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Abstract. The basic notion for a motion of a heavy rigid body fixed
at a point in three-dimensional space as well as its higher-dimensional
generalizations are presented. On a basis of the Lax representation,
the algebro-geometric integration procedure for one of the classical
cases of motion of three-dimensional rigid body — the Hess—Appel'rot
system is given. The classical integration in Hess coordinates is pre-
sented also. For higher-dimensional generalizations, the special at-
tention is paid in dimension four. The I-A pairs and the classical in-
tegration procedures for completely integrable four-dimensional rigid
body so called the Lagrange bitop as well as for four-dimensional
generalization of Hess—Appel’rot system are given. An n-dimensional
generalization of the Hess—Appel’rot system is also presented and its
Lax representation is given. Starting from another Lax representa-
tion for the Hess—Appel'rot system, a family of dynamical systems
on e(3) is constructed. For five cases from the family, the classi-
cal and algebro-geometric integration procedures are presented. The
four-dimensional generalizations for the Kirchhoff and the Chaplygin
cases of motion of rigid body in ideal fluid are defined. The results
presented in the paper are part of results obtained in the last decade.
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The rigid body motion is one of the most studied and most interesting systems
of classical mechanics. Nevertheless, there are still some important open questions
and problems concerning it. In this paper we will focus on the problem of integra-
bility of motion of heavy rigid body fixed at a point. We are going to present the
classical integration of some known integrable cases as well as the algebro-geometric
integrations procedure based on existence of the Lax representation.
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One of the main questions in a study of the system of differential equations of
motion of some mechanical system is integrability or solvability. The notion of
integrability is very close to the existence of the first integrals, i.e., functions that
are constants on solutions of the system. Until the beginning of XX century, the
theory of integrable system had been intensively developed with great influence of
leading mathematicians and mechanicians of that time (Euler, Hamilton, Jacobi,
Lagrange, Poincaré, Liouville, Noether, Kowalevski an many others). For proving
integrability they usually used some of the basic methods of that time: method of
separation of variables and Noether’s theorem for finding integrals from symmetries.
It became clear that algebraic geometry and theory of theta functions, that was
intensively developed in that time, have an important role in integration of the
dynamical systems. For example, the solutions of the Euler and Lagrange cases of
motion of a rigid body fixed at a point are meromorphic functions on an elliptic
curve. Starting from that fact, Sofia Kowalevski formulated the problem of finding
all cases of rigid body motion fixed at a point whose solutions are unique functions
of complex time that admit only moving poles as singularities. She proved that this
is possible only in one more case, today called the Kowalevski case. She found the
additional first integral and she completely solved the system in theta functions.
The importance of the Kowalevski paper is reflected in the fact that thousands of
papers are devoted to it. For recent progress, geometric interpretation and certain
generalizations of the Kowalevski top see [15, 24].

In the 60’s of XX century the big progress was made in the theory of inte-
grable systems. It was proved that some nonlinear partial differential equations
(Korteveg—de Vries (KdV), Kadomtsev—Petviashvili (KP) and others) are infinitely-
dimensional Hamiltonian systems. Also, a new method appeared: algebro-geo-
metric integration procedure. It is based on the existence of a Lax representation
(or L-A pair). A system admits L-A pair with spectral parameter if there exist
matrices L(A), A(A) such that equations of the system can be written in the form

(1.1) 9 L) = (L), A0,

where A is a complex number. An important case, when L(A) and A(X) are matrix
polynomials in A, was studied by Dubrovin in [25] (see also [26, 27]). The first
consequence of (1.1) is that the spectrum of matrix L()\) is a constant function in
time, i.e., coefficients in spectral polynomial are first integrals. If, from L-A pair,
one gets enough integrals for integrability, then the system can be integrated using
algebro-geometric integration procedure, which is developed by the Novikov school.
In that procedure, the Baker—Akhiezer function plays the key role. This function is
common eigenfunction of operators % +A(X) and L()), defined on the spectral curve
T" naturally associated to L-A pair. The Baker—Akhiezer function is meromorphic
on I' except in several isolated points where it has essential singularities. For a
detailed explanation see [25, 26, 27, 14, 8, 31]. Let us mention also that the Lax
representation is useful for constructing higher-dimensional generalizations of the
system. In [1] Adler and van Moerbeke have presented an additional approach
for integrability. Both methods have been successfully applied to the rigid body
motion (see [42, 11, 45, 44]).
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The theories of rigid body motion and of integrable dynamical systems have
been intensively studied by Serbian scientists (see for example books and mono-
graphs [10, 17, 16, 4]). At the Seminar Mathematical Methods of Mechanics in the
Mathematical Institute SANU, supervised by Vladimir Dragovié, a group of young
researchers including myself, Milena Radnovi¢ and Bozidar Jovanovié¢, the theory
of integrable dynamical systems has been studied for almost 20 years. Here we will
review some of the joint results obtained with Vladimir Dragovié¢ in the last decade
(see [18, 19, 20, 21, 22]).

This paper is organized as follows. In Section 2 the notions of Poisson structure
and integrability in Liouville sense are given. Also the basic steps in algebro-
geometric integration procedure are performed. The basic facts about three-dimens-
ional motion of a rigid body are presented in Section 3. The classical as well as the
algebro-geometric integration procedures for the Hess—Appel’rot case of motion of
three-dimensional rigid body are given also. The basic facts on higher-dimensional
rigid body motion as well as the definition of the Lagrange bitop and n-dimensional
Hess—Appel’rot systems are presented in Section 4. In Section 5 we present a
construction of a class of systems on the Lie algebra e(3). For the five cases when
an invariant measure is preserved, the classical and algebro-geometric integration
procedures are given. The four-dimensional generalizations of the Kirchhoff and
Chaplygin cases of the motion of the rigid body in ideal fluid are given in Section 6.

2. Poisson structure on manifolds. Integrability.
Algebro-geometric integration procedure

Let M be a smooth manifold, and C°°(M) algebra of smooth functions on M.

Definition 2.1. A Poisson bracket on M is a map {, } : C®°(M) x C>*(M) —
C*(M) that for f,g,h € C(M) satisfies:

(1) bilinearity: {\f + ug, h} =M f,h} +u{g,h}, A peR

(2) skew-symmetry: {f,g} = —{g, f}

(3) Leibnitz rule: {fg,h} = f{g,h}+ g{f, h}

(4) Ja@oblldenUty {F{g,h}} +{g:.An. f}} +{h.{f.g}} =0
f

If («! ..,x™) are coordinates on M, using the Leibnitz rule one has
of 9g , ; i i 0F 09
9} = Z(’“)xla 7{ b= Z Oz i’

where P¥ = {x%,27}. Poisson bracket is also called Poisson structure on manifold,
and a manifold endowed with Poisson structure is a Poisson manifold.

Poisson bracket can be degenerate. Then matrix P = (P%¥) is singular. If P
is nonsingular, then, because of skew-symmetry, the dimension of M is even and
inverse matrix P~! gives symplectic structure on M. Functions whose Poisson
bracket with any other function is equal to zero are called the Casimir functions.

For a smooth function H on manifold M, the system of equations

i i OH
T = {H,Ii}:ZPJ%
J
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is called Hamiltonian system with the Hamiltonian function H. The vector field
X =3 j PU% is called the Hamiltonian vector field associated with H.
A function f is a first integral of a system of differential equations

i =XNz), i=1,...,n

if it is constant along every solution of the system, or in other words, if )", aag-ﬁfi X =
X(f) = 0. Geometrically, it means that each solution lies on a hypersurface f =
const. For the integrability in quadratures one needs n — 1 first integrals. However,
by the Jacobi theorem, if a system preserves the standard measure, i.e., if the
divergence of the vector field X is zero, then for the integrability in quadratures
one needs only n — 2 first integrals (see [7, 33]).

For Hamiltonian systems there is an additional structure, the Poisson structure.
A function f is a first integral of a Hamiltonian system with the Hamiltonian
function H if it Poisson-commutes with the Hamiltonian, i.e., if {f, H} = 0. The
following theorem is fundamental concerning the integrability of the Hamiltonian
systems.

Theorem 2.1 (Liouville-Arnol’d). Let M?" be a symplectic manifold, and f; =
H, fa,..., fn functions that satisfy {fi, f;} = 0. Denote My = {z € M|fi(z) =
const, ..., fo(x) = const.}. If f1,..., fn are functionally independent on My then

(1) My is a smooth manifold invariant under the Hamiltonian flow with the
Hamiltonian H = f;.

(2) If My is compact and connected, then it is diffeomorphic to n-dimensional
torus T".

(3) There exist coordinates ¢ = (1,...,¢n) on T™ in which the Hamiltonian
flow is linearized: &; = wi(f1,..., fn)-

(4) The Hamiltonian system with Hamiltonian H can be solved in quadratures.

For proof see [6].
The Hamiltonian system that satisfies the Arnol’d-Liouville theorem will be
called completely integrable in the Liouville sense.

2.1. The basic steps of the algebro-geometric integration procedure. We will
give here a short description of algebro-geometric integration procedure. For details
see [25, 26, 27, 28, 14, §].

The existence of a Lax representation (1.1) for a system of differential equations
is equivalent to commutativity of operators:

d
[+ AN, 1Y) =o.
dt
Let ®(¢, A) is the fundamental solution matrix for the equation

(2.1) (% + At 2))0(tA) =0,

normalized by the condition ®(0,A) = 1. From the Lax representation one gets
that L(t, A\)®(¢, \) is also a solution of (2.1). Since every solution is determined by
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its initial conditions, we have L(t, \)®(¢, A) = ®(¢, A\)L(0, A). Consequently, the ma-
trices L(t,\) and L(0,\) have the same spectrum. In other words, the coefficients
of the characteristic equation

(2:2) p(A, p) = det(L(A) —p-1) =0

are the first integrals of the system.

The equation (2.2) defines algebraic curve T', called the spectral curve. Let L
and A are n X n matrices. Over A € C we have n points on I'" with coordinates
A1)y .-y (A ). To each of these points corresponds eigenvector h(t, (A, p)) of
matrix L(t, \):

L(tv )‘)h(ta (/\7 /Lk)) = ,ukh(ta (/\7 /Lk))'
Fix the normalization Y ., h;(¢, (A, ) = 1. Normalized vector h can be regarded
as meromorphic vector-function on I'. Introduce the function

P(t, (A p) = @(E, A)h(0, (A, 1))
In what follows we will see that this function has a key role in the integration

procedure.
On can easily check that (¢, (A, 1)) satisfies the following relations

L(t’ /\)1/}@’ (/\7 :uk)) = um/)(t, ()\a Hk))a
(% +AG, )\))w(t, (A px)) = 0.

The following theorem gives us the analytical properties of ¥(¢, (A, p)). Denote
with Py, ..., P, the points over A = oc.

Theorem 2.2. [27] The vector-function ¥(t, (A, 1)) has the following properties:

(1) It is meromophic on TN\{ Py, ..., P,}. Its divisor of poles has degree g+n—1,
and it does not depend on time, where g is the genus of the curve I'.

(2) In the neighborhood of Py the function (¢, (A, u)) has the form
1/}(ta (Av /L)) = O[(t, Z];l) GXp[qk(t, Zk)]a

where zk_l is a local coordinate in the neighborhood of Py, o is the holo-
morphic vector-function, and qy, are polynomials.

The functions that satisfy conditions from theorem 2.2 are called n-point Baker—
Akhiezer functions. The example of such function is the exponential function e'/*
on CP'. Tt is holomoprphic everywhere except in point z = 0, where it has an
essential singularity. The most general definition of the Baker—Akhiezer functions
is given by Krichever. For a history and details see [27].

Definition 2.2. (see [27]) Let Pi,..., P, are points on a Riemann surface T' of
genus g and z,; L are local coordinates in the neighborhoods of these points such
that 2, ' (P;) = 0. Let qi(2),...,qx(2) are polynomials and let D is divisor on T'.
The n-point Baker—Akhiezer function v is a function that satisfies the following
conditions: it is meromorphic on I' \ {Py,..., P,}, its divisor of zeros and poles
satisfies () + D > 0, and in the neighborhood of the each point Py the function
P(P) exp(—qr(z(P))) is analytic.
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Reconstruction of (¢, (A, i) is the basic idea of algebro-geometric integration
procedure. From the analytical properties given in Theorem 2.2, one can in terms
of theta functions explicitly construct (¢, (A, 1)), and using it solve the system.

Theorem 2.3. For a non-special divisor D of degree N the dimension of the linear
space of functions with properties from Definition 2.2 is equal N — g + 1. Particu-
larly, if the degree of D is g, then v is uniquely determined up to factor and it is

given by
) [PV AP) + 3, U — AD) - K)
v(P) _Cexp<,§/po qu) 9(A(P§—A(D) - K)

where Qg, are normalized Abelian differentials of the second order, which in the
neighborhood of Py has the form Qg = dqi(zx(P)) + holomorphic part, the vector

U') is a vector of b-periods of the differential Qg , and K s the vector of Riemann
constants.

As a corollary, in a generic situation, one has n functions 9',..., 9" that sat-
isfy the theorem 2.2. Let W(¢, A) be the matrix of which the columns are vectors
P(t, (A pk)), k=1,...,n (here uj are eigenvalues of L(\)). One has

ov
L(t,\) =Vt A\ = E\If‘l,
where i = diag(p1, ..., 4n). Consequently, in a general situation, from the Baker—

Akhiezer functions one can find the matrix L and A as functions of time, or in
other words one can integrate the system.

3. Motion of a heavy rigid body fixed at a point

A three-dimensional rigid body is a system of material points in R? such that
the distance between each two points is a constant function of time. We shall
consider motion of a rigid body with a fixed point O. The configuration manifold
is the Lie group SO(3). Two different Euclidian coordinate frames are associated
to the system: the first one Ozxyz is fixed in the space, and the second, moving,
OXY Z is fixed in the body. With the capital letters we will denote elements of the
moving reference frame, while the lowercase letters will denote elements of the fixed
reference frame. If some point of the body has the radius vector C} in the moving
coordinate system, then its radius vector in the fixed frame is ¢(t) = B(t)@, where
B(t) € SO(3) is an orthogonal matrix. The velocity of that point in the fixed
reference frame is given by

i(t) = 4(t) = B(t)Q = B(H)B~' (1)q(t) = w(t)q(t),
where w(t) = BB~'. Tt can be proved that w is an skew-symmetric matrix. Using
the isomorphism of (R3, x), where x is the usual vector product, and (so(3),[,]),
given by
0 —as ag
(3.1) a= (a1,az,a3) —a= | as 0 —a
—as aq 0
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matrix w(t) is corresponded to vector &(t) — angular velocity of the body in the
fixed reference frame. Then 9(t) = @(t) x ¢(¢t). One can easily see that &(t) is the
eigenvector of matrix w(t) that corresponds to the zero eigenvalue.

In the moving reference frame, V() = B(t)"15(t), so V(t) = Q(t) x @, where
ﬁ(t) is the angular velocity in the moving reference frame and corresponds to the
skew-symmetric matrix Q(t) = B~ (t)B(t).

At the fixed moment of time, the vector & defines the line I through the fixed
point. For points on I, vectors ¢(t) and &(¢) are collinear. Hence, velocities of
points on [ are equal to zero. The line [ is called instantaneous azis of rotation.

The existence of instantaneous axis of rotation can be regarded as a infinitesimal
version of Euler’s rotation theorem. The theorem states that any finite displacement
of a rigid body with fixed point is equivalent to the rotation about some axes
through the fixed point. Here we will present the original proof given by Euler in
1775 [29].

Theorem 3.1 (Euler [29]). If a sphere is turned about its center, it is always
possible to assign a diameter, whose direction in the displaced position is the same
as in the initial position.

Proof. Consider a great circle k; in initial state, which after the displacement goes
to a circle ko. Denote by A a point of the intersection of these two circles. Since
A belongs to ki, after rotation it goes to the point a € ky. On the other hand, the
point A is on kg, so there is point o € k; which after rotation goes to A. We will
show that there exists a point O; on the sphere, which equally refers to the circle
k1 as to the circle ko. If we suppose that O is constructed, then the arcs O A4
and O1a should be equal to each other. Also, the arcs O1 A and Oja are similarly
inclined towards the circles k1, k2. Consequently, the angles O1aA and O, A« are
equal also. But since the arcs Oya and O1 A are equal, the angles O1aA and O1 Aa
are also equal, whence O1Aa = O1Aa. It is clear that O lies on the arc bisecting
the angle aAa. So, O1 can be constructed as an intersecting point of the sphere
and the following two planes through the fixed point O (the center of the sphere).
The first plane is the symmetry plane of the angle aAa and the second one is the
symmetry plane of the arc Aa. The diameter that we are looking for is determined
by the point O; and the center of the sphere. O

Let us stress that it is natural to consider the angular velocity as an skew-
symmetric matrix. The element wio corresponds to the rotation in the plane de-
termined by the first two axes Ox and Oy, and similarly for the other elements.
In the three-dimensional case we have a natural correspondence given above, and
one can consider the angular velocity as a vector. But, in higher-dimensional cases,
generally speaking, such a correspondence does not exist. We will see later how in
dimension four, using isomorphism between so(4) and so(3) x so(3) two vectors in
the three-dimensional space are joined to an 4 x 4 skew-symmetric matrix. Since
we cannot imagine higher-dimensional world (or at least, it is not easy to imagine
it), it is much easier to consider for example, two dimensional world. If the two-
dimensional people consider rotation of a rigid body with fixed point, they conclude
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FIGURE 1

that angular velocity is a two-dimensional skew-symmetric matrix. If the element
w1z is positive, then rotation goes in the positive sense, otherwise it goes in the
negative one. There is no third dimension, so they cannot conclude that it can be
seen as a rotation about z-axis. In the two-dimensional world the z-axis does not
exist!

The moment of inertia with respect to the axis u, defined with the unit vector
i through a fixed point O is

I(u) = Zmidf = Zmi@ x Qiyil x G) = <Zmiéi x (1@ x Qi)aﬁ> = (I, @),

where d; is the distance between i-th point and axis u, and I is inertia operator
with respect to the point O defined with 4 = Zmléjl x (@ x QZ) In coordinates
(X,Y, Z) the diagonal elements I11, I22, I33 of I are moments of inertia of the body
with respect to the coordinate axes OX,OY,OZ respectively. For example I;; =
S mi(Y2 + Z?). Non-diagonal elements are called centrifugal moments of inertia.
For example I12 = — > m; X,Y; and similar for other I;;. One can easily see that
I is symmetric and positive definite operator and consequently, one can choose an
orthogonal basis in which the operator has the diagonal form I = diag(11, I2, I3).
Then I, I, I3 are called the principal moments of inertia, with respect to the
principal axes of inertia. If some of I, I, I3 coincide, for example if I; = I, then
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any axis in the coordinate plane XOY is principal. The ellipsoid (IQ,Q) = 1 is
called inertia ellipsoid of the body at a point O. In the principal coordinates its
equation is
L3 + LO3 + 1303 = 1.

Any symmetry of the body gives the symmetries for the inertia ellipsoid. For
example the regular hexagon with homogeneous mass distribution is invariant under
rotations by 7/3 around the normal line throw the center. Consequently, I; = I,
and any axis in the plane of the hexagon through its center is the principal axis.
The similar conclusion can be derived for the star (see Figure 2). So, we have here
two geometrically different objects with the same inertia momenta.

O X

FIGURE 2. The regular hexagon and the star have Iy = I

The kinetic energy of the body is given by
1 1 = = = =
T=3 > mVP = §Zmi<Q x Qi, 2 x Q)
1/~ - L. 1~ =
= {83 miGi x (@ x Gi)) = U9,
Similarly, for the angular momentum M with respect to the point O, we have
M = ZQZ X (le;) = Zmléz X (Q X Qz) = IQ
We consider a motion of a heavy rigid body fixed at a point. Let us denote by
X the radius vector of the center of masses of the body multiplied with mass m of
the body and gravitational acceleration g. By I' we denote the unit vertical vector.
The motion in the moving reference frame is described by the Euler—Poisson
equations [33, 12]
(3.2) M=MxQ+Txy, T=Txq.
Using that M=1 Q, one see that (3.2) as a system of six ordinary differential

equations in M and T with six parameters I = diag(I1, Iz, I3), X = (Xo, Yo, Zo)-
These equations have three first integrals:

1 oo~ .. ..

Since the equations preserve the standard measure, by Jacobi theorem (see for
example [33, 7]) for integrability in quadratures one needs one more additional
functionally independent first integral.
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On the other hand, the equations (3.2) are Hamiltonian on the Lie algebra e(3)
with the standard Lie-Poisson structure

(34) {MZaMJ} = _EijkMkv {MHFJ} = _eijkrkv ivja k= 17253'

The structure (3.4) has two Casimir functions F; and F» from (3.3). So, symplectic
leafs are four-dimensional (they are diffeomorphic to the cotangent bundle of the
two-dimensional sphere [40]) and for the integrability in Liouville sense one needs,
besides the Hamiltonian H from (3.3), one more functionally independent first
integral.

From the facts given above, one concludes that a natural problem arises: for
which values of the parameters I, I, I, Xo, Yo, Zo, the equations (3.2) admit the
fourth functionally independent first integral?

3.1. Integrable cases. Existence of additional independent fourth integral gives
strong restrictions on moments of inertia and vector . Such integral exists only in
three cases:
e Euler case (1758): Xy = Yy = Zp = 0. The additional integral is Fy =
(M, M).
e Lagrange case (1788): Iy = Iz, X = (0,0, Zp). The additional integral is
Fy = Ms.
e Kovalewski case (1889): Iy = I, = 2I3, ¥ = (X0,0,0). The additional
integral is Fy = (2% — Q3 + ‘)I(—e?l"l)2 + (202192 + );_;1—‘2)2

We have also cases that admits a fourth integral only with a fixed value of one
of the integrals. If Casimir function F; = 0, then we have

e Goryachev—Chaplygin case (1900): I = I, = 413, ¥ = (Xo,0,0). The
additional integral is Fy = M3(M?Z + M2) + 2M;T'3;

Beside the completely integrable cases, there are cases that instead of additional
first integral have an invariant relation. We will focus onHess—Appel’rot case. Hess
in [34] and Appel’rot in [5] found that if the inertia momenta and the radius vector
of the center of masses satisfy the conditions

(3.5) Yy =0, XovVIi(Io —I3) + Zo\/Is(I) — L) =
then the surface
(36) Fyr=MXo+ M3Zy=0

is invariant. It means that if at the initial moment one has that F; = 0, then this
will be satisfied during the time evolution of the system.

3.2. Classical integration of Hess—Appel'rot case. Classical integration of the
Hess—Appel'rot system is done in the so-called Hess coordinates. The details and
historical notes can be found in [33]. Hess introduced new coordinates v, u, p:

v =M} + M; + M3,
h 1/M? M M.
(3.7) /LZ—(X01—‘1+Y01—‘2+Z()1—‘3)+§ = —(—1+—2+—3),
p =M Xo+ MYy + M3Zp.
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If one denotes
B M2 M3 M2 M, My M;
"TBTB B " LI
p=2u, 0% =X3+YE+ 23,

then the equations of motion become (see [33])

1dv\2 6 pp 1 dp\ 2 6 p o
(5%)_ " “ap (E)_p vk

p [ o pHur T

du 1dv dp

2 _ 2\ _ 2 Lav 2 ap

(8" = p7) = = (6" = po)5— + (16" — pp) =,

where h and ¢; are fixed values of the first integrals (3.3): Fy = ¢, H = h.
The equation of the invariant surface becomes p = 0, and we get

2
(Llyr_fy 4 a1
2 dt _g o T e

From the second equation one has y = cv, where c is a constant, and from the first
we have

dv
/=382 + 8%v — 23
Hence, v is v = ®(t + ¢), where ®(t) is an elliptic function.
So, in the Hess—Appel'rot case, in the Hess coordinates one can find solutions
p=c®t+¢), v==b(t+¢), p=0.

Nevertheless, when Hess—Appel'rot conditions are satisfied, the coordinate trans-
formation (3.7) becomes degenerate. Namely, from the system
M? M2 M?
M} + M5+ M =v, —+—=2+—>=m, MX§—-M;Zi=0
I I I3
one needs to find M, M3, M3 as functions of p; and v. The determinant of the
system is

= 2dt.

A= L(Xgll (Iy — I3) — Z3I3(I; — 1)) = 0,
L1135

hence, the coordinate transformation (3.7) becomes degenerative. Consequently,
to find a solution of the system one needs to solve one more differential equation.
Hess proved in [34] that additional differential equations can be reduced to a Riccati
equation. Let us present Hess result.

From conditions (3.6), one gets M1 = Zyu, M3 = —Xou. Let v is defined with
My = dv, § = X2 + Z2. From the first integrals

M3+05+0%=1,

1 M
X0F1+ZOI‘3:—§(—+—+—3

MTy + Mal'y + M3I's = ¢; = 8
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by expressing I'1, s, '3 and putting them in the first two equations of motion

. 1 1
My = (— - —)MQM3 1 T2
I3 Iy
. 1 1
Ms = (— - —)M1M3 +I'3X0—T129
I, I3
one gets
udv + vdu vdu — udv
Z2o——— — Zo/ Hl ———~
b2 u? + v2 0 16(u2+v2)+
1 1 1 1
XoZ2 | — — — ) u?du—6*Xo | — — — | uvdv =0
0 0(]3 Il>u U 0 13 12 uvav N
I —I3) 21
H, = §2 2 2y 52 (173)(22 2_pn) 2| - 52,

The polynomial H; is of degree three in p? = u? + v?, H; = P3(p?). Introducing
u = p1 cos @, v = p1 sin g, the previous equation reduces to

1 B I — I
=/ Ps(p?)d 4 Lp? dpy =0, L=2XZ .
5V 3(p7) s0+(2p1+ plcosso) p1 =0, 2o~

This is the equation derived by Hess. Nekrasov proved that this equation can
be reduced to a second order linear differential equation with double-periodical
coefficients. Introducing 7 = tg¥, the last equation becomes a Riccati equation

dr

2
2 d
40 T+ @(p1)
where dy) = i Tngroducing T = 2% we have
P (o) 8 s
d’s
q0r s®(p1())

which is the equation obtained by Nekrasov.

3.3. Lax representation for the classical Hess—Appel'rot system. Algebro-
geometric integration. The Lax representation for classical Hess-Appel'rot sys-
tem, with the algebro-geometric integration procedure was presented in [18]. It is
proved there that the integration also leads to an elliptic function and an additional
Riccati differential equation.

Using isomorphism (3.1), equations (3.2) can be written in the matrix form

M:[MaQ]+[F7X]7 F:[FaQ]a

where the skew-symmetric matrices represent vectors denoted by the same letter.
We have the following:
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Theorem 3.2. [18] If condition (3.6) is satisfied, the equations of Hess—Appel’rot
case can be written in the form

. E) = [0, AW),
LA) =XNC+AM+T, AN =Xx+9Q, C=DLy.
The spectral curve, defined by
C: p(u, ) :=det(L(\) —uFE) =0,
is
C: —p(p? —w? +2AA%) =0,

where
_ Xo _ Zy
JXZ+z2 T X2+ 22
A=y+ir, A =j+Az,
(3.9) _ 1 _ L

(ﬂfl — O[Fg — iFQ), X (ﬂMl — OéMg — iMQ),

TR V2
w = —i [a(C1A* + MiA+T1) + B(C3A* + M3\ +T's)]
= —i [a(C1A’ +T1) + B(C3A* +T3)] .
This curve is reducible. It consists of two components: the rational curve C; given
by p = 0, and the elliptic curve Ca:
(3.10) p? = Py(\) = w? — 2AA*,
The coefficients of the spectral polynomial are integrals of motion. If one rewrites
the equation of the spectral curve in the form

P, \) = —p(p? + AN  + BA> + DAN2 + EA+F) =0,
one gets
A=I3(XZ+23), B=2L(MXy+ Ms3Zy)(=0),
D = M{ + M3 + M3 + 2I,(XoT1 + ZoTs),
E =2(MiTy + MoT'y + M3T'3), F=T3+T3+T3=1).

So, L-A pair (3.8) gives three integrals and one invariant relation.

Here, we will review some basic steps in the algebro-geometric integration pro-
cedure from [18].

Let (f1, f2, f3)T denote an eigenvector of the matrix L(\), which corresponds to
the eigenvalue p. Fix normalizing condition f; = 1.

Then one can prove:

Lemma 3.1. [18] The divisors of fo and f5 on C2 are
(fQ)Z—P1+P2—V+17, (fg)zpl—PQ—FV—D,
where Py and Py are points on Co over A = 00, and v € Cy is defined with vy = —%,

v, =—w |>\:_y/w.
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Now we are going to analyze the converse problem. Suppose the evolution in
time of the point v is known. For reconstructing the matrix L()), one needs
x = |z]e"?8T y = |y|e"*'8Y as functions of time.

Lemma 3.2. [18] The point v € 'y and the initial conditions for M and T' deter-
mine |x|, |y| and argy — argx, where x and y are given by (3.9).

So, in order to determine L(\) as a function of time, one needs to find the
evolution of the point v and argx as a function of time. In [18] the following two
theorems are proved:

Theorem 3.3. [18] The integration of the motion of the point v reduces to the
inversion of the elliptical integral

v dX 1
— = —t.
/UO V2 - 2AA* I

Denote by ¢, = argz, and u = tg%.
Theorem 3.4. [18] The function u(t) satisfies the Riccati equation

Cfl_? = [f(t) + g(®O)]u® + [f(t) — g(t)],

_ K _ Q= (MT) _ Bl 1\,
f(t)_W’ 9(t) = 2’ K_Q,/Xg_i_zg’ Q_oz\/ﬁ(fz 11)7

|z| is a known function of time.

As we presented in the previous subsection, the classical integration procedure
also yields one elliptic integral and the Riccati equation.

3.4. Zhukovski's geometric interpretation. In [47] Zhukovski gave a geometric
interpretation of the Hess—Appel’rot conditions. Denote J; = 1/1;.
Let us consider the so-called gyroscopic inertia ellipsoid

and the plane containing the middle axis and intersecting the ellipsoid at a circle.
Denote by [ the normal to the plane, which passes through the fixed point O. Then
the condition (3.5) means that the center of masses lies on the line .

If we choose a basis of moving frame such that the third axis is [, the second
one is directed along the middle axis of the ellipsoid, and the first one is chosen
according to the orientation of the orthogonal frame, then (see [12]), the invariant
relation (3.6) becomes Fy = M3 = 0, the matrix J obtains the form

J1 0 Jis
=10 5 o],
Jiz 0 J3

and x = (0,0, Zp).
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One can see here that the Hess—Appel’rot system can be regarded as a perturba-
tion of the Lagrange top. In new coordinates the Hamiltonian of the Hess—Appel’rot
system becomes

1
Hpgg = §(J1 (M? 4 M3) + J3sM3) 4+ ZoT's + JisMy Mz = Hy, + Ji3 M Ms

This was used as a motivation for a definition of the higher-dimensional Hess—
Appel’rot systems in [20].

4. Higher-dimensional generalization

Now we will pass to the higher-dimensional rigid body motion. Let us consider
motion of N points in R™ such that the distance between each two of them is
constant in time. As an analogy with the three-dimensional case, we have two
reference frames: the fixed and the moving ones. In the moving reference frame,
the velocity of the i-th point is

Vi(t) = B~4i(t) = BT'BQ; = Q(t)Q;

where again (); represents the radius vector of the i-th point, and Q is skew-
symmetric matrix (€ € so(n)) representing the angular velocity of the body in
the moving reference frame. The angular momentum is a skew-symmetric matrix
defined by

M =" mi(ViQl — QiVi) =Y mi(2QiQ} — QiQIQ)
=" mi(Q0Q:Q! + QiQLQ) = QI + 19,

where I = Y7, m;Q;Q} is a constant symmetric matrix called the mass tensor of
the body (see [30]).

If one chooses the basis in which I = diag(Is, ..., I,), the coordinates of angular
momentum are M;; = (I; + ;).

The kinetic energy is

T = % Zmz<Qqu> = %ZmKQQuQQQ-

Since it is a homogeneous quadratic form of angular velocity €2, one has (%, Q) =
2T where (A, B) = —3 Trace(AB) is an invariant scalar product on so(n). One
gets

orT

o ;( kmdmt + Tem Qi)

or g—g = M and finally

T = =(M,Q).

N~
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Remark 4.1. The expression M;; = (I; + I;)§;; gives a left-invariant metric on
SO(n). In that sense, the solutions of the classical Euler equations can be inter-
preted as geodesic lines of the left-invariant metric on SO(3). Arnol’d generalized
the Euler equations (see [6]). He derived equations of geodesics of an arbitrary
left-invariant metric on Lie group G. In [42] Manakov found L-A pair for the wider
class of metrics M;; = 'Z%Zjﬂij, and showed that this class belongs to the class
considered by Dubrovin in [25], and hence, the solutions can be expressed in theta
functions.

The Lie group E(3) can be regarded as a semidirect product of the Lie groups
SO(3) and R3. The product in the group given by

(A1,71) - (Ag,19) = (A1Ag, 11 + Aira)

corresponds to the composition of two isometric transformations of the Euclidian
space. The Lie algebra e(3) is a semidirect product of R? and so(3). Using iso-
morphism between the Lie algebras so(3) and R3, given by (3.1), one concludes
that e(3) is also isomorphic to the semidirect product s = s0(3) X4q4 s0(3). The
commutator in s is given by

[(a1,b1), (az,b2)] = ([a1, az], [a1, b2] + [b1, az]).

One concludes, that there are two natural higher-dimensional generalizations of
equations (3.2). The first one is on the Lie algebra e(n) that is a semidirect product
of so(n) and R™. The n-dimensional Lagrange case on e(n) is defined in [9], where
its integrability is proved. The higher-dimensional Kowalevski case together with
Lax representation is constructed in [11] (see also [8]). For a list of integrable cases
see for example [46].

The second one, given by Ratiu in [44] is on semidirect product s = so(n) X a4
so(n). Equations of motion in moving frame are [44]

(4.1) M=[MQ +[,x, I'=I[lQ.
Here M € so(n) is the angular momentum, ©Q € so(n) is the angular velocity,
X € so(n) is a given constant matrix (describing a generalized center of the mass),
T € so(n). Angular momentum M and € are connected by M = IQ + QI. If the
matrix [ is diagonal, I = diag(I1, ..., I,), then M;; = (I; +1I;)$;;. The Lie algebra
s is the Lie algebra of Lie group S = SO(n) X 44 so(n) that is semidirect product
of SO(n) and so(n) (here so(n) is considered as the Abelian Lie group). The group
product in S is (A1,b1) - (A2, b2) = (A1 A, by + Ada, bs).

Ratiu proved that equations (4.1) are Hamiltonian in the Lie-Poisson structure
on coadjoint orbits of group S given by

{f,9} (1, v) = —uldi f (1, v), dig(p,v)))
(42) _V([dlf(,ua V),dgg(,u,l/)])
- V([de(:ua V)v dlg(:“v V)])v

where f , g are restrictions of functions f and g on orbits of coadjoint action and
d;f are partial derivatives od df. On so(n) a bilinear symmetric nondegenerate
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biinvariant (i.e., k([§, 0], ) = k(&, [1,¢])) two form exist, which can be extended to
s as well:

ks((§1,m1) (§2,m2)) = k(§1,m2) + k(§2,m)-

Hence, one can identify s* and s. Then, the Poisson structure (4.2) can be written
in the form

{£.3}(&n) = —k(& [(gradaf) (&, n), (gradig) (€, n)])
(4.3) — k(& [(grad; f)(&,n), (grady g)(&, n)])
- k(na [(gradQ f) (5) 77)7 (grad2 g) (5) 77)]))

where grad; are k-gradients in respect to the ¢-th coordinate.

In [44], the Lagrange case was defined by I = I, = a, I3y = --- = [, =
b, X12 = —x21 # 0, xi; = 0, (i,j) € {(1,2),(2,1)}. The completely symmetric
case was defined there by Iy = --- = I, = a, where x € so(n) is an arbitrary

constant matrix. It was shown in [44] that equations (4.1) in these cases could be
represented by the following L-A pair:

d
dt
where in the Lagrange case C' = (a + b)x, and in the symmetric case C' = 2ax.

(N2C + AM +T) = [N2C + AM +T, \x + 9],

4.1. Four-dimensional rigid body motion. To any 3 x 3 skew-symmetric matrix
one assigns one vector in three-dimensional space using isomorphism between R3
and so(3). Using the the isomorphism between so(4) and so(3) x so(3), one can
assign two three-dimensional vectors A; and A to (4 x 4)-skew-symmetric matrix
A.

Vectors A; and As are defined by

A+ A Ay —A_
=T A=

2 2

where A, A_ € R3 correspond to A;; € so(4) according to

0w ow
A - O1 —-AL —Ag
—-AL AL 0 -A

AL A7 A3 0

Ay

(4.4) (A, AL) —

Here A7, are the j-th coordinates of the vector A..

By direct calculations, we check that vectors 24; x By and 2A4s x Bs corre-
spond to commutator [A, B], if vectors A1, Ay and By, By correspond to A and B
respectively.

Consequently, equations of motion (4.1) on so(4) x so(4) can be written as

M1=2(M1 x Q + T ><X1) F1=2(1—‘1 XQl)
M2 = 2(M2 x Qg +I'y X XQ) FQ = 2(1—‘2 X Qg)

Recall that M = IQ) + Q1. The matrix elements of the mass tensor of the body I
are Iy = > miQukQyi, k,1 =1,...,4. Choose the coordinates (X1, X2, X3, X4)
of the moving reference frame in which I has diagonal form I = diag(I1, Iz, I3, I4).

(4.5)
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Then, for example I; = ZmiX(Qm, I, = ZmiX(Qi)Q, >miXinXue = 0 etc.,
where X(;);, is the k-th coordinate of i-th point. In the three-dimensional case the
moments of inertia were defined with respect to the line through the fixed point
O. We derive the angular velocity w as a skew-symmetric matrix the elements of
which correspond to the rotations in two-dimensional coordinate planes. Hence,
here it is natural to define the moments of inertia of the body with respect to the
two-dimensional planes through the fixed point. For example the moment of inertia
with respect to the plane X10X5 is I1 + Iz, and Mya = (I1 + I2)Q42, ete.

Here we observe a complete analogy with the three-dimensional case. For ex-
ample, the moment of inertia with respect to OZ axis Iz3 = >, m;(X}? + Y7?)
consists of two addend Y, m; X? and ), m;Y;? that are diagonal elements of the
mass tensor of the body.

For vectors My and M_ one has

My = (L + L)QL, (Is + L)Q%, (Is + 1)Q3) = IOy
M_ = (I + L)Y, (I + 1), (Is + )R ) = 1_Q_.

Finally, one can calculate

M, = %((I-i- + 1)+ (I — 1-)Q2)
(4.6) 1
M2 = 5(([4,_ - I_)Ql + (I+ + I_)Qg)

At a glance it looks that (4.5) are equations of motion of two independent three-
dimensional rigid bodies. However, the formulas (4.6) show that they are not
independent and that each of My, Ms depends on both €7 and .

4.2. Lagrange bitop. Definition and Lax representation. Generalizing the Lax
representation of the Hess—Appel’rot system, the new complete integrable four-
dimensional rigid body system is established in [18]. A detailed classical and
algebro-geometric integration was presented in [19].

The Lagrange bitop is four-dimensional rigid body system defined by (see [18,
19))

0 X12 0 0

h=IL=a —x12 0 0 0
(4.7) L=I,—=b and x = 0 0 0 o
0 0 —xs¢a O

with the conditions a # b, X12, X314 # 0, |x12| # |X34]-
We have the following proposition:

Proposition 4.1. [18, 19] The equations of motion (4.1) under conditions (4.7)
have an L — A pair representation L(X) = [L(\), A(N)], where

(4.8) LN =MNC+ MM +T, A\ =+,
and C = (a +b)x.
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Let us briefly analyze spectral properties of the matrices L(A). The spectral
polynomial p(A, ) = det (L(X) — - 1) has the form
p(A,p) = pt + PO)® + QN
where
P(\) = AN+ BN + DN + EXN+ F,

(4.9) ) .
Q) =GN + HX3+ IN2 + JA+ K.

Their coefficients
A=+ G = (Ch,Co)+(C,C),
B = 2034 My +2C15Mya = 2 ((C, My) + (C_, M_)) |
D = M3 + MY, + M, + M7, + M3, + 2C 12T 19 + 2034 34
= (My, My) + (M_,M_) +2((Cy,Ty) +(C_,T'-)),
E =2I'1oM1o + 2I'13 M3 + 2114 Mg + 2193 Moag + 2124 Moy + 2I'34M34
o (T, My) + (T, M),
F=T%+ i+ 7 + T3 + 13, + T3, = (04, T4) + (0, T-),
G = CraCiy = (C, C),
H = CyyMys + CroMay = (Ca, M_) + (C_, M),
I = C34I'12 +T'34Ch2 + Mo M3y + Moz My — M3 Moy
=(Cy,T) +(C,Ty) + (My, M_),
J = MsqlU'1o + Miol'sg + Mialog + Moglig — Tis Moy — Tag M3
=(My, )+ (M_,T'y),
K =T34 + 3Ty — T13l9s = (I'y, T )
are integrals of motion of the system (4.1), (4.7). Here M;, M_ € R? are defined

with (4.4) (similar for other vectors). System (4.1), (4.7) is Hamiltonian with the
Hamiltonian function

1
H= §(M13913 + M1aQa + Ma3Qas + Moo + M34Q34) + x12T12 + X341 '34.

The algebra so(4) x so(4) is 12-dimensional. The general orbits of the coadjoint
action are 8-dimensional. According to [44], the Casimir functions are coefficients
of A% A, A% in the polynomials [det L(A)]'/2 and —27r(L(X))2. One calculates:

1/2

~ 1 ~
[det LV]* = GX + HX® + IN + IA+ K, —5Tr(LV)" = AN + EA+ .

So, Casimir functions are J, K, E, F. Nontrivial integrals of motion are B, D, H, I,
and, one can check that they are in involution. When |x12| = |x34/, then 2H = B
or 2H = —B and there are only 3 independent integrals in involution. Thus,

Proposition 4.2. [19] For |x12| # |x34l, system (4.1), (4.7) is completely integrable
in the Liouville sense.
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System (4.1), (4.7) doesn’t fall in any of the families defined by Ratiu in [44]
and together with them it makes complete list of systems with the L operator of
the form

L(\) = XN*C + AM +T.

More precisely, if x12 # 0, then the Euler-Poisson equations (4.1) could be written
in the form (4.8) (with arbitrary C) if and only if equations (4.1) describe the
generalized symmetric case, the generalized Lagrange case or the Lagrange bitop,
including the case x12 = +x34 [18].

4.2.1. Classical integration. For classical integration we will use equations (4.5).
On can calculate that

1 1
x1 = (0,0, —§(X12 +x34)), x2 = (0,0, —§(X12 — X34))
and also

M1 = ((CL + b)Q(l)la (a + b)Q(l)g, (a + b)Q(l)g + (CL — b)Q(g)g,)
M2 = ((a + b)Q(Q)l, ((I + b)Q(Q)Q, ((I — b)Q(l)g + (a + b)Q(Q)g)

If we denote Q1 = (p1,q1,71), Q2 = (p2,g2,72), then the first group of the
equations (4.5) becomes

P1—maqirz = —nil'(1)2, P2 —mqary = —nal' ()2
@1 +mpiry =l (11, g2 + mpar1 = nal'(2)1
(a+b)r1 + (a—b)ra =0, (a—b)1+ (a+b)ie =0
where
~ 2(a—0b) o 2X)3 O 2X(2)3
T a+b YT ath T A+

The integrals of motion are for ¢ =1, 2:

(a+b)aixws = fia
(a+b)[(a+b)(P7 +¢7) + (a +b)aF + 2x(sT(i)s] = fio
where
(a+b)r1 + (a — b)re (a+b)ra + (a—b)r
Qg =
a+b a+b

2 2
P Cl el [ B TSI
(a+0b)?

a1 =
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Introducing p;, 0, defined with p; = p; cos oy, ¢; = p; sin gy, after calculations, one
gets

pio1 + mrapt = na( —al1)3)

13
a+b

. 1 i3 a; .
(4.10) [(p}) ] = dnfpi[l = —5(as + p)°] = dni(-= — s — n—ip?)Q, i=1,2

362 + M1 p3 = na — asl'(2)3).

23
a+b
Let us denote u; = p?, us = p3. From (4.10) we have
W =P(u;), i=12,

P;(u) = —4u® — 4u*B; + 4uC; + Dy, i=1,2;

Bi = 2a; + o, Ci—”f—azz_Ll% —2aja;,
2X(i)3fi3 2 .

D, = —4(——+ i), =1,2.
(o T

From the previous relations, we have

/ du1 —¢ / d’lLQ —¢

\/Pl(ul) ’ \/PQ(UQ) .

So, the integration of the Lagrange bitop leads to the functions associated with the
elliptic curves Ey, o where E; = i, as, X ()3, fie, fi3) are given with:

(4.11) E; : y? = Py(u).

Equations (4.5) are very similar to those for the classical Lagrange system. How-
ever, the system doesn’t split on two independent Lagrangian systems

4.2.2. Properties of spectral curve. The spectral curve is given by:
C: '+ PV +[QWP =0
where P and @ are given by (4.9).
There is an involution o : (A, u) — (A, —u) on the spectral curve which cor-

responds to the skew symmetry of the matrix L(A). Denote the factor-curve by
C1=C/o.

Lemma 4.1. [19]

e The curve Cy is a smooth hyperelliptic curve of the genus g(C1) = 3. The
spectral curve C is a double covering of C1. The arithmetic genus of C is
9a(C) =9.

o The spectral curve C has four ordinary double points S;,i = 1,...,4. The
genus of its normalization C is five.

o The singular points S; of the curve C are fized points of the involution o.
The involution o exchanges the two branches of C at S;.
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In general, whenever matrix L(\) is skew-symmetric, the spectral curve is re-
ducible in an odd-dimensional case and singular in an even-dimensional case.

The detailed algebro-geometric integration procedure of the system is given in
[19]. Analysis of the spectral curve and the Baker—Akhiezer function shows that
the dynamics of the system is related to a certain Prym variety II that corresponds
to the double covering defined by the involution ¢ and to evolution of divisors of
some meromorphic differentials Q; It appears that

Qb 01, Qf, Q3

are holomorphic during the whole evolution. Compatibility of this requirement
with the dynamics puts a strong constraint on the spectral curve: its theta divisor
should contain some torus. In the case presented here such a constraint appears
to be satisfied according to Mumford’s relation. These conditions create a new
situation from the point of view of the existing integration techniques. For details
see [19].

4.3. Four-dimensional Hess—Appel'rot systems. The starting point for construc-
tion of generalization of the Hess—Appel’rot system was Zhukovski’s geometric inter-
pretation given in subsection 3.4. Having it in mind, in [20] the higher-dimensional
Hess—Appel'rot systems are defined. First we will consider the four-dimensional
case on s0(4) x so(4). We will consider metric given with Q = JM + M J.

Definition 4.1. [20] The four-dimensional Hess—Appel’rot system is described by
equations (4.1) and satisfies the conditions:

(1)

Jh 0 J1s 0
0 Jh 0 Jos
Jis 0 J3 0
0 Jauu 0 Js

(4.12) Q=MJ+JM, J=

0 x12 O 0

o —X12 0 0 0
X“lo 0o 0 xm
0 0 —x3a O

The invariant surfaces are determined in the following lemma.

Lemma 4.2. [20] For the four-dimensional Hess—Appel’rot system, the following
relations take place:

Mo = Ji3(MizMia + Moy May) + Jog(Mi3Msy + MiaMoy),
Msy = Jyz(—MizMsg — MiaMoy) + Jog(—MizMyg — MagMsy).

In particular, if Mys = Msq = 0 hold at the initial moment, then the same relations
are satisfied during the evolution in time.
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Thus, in the four-dimensional Hess—Appel’rot case, there are two invariant rela-
tions

(4.13) My =0, Mss=0.

Let us now present another definition of the four-dimensional Hess—Appel’rot
conditions, starting from a basis where the matrix J is diagonal in.
Let J = diag(Jy, Jo, J3, J4).

Definition 4.2. [20] The four-dimensional Hess—Appel’rot system is described by
the equations (4.1) and satisfies the conditions:

(1) Q:Mj+jM7 j:dlag(jl7j27j37j4)7
0 X12 0 X
- —X12 0 X2z O

2 = - -

@) X 0 —Xos 0  Xaa
X1 0  —x314 0

J J3 — J, Jay — J-

(3) J3 —Jy = Ja — J1, . M

VI+8E T+
where

2(X14X34 — X12X23) 2(X14X12 — X23X34)

S22 o2 o2 o2 _ o2 4 o2 oo
X14 = X34 T Xi2 — X23 X14 = X34 T Xi2 T X23
Proposition 4.3. [20] There exists a bi-correspondence between sets of data from
Definition 4.1 and Definition 4.2.

tl =

t2 =

Remark 4.2. (1) In the case Jog # 0,x34 = 0, there is an additional relation
X12X34 + X14X23 = 0. It follows from the system
)212 sin<p—|—)~(23 COS Y = O, )214 sin<p—)~(34 COS p = O,
(2) In the case Jog = 0, x34 = 0, additional relations are 34 = Y14 = 0, and the
second relation from Definition 4.2 can be replaced by the relation

X121/ Jo — Ji + X231/ Jz —Jy = 0.

Theorem 4.1. [20] The four-dimensional Hess—Appel’rot system has the following
Lax representation

L(A) = [L(V), AV,

LN =X NC+AM4+T, AN =X+9Q, C=——x.
(A) (A) = Ax A

One can calculate the spectral polynomial for the four-dimensional Hess—Appel’rot
system:

P\ ) = det(L(N) = p- 1) = p* + PA)p® + Q(N)?,
where

PA) = a)* +0\3 + A’ +d) + e,
Q) = AT+ g\ + A2 +id+7,
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a=C0}+0C3,  b=20C12Mia+ 2C54Msz4(=0),

c= Miy + MYy + M3y + M3, + M, + M3, + 2C12T 1 + 2034134,

d = 2T'19Mi2 + 2T'13M13 + 2114 M1y + 2093 Moz + 2924 Moy + 2134 M34

e=T7%, + 55 + 7y + 55 + T3y + T3y,

J = C12C34, g = C1aM3z4 + C34M12(= 0),

h =T34C12 +T'12C34 + M12 M3y + Mag M1y — M13 Moy,

i = M34T12 + M1oUsq + MiaTo5 + Mo3l'1y — D13 Moy — Do Mas,

J=T34l12 + Ta3l'14 — T'13T04.
In the standard Poisson structure on semidirect product so(4) x so(4) the functions
d,e,i,7 are Casimir functions, ¢, h are first integrals, and b = 0,g = 0 are the
invariant relations. As we already mentioned general orbits of co-adjoint action

are eight-dimensional, thus for complete integrability one needs four independent
integrals in involution.

4.4. The n-dimensional Hess—Appel'rot systems. In [20] we introduced also
Hess—Appel'rot systems of arbitrary dimension.

Definition 4.3. The n-dimensional Hess—Appel’rot system is described by the
equations (4.1), and satisfies the conditions:

J1 0 Jis 0 0 0
0 J1 0 Joyy O 0
Jiz 0 J3 0 0 0
O=JM+MJ, J=| 0 Jou 0 J5 0 o,
0 0 0 0 0 0
0 0 0 0 O J3
0 x12 O 0
-x12 0 0 0
=] 0 0 o 0
0 o 0 --- 0

Direct calculations give the following lemma:
Lemma 4.3. [20] For the n-dimensional Hess—Appel’rot system, the following re-

lations are satisfied:

(1) Mo = Ji3 <M12M13 + MagMszy + Z M2pM3p)
p=>5

+ Jaa(MiaMay + Mi3Msy — Z M, Myp)
p=>
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M3y = —Ji3 (M13M34 + Mag Mo + Z MlpMp4)
p=>5

— Jog(My3 M2 + Moy Msy + Z Moy Ms,),
p=>

Msy, = —Ji3(My3Msy, + Moy Mio) — Jog(MszgMay, + Moz Myy)

— M34Q4p — Q3aMyp + Z(Makﬂkp — Q3 Myp), p >4,
k=5

My = Ji3(— My Msy, + My Msy) + Jog(Mya My, — Moy Myy)

— M34Q3p, + Qga M3y, + Z(M4k9kp — Qi Myp), p >4,
=5

(2) My =0, k>4.

(3) The n-dimensional Hess—Appel’rot case has the following system of invariant
relations Mo =0, My, =0, [,p = 3.

By diagonalizing the matrix J, we come to another definition

Definition 4.4. [20] The n-dimensional Hess—Appel’rot system is described by the
equations (4.1), and satisfies the conditions

QZjM+Mj, j:diag(jl,jg,j3,j4,...,J4),

0 X12 0 X14 0
—X12 0 X23 0 0
0 —X23 0  Xaa 0
X=|-Xua 0 —x3a O 01,
0 0 0 0 ... 0
. L Jz — J Jy—J L o
J3 — Jy = Jy — Ji, S L 2 fiaXs4 + X1aXes =0

VItE J1+8
where
2(X14X34 — X12X23) 2(X1aX12 — X23X34)
=2 =2 =2 3, b2 == =2 =2 o2 -
X1a — X34 T X12 — X23 —X1a — X34 T X12 T X23

tl =

As in the dimension four, there is an equivalence of the definitions.

Proposition 4.4. [20] There exists a bi-correspondence between sets of data from
Definition 4.3 and Definition 4.4.

The following theorem gives a Lax pair for the n-dimensional Hess—Appel’rot
system.
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Theorem 4.2. [20] The n-dimensional Hess—Appel’rot system has the following
Lax pair

1
Ji +J3X

L) =[LO\), AN)], L) = N2C+AM 4T, AN =Xx+Q, C=

4.5. Classical integration of the four-dimensional Hess—Appel'rot system.
Detailed classical and algebro-geometric integration procedures for the four-dimen-
sional Hess-Appel'rot case are presented in [20]. Here again equations (4.5) are
useful for classical integration. We have:

X1 = (0707_%(X12 +X34))7 X2 = (0707_%()(12 _X34))'

Integrals of the motion are
M;, M;) +2———(xi, I'i) = hiy (T3, 1) =1
(4.14) < )+ 255, e T (T, 1)
<MZ,F1> = (4, <X17Mz> = O, = 1,2

Here the metric that gives connections between M and €2 is different from that for
Lagrange bitop. We have

— (Jiz — J2a) M3, (J1 + J3) M(1)2,
Ji — J3)Mays — (Jis + Joa) M2)1),
J13 + Jaa) M(1)3, (J1 + J3) M 2)2,
M2y3 + (J1 — Js)M(1y3 — (J1s — J2a) M(1)1),

where again M;; is the j-th component of the vector M;. Using these expressions,
equations (4.5) can be rewritten in the following form:

My1 = 2[(J1 — J3)M1yaMays — (Jis + Joa) M(1)2M2)1 + T )2 X (1)3)
M1ys = 2[ = (J1 — J3)M2ys My — (J13 — Joa) M(1)3 M (23
+ (J13 + J2a) My My — Tyixs)
Mz = 2(Jis — Jaa) M(1)2M(2)3,
(4.15) Ty = 2[Taye((J1 + J3)Mays + (J1 — J3) M2y — (Jis + J2a) M(2)1)
—Dys(J1+ J3) My,
1.j(1)2 =2[C1)3((J1 + Js)May — (Jis — Joa) M(2)3)
=Ty ((J1 4+ J3)Mays + (J1 — J3)M2)s — (J13 + Joa) M(2)1) ]
Ly = 2Ty (Ji+J3)Maye — Taye ((J1+J3) My — (Jiz— Jaa) M(2)3)] s
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and
Moy = 2[(J1 — J3)M2)2M1yz — (Jis — Joa) Mi2)oMy1 + T 2)2x(2)3),
Mays =2[ — (J1 — J3)M1y3M2)1 — (Jig + Jaa) M2)3M(1)3
+ (J1s — J24) M(2y1 M(1y1 — D2)1x(2)3]
M2y = 2(J13 + J2a) M(2)2M (13,
(4.16)  T(oy = 2[T2)2((J1 + J3)Mays + (J1 — J3) M1y — (Jis — J2a)M1y1)
— D 2)3(J1 + J3)M2)2],
Lia)2 = 2[T (23 ((J1 + J3) M2y — (Ji3 + Joa) M1)3)
— D21 ((J1 + J3)Mays + (J1 — J3)M1)s — (Jiz — Jaa) M1y1)],
T2)3 = 2[T (21 (J1+J3) M(2y2 — T2ya ((J1+J3) M2y1 — (Jis+J2a) M1y3)].-

One can see here that M(1)3 = M(2)3 = 0, giving two invariant relations introduced
before.
Let us introduce coordinates K; and [; as follows:

M(i)l = Ki sinli, M(i)2 = Ki COs li, 1= 1, 2.
From equations (4.15), (4.16), using integrals (4.14), we have

2
T 7 —x)sl )3 )—01} P3(T(1)3)-
Thus T'(1)3 can be solved by an elliptic quadrature. Also from the energy integral
we have that

P23 = 4 + Jo)2 [ (1= THy3) (I -

2
K} =hy — mX(1)3F(1)3-

1)1
(1)2

. M
Since tanl; = 377>, we have:

2X(1)3C1
K7
KiT{y, — 2e1 Myl )z + ¢f — M), (1= T)5) = 0.

l.l = —2(J13 + J24)K2 sin l2 +

Similarly, one gets:

2
[5 = 4(J1 + Js5)? [(1 —T{y)3)(ha — A —X2)3l(2)3) — 02} P3(T(2)3),
2 : . 2X(2)3¢2
K3 =hy — A X323, lo = —2(J13 — Joa) K1 sinly + ;{)22 ,

Kgréﬂ = 2caM2)2l'(2)2 + c5 — ]\4(22)1(1 - F%z)s) =0.

From the previous considerations one concludes that integration of the four-
dimensional Hess—Appel’rot system leads to a system of two differential equations
(for 11 and l3) of the first order and two elliptic integrals, associated with elliptic
curves F; and E5 defined by

E;: y*=P(x) =84;2° —4B;x* — 8A;x —4C;, i=1,2
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where
A = (J1+ J3)x )3, Bi = (J1+ J3)°hs, Ci = (J1 + J3)* (¢ — hs).

This is a typical situation for the Hess—Appel’rot systems that additional integra-
tions are required.

In [20] the algebro-geometric integration procedure is presented. It is closely
related to the integration of the Lagrange bitop.

In [35, 36] the Hess—Appel’rot systems are considered within the framework of
partial reduction.

5. Another Lax representation for the classical Hess—Appel’rot case.
Generalizations

In 1846 Jacobi gave an algebraic description of the Jacobian of a hyperelliptic
curve. Beauville noticed that using given description, any hyperelliptic curve can
be seen as a spectral curve of some matrix L(\). Starting from the spectral curve
for the Lagrange top, given by Ratiu and van Moerbeke, Gavrilov and Zhivkov in
[32] have constructed a new L-A pair for the Lagrange top. Using a modification of
that construction, starting from elliptic curve (3.10) we have constructed another
Lax representation for the Hess—Appel’rot system. This was a starting point for
construction of a class of systems on e(3), with the same elliptic curve as a spectral
curve (for details see [21]). Let w, A and A* are given by (3.9).

Proposition 5.1. On hypersurface (3.6) the equations of the Hess—Appel’rot sys-
tem are equivalent to the Lax representation

1 [L(A), A2L()) — azL(a)} |

(5.1) L) = T -

where
w2 V2IAN)/N2 _ ot 4 59

Starting from Lax representation (5.1) in [21] the family of new systems is de-
scribed. Let us consider the general case of equations (5.1), with a as an arbitrary
polynomial in M’s and I''s.

The corresponding spectral curve is the elliptic curve

(5.3) 2= wA(j) - 2A()\)§*()\)'

Here M ad T are in e(3) as before. In terms of z,y,Z, 7,21, y; from (3.9) and
y1 = ol'y + s, #1 = aM; + M3, the standard Poisson structure (3.4) on e(3)
has the form:

{z,y} =0, {z,7} =0, {z,m1} =iz, {Z, 21} =—iZ, {y,x1} =1y,
{gvxl} = _iga {ylv'rl} = Oa {jayl} = _Zga {'rvyl} = Zyv {ylay} = 07
{yl;y} = 07 {Iaf} = _Z.'rla {yay} = Oa {xvg} = _iylv {1_75y} = Zyl
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Observe that matrices L given in (5.2) satisfy

L) L)} = [r = . LY + L(w)
where
by =z |y 3. Lo=5 ez,

with the permutation matrix as an r-matrix

-1

o oo
o = o o
o o= O
= O O O

Equations (5.1) can be rewritten in the form
My = ZoTs + aZoMs,
My = XoT's — ZoT'1 + a(XoMs — ZoM),
Ms = —Xol'y — aXoMo,
FoMs —T's Mo

(5.4) Fl =——— " = +aZyly,

I

. I'sM, —T1 M.

I'y = % =+ a(X0F3 — Zorl),
2

. Ty Ms—ToM

I's = e Tt 2[ 2771 —aXol's.
2

We have the following Proposition.

Proposition 5.2. System (5.4) can be rewritten as:
M; = {M;, Hi} + a{M;, H>},
0, = {Ty, i} +a{li, Hy}, i=1,2,3,
where
M+ M3+ M3
21,

As we have already mentioned the Poisson bracket (3.4) has two Casimir func-
tions:

H, + (X()Fl + ZoFg), Hs = X0M1 + Z()Mg.

Fy = My + Mol + M3T3, Fy =T% 4+ T3 +13.

Thus, a symplectic leaf, defined by conditions F} = ¢1, F» = ¢9 is a four-dimensional
manifold. For integrability in the Liouville sense on e(3), another first integral be-
side the Hamiltonian is necessary. On the other hand, if a system is not Hamilton-
ian, generally speaking, five first integrals of motion for integrability in quadratures
are required. But, if a nonhamiltonian system has an invariant measure, then, ac-
cording to the Jacobi theorem, for integrability in quadratures one needs four first
integrals of motion.
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For a general polynomial a, the system (5.4) is neither Hamiltonian in the Pois-
son structure (3.4), nor preserves the standard measure. A simple criterion for
preserving the standard measure is given by:

Proposition 5.3. [21] System (5.4) preserves the standard measure if and only if
the polynomial a satisfies the condition {a, XMy + ZoMs3} = 0.

As a consequence we have:

Proposition 5.4. [21] In the following five cases, the standard measure is preserved
(1): if the polynomial a is a Casimir function: a = M1 + MaT's + M3T's;
(ii): if the polynomial a is a Casimir function: a =T% + T3 +T3;
(iii): Zf a = XOM1 + Z()Mg,’
(iV): Zf a = X()Fl + Z()Fg,’
(v): if a = M{+ M3+ M3,
Theorem 5.1. [21] If Xg # 0, or Zy # 0, in the first three cases given above, the
systems are Hamiltonian, while in the fourth and the fifth cases, the systems are
not Hamiltonian in the Poisson structure (3.4).

If a is a Casimir function, for an arbitrary function f we have

{f, Hl} + a{f, HQ} = {f, Hy + aHQ}.

Hence, in the first two cases the systems are Hamiltonian with Hamiltonian func-
tions H = Hyi 4+ aHs. In the third case, since a = H, we have

{2', Hi} + Ho{a', Ho} = {2, Hy + H3 /2},

where 2%, i = 1,...,6 are coordinates My, My, M3, T'1,T'5,T's. Thus, the system is
also Hamiltonian with the Hamiltonian function H = Hy + H2 /2.
Regarding integrability of the given five cases, we have the simple Proposition.

Proposition 5.5. [21]
(a) A function F is a first integral of equations (5.4) if it satisfies
F={F H}+a{F Hy} = 0.
(b) The Casimir functions Fy and Fy and functions Hy and Ha are integrals of
system (5.4) for any polynomial a.

Finally we have:

Theorem 5.2. [21] System (5.4) in cases (i)—(iii) is completely integrable in the
Liouville sense. In cases (iv) and (v), system (5.4) is integrable in quadratures.

5.1. Algebro-geometric integration procedure of the systems. The algebro-
geometric integration procedure for the first three cases (i)—(iii) (when system (5.4)
is Hamiltonian) is done in [21]. Tt is based on a construction of the Baker—Akhiezer
vector-function.

As usual, we consider the following eigenvalue problem

(% * AW)‘I’(@ P)=0, L(\)¥(t,P)=ul¥(t,P),
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with a normalization
vl(0, P) + ¥2(0,P) = 1,

where P = (A, 1) is a point on the spectral curve C.
Let us denote by co™ and oo™ the two points on the curve C over A\ = oo, with

pw=ilo\/XE+ Z2 and p = —ilo\/ XZ + Z¢ respectively.

Proposition 5.6. [21] If the polynomial a(M,T) is a first integral of motion, then
the vector-function U(t, P) satisfies the following conditions:

(a) In the affine part of the curve T, the vector-function V(t, P) has two time
independent poles, and each of the components Wi(t, P) and W2(t, P) has
one zero.

(b) At the points oo™ and oo™, the functions W' and W2 have essential singu-
larities with the following asymptotics:

HVXTHE OF (1 4 O(L)), for P— oo™

Ul(t, P) = ; z
(t, P) AT MO+TNOL)),  for P— oot

I(\/X2+22 (A a)+L
W2(t, P) = e (VXA Gt i)t (0(4))
e_%<\/m (>\+a)+ﬁ)t (1 + O(%)) , for P — oot

(¢) The asymptotics have the form

WL(t, P) = ¢ 3 (VEEHZ Ot ip)e < + 0(1/A2)> , P oot

T 1
IV2/XZ+ X2 A
w2(t, P) = 3 (VEBTZ O+ 3} ) ( + O(l/)\2)> , P oo™

z 1
Iv/2/X2 + X2 A

Now we will give explicit formulae for the Baker—Akhiezer function in terms of

the Jacobi theta-function 611 (z|7) with characteristics [, £].
Let us fix the canonical basis of cycles A and BonT' (A- B =1), and let w be
the holomorphic differential normalized by the conditions

]{w:%w, ]{wZT.
A B

A theta-function 611 (z|7) is defined by the relation

Or(zl7) = D _exp [§T<n+ %) +(z+im)(n+ %) .

Let us denote by Q1 and Q~ the differentials of the second kind with principal parts
—iV/ X3+ Z3 dX and +£/X§ + Z3 dX at oo™ and at co™ respectively, normalized
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by the condition that A-periods are zero. Let us introduce differential Q = QT+~
We will denote by U the B-period of differential 2, and by ¢ and ¢~ the constants:

/Q_— X2+ Z2 X+ ct+0(1/N), P— P*

_ .t 2 2 - -
/IDOQ—+2\/X0+ZO/\+C +0(1/A), PP

Proposition 5.7. [21] The Baker—Akhiezer functions are given by
P
911(A(P+OO+ —P1 —Pg)—l—tU)
Ul(t,P)=ce /Q— +Z +3ﬂ>t} ,
(tP)=c XPK m O 29T ) 0 (Al oo — PL— Py) + 1)

P ; - — —
vt P) = o[ ( [0t o 2] fulalPioe S AR

P 2" 2L ) | 61(A(cct + 00— — P — Py) +tU)’
where constants c1 and co are
o = (AP = 00")b1 (Alco™ — P1))bhi(Alo™ — P))
P (Ao —oo)) (A(P — P))on (A (P=Fa)) |
¢y = DAL — 007))0u (Aoc” — P1))bu(Alo™ — Pr))
011 (Aot — 007))011 (A(P — P1))b11 (A (P P))

and A is the Abel map, and Py and P are the poles of the function V.
5.2. Classical integration of the systems. In new coordinates

X1 =aMy + Mz, Xo= DMy, X3=—-BM;+abl;
Y = ol'y + AT, Yo =Ty, Y3=-pI1+al}j

differential equations of motion (5.4) become

) ) 1
X1 =0, Y1 = 1—2(X3Y2 — XoY3),

. . 1
Xo=1/X2+ Z2 (Y3 +aX3), Y2=I—2(X1Ke,—X3Y1)+a\/X§+Z§Y3,
. : 1
X3 = —\/ X2 + Z2 (Ya + aXy), n:E(sz—lez)—a,/Xngzgyz.

The first integrals are
Fi=X1Y1+XoYa+ X3Ys=c1, F=Y'+Y7+Y] =cs,

(5.5) Hy - X2+ X2+ X2
2L/ XE+ 73

Introducing polar coordinates Xo = pcoso, Xz = psino and using integrals
(5.5), after simplifying, and denoting p? = u, one has

+Y,=dy, Hy;=X;=ds.

u3

(5.6) ﬂQZ—F—Bu —Cu—D
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where
—AVXE+ 75 da(c1 — dp A
p=22V20 % G C=4(X3+Z§)(A2—02+72(Cl - ))
2 I Ig\/X02+Z§

d2
D= 4(X2+ Z2)(cr — doA)?, A=dy— — 2
(Xg + Z5)(c1 — d2A) T X7

So, the following proposition is proved:
Proposition 5.8. The function u(t) is an elliptic function of time.

Let us remark that « (and consequently p) does not depend on a choice of the
polynomial a.

Having u(t) as a known function of time, one can find p(¢) as a known function
of time. In order to reconstruct Xo and X3, one needs to find o as a function of
time.

We have

1 d3 + p2(t)
o=\ + 21— o - S o
200 0 0lc1 2| a1 20\ /X2 + 22 p-(t)

The right-hand side of the last equation is a function of time and of the polyno-
mial a. When a is a first integral of motion, then the right hand side of the last
equation is a known function of time. Hence, one can find o by quadratures. In
the fourth case

d2
0= Xol'1 + ZoTs = /X2 + 22V, = \/ X2 + 224y — \;{”27922

So, in this case a(t) is a known function of time and one can find o by solving a
differential equation. Similarly, in the fifth case

a=M{+M;+M;=X]+X5+X3=d5+p*)

is again a known function of time and a differential equation for determining o
can be solved. Knowing p and ¢ as functions of time, one can easily reconstruct
XQ, Xg, }/1, }/2 and }/3

Two elliptic curves appeared here. The first one C, has been defined by the
equation (5.3), and it was the curve from which we started. The other one C’,
given by

ud

(5.7) U2=—F—Bu —Cu—D
corresponds to the solution of differential equation (5.6). A natural question is how
these two curves are related. We have the following proposition:

Proposition 5.9. [21] The elliptic curves C, defined by equation (5.3) and C’ de-
fined by (5.7) are isomorphic.

Using the Sklyanin magic recipe, from Lax representation (5.1) the separation
variables for the cases (i)—(iii) are constructed in [21]. Also a sort of separation
variables for the Hess—Appel'rot case are found.
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6. Motion of rigid body in ideal fluid. Kirchhoff equations

The mechanical system similar to the motion of a heavy rigid body fixed at a
point is a motion of a rigid body in an ideal incompressible fluid that is at rest at
infinity. The equations of motion are derived by Kirchhoff in 1870 (see [37]). They
can be written in the form

(6.1) M:an—hj+fxa—lf, f:fxa—hj
oM or oM

where Hamiltonian H is homogeneous quadratic function in M and T given by:
1, - - R
H = §<AM,M> +(BM,T) + §<CF,I‘>.

Here M is impulsive moment and T is impulsive force. The matrix A is positive-
definite, the matrices B and C' are symmetric. Equations (6.1) are Hamiltonian in
the standard Lie-Poisson structure given by (3.4). Hence for complete integrability
in the Liouville sense one needs one additional independent integral.

The equations of motion of a heavy rigid body fixed at a point (3.2) can be
written in form (6.1) with H from (3.3) as a Hamiltonian function.

6.1. Integrable cases. We will list the integrable cases. For a full list and details
see for example [12].

The first nontrivial integrable case of equations (6.1) was discovered by Kirchhoff
in 1870 (see [37]). It is defined with conditions:

e Kirchhoff’s case (1870):

A= diag(al,al,ag), B = diag(bl,bl,bg), C = diag(61,61,63).

An additional integral is F; = Ms. It is analogous to the Lagrange case of motion
of a heavy rigid body fixed at a point.
e The first Clebsch case (1871):

A = diag(a,a,a), B =0,
The additional integral is Fy = a(CM, M) — det(C)(C'T,T).
e The second Clebsch case (1871):
A = diag(ai,az,a3), B =0, C=diag(c,ca,c3)
(6.2) 2=z = G-

C2
+ =0.
a1 ag as

Conditions (6.2) are equivalent to:
C2-cs _ _&G-a __a-&o _,

al(az - CL?,) a2(a3 - Cbl) as(al - CL2)

where a1, as, as are pairwise distinct. The additional integral is:

Fy=0(M,M) — (AT, T).

e Steklov’s case (1893):
A= diag(alu a, (L3), B = diag(ﬂ%%a pasas, uala2)7
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C = diag(u2a1(a2 — a3)2,,u2a2(a3 - a1)2, u2a3(a1 — a2)2)

where p is a constant. The additional integral is:

Fy = Z(]V[J2 —2pa; M;T) + M2((a2 — as)Ql—‘f + (a3 — a1)21"§ + (a1 — a2)21—‘§).

J
e Lyapunov’s case (1893):
A =diag(1,1,1), B = diag(—2udy, —2uds, —2uds),
C = diag(p*(do — d3)?, pi*(d — dv)?, p*(d1 — d2)?)
The additional integral is:
Fy = d;M; + 2u(dads My Ty + dgdy MoT'y + dydy MsT's)
T4 2 (dy (do — ds)2T2 + da(ds — dy)2T2 + dy(dy — dy)°T2)
e Sokolov’s case (2001):
ap=az=1, az3=2, biz=a, by=070,
ci2 = —4af, o1 =48> cp =40 c33=—4(a’ + ),
and additional integral is
Fy= (M3 — al'y — AT2)?P + Q2
where
P = (a? + B*) (M3 + 2al'y + 26T5)? + (BM; — aM;)?
Q = [aM; + BM: + (o + B°)T3] (M3 + 20Ty + 281)
+3(BM1 — aMs3) (BT — al's).
e Chaplygin’s first case (1902):
A = diag(a,a,2a), B =0, C=diag(c,—c,0),

On the symplectic leaf given with (M ,f} = 0, the equations admit additional
integral:
Fy= (M} — Mj + cI'3)? + 4M7 M3,
e Chaplygin’s second case (1897).
Chaplygin’s second case had an invariant relation instead of a fourth integral.
It is defined in 1897 by Chaplygin (see [13]). This system was also considered by
Kozlov and Onischenko in [41]. It is defined by:

A = diag(as, a2, as3)
bisvaz — a1 F (by — b1)Vaz —az =0, b12 =0
(6.3) bizvaz — az + (by — b2)vag —ay =0, by3 =0
c13vay — a1 F (2 —c1)vVaz —az =0, c12 =0
c13vaz —az £ (e3 — c2)v/ag —ay =0, c23 = 0.
The invariant relation is: Fy = Mj+/as — a1 F M3+\/az —az = 0.
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Conditions (6.3) may be regarded as analogy of the Hess—Appel’rot conditions
in the case of motion of a heavy rigid body fixed at a point. We have shown that
Hess—Appel'rot case can be considered as a perturbation of the Lagrange top.

Similarly, the Chaplygin case is a perturbation of the Kirchhoff case. If one
chooses the basis where a; = as, the Chaplygin conditions become (see for example
[22, 12]):

a; = az, a13 }é O, B = diag(bl, bl, bg), C = diag(cl, Ci, 03).

In new coordinates the invariant relation is M3 = 0.

In the case B = 0, Kirchhoff’s case can be regarded as a special case of the
Clebsch case. In [43] Perelomov constructed the Lax representation for the Clebsch
case as well as higher-dimensional generalizations. Using this Lax representation
in [22] the Lax representation is constructed for the Chaplygin’s second case:

Theorem 6.1. [22] When B = 0, on the invariant manifold given by the invariant
relation, the equations of motion of the Chaplygin’s second case are equivalent to
the matriz equation

L(A) = [L(A), Q)]
where L(\) = ALy + ALy — Lo, Q(\) = AQ1 + Qo, and
L2 = diag(cl/al, cl/al, 03/a1), Ql = diag(al, ap, Cbg)
0 —Ms M,

Ly = | M; 0 —M|, Lo=rr"
—Ms M 0
0 —azM3 — a3 M ay My
Qo = |asM3 + a13M; 0 —a1 M1 — a13M3
—a1 Mo ay My + a13M3 0

The spectral curve det(L(A\) —p-1) =0 is
C: ,LL3 + ,LL2F3 — )\%}L2(Cg + 201) + )\%/L[2F1 — (261 + Cg)Fg]
+ /\Lllucl (1 + 203) — /\?C%Cg — )\411(201171 —c(e + C3)F3) + /\%G1F22 =0,

where A\ = \/% It is singular and has an involution o : (A1, ) = (=A1, 1). The

curve C; = C/o is a nonsingular genus one curve.

6.2. Four-dimensional Kirchhoff and Chaplygin cases. In [22] the four-dimen-
sional generalization of the Kirchhoff and Chaplygin cases is constructed on e(4).
Let us consider the Hamiltonian equations with Hamiltonian function:

2H = Z A M My + 2 Z Bijx MLy, + Z Cul'xI'y
in the standard Lie-Poisson structure on e(4) given by:
{M;;, My} = 0ix Mj; + 80 Mir, — 8uMjr, — 86 M,
{M;;, T} = 8l — 05115
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A four-dimensional Kirchhoff case should have two linear first integrals: Mjs and
Msy. Tt is interesting that under such assumption, the “mixed” term in the Hamil-
tonian is missing.

Proposition 6.1. [22] If M12 and Msy are the first integrals, then B, = 0.
The proof follows through direct calculations.

Definition 6.1. The four-dimensional Kirchhoff case is defined by
2Hy = A2 M7 + Argis(Mis + M7, + M3 + M3))
+ Azaza M2, + ArogaMiaMay + Cp1(T% +T3) + Cs3(T3 + 1)
On e(4) the standard Lie-Poisson structure has two Casimir functions:
By =T%+T135+13+17,
Fy = (My3T'y — M14T's + M3uT1)? + (MasD'y + Miol's — Mi3Ds)?
+ (M24T'y — M14Ts + Mi1oT'y)? + (MasTy + M3sl'y — Masl's)?

consequently, the general symplectic leaves are 8-dimensional. For complete in-
tegrability one needs four first integrals in involution. In [22] it is proved that
except Hamiltonian, the four-dimensional Kirchhoff case has two linear first inte-
grals F3 = Myo, Fy = M34 and one additional quadratic first integral:

Fs = a3 (M2 Msy + MyyMas — My3May)?
—c1((M13Ty — M1aT3 + M3aT1)? + (MasD'y + M3al'y — Mogl'5)?)
— e3((MasT'y + MioD's — M13T2)? + (MaaT'y — MyaT's + MioT'y)?)
So, we have

Theorem 6.2. [22] The four dimensional Kirchhoff case is completely integrable
in the Liouville sense.

In the case of the four-dimensional Chaplygin case, one can naturally assume
that M2 and Ms,4 are invariant relations. From this assumption, we get:

Definition 6.2. [22] The four-dimensional Chaplygin case of the Kirchhoff equa-
tions on e(4) is defined by the Hamiltonian:

2Hep = A1212M7y + Arsis(Miy + M7y + My + M3,) + Asaza M3,
+ A123aMioM3z4 + A1213Mi2 My3 + Ar214Mio My
+ A1223M1o Moz + A1924 Mio Moy + A1334 Mi3 M3y
+ A143a M14M34 + A233a Moz M3y + Aoy34 Moy M3y
+ Bi21 M2y + Biao Miol's + B1agMi2l's + BiagMi2l'y
+ Bgg1 M34T'y + BsgoM3al's + B3yzM34l'3 + B3gqaM34l'y
+Cn(T] +T3) + C3(T5 +T7).

One can easily check that in this case M2 and M3y are really the invariant
relations.
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