally excited membrane fluctuations. One example of the mechanical ap-
proach (Evans [5], Evans and Needham [6]) is provided by studies of tether forma-
tion from giant vesicles which are aspirated with a micro-pipette (Bo and Waugh
[7]). Bending elasticity or, in its mathematical formulation, curvature energy not
only generates a large variety of shapes, it also leads to different fluctuation or
excitation spectra of these shapes and different dynamics than is shown by simple
liquid interfaces. These phenomena require different mathematical tools for their
description, such as conformal transformations in three dimensions.

A prime motivation to investigate membranes arises from biology in our 3D
world (see Seifert [8]). The lipid bilayer is the most elementary and indispensable
structural component of biological membranes, which form the boundary of all cells
and cell organelles (Alberts et al. [9]). In biological membranes, the bilayer consists
of many different lipids and other amphiphiles. Biomembranes are ’decorated’ with
embedded membrane proteins, which ensure the essential functional properties of a
biomembrane such as ion pumping, conversion from light energy to chemical energy,
and specific recognition. Often a polymeric network is anchored to the membrane
endowing it with further structural stability. This stability is particularly spectac-
ular in red blood cells which can squeeze through tiny capillaries and still recover
their rest shape countless times in a life cycle.

Many properties of polymeric systems are not controlled directly by the bulk of
the materials but its surface and by internal interfaces. This has been recognized
very early and the study of polymers at interfaces has become a major area of
Polymer Science.

The study of polymer solutions at interfaces has most often been motivated by
the effects of polymers on the stability of colloidal suspensions.

Interfacial effects are also very important in polymer melts. The variation of
the surface tension of a polymer melt with molecular weight is associated to sub-
tle interactions between the end points and the interface and only starts to be
understood.

Some of the major issues for applications such as adhesion or friction are related
to the mechanical properties of interfaces.

The interfacial rheology of polymers at a solid interface dominates the friction
properties and strongly depends on the degree of slip of polymers on a surface.

In addition to the possible existence of interfacial-tension gradients at surfactant-
adsorbed fluid interfaces, other interfacial rheological stresses of a viscous nature
may arise, such as those relating to interfacial shear and dilatational viscosities (see
Edwards et al. [10], Wasan and Mohan [11]).

Understanding the physical properties of the bilayer through the study of vesicles
should provide valuable insight into the physical mechanisms that also govern the
more complex biomembranes for which, from this perspective, the artificial vesicle is
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a model system. Striking phenomenological similarities between the budding and
exocytosis where small vesicles bud off the cell membrane encourage a thorough
analysis of these artificial membranes. Referring to the biological motivation, a
distinction has been emphasized between classical ’biophysics’ and a field which
acquired the somewhat fancy notion of “biologically inspired physics” (Peliti [12]).
While the former field is concerned with the detailed modelling of real biological
processes often at the cost of many parameters in a theoretical descriptionthe latter
approach takes the biological material as inspiration for asking questions biologists
often may not even find (yet).

It is also well known that certain chemical components of liquid and gaseous
phases will accumulate at interfaces. For example, surfactants in detergents accu-
mulate at the interface of soils and water, thereby allowing dirt to be removed from
soiled clothing. Some organic molecules with hydrophobic characteristics can accu-
mulate at the air-water interface to such an extend that very few solvent molecules
are present at the interface. These surface films have been studied extensively by
physical chemists, and in some cases, the mechanics of the film has yielded informa-
tion on molecular dimensions. Nitrogen gas is also known to accumulate at solid-gas
interfaces, and this property allows us to use nitrogen to determine the surface area
of very fine or porous surfaces or adsorbents. Likewise, some molecules or ions may
be depleted (negatively adsorbed) at interfaces. In either case, something about
the interface is either like or disliked by the molecules in question. Accumulation of
molecules at the interface at these three examples suggests that this configuration
somehow minimizes the Gibbs function for these systems.

When we are dealing with the propagation of interfaces, we are facing with two
basic issues:

− The problem of interface morphology (planar or curved interface, cellu-
lar structure; unstationary shape, chaotic, turbulent) as a function of the
control parameters.

− The problem of propagation velocity, or growth velocity as a function den-
dritic of the same control parameters.

From mathematical point of view, interface motion is equivalent to the solution
of a free boundary problem. The question is to determine a solution for a scalar
field (pressure, temperature, concentration of an impurity) or a vector field (such
as a fluid velocity field) satisfying a partial derivatives equation (diffusion equation,
Euler or Navier-Stokes equation) with boundary conditions applied on the interface.
Saffman-Taylor interface dynamics and dendritic growth appear to be prototypes
for the understanding of the dynamics of curved fronts.

3. Basic Notion of Geometry and Kinematics of Surface

For a proper understanding of interfacial (transport) processes, one needs to
be familiar with the basic geometrical description of a surface, as shown in the
following section. For a terminology or notation, the reader may wish to consult
any of the standard textbooks of tensor analysis and differential geometry (see for
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instance Aris [13], do Carmo [14], Millman and Parker [15], Kreyszig [16] and the
bibliography in them).

Here we discuss those elements of geometry and kinematics of surface St which
are important for our further presentation. Since we confine to the real physi-
cal problems we consider E3 – three dimensional Euclidean space – as a space of
physical events. Thus a (material) surface St is a subspace of E3, i.e., St ∈ E3.

The analytical expression for surface St, for each t in an open real interval I, is
given by

(3.1) St : f(x, t) = 0,

where by x and t we denote a point in E3 and time, respectively. It is assumed
that function f is of class r > 1 in (x, t).

Taking into account that St is two-dimensional manifold, position of any of its
point can be defined in relation to allowable coordinate system uα (α = 1, 2) of St.
In that case, the point x(xk), (k = 1, 2, 3), as the point of the surface St, is defined
by relation x = x(u, t), i.e.,

(3.2) xk = xk(uα, t), rank
( ∂xi
∂uα

)
= 2,

for every x ∈ St (or every u(uα) ∈ D, where D is a domain of R2). The second
expression in (3.2) represents the condition under which the surface St is a regular
one.

The coordinates uα are called Gaussian parameters of surface S, and they are
intrinsic to the surface. This way of presentation is called parameterization of
surface. Relations (3.2) represent one of many possible parameterizations of surface
St, unlike its representation (3.1), which is unique.

Taking into consideration (3.2), the position vector p, with respect to a frame
in E3, of the point x ∈ St is given by the expression

(3.3) p(x) = p
[
xi(uα, t)

]
, or p(u) = p(uα, t).

In order to be able to apply differential calculus to problems we are going to
investigate, we must require the existence of a certain number of partial derivatives
of p (or x) with respect to uα and t. Further, we note that p(uα, t) is of class r > 1.

3.1. The Geometry of Surfaces. When considering the geometry of surface the
value of parameter t is fixed. We denote by

(3.4) gi
def
=

∂p

∂xi
,

the spatial covariant base vectors or natural basis of the curvilinear system xk.
Also, by gi we denote contravariant base vectors (dual basis or reciprocal basis of
natural basis gi).

By definition

(3.5) gi · gj = δji .

Here and further δ-systems are generally referred to as the Kronecker deltas.
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The metric tensor of Euclidean space E3 is the identity tensor I. Its componental
representation is: gij , g

ij or δji , depending on basis, i.e.,

(3.6) gkl = gk · gl, gkl = gk · gl.

It is easy to show, taking into account (3.5) and (3.6), that1 gk = gklgl and
gk = gklg

l. Then (see Cohen and Wang [17])

gi,j =
∂gi

∂xj
− Γk

ijgk = 0,

where Γk
ij =

∂gi

∂xj
· gk is Cristoffel’s symbol of the second kind.

In the same way, from (3.3) and (3.4) follows

(3.7) aα ≡ ∂p

∂uα
= xi,αgi;

aα are called covariant base vectors (or natural basis) of curvilinear system uα on
surface S and xi,α = ∂xi/∂uα.

From (3.7) and (3.5) it follows that

(3.8) xi,α = gi · aα.
Reciprocal base vectors aα of the base vectors aα are defined, as in (3.5), by

(3.9) aα · aβ = δβα.

We write aαβ , a
αβ , δβα for the components of metric tensor I of the surface S.

Thus, in particular,

aαβ ≡ aα · aβ = gijx
i
,αx

j
,β .(3.10)

Further, it is easy to show, using (3.9), that

(3.11) aα ≡ aαβa
β , aα ≡ aαβaβ , where aαβ = aα · aβ .

Also, aαγa
γβ = δβα, which directly follows from (3.11) and (3.9).

The unit normal vector n to the surface is given by

(3.12) n =
grad f

| grad f |
, n · n = 1.

Relative to basis gi and gi, components of the vector n are, respectively

ni = n · gi =
gijf,j

| grad f |
, ni = n · gi =

f,i
| grad f |

.(3.13)

We note that the direction of n is such that the space orientation of (a1,a2,n) is
positive. This set of vectors makes a vector basis of E3 on S.

The orthogonality of n on S implies the relations

(3.14) aα · n = 0, or aα · n = 0,

or equivalently, njx
j
,α = gijn

ixj,α = 0, because of (3.7) and (3.13).

1Here and further we adopt the Einstein summation convention: if an index appears twice in
the same term, once as a subscript and once as a superscript, the sign Σ will be omitted.



PERSPECTIVE OF INTERFACES FROM STAND POINT OF CONTINUUM PHYSICS 53

In many cases we shall make use of the decomposition of basic vectors gi with
respect to the bases (a1,a2,n). Then, in view of (3.8), (3.12–3.14)

(3.15) gi = nin+ xi,αa
α.

Also, from n · n = 1 we obtain
∂n

∂uα
· n = 0, so that

(3.16) n,α ≡ ∂n

∂uα
= −bβαaβ .

The symmetric tensor

bαβ = n · ∂aα
∂uβ

= −aα · ∂n
∂uβ

, bβα = aβγbαγ

is known as the fundamental quantity of the second order of surface S. Then

(3.17)
∂aα
∂uβ

= bαβn+ Γγ
αβaγ ,

where Γγ
αβ = aγ · ∂aα

∂uβ
is Cristoffel’s symbol of the second kind defined on St.

In view of (3.17), we write

(3.18) aα,β =
∂aα
∂uβ

− Γγ
αβaγ = bαβn.

Furthermore, making use of xi;αβγ − xi;αγβ = xi;δR
δ
.αβγ (see McConell [18]), we have

(3.19) aα,βγ − aα,γβ = aδR
δ
.αβγ ,

where Rδ
.αβγ is the Riemann-Christoffel tensor of a surface. On the other hand, by

means of (3.18) and (3.16), it follows that

(3.20) aα,βγ − aα,γβ = (bαβ,γ − bαγ,β)n+
(
bαγb

δ
β − bαβb

δ
γ

)
aδ.

Then, from (3.19) and (3.20) we have

bαβ,γ = bαγ,β Mainardi–Codazzi equations,

Rδ
.αβγ = bαγb

δ
β − bαβb

δ
γ Gauss equations.

Furthermore by

(3.21) KM = 1
2b

α
α, KG = det

(
bαβ
)
,

we denote the mean curvature and Gaussian curvature of S, respectively.
Further, we need to know the rate of change (with respect to time) of some

geometrical and physical quantities defined on St
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3.2. Kinematics of Surface. Let us continually observe a point x, defined by
(3.3), as it moves. Now, if we differentiate the equation f = 0 with respect to time,
then

(3.22)
∂f

∂t
+ grad f · ∂p

∂t
= 0,

where ∂p/∂t is called the velocity of a point x (or equivalently, the point u) of
surface S.

The velocity of point x is given by

(3.23)
∂p

∂t
= u

n
n+ vαaα, or

∂xi

∂t
= u

n
ni + vαxi,α

where vα is tangential velocity of the point x.
The normal velocity of the surface, u

n
, or the speed of displacement, is given by

u
n

def
=

∂p

∂t
· n,

or, by means of (3.22) and (3.12),

(3.24) u
n
= − ∂f/∂t

| grad f |
.

Since the term on the right side of (3.24) is determined by the spatial equation (3.1)
alone, it is independent of the choice of the parametrization (3.2) or (3.3). Clearly,
the velocity ∂p/∂t depends on a particular choice of the surface coordinates.

3.2.1. Orthogonal Parametrization. When the parametrization uα of the sur-
face S is such that velocities of the surface points are always orthogonal on it, i.e.,
when vα = 0 , then (3.23)

(3.25)
∂p

∂t

∣∣∣
u
= u

n
n or

∂xi

∂t

∣∣∣
uα

= u
n
ni.

Such parametrization of the surface S is called orthogonal (see Fig. 1).
With respect to such parametrization, for observer who is outside the surface,

position of the surface points is fixed, because there is no tangential component of
the velocity to the surface. Therefore, such coordinates uα ≡ ζα have advantage
over other allowable coordinate systems of the surface because, with respect to
them, expressions are considerably simplified.

We point out that the simplest forms of parametrization of surface S are not
always its orthogonal parametrization. Also, in general, orthogonal parametrization
has local character.

4. Material displacement derivative

4.1. Componental Formulation and Consideration. Here, we concentrate on
notion of a displacement derivative, the quantity which is of most importance in
dynamical problems of (material) interfaces.

We emphasize that we will here deal, in general, with double tensor fields, which
are defined with respect to E3 and surface S(t) embedded in E3. Thus, we will
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Figure 1

deal with the quantities which obey the transformation law for a tensor under the
following groups of transformations x̄i = x̄i(xj), ūα = ūα(uβ , t). In other words,
we are interested in the rate of change with respect to time of these quantities when
their tensor character is preserved.

Following Thomas [19] we have introduced the notion of displacement derivative
(or δ-time derivative) for an arbitrary time-dependent field f in D confined to the
surface S(t), defined as the time derivative of f along the normal trajectory. In
order to improve this definition Truesdell and Toupin, [20] suggested a generaliza-
tion of Thomas’s derivative to two-point tensor fields. Their derivative reduces to
Thomas’s derivative in the case of one-point fields.

However, as pointed out by Bowen and Wang [21], (see also Kosiński [22]) the
generalization of the displacement derivation given by Truesdell and Toupin has to
be modified: the value of the Truesdell–Toupin derivative of a given geometrical
object depends on the basis in which that object is represented, that is whether it is
the spatial basis in E3 or the basis of surface vectors. In order to rectify this error
Bowen and Wang introduced what they called the total displacement derivative
of a function, this being the partial time derivative of the function defined on a
surface given in convected parametrization2. Since, in a convected parametrization
ζα, (Bowen and Wang [21]), the geometrical locus of the surface point ζα = const .

is the normal trajectory of the surface, the displacement derivative is δf̃/δt, where

f̃(ζα, t) = f(x(ζα, t), t). Thus, it is defined as the time derivative of f̃ if the moving
surface S(t) is given in the convected parametrization x = x(ζα, t), t). Jarić and
Milanović-Lazarević [23] have extended the definition of the displacement derivative
to any (not necessarily convected) surface coordinate system. Cohen and Wang [17]
call it transverse displacement derivative.

2Concept of convected coordinates, in both mathematics and continuum mechanics has wider
meaning (see Truesell and Toupin [20], Aris [13]).



56 JARIĆ AND KUZMANOVIĆ

We shall apply this notion to the time derivative of tensor quantities along the
trajectory of a material points of the surface S(t), that is, when U∆ = const. We
call the time derivative of this kind material displacement derivative in order to
emphasize its physical meaning. Because of its importance we give its derivation in
detail. As before, S(t) is given with respect to the orthogonal parametrization uα.

Let Ψi...jα...β
k...lκ...λ(x,u, t) be a double tensor field on S(t), under the group of trans-

formations x̄ = x̄(x), ū = ū(u, t). Then

Ψ̄i...jα...β
k...lκ...λ = Ψp...qπ...θ

r...sϱ...σ

∂x̄i

∂xp
. . .

∂x̄j

∂xq
∂ūα

∂uπ
. . .

∂ūβ

∂uθ
∂xr

∂x̄k
. . .

∂xs

∂x̄l
∂uϱ

∂ūκ
. . .

∂uσ

∂ūλ
.

Since, x = x(u, t) and u = u(U, t), where U is material parametrization, then

ū = ū(u(U, t), t) = ū(U, t),

x̄ = x̄[x(u, t)] = x̄{x[u(U, t), t]} = x̄(U, t).

Thus, when U∆ = const

(4.1)
dΨ̄i...jα...β

k...lκ...λ

dt
=
dΨp...qπ...θ

r...sϱ...σ

dt

∂x̄i

∂xp
· · · ∂u

σ

∂ūλ

+Ψp...qπ...θ
r...sϱ...σ

d

dt

(
∂x̄i

∂xp

)
· · · ∂u

σ

∂ūλ
+ · · ·+Ψp...qπ...θ

r...sϱ...σ

∂x̄i

∂xp
· · · d

dt

(
∂uσ

∂ūλ

)
.

Now, we have to calculate the terms which are derivatives of second order, like

d

dt

(
∂x̄i

∂xp

)
, . . . ,

d

dt

(
∂uσ

∂ūλ

)
.

We start with
dx̄i

dt
=
∂x̄i

∂xa
∂xa

∂t
,

d

dt

(
∂x̄i

∂xp

)
=

∂2x̄i

∂xp∂xa
dxa

dt
.

But,

∂2x̄i

∂xp∂xa
= Γb

pa

∂x̄i

∂xb
+ Γ̄i

cd

∂x̄c

∂xp
∂x̄d

∂xa
,

so that

(4.2)
d

dt

(
∂x̄i

∂xp

)
= Γb

pa

dxa

dt

∂x̄i

∂xb
− Γ̄i

cd

dx̄d

dt

∂x̄c

∂xp
.

On the other hand,

(4.3)
d

dt

∂ūα

∂uπ
=

∂

∂t

(
∂ūα

∂uπ

)
+

∂2ūα

∂uπ∂uν
duν

dt
.

Also,
dūα

dt
=
∂ūα

∂t
+
∂ūα

∂uν
duν

dt
,

from which we get

(4.4)
∂

∂uπ
dūα

dt
=

∂

∂uπ
∂ūα

∂t
+

∂2ūα

∂uπ∂uν
duν

dt
+
∂ūα

∂uπ
∂

∂uν
duπ

dt
.
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From (4.3) and (4.4) we have

(4.5)
d

dt

∂ūα

∂uπ
=

∂

∂uπ
dūα

dt
− ∂ūα

∂uπ
∂

∂uν
duπ

dt
.

The term
d

dt

∂uα

∂ūπ
follows directly from (4.5) when we strictly interchange the role

of uα and ūα. Then, substituting (4.2) and (4.3) into (4.1), after long calculation
and rearranging the terms, we get

δmΨ̄i...jα...β
k...lκ...λ

δt
=
δmΨp...qπ...θ

r...sϱ...σ

δt

∂x̄i

∂xp
· · · ∂x

s

∂x̄l
∂uϱ

∂ūκ
· · · ∂u

σ

∂ūλ
,

where by δm/δt we denote material displacement derivative, i.e.,

δmΨi...jα...β
k...lκ...λ

δt

def
=

dΨi...jα...β
k...lκ...λ

dt

∣∣∣
U
+£

u̇
Ψi...jα...β

k...lκ...λ(4.6)

=
∂Ψi...jα...β

k...lκ...λ

∂t

∣∣∣
x,u

+Ψi...jα...β
k...lκ...λ,m

dxm

dt
+£

u̇
Ψi...jα...β

k...lκ...λ.

But, in view of (3.25),

(4.7)
δmx

δt
=
∂x

∂t

∣∣∣
u
+ u̇αaα or

dxi

dt
=
∂xi

∂t

∣∣∣
u
+ u̇αxi,α = unn

i + u̇αxi,α,

so that

δmΨi...jα...β
k...lκ...λ

δt

def
=

∂Ψi...jα...β
k...lκ...λ

∂t

∣∣∣
x,u

+Ψi...jα...β
k...lκ...λ,m

u
n
nm(4.8)

+ Ψi...jα...β
k...lκ...λ,m

xm;γ u̇
γ +£

u̇
Ψi...jα...β

k...lκ...λ,

where

£
u̇
Ψi...jα...β

k...lκ...λ
def
= u̇ν

∂Ψi...jα...β
k...lκ...λ

∂uν
+Ψi...jα...β

k...lν...λ

∂u̇ν

∂uκ
+ · · ·+Ψi...jα...β

k...lκ...ν

∂u̇ν

∂uλ

−Ψi...jν...β
k...lκ...λ

∂u̇α

∂uν
− · · · −Ψi...jα...ν

k...lκ...λ

∂u̇β

∂uν

= u̇νΨi...jα...β
k...lκ...λ,ν +Ψi...jα...β

k...lν...λ u̇
ν
,κ + · · ·+Ψi...jα...β

k...lκ...ν u̇
ν
,λ

−Ψi...jν...β
k...lκ...λu̇

α
,ν − · · · −Ψi...jα...ν

k...lκ...λu̇
β
,ν

is the Lie derivative of the field Ψi...jα...β
k...lκ...λ with respect to the velocity field u̇ = u̇αaα.

We point out that, according to this definition,

u̇α
def
=

δmu
α

δt

∣∣∣
U∆=const

=
duα

dt
.

It is easy to show that the material displacement derivative has the following
properties:

(i) the material displacement derivative of a sum of tensor fields equals the
sum of the material displacement derivative of the summands;

(ii) the rule of Leibniz holds for tensor product of tensor quantities and for
product of tensor fields.
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Remark. The expression (4.8) for material displacement derivative differs both
by form and by content from displacement derivative defined by Truesdell and
Toupin [20, Eq. (179.5)]

(4.9)
δdΨ

i...jα...β
k...lκ...λ

δt

def
=

∂Ψi...jα...β
k...lκ...λ

∂t

∣∣∣
x,u

+Ψi...jα...β
k...lκ...λ,m

u
n
nm +£

u̇
Ψi...jα...β

k...lκ...λ.

This is obvious if (4.8) is written in the following form

δmΨi...jα...β
k...lκ...λ

δt
=
δdΨ

i...jα...β
k...lκ...λ

δt
+Ψi...jα...β

k...lκ...λ,m
xm,γ u̇

γ .

Thus δm/δt and δd/δt are the same only when uα = δα∆U
∆.

4.2. Material Displacement Derivative of Basic Surface Quantities.
a. Surface base vectors. Material displacement derivative can be applied to all
systems, independently of their nature, which satisfy the law of transformation of
tensor quantities. Particularly, for the base vectors gi it is easy to show that

(4.10)
δmgk

δt
= 0.

However, it is not the case when the material displacement derivative of surface
base vectors aα are in question. Then aα dependents explicitly on time so that, in
view of (4.6),

δmaα
δt

=
∂aα
∂t

+ aα,k
dxk

dt
+£

u̇
aα.

But, according to (3.25) and (3.16),

∂aα
∂t

=
∂

∂t

∂p

∂uα
=

∂

∂uα
∂p

∂t
=

∂

∂uα
(u
n
n) = u

n
,αn− u

n
bβαaβ ,

aα,k = 0 and £
u̇
aα = u̇βaβ,α + aβu̇

β
,α = u̇βbαβn+ aβu̇

β
,α, so that

(4.11)
δmaα
δt

=
(
u
n
,α + bαβu̇

β
)
n+

(
u̇β,α − u

n
bβα

)
aβ .

Than making use of aα = xi;αgi, (4.10) and (4.11), we get

(4.12)
δmx

i
;α

δt
=

(
u
n
,α + bαβu̇

β
)
ni +

(
u̇β,α − u

n
bβα

)
xi,β .

b. Unit normal vector to a surface. In the same way, it is easy to show that

δmn

δt
=
dn

dt
= −

(
u
n
,α + bαβu̇

β
)
aα.

c. Metric tensor (first fundamental tensor) of a surface. Trivially, from (3.6) and
(4.10), we have

(4.13)
δmgij
δt

= 0,
δmg

ij

δt
= 0.
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Than, from (3.10), (4.13) and (4.12), we get

(4.14)
δmaαβ
δt

= 2
[
u̇(α,β) − u

n
bαβ

]
.

d. Determinant of metric tensor of a surface. Let a = det (aαβ). Then

δma

δt
=

∂a

∂aαβ

δmaαβ
δt

= aaαβ
δmaαβ
δt

.

But, a,α = 0 so that

(4.15)
δma

δt
= 2a

(
u̇α,α − u

n
bαα

)
,

where we made use of (4.14).
For further discussion the following relation is required

δm
√
a

δt
=

√
a
(
u̇α,α − u

n
bαα

)
,

which follows directly from (4.15).

e. Second fundamental tensor of a surface. In order to calculate the material
displacement derivative bαβ we start with (3.18). Then,

δmbαβ
δt

=
δmaα,β
δt

· n =
(∂aα,β

∂t
+£

u̇
aα,β

)
· n(4.16)

= u
n
,αβ − u

n
bαγb

γ
β + bαβ,γ u̇

γ + bαγ u̇
γ
,β + bβγ u̇

γ
,α.

f. Contravariant and mixed representation of material derivative. From (4.13)
we see that the tensors gij , g

ij and δij behave as though they were constants in
material differentiation with respect to t. However, this is not the case with surface
metric tensor aαβ as can be seen from (4.14), and it is the consequence of its
explicit dependence of time. Then the operation of raising and lowering of indices
of tensor fields with respect to aαβ is not, generally, commutative with material
time derivative. Particularly, this is true for aαβ . Indeed, it is easy to show that

δma
αβ

δt
= −aαγaβδ δmaγδ

δt
= −2

[
u̇(α,β) − u

n
bαβ

]
,

where we have used (4.14)3.
Another quantity of importance for further investigation is bβα. Then, from the

relation bβα = bαγa
γβ , after some calculation, we get

(4.17)
δmb

γ
α

δt
= u

n

γ
,α· + u

n
bαβb

βγ + bγβu̇
β
,α + bγα,β u̇

β − bβαu̇
γ
,β .

3It is important to notice that
δmδαβ

δt
= 0, since, by definition

δmδαβ

δt
=

∂δαβ

∂t
+£

u̇
δαβ = £

u̇
δαβ ≡ 0.
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g. Mean curvature of the surface. In the same way, we can derive material deriva-
tives of the other quantities as b = det bαβ , KM , KG, etc. Thus, from (4.17),
contraction with respect to indices α and β, leads to

(4.18) 2
δmKM

δt
= u

n

α
,α· + u

n
bγαb

α
γ + 2KM,γ u̇

γ .

This relation can be reduced, by using the Cayley-Hamilton’s theorem,

(4.19) B2 − IBB + I detB = 0,

where B = ∥bαβ∥ and I = ∥δαβ ∥. But, IB = trB = 2KM and detB = KG, which

follows from (3.21). Also, trB2 = bγαb
α
γ = 2

(
2K2

M −KG

)
. Then (4.18) can be

written in the following form

δmKM

δt
= KM,αu̇

α + u
n

(
2K2

M −KG

)
+

1

2
u
n

α
,α· ,

or more concisely

δmKM

δt
=

1

2
∆su

n
+ u

n

(
2K2

M −KG

)
+ u̇ · ∇sKM ,

where surface gradient and surface Laplace operator on St are denoted by ∇s and
∆s, respectively.

h. Gaussian curvature of a surface. In order to determine δmKG/δt we use the
following identities

δmKM

δt
≡ 1

2

δm(trB)

δt
=

1

2
tr
δmB

δt
,

δmKG

δt
≡ 4

δmKM

δt
KM − tr

(
δmB

δt
B

)
,

where last identity follows from (4.19). From (4.16), after some calculation, we get

tr

(
δmB

δt
B

)
= u

n
,αβb

αβ + 2u
n
KM

(
4K2

M − 3KG

)
+ bαβb

β
α,γ u̇

γ .

Then

δmKG

δt
= u

n

β
,α·

(
2KMδ

α
β − bαβ

)
+ 2u

n
KMKG +

(
4KMKM,γ − bαβb

β
α,γ

)
u̇γ ,

or finally
δmKG

δt
= u

n

β
,α·

(
2KMδ

α
β − bαβ

)
+ 2u

n
KMKG + u̇ · ∇sKG.

4.2.1. The List of Basic Results. For later reference, we record the following
formulas:

δmaα
δt

=
(
u
n
,α + bαβ u̇

β
)
n+

(
u̇β,α − u

n
bβα

)
aβ ,

δmn

δt
= −

(
u
n
,α + bαβu̇

β
)
aα,

δmaαβ
δt

= 2
[
u̇(α,β) − u

n
bαβ

]
,
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δma
αβ

δt
= 2

[
u
n
bαβ − u̇(α,β)

]
,

δm
√
a

δt
=

√
a
(
u̇α,α − u

n
bαα

)
=

√
a
(
∇s · u̇− 2u

n
KM

)
,(4.20)

δmbαβ
δt

= u
n
,αβ − u

n
bαγb

γ
β + bαγ u̇

γ
,β + bβγ u̇

γ
,α + bαβ,γ u̇

γ ,

δmb
β
α

δt
= u

n

β
,α· + u

n
bαγb

βγ + bβγ u̇
γ
,α + bβα,γ u̇

γ − bγαu̇
β
,γ ,

δmKM

δt
=

1

2
∆su

n
+ u

n

(
2K2

M −KG

)
+ u̇ · ∇sKM ,

δmKG

δt
= u

n

β
,α·

(
2KMδ

α
β − bαβ

)
+ 2u

n
KMKG + u̇ · ∇sKG.

Remark. It would be appropriate here to emphasize the difference between
material surface derivatives δm/δt and Dm/D defined by Truesdell and Toupin
[20]. Namely, the concept of δm/δt is more general than Dm/D and it reduces to
Dm/D in the case when the surface is stationary, that is, when u

n
= 0.

When U∆ = δ∆α u
α, then U∆ = const is orthogonal trajectory of material par-

ticles of surface. From mathematical point of view, it means that we are talking
about orthogonal parametrization as the referent one. Then

δmaα
δt

= u
n
,αn− u

n
bβαaβ ,

δmn

δt
= −u

n
,αa

α,

δmaαβ
δt

= −2u
n
bαβ ,

δma
αβ

δt
= 2u

n
bαβ ,

δm
√
a

δt
= −u

n

√
abαα = −2u

n

√
aKM ,(4.21)

δmbαβ
δt

= u
n
,αβ − u

n
bαγb

γ
β ,

δmb
β
α

δt
= u

n

β
,α· + u

n
bαγb

βγ ,

δmKM

δt
=

1

2
∆su

n
+ u

n

(
2K2

M −KG

)
,

δmKG

δt
= u

n

β
,α·

(
2KMδ

α
β − bαβ

)
+ 2u

n
KMKG.

These relations are identical with corresponding expressions of Truesdell and Toupin

[20] and then
δm
δt

≡ δd
δt

(see also Kosiński [22], Müller [24] and Jarić et al. [25]).

4.2.2. General Consideration. Until now, we have discussed the material dis-
placement derivative of tensor quantities which are defined by their components
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with respect to an arbitrary admissible coordinate systems xi in E3 and uα in St,

for example for Ψi...jα...β
k...lκ...λ(x,u, t). However, generally we need the expression of

material displacement derivative for

Ψ = Ψk...mΓ...∆
p...qΛ...Σ gk · · · ⊗gm⊗gp ⊗ · · ·gq⊗aΓ · · · ⊗a∆⊗aΛ · · · ⊗aΣ

given in U∆.
Then, in view of its properties and (4.10), we have

δm
δt

Ψ =
(δm
δt

Ψk···mΓ···∆
p···qΛ···Σ

)
gk · · · ⊗ gm ⊗ gp ⊗ · · ·gq ⊗ aΓ · · · ⊗ a∆ ⊗ aΛ · · · ⊗ aΣ

+Ψk···mΓ···∆
p···qΛ···Σ gk · · · ⊗ gm ⊗ gp ⊗ · · ·gq ⊗ δm

δt
aΓ · · · ⊗ a∆ ⊗ aΛ · · · ⊗ aΣ

...(4.22)

+ Ψk....mΓ....∆
p....qΛ....Σ gk · · · ⊗ gm ⊗ gp ⊗ · · · gq ⊗ aΓ · · · ⊗ a∆ ⊗ aΛ · · · ⊗ δm

δt
aΣ, .

Particularly, in the case of orthogonal parametrization we obtained

δd
δt
Ψ =

(δd
δt
Ψk....mΓ....∆

p....qΛ....Σ

)
gk · · · ⊗ gm ⊗ gp ⊗ · · ·gq ⊗ aΓ · · · ⊗ a∆ ⊗ aΛ · · · ⊗ aΣ

+Ψk....mΓ....∆
p....qΛ....Σ gk · · · ⊗ gm ⊗ gp ⊗ · · ·gq ⊗ δd

δt
aΓ · · · ⊗ a∆ ⊗ aΛ · · · ⊗ aSigma

...(4.23)

+ Ψk....mΓ....∆
p....qΛ....Σ gk · · · ⊗ gm ⊗ gp ⊗ · · · gq ⊗ aΓ · · · ⊗ a∆ ⊗ aΛ · · · ⊗ δd

δt
aΣ.

Note that in both cases, (4.22) and (4.23), it can be seen that the change of base
surface vectors affects material derivatives of the quantity Ψ.

For example, displacement derivative (4.9), defined by Truesdell and Toupin [20],
depends on base vectors used to present the object, that is, whether the base is of
E3 (spatial) or surface S.

a. Material displacement derivative of higher order

The material displacement derivative of higher order, i.e., δkmΨ/δtk, k = 2, 3, . . .
can be obtained from (4.22). Obviously, their expressions are, generally, very long
and complicate. As such they are no of much use. The simplest case appears
when we calculate δm/δt along u

α = const, i.e., when u̇α = 0. From mathematical
point of view, it means that we are talking about orthogonal parametrization as the
referent one. In any case, for their derivation we need the material displacement
derivatives of δkmaα/δtk, δkmn/δtk, k = 2, 3, . . . 4 Fortunately, in practice, we need
material displacement derivatives of second and, eventually, of third order.

Then in addition to (4.21), we need

(4.24)
δaα

δt
= u

n

αn+ u
n
bαβa

β ,

4Here, in order to simplify the notation, instead of
δkm
δtk

we write
δk

δtk
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as well as

δ2aα

δt2
=
δu
n

, α

δt
n+ u

n

, α δn

δt
+
δ(u

n
bαβ)

δt
aβ + u

n
bαβ
δaβ

δt
=

=
δu
n

, α

δt
n− u

n

, αu
n, β

aβ +
δ(u

n
bαβ)

δt
aβ + u

n
bαβ

[
u
n

, βn+ u
n
bαβa

β
]

⇒

δ2aα

δt2
=

[
δu
n

, α

δt
+ u

n
bαβu

n

, β

]
n+

[
−u

n

, αu
n, β

+
δ(u

n
bαβ)

δt
+ u

n

2bαγ b
γ
β

]
aβ .

Further, from (4.21)2 and (4.24), we obtain

δ2n

δt2
= −

δu
n

, α

δt
aα − u

n

, α δa
α

δt
= u

n

, αu
n, α

n+

[
δu
n

, α

δt
− u

n
u
n, β

bβα

]
aα.

Under the above assumption from (4.7) we obtain

(4.25)
δx

δt
= u

n
n.

Then, in view of (4.21)2,

(4.26)
δ2x

δt2
=
δu
n

δt
n+ u

n

δn

δt
=
δu
n

δt
n− u

n
u
n, α

aα.

4.2.3. Decomposition of a General Tensor Field. Generally, the decomposi-
tion of tensor field defined on surface σ(t) gives better insight on the geometrical
structures as well as physical nature of the field. For instance, from (3.23) and
(3.24) we see that the normal and tangential components of velocity of geometrical
point x of σ(t) are of different nature. Thus, u

n
is independent of the parametrization

contrary to vα which depends of parametrization σ(t).
In what follows we shall see the other advantages of such presentation of tensor

fields. Because of that, we proceed keeping the argument on the highest level of
generality, in order to present the theory which can be applied to different field
quantities of importance in material sciences, instead of giving the final formulas.

Particularly, applying this procedure to the problem of surface of singularity, we
call this approach a direct one contrary to the iterative approach given by Truesdell
and Toupin [20], since, this decomposition consists in representing a tensor field,
defined on the singular surface, with respect to the naturale bases, which consists
of the tangent vectors aα, α = 1, 2, and unite normal vector of the surface.

Let T(x, t) = Ti1...ikg
i1 ⊗ · · ·⊗gik be a tensor field in E3. In general case T has

3k independent components. At the points of σ(t) tensor T, according to (3.15), is
given by

(4.27) T(u, t) = T(x(u, t), t) = Ti1...ik
(
ni1n+ xi1,α1

aα1
)
⊗· · ·⊗

(
nikn+ xik,αk

aαk
)
.

In order to simplify further calculation we make use of the following quantities:

(4.28) Ai = nin, Bi = xi,αa
α.



64 JARIĆ AND KUZMANOVIĆ

Then

(4.29) T = Ti1...ik
(
Ai1 +Bi1

)
⊗ · · · ⊗

(
Aik +Bik

)
.

Obviously,
(
Ai1 +Bi1

)
⊗ · · · ⊗

(
Aik +Bik

)
has 2k addends. The explicit form of

(4.29) can be writhen by collecting the addends which contain the same numbers
of terms A, or B.

First term of representative addend is

(4.30) Ai1 ⊗ · · · ⊗Aiλ ⊗Biλ+1 ⊗ · · · ⊗Bik

All other terms of this addend have the same order of indices

i1, . . . , iλ, iλ+1, . . . , ik.

It is convenient in writing them to use a table. For example, for terms of the form
Ai ⊗Aj ⊗Ak ⊗Bl ⊗Bm the following table is appropriate:

i j k l m
A A A B B
A A B A B
A A B B A
A B A A B
A B A B A
A B B A A
B A A A B
B A A B A
B A B A A
B B A A A

This reduces to the combination without repetition of k elements of λ-th class.
The total numbers of them is

(
k
λ

)
. Thus, for all possible classes λ = 0, 1, . . . , k, we

will have
∑k

λ=0

(
k
λ

)
= 2k elements.

From (4.28), (4.29) and (4.30) it follows that the first representative term of
decomposition (4.29) is

Ti1...iλiλ+1...ikn
i1 · · ·niλxiλ+1

,α1
· · ·xik,αk−λ

n⊗ · · · ⊗ n⊗ aα1 ⊗ · · · ⊗ aαk−λ ,

0 6 λ 6 k

Particularly,

Ti1...ikn
i1 · · ·nikn⊗ · · · ⊗ n, for λ = k,

Ti1...ikx
i1
,α1

· · ·xik,αk
aα1 ⊗ · · · ⊗ aαk for λ = 0

In the case when T is symmetric, the term Ti1...iλiλ+1...ikn
i1 · · ·niλxiλ+1

,α1 · · ·xik,αk−λ

will be common for all terms which can be derived from

n⊗ · · · ⊗ n⊗ aα1 ⊗ · · · ⊗ aαk−λ ,

as the elements of the combination without repetition of k elements of λ-th class.
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This is the case of k-th gradient of tensor T, i.e., of the tensor

∇(k)T = T, i1...ik ⊗ gi1 ⊗ · · · ⊗ gik ,

where ∇ denotes gradient. Obviously, this decomposition is very complicated and
the expressions are very large. In writing them we need to express

T, i1...iλiλ+1...ikn
i1 · · ·niλxiλ+1

,α1
· · ·xik,αk−λ

in final form over all indices α.
We shall illustrate this decomposition for gradients of T in E3 up to order 3:

(4.31) ∇T = T, in
i ⊗ n+T, ix

i
, α ⊗ aα = ∂nT⊗ n+T, α ⊗ aα,

where ∂nT denotes the normal derivative of tensor T.
Next,

∇(2)T = T, ijn
inj ⊗n⊗n+T, ijn

ixj, α⊗ (n⊗aα+aα⊗n)+T, ijx
i
, αx

j
, β ⊗aα⊗aβ .

But T, ijx
i
, αx

j
, β = T, αβ − bαβ∂nT and T, ijn

ixj, α = (∂nT), α + bβαT, β , or finally

∇(2)T = ∂(2)n T⊗ n⊗ n+
[
(∂nT), α + bβαT,β

]
⊗ (n⊗ aα + aα ⊗ n)(4.32)

+ (T, αβ − bαβ∂nT)⊗ aα ⊗ aβ .

In the same one can derive the expression of δ(q)T, q > 3. So obtained results
sa well as the procedure can be compared with the results given by Podio-Guidugli
[26].

4.2.4. The Decomposition of Displacement (material) Derivative. Let
T = T(x, t), x = (x1, . . . , xn). Obviously, T = x is particular case. Therefore,
the expression for displacement (material) derivative of T(x, t) can be used for this
particular case.

Then on σ(t) tensor field T is, according to (4.27), a function of uα and t. The
displacement derivative of T on σ(t) is the quantity defined by

δT

δt
=
∂T

∂t
+
δx

δt
· ∇T.

(see (4.6)2 and (4.22)). By means of (4.25), this can be written as

δT

δt
=
∂T

∂t
+ u

n
n · ∇T =

∂T

∂t
+ u

n
∂nT,

or equivalently,

(4.33)
∂T

∂t
= −u

n
∂nT+

δT

δt
.

The same process yields the following expression for the δ∇T/δt. Thus,

(4.34)
δ∇T

δt
=
∂∇T

∂t
+
δx

δt
· ∇(2)T =

∂∇T

∂t
+ u

n
n · ∇(2)T.

But, because of (4.32), it follows that

n · ∇(2)T = ∂(2)n T⊗ n+
[
(∂nT), α + bβαT,β

]
⊗ aα,
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so that (4.34) becomes

(4.35)
δ∇T

δt
=
∂∇T

∂t
+ u

n

{
∂(2)n T⊗ n+

[
(∂nT), α + bβαT,β

]
⊗ aα

}
.

On the other hand

(4.36)
δ∇T

δt
= C⊗ n+Cα ⊗ aα.

But, from (4.36), we obtain

C = n · δ∇T

δt
=
δn · ∇T

δt
− δn

δt
· ∇T =

δ∂nT

δt
+ u

n

, αaα · ∇T

=
δ∂nT

δt
+ u

n

, αT, α,

where we made use of (4.31).
Furthermore, it is easily seen from (4.36) and (4.21)1, that

Cα = aα · δ∇T

δt
=
δaα · ∇T

δt
− δaα

δt
· ∇T

=
δT, α

δt
−
(
u
n, α

n− u
n
bβαaβ

)
· ∇T =

δT, α

δt
− u

n, α
∂nT+ u

n
bβαT, β .

The substitution of these two last expressions into (4.36) yields

(4.37)
δ∇T

δt
=

(
δ∂nT

δt
+ u

n

, αT, α

)
⊗ n+

(
δT, α

δt
− u

n, α
∂nT+ u

n
bβαT, β

)
⊗ aα.

Finally, from (4.35) and (4.37), it therefore follows that

(4.38)
∂∇T

∂t
=

(
δ∂nT

δt
+ u

n

, αT, α − u
n
∂(2)n T

)
⊗ n+

[
δT, α

δt
− (u

n
∂nT), α

]
⊗ aα.

We now wish determine the expression for δ2T/δt2. Proceeding in the same manner
as above the following important formula is derived:

δ2T

δt2
=

δ

δt

(
∂T

∂t
+
δx

δt
· ∇T

)
=

δ

δt

∂T

∂t
+
δ2x

δt2
· ∇(T) +

δx

δt

δ

δt
∇T

=
∂2T

∂t2
+ 2

δx

δt
· ∂∇T

∂t
+ tr

(
δx

δt
⊗ δx

δt

)
∇(2)T+

δ2x

δt2
· ∇T.

By virtue of (4.25) and (4.26), after some manipulation, we obtain

δ2T

δt2
=
∂2T

∂t2
+ u

n

2∂(2)n T+ 2u
n

δ∂nT

δt
+
δu
n

δt
∂nT+ u

n
u
n

, αT, α,

or equivalently,

(4.39)
∂2T

∂t2
= −u

n

2∂(2)n T− 2u
n

δ∂nT

δt
−
δu
n

δt
∂nT− u

n
u
n

, αT, α − δ2T

δt2
.
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5. The Theory of Singular Surfaces

Following the classical approach the phases are described by a field φ. In this
theory, an interface is not a surface but, rather, a transition layer across which φ
varies smoothly. The thickness of such layers is constitutively determined. We can
consider a version of the phase-field theory that, due to a special choice of constitu-
tive equations and a special scaling, allows us to control the thickness of transition
layers. We may then investigate the ramification of shrinking that thickness. The
phase-field theory allows for two approaches to deriving sharp-interface equations.
We refer to these approaches as “direct” and “indirect”. While these yield the same
analytical results, the insights that they afford are very different.

The direct approach, which involves, for instance, the configurational force bal-
ance of the phase-field theory, yields more insight.

This is the main reason why, in this text, we have adopted this widely accepted
device of representing a phase interface by a singular surface, rather than as a three-
dimensional region of some thickness (see Slattery [27] and Edvards et al. [10]). Like
everything else we do in continuum mechanics, this should be regarded as a model
for reality. Our understanding of the phase interface is by no means complete, but
there is good experimental evidence that indicates density may be a continuous
function of position through the interfacial regions. Perhaps all of the intensive
variables we are concerned with, including velocity, should more accurately be
regarded as continuous functions of position in going from one phase to the next.

The phase interface in general is not material. We observe mass moving across
a phase interface when an ice cube melts. Here the speed of displacement of the
phase interface is controlled by the rate of heat transfer to the system. Sometimes
the speed of displacement of the phase interface might be specified by the rate of
a chemical relation. In general, the speed of displacement is given in the problem
statement, or it is one of the unknowns which must be determined.

Generally, from physical point of view, field φ suffer discontinuity at the in-
terface. Than such interface is call a surface of discontinuity. More precisely, a
disturbance in the continuity of a phenomenon or physical field is termed a singu-
larity. The singularity will present as discontinuous functions or their derivatives.
The examples of the first type of singularity are shock and acceleration waves (A
surface that is singular with respect to some quantity and that has a nonzero speed
of propagation is said to be a propagating singular surface or wave).

The second type is usually associated with the surface concentrations of physical
quantities. Discontinuity in fields may be caused by some discontinuous behavior
of the source which gives rise to the fields. In most problems discontinuities in
the source function propagate to through the medium, and if the source function
is prescribed at the boundary, that is on some initial surface, the carrier of the
discontinuity is a moving surface in the medium. In the rest of the paper we
are concern with the problem of surface singularities, i.e., with the derivation of
compatibility relations for functions suffering jump discontinuities across a surface.
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Compatibility conditions are representation formulas for the jumps of partial
derivatives of tensor fields in general in terms of the jumps of the tangential, the
normal and the displacement derivatives of the tensor field at its singular surface.

In order to find the formulas of compatibility conditions we proceed from very
general point of view.

The study provides a natural generalization and unification of the classical treat-
ments of compatibility conditions for moving surfaces and curves as submanifolds
of E3. The motivation for such a generalization is twofold.

First, it is desirable to exhibit the compatibility conditions in a single unified set
of formulas expressed in terms of standard quantities from differential geometry and
explicitly displaying the features that are common to all submanifolds regardless
of their dimensions.

Secondly, it may be of some benefit to the science of continuum physics to have
a general theory which treats the phenomena connected with continua of diverse
dimensions on an equal footing.

Here we present the essential ideas of the theory and gather the results which are
necessary for the following sections. The interested reader is reefer to the article by
Truesdell and Toupin [20, Chapters 172–194], perhaps, to the best single reference
in connection with this topic.

Consider the surface σ(t) which the common boundary of two regions ℜ+ and ℜ−

in E3. The unit normal n of σ(t) is directed toward the region ℜ+. Let φ(x,u, t)
be a scalar-valued, vector-valued or tensor valued function such that φ(·, ·, t) is
continuous within each of the regions ℜ+ and ℜ−, and let φ(·, ·, t) have definite
limits φ+ and φ− as x approaches a point on the surface σ(t) from the paths
entirely within the regions ℜ+ and ℜ−, respectively.

Definition 1. The jump of φ(·, ·, t) across σ(t) is defined by

(5.1) JφK = φ+ − φ−.

Clearly, for each time t, the jump JφK of φ(·, ·, t) can be a function of the position
on σ(t). Therefore, it is expressible in surface coordinates and time only.

Definition 2. The surface σ(t) is said the singular surface with respect to φ(·, ·, t)
if JφK ̸= 0.

This definition may be extended to include the spatial and temporal derivatives
of φ.

Definition 3. If the jump JφK of tensor field φ is normal to σ(t), the discontinuity
of φ is said to be longitudinal; if tangent to σ(t), transversal.

In a metric space, the jump of any tensor may be resolved unequally into longi-
tudinal and transversal components.

The entire differential theory of singular surfaces grows from the application of
modified Hadamard’s lemma to φ;α = φ,α + φ,kx

k
,α so that

(5.2) JφK;α = JφK,α + Jφ,kKxk,α,
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which asserts that the jump of a total tangential derivative is total tangential
derivative of the jump.

Particulary, for φ(x, t)

(5.3) JφK,α = Jφ,αK = Jφ,kx
k
,αK = Jφ,kKxk,α,

i.e., the jump of a tangential derivative is the tangential derivative of the jump.
Since the values of φ(x,u, t) in ℜ+ and ℜ− are in general entirely unrelated to

one another, the limiting values of the normal derivatives of φ(·, ·, t) on two sides
of the singular surface σ(t)

(5.4)

s
∂φ

∂n

{
is unrestricted.

Assuming also that the limiting values φ+ and φ− are continuously differentiable
functions of t in ℜ+ and ℜ−, respectively, we derive a condition that the disconti-
nuity in φ(·, ·, t) persists in time rather than appearing and disappearing at some
particular instant. In a metric space, however, the existence of a definite speed of
displacement un for the moving surface enable one to write the kinematical condi-
tion of compatibility for a spatial tensor field

(5.5)

s
δdφ

δt

{
=

s
∂φ

∂t

{
+ unJφ,kKnk,

where δdφ/δt is displacement derivative defined by Truesdell and Toupin [20]. We
shall come to this formula latter. The formulas (5.2)–(5.5) are essential in the
theory of singular surfaces. Henceforth, we shall make very often use of them.

Note that

(5.6)

s
δdφ

δt

{
=

(
δdφ

δt

)+

−
(
δdφ

δt

)−

=
δdφ

δt

+

− δdφ

δt

−
=
δd
δt

JφK
To simplify the calculation we consider the notion of the jump defined by (5.1)

as the application of the operator J K applied to the tensor field φ. Then we state
the following properties of J K.

i) J K is linear operator. Indeed, from the definition (5.1), we have

Jaφ+ bψK = aJφK + bJψK.
for any a, b ∈ R and any tensor fields φ, ψ of the same order and type. R is the set
of real numbers.

ii) JφψK = ⟨φ⟩JψK + ⟨ψ⟩JφK, where ⟨φ⟩ and ⟨ψ⟩ are mean values of φ and ψ,
respectively, i.e., ⟨φ⟩ = 1/2(φ+ + φ−) and ⟨ψ⟩ = 1/2(ψ+ + ψ−). We already state
the Hadamar’s lemma by (5.2).

From ii) and (5.1) we conclude that if φ is continuos, i.e., if φ1 = φ2 = φ then

(5.7) JφψK = φJψK.
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5.1. Singular Surfaces Associated with a Motion. Thus far we have introduced
the basic concepts of the theory of moving singular surfaces. However, there are
certain conditions, the geometrical conditions of compatibility and kinematical con-
ditions of compatibility, which must be satisfied across the singular surfaces. The
geometrical conditions of compatibility relates the jump in the derivatives of φ...(·, t)
to the jump of the normal derivatives of φ...(·, t), the tangential derivatives of the
jump of φ...(·, t) and the geometrical properties of the singular surfaces. Usually
these conditions are iterated to yield higher order conditions of compatibility re-
lating the jumps of the higher order derivatives φ...(·, t) and their derivatives. The
derivations of these conditions of compatibility are quite lengthy though rather
straightforward. The interested reader should consult the work of Thomas [19]
and Truesdell and Toupin [20] in which detailed derivations of these conditions are
presented.

Definition 4. The order of a singular surface is (usually defined as) the lower order

k + l of the derivative ∂l

∂tl
φ...
,i1...ik

which suffers a finite jump across the surface.

Therefore, the zeroth order singular surface is such that the tensor field φ...(·, t)
itself suffers a discontinuity across it.

Here, as in all follows, we assume that in region ℜ+ and ℜ− on each side of the
singular surface σ(t) the function φ(x,u, t) and all its derivatives up to the highest
order considered exist and are continuously differentiable functions of x, u and t,
while on σ(t) they approach definite limits which are continuously differentiable
functions of position.

There is no compelling reason to allow only discontinuities of this special type.
Jump discontinuities upon surfaces are not the only ones that occur in physical
problems. Boundaries, slip surfaces, dislocations, and tears are excluded as not
being defined by sufficiently smooth jump discontinuities in function of the material
variables. Singularities at isolated lines or points are common. In the case of jump
discontinuities on surfaces, there is no a priori ground to expect that he limit
values on each side of the surface be continuously differentiable on the surface, as
we have assumed. The reason for considering here only singularities of this kind are
first, that for more general singularities other than those analyzed above, scarcely
any definite results are known except in very particular cases, and, second, that
singular surfaces of the above types are frequently found useful in special theories
of materials.

This definition of order of the singular surfaces is independent of the motion of
any material medium. We now suppose that a medium consisting of particles X
is in motion through the space of places x according to x = x(X, t), X = X(x, t).
We assume that these functions are single-valued and continuous. Modifications
appropriate to motion suffering discontinuous will be given later. We consider a
surface σ(t) given by a representation of the form (3.1), and set

F (X, t) ≡ f(x(X, t), t), so that f(x, t) ≡ F (x(X, t), t),

identically in x, X and t. Alternative representations of the moving surface are
thus σ(t) : f(x, t) = 0, Σ(t) : F (X, t) = 0. The two representatives are the duals of
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one another. The other dual quantities, we are going to use frequently here, are the
outward unit normal vectors n and N of σ and Σ, respectively; also, Gradx ≡ F
and gradX ≡ F−1 denote material and space gradients of motion.

In the special case when f(x) = 0 we say that the surface σ is stationary; when
F (X) = 0 the surface Σ is material. In the former case, the surface σ consists
always of the same places; in the latter, Σ, of the same particles.

Although σ(t) and Σ(t) are but different means of representing the same phe-
nomenon, the two surfaces so defined are, in general, entirely different from one
another geometrically. The surface f(x, t) = 0 is a surface in the space of places,
while the surface F (X, t) = 0 is the locus, in the space of particles, of the initial
positions of the particles X that are situate upon the surface f(x, t) = 0 at time t.

The dual of the speed of displacement, u
n
, is the speed of propagation

U
N

= − ∂F/∂t

|GradF |
.

Many of the singularities of greatest interest are included in the case when
φ = x(X, t), i.e., are surfaces across which the motion itself, or one of its deriva-
tives, is discontinuous. By the order of a singular surface henceforth we shall mean,
unless some other quantity is mentioned explicitly, that we are taking φ = x. Than
at a singular surface of order 0, the motion x = x(X, t) suffers a jump disconti-
nuity. This must be interpreted as starting that the particles X upon the singular
surface at time t are simultaneously occupying two places x+ and x− or jump in-
stantaneously from x+ to x−. Such discontinuity have been found in field theory
of fracture mechanics.

Since fracture of the body is excluded from our consideration, the motion on a
surface is assumed to be continuous. Therefore, a singular surface of order zero is
assumed not to exist, and on every singular surface the relation [[x]] = 0 is supposed
to hold.

On a singular surface of order 1 the deformation gradient and the velocity of the
medium may suffer finite discontinuity. Such a propagating singular surface will be
called a shock wave.

On a singular surface of order 2, the deformation gradients and the velocity
of the medium will be continuous, while the second gradients of motion and the
acceleration of material particles may suffer jumps. Such a propagating singular
surface will be called an acceleration wave.

Higher-order singular surfaces are similarly defined.
Clearly, the definition of the order of a singular surface may be expressed alter-

natively in terms of the covariant derivatives with respect to material variables X,
i.e., φ,K1...Kq . No modification in the results is needed to allow us to substitute

double tensors of the type φk...mα...β
p...q γ...δ in the various jump conditions. For example,

in the case of a surface which is singular with respect to φ and also a singular sur-
face of order 2 or greater with respect to the motion itself, the principle of duality
when applied to (5.5) yieldsrδdφ

δt

z
=

r∂φ
∂t

z
+ U

N
Jφ,KKNK ,
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where the displacement derivative δd/δt is defined in terms of the motion of the
material diagram F (X, t) = 0. This results follows at once because, corresponding
to any selected initial state, there is a unique speed of propagation U

N
.

5.2. Conditions of Compatibility. Now, we are ready to write the compatibil-
ity conditions making use of the results of Sections 4.5 and 4.6. In this way, we
demonstrate the advantage of this procedure over iterative procedure (see Truesdel–
Tupin [20, §§176, 181]). Particularly, we confine ourselves to the expressions: (4.31),
(4.32), (4.33), (4.38) and (4.39). Then, making use of (5.3), (5.4), (5.6) and (5.7)
we write for

5.2.1. Geometrical Conditions of Compatibility.J∇TK = J∂nTK ⊗ n+ JTK, α ⊗ aα,q
∇(2)T

y
=

q
∂(2)n T

y
⊗ n⊗ n

+
[J∂nTK, α + bβαJTK,β]⊗ (n⊗ aα + aα ⊗ n)

+
(JTK, αβ − bαβJ∂nTK)⊗ aα ⊗ aβ ,

5.2.2. Kinematical Conditions of Compatibility.s
∂T

∂t

{
= −u

n
J∂nTK + δJTK

δt
,s

∂∇T

∂t

{
=

(
δJ∂nTK
δt

+ u
n

, αJTK, α− u
n

q
∂(2)n T

y)
⊗ n+

[
δJTK, α
δt

− (u
n
J∂nTK), α]⊗ aα,s

∂2T

∂t2

{
= −u

n

2
r
∂(2)n T

z
− 2u

n

δ J∂nTK
δt

−
δu
n

δt
J∂nTK − u

n
u
n

, α JTK, α − δ2 JTK
δt2

.

There are several special cases of importance in continuum physics.

a) If T is continuous, i.e., if JTK = 0, thenJ∇TK = J∂nTK ⊗ n,q
∇(2)T

y
=

q
∂(2)n T

y
⊗ n⊗ n+ J∂nTK, α ⊗ (n⊗ aα + aα ⊗ n)

−bαβJ∂nTK ⊗ aα ⊗ aβ ,s
∂T

∂t

{
= −u

n
J∂nTK,s

∂∇T

∂t

{
=

(
δJ∂nTK
δt

− u
n

q
∂(2)n T

y)
⊗ n−

(
u
n
J∂nTK)

, α
⊗ aα,s

∂2T

∂t2

{
= −u

n

2
q
∂(2)n T

y
− 2u

n

δJ∂nTK
δt

−
δu
n

δt
J∂nTK.

b) If in addition to T, ∇T is continuous, i.e., if JTK = J∂nTK = 0, then ∂T/∂t
is also continuous. But,

J∇(2)TK = J∂(2)n TK⊗n⊗n,

s
∂∇T

∂t

{
= −u

n

q
∂(2)n T

y
⊗n,

s
∂2T

∂t2

{
= −u

n

2
q
∂(2)n T

y
.
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Let T = x and JxK = 0. Then, in accordance with the definition of the order of
singular surfaces, we have

c) for a singular surface of order 1,

(5.8) JGradxK = a⊗N, JẋK = −U
N
a,

where a = JGradx ·NK. In componental form these readq
xk;K

y
= akNK ,

q
ẋk

y
= −u

n
ak,

where ak =
q
xk;KN

K
y
.

The vector a is the singularity vector; while (5.8) shows it to be parallel to the
jump of velocity, its magnitude varies with the choice of the initial state and thus
does not furnish a measure of the strength of the singularity.

It is convenient to divide singular surfaces of order 1 into two classes:

1. Material singularities, which affect only the deformation gradients;
2. Waves, including both shock waves and propagating vortex sheets.

For the former, the choice of the initial state is of prime importance. For the latter,
it is not, and the nature of the waves is best specified in terms of the jump of velocity
itself, JẋK, which may be arbitrary both in direction and in magnitude. Indeed, if we
adopt a strictly spatial standpoint, we may say the only geometrical and kinematical
requirement is that discontinuities in velocity be propagated, both the amount of
the discontinuity and the speed of propagation being arbitrary. Moreover, it follows
that a jump in velocity is impossible unless it is accompanied by jumps in the
deformation gradients.

d) for a singular surface of order 2JGrad2 xK = b⊗N⊗N, JGrad ẋK = −U
N
b⊗N, JẍK = −U

N

2b,

where b = JN · (Grad2 x)NK. In componental form these readq
xk;KL

y
= bkNKNL,

q
ẋk;K

y
= −U

N
bkNK ,

q
ẍk

y
= −U

N

2bk,

where bk =
q
xk;KLN

KNL
y
.

These formulae show that a singular surface of order 2 is completely determined
by a vector b and the speed of propagation U

N
. In particular, material disconti-

nuities of second order affect only the derivatives xk,KL, while discontinuities in
the acceleration and in the velocity gradient are necessarily propagated, and con-
versely, every wave of second order carries jumps in the velocity gradient and the
acceleration. Waves of second order are therefore called acceleration waves.

5.2.3. Dynamical Conditions of Compatibility. When a singular surface in-
volves field variables that are affected by the motion and deformation of the medium,
the geometrical and kinematical compatibility conditions should be supplemented
by restrictions originating from the local balance equations. These conditions are
called the dynamical conditions of compatibility. The dynamical conditions of com-
patibility are due to the local conservation of mass, balance of linear and angular
momenta, balance of energy, and the local Clausius–Duhem inequality on σ(t).
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These conditions are of fundamental importance in the investigation of many the-
oretical and practical problems, such as a wave propagation, in continuum physics.
Their investigation will not be considered here.

6. Balances Laws of Bulk Material and Interface

Since the primary objective of continuum physics is to determine the fields of
density, motion and temperature, field equations are needed. It is customary to
base such field equations upon the equations of balance of mechanics and ther-
modynamics. These are the equations of balance of mass, momentum, moment of
momentum and energy or, in other terms, the continuity equation, Newton’s laws
of motion and the first, as well as the second law of thermodynamics for both: bulk
material and interface.

In case of electro-magnetism, the Maxwell equations must be taken into consider-
ation. They are the set of four fundamental equations governing electromagnetism
(i.e., the behavior of electric and magnetic fields).

Particulary, we consider materials surfaces which are permeable, semi-permeable
as well as impermeable material surface.

Rather than considering the individual transport processes separately governing
the balance of mass, momentum, species, etc., we focus now on a single, abstract,
generic conservation law, known under the name general balance law, governing
the transport of all extensive physical properties, in continuous three-dimensional
media, and then in discontinuous media. Ultimately, the generic balance equations
will be applied in later chapters to specific physical circumstances.

6.1. Transport Theorem. A kinematical theorem that proves useful in the deriva-
tion of balance laws in continuum physics is the Reynolds theorem (Reynolds [28]),
in the literature known as transport theorem. We give it in a generalized form in
order that it might apply to a material region through which a phase interface is
moving.

Once more, instead of a phase interface, we say that the material region is divided
by a surface which is discontinuous (singular) with respect to a quantity Ψ.

In the analysis of phenomena involving singular surfaces two cases should be
distinguished:

a) σ is a material surface,
b) σ is not a material surface, but a surface passing through the medium.

In case a) the same material particles remain on the surface during its motion,
and the analysis concerns a film or layer, while in case b) the analysis is applicable
mainly to wave propagation problems and phase transition phenomena. Moreover,
in a number of free boundary problems surfaces may be applied in modeling as well
as in analysis.

We state here standard forms of transport theorems: for a volume which contains
discontinuity surfaces and for a surface in E3 (Müller [24]).

6.1.1. Transport Theorem for a Volume which Contains Discontinuity
Surfaces. We consider the material volume v of the body B which is divided by
singular surface σ into two parts v+ and v− (Fig. 2).
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Figure 2

The outward unit normal to ∂v, the boundary of v, is denoted by n. The velocity
of particle of the body is denoted by ξ̇

The singular surface, assumed smooth, may be in motion with any speed of
displacement u

n
. Is also assumed that σ(t) is a persistent singular surface with

respect to a quantity Ψ and possibly also with respect to ξ̇, the velocity of particle
of the body denoted by ξ5.

Further the outward normal of σ, pointing to v+ is denoted also by n. The
outward normal of ∂σ, the intersection of σ and ∂σ, is denoted by ν, which is
tangent vector field to σ defined at the points of ∂σ.

Then, any additive quantities Ψ associated to the body B the following transport
theorem holds

Dm

Dt

∫
v−σ

Ψ dv =

∫
v−σ

(
Ψ̇ + Ψdiv ξ̇

)
dv +

∫
σ

q
Ψ
(
ξ̇ − ẋ

)y
· n da,

where JΨK = Ψ+ −Ψ− indicates the jump of Ψ acrossσ.

5It should be noticed that in the previous considerations we write x and ẋ for the placement
of the material particle and its velocity independently of the dimension of the body, i.e., whether
the body is three-dimensional. This kind of notation will be used later as well except when one-

dimensional or two-dimensional continuum is observed. It is the case, for instance, when the
material surface is contained in three-dimensional body. In that case x and ẋ are quantities which
are related to two-dimensional body. With ξ = ξ(Ξ, t) we denote the position of the material

particle ξ of three-dimensional material body. Also with ξ̇ = Dmξ
Dt

= dξ
dt

∣∣
ξ=const

, we denote the

velocity of that particle (see Truesdell and Toupin [20]).
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6.1.2. Transport Theorem for a Surface. Let φ be any additive quantity de-
fined on surface s(t) (see Fig. 3). Then the following transport theorem is valid

δm
δt

∫
s

φda =

∫
s

[
δmφ

δt
+ φ

(
∇s · u̇− 2u

n
KM

)]
da,

where
δm
δt
da =

(
∇s · u̇− 2u

n
KM

)
da.

Thus follows from da =
√
a du1du2 and (4.20)5.

Figure 3

For more detailed analysis of the transport theorem for a surface, which contains
discontinuity line ω (see Jarić and Golubović [29]).

6.2. Balance Laws for a Single Body. Generally an equation of balance can be
written for all additive quantities, irrespective of their physical nature. Therefore
this chapter starts with the formulation of a general equation of balance and it
proceeds by listing special cases that are of particular interest to continuum me-
chanics. To start in a fairly general manner, we shall consider a material volume
of a body which is separated into two parts v+ and v− by a singular surface σ (see
Fig. 2).

Let Ψ be an additive quantity associated with the body so that its amount in v
may be written as

Ψ =

∫
v+∪v−

ψv dv +

∫
σ

ψσ da,

where ψv, ψσ are the volume and surface densities, of Ψ, respectively.
The existence of the second integral is evidence of the occurrence of surface

effects associated with a concentration of the quantity Ψ on a singular surface σ.
The existence of the second integral is evidence of the occurrence of surface

effects associated with a concentration of the quantity Ψ on a (singular) surface σ.
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In the analysis of phenomena involving singular surfaces two cases should be
distinguished: (a) σ is a material surface, (b) σ is not a material surface, but a
surface passing through the medium. In case (a) the same material particles remain
on the surface during its motion, and the analysis concerns a film or layer, while in
case (b) the analysis is applicable mainly to wave propagation problems and phase
transition phenomena. Moreover, in a number of free boundary problems surfaces
may be applied in modelling as well as in analysis.

Then the balance of the rate of change of Ψ is given by (see Moeckel [30], Kosiński
[22], Müler [24])
(6.1)
Dm

Dt

∫
v+∪v−

ψv dv +
δm
δt

∫
σ

ψσ da =

∫
∂v−σ

Φvn da+

∫
v−σ

pv dv +

∫
∂σ

Φσνdℓ+

∫
σ

pσ da,

where Φv and Φσ are flux densities of ψ; pv, pσ are supply (production) densities
in the volume and on the singular surface, respectively.

The use of transport theorems (A) and (B), as well as the divergence theorems∫
v−σ

div w dv +

∫
σ

JwK · n da =

∫
∂v−σ

w · n da,

∫
S−ω

divS t da+

∫
ω

JtK · ν ds = ∫
∂S−ω

t · ν ds,

for all vectors w in E3, and tangential vectors field t, will provide more explicit
expressions for (6.1), i.e.,

(6.2)

∫
v

(
Dmψv

Dt
+ ψv∇ · ξ̇ −∇ ·Φv − pv

)
dv

+

∫
σ

[
δmψσ

δt
+ ψσ

(
∇σ · u̇− 2u

n
KM

)
−∇σ ·Φσ − pσ

]
da

+

∫
σ

q
ψv

(
ξ̇ − ẋ

)
−ΦvbigK · n da = 0.

The localization of (6.2) now gives the local balance laws

(6.3)
Dmψv

Dt
+ ψv∇ · ξ̇ −∇ ·Φv − pv = p̂v, in v − σ

δmψσ

δt
+ ψσ

(
∇σ · u̇− 2u

n
KM

)
−∇σ ·Φσ − pσ

+
q
ψv

(
ξ̇ − ẋ

)
−Φv

y
· n = p̂σ, on σ(6.4)

where

(6.5)

∫
v−σ

p̂v dv +

∫
σ

p̂σ da = 0.
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The quantities p̂v and p̂σ are called nonlocal volume and surface effects (or residu-
als), respectively (see Eringen [31]).

Taking into account the influence of the quantities p̂v and p̂σ when describing the
behaviour of continuum takes us out from the local into nonlocal continuum theory.
In the local continuum theory, absence of such quantities is a priori assumed; then
p̂v = 0 and p̂σ = 0. Restriction (6.5) to nonlocal residuals is generally valid. In
most cases it is assumed

(6.6)

∫
v−σ

p̂v dv = 0,

∫
σ

p̂σ da = 0.

This assumption is physically justified in case when surface and volume residuals
p̂v and p̂σ are independent or when their interaction is poor.

The relations (6.3) and (6.4) constitute the generic, volumetric and surface bal-
ance equations for continuous three-dimensional media at each point of the contin-
uum with a surface of discontinuity.

It is important to notice that adequate quantities in general balance law are
defined over volume, surface and length units, respectively. Since volume, surface
and line are geometrical concepts, it is more appropriate, from the physical point
of view, to define physical quantities over mass unit whenever it is possible. Having
in mind that dm = ϱ dV and dmσ = γ da, where ϱ and γ are mass density of
three-dimensional and two-dimensional body, respectively, we write

ψv → ϱψv, pv → ϱpv, p̂v → ϱp̂v,

ψσ → γψσ, pσ → γpσ.

We call the reader’s attention to the fact that so defined new quantities ψv and ψσ

do not change their physical dimensions. Now local balance laws (6.3) and (6.4)
become

Dmϱψv

Dt
+ ϱψv∇ · ξ̇ −∇ ·Φv − ϱpv = p̂v,(6.7)

δmγψσ

δt
+ γψσ

(
∇σ · u̇− 2u

n
KM

)
−∇σ ·Φσ(6.8)

− γpσ +
q
ϱψv

(
ξ̇ − ẋ

)
−Φv

y
· n = p̂σ.

Particularly, for ψv = 1, Φv = 0, ϱpv = 0, ϱp̂v = ϱ̂, from (6.7), we obtain

(a) Balance of mass

(6.9)
Dmϱ

Dt
+ ϱ∇ · ξ̇ = ϱ̂ or equivalently

∂ϱ

∂t
+∇ · (ϱξ̇) = ϱ̂.

By substituting (6.9) into (6.7) we get, for bulk material, 6

(b) Local balance law of ψv

(6.10) ϱ
Dmψv

Dt
−∇ ·Φv − ϱpv = ϱp̂v − ϱ̂ψv.

6The material occupying the region v − σ is called bulk material.
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Here we confine our investigation mainly to the physical phenomena of nonpolar7

nonlinear continuous bodies which are exposed to the thermodynamical (mechan-
ical) effects. Other effects, like chemical, electrical, electromagnetic, ... can be
treated in the same way.

Now, the basic fields of thermodynamics in the bulk materials on the interface,
other then mass density, are: motion and temperature. Then the field equations are
based upon the equations of balance (6.10), with Ψ chosen as: momentum, moment
of momentum, energy and entropy. The other quantities are identified in accordance
with their physical meaning in continuum mechanics. They are concisely given in
the table below (see Moeckel [30], Eringen [31], Müler [24]).

ψ ψv Φv pv p̂v

momentum ξ̇ T f f̂

moment of momentum p× ξ̇ p×T p× f p× f̂

energy
1

2
ξ̇ · ξ̇ + ε TT ξ̇ + q f · ξ̇ + h f̂ · ξ̇ + ĥ

entropy η s h/θ ĥ/θ

Physical meaning of the quantities given in the table are:
T = T klgl ⊗ gk – stress tensor8,
ε – internal energy,
q = qkgk – heat flux,
η – entropy density,
s = skgk – entropy flux,
f = fkgk – body force per unit mass,
h – supply of energy per unit mass,
θ – absolute temperature;
h/θ – entropy production.

Further, all quantities with “ˆ” are nonlocal residuals of corresponding quan-
tities. For definiteness they are called nonlocal volume and surface effects (or
residuals).

By “ ·· ” we denote the summation convention over two pair of successive indices.
Thus, ϵ · ·T = εijkT

jkgi, where ϵ is the Ricci alternation tensor. We also have
p×T = εijkξ

iT ljgk ⊗ gl.
9

7When material bodies are referred to as nonpolar, it means that all torques acting on the
material are the results of forces.

8This way of representing tensorsT = Tklgl⊗gk differs from the representationT = Tklgk⊗gl

only when T is not symmetric. In continuum mechanics this difference comes from the representa-
tion of stress vector t(n) = tknk, where n = nkgk, tk-stress vectors acting on coordinate surface.

Then, if we write tk = tklgl we arrive to the representation T = Tklgl ⊗ gk (see for instance

Eringen [31], Chadwick [32],...). But, if we write tk = tlkgl we arrive to the representation
T = Tklgk ⊗ gl (see for instance Truesdell and Toupin [20], Gurtin [33], Holzapfel [34],...).

9The cross product of a vector and a tensor is a tensor. It is a consequence of the product
gi× (gj ⊗gk) = (gi×gj)⊗gk = εijlg

l⊗gk. But, (gi⊗ (gj)×gk) = gi⊗ (gj ×gk) = εjklgi⊗gl.

Then a × A = εijka
iAjlgk ⊗ gl, A × a = εijkA

liajgl ⊗ gk, where a and A are any vector and
second order tensor (see Fredrickson [35]). Then p×An = (p×A)n. Also nA×a = −a×(nA) =
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With the notation introduced in the table, the equations of balance of microin-
ertia, momentum, moment of momentum, energy and entropy read:
(c) Momentum

(6.11) ∇ ·T+ ϱ
(
f − ξ̇

)
= ϱ̂ξ̇ − ϱf̂ ,

(d) Moment of momentum

(6.12) ϵ · ·T = ϱp× f̂ ,

(e) Energy (I law of thermodynamics)

(6.13) −ϱε̇+ trT
(
∇ξ̇

)T
+∇ · q+ ϱh = ϱ̂

(
ε− 1

2 ξ̇ · ξ̇
)
+ ϱf̂ · ξ̇ − ϱĥ,

(f) Entropy inequality (II law of thermodynamics)

(6.14) ϱη̇ −∇ · s− ϱ
h

θ
> ϱ

ĥ

θ
− ϱ̂η.

In classical, unlike rational, thermodynamics entropy flux is postulated in the
form s = q/θ. Then from (6.13) and (6.14) follows that

−ϱ(ε̇− θη̇) + trT
(
∇ξ̇

)T
+ q · ∇(ln θ) > ϱ̂

(
ε− θη − 1

2 ξ̇ · ξ̇
)
+ ϱf̂ · ξ̇.

In solving specific problems it is necessary to express balance laws in the com-
ponental form. It is useful to write them in general coordinate system. But, the
choice of particular coordinate system dependents on the problem which has to
be solved. In general, from mathematical point of view, we have to deal with the
system of partial differential equations.

Thus, the balance laws (6.9), (6.11)–(6.14), read: (g) Balance of mass

ϱ̇+ ϱξ̇k,k = ϱ̂,

(h) Balance of momentum

T kl
,k + ϱ

(
f l − ξ̈l

)
= ϱ̂ξ̇l − ϱf̂ l,

(i) Balance of moment of momentum

εlmnTmn = ϱεlmnpmf̂n,

(j) Balance of energy (I law of thermodynamics)

−ϱε̇+ T klξ̇l,k + qk,k + ϱh = ϱ̂
(
ε− 1

2 ξ̇
k ξ̇k

)
+ ϱf̂k ξ̇k − ϱĥ,

(k) Entropy inequality (II law of thermodynamics)

−ϱ(ε̇− θη̇) + T klξ̇l,k + qk(ln θ),k > ϱ̂
(
ε− θη − 1

2 ξ̇
k ξ̇k

)
+ ϱf̂k ξ̇k.

It is important to note that (6.6)1 holds for the set
(
ϱ̂, ϱf̂ l, ϱĥ

)
of the residuals

over their domains of definitions, i.e.,∫
v−σ

(
ϱ̂, ϱf̂ l, ϱĥ

)
dv = 0.

−a×ATn = −(a×AT )n. These relations are useful for the calculation of the surface integrals
(see Brand [36]).
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In many cases it is more convenient to use the material representation of these
balance laws:

TKl
,K + ϱ0

(
f l − ξ̈l

)
= ϱ̂0ξ̇

l − ϱ0f̂
l,

−ϱ0ε̇+ TK
k ξ̇

k
;K +QK

,K = ϱ̂0
(
ε− 1

2 ξ̇
k ξ̇k

)
+ ϱ0f̂

k ξ̇k − ϱ0
(
ĥ+ h

)
,

and entropy inequality

−ϱo(ε̇− θη̇) + TK
k ξ̇

k
;K +QK(ln θ),K > ϱ̂o

(
ε− θη − 1

2 ξ̇
k ξ̇k

)
+ ϱof̂

k ξ̇k

where10

ϱo = ϱJ, J = det
(
ξk;K

)
, ϱ̂o = ϱ̂J, TKl ≡ JXK

;kt
kl, QK ≡ JXK

;kq
k,

6.3. Nonmaterial Interface. Boundary Conditions. In the case when disconti-
nuity surface is not material (for example the surface propagate as a wave), γ = 0 by
definition. Then, all the quantities which are related to the surface are equal zero,
except surface nonlocal effect p̂σ (see (b)): ψσ, Φσ and pσ. Then (6.8) becomes

(6.15)
q
ϱψv(ξ̇ − ẋ)−Φv

y
· n = p̂σ.

Formally, (6.15) states general boundary condition corresponding to the equation
by which balance law of the quantity ψv is expressed. Specially, (6.15) defines the
boundary condition for ϱ q

ϱ(ξ̇ − ẋ)
y
· n = γ̂,

since then ψv = 1, Φv = 0 and p̂σ = γ̂.
The other explicit form of boundary conditions for the specific physical quantity

ψv is obtained by using data from table 1:q
ϱξ̇ ⊗ (ξ̇ − ẋ)−T

y
n = f̂σ, 0 = ℓ̂σ − p× f̂σ,q

ϱ
(
ε+ 1

2 ξ̇ · ξ̇
)(
ξ̇ − ẋ

)
− ξ̇T− q

y
n = ε̂σ,

q
ϱη(ξ̇ − ẋ)− s

y
· n = n̂σ,

which present boundary conditions for balance of momentum (6.11), balance of
moment of momentum (6.12), balance of energy (6.13) and balance of entropy
(6.14).

6.3.1. Material Interface. The singular surface will be also used as a mathe-
matical model for a thin wall or a membrane which separates one part of the body
under consideration from another part.

Then the interfacial balance law (6.8) can be used in the way which is completely
analogous to the procedure of using balance law (6.7) of three-dimensional body
(bulk material). Thus for ψσ = 1, Φσ = 0, pσ = 0, p̂σ = γ̂, as well as ψv = 1 and
Φv = 0 we obtain
(a) Balance of mass of interface

(6.16)
δmγ

δt
+ γ

(
∇σ · u̇− 2u

n
KM

)
+

q
ϱ
(
ξ̇ − ẋ

)y
· n = γ̂.

From (6.8) and (6.16) we get, in the case of general parametrization of interface

10Note that ϱ0 is reduced to referent density only in the case when ϱ̂ = 0.



82 JARIĆ AND KUZMANOVIĆ

(b) Local balance law of the quantity ψσ

(6.17) γ
δmψσ

δt
−∇σ ·Φσ − γpσ +

q
ϱ(ψv − ψσ)(ξ̇ − ẋ)−Φv

y
n = p̂σ − γ̂ψσ,

where
δmψσ

δt
=
∂ψσ

∂t
+£

u̇
ψσ.

It is more usual in the literature to use orthogonal parametrization, since then
(6.17) can be written in more simplified form.

From mathematical point of view, problems of two-dimensional bodies are more
complex because of the geometry of the bodies. In general case, here we are dealing
with the Riemann geometry of surface, which is much more complicated than Eu-
clidean geometry. Having this in mind, mathematical models of two-dimensional
bodies are primarily simplified by disregarding the effects which can be physically
justified, as some nonlocal influences, such as surface mass residual, microinertion
influence etc. Then for the general balance law (6.17) we write

(6.18) γ
δmψσ

δt
−∇σ ·Φσ − γpσ +

q
ϱ(ψv − ψσ)(ξ̇ − ẋ)−Φv

y
n = 0.

For such mathematical models we write balance laws by using general balance law
(6.18) and Table 2.

Table 2.

ψ ψσ Φσ pσ

momentum ẋ S fσ
moment of momentum x× ẋ x× S x× fσ

energy
1

2
ẋ · ẋ+ εσ Sẋ+ qσ fσ · ẋ+ hσ

entropy ησ sσ hσ/θ

Here,
S = Siαgi ⊗ aα – surface stress,
fσ – external body force per unit mass of material surface,
εσ – specific internal surface energy,
qσ = qασaα – surface heat flux vector,
ησ – surface entropy density,
sσ = sαaα – surface entropy flux vector,
hσ/θ – surface entropy production.

It is also x× S = εijkx
jSkαgi ⊗ aα.

Next, by substituting corresponding quantities from Table 2 into (6.18) we get
the following balance laws for material interface:

(c) Balance of momentum of material interface

(6.19) γẍ−∇σ · S− γfσ +
q
ϱ(ξ̇ − ẋ)⊗ (ξ̇ − ẋ)−T

y
n = −γ̂ẋ,

(d) Balance of moment of momentum of material interface

(6.20) εijkx
i
,αS

jαgk = −γ̂x× ẋ+
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(e) Balance of energy of material interface

(6.21) γε̇σ − trST (∇σẋ)−∇σqσ − γhσ

+
q
ϱ
[
1
2 (ξ̇ − ẋ)2 + (εv − εσ)

]
(ξ̇ − ẋ)−TT (ξ̇ − ẋ)− q

y
· n

= −γ̂
(
εσ − 1

2 ẋẋ
)
,

(f) Balance of entropy of material interface

(6.22) γη̇σ −∇σ · sσ − γ
hσ
θ

+
q
ϱ(η − ησ)

(
ξ̇ − ẋ

)
− s

y
· n = −γ̂ησ.

Remark. In the special case when the mathematical model is nonpolar contin-
uum, where influence of nonlocality is disregarded, that is, when γ̂ = 0, balance laws
of material interface (6.16), (6.19), (6.20), (6.21) and (6.22) become (see Moekel
[30])

∂γ

∂t
+∇σ(γu̇)− 2γu

n
KM +

q
ϱ
(
ξ̇ − ẋ

)y
n = 0,

γẍ−∇σS− γfσ +
q
ϱ
(
ξ̇ − ẋ

)
⊗
(
ξ̇ − ẋ

)
−T

y
n = 0,

εijkx
i
,αS

jαgk = 0,(6.23)

γε̇σ − trST (∇σẋ)−∇σ · qσ − γhσ

+
q
ϱ
[
1
2

(
ξ̇ − ẋ

)2
+ (εv − εσ)

](
ξ̇ − ẋ

)
−TT

(
ξ̇ − ẋ

)
− q

y
n = 0,

γη̇σ −∇σSσ − γ
hσ
θ

+
q
ϱ(η − ησ)

(
ξ̇ − ẋ

)
− s

y
n = 0.

Relation (6.23) is significantly simplified by decomposing the stress tensor on

normal and tangential components Sjα = Sαnj + Sβαxj,β . Then (6.23) is reduced

to Sα = 0, εαβS
αβ = 0. Thus, surface stress S = Sαβaα ⊗ aβ is a symmetrical

tensor.
These balance laws are valid for the most general class of material surfaces which

allow mass transport of the bulk material through it, i.e., when

(6.24)
(
ξ̇ − ẋ

)
· n ̸= 0.

Such material surfaces are said to be permeable.
In some cases material surfaces allow transport of just one kind of a bulk material.

For that material, which we are going to denote by α, (6.24) is valid in the form(
ξ̇α − ẋ

)
· n ̸= 0. Then the condition of impermeability for the bulk material β

reads
(
ξ̇β − ẋ

)
· n = 0. Such material surfaces are said to be semi-permeable.

6.3.2. Impermeable Material Surface. It is the most restricted class of mate-
rial surfaces. In that case the particles of the bulk material do not pass through
surface. Mathematically, it is equivalent to the condition (ξ̇ − ẋ) · n = 0. Then
balance laws of the impermeable material surface reads

∂γ

∂t
+∇σ · (γu̇)− 2u

n
γKM = 0,

γẍ−∇σ · S− γfσ − JTKn = 0,
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γε̇σ − trST (∇σẋ)−∇σ · qσ − γhσ − JTT (ξ̇ − ẋ) + qK · n = 0,

γη̇σ −∇σ · sσ − γ
hσ
θ

+ JsK · n = 0.

6.4. Balance Laws for a Mixture. In single-components systems (or pure sub-
stances), which has been considered, up to now, the chemical composition in all
phases is the same. But, in many areas within the field of continuum physics it
is necessary to use the fact that the material being described may be composed of
several different constituents.

Such multicomponents systems are called mixtures. In these systems the chem-
ical composition of a given phase changes in response to pressure and temperature
and these compositions are not the same in all phases.

The constituents of mixture, generally, may react with each other to produce
new constituents. Such a general material will be called a heterogeneous reacting
continuum or simply a reacting continuum. If the constituents composing the ma-
terial do not react, then it will be called a heterogeneous continuum. An example
of a reacting continuum is a dissociating and ionizing gas. Liquid helium II, an
electrically conducting plasma and a suspension of solid particles in a fluid are
examples of heterogeneous continua.

Most of the literature on reacting continua, and on heterogeneous continua deals
with chemically reacting fluids. This literature has been unified and generalized by
Truesdell and Toupin [20], who presented the differential balance equations for a
mixture of chemically reacting continua. He does not restrict the continuum to be
a solid, liquid or gas.

Thus, the theory of mixture is more complicated than the theory of a single body
but not different in kind.

The approach presented here is an extension of the program started by Truesdell
[37] to the problem of nonlocal heterogeneous continuum.

Modeling of the behaviour of multicomponents systems can be done using several
methods and looking at the problem at different spatial scales. Eringen and his co-
workers have developed the micromorphic theory of mixture of several constituents
in anticipation of the possible application, for example, to crystal lattices in which
the lattice sites are regularly occupied by two or more different ions or molecules, to
granular or polycrystalline mixture, to composite materials, or to fluid suspensions
(Twiss and Eringen [38], [39]).

For derivation of complete theory we refer the reader to the above papers and
literature cited in them. Because of that here we give the basic concepts and
expressions which are going to be used in what follows.

In order to treat motion of physical mixtures possibly undergoing chemical
changes, Fick [40] and Stefan [41] suggested that each place x may be regarded
as occupied simultaneously by several different particles Xα, α = 1, 2, . . . , k, one
for each constiuent α. The mixture is thus represented as a superposition of α
continuous media, each of which follows its own individual motion

(6.25) x = xα(Xα, t),
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Henceforth media whose motion is described by (6.25) will be called heterogeneous
if α > 1; if α = 1, they will be called simple. In considering kinematics of heteroge-
nous systems we follow Truesdel and Toupin [20].

Then the constituent (individual) velocity vα is defined by

vα ≡ ∂x

∂t

∣∣∣
Xα=const

, or vka ≡ ∂xk

∂t

∣∣∣
Xα=const

Further, since each constituent has its individual density ϱα, we define the total
density ϱ by

(6.26) ϱ =
k∑

α=1

ϱα.

The concentration cα of the constituent α is defined by cα = ϱα/ϱ, so that (6.26)

is equivalent to
∑k

α=1 cα = 1.
The mean velocity v of the mixture is defined by the requirement that the total

mass flow is the sum of the individual mass flows:

(6.27) ϱv =
k∑

α=1

ϱαvα, or v =
k∑

α=1

cαvα.

The diffusion velocity, or peculiar velocity of the constituent α is its velocity
relative to the mean velocity: uα = va − v.

From (6.27) it follows
∑k

α=1 ϱαuα = 0, and
∑k

α=1 cαuα = 0. That is to say,
the mean velocity has been defined in such a way that the total mass flow of the
diffusive motions is zero.

We now introduce two different material derivatives ψ̇ and ψ́; the former, which
coincides with that used for simple media, follows the mean motion, while the latter
follows the individual motion of the constituent α:

(6.28) ψ̇ =
∂ψ

∂t
+ v · gradψ, ψ́ =

∂ψ

∂t
+ vα · gradψ.

Hence ψ́− ψ̇ = uα · gradψ, so that the two derivatives coincide, in the case when ψ
is a non-constant scalar, if and only if (iff) the diffusion velocity of the constituent
α is tangent to the surface ψ = const.

Further, we set

(6.29) ϱψ ≡
∑
α

ϱαψα ,

and then, making use of (6.28), we obtain the following fundamental identity∑
α

ϱα ψ́α = ϱψ̇ + ψ

[
∂ϱ

∂t
+ div (ϱv)

]
(6.30)

+
∑
α

div (ϱαψαuα)−
∑
α

ψα

[
∂ϱα

∂t
+ div (ϱαvα)

]
,
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or ∑
α

ϱα ψ́α = ϱψ̇ + ψ

[
∂ϱ

∂t
+

(
ϱvk

)
,k

]
+
∑
α

(
ϱαψαu

k
α

)
,k
−
∑
α

ψα

[
∂ϱα

∂t
+
(
ϱαv

k
α

)
,k

]
.

Upon this identity, which relates the material derivative of the mean value (6.29)
to the mean value of the material derivatives, all our proofs of equations of balance
in a heterogeneous medium are founded.

Then, the general balance laws can be written in the form:(∫
v

ψα dv

)′

=

∫
∂v

ϕ
α
n da+

∫
v

pα dv.

Since this holds for all v, however small, a classical argument yields the differential
form of the general balance:

ψ́α + ψα divvα − divϕ
α
− pα = p̂α ,(6.31) Jψα(vα − u)− ϕ

α
Kn = ˆ̃pα ,(6.32)

where ∫
v−σ

p̂α dv +

∫
σ

ˆ̃pα da = 0.

Remark. It is very important to underline that p̂
α
and ˆ̃p

α
contain both influ-

ences: nonlocality and chemical reactions of the constituents. Very general theory
of mixture for micromorphic material with chemical reactions can be found in
Cvetković [42]. Here we follow this approach, which is based on Eringen’s paper
[43]. Also we make use of their notations. Note that these papers contain only parts

of p̂
α
and ˆ̃p

α
i.e., the influence of a chemical reactions. In other words, they did not

take into account the effects of nonlocality. Here we underline that the influence of
nonlocality will be taken into account through the constitutive equations.

By using arguments quite similar to those presented in Section 16, we derive
constituent balance equations for mixture. We start with

i) the balance of mass; In this case ψα = ϱα, ϕα
= 0, pα = 0,and p̂α = ϱβ̂α . Then

from (6.31) and (6.32) we obtain

ϱ́α + ϱα divvα = ϱβ̂α , or
∂ϱα

∂t
+ div(ϱαvα) = ϱβ̂α ,(6.33) Jϱα(vα − u)Kn = 0.(6.34)

In order to simplify further calculation, particularly having in mind (6.30), we
need the expression ∂ϱ/∂t+div(ϱv). This can be achieved by summing (6.33) and
(6.34) over all constituents. In this way we obtain the local balance equation of
mass of mixture

(6.35)
∂ϱ

∂t
+ div(ϱv) = 0,

∑
α

β̂α = 0,
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as a consequence of the assumption that the mass of mixture does not change.
Making use of (6.33) and (6.35) in (6.30) we reduced the fundamental identity

to the form ∑
α

ϱα ψ́α = ϱψ̇ +
∑
α

div(ϱαψαuα)−
∑
α

ϱβ̂αψα .

Also, we write

(6.36) ψα → ϱαψα, pα → ϱαpα, p̂α → ϱp̂α

Then, in view of (6.31), (6.32), (6.33) and (6.36) we obtain

divϕα + ϱα(pα − ψ′
α) = ϱ

(
β̂αψα − p̂α

)
,Jϱαψα(vα − u)− ϕ

α
Kn = ˆ̃pα .

These relations are fundamental in obtaining the local form of constituent balance
equations for mixture. In order to derive them, we can use tables 1a and 1b for a
constituent of mixture. In this way, we obtain

ii) the constituent local balance equations for momentum:

tk
α,k + ϱα(fα − v́α) = ϱβ̂αvα ,(6.37) q
tk
α
− ϱαvα

(
vk
α
− uk

)y
nk = 0.(6.38)

Further, we need

iii) the constituent local balance equations for moment of momentum:

tkl
α,k + tl

α
− t̃l

α
+ ϱαf

l
α
= ϱβ̂l

α
vα ,(6.39) q

tkl
α

y
nk = 0.(6.40)

We do not need the constituent local balance laws of energy and entropy. Again,
we refer the reader to the original literature if needed (see for instance Cvetković
[42]).

The mixture local balance of momentum and moment of momentum and the
jump conditions are obtained by summing (6.37) through (6.40) over all con-
stituents. The results are:

(a) the balance of momentum

tk,k + ϱ(f − v̇) = 0,q
tk − ϱv

(
vk − uk

)y
nk = 0,

where ϱf =
∑

α ϱαfα , t
k =

∑
α

(
tk
α
− ϱαuαu

k
α

)
;

(b) the balance of moment of momentum

tkm,k + tm − t̄m + ϱfm = ϱv
∑
α

β̂m
α

under the conditions
∑

α β̂
m
α

= 0. Also, by definition,

tkm =
∑
α

tkm
α
, tm − t̄m =

∑
α

(
tm
α
− t̄m

α

)
, ϱfm =

∑
α

fm
α
, JtklKnk = 0.
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7. Conclusion

Motion, stress, energy, entropy, and electromagnetism are the concepts upon
which field theories are constructed. Laws of conservation or balance are laid down
as relating these quantities in all cases. These basic principles, which are in integral
form, in regions where the variables change sufficiently smoothly are equivalent to
differential field equations; at surfaces of discontinuity, to jump conditions.

The field equations and jump conditions form an undetermined system, insuffi-
cient to yield specific answers unless further equations are supplied.

The balance laws of continuum physics make no reference to the constitution of
the body. Material bodies of the same mass and geometry respond to the same
external effects in different ways. Internal constitution of matter is responsible for
these differences. From a continuum point of view we may develop equations which
reflect the nature of the material and the constitution of the body. Such a set of
the equations are known as constitutive equations. Thus, the characterization of
particular materials is brought within the framework of continuum physics through
the formulation of constitutive equations (or equation of state).

From theoretical point of view, constitutive equations define an ideal material.
Mathematically the purpose of these relations is to support connections between

kinematic, mechanical and thermal fields which are compatible with the field equa-
tions and which, in conjunction with them, yield a theory capable of providing
solutions correctly set problems.

Each field of continuum mechanics deals with certain continuous media including
fluids, which are liquids or gases (such as water, oil, air etc.) and solids (such as
rubber, metal, ceramics, wood, living tissue etc.). If the constitutive equations are
valid for physical objects such as fluids we call the field of continuum mechanics
fluid mechanics. Another important field in which constitutive equations are valid
for solids is known as solid mechanics.

Physically, constitutive equations represent various forms of idealized material
response which serve as model of the behaviour of actual substances. The predic-
tive value of models, as assessed experimentally over particular ranges of physical
conditions, affords justification for the special continuum the mentioned above.

Since the constitutive theory is very broad and specific subject, and because of
the limited space here we refer the reader to the following excellent reference books:
Truesdell and Noll [44], Eringen [31], Gurtin [33], Chadwik [32] and Holzapfel [34].

In this way the theoretical approach is completed. Then, the particulary prob-
lems of bulk material and interfaces can be considered and solved.

Thus, the constitutive equations and field equations together, along with the
jump conditions and boundary condition, should lead to a definite theory, predicting
specific answers to particular problems.
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