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Abstract. We give an overview of the shape based techniques
used in object matching, object identification and object classification
tasks. We distinguish between the area based methods, which use all
the shape points, and boundary based methods, which use boundary
information only. We also discuss a recent ‘multi-component shape’
approach. This approach considers a group of objects as a single but
compound object. The idea is already shown to be very efficient in a
wide spectrum of applications.
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crime prevention related tasks.
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1. Motivation and Problem Description

Image technologies have developed rapidly. A huge amount of images and image
related data are available in different domains: medicine, biology, industry, geology,
astronomy, crime prevention, security, etc. Different objects appear on images
and they should be recognized, classified, or identified. Working in object space,
i.e. compar ing object pairwise, is shown to be inaccurate and computationally
expensive. It has turned out that a better idea is to map objects of interest onto a
set of numbers (a vector in Rd) and then perform searching in this space (e.g., in a
subset of Rd). For such mapping we need some object characteristic which can be
reasonably easily and efficiently quantified by numbers. One of such characteristics
can be the color of the object or its texture, for example. The shape is another
object characteristic, which allows a spectrum of numerical characterizations. Also,
the shape, as an object characteristics, has a big discrimination capacity. I.e.,
objects of different kind, very often, can be distinguished by their shapes. In Figure
1(a) an original diatom image is given. For a further processing a preprocessing is
needed. In Figure 1(b) a shape of diatom is presented, while boundary shape and
interior details are in Figure 1(c).

6
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(a) (b) (c) (d) (e)

Figure 1. Diatom images: (a) original image; (b) whole object
shape; (c) boundary shape and shape of internal contours.
Texture image: (d) original image, (e) original image thresholded.

Figure 1(d) presents a texture. A corresponding black-white image is in Figure
1(e). There is no a clear shape of such extracted texture.

We illustrate the basic idea by simple shape examples in Figure 2. Shapes
in Figure 2(a)-(c) are rotationally symmetric and by this property they can be
distinguished from the shapes in Figure 2(d,e). The question is: How to define
the function D1(S) which maps planar shapes into the interval [0, 1], such that it
assigns the value 1 to rotationally symmetric shapes, and assigns lower values to
the shapes in Figure 2(d) (let say 0.8) and in Figure 2(e) (let say 0.1)?

(a) (b) (c) (d) (e)

Figure 2. Shape examples.

Such a defined functionD1(S) could be called a ‘symmetricity’ measure. Further,
because D1(S) does not distinguish among the shapes in Figure 2(a-c), another
descriptor should be considered. Since the shape in Figure 2(a) is convex, and since
the shape in Figure 2(b) is ‘more convex’ than shape in Figure 2(c), a ‘convexity’
measure (i.e., another function) D2(S), will do. D2(S) is expected to assign 1 to
convex shapes and smaller values for ‘less convex’ shapes (e.g., 0.92 to the shape
in Figure 2(b) and 0.75 to the shape in Figure 2(c)). Such defined function, very
likely, would distinguish between the shapes in Figure 2(d) and Figure 2(e) but is
not clear would it distinguish among shapes in Figure 2(b) and Figure 2(d). It
is difficult do judge which of them is ‘more convex’. To overcome such problem,
another descriptor, e.g., shape ‘linearity’, could be involved. A linearity measure
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D3(S) should assign a high value to the shape in Figure 2(d) (let say 0.9) and a
small and similar values for the rest of shapes (e.g. all close to 0.1).

This is a basic idea how to use shape descriptors and corresponding measures
to be able to distinguish between shapes/objects. Of course, in most cases a single
descriptor and a single measure are not enough, and several of them should be
combined. For example, the shape in Figure 2(e) can be separated from the others
as a shape with low D1(S) and D3(S) values (e.g. with low both symmetricity and
linearity measures).

2. Introduction

Shape descriptors are a powerful tool used in wide spectrum of computer vision
and image processing tasks such as object matching, classification, recognition and
identification. Many approaches have been developed [40]. There are a number of
generic shape descriptors that are capable of providing a high dimensionality fea-
ture vector that accurately describes specific shapes (for example, Fourier descrip-
tors and moment invariants). Alternatively, other descriptors describe some single
characteristic that is present over a variety of shapes, such as circularity [30], el-
lipticity, rectangularity, triangularity [33], rectilinearity [50], complexity [29], mean
curvature [21], symmetry [48], etc. Even for a single characteristic of shapes there
often exist many alternative measures which are sensitive to different aspects of the
shape. Very likely, the shape convexity is a shape property with the largest num-
ber of different methods defined for its evaluation–see [3, 20, 31, 36, 37, 41, 51]. The
need for alternative measures is caused by the fact that there is no a single shape
descriptor which is expected to perform efficiently in all possible applications.

Generally speaking, there are two approaches to analyze shapes: boundary based
(which use the information from boundary points only) and area based ones (which
use all the shape points). It could be said that, in the past, more attention has been
given to the area based methods. The area based methods are more robust (e.g.
with respect to noise). Although not mentioned often, an additional reason for a
larger number of methods that are based on ‘interior’ shape points, rather than
methods based on boundary points, is that area based methods are usually simpler
to compute. For example, to estimate accurately the area of a given shape, it is
sufficient to enumerate the number of pixels inside the shape [17], while the perime-
ter estimation is not a straightforward task. Depending on particular situation and
conditions assumed different methods have to be used [7, 38].

Another example would be geometric (area) moment invariants [16]; these are
easily and accurately computable from the corresponding object image, while their
boundary based analogues involve computation of path integrals, which are not
simple to be estimated from discrete data, which are mainly used in image pro-
cessing and computer vision applications. On the other side, the boundary based
methods are more suitable for a high precision computer vision and image pro-
cessing tasks (person identification, for example). They are able to cope much
easier with objects with partially extracted boundaries or with partially occluded
objects. Robustness is a very desirable property when we work with low quality
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data (e.g., noisy images or low resolution images), but recently, due to progress in
image technology, high quality data can be provided, and the use of boundary based
methods becomes highly acceptable in many applications. In addition, boundary
based methods could have a much lower time complexity because shape boundaries
are represented by a significantly smaller number of pixels than complete shapes
are. Of course, there are methods which cannot be classified either as boundary
based or volume (area) based ones. For example, a very popular shape measure,
the shape compactness

Cst(S) =
4 · π · Area of S

(Perimeter of S)2

obviously uses both boundary and interior information. This quantity indicates how
much a given shape differs from a perfect circular disc, which is understood as the
most compact shape. Accordingly, the highest possible compactness (equal to 1)
is assigned to circular disc. Finally, there are methods which use only information
from specific points (shape corners, for example) or specific boundary parts (e.g.,
parts belonging to the convex hull of the shape considered).

Here, we focus on shape analysis techniques based on the use of a set of suitably
selected shape descriptors/measures. Generally speaking, a shape measure is a
quantity which relates to a particular shape characteristic. More formally, a certain
shape measure D(S) (related to a certain shape descriptor) maps a given planar
shape S into a real number. In order to be applicable in object classification,
recognition or identification task, any shape measure is expected to be invariant
with respect to similarity transformations (translation, rotation, and scaling). Also,
shape measures are preferred to be given in a normalized form. An easiest way
to achieve a normalized form is to apply a scaling transformation which would
preserve that D(S) varies through the interval [0, 1] (or even better through the
interval (0, 1]) while S varies through the set of bounded compact planar regions.

Thus, common desirable properties of a given shape measure D(S) are:

(a) D(S) ∈ [0, 1]
(b) D(S) = 1

emphif and only if S satisfies a certain property (here called a shape de-
scriptor) for which, actually, the shape measure D(S) is designed.

(c) D(S) is invariant with respect to the similarity transformations.
(d) For any δ > 0 there is a shape S such that D(S) < δ

(e.g., 0 is the best possible lower bound for D(S).)

The paper is organized as follows. In the next section we consider area based
shape descriptors. Section 4 is related to boundary based shape descriptors, while
Section 5 relates to the recent concept of multi-component shapes. Concluding
remarks are in Section 6.

3. Area Based Shape Descriptors

As mentioned, area based shape analysis methods (including shape descriptors
based approaches) are, so far, mostly studied in literature. These methods are ex-
pected to be robust (e.g., with respect to noise or with respect to narrow boundary
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intrusions), and, because of that, they are very suitable when working with low
quality data or with a low resolution images. In this section we discuss some of
area based descriptors which are in a frequent use.

3.1. Geometric Moments and Moment Invariants. Being theoretically well foun-
ded and well understood, moments based techniques are very popular and very
useful in the image processing and computer vision tasks. A number of methods
were developed. We proceed with a short overview.

For a given planar shape S its geometric (area) (p, q)-moment mp,q(S) is defined
as

(3.1) mp,q(S) =

∫∫

S

xpyqdx dy.

The order of mp,q(S) is p+q. Trivially, m0,0(S) equals the area of S. When work in
discrete space, i.e., when a real shape S is represented with its digitization dig(S),
then mp,q(S) is approximated as

mp,q(S) =

∫∫

S

xpyqdx dy ≈
∑

pixel (i, j) belongs to dig(S)

ip · jq

if the pixel size is assumed to be 1× 1.

Obviously,
∑

pixel (i, j) belongs to dig(S) i
p · jq is very simple to compute (only sum-

mations and multiplications are needed) and the approximation in (3.1) is very
accurate [22]. There are also methods for a fast computation of such an approximat-
ion–e.g., [19,24]. These are reasons why moments are used to define very common
features in image processing and computer vision applications. For example, one
of the basic shape features, as it is the shape position, is usually expressed in terms
of moments. Precisely, the position of a given shape S is described by the shape
centroid (xc(S), yc(S)) which is defined as

(3.2) (xc(S), yc(S)) =

(

m1,0(S)

m0,0(S)
,
m0,1(S)

m0,0(S)

)

.

Since moments mp,q(S) are not translation invariant (e.g., if S moves the corre-
sponding moments change) it is suitable to consider the central moments mp,q(S)
which are defined as

mp,q(S) =

∫∫

S

(x− xc(S))
p
(y − yc(S))

q
dx dy

and which are translation invariant by definition.
Further, because isometric objects could appear on an image as object of different

size (depending on their position with respect to the camera) it is suitable to have
object features which are scaling invariant. Since mp,q(S) are not scaling invariant,
it is convenient to involve, so called, normalised moments. A normalized moment
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µp,q(S) is defined as

µp,q(S) =
mp,q(S)

m0,0(S)1+
p+q

2

.

It is easy to verify that the normalized moments µp,q(S) do not change if a given
shape S is scaled for a factor r. In other words, if S is replaced with r · S =
{(r · x, r · y) | (x, y) ∈ S}, then µp,q(S) = µp,q(r · S).

Finally, in many object classification tasks, identical (or very similar) objects
have to be grouped together. Since the objects presented on an image may be placed
arbitrarily, descriptors which do not depend on the object position and object
orientation are needed for such a grouping. This means that, apart from being
translation and scaling invariant, we need shape descriptors which are rotationally
invariant, as well. In his seminal work [16], Hu has introduced a set of, so called,
algebraic invariants. These invariants are listed below:

I1 = µ2,0 + µ0,2

I2 = (µ2,0 − µ0,2)
2 + 4 · (µ1,1)

2

I3 = (µ3,0 − 3 · µ1,2)
2 + (3 · µ2,1 − µ0,3)

2

I4 = (µ3,0 + µ1,2)
2 + (µ2,1 + µ0,3)

2

I5 = (µ3,0 − 3 · µ1,2) · (µ3,0 + µ1,2) · [(µ3,0 + µ1,2)
2 − 3 · (µ2,1 + µ0,3)

2]

+ (3 · µ2,1 − µ0,3) · (µ2,1 + µ0,3) · [3 · (µ3,0 + µ1,2)
2 − (µ2,1 + µ0,3)

2]

I6 = (µ2,0 − µ0,2) · [(µ3,0 + µ1,2)
2 − (µ2,1 + µ0,3)

2]

+ 4 · µ1,1 · (µ3,0 + µ1,2) · (µ2,1 + µ0,3)

I7 = (3 · µ2,1 − µ0,3) · (µ3,0 + µ1,2) · [(µ3,0 + µ1,2)
2 − 3 · (µ2,1 + µ0,3)

2]

+ (µ3,0 − 3 · µ1,2) · (µ2,1 + µ0,3) · [3 · (µ3,0 + µ1,2)
2 − (µ2,1 + µ0,3)

2].

Because the normalized moments µp,q were used, the quantities I1, I2, . . . , I7 are
translation and scaling invariant by definition. It also can be verified that I1, I2, . . . ,
I7 are invariant with respect to rotations. For more details and recent developments
we refer the reader to [12, 13].

3.2. Shape Orientation. Geometric moments are also used to determine the shape
orientation, which is, together with shape position (usually defined by the shape
centroid (3.2)), a necessary part of an image normalization procedure. The most
standard method for the computation of the shape orientation is based on the, so
called, axis of the least second moment of inertia [18, 40]. The axis of the least
second moment of inertia is the line which minimizes the integral of the squared
distances of the points (belonging to the shape) to the line. The integral which
should be minimized is

I(α, S, ρ) =

∫∫

S

r2(x, y, α, ρ) dx dy
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where r(x, y, α, ρ) is the perpendicular distance from the point (x, y) ∈ S to the
line given in the form

X · sinα− Y · cosα = ρ.

It is easy to check the axis of the least second moment of inertia passes through
the shape centroid (xc(S), yc(S)) (see (3.2)). So, if the shape S′ is the translation
of S by the vector

−

−−−−−−−−−−−−−−−→(

m1,0(S)

m0,0(S)
,
m0,1(S)

m0,0(S)

)

= −
−−−−−−−−−→
(xc(S), yc(S))

then the centroid of S′ coincides with the origin. This allows us to set ρ = 0 and
proceed with the minimization of I(α, S′, ρ = 0) instead of the minimization of
I(α, S, ρ).

The squared distance r2(x, y, α, ρ = 0) of a point (x, y) to the line X · sinα− Y ·
cosα = 0 is

(x · sinα− y · cosα)2,

and, if for a shorten notation F (α, S) = I(α, S′, ρ = 0), the minimizing function
can be expressed as follows

F (α, S) =

∫∫

S

(

(x− xc(S)) · sinα− (y − yc(S)) · cosα
)2
dx dy(3.3)

= sin2 α ·

∫∫

S

(x− xc(S))
2 dx dy + cos2 α ·

∫∫

S

(y − yc(S))
2dx dy

− sin(2α) ·

∫∫

S

(x− xc(S)) (y − yc(S)) dx dy

= sin2 α ·m2,0(S) + cos2 α ·m0,2(S)− sin(2α) ·m1,1(S).

The angle α for which the function F (α, S) (i.e., the integrals I(α, S′, ρ = 0) and
I(α, S, ρ)) reaches its minimum defines the orientation of the shape S. We give a
formal definition.

Definition 3.1. The orientation of a given shape S is determined by the angle α
where the function F (α, S) reaches its minimum.

Shape orientation, as given by Definition 3.1, is easy to compute and can be ex-
pressed in terms of moments. Indeed, since the points (angles) where F (α, S) riches
its maxima and minima are angles (points) where the first derivative dF (α, S)/dα
vanishes, i.e., where

dF (α, S)

dα
= m2,0(S) · sin(2α)−m0,2(S) · sin(2α)− 2m1,1(S) · cos(2α) = 0

we obtain immediately that the angle α which defines the orientation of S satisfies
the following equation:

(3.4)
sin(2α)

cos(2α)
=

2 ·m1,1(S)

m2,0(S)−m0,2(S)
.
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Although the standard method is naturally defined, straightforward and efficient
to compute it breaks down in some circumstances. For example, problems arise
when working with symmetric shapes [45, 49], but the method does not tell what
the orientation should be even for some irregular shapes. If we consider the equality
(3.3) we can see easily that F (α, S) becomes a constant function if

(3.5) m2,0(S)−m0,2(S) = 0 and m1,1(S) = 0.

Naturally, if F (α, S) is a constant function (for a given shape S), none of directions
α could be pointed out as the shape orientation, and thus, the standard method
fails.

This has caused the development of other methods, e.g., [6, 14, 18, 39, 45] and
many more, for the computation of the shape orientation. Suitability of those
methods strongly depends on particular application. It is not possible to say which
of them is the best one or to establish a strict ranking among them as they each have
their relative strengths and weaknesses (e.g., relating to robustness to noise, classes
of shape that can be oriented, computational efficiency). A method dominant at
one of applications could fail at another.

Notice that difficulties in the computation of the shape orientation can be caused
by the nature of certain shapes. While for many shapes their orientations are
intuitively clear and can be computed relatively easily, the orientation of some
other shapes may be ambiguous or ill defined. Problems related to the estimation
of the degree to which a shape has a distinct orientation are considered in [53].

3.3. Shape Elongation. Observations related to the computation of the shape
orientation by the axis of the second least moment of inertia, easily lead to the
definition of a new shape descriptor, named the shape elongation. It is naturally to
predict that a given shape is said to be elongated (in a natural meaning of the word
‘elongation’) if it has a distinct orientation. I.e., the minima and maxima of the
optimizing integral I(S, α, ρ) should differ essentially for more elongated shapes.
Both, minima and maxima of F (α, S) are easy to compute. The minimum of the
integral I(S, α, ρ) (also the minimum of F (α, S)) is

min
ρ>0

α∈[0,2π]

I(S, α, ρ) =
m2,0(S) +m0,2(S)−

√

4 · (m1,1(S))2 + (m2,0(S)−m0,2(S))2

2

and is reached for ρ = 0 and α satisfying (3.4). This is in accordance with the fact
that the axis of least second moment of inertia passes through the origin.

The maximum of the integral I(S, α, ρ), if ρ 6= 0 is allowed, obviously does not
exist (i.e., the maximum is ∞). However, if ρ = 0 is assumed then

max
ρ=0

α∈[0,2π]

I(S, α, ρ) =
m2,0(S) +m0,2(S) +

√

4 · (m1,1(S))2 + (m2,0(S)−m0,2(S))2

2
.

Now, we define the ratio between

max
ρ=0

α∈[0,2π]

I(S, α, ρ) = max
α∈[0,π)

F (α, S) and min
ρ>0

α∈[0,2π]

I(S, α, ρ) = min
α∈[0,π)

F (α, S)
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as a measure for the elongation of S.

Definition 3.2. Let a given shape S. Then the elongation Est(S) of S is defined
as

(3.6) Est(S) =
m2,0(S) +m0,2(S) +

√

4 · (m1,1(S))2 + (m2,0(S)−m0,2(S))2

m2,0(S) +m0,2(S)−
√

4 · (m1,1(S))2 + (m2,0(S)−m0,2(S))2
.

Shape elongation measure, as defined by the Definition 3.6, has several desirable
properties. It reaches the minimal possible value of 1 for a circle. This matches
our perception that a circle has the lowest possible elongation. Also, if we consider
the rectangle R(t) whose edge lengths are 1 and t, then the elongation Est(R(t))
tends to ∞, as t → ∞. This is also in accordance with our perception. Let us
mention that Est(S) varies through [1,∞) and from the traditional reason is not
normalized to be ranging in the interval [0, 1], as preferred and mentioned in the
introduction. A disadvantage of the standard elongation measure is that all the
rotationally symmetric shapes but also some irregular shapes, have the elongation
Est(S) equal to 1. Those shape satisfy the conditions given in (3.5). In order to
avoid such problems, some generalization of Est(S) are suggested in [49].

Let us mention that there are also some naive methods to measure the shape
elongation. For example, the shape elongation can be measured as the ratio of
the edges of the minimum area rectangle which encloses the measured shape. It is
worth mentioning that such bounding rectangles are easy to compute [10].

3.4. Shape Circularity. Hu invariants were introduced almost 50 years ago [16].
Many related aspects have been investigated, but there is still an ongoing interest.
Recently, [47] considers geometric moment invariants and shows that the Hu invari-
ants are particular case of geometric invariants. A new related problem was, first
time, considered in another recent paper [56], where the authors consider shapes
which optimize certain invariants. The following theorem, which shows that the
first Hu invariant I1 = µ2,0(S) + µ0,2(S) is optimized by a circle, has been proved.

Theorem 3.1. Let S be a given planar compact shape. Then (a) I1(S) >
1
2π and

(b) I1(S) =
1
2π ⇔ S is a circle.

Such a nice result, which says that I1(S) = µ2,0(S)+µ0,2(S) reaches its minimum
1/(2π) if and only if S is a circle, suggests the following definition of a shape
circularity measure.

Definition 3.3. The circularity measure C(S), of a given shape S, is defined as

C(S) =
1

2π · (µ2,0(S) + µ0,2(S))
=

1

2π · I1(S)
.

The circularity measure C(S), defined as above, has several desirable properties,
as summarized in the following theorem.

Theorem 3.2. The circularity measure C(S) satisfies:

(a) C(S) ∈ (0, 1], for all shapes S.
(b) C(S) = 1 ⇔ S is a circle.
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(c) C(S) is an invariant w.r.t. similarity transformations.
(d) For each δ > 0 there is a shape S such that 0 < C(S) < δ.

Of course, the circularity, as one basic shape characteristics/descriptors, has
already been considered in the literature. There are several measures. The most
standard one considers the relation between the shape area and the shape perimeter
[40]. Exploiting the fact that the circle has the largest area among all the shapes
with the same perimeter, the most standard method defines the shape circularity
Cst(S) in the following way

(3.7) Cst(S) =
4 · π ·Area of S

(Perimeter of S)2
.

The measure Cst(S) satisfies the properties (a)–(d) listed in Theorem 3.2. The
proof is easy and straightforward. Notice that Cst(S) cannot be classified neither as
area based nor boundary based because it uses both interior points (the shape area
is needed) and boundary points (the shape perimeter is used for the computation).

Now we give several examples to illustrate the behavior of these two, C(S) and
Cst(S), circularity measures.

The first example is in Figure 3. Ten fish shapes are ranked with respect to their
measured C(S) circularity (the numbers given immediately below the shapes). The
obtained ranking (a)(b)(c)(d)(e)(f)(g)(h)(i)(j) is pretty much in accordance with
our perception.

If the same shapes are ranked with respect toCst(S), a different ranking (b)(a)(c)
(d)(e)(g)(h)(f)(i)(j) is obtained. Such a different ranking is expected, but also pre-
ferred, because the different rankings obtained suggest that a use of both measures
could increase the classification efficiency. The standard circularity measure Cst(S)
penalizes deep intrusions into the shape, because such intrusions lead to an essential
perimeter increase. Consequently, deep intrusions imply a lower Cst(S) circularity.
The measure C(S) is area based and does not penalizes such intrusions. This ex-
plains why the shape in Figure 3(a) has a higher measured C(S) circularity than
the shape in Figure 3(b). On the other hand, the measure Cst(S) penalizes in-
trusions into the shape in Figure 3(a) and assigns a higher measured circularity
Cst(S) to the shape in Figure 3(b). The eight position of the shape in Figure 3(f),
if ranked by Cst(S), can be explained on a similar way.

The second example is in Figure 4. The selected shapes illustrate the robustness
of C(S) and the sensitivity Cst(S). All four presented shapes have very similar
C(S) circularity even though the fourth shape (in Figure 4(d)) has a very high
noise level. Such obtained measures are caused by the fact that C(S) is an area
based measure and, because of that, is very robust. On the other hand, Cst(S)
can only cope with small levels of noise because it uses the shape perimeter for
the computation. Indeed, the shape in Figure 4(a) has more than 2 times higher
Cst(S) circularity than the shape in Figure 4(d).

The third example is in Figure 5. A big advantage of C(S) overCst(S) is demon-
strated by using simple synthetic shapes. All three (compound) shapes displayed
consist of three isometric circular discs–see Figure 5(a)–(c). In all three cases the
same the standard circularity measure Cst(S) (equal to 1/3) is assigned. This is
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(a):0.9579 (b):0.8755 (c):0.6765 (d):0.4506 (e):0.4385
(0.4881) (0.4937) (0.3508) (0.2733) (0.2679)

(f):0.3810 (g):0.3361 (h):0.2776 (i):0.1390 (j):0.0729
(0.1981) (0.2148) (0.2082) (0.1545) (0.0982)

Figure 3. Fish shapes are ranked with respect to their C(S) cir-
cularities (numbers immediately below the shapes). Cst(S) values
are in brackets.

a):0.7470 b):0.7520 c):0.7565 d):0.7412
(0.3155) (0.3039) (0.2289) (0.1367)

Figure 4. C(S) circularities of shapes with added noise are given
immediately below the shapes. The corresponding Cst(S) circu-
larities are in brackets.

in accordance with the definition, see (3.7), because all three compound shapes
have the same area and the same perimeter (the sum of perimeters of the shape
components). On the other hand, C(S) assigns different circularities C(S) to the
shapes in Figure 5(a)–(c). The computed circularities C(S) depend on the mutual
position of the discs inside the shape, what is our preference.

3.5. Family of Circularity Measures. The method used to define circularity mea-
sure C(S) allows an extension to a family of circularity measures [56]. It has been
shown that the measures from the family behave differently, implying that some of
them can be combined in order to increase the classification performance. The key
statements used for the extension of the C(S) measure to a family of circularity
measures are given by the following two lemmas. Proofs can be found in [56].
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(a): 0.7909 (b): 0.4540 (c): 0.2091

Figure 5. Measured circularity C(S) of a compound shape S
depends on the mutual position of the components of S. All three
compound shapes have Cst(S) circularity equal to 1/3.

Lemma 3.1. Let S be a planar compact shape whose centroid coincides with the
origin, and let a constant β > 0. Then the following statements hold

1

(µ0,0(S))β+1

∫∫

S

(x2 + y2)βdx dy >
1

πβ · (β + 1)

1

(µ0,0(S))β+1

∫∫

S

(x2 + y2)βdx dy =
1

πβ(β + 1)
⇔ S is a circle.

Lemma 3.2. Let S be a planar compact shape whose centroid coincides with the
origin and let β be a constant −1 < β < 0. Then

1

(µ0,0(S))β+1

∫∫

S

(x2 + y2)βdx dy 6
1

πβ · (β + 1)

1

(µ0,0(S))β+1

∫∫

S

(x2 + y2)βdx dy =
1

(β + 1)πβ
⇔ S is a circle.

The following definition comes naturally from the arguments from the previous
two lemmas.

Definition 3.4. Let S be a shape whose centroid coincides with the origin and
let a real β such that −1 < β and β 6= 0. Then the circularity measure Cβ(S) is
defined as

Cβ(S) =



















µ0,0(S)
β+1

(β + 1) · πβ ·
∫∫

S(x
2 + y2)βdx dy

, β > 0

(β + 1) · πβ ·
∫∫

S(x
2 + y2)βdx dy

µ0,0(S)β+1
, β ∈ (−1, 0).

It is worth mentioning that the measures Cβ(S), β ∈ (−1, 0) ∪ (0,∞), satisfy
the following properties:

(a) Cβ(S) ∈ (0, 1] for all planar shapes S.
(b) Cβ(S) = 1 ⇔ S is a circle.
(c) Cβ(S) is invariant with respect to similarity transformations.
(d) For each δ > 0 there is a shape S such that 0 < Cβ(S) < δ.



18 JOVIŠA ŽUNIĆ

For proof details we refer to [56].

Now we give some examples. More details are in [56]. Circularities were mea-
sured for the set of 54 masses from mammograms, combining images from the MIAS
and Screen Test databases [32], see Figure 6. Rangayyan et al. [32] assessed the
measures by classifying them as circumscribed/spiculated, benign/malignant, and
CB/CM/SB/SM, in two group and four group classification experiments. Their
best shape measure results for the three classification tasks were:

1. Circumscribed versus spiculated: 88.9% achieved by both Cst(S) and a
Fourier based shape factor.

2. Benign versus malignant: 75.9% achieved by the Fourier based shape factor.
3. Four-way discrimination: 64.8% achieved by both Cst(S) and the Fourier

based shape factor.

From Table 1 we see that the best results from using Cβ(S) occurred for β = 32
and were respectively better, worse, and equal to Rangayyan et al.’s. Circularity
measures from [15, 30] did not perform as well as Cβ(S).

CB CM

SB SM

Figure 6. Examples of the four classes of mammographic masses:
circumscribed benign (CB), circumscribed malignant (CM), spic-
ulated benign (SB), spiculated malignant (SM). The masses were
extracted from the mammograms on the left, and have been drawn
rescaled.

4. Boundary Based Shape Descriptors

Boundary based methods become more popular in the recent days. That is
caused mainly by a strong demand for a higher precision in image processing and
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circularity mammography
measure circ./spic. mal./ben. 4 groups
Cβ=1/8(S) 83.33 66.67 51.85
Cβ=1/4(S) 85.19 64.81 51.85
Cβ=1/2(S) 75.93 57.41 42.59
Cβ=1(S) 68.52 68.52 51.85
Cβ=2(S) 75.93 68.52 53.70
Cβ=4(S) 72.22 46.30 33.33
Cβ=8(S) 79.63 59.26 50.00
Cβ=16(S) 87.04 57.41 51.85
Cβ=32(S) 90.74 70.37 64.81

Cst(S) pix. 87.04 59.26 57.41
Cst(S) pol. 85.19 59.26 57.41
Haralick [15] 68.52 46.30 37.04
Proffitt [30] 51.85 42.59 25.93

Table 1. Applications of the circularity measures to classification
of mammographic masses. The second, third and fourth columns
report classification accuracies. Results for the best performing
measure for each task is highlighted in bold.

computer vision tasks. Another reason is that, due to the permanent development
in the image technology, a higher quality data can be provided. Despite boundary
based approaches are less robust and very often theoretically more complicated,
they have some obvious advantages. Apart from a higher precision, it is worth
mentioning that boundary based methods can cope with particularly extracted
boundaries and with objects which are linear in their nature (signatures, for ex-
ample). Obviously, the later objects cannot be treated by area based methods. In
addition, boundary based methods are usually faster to compute (the boundary
consists a smaller number of pixels than the whole shape does).

Notice that sometimes there is an easy (at least theoretical) extension of the
area based methods to their boundary analogues, or vice-versa. There are also
situations where this is not a simple task. An example could be the rectilinearity
measure [50] used to detect buildings on satellite images, whose area based analogue
is not discovered yet.

4.1. Line Moments. There is an obvious analogue for geometric (area) moments
introduced by (3.1). If a curve γ is given in an arc-length parametrization,

γ : x = x(s), y = y(s), s ∈ [0, τ ]

then the line moment ηp,q(γ) is defined as ηp,q(γ) =
∫

γ
x(s)py(s)qds. Obviously,

η0,0(γ) =
∫

γ
ds = τ equals the length of the curve γ. Of course, γ can be the

boundary ∂S of a bounded planar region S, but also it can be an open curve.
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Central moments ηp,q(γ) are defined as

ηp,q(γ) =

∫

γ

(

x(s) −
η1,0(S)

τ

)p

·

(

y(s)−
η0,1(S)

τ

)q

ds,

while the normalized moments ζp,q(γ) are defined as

ζp,q(γ) =
ηp,q(γ)

(η0,0(γ))1+p+q
.

Many of statements and methods based on a use of geometric (area) moments
have a straightforward extension to analogue statements based on a use of line
moments. Such an example are Hu invariants I1, I2, . . . , I7 listed in Section 3.1.
It is enough to replace the integrals

∫∫

S
xpyqdx dy, appearing in I1, I2, . . . , I7,

with their analogue path/line integrals
∫

∂S
x(s)py(s)qds, (where the boundary ∂S

is given in an arc-length parametrization form: x = x(s), y = y(s)) and all seven
invariants remain valid. Notice that it is crucial that the boundary ∂S is given in
an arc-length parametrized form in order to preserve the invariance.

4.2. Boundary based shape orientation. The standard method for the compu-
tation of the shape orientation, based on the axis of the least second moment
of inertia, has its boundary based analogue. Informally speaking, we can define
the shape orientation by the line which minimizes the line integral of the squared
distance of the boundary points to the line, or more formally by the line which
minimizes the integral

(4.1) I(α, ∂S, ρ) =

∫

∂S

p2(x, y, α, ρ) ds

where p2(x, y, α, ρ) is the distance from the point (x, y) ∈ ∂S to the line given in
the form X · sinα − Y · cosα = ρ. The boundary ∂S has to be is given in an
arc-length parametrization. Following the same formalism, as in the case of the
the standard method, we can deduce that the angle α which defines such a defined
shape orientation satisfies the following equation

(4.2)
sin(2α)

cos(2α)
=

2 · η1,1(∂S)

η2,0(∂S)− η0,2(∂S)
.

Exploiting boundary points, to define the shape orientation, gives additional
possibilities for new shape orientation methods. Some specific boundary features
can be involved. Notice that boundary details may not play any essential role when
work with area based methods. That is because changes in boundary details could
lead to very small changes in the area of shape and in related features.

The recent paper [27] defines the shape orientation by the angle α which maxi-

mizes the integral of the weighted squared lengths |prα
−−−−−−−−→
(x′(s), y′(s))|2 of the projec-

tions prα
−−−−−−−−→
(x′(s), y′(s)) of all the tangent vectors

−−−−−−−−→
(x′(s), y′(s)), to the shape boundary

∂S, onto a line having the slope α (see Figure 7). The definition is natural and well
motivated. The weights, dependent on the curvature at the boundary points, allow
us to tune the method behavior. For example, by a suitable choice of the weights,
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it is possible to give a higher impact to the straight sections on the boundary, or
to the sections with a high curvature. A formal definition follows.

Definition 4.1. Let a shape S be given. Let x = x(s), y = y(s), s ∈ [0, 1] be
an arc-length parametrization of the boundary ∂S. Also, let f(κ(s)) be a function
dependent on κ(s) which is the curvature of ∂S at the point (x(s), y(s)). The
orientation Of (S) of the shape S is defined by the slope α that maximizes the
integral

If (α, ∂S) =

∫

∂S

f(κ(s)) · |prα
−−−−−−−−→
(x′(s), y′(s))|2ds

of the squared lengths of the projections of all the tangent vectors of ∂S on this
line, weighted by the curvature at the boundary ∂S points.

y

α

a
−>

x

apr  [A
B]

>−

A

B

S

Figure 7. Projection of a tangent vector ~(x′(s), y′(s)) = ~AB onto
a line having the slope α.

An obvious advantage of the new measure is that it has tuning possibilities. Also,
Definition 4.1 enables a closed formula for the computation of the shape orientation.
This is shown by the following theorem (for a proof see [27]).

Theorem 4.1. Assume a given shape S and a function f(κ). Then the orientation
Of (S) satisfies

(4.3)
sin(2Of (S))

cos(2Of (S))
=

2
∫

∂S f(κ(s))x′(s) y′(s) ds
∫

∂S
f(κ(s))(x′(s)2 − y′(s)2) ds

where x = x(s), y = y(s), s ∈ [0, 1] is an arc-length parametrization of the boundary
∂S and κ(s) is the curvature of ∂S at the point (x(s), y(s)).

Examples in Figure 8 illustrate how a suitable choice of the weighting function
could lead to the preferred method behavior. The same bone has been framed
differently in each sub-picture. The orientations computed by the standard method
(see (3.4)) gives inconsistent orientations: 107.0◦, 120.4◦ and 131.0◦. Let us notice
that due to the nature of the object presented, the vertical orientation or, at least,
a nearly vertical orientation is preferred. Equally weighting every boundary point
(f(κ(s)) = 1) still produces rather different orientations for each frame (91.7◦, 95.0◦

and 97.4◦).



22 JOVIŠA ŽUNIĆ

(a) (b) (c)

standard method f(κ(s)) = 1 f(κ(s)) = e−0.01·κ(s) f(κ(s)) = e−0.05·κ(s)

(a) 107.0◦ 91.7◦ 91.7◦ 91.7◦

(b) 120.4◦ 95.0◦ 95.0◦ 91.7◦

(c) 131.0◦ 97.4◦ 97.4◦ 91.7◦

Figure 8. The same bone is captured in different frames and
orientations of each frame are computed by the standard method
and by using different weighting functions in (4.3).

However by using a weighting function f(κ(s)) = e−0.05·κ(s), higher weights are
given to boundary points with a small curvature (i.e., to the points on the straight
sections of the boundary), and the same orientation of 91.7◦ is computed for each
frame. In addition, the computed orientations are nearly vertical, as preferred.

The following discussion points out advantages of the measure given by Definition
4.1 over both standard method (3.4) and its analogue computed by (4.2).

First advantage relates to the situations where some of methods considered fail.
As already mentioned, due to the diversity of shapes, it is natural to expect that
there are always situations where the method used fails. The standard method for
the computation of shape orientation fails if the conditions in (3.5) are satisfied. The
method which is an analogue of the standard method, also fails if the corresponding
optimizing integral I(α, ∂S, ρ) (see (4.1)) is a constant function, i.e., when

η2,0(∂S) − η0,2(∂S) = 0 and η1,1(∂S) = 0.

A simple idea to overcome such problems was to consider a higher exponent 2N
in the optimizing integral (for more details see [45, 49]). The problem is that such
modified optimizing functions (integrals) do not allow a closed form solution. So,
higher exponents involved might be computationally very expensive.

On the other side, Definition 4.1 allows an additional option to overcome situ-
ations when the method does not work. Indeed, if the method fails for a certain
choice of weighting function, it could work for another choice of them. I.e., if
the weighting function f(κ(s)) is replaced with another weighting function g(κ(s)),
the situation could be changed (for shapes which are not rotationally symmetric),
meaning that the new optimizing function Ig(α, ∂S) becomes a nonconstant func-
tion, with a well-defined maximum. Then, the optimizing function Ig(α, ∂S) can
be used to define a reliable orientation of S.
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But a constant optimizing function is not the only problem. The problem is also
if the optimizing function has no distinct extreme values. This would imply that the
computed orientation is strongly dependent on noise or on the digitization process
applied. In such situations a change of the weighting function f(κ(s)) could lead
to more stable and more reliable orientations being computed. This is illustrated
by the example in Figure 9. The shape in in Figure 9(a) has no intuitively clear
orientation.

(a) (b) 0 5
0

0.2

0.4

0.6

0.8

1

 

 

Standard Method
f(κ(s))=1

f(κ(s))=e−10.00κ(s) 

f(κ(s))=κ(s)5.0

standard method f(κ(s)) = 1 f(κ(s)) = e−10.0κ(s) f(κ(s)) = κ(s)5.0

123.0◦ 17.3◦ 116.5◦ 166.8◦

Figure 9. Graphs of the optimization functions used to orient the
shape in (a) are scaled such that their maximum becomes equal to
1, as displayed in (b).

The graphs displayed in Figure 9(b) correspond to the different waiting functions
used to compute the orientations. Naturally, if the minima and maxima of the
optimizing functions are more distinct then the shape is ‘more orientable’ (the
shape orientability problem is discussed in [53]). I.e., the computed orientation is
more reliable. In view of the presented example it can be said that the choice of
f(κ(s)) = κ(s)5 or f(κ(s)) = κ(s)−10 leads to the computed orientations which
are more reliable than the orientations computed by the standard method or if the
weighting functions f(κ(s)) = 1 is used. Even that the orientation computed by
using f(κ(s)) = κ(s)5 and f(κ(s)) = κ(s)−10 (166.8◦ and 116.5◦ respectively) differ
essentially, they are both understood as very reliable because they correspond to
the distinct maxima of the corresponding optimizing functions.

As mentioned, the shape in Figure 9(a) has not an intuitively clear orientation
but notice that, for certain image processing tasks, this is not a problem. What is
crucial is that the computed orientation is reliable. E.g., in a robot manipulation
task, all copies of a given product would be positioned consistently if the computed
orientation is reliable, independently does the computed orientation match human
perception or not.

Another benefit from having a tunable method (i.e., weighting functions, in this
case) is illustrated by a turkey shape in Figure 10. For this shape the standard
method gives an orientation of 83.6◦, but this orientation is not reliable. The op-
timization function varies between 0.0059 and 0.0065 and the corresponding graph
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is rather flat (see the graphs in Figure 10). Since the standard method does not
give a distinct orientation, small deviations on the shape boundary (caused by the
noise or by the digitization process applied) could lead to an essential deviation
of the computed orientation. Indeed, when some noise is added to the shape in
Figure 10(a) the computed orientation (by the standard method) changes to 68.8◦

(Figure 10(b)) and to 97.4◦ (Figure 10(c)), depending on the noise level. Thus, the
standard method is not suitable to be applied to the shape in Figure 10(a) and its
“noise” appearances in Figure 10(b) and Figure 10(c). That is in accordance with
the values in the table below.

|µ1,1(∂S)| |µ2,0(∂S)− µ0,2(∂S)|

Figure 10(a) 0.000063 0.000658
Figure 10(b) 0.000311 0.000727
Figure 10(c) 0.000086 0.000664

The values of |µ2,0(∂S) − µ0,2(∂S)| and |µ1,1(∂S)| are almost zero, and, conse-
quently, the optimizing function F (α, S) is almost constant. So, it is not possible
to distinguish the extreme values of F (α, S) accurately.

However, a reliable orientation of the shape in Figure 10(a) can be computed by
the method given by Definition 4.1. Indeed, if the weighting function is f(κ(s)) =
e−1.5κ(s) then the shapes in Figure 10(a)-(c) are oriented consistently. The reached
consistency among the orientations computed is expected because the weighting
function f(κ(s)) = e−1.5κ(s) gives a small weights to high curvature points. In this
way the noise effects are minimized.

On the other side, if the weighting functions f(κ(s)) = 1 and f(κ(s)) = κ(s)1.5

are used, then the computed orientations are highly dependent on the noise–see the
table in Figure 10. This is because these weighting functions give reasonably high
weights to a high curvature points.

4.3. Convexity Measure. One of the mostly employed shape descriptors is the
shape convexity. Over the years many convexity measures have been developed
(e.g., [3, 20, 26, 31, 36, 37, 51, 52]) and have been applied to tasks such as image
segmentation, object classification, objects recognition, etc. Here we present a
boundary based convexity measure developed in [52]. The measure can be applied
to both closed and open curves. We start with the following definition of convex
curves.

Definition 4.2. A curve γ is convex if and only if for each two points A and B
on the curve γ the open line segment (AB) does not intersect the curve γ (i.e.,
(AB) ∩ γ = ∅) or (AB) completely belongs to the curve γ (i.e., (AB) ⊂ γ).

It is easy to see that the Definition 4.2 is equivalent to a very common definition
of a convex curve which says that a given curve γ is convex if and only if for each
point A ∈ γ there is a line l such that A ∈ l and the curve γ completely lies in one
of the closed half planes determined by the line l. Based on Definition 4.2 we are
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Standard Method
f(κ(s))=1

f(κ(s))=κ(s)1.50

f(κ(s))=e−1.20κ(s) 

(a) (b) (c)

Standard method f(κ(s)) = 1 f(κ(s)) = κ(s)1.5 f(κ(s)) = e−1.5κ(s)

(a) 83.6◦ 106.5◦ 123.7◦ 117.9
(b) 68.8◦ 112.2◦ 135.1◦ 117.9
(c) 97.4◦ 26.3◦ 3.4◦ 120.3

Figure 10. Orientation of the shape in (a) with the different level
of noise added in (b) and (c). The graphs corresponding to the
new method (for different weighting functions) are scaled such that
their maximum is 1, while the graph of the optimizing function
used in the standard method is given on its natural scale. The
table includes the computed orientations.

able to define a new convexity measure for single curves, but also for disconnected
curves consisting of several arcs.

Definition 4.3. Let γ = γ1 ∪ · · · ∪ γn be a curve that consists of n > 1 curve
segments, and let A and B be two randomly selected points from γ. The convexity
measure M(γ) is defined as the probability that one of the following two events
occur:

• the open straight line segment (AB) does not intersect γ
(i.e., (AB) ∩ γ = ∅), or

• the open straight line segment (AB) completely belongs to γ
(i.e., (AB) ⊂ γ).

The measure M(γ) has the following desirable properties (γ = γ1 ∪ · · · ∪ γn is
not a necessarily connected curve):

(a) M(γ) ∈ (0, 1].
(b) M(γ) = 1 if and only if there is a convex curve ρ such that γ ⊂ ρ.
(c) M(γ) is invariant under similarity transformations.
(d) for any ε > 0 there is a curve γ such that M(γ) < ε.
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A draw-back of M(γ) is that a closed formula for the computation of M(γ) can
be computed reasonably easily only in particular cases. More over in most image
processing tasks the equation of γ or the equations of γ-segments remain unknown.
In such cases it is only possible to estimate M(γ). There are straightforward
methods to do this quickly and accurately.

Now, we give several examples to illustrate how M(γ) acts. The first example in
Figure 11 demonstrates howM(γ) acts in situations if there is some overlap between
objects or there is no a clear difference between foreground and background pixels.
In such cases only fragments of the boundary can be extracted; nevertheless, it
would still be worth computing shape information from the available data and
M(γ) can provide some.

(a) (b) M = 0.309 (c) M = 0.767 (d) M = 0.708

Figure 11. (a) Extracting the boundary of Lena’s hat is difficult
due to poor contrast in places as well as clutter. (b) After edge
detection and linking, the edge segments relating to the hat have
been manually selected. (c) The outer boundary curves. (c) Gaps
between the outer boundary curves completed by straight line seg-
ments. The new convexity measure M(S) can cope with all those
situations.

The second example is in Figure 12. Handwritten digits are shown. The ranking
the digits according to the convexity measure M(γ) demonstrates a good appli-
cation potential. Digits “1”, “4”, “5” and “8” are separated correctly, even that
there are substantial natural variations, not only in their overall shape, but also in
topology. For instance, one of each of the “0” and “2” digits one example is self in-
tersecting while the other is not. Even small, the example presented indicates that
the convexity measure would be a useful property for classification of the digits.

The third example illustrates how M(γ) can be used for the signature recog-
nition tasks. The signatures presented are treated as multiple curve segments–see
(see Figure 13). Again noticeable variability is evident within each individual. Con-
siderably lower convexity values are obtained because these curves (i.e., signatures)
are more complex than the individual digits in Figure 12. It can be seen from the
ranking by M(γ) that convexity is a sufficient descriptor for classification in this
small example.



SHAPE DESCRIPTORS FOR IMAGE ANALYSIS 27

0.512 0.528 0.538 0.581 0.590 0.611 0.625 0.648 0.677 0.678

0.681 0.694 0.762 0.775 0.841 0.877 0.887 0.936 0.947 1.000

Figure 12. Handwritten digits ordered by their M(γ) convexity values.

0.067 0.083 0.097

0.113 0.169 0.183

0.225 0.247 0.256

Figure 13. Signatures of Walt Disney, Henri Matisse and Dr.
Seuss ordered by their M(γ) convexity values.

5. Multi-component Shape Approach

As mentioned, there is no method for the computation of shape orientation
which is dominant in all situations. That is a reason why many other methods,
different from standard one, are developed. New applications cause new demands
for particular method performances. The recent paper [55] has introduced a new
method for the computation of shape orientation with a particular request that
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method should be applicable to multi-component shapes. The method is described
as follows:

– Let S be a given shape, and consider all the line segments [AB] where
A,B ∈ S.

– Let −→a = (cosα, sinα) denote the unit vector in the direction α.
– Also, let pr−→a [AB] be the projection of the line segment [AB] onto a line
parallel to −→a , while |pr−→a [AB]| denotes the length of such a projection (for
the notations see Figure 14).

x

y

A

B

C

D

S

α

a
−>

pr  [A
B]

>pr  [C
D]

a
>−

a−

Figure 14. Projections of all the line segments whose endpoints
lie in S are considered, irrespective of whether the line segment
intersects the boundary of S (e.g., the line segment [CD]) or not
(e.g., [AB]).

Then, we define the orientation of the shape S by the direction α that maximizes
the integral of the squared lengths of the projections pr−→a [AB] onto a line having
this direction. A formal definition follows.

Definition 5.1. The orientation of a given shape S is defined by the angle α where
the function

(5.1) G(α, S) =

∫∫∫∫

A=(x,y)∈S
B=(u,v)∈S

|pr−→a [AB]|2dx dy du dv

reaches its maximum.

Informally speaking, Definition 5.1 defines the orientation of a given shape S by
the slope of a line that maximizes the total sum of squared lengths of projections
of all straight line segments whose end points belong to S (see Figure 14).

Interestingly, even though Definition 5.1 and the Definition 3.1 come from dif-
ferent motivations, and even the optimizing functions F (α, S) and G(α, S) are
different, it has been shown that the orientations computed by these two methods
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Figure 15. An embryonic tissue image (on the left) is presented
as a multi-component shape (on the right). The desired computed
orientation is presented by the arrow.

are the same. Indeed, Theorem 5.1 (for a proof see [55]) shows that for a fixed
shape S the quantity G(α, S) + 2 ·m0,0(S) · F (α, S) is the same for all α ∈ [0, 2π).
Furthermore, G(α, S) + 2 ·m0,0(S) ·F (α, S) = constant implies that the maximum
of G(α, S) and minimum of F (α, S) are reached at the same points, i.e., the angle
where G(α, S) reaches the maximum must be the angle where F (α, S) reaches its
minimum. So, the shape orientations computed by Definition 3.1 and Definition
5.1 coincide.

Theorem 5.1. Let a shape S be given. Then

G(α, S) + 2 ·m0,0(S) · F (α, S) = 2 ·m0,0(S) · (m2,0(S) +m0,2(S))

is true for all α ∈ [0, 2π].

Definition 5.1 has an essential advantage over Definition 3.1 because it has a
natural extension to compound (i.e., multi-component) shapes. Just to mention
that the dealing with multi-component objects is of a great importance because in
many situations, several single objects usually appear as a group and act together
(e.g., blood cells, vehicles on the road, fish shoal or group of people (as in Figure
16), etc). Also, in many situations, it is suitable to consider a single object as a
multi-component one, consisting of many components defined with respect to some
natural criteria (as an embryonic tissue displayed in Figure 15, or materials micro
structures, wood textures, etc). Further, a sequence of the same object appearing
on a sequence of frames (e.g. a walking human in Figure 18) can be understood as
as a multicomponent shape.

Surprisingly, the orientation of multi-component shapes has not been intensively
studied in literature yet. Recently, [55] has introduced a method for computation
of the orientation of multi-component shapes, presented in 2D images. The method
is theoretically well founded, and thus, its behavior can be well understood, but
also predicted to some extent, which is always an advantage.
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It is worth mentioning that there is no an easy and straightforward way to com-
pute the orientation of a multi-component shape from the orientations (computed
by some of the existing methods for single component shapes) of its components. In-
deed, a very natural idea would be to compute the orientation of a multi-component
shape from the orientations assigned to its components, probably weighted by some
coefficients computed from the ‘component importance’ (e.g. the component size
or its relative position inside the shape as whole). However, the problem is that a
huge majority of methods define the shape orientation by a line (not by a vector).
This implies an ambiguity of 180 degrees (e.g. the computed orientations α and
α + 180◦ are assumed to be the same). So, if S1, S2, . . . , Sn are components of a
multi-component shape S, then most of the existing methods would compute their
orientations as ϕ1 + a1 · 180

◦, ϕ2 + a2 · 180
◦, . . . , ϕn + an · 180◦, where the numbers

a1, a2, . . . , an are arbitrarily chosen from {0, 1}. Thus if, in the simplest variant,
the orientation of multi-component shape S = S1∪S2∪· · ·∪Sn is computed as the
average value of the orientations assigned to its components, then the orientation
of S would be computed as

(ϕ1 + a1 · 180◦) + . . .+ (ϕn + an · 180◦)

n
=

ϕ1 + . . .+ ϕn

n
+

(a1 + . . .+ an) · 180◦

n

and obviously, for different choices of a1, a2, . . . , an, the computed orientations are
inconsistent (i.e., they could differ for an arbitrary multiple of the fraction 180◦/n).
This is obviously unacceptable.

As mentioned, Definition 5.1 allows a straightforward extension to the multi-
component shapes, as given by the following definition.

Definition 5.2. Let S be a compound shape which consists of m disjoint shapes
S1, S2, . . . , Sm. Then the orientation of S is defined by the angle that maximizes
the function Gcomp(α, S) defined by

(5.2) Gcomp(α, S) =

m
∑

i=1

∫∫∫∫

A=(x,y)∈Si

B=(u,v)∈Si

|pr−→a [AB]|2dx dy du dv.

The previous definition enables an easy computation of the orientation of com-
pound objects, as shown by the following theorem (see [55] for the proof details).

Theorem 5.2. Let a compound shape S, consisting of m disjoint shapes S1, S2, . . . ,
Sm, be given, and let the function Gcomp(α, S) be defined as in (5.2).

The angle α where the function Gcomp(α, S) reaches its maximum satisfies the
following equation

(5.3)
sin(2α)

cos(2α)
=

2 ·
∑m

i=1 m1,1(Si) ·m0,0(Si)
∑m

i=1(m2,0(Si)−m0,2(Si)) ·m0,0(Si)
.

The new method has some specific properties which appear to be very desirable
when computing the orientation of multi-component shapes. These properties do
not hold if the ‘single component’ methods are applied to multi-component shapes.
Some of such properties are listed below as separate remarks.
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Remark 5.1. Any component Si, of a compound shape S = S1 ∪ · · · ∪ Sm, which
cannot be oriented by optimizing G(α, Si) (i.e., G(α, Si) = constant) will not con-
tribute to (5.3), and is therefore ignored in the computation of Gcomp(α, S). That
is because G(α, Si) = constant implies m1,1(Si) = 0 and m2,0(Si) = m0,2(Si).

Remark 5.2. If all components of S have identical orientation according toG(α, S)
then this same orientation is also computed by Gcomp(α, S).

The weighting given to the shape components in (5.3) causes a big influence of
the larger components to the computed orientation. For instance, let a compound
shape S which consists of shapes S1 and S′

2 such that the shape S′

2 is the dilation
of a shape S2 by a factor r, i.e., S′

2 = r · S2 = {(r · x, r · y) | (x, y) ∈ S2}. Then,

m0,0(S
′

2) = r2 ·m0,0(S2), m1,1(S
′

2) = r4 ·m1,1(S2),

m2,0(S
′

2) = r4 ·m2,0(S2), m0,2(S
′

2) = r4 ·m0,2(S2).

Entering these estimates into (5.3) we obtain that the orientation α of the com-
pound shape S = S1 ∪ S′

2 should be computed from

(5.4)
sin(2α)

cos(2α)

=
2 ·m1,1(S1) ·m0,0(S1) + 2 ·m1,1(S

′

2) ·m0,0(S
′

2)

(m2,0(S1)−m0,2(S1)) ·m0,0(S1) + (m2,0(S′

2)−m0,2(S′

2)) ·m0,0(S′

2)

=
2 ·m1,1(S1) ·m0,0(S1) + 2 · r6 ·m1,1(S2) ·m0,0(S2)

(m2,0(S1)−m0,2(S1)) ·m0,0(S1) + r6 · (m2,0(S2)−m0,2(S2)) ·m0,0(S2)
.

Obviously, the influence of S′

2 to the computed orientation of S could be very big,
if the dilation factor r is much bigger than 1. This suggests a modification of (5.3)
to enforce different weighting (as a function of the components area), assigned to
the shape components

(5.5)
sin(2α)

cos(2α)
=

2 ·
∑m

i=1 m1,1(Si)/m0,0(Si)
∑m

i=1(m2,0(Si)−m0,2(Si))/m0,0(Si)
.

If the orientation α of S = S1 ∪ S′

2 = S1 ∪ r · S2 is computed by (5.5) then it
satisfies

sin(2α)

cos(2α)

=
2 ·m1,1(S1)/m0,0(S1) + 2 · r2 ·m1,1(S2)/m0,0(S2)

(m2,0(S1)−m0,2(S1))/m0,0(S1) + r2 · (m2,0(S2)−m0,2(S2))/m0,0(S2)
.

So, the impact of an increase of r to both nominator and denominator is smaller
than if (5.3) is applied directly (see (5.4)).

Further, it is not difficult to imagine situations where the size of components
should have no effect on the computed shape orientation. For instance, objects
(i.e., components of a compound object) may be of the same size in nature, but
appear as objects of a different size in the image due to varying distances from the
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camera. If we would like to avoid any impact of the size of the components to the
computed orientation, then we can use the following formula

(5.6)
sin(2α)

cos(2α)
=

2 ·
∑m

i=1 m1,1(Si)/(m0,0(Si))
2

∑m
i=1(m2,0(Si)−m0,2(Si))/(m0,0(Si))2

.

In the view of the previous simple example, the computed orientation of S =
S1∪S′

2 = S1∪r ·S2 is the same for each r > 0. Indeed, if the last formula is applied
then the computed orientation α satisfies

sin(2α)

cos(2α)

=
2 ·m1,1(S1)/(m0,0(S1))

2 + 2 ·m1,1(S2)/(m0,0(S2))
2

(m2,0(S1)−m0,2(S1))/(m0,0(S1))2 + (m2,0(S2)−m0,2(S2))/(m0,0(S2))2
.

Thus, r does not have any impact to the computed orientation.

The behaviour of the shape orientation method, based on the new multi-compo-
nent approach, introduced in [55] is demonstrated on several examples.

First, we consider examples in Figure 16. Obvious difficulties are apparent in
Figure 16(a) in which most of the components are at best only moderately oriented,
while many have no distinct orientation, leading to considerable variability in indi-
vidual orientation estimates. Nevertheless, the overall orientation (formula (5.5) is
used) is correctly determined.

In Figure 16(b) a shoal is presented. The orientation of most of fish in the
shoal is well defined. Fish orientations (in the most cases) are coincident with the
direction of shoal motion. The same orientation is obtained if the formula (5.5) is
applied to the shoal as a compound object. Notice that the standard method gives
an unacceptable shoal orientation.

Similar discussion holds for the silhouettes of men presented in Figure 16(c).
Images in Figure 17 demonstrates an interesting and very desirable property

of the multi-component approach. The central pair of arrows are the orientations
shown previously in Figure 16. In addition, the each image was split into two parts
by a vertical line, and the orientations were calculated separately for each sub-set
of components. Whereas the the new method produces a consistent orientation
in both cases, the standard method’s orientation varies considerably and does not
much our perception.

The third example is in Figure 18 and is related to the, so called, outlier de-
tection problem. More precisely, the application is gait recognition and the binary
data is taken from the NLPR Gait Database [46]. The binary masks were generated
and provided by Wang et al. [46] using background subtraction but, as noted by
the authors, many segmentation errors remain. This causes that the silhouettes are
often fragmented into multiple components. Although most of these can be readily
corrected using standard morphological operations there remain larger errors that
would need to be identified and processed separately. To apply the multi-component
shape approach here, the set of blobs in each image frame is considered as a sin-
gle component. So far, we considered multiple components distributed spatially
within a single image, in this application the multiple components are distributed
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(a) blood cells (b) shoal (c) people

Figure 16. Presented objects are treated as components of a
multi-component shape. Orientations were computed by (5.5)–
shorter black arrows, and by the standard method–long gray ar-
rows.

Figure 17. Orientations computed separately for the left and
right halves of the images, and also for the complete images. Ori-
entations computed by (5.5) are given by shorter dark arrows; ori-
entations computed by the standard method are given by long light
arrows.

temporally across the sequence of images. Since we assume that all frames in the
sequence have the same importance, the weighting for each component is set to be
independent of size, and therefore (5.6) is used to compute orientation. Also, a
natural expectation is that if the components are fairly consistently oriented, then
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faulty segmentation is likely to result in atypical component orientations. Two
examples are given in Figure 18. The difference in orientation caused by removing
the least consistent component (i.e., image frame) is computed for up to half the
number of components, and the frames are replotted with darkness proportional to
their difference values. The remaining half of the frames are considered as inliers
and their differences are ignored. It can be seen that in Figure 18(a) there has
been some kind of error in the original processing chain that produced the binary
images, and the person’s leading leg has been displaced. In Figure 18(b) the quality
of change detection at the beginning of the sequence is poor, which is more visi-
ble from Figure 18(c) and Figure 18(d). In both cases these segmentation errors
have been identified as orientation outliers (indicated by the darker frames below).
In Figure 18(b) there is a second instance of poor change detection two thirds of
the way through the sequence, which has not been clearly identified as containing
outliers.

6. Conclusion

In this article we have given an overview of some of standard shape based tech-
nique used in object classification, object recognition and object identification tasks.
Also, some recent developments were discussed, mainly those introduced by the
author and his collaborators. We have started with area based shape descriptors,
which were most popular in the past because of their robustness and simplicity.
Moments, Hu moment invariants, shape elongation, and the standard method for
the computation of shape orientation are overviewed. A new circularity measure,
derived from the first Hu moment invariant is also studied and its extension to a
family of circularity measures is introduced. This illustrates that the classification
efficiency can be improved by using several measures devoted to estimate the same
shape property (in this case, the shape circularity). Illustrative experiments are
provided in order to explain how the methods presented work.

The next, attention has been paid to the boundary based shape descriptors.
Boundary based shape descriptors become more popular, in the recent days, be-
cause they are more sensitive and can be used in high precision tasks. Particularly,
they are suitable for object and person identification tasks, which is very important
due to a strong demand for high precision identification tools (e.g., in crime pre-
vention applications). Some area based shape descriptors can be easily extended
to their boundary based analogues (e.g., Hu moment invariants [9]), but this is
not always possible. It is worth mentioning that boundary based shape descriptors
have additional advantages over area based ones. For example, boundary based
descriptors are able to cope with objects with particularly extracted boundaries,
they are usually faster to compute, and they can be applied to the objects which
are linear in their nature (digits, signatures, face details, etc).

Very often, different applications require different method performances. Thus,
tuning possibilities are always welcomed when a shape descriptor/measure is cre-
ated. It has been described here how to define the shape orientation by using the
curvature (at the shape boundary points) as a possible tuning parameter. Several
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(a)

(b)

(c) (d)

Figure 18. Two gait sequences. (a),(b) For each sequence the
extracted silhouettes are displayed and underneath is an intensity
coding of each silhouette to show its degree of being an outlier
(dark means high likelihood). (c),(d) a magnified view of the most
outlying silhouette from each sequence and its neighbours.

benefits are obtained. E.g., the behavior of a particular measure can be controlled,
more distinct shape orientations can be computed, shapes which are not orientable
by certain methods become orientable when use a suitable choice of the tuning pa-
rameters, etc. In addition, we have discussed one of convexity measures which can
be applied to open curve segments. Simple examples which illustrate the applicabil-
ity of such a convexity measure to the digits recognition and signature classification
tasks are given.

Finally, a recent multi-component shape analysis approach is discussed. Namely,
very often it is better to consider a group of objects as a single multi-component
object (fish shoal, vehicles on a road, etc). Also, sometimes is more convenient
to treat a single object, as a multi-component one, consisting of naturally defined
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components (e.g., cellular materials like bones, artificially tailored materials, words
or signatures decomposed onto characters, etc). Another possibility is to consider
an appearance of the same object in a frame sequence as a multi-component object.
An application to the detecting outliers, in a sequence of images, is given. In
a similar way, an unusual behavior of a person can be detected (could be of an
interest in the crime prevention).

To close this overview article, the author believes that challenges and possibili-
ties for further performance improvements, in object classification, recognition and
identifications applications, lie in new boundary based approaches, rather than in
the area based ones.

Due to the luck of space, 3D shape descriptors are not discussed. Just to mention
that the recent developments in image technologies made 3D data widely available.
Also, methods for the reconstruction of 3D objects from the corresponding 2D
images are already well established. Notice that shape descriptor techniques are
particularly suitable when working in 3D space. This is because shape descriptors,
as global 3D object features [5, 25, 28], require much less time for the processing
than local based features do (simply, there can be too many of them when working
in 3D space).
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[53] J. Žunić, P. L. Rosin, L. Kopanja, On the orientability of shapes, IEEE Trans. Image Pro-
cessing 15 (2006), 3478–3487.
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