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1. Introduction

The interdisciplinary field of imaging science, including image processing, image
analysis, image understanding and visualization, is undergoing a very rapid devel-
opment. Closely tied to advancements in technology, digital imaging and digital
image processing, have grown to, not only become very important parts of the sci-
entific world of information processing, but also to become important parts of our
everyday lives, in the sense that imaging and image processing are integrated in
both society and science.

40
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Together with the development of science and technology, imaging has become a
rather general term, related not only to, as traditionally understood, capturing of
light reflected of a two-dimensional (2D) surface, but also the measuring many other
physical properties of objects of interest, in two or more dimensions. Such different
types of imaging, naturally create rather different types of images. These images
have in common the acquisition of, in some sense, spatially distributed measure-
ments and they, in general, constitute a valuable source of information about the
observed objects. “Visible” is not always in focus any longer; the challenge became
to capture images of objects we cannot see (distant stars, atomic-size objects, parts
of a living human body, unborn babies, blood flow), or images of unconventional
properties of objects (heat, density, water content, etc). To be able to understand
and interpret such images, the observer has to know what physical property is
expressed and how that property relates to the intensity levels expressed in the
image.

Essentially all imaging techniques provide some kind of geometric information
about the object: some provide information about anatomy and/or function (e.g.,
magnetic resonance angiography–MRA, positron emission tomography–PET), some
show topographic properties of an object (radar, ultrasound), others may provide
very detailed spectral or temporal information (hyperspectral or high speed cam-
eras). The acquired data are, in general, organized in a way that preserves some
spatial structure of the object of interest, even if that is not necessarily the main
observed property; this analogy with the traditional concept of an image is why the
process of creating such data structures is called imaging, and the data themselves–
images.
Digital images. In most application areas of imaging sciences, information about
some objects of interest, captured in images, needs to be extracted, visualized,
manipulated and analysed. When addressing such tasks, we more and more rely
on the power of computers. Computers can handle huge amounts of data and
accomplish many tasks, primarily those defined in terms of processing large sets
of numerical values, much faster, and more reliably than humans can. Connected
with digital computers inability to represent continuous information, the imaging
process is generally assumed to, instead of capturing a continuum of an observed
piece of space containing objects of interest, only observe a sample of points. In
such a way, the image domain is discretized and mapped onto a discrete set of
points.

The image sample points are often regularly distributed in a grid, and are, in
many cases, addressed by integer coordinates. Each such grid point, in some sense,
represents a portion of the observed continuous space (often a Voronoi region of the
point, i.e., the part of the image space which is closer to the observed grid point
than to any other grid point). Every image element (called pixel in 2D, voxel in 3D,
or spel–spatial element–in the general case) is, in the imaging process, assigned a
value corresponding to the intensity of the physical property observed in that piece
of continuous space.

Despite us referring to the “value” or “intensity” of an image element, the image
function may not be a scalar function and these words may well refer to a vector
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of values instead. For example, in a typical colour image, every image point is
assigned, not one, but three intensities: red, green, and blue, or RGB for short.

The observed physical property can essentially never be measured perfectly and
without error. In addition, the obtained values are stored in limited memory space
in a computer. Therefore, the range of the image function is usually restricted to
a set of integers (or fractions with common denominator). This process is called
quantization. Discretization (sampling) and quantization, applied together to an,
initially continuous, image function (theoretically continuous), lead to what is called
a digital image, where both the domain and the range are discrete and limited. The
number of sample points per unit (density of sampling) is often referred to as image
resolution (spatial, spectral, time), where higher image resolution in general pro-
vides more information about the imaged objects, and most often better subsequent
analysis results. (It should be noted that this is not really a strict usage of the no-
tion of resolution, since it does not say what we actually can resolve in the image;
the latter is dependent on the physics of the imaging device and not on the number
of pixels in an image.) Unfortunately, to increase image resolution deliberately
is seldom possible; resolution is imposed by the imaging conditions. Therefore, a
challenge within the field of image analysis is to develop creative methods that are
capable to utilize and extract as much as possible from the data that is available.
Our work summarized in this paper, is in line with this challenge of overcoming
limitations of a given spatial resolution and to increase the quality of image analysis
results by utilizing the available information as well as possible.
Segmentation. No matter what physical property is imaged, it is practically never
exhibited so that in creates well defined and homogeneous regions. Imprecision is
a result of imaging conditions, like noise or limited resolution, but also of the prop-
erties of the imaged objects. This makes it difficult to clearly separate and outline
different objects appearing in the image. Image segmentation aims at defining
the extents of the different objects in the image by partitioning the image into
a number of regions characterized by a certain intra-component homogeneity and
inter-component discontinuity. This is generally considered to be both the most
important and the most challenging task in image processing. A decision if a point
belongs to the object of interest, or not, is crucial for the quality of all following
analysis steps and is often very difficult to make.

In an ideal case, a one-to-one correspondence between the set of image intensities
and the set of image components exists and a partitioning can be based on a
straightforward classification of pixel intensities. However, even in such an ideal
case, discretization of the continuous image space leads to ambiguous situations
where one pixel may be partly covered by more than one object in the image. The
intensity assigned to such a pixel is a mixture of the intensities associated with the
corresponding “pure” components.

However, segmentation is traditionally performed in a crisp way, where each
image element is given only one label, i.e., a pixel is completely associated to one
single image component. This type of crisp segmentation does not allow partial
belongingness of a pixel to an object, and a hard decision of the belongingness has
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to be made. Intuitively, some kind of thresholding is applied and the crisp clas-
sification of a “mixed” pixel as belonging to only one of the image components is
performed. In less ideal and more general cases, the presence of noise excludes the
possibility of a straightforward classification based on individual pixel intensities
only, and more complex, sophisticated, and task dependent segmentation methods
are applied, often utilizing spatial information and/or some type of a priori knowl-
edge in addition. Different segmentation methods deal with (different types of)
noise in different, more or less successful, ways; however, the issue of mixed border
pixels remains, being caused by discretization itself.

Even for the simplest case, where the image only contains one object and the
segmentation task reduces to that of defining what is foreground (object) and what
is background, it starts to be clear that a segmentation which leads to a binary
(two-valued) image as a result, where object points are mapped to one, or “white”,
and nonobject points (background) to zero, or “black”, cannot handle uncertainties
and heterogeneity of object properties very well. Despite the ability of the human
visual system to provide an intuitive perception of an object as a whole, also in the
presence of vague borders and “variability” in the image, it is observed when looking
at small regions of an image, that humans can no longer make clear statements
whether elements belong to an object or not. Our perception seems to define
belongingness of image elements to an object not in a binary (crisp), but more
in a graded, or fuzzy, manner. This observation can be successfully transferred
and utilized in the field of digital image processing; to handle uncertainties and
heterogeneity of object properties appropriately, the suggested methods should be
fuzzy, as well, [1, 62]. More precisely, it is, in general, beneficial to perform a fuzzy
segmentation of an image. Such an approach allows image elements to belong to
an object to some extent, and therefore crisp decisions at this early analysis step
are avoided. In this way, the risk of making early wrong decisions about object
belongingness is reduced, and a larger amount of information is preserved and can
be used later in the process.

The result of a fuzzy segmentation of an image containing a single object is a
grey-level image of the object of interest, where object points are “white”, back-
ground is “black”, and grey-levels in between correspond to partial belonging of
the points to the object, determined according to intensity, geometric, or other
information available from the image.

To fully exploit the fuzzy framework, appropriate mathematical theories and
algorithms for handling fuzzy discrete data are needed, not only for image segmen-
tation, but in all steps of the image analysis process. There are many challenges to
address and many questions to answer on the way of developing such. To list just
a few: How are objects to be mathematically defined in fuzzy digital setting, to
best address graded composition and hanging-togetherness of the image elements?
How are fuzzy boundaries to be defined satisfying a Jordan boundary property?
What are the appropriate algorithms to extract these entities from scenes in such
a way to satisfy relevant definitions? After a discrete fuzzy spatial set (object) is
extracted, how to proceed with the analysis and what analysis tools to use? How
to, in the end, reach crisp nonambiguous results from the fuzzy data?
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Figure 1. Examples of different object representations: (a) grey-
level image showing a digitized X-ray mammogram; (b) fuzzy seg-
mentation of a fibroglandular region in (a); (c) high resolution
crisp representation of a disk; (d) low resolution coverage repre-
sentation; and (e) low resolution crisp representation of the same
disk.

Coverage representation. In our attempt to contribute to the development of
this emerging image processing framework, we have focused our interest to one spe-
cific type of fuzzy discrete object representations. These are representations where
membership function values correspond to pixel coverage (or, in higher dimensional
images, spel coverage). Pixel values assigned in this model are equal to the relative
area of a pixel covered by the imaged (presumably crisp continuous) object. For
such images, pixel values (or, coverage values) range from 0 (assigned to pixels
having empty intersection with the object) to 1 (pixels completely covered by the
object) and the pixel values strictly between 0 and 1 appear only on the border of
an object.

Starting from the idea of such a type of object representations, coverage represen-
tations, we are working on formulating and developing a general image processing
framework that utilizes the benefits that come from appropriately treating the cov-
erage information, while still respecting the discrete nature of digital images. We
have conducted a number of studies which show many advantages of the proposed
type of coverage representations, compared to crisp (binary) digital image represen-
tations. We have developed different feature estimators which utilize the coverage
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information to improve the estimation precision and accuracy, [50, 52], and have
proved that a possible lack of precision resulting from limited spatial resolution
may be overcome by properly utilizing grey-level information contained in the im-
ages when estimating relevant features of the objects. The encouraging results,
proven both theoretically and by empirical studies on synthetic objects, directed
our interest to applications of the developed estimators on real images. The first
step required for such use was the development of appropriate image segmenta-
tion methods that result in a coverage representation. We have suggested several
such methods, appropriate for different applications. We further have proposed to
utilize the high precision feature values obtained from the coverage information to
generate high resolution reconstruction of the observed discrete object, and thereby
to “improve” its visual appearance (in crisp representations), too.

In the following sections we describe in more detail our results related to the
development of the coverage model and its applications in image processing. These
results are based on the work presented in a number of publications, where addi-
tional details about the individual parts can be found, [28, 30, 33, 34, 50–55]. We
will briefly mention some of the applications of the proposed methods, as well
[29, 30, 50, 52, 53, 60]. Additionally, we will try to envision some of the possible
future research and application directions. We believe they are numerous, since
methods that provide results with sub-pixel precision are of highest importance
in many fields where precision is a key factor. In addition, analysis of images at
low (or simply insufficient) resolution is constantly a hot research topic; with the
resent progress in imaging techniques, allowing imaging to reach nanometer scales,
a previously inaccessible world of structures of sizes all the way down to molecular
scale, opens up. Modern technology, together with humans’ curiosity and vision,
constantly challenge science to push its limits ever further. Our wish is to be a part
of this journey of exciting research.

2. Background and related work

Our work on coverage models is related to several research tracks within the field
of image processing. This section, where we list and briefly introduce some of these
tracks, aims at providing the reader a wider context for our research.

Initial studies, showing the usefulness of utilizing grey-level information, when
analysing black and white 2D images obtained by a scanner, were presented in
the early 1990s. Originating from that work, different methods for sub-pixel seg-
mentation evolved. Due to often direct utilization of the image intensities in the
algorithms, developed methods usually have strong ties to a specific method of
image acquisition. Two sub-fields of image processing, where particularly refined
methods for utilizing the intensity information in segmentation have emerged, are
remote sensing and tomographic medical imaging.

The notions of fractional pixels and partial volume (tissue fraction) effect are
often mentioned in remote sensing and in tomographic imaging, respectively. Both
these notions relate to two distinct phenomena that influence intensity values in
images in an undesired way. The first phenomenon which causes inconsistency
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between ideal and achieved capturing of a signal is the blurring that is introduced
by the limited resolving power of the imaging system, leading to a “leakage” of the
signal from its actual source to the neighbouring regions in the image. The signal
appears weaker, but is also spread over a wider area (the notion of point spread
function is introduced). The second cause of the above mentioned phenomenon
is image sampling. The signal from the imaged object is sampled on a discrete
grid, but the contours of the image elements do not match the actual contours
of the imaged intensity distribution. A number of spels therefore cover multiple
image objects. This second effect is present in any digital image; no matter how
high spatial resolution is used, discretization will always lead to that (some) image
elements are covered by more than one object. If precision (particularly when it
comes to measurements) is required, fractional/partial coverage has to be handled
carefully. This challenge is exactly the one we address in our work.

Not only the tasks of image analysis, but also those related to visualisation
and image generation impose the need for increased (i.e., sub-pixel) precision in
image segmentation and careful handling of image intensities. In film-making, the
technique to combine two or more images into a single one, referred to as image
compositing, or image matting, dates back to the Lumière brothers. Since the
mid-1980s, when advancements in computer graphics allowed matte painters to
work directly in the digital realm, this technique has become less associated with
double exposures and painted glass, and more with pixels and alpha channels. In
chroma key compositing, commonly used for weather forecast broadcasts, wherein
the presenter appears to be standing in front of a large map, which in the studio
is actually a monochrome blue background, careful treatment of partially covered
image elements, to avoid creation of a bluish aura around the presenter, is required.
The field of computer graphics also includes a significant amount of work related
to anti-aliasing, aiming to reduce the visual disturbance caused by representing
smooth objects by square pixels on a screen. Also in this task, a careful treatment of
partially covered pixels is most important. Both these techniques have connections
to the work presented in this paper.

In our work on development of image analysis methods, our intention is to
propose algorithms and approaches which are generally applicable in a range of
situations and applications. Therefore, we try to avoid connecting our proposed
methods to any particular way of image creation/acquisition. The foundation of
the developed framework is, very suitably for the intended generality, in the fuzzy
set theory, which provides a both flexible and powerful framework to represent and
describe the methods at an abstract level, without ties to applications, or, if de-
sired, even without ties to digital images. This text will, however, mainly stay close
to conventional digital images.

In the following of this section, we give some more details about the background
within the field of image processing, and, at the end, a brief overview of the concepts
and notions of the fuzzy set theory, used in our work.

2.1. Grey-scale information. The relation between the spatial resolution, the
grey-level quantization (grey-level resolution), and the achievable reconstruction
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accuracy for certain types of images/objects, with a similar motivation as for our
later research, is studied in [20]. It is shown that objects with straight edges can
be reconstructed without error if grey-levels are not quantized, even though the
spatial resolution of an image is limited. In other words, it is concluded that low-
resolution grey-scale images of polygonal silhouettes induce less ambiguity than
high-resolution bi-level images. This has served as an important inspiration for our
work.

To improve the accuracy and precision of local estimators, estimation methods
that utilize grey-level information in images have been suggested. In [11], an arc
length estimation method that uses normal vectors computed from intensity val-
ues, at a number of pixels sampled along the boundary of an object, is presented;
arc length is estimated as a cumulative sum of the length of short line segments,
derived from the normal directions. A local step may in that way be assigned
a variety of normal directions, instead of the very limited set of normal direc-
tions available for (Freeman style) local estimators on binary images. Our work
on perimeter estimation (see Section 5.3) is based on the same idea that increased
precision of normal directions estimation leads to increased precision of perimeter
estimates. However, a thorough analysis of the performance of the method pre-
sented in [11] is not provided and no optimization of the local lengths is performed.
Another approach to increase the precision of measurements is presented in [63].
The method is based on transformation of object boundaries in grey-level images
into corresponding volumes, where the length estimation problem is converted into
a (simpler) problem of volume estimation. The method relies on sampling theory
and discrete approximations of analogue filters. The results are encouraging, but
the evaluation is unfortunately only performed on discs of increasing radii, thereby
somewhat limiting the possible conclusions. The method also includes some “prac-
tical choices” without full theoretical justification. Even though our approach to
the same problem differs from the one in [63], it is important to notice that a pos-
sibility to increase precision of image analysis results by utilization of grey-levels
has attracted attention of a number of researchers during last couple of decades. It
still does.

2.2. Remote sensing–fractional pixels. It is not surprising that the issue of
mixed pixels is thoroughly addressed in remote sensing applications. Pixels in
remotely sensed images are of sizes ranging from a couple of meters to a couple of
kilometers, which very often leads to individual pixels being covered by different
classes/objects imaged on the ground. To assign the whole pixel to one class (even
if that is the class mostly covering the pixel) leads to imprecision which is often
intolerable. Estimation of partial coverage (also known as soft classification) of a
pixel by all individual classes is preferred. Most often used approaches for such
sub-pixel proportion estimation are linear mixture models, due to their simplicity.
In more complex cases, e.g., due to multiple scattering leading to nonlinear mix-
tures, or requirements for advanced corrections of atmospheric distortions, rather
involved and specialized methods for estimating partial pixel coverage values have
been required. Most popular among them are based on neural networks [19].
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Figure 2. A high resolution aerial photograph, with a superim-
posed 30 meter resolution grid, illustrating the pixel size of a Land-
sat 7 satellite image. Pixel #1 is a fairly homogenous pixel, almost
completely covered with trees, whereas pixels #2 and #3 are mixed
pixels, partially covered by vegetation, buildings, and road.

An important characteristics of up-to-date remote sensing is utilization of spec-
tral imaging systems. Spectral imaging for remote sensing of terrestrial features
and objects arose as an alternative to high-spatial-resolution large-aperture satellite
imaging systems. This type of imaging has evolved to include, instead of just one
(grey-scale) band or a few colour bands, several hundred or more bands, encompass-
ing not only the visible spectrum, but also parts of the surrounding electromagnetic
spectrum, as well. Data coming from many wavelengths can provide very useful
information about the materials in a scene, however extraction of such data usu-
ally requires sophisticated processing methods. This is, therefore, an important
research direction in remote sensing. It does not fully coincide with our research
interest, which is more focused on extraction of information from spatial, rather
than from (multi)spectral data. The aim is, however, the same in both cases: to
precisely determine the content of a pixel, at sub-pixel precision.

One observation, made in [13], adds additional connection between our work and
research interests in remote sensing; it is emphasized that knowledge about the class
composition of every pixel still does not provide any information about the spatial
distribution of the classes within the pixel. This information can be important
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Figure 3. A 2D slice from a SPECT image (a), and an MR
image (b), showing the same region of a brain.

and one way to acquire it is seen in a multiscale approach, i.e., in utilization of
the possibility to observe the environment at a range of scales. This idea is to
some extent explored in our work on object reconstruction (see Section 6), where
a multiscale approach is taken in the task of high resolution object reconstruction.

2.3. Tomographic images–partial volume effect. Partially covered image ele-
ments attract significant attention in medical imaging, not only in cases of low
spatial resolution (such as, e.g., SPECT or PET), but also in higher-resolution
imaging, such as MRI or CT. Figure 3 illustrates difference in visual appearance
due to, among other reasons, difference in spatial resolution, between (two 2D slices
of) SPECT and MR images. To appropriately address this issue, in tomographic
imaging known as partial volume effect (PVE), is particularly important when ac-
curate measurements are required from the acquired images. The significance of
this problem, and the need for sub-voxel precision, is well illustrated in [36], where
it is shown that consistently misplacing the tissue borders in a brain volume having
voxels of size 1mm3 by only a single voxel in each slice, resulted in volume errors of
approximately 30%, 40%, and 60% for white matter, grey matter and cerebrospinal
fluid (CSF), respectively. Negative effects of PVE on tumour detection and mon-
itoring, and on therapy control based on PET images (an imaging modality ideal
for this purpose) are thoroughly described in [56].

The complexity of the shape and structure of the human brain, specificities of
imaging techniques, and demand for high quality visualization and high precision of
(primarily volume) measurements have resulted in a significant number of studies
and publications introducing a number of methods for partial volume effect cor-
rection in 3D medical imaging. First approaches were not focused on the PVE at
a pixel level, but rather on improved estimation of total volume of each tissue in
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the whole image, [46]. Further work led to approaches aiming at assigning, to each
voxel in an image, an estimated portion of each of the tissues that is contained in
it. Often used for that purpose are methods based on expectation-maximization,
e.g. [25], scale-space approaches [65], wavelets [3], Markov random fields [5], fuzzy
techniques, e.g. [57], etc. Different assumptions can be made, which leads to un-
mixing models of different complexities; a unifying framework for partial volume
segmentation of brain MR images, presented in [25], gives a nice overview.

As opposed to remote sensing, medical tomographic imaging does not rely on
a range of spectral bands, but more on the spatial distribution of grey-scale in-
tensities, often in combination with a priori anatomical knowledge. In that sense
research conducted to address PVE corresponds more to our main interests. How-
ever, our developed methods are more general and less tied to particular imaging
situations than what is common for methods developed for handling PVE in med-
ical imaging.

2.4. Fuzzy set theory in image processing. A fuzzy set is a collection of elements
with a continuum of grades of membership; it is characterized by a membership
function, which assigns a membership value between zero and one to each element.
A fuzzy set is a generalization of a crisp set; while a crisp set either contains a
given element, or it does not, which is described by the membership values one and
zero, respectively (as given by the characteristic function of a set), belongingness
of an element to a fuzzy set can be partial, and is therefore described by any value
between zero and one. When introduced by Zadeh [68], the notion of a fuzzy set
was intended to provide a starting point for the building of a conceptual framework,
to exist in parallel with the framework of crisp (“ordinary”) sets, but to be more
general and potentially provide increased applicability in different fields; image
analysis became one of them. The framework provided a natural way of dealing
with problems in which the source of imprecision is in the absence of sharply defined
criteria for class membership.

Having on mind the difficulties in image segmentation, mainly caused by the
existence of nonsharp boundaries between the objects in an image, it is not sur-
prising that the comfortability of fuzzy sets, not forcing us to make hard (and
possible wrong) decisions about object belongingness, became appreciated and well
accepted in image analysis; for an overview of several applications, see [42].

A fuzzy membership function is defined as a mapping from an arbitrary set, the
reference set, to, usually, the interval of real numbers [0, 1]. More formally, a fuzzy
subset S of a reference set X is a set of ordered pairs S = {(x, µS(x)) | x ∈ X},
where µS : X → [0, 1] is the membership function of S in X [68].

The crisp set of points having strictly positive memberships to the set S is
called the support of S, while the core of a fuzzy set S contains the points with
memberships to S equal to 1 (it is sometimes referred to as the kernel). When
defined on a discrete domain, the membership function is a discrete function, and
a corresponding set is a discrete fuzzy set.

To represent an object in an image, we usually consider a fuzzy set defined on Z2

or Z3, being typical spaces of discrete images. Such a set is called a discrete spatial
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fuzzy set [1]. When represented in a computer, the number of different membership
values is finite; integer values are often used to represent memberships, to increase
the speed of computations. In this way, the range of a digital fuzzy function is not
the interval [0, 1], but rather the set {0, 1, . . . , ℓ}. The value ℓ is often equal to 255,
or 65 535, which corresponds to 8-, or 16-bit pixel depth (number of bits used to
represent a pixel value).

Fuzzy set theory is nowadays rather rich and well developed. However, most
of the theoretical results are derived for continuous, analytically defined, member-
ship functions and often strongly rely on the properties and analytical expressions
of these functions. On the other hand, membership values of image elements are
derived from grey-levels, assigned to the image points during an imaging process,
and sometimes, additionally, from a set of criteria designed to capture geometric,
structural, and other properties of the imaged object. This makes the member-
ship functions on an image (defining fuzzy objects observed) highly complex and
practically never analytically defined. As a consequence, many of the well defined
and thoroughly explored notions, relations, and properties of (analytically defined)
continuous fuzzy sets become nonapplicable to the discrete fuzzy sets, which are
most common in image processing. Therefore, it is often required to design new
methods, which are more appropriate for the analysis of discrete fuzzy sets, and
to develop mathematical theories and algorithms for handling fuzzy discrete data
appearing in digital images.

A representation of a fuzzy set, which is often used as an alternative to repre-
sentation by a membership function, is the one based on α-cuts. For a fuzzy set F ,
defined on a reference set X , the following two representations are equivalent [10]:

• a membership function µF : X → [0, 1] which assigns to each x ∈ X its
membership grade µF (x) to the fuzzy set F ;

• the set of α-cuts {Fα | α ∈ (0, 1]} of the set F , where Fα = {x ∈ X |
µF (x) > α}.

The connection between the membership function and the stack of α-cuts provides a
common approach for extending functions defined on crisp sets, to functions defined
on fuzzy sets. The so called fuzzification principle, based on one of the following
equations:

f(S) =

∫ 1

0

f̂(Sα) dα,(2.1)

f(S) = sup
α∈(0,1]

[αf̂(Sα)](2.2)

can be used to extend a function f̂ to the domain of fuzzy sets. In this way,
various properties defined for crisp sets (here, α-cuts) can be generalized to fuzzy
sets, including the membership function itself; if the characteristic functions of
the α-cuts are observed, the membership function of the corresponding fuzzy set
can be obtained by either their integration (2.1), or by taking the supremum of
their weighted values, over the “height” of the stack (2.2). This approach, and in
particular equation (2.1), is often used in our work, when some relevant features of
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objects represented by a coverage model are defined and extracted. Notably, area
and perimeter of a spatial fuzzy set in 2D, can be defined based on (2.1) [41, 43].

One particular concept that is extended to the set of fuzzy sets, which we will
use in the following, is that of a partition. Classically, a partition of a set S is a
family of disjoint nonempty subsets of X whose union is equal to X . An often used
definition of a fuzzy partition is the following one [45]: A fuzzy partition of a set X
is a finite family P = {P1, P2, . . . , Pn} of nonempty fuzzy subsets of X such that∑n

k=1 µPi
(x) = 1 for all x ∈ X .

3. The coverage model

The approach that we take to handle partially covered image elements and to
best utilize intensity information in order to reach sub-pixel precision of estimates,
differs quite significantly from most previously presented work with similar goals.
As noticed in the background section, a lot of related work is based on more or less
direct usage of the image intensities, leading to strong ties between developed meth-
ods and the specific imaging conditions. The path we take is, instead, to start from
a well defined abstract theoretical model, with no connections with any particular
application. For the proposed theoretical framework, we have developed feature es-
timators and derived exact results regarding their performance. The connection to
specific imaging conditions is handled through a separate segmentation step, which
serves the purpose of transforming the application dependent image information
into an application independent form. This clear separation between the different
parts of the presented approach is what provides generality of the developed image
processing tools, where application specific information can be fully utilized in the
segmentation step, while still not interfering negatively with the later steps.

The foundation of the proposed model lies in the fuzzy set theory, which pro-
vides a framework that has shown to be both powerful and flexible. Within the
field of image processing, methods utilizing the concept of fuzzy/graded member-
ships have found a number of applications, and discrete fuzzy sets have shown to
be a very good tool for representing image objects. The ability provided by fuzzy
sets to represent uncertain and vague data facilitates development of robust meth-
ods which successfully handle noise and image artefacts. At the same time, these
methods can be designed to enable high precision of measurements, overcoming
well known problems originating from the discretization of the continuous space
observed, unavoidably imposed by essential properties of computers and imaging
devices involved.

The fuzzy set theory is very general and provides a lot of flexibility; the in-
terpretation of the membership values can be adjusted to any need, property, or
application. A great power of this large freedom lies in the possibility to, by adding
well chosen restrictions, shape it so that it best fits a particular problem observed.
Quite clearly, keeping full generality available in every applications is, in addition
to being difficult, also hardly practically useful. Not surprisingly, the large freedom
makes it difficult to derive well defined and strong statements about specific prop-
erties of the observed (general) fuzzy sets. We found that, by suitably restricting
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the interpretation of membership values, strong theoretical results are more readily
available.

Our research focuses on mathematical tools for representing and analyzing con-
tinuous crisp objects in digital n-dimensional images. For that specific task we have
appropriately restricted the fuzzy membership function used, and have defined a
particular type of fuzzy sets for representation of imaged objects. We refer to such
representation of digital objects as coverage representations. We have shown that
using such a coverage representation has many advantages compared to a tradi-
tional crisp representation.

3.1. Basic definitions. We start with a general definition of a coverage represen-
tation. We will then restrict it to better fit the application we have on mind, i.e.,
representing crisp objects in digital images.

Definition 3.1. Given a partition Σ = {σi}i∈I of a reference set X , a coverage
representation of a set S ⊂ X on Σ is a fuzzy subset

{
(σi, α(σi)) | σi ∈ Σ

}
, such

that α(σi) = |σi ∩ S|/|σi|.
In the context of digital image processing, we assume that the reference set X

is the Euclidean space Rn and that Σ is the Voronoi tessellation of Rn defined
by the set of integer points Zn. We refer to the Voronoi region of a grid point
x = (x1, x2, . . . , xn) ∈ Zn as the spel at x (short for spatial element) and denote it
with σ(x). That is, σ(x) contains the points of Rn which are closer to x, in terms of
Euclidean distance, than to any other point in Zn (for points at equal distance we
round upwards, i.e., the lower/left edge in each dimension is included in the spel).
In other words, the set Σn of nD spels of an integer grid, consists of translations of
the right open n-dimensional unit origin-centred cube by vectors x ∈ Zn:

Σn = {σ(x) |x ∈ Z
n} , σ(x) =

[
− 1

2 ,
1
2

)n
+ x .

Based on the above we define the following digitization model:

Definition 3.2. For a given continuous object S ⊂ Rn, inscribed into a grid Zn,
the coverage digitization of S is

Dc(S) =
{
(x, α(x))

∣∣ x ∈ Z
n
}
, α(x) =

|σ(x) ∩ S|
|σ(x)| ,

where |X | here denotes the area/volume/Lebesgues measure of a set X .

Remark 3.1. To simplify notation, we utilize the one-to-one correspondence be-
tween elements x ∈ Zn and their respective spels (Voronoi regions) σ(x) ∈ Σn, and
consider a coverage digitization to be a set of ordered pairs from Zn × [0, 1], and
not from Σn × [0, 1].

Definition 3.2 assumes assignment of nonquantized real coverage values α to
the spels of the grid. However, when using digital approaches (computers) to
represent, store, and analyze images, we are limited to a finite number of grey-levels
to represent coverage of an individual spel. This leads to the following quantized
version of coverage digitization:
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Definition 3.3. For a given continuous object S ⊂ Rn, inscribed into a grid Zn,
the ℓ-level quantized coverage digitization of S is

Dℓ
c(S) =

{(
x, αℓ(x)

) ∣∣ x ∈ Z
n
}
, αℓ(x) =

1

ℓ

⌊
ℓ
|σ(x) ∩ S|
|σ(x)| +

1

2

⌋
,

where ⌊x⌋ denotes the largest integer not greater than x.

Clearly |α(x)−αℓ(x)| 6 1
2ℓ . We denote the set of possible coverage values αℓ(x)

in ℓ-level quantized coverage digitization by Qℓ =
{
0, 1

ℓ ,
2
ℓ , . . . ,

ℓ
ℓ = 1

}
. This set

corresponds to the set of grey-levels available; e.g., ℓ = 1 for a binary image, while
ℓ = 255 provides the set of grey-levels for an 8-bit representation. Similarly as using
spatial resolution to denote the spatial sampling density, we let coverage resolution
denote the number of (meaningful) coverage levels.

The coverage digitization model stands in contrast to the more common Gauss
digitization model, where an object is represented by the set of integer grid points
within the objects (or, mainly being a matter of notation, by the corresponding set
of spels). More formally:

Definition 3.4. The Gauss digitization of S ⊂ Rn is Dg(S) = {S ∩ Zn}.
In our work, coverage of a spel is sometimes approximated by a super-sampling

approach where a spel is split into several sub-spels, and a sample is taken from
the centre of each. This facilitates easy approximation of coverage values for more
complex synthetic objects, where true coverage may be difficult to compute an-
alytically. Let the r-sampled spel σ̂r(x) be the following set of rn points within
σ(x):

σ̂r(x) =

{
σ(x) ∩

(y − δ(r)

r

) ∣∣∣∣y ∈ Z
n

}
,

where δ(r) is the vector
(
r−1
2 , r−1

2 , . . . , r−1
2

)
.

Definition 3.5. For a given continuous object S ⊂ Rn, inscribed into a grid Zn,
the r-sampled coverage digitization of S is

D̂r
c(S) =

{
(x, α̂r(x))

∣∣ x ∈ Z
n
}
, α̂r(x) =

|σ̂r(x) ∩ S|
|σ̂r(x)| .

Remark 3.2. Coverage values of a 1-sampled coverage digitization, α̂1(x), corre-
spond to the characteristic function of a Gauss digitization.

Figure 4 illustrates the different digitization approaches and the output for one
pixel, partly covered by a disk shaped imaged object S. The observed pixel is not
included in the Gauss digitization (Fig. 4(a)), since the centre of the pixel is not
covered. For the coverage digitization (Fig. 4(b)), the pixel is associated with a
real number α(x) ∈ [0, 1] indicating how large area of the pixel is covered by the
object. In the ℓ-level quantized coverage digitization (Fig. 4(c)), the real coverage is
approximated by its closest number in Qℓ. For the r-sampled coverage digitization
(Fig. 4(d)), the pixel is divided into sub-pixels, and the coverage is approximated
by the number of covered sub-pixel centres, divided by the number of sub-pixels.
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(a) Gauss digitization x 6∈ Dg(S)
(α̂1(x) = 0)

(b) Coverage digitization α(x) =
0.3271 . . .

(c) 10-level quantized coverage
digitization α10(x) = 0.3

(d) 4-sampled coverage digitiza-

tion α̂4(=) 5

16

Figure 4. Different digitization approaches. Shown is one pixel
σ(x), partly covered by a disk shaped object S.

The r-sampled coverage digitization takes values from the same set Qℓ as an
ℓ-level quantized coverage digitization with ℓ = rn. However, the r-sampled digi-
tization has lower accuracy in approximating the true coverage digitization val-
ues. For a spel x, intersected by a straight edge of an image object, it holds that
|α(x) − α̂r(x)| 6 1

2r . Another important property to notice is that the quantized

coverage digitization Dℓ
c(S), with ℓ = rn, is never a worse approximation of the

true coverage digitization Dc(S) than the r-sampled coverage digitization D̂r
c(S).

This holds by definition, since Dℓ
c(S) and D̂r

c(S) take values from the same set, and
αℓ(x) = argminβ∈Qℓ

|β − α(x)|.

3.2. Properties of coverage digitizations. A coverage representation of a crisp
real object with a well defined continuous border is, ideally, characterized by the
presence of homogeneous connected regions of “pure” spels, completely covered by
either object or background. Each two such regions are separated by a thin layer
of “mixed” spels, i.e., those partially covered by both object and background. Pure
spels are assigned coverage values 0 (background) or 1 (object), while mixed spels



56 NATAŠA SLADOJE AND JOAKIM LINDBLAD

are assigned values between 0 and 1, in accordance to their respective coverage by
the image object.

Following the terminology of fuzzy sets, we define the core and the support of
a coverage representation as the crisp set of spels with coverage values 1 and the
crisp set of spels with nonzero coverage values, respectively:

core(C) = {x | α(x) = 1}, supp(C) = {x | α(x) > 0}.

We note that there is a close connection between supp(Dc(S)) and the outer
Jordan or super-cover digitization of the set S (the union of all spels having a
nonempty intersection with S), where a difference between the two notions appears
only when the nonempty intersection of a spel and the set S has a measure zero.
Such a spel is included in the outer Jordan digitization but not in supp(Dc(S)).
Similarly, for core(Dc(S)) and the inner Jordan digitization of S, where the two
notions differ only for spels with a nonempty intersection with the background of
measure zero. Such a spel is excluded from the inner Jordan digitization but is
not excluded from core(Dc(S)). These differences, being mainly theoretical in the
case of a real valued coverage digitization, become more prominent in the case of
quantized or sampled coverage digitizations.

We call the set of “mixed” spels of a coverage representation C, with coverage
values strictly between 0 and 1, the fuzzy border of C. This set is equal to the
closed difference set between supp(C) and core(C). Formally:

Definition 3.6. The fuzzy border of a coverage representation C = {(x, α(x)} is

∂fC = {x | α(x) ∈ (0, 1)} .

If the crisp set S has a reasonably smooth boundary (i.e., S is Jordan measurable)
and digitized at a high enough resolution, then the fuzzy border ∂fDc(S), is not
more than one spel thick.

An important property of coverage digitization is that it preserves partitions
of the digitized space. Let {Sk | |Sk| 6= 0, k = 1, 2, . . . ,m} be a partition of a
reference set X . Then {Dc(Sk) | k = 1, 2, . . . ,m}, is a fuzzy partition [45], i.e.,
∀k : Dc(Sk) 6= ∅, and ∀x ∈ X :

∑m
k=1 αk(x) = 1.

Proof. Follows directly from the additivity of the Lebesgue measure on Rn : for
disjoint sets A,B ∈ Rn, |A ∪B| = |A|+ |B|. �

We call such a fuzzy partition, where membership values correspond to spel
coverage, a coverage partition of X .

Remark 3.3. Note that a similar family of ℓ-level quantized coverage digitiza-
tions is not necessarily a coverage partition. For example, a 10-level quantized
coverage digitization of a spel σ(x) equally covered by three objects will lead to∑3

k=1 αk(x) = 0.9 6= 1. A sampled coverage digitization of a partition is, however,
always a fuzzy partition.
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4. Coverage segmentation methods

The definition of coverage digitization provides a way to compute coverage rep-
resentations of relatively simple, or analytically defined, continuous subsets of Rn

such as, e.g., simple geometric objects. However, to extract similar information
about more realistic and more complex objects in digital images, we instead need
segmentation algorithms. To address the task of extracting coverage information
about objects in images, we have proposed a number of coverage segmentation
methods.

As already mentioned, image segmentation is commonly considered to be the
process of assigning a label to every spel in an image, so that spels with the same
label share certain visual characteristics. Traditionally, such an assignment is done
in a crisp fashion, where a spel can only be associated with one single component
of the image. More generally, a segmentation may be performed in a fuzzy manner,
in which case each spel is associated with a membership, in the range zero to one,
to each of the image components. The membership values assigned to one spel do
not have to sum up to one, although this is assumed for many methods. For the
coverage model it seems reasonable to assign memberships (coverage values) of a
spel to different crisp nonoverlapping objects in Rn, so that they do sum up to one.

Let Am denote the set of m-component (fuzzy) segmentation vectors

Am =

{
α = (α1, α2, . . . , αm) ∈ [0, 1]m

∣∣∣
m∑

k=1

αk = 1

}
,

and let Am ⊂ Am be the corresponding set of crisp segmentation vectors

Am =

{
α ∈ {0, 1}m

∣∣∣
m∑

k=1

αk = 1

}
.

A coverage segmentation of an image I into m components is a set of ordered pairs

Sc(I) =
{
(x,α(x)) | x ∈ ID,α(x) ∈ Am

}
, αk ≈ |σ(x) ∩ Sk|

|σ(x)| ,

where Sk ⊂ R
n is the extent of the k-th (out of m) image component and ID ⊆ Z

n

is the discrete image domain. The continuous sets Sk are, in general, not known,
and the values αk therefore have to be estimated from the image data. We may
also refer to a coverage segmentation as a coverage partition of ID, i.e., a collection
of nonoverlapping sets Sc(I)k = {(x, αk(x)) | x ∈ ID}, k = 1, 2, . . . ,m.

In many imaging situation, acquired image intensities correspond almost directly
to coverage values. One such situation is, e.g., the integration of photons over
finite sized sensor elements, as present in a digital camera. In the absence of
object texture and large illumination variations, a suitable mapping of the image
intensities may provide good enough coverage values. In Section 4.1 we present a
method for automatically defining such a mapping by a double thresholding scheme.
Direct mapping of intensity values does not work well in the presence of large scale
intensity variations, however. In Sections 4.2 and 4.3 we present more elaborate
methods for performing coverage segmentation.



58 NATAŠA SLADOJE AND JOAKIM LINDBLAD

4.1. Coverage segmentation based on double thresholding. Segmentation by
thresholding is the most intuitive and simplest segmentation method. Successful
application of any thresholding based segmentation method requires that the in-
tensity distributions of the object and the background are well separable. If a
separation between the image components is to be performed in a crisp manner,
one threshold value is selected and two disjunct sets of intensities are determined;
the corresponding spels are then accordingly classified into two classes.

Assume that we are imaging a bright object on a black background. This situa-
tion will, under reasonable conditions, result in two well separated sets of intensity
values, and classification (segmentation) can be performed by thresholding. If the
imaging device has a linear response, and the optical blurring is small compared to
the pixel size, the partly covered pixels along the boundary of the object exhibit
grey values between those of the background and the foreground, where the grey
value assigned to a pixel is proportional to its coverage by the object. This obser-
vation makes it natural to try to develop a segmentation method that, to a high
extent, utilizes the grey-levels of the graded transition between the two observed
classes (object and background) for estimating coverage values. We notice that
such a direct relation between grey-levels and spel coverage is a reasonable model
for images where resolution is decided based on limited means for handling of the
data rather than on the optical system (e.g. in high speed video), or when detec-
tor elements are intentionally grouped together (binned) to reduce photon/Poisson
noise (e.g. in low dose CT).

In order to estimate coverage values from the image spel intensities, we need to
first estimate the grey-levels of the completely covered foreground and background
spels, respectively. Denote with f and b the intensity of the imaged foreground
(object) and background, respectively. We then model the intensity I(x) of a
partly covered pixel σ(x), with coverage α(x), as a convex combination of f and b:

(4.1) I(x) = α(x) · f + (1− α(x)) · b ⇒ α(x) =
I(x)− b

f − b

In [52] we presented a method which is based on the above model and which
automatically finds two threshold values, f and b, that define the minimum in-
tensity of the high intensity component (foreground) and the maximum intensity
of the low intensity component (background). The threshold selection is based
on the observation that coverage representations of crisp continuous objects are
characterised by having fuzzy boundaries which are not more than one spel thick
(see Section 3.2). This is, however, not enough to uniquely define the threshold;
we additionally require the contrast between foreground and background to be as
large as possible, giving a border with as rich intensity variations as possible. The
initial reason to perform a coverage segmentation was to preserve the information
given by the grey-levels; the more we keep and use, the better results of subsequent
analysis.

To summarize, given a grey-scale image, we seek a threshold couple, b and f ,
where spels darker than b are considered to belong completely to the background,
while spels brighter than f are considered to belong completely to the foreground,
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such that the spels in between form a one spel thick separating layer. In addition, we
want the contrast between foreground and background, i.e., the difference ℓ = f−b,
to be as large as possible.

The algorithm loops over all background thresholds b′; each of them defines a
possible support of the object. Instead of looping over all foreground thresholds,
f ′ is found as the minimum grey-level within the core of the potential object.
For an assumed support, the core should be not more than at one spel distance,
which is conveniently expressed by mathematical morphology. For each potential
support, the corresponding minimal core is found by eroding the support with a
3 × 3 × · · · × 3 binary structuring element. The foreground threshold f ′ is then
found as the minimal grey-level in that potential core. However, we noticed that
individual dark noise points make f ′ unnecessarily low. We therefore first perform
a morphological closing before selecting the level f ′. The difference f ′ − b′ is
computed, and a new background threshold is tested. The thresholds leading to
the largest intensity range ℓ = f ′ − b′ is selected as the best one and, based on
that, partial coverage values are computed according to (4.1). We also include an
opening of the background, to avoid isolated bright noise points in the background
appearing as object points. The processing is invariant w.r.t. intensity inversion;
looping over the foreground thresholds and finding b′ as the maximum value of the
opened background, leads to the same result.

Instead of first performing thresholding, and then morphological operations, we
speed up the processing by using grey-scale morphology (where erosion and dilation
become min and max filters). The more time consuming morphological operations
can then be done once for the whole process, and only threshold and min operations
remain inside the loop.

Algorithm 1 summarizes the described steps (see also [52]). We denote the grey-
scale erosion I⊖B by εI and the grey-scale dilation I ⊕B by δI. The opening and
closing of I by B are denoted δεI and εδI, respectively.

An example of the use of this coverage segmentation method is presented in
Section 7.1.

4.2. Coverage segmentation by local unmixing. Image segmentation is, as al-
ready stated, a difficult problem, which has been addressed more times than any
other problem in image processing. As a consequence, very many segmentation
algorithms have been proposed. A variety of methods, utilizing different theoreti-
cal concepts, and being more or less general, i.e., more or less tied to a particular
application, are published. With an increasing complexity of the imaged scene,
more information than bare grey-scale intensities of individual spels is required
to perform successful (meaningful) separation of image components, which makes
thresholding based methods nonapplicable. Spatial (geometric) information about
the objects in the image is very often utilized, but other types of a priori knowl-
edge about the imaged objects, if available, may be incorporated in a segmentation
method, as well. Segmentation can be performed based on intensity homogeneity
preservation (region based methods), or discontinuity detection (boundary based
approaches); more and more often, a combination of these approaches is proposed,
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Algorithm 1.

Input: A grey-scale image I with a bright object on a dark background.
Output: An approximate ℓ-level coverage segmentation C of the object in I.

b = 0; f = 0
for each grey-level b′

F ′ = {x | [εI](x) > b′} /* Foreground */

if F ′ 6= ∅
f ′ = min

x∈F ′

[εδI](x)

if f ′ − b′ > f − b /* Better than previous */
f = f ′; b = b′

endif
endif

endfor

ℓ = f − b

α(x) =





0 , [δεI](x) 6 b,
1 , [εδI](x) > f,
I(x)−b

ℓ , otherwise.

to answer better to the high complexity of the tasks. If available, colour informa-
tion is precious. Typically, three channels are used in colour imaging, which adds
a lot of information compared to monochrome (grey-scale) images. The number
of channels may, in some imaging techniques, be even higher (reaching hundreds),
leading to so-called spectral images, typical in, e.g., remote sensing (see Section 2.2).
Segmentation methods design to extract such type of information are accordingly
developed.

Noticing this rich variety of different segmentation methods, more or less refined
and adjusted to various imaging conditions, we propose to not “re-invent” a whole
range of segmentation methods that should provide good coverage segmentation
for a variety of tasks, but instead appropriately adjust already existing crisp seg-
mentation methods. After all, our aim to perform segmentation so that it leads
to a coverage representation of objects, is not far from the aim of “traditional”
segmentation methods, providing a crisp segmentation. For all image spels which
are completely covered by a single object class, there is no difference between a cov-
erage segmentation and a crisp segmentation; for those spels there is no reason for
a different output than what is achieved by any appropriately chosen “traditional”
segmentation method.

In [53] we presented a method that, based on any existing crisp segmentation,
enhances it to a coverage segmentation by identifying boundary spels and suitable
re-evaluating their coverage values. By this approach we reached two important
goals: (i) the segmentation results in a coverage representation of an object; (ii) all
the advantages of well chosen crisp segmentation methods for a particular task are
preserved and utilized. The methods is briefly described in the following.
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To obtain a coverage segmentation, we propose a method composed of four steps:

• application of a crisp segmentation method, appropriately chosen for the
particular task;

• selection of spels to be assigned partial coverage;
• application of a local linear mixture model for “un-mixing” of partially
covered spels and assignment of corresponding coverage values;

• ordered thinning of the set of partly covered spels to provide one spel thin
fuzzy borders (see Section 3.2) of mixed spels.

The first step in the proposed method is expected to provide correct assignment
of class belongingness to pure spels. We suggest to utilize any appropriate exist-
ing segmentation method, and assume that the resulting segmentation provides
a trustworthy result for all but boundary spels. Each spel σ(x), inner (i.e., not
neighbouring a spel of a different component) for the component k, is assigned
crisp segmentation vectors α(x) such that αk = 1 and αl 6=k = 0.

In the second step of the suggested segmentation method, spels possibly being
intersected by the boundaries of continuous imaged objects are to be detected. Such
spels are possibly mixed, with partial coverage by two or more image components.
We define the set B to consist of all (nD) spels sharing an (n − 1)-dimensional
hyper-surface with a spel assigned a different segmentation label. In the sense
of Definition 3.6, these spels are candidate mixed spels, and as such, they will
be processed in the next steps of the algorithm. If continuous crisp objects are
imaged at a reasonably high resolution, and the segmentation performed in step
one correctly labels inner, completely covered spels, then the set of mixed spels will
be a subset of the set B. Even though it is clear that, in the presence of noise,
inner region spels are not of accurate reference intensity of a pure class, but are
often exhibiting properties of mixed spels, the idea is to have confidence in the used
crisp segmentation method up to the dichotomization into inner/pure and border
spels. The spels detected as inner will, therefore not be revisited, or reassigned.

The third step in the coverage segmentation process is computation of partial
coverage values of the (potentially mixed) spels of the set B. We suggest to use
a linear model, due to its simplicity, and the fact that it corresponds to the ideal
(noise-free) spel coverage assignment that arises when integrating spatially distinct
signals over finite sized detector elements (e.g. in a digital camera). This model
assumes that the value of a mixed spel is a convex combination of the values corre-
sponding to the pure classes ck covering the observed spel, where the coefficients in
the combination correspond to the proportions of the pure classes appearing. Note
that for imperfect imaging devices, the assumption that the value of a spel depends
only on the content of that particular piece of the image domain, may not hold.
Given a particular imaging situation, it is recommended to verify this assumption
and possibly act accordingly, e.g. by incorporating a deconvolution step into the
process.

In general, the intensity values of the pure classes are not known, but have to be
estimated from the image data. We suggest to use a local approach when estimating
the intensities characterizing a class k. For each spel observed in the process of
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partial coverage assignment, the local pure class representation ck(x) is estimated
as the mean value of the image intensities in a local neighbourhood of a suitable
size, which are classified, according to the two first steps, as completely belonging
to the observed class k. This approach, in our opinion, has two main advantages:
1) only the relevant classes –existing in the neighbourhood of the observed spel are
considered for a mixture in that spel, and 2) sensitivity of the pure class description
to intensity variations over the image is decreased; in general, the local within class
variation is significantly smaller than the global one.

The image intensity values I(x) = (I1, I2, . . . , Ib) of a mixed spel σ(x) (b being
the number of channels (bands) of the image) are assumed, in a noise-free environ-
ment, to be a convex combination of the (locally estimated) m existing pure classes
ck(x):

(4.2) I(x) =

m∑

k=1

αkck(x) ,

m∑

i=k

αk = 1 , αk > 0 ,

where each coefficient αk corresponds to the coverage of the spel σ(x) by an object
of a class k. In a noise-free environment, and if the numberm of classes (variables) is
not bigger than the number (b+1) of equations (including the equation

∑m
k=1 αk =

1), the problem of partial coverage is solved as a system of linear equations.
In real imaging conditions noise has to be considered. However, in the presence of

noise, it is not certain that there exists a (convex) solution to the linear system (4.2).
Therefore we reformulate the problem to the following minimization problem:

Find a vector I∗ of the form I∗ =
∑m

k=1 α
∗
kck(x), such that I∗ is a convex

combination of ck(x) and the distance d(I(x), I∗) is minimal.

The distance measure can be selected to appropriately fit the settings, e.g.,
a locally estimated Mahalanobis distance. For simplicity, we use the Euclidean
distance in the following.

We solve the constrained optimization problem by using Lagrange multipliers
method (leading to a least squares type of problem), and we minimize the function

F (α1, . . . , αm, λ) =

∥∥∥∥I(x)−
m∑

k=1

αkck(x)

∥∥∥∥
2

2

+ λ

( m∑

k=1

αk − 1

)

over all αk > 0, for given intensity values of a spel I(x) and local class intensities
c1(x), . . . , cm(x). The obtained solution α(x)∗ = (α∗

1, . . . , α
∗
m) provides estimated

partial coverage of the spel σ(x) by each of the observed classes k ∈ {1, 2, . . . ,m}.
Coverage values, α(x), are computed for all spels in the set B. However, since

B is, in general, not a one spel thick set, it may happen that some of its elements,
which should be pure, are assigned partial coverage due to presence of noise. To re-
duce the impact of noise, we, in the fourth step of the algorithm, perform thinning
of the set of mixed spels. We iteratively assign back the simply connected ele-
ments of B which are at a smallest distance to one of the crisp class vectors. This
continues until the resulting set of spels constitute a thin boundary of a coverage
representation, in the sense of Definition 3.6.
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By this, a coverage segmentation of the observed image is obtained. Performance
of this method is illustrated in Section 5.3.

4.3. Graph based coverage segmentation. Several efficient methods for image
segmentation have been formulated in the framework of edge weighted graphs.
The graph theoretic approach to image processing naturally leads to methods that
are applicable to images of any dimension, and images sampled on non-Cartesian
or spatially variant grids [16, 58]. An image is often associated with a graph by
identifying each spel with a vertex in the graph, and defining edges of the graph
so that they represent local adjacency between spels. Each edge in the graph may
also be associated with a (real-valued) weight, reflecting the image content [15].
A segmentation of a graph is formulated either as a mapping from the vertices of
the graph to some set of object categories, or in terms of graph cuts. Informally, a
graph cut is a set of edges such that, if they are removed, the graph is separated
into two or more components. The two representations–classification of vertices
and separation by cuts–are closely related, and the choice of one representation
over the other is largely a matter of preference. In any of the cases, the graph
structure utilized in the task of image segmentation provides generality and wide
applicability of the designed methods.

We were interested in developing a graph based segmentation method which
results in coverage representation, or at least in its approximation; a main interest
is to enable subsequent precise feature estimation. Commonly, a segmentation of a
graph is only defined on the vertices of the graph, and it is traditionally crisp. Our
approach presented in [33,34] is to interpret the edges of the graph as paths between
the vertices, and to assign membership labels also to the points along the edges of
the graph to one or more object classes. Thereby, we obtain an edge segmentation
of the graph. In relation to this, we have also introduced the concept of located
cuts, which are graph cuts defined with sub-edge precision. Via the concept of
induced edge segmentation, located cuts provide a convenient way of extending a
segmentation defined on the vertices of the graph to all points along the edges
of the graph. Finally, we have defined vertex coverage segmentation as a graph
theoretic equivalent of coverage segmentation, and have presented a method for its
approximate computation.

In the following we describe this idea in more details. Further information can
be found in [33, 34]

A framework for sub-pixel segmentation on graphs. A graph is defined as
an ordered pair G = (V,E), consisting of vertices v ∈ V and edges e ∈ E ⊆ V × V .
An edge spanning two vertices vi and vj is denoted by eij . Edges can be assigned
weights, in which case we refer to a graph as an edge weighted graph. If eij ∈ E,
the vertices vi and vj are adjacent. The set of vertices adjacent to a vertex v is
denoted by N (v). For undirected graphs, an edge is an unordered pair {vi, vj}, i.e.,
eij ≡ eji.

A path is an ordered sequence of vertices π = 〈v1, v2, . . . , vk〉 such that vi+1 ∈
N (vi) for all i ∈ [1, k − 1]. Two vertices v and u are linked in G if there exists a
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path π in G that starts at v and ends at u; we write v ∼
G′

u. If all pairs of vertices
in G are linked, then G is connected, otherwise it is disconnected.

Let G = (V,E), S ⊆ E, and G′ = (V,E r S). If, for all eij ∈ S, it holds that
vi ≁G′

vj , then S is a (graph) cut on G. For any cut S 6= ∅, the graph (V,E r S) is
disconnected, i.e., it consists of two or more components.

In order to introduce more formally the main concepts of the framework, we
start with definitions of vertex and edge segmentations.

Definition 4.1. A vertex segmentation V of a graphG = (V,E) intom components
is a mapping V : V → Am.

In the general case, this is a fuzzy segmentation and each vector component V(v)k
in V(v) represents the degree to which the vertex v belongs to the corresponding
class k.

Vertex segmentations and graph cuts are closely related. If the boundary, ∂V , of a
vertex segmentation V is defined as the set of edges ∂V = {eij ∈ E | V(vi) 6= V(vj)},
then the boundary of a vertex segmentation determines a cut on G.

We interpret edges as connected paths between the vertices. Let a point on an
edge eij be specified by a parameter t ∈ (0, 1), and let the vertices vi and vj be
associated with t = 0, and t = 1, respectively (for undirected graphs, we assume
that the vertices are indexed, and use the convention to associate t = 0 with the
vertex having lower index). If every v ∈ V is included in E at least once (i.e., there
are no isolated vertices), then every point on a graph can be specified by a pair
(e, t), where e ∈ E and t ∈ [0, 1]. In particular, points corresponding to vertices are
of the form (e, 0) or (e, 1).

Definition 4.2. An edge segmentation E of a graph G = (V,E) is a mapping
E : E × [0, 1] → Am.

An edge segmentation E is said to be consistent if all segmentation vectors asso-
ciated with a vertex point (by its different edges) are equal. A vertex segmentation
V and an edge segmentation E are said to be consistent if E(eij , 0) = V(vi) and
E(eij , 1) = V(vj) for all eij ∈ E. If V is a vertex segmentation and E is an edge
segmentation such that V and E are consistent, then we may view E as an extension
of V from the set of vertices to the points along the edges of the graph.

An important concept of the framework is the one of located cuts. The idea is to
increase the precision of the separation of the objects in the graph by specifying a
point along each edge of a cut, indicating where the transition between the different
objects occurs. We refer to such a “precise” cut as a located cut. Such a cut can
define a segmentation where also the points along the edges of the cut are assigned
to the separated components, as opposed to a classical graph cut, where the cut
edges are left unassigned. We denote a located cut on an edge eij (of the classical
cut) by T (eij) and, using the introduced edge parametrisation, the location of the
cut (the point of transition between the components) is conveniently expressed as
a real value in [0, 1].
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Located cuts provide a natural way to define a particular type of edge segmenta-
tion, consistent with a given vertex segmentation, via the concept of induced edge
segmentation.

Definition 4.3. Given a vertex segmentation V , and location T such that (∂V , T )
is a located cut, the induced edge segmentation IV,T is

IV,T (eij , t) =





V(vi) if eij ∈ ∂V and t < T (eij)
1
2 (V(vi) + V(vj)) if eij ∈ ∂V and t = T (eij)

V(vj) otherwise.

Essentially, edges that belong to the cut are “divided” into two parts, as de-
termined by the location of the cut, and the parts are then assigned to the two
components as determined by the vertices at the ends of the cut.

An edge segmentation contains, in general, more information than a vertex seg-
mentation. Our interest is to utilize this additional information to obtain precise
feature measurements of segmented objects on the graph. However, there are two
issues that we have to consider: (i) existing feature estimators are defined for ver-
tex segmentations only, and therefore extraction of relevant information from edge
segmentation requires appropriate adjustments; (b) depending on criteria used to
define initial (fuzzy) vertex segmentation, this segmentation may, or may not, be
appropriate for extraction of geometric features. An appropriate model for this pur-
pose is, as already shown, the coverage based one. It is therefore of high practical
interest to convert an edge segmentation, which does contain information related
to geometrical properties of the object, to an appropriate vertex segmentation that
can be used within the existing framework for feature extraction. We have, in [34]
introduced the concept of vertex coverage segmentation, a graph theoretic equiva-
lent of the concept of coverage segmentation, which is highly appropriate for precise
feature extraction. Finally we have proposed an approach for computing a vertex
coverage segmentation, that corresponds to a given edge segmentation.

Assuming no isolated vertices in the graph (a reasonable assumption for the
envisioned applications in image processing), we define the domain of a vertex vi
as the set of points on the “half-edges” adjacent to the vertex (this can be seen as a
graph-theoretical counterpart of a spel). Let E be an edge segmentation of G into
m-components. The vertex coverage segmentation CE of a vertex vi is a vector of
Am defined as

(4.3) CE(vi) =
1∣∣N (vi)

∣∣
∑

j,vj∈N (vi)

2

∫ 1
2

0

E(eij , t) dt,

for all vi ∈ V . For an induced edge segmentation IV,T , the integral in the numerator
of Eq. (4.3) can be written in closed form:

(4.4) 2

∫ 1
2

0

IV,T (eij , t) dt =

{
2T (eij)V(vi) + (1 − 2T (eij))V(vj) if T (eij) <

1
2 ,

V(vi) otherwise.

Equations (4.3) and (4.4) provide the final required items for the following pro-
posed processing chain: starting from a given (fuzzy) vertex segmentation, compute
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Figure 5. Notions of the proposed framework. (Top left) A crisp
vertex segmentation V of a graph. The boundary, ∂V , of the seg-
mentation is shown as dashed lines. (Top right) One possible lo-
cated cut. (Bottom left) The edge segmentation IV,T induced by
V and T . (Bottom right) One component of the corresponding
vertex coverage segmentation CV,T .

a located cut, extend the segmentation to an induced edge segmentation, from that
compute a vertex coverage segmentation. Figure 5 illustrates different notions of
the framework. The motivation for introducing these steps are, first of all, to reach
a vertex coverage segmentation, providing highly improved feature estimates of
imaged objects, but also, thanks to the division of the processing chain into in-
dividual and separately defined parts, to facilitate easy exchange of one step for
another, providing flexibility of the approach and simplifying adjustments to fulfil
task specific requirements.

A question that is not addressed here is how to compute located cuts, essential
for defining an appropriate induced edge segmentation, and therefore for the final
vertex coverage segmentation. One particular method for located cuts computation,
applicable to any starting fuzzy segmentation, is suggested in [34]. It is based on
an appropriate “reduction” of fuzziness of the initial vertex segmentation, so that
only information relevant for the subsequent steps is preserved (i.e., precise location
of the cut/object boundaries).

Evaluation of the proposed method contains results of area estimation of 2D
synthetic objects obtained by the proposed segmentation method; area of an ob-
ject is estimated as the sum of values assigned to vertices in the vertex coverage
segmentation. Theoretical and empirical analysis of the results shows that, even
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(a)

(b)

(c)

Figure 6. A kidney, segmented from an MR volume image of a
human abdomen using the Relaxed IFT method [35]. (a) Origi-
nal grey-scale image volume. (b) Crisp segmentation. (c) Vertex
coverage segmentation.

though the convergence rate of the estimate is the same as in the crisp case, the
area estimation error obtained by the proposed method is, for every given resolu-
tion, significantly smaller than the error obtained from a crisp representation. The
method has also been used for segmentation of real medical images; an example
of a kidney segmentation is shown in Figure 6, highlighting the difference between
the classical crisp segmentation, and the proposed method.

Clearly, the true coverage model for object representation provides higher preci-
sion of geometric feature estimates, where convergence rate is proved to be higher
than for the crisp case. The proposed graph-theoretical based method is, how-
ever, only an approximation of the coverage model, since information about fuzzy
memberships over a finite number of one-dimensional sets of points (the edges) is
used instead of information about memberships over an nD set of points (the spel).
However, generality and applicability of the method are its appealing advantages,
compensating for its somewhat lower accuracy.
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5. Feature extraction

A coverage segmentation preserves more information about crisp original ob-
jects than a corresponding crisp segmentation. This additional information may be
highly beneficial in subsequent processing steps, e.g., when estimating features of
continuous imaged objects. It is reasonable to expect, however, that methods for
feature extraction have to be more or less adjusted to be suited for application to
coverage representations of objects.

It is important to notice that digital image analysis aims at measuring features of
continuous (real world) objects on the basis of their digital images. Consequently,
such measurements, derived from digital shapes, can only be estimates, since the
interest is seldom in the features of the digital object, but rather in the original
object that has been digitized. Consequently, an important task when designing
an estimator is to evaluate its performance, preferably by providing some relevant
error bounds.

The possibility to increase precision of estimates of various properties of a contin-
uous original shape by utilizing the information available in a fuzzy representation
was studied first for representations based on rather general fuzzy membership
functions. Methods derived for estimation of perimeter, area, surface area, volume,
geometric moments, signature of a shape, from a fuzzy representation, are pre-
sented in [4, 49, 55]. These publications contain statistical studies demonstrating
improvement in precision of the estimates, as compared to estimates from a crisp
representation. However, the generality of fuzzy membership functions considered,
is prohibiting derivation of stronger theoretical statements about the developed
methods. We therefore introduced the proposed constraints to the fuzzy member-
ship assignment and the strict interpretation of membership values of the coverage
model. This approach, which corresponds well to the outcome of many imaging
devices, was, in our opinion, natural to be used. Most importantly, the imposed
restriction enabled theoretical derivation of error bounds for a number of feature
estimates.

Since a coverage representation is a special case of a fuzzy representation, the
previously developed methods for feature estimation from a fuzzy representation
are still applicable. For the case of estimation of geometric moments, the proposed
method for general fuzzy sets works excellently also for the special case of coverage
representations, and we were able to prove that the error decreases to zero at a
rate faster than for the crisp case [50]. However, for the proposed perimeter and
surface area estimators, despite providing on average much improved estimates, a
general faster convergence to the true error was not possible to prove. Instead of
starting from the definition of perimeter of a fuzzy set, but rather fully utilizing the
knowledge that membership values correspond to pixel coverage, we have derived
a method that does provide faster convergence to the true value [52].

We have analysed the accuracy of the estimation of geometric moments, when
they are calculated from different representations of a shape. We show that the
order of the error can be reduced if the estimation is based on a coverage represen-
tation; use of such a representation can therefore be an alternative to increasing the
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spatial resolution of the image. Geometric moments of objects provide information
about area, (hyper-)volume, centroid, principal axes, and a number of other fea-
tures of the shape. In addition, we were interested in estimation of perimeter and
surface area. The results obtained for perimeter estimation are published in [52];
surface area estimation remains our future work. (Note, however, that the method
developed in [55] for general fuzzy sets, provides empirically very good surface
estimates when applied to a coverage representation.)

Our main results, presented in [50,52], and given in a fairly detailed description
in the following subsections, are upper bounds for the estimation error as functions
of spatial and coverage resolution. We have confirmed that inter-relations between
these two types of resolutions affect the precision of estimation, and that one of
the resolutions can, to some extent, be used to compensate for the other. It is
usually the case that spatial resolution is given by the imaging device and cannot
be changed, whereas improved intensity information, or simply better utilization
of grey-levels, already at hand, may be much more easily accessible. Our main
message is therefore that appropriate utilization of intensity information available
provides an excellent way to increase estimation precision, and we specially notice
that this applies also for fixed spatial resolution. We find this to be a very useful,
applicable, and important result.

Before giving more detailed presentation of methods derived for estimation of
geometric moments and perimeter from coverage representation of shapes, we give
a brief introduction to main notions and tasks of shape description and analysis.

5.1. Shape analysis. The shape of an object is a representation of its geometric
extent. It can be thought of as a silhouette of the object. It is often referred to
as a region. The shape of an object is invariant to geometric transformations such
as translation, rotation, (uniform) scaling, and reflection. Therefore, shape can be
understood as an equivalence class in the set of objects; two objects are equivalent
(i.e., have the same shape) if there exists a series of translations, rotations, scalings,
and reflections that maps one of them to the other. There are many situations
where image analysis can be reduced to the analysis of shapes, which gives high
importance to the field of shape analysis.

There exist different classifications of shape analysis techniques, see, e.g., [31] for
an overview. Depending whether only the shape boundary points are used for the
description, or alternatively, the whole interior of a shape is used, the two resulting
classes of algorithms are known as boundary-based (external) and region-based
(internal), respectively. Examples of the former class are algorithms which parse
the shape boundary and various Fourier transforms of the boundary. Their main
advantages are reduction of data and that they may offer a compact description
of complex forms. Region-based methods include, e.g., the medial axis transform,
moment-based approaches, and methods of shape decomposition into the primitive
parts. Their main advantages are easier characterisation and stability in practical
applications, where there is unavoidable noise.

A description of a shape is data representing it in a way suitable for further
computer processing. Such data can be low-dimensional (perimeter and moments),
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or high-dimensional (medial axis and primitive parts). The first type of data is
suitable for, e.g., shape classification, while the second, often called shape repre-
sentation, provides good visual interpretation and compression.

The goal of a shape description is to uniquely characterize the shape. Desired
properties of a shape description scheme are invariance to translation, scale, and
rotation; these three transformations, by definition, do not change the shape of
an object, and consequently should not change its descriptor. However, it should
be noted that in the discrete case such invariance exists only up to discretization
effects, and special care must often be taken in order to fulfil it.

Additional desired properties of a good shape description method are [31]:

• accessibility–How easy is it to compute a descriptor in terms of memory
requirements and computational time; are the operations local or global?

• scope–How wide is the class of shapes that can be described by the method?
• uniqueness–Is the representation uniquely determined for a given shape?
• information preservation–Is it possible to recover the shape from its de-
scriptor?

• stability and sensitivity–How sensitive is a shape descriptor to small changes
of a shape?

Descriptors usually perform well regarding some of the listed properties, while
failing regarding some others. Therefore, a common approach is to combine them
in some appropriate way, to achieve a description that fulfils the requirements of a
given task.

5.2. Geometric moments. The two-dimensional Cartesian moment, mp,q of a
function f(x, y) is defined as

mp,q =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)xpyqdx dy,

for integers p, q > 0. The moment mp,q(S) has the order p+ q. Cartesian moments
are often referred to as geometric moments. The geometric moment mp,q can be
seen as the projection of f(x, y) to the monomial basis set xpyq. A complete moment
set of order n consists of all moments mp,q such that p+ q 6 n.

Moments were made popular in image analysis by Hu, [18]. Hu’s Uniqueness
Theorem states that for a piece-wise continuous function f = f(x, y), nonzero only
within a bounded set in R2, the moments of all orders exist. Moreover, the set of
moments of a function f is uniquely determined by f , and conversely, the set of
all moments of f uniquely determines f . In order to utilize geometric moments as
shape descriptors, their behaviour under scaling, translation, rotation, and reflec-
tion has been studied. To provide shape descriptors which are invariant to scale,
translation, and rotation of a shape, Hu defined seven nonlinear combinations of
geometric moments up to order three, which are known as absolute moment invari-
ants.

When used in image analysis, moments are calculated for discrete functions on
discrete bounded domains. The definition of a geometric moment mp,q of a digital
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image f(x, y) is mp,q =
∑

i

∑
j f(i, j)i

pjq, where (i, j) are points in the (integer)
sampling grid.

An image is always bounded and an image function is piece-wise continuous,
which ensures that the Hu’s statement holds for digital images. However, poten-
tially very large number of moments (as many as there are pixels in the image
itself) may be required for a unique representation and reconstruction of a digital
image. To make the description practically feasible, a smaller set of moments has
to be used, and consequently, only an approximate reconstruction can be provided.
An important question is how to make an appropriate selection of moments, such
that sufficient information is provided for a good enough characterization of the
image.

Even though the nonorthogonality of the basis monomials xpyq causes some
undesired properties of geometric moments, which has initiated several alterna-
tive approaches to moment based shape description (e.g., Legendre and Zernike
polynomials are defined on orthogonal basis sets, which provides more stable and
simpler reconstruction), the Cartesian geometric moments are still well accepted
shape descriptors, due to their simple definition, their uniqueness for a given shape,
the possibility to derive descriptors invariant to rotation, translation, and scaling,
and to express them as integers, their linearity, and the possibility to reconstruct a
number of features of a shape from an appropriately chosen set of its moments. In
addition, it is possible to express all other types of moments in terms of geometric
moments.

The disadvantage of sensitivity to noise mostly applies to high-order moments.
Their use in object description can be avoided (or, at least, reduced) by, e.g., first
decomposing complex shapes into simpler and more regular parts, which can, then,
be represented by a smaller set of lower order moments. Still, precision of estimated
moments are of highest importance; decomposition of objects into smaller parts
leads to moments computed for smaller objects, and, correspondingly, estimations
based on fewer spels. If a special care is not taken, discretization errors may
accumulate, cancelling the positive effect of the decomposition.

Our focus is on analysis of the errors that result from estimation of moments
of a continuous shape from the corresponding moments of its crisp and different
fuzzy digitizations. In particular, we have studied objects represented according to
the pixel coverage model, with an aim to explore relations between coverage and
spatial resolution and their influence on precision of object representation.

Moments estimated from a Gauss digitization.

Definition 5.1. The p1, p2, . . . , pn-moment of a crisp bounded set S in the n-
dimensional Euclidean space equipped with the Cartesian coordinate system is

mp1,p2,...,pn
(S) =

∫∫
. . .

∫

S

n∏

i=1

xpi

i dx1dx2 . . . dxn,

for integers p1, p2, . . . , pn > 0. The moment mp1,p2,...,pn
(S) has the order q =∑n

i=1 pi.
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If the set S is inscribed into an integer grid and digitized, instead of the moments
mp1,p2,...,pn

(S), the moments of the Gauss digitization Dg(S) are available.

Definition 5.2. The discrete moment m̃p1,p2,...,pn
(S) of a crisp set S is

m̃p1,p2,...,pn
(S) =

∑

x∈Dg(S)

n∏

d=i

xpi

i ,

where x = (x1, x2, . . . , xn), and Dg(S) is given by Definition 3.4.

Several features of a shape can be calculated from a sufficient number of its
moments. In fact, a shape can be recovered from an appropriately chosen set of
its moments. If continuous moments are replaced by their discrete counterparts,
more or less good estimates of the observed features of a continuous shape can
be obtained. An upper bound of the error introduced when approximating con-
tinuous moments by their crisp counterparts, can be derived from a theorem by
Davenport [7].

To avoid problematic cases, the following restrictions are imposed on the set S,
which is assumed to be an n-dimensional closed and bounded set of points.

I Any line parallel to one of the n coordinate axes intersects S in a set of
points which, if not empty, consists of at most h intervals.

II The same is true (with m in place of n) for any of the m-dimensional
regions obtained by projecting S on one of the coordinate spaces defined
by equating a selection of n−m of the coordinates to zero; and this condition
is satisfied for all m from 1 to n− 1.

Theorem 5.1. [7] If S satisfies the conditions I and II, then

∣∣|Dg(S) | − |S|
∣∣ 6

n−1∑

m=0

hn−mSm ,

where Sm is the sum of the m-dimensional volumes of the projections of S on the
various coordinate spaces by equating any n−m coordinates to zero, and S0 = 1 by
convention.

It is desirable to know how the accuracy of approximation changes with a change
of image resolution. Instead of increasing the resolution of the digitization grid, we
keep the integer grid, and instead scale the set S. Let rS denote a scaling of the
continuous set S about the origin by the factor r: rS = {(rx, ry) | (x, y) ∈ S}.
Since h does not change with scale, and Vm = O (rm), it is easy to see that |S| =
r−n|Dg(rS) |+O (1/r), or, expressed in terms of moments, that

(5.1) m0,0,...,0(S) =
1

rn
m̃0,0,...,0(rS) +O

(1
r

)
.

Observing that a first order moment of a continuous n-dimensional set S, can
be expressed as the zero-order moment of a set S′ in an (n+1)-dimensional space,
Davenport’s theorem can, by induction, be generalized to moments of arbitrary
order q ∈ N.
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Theorem 5.2. If the closed and bounded set S satisfies the conditions I and II,
then

(5.2) mp1,p2,...,pn
(S) =

1

rn+q
m̃p1,p2,...,pn

(rS) +O
(1
r

)
,

where q =
∑n

i=1 pi, q ∈ N.

Proof by induction. The base case, for zero order moments q = 0, is given by (5.1).
Inductive step: Assume that (5.2) holds for an arbitrary moment of order q. We
then show that (5.2) also holds for a moment of order q + 1, were we increase the
exponent of the kth coordinate, pk, by one.

mp1,p2,...,pk+1,...,pn
(S) = mp1,p2,...,pn

(S′)

=
1

rn+q+1
m̃p1,p2,...,pn

(rS′) +O
(1
r

)

=
1

rn+q+1
m̃p1,p2,...,pk+1,...,pn

(rS) +O
(1
r

)
,

where

S′ =
{
(x1, x2, . . . , xn, xn+1)

∣∣ (x1, x2, . . . , xn) ∈ S, xn+1 ∈ [0, xk)
}
.

The first equality holds from the definition of moments, the second is given by the
assumption, and the third holds by noticing that for every integer point in rS, there
are rxk +O (1) integer points in rS′. �

For a class of 2D shapes, a stronger statement related to error bounds is derived
in [22].

Theorem 5.3. [22] The moments of a planar 3-smooth convex set S, digitized in
a grid with resolution r (the number of grid points per unit), can be estimated by

mp1,p2(S) =
1

rp1+p2+2
m̃p1,p2(rS) +O

(
1

r
15
11−ε

)

for p1 + p2 6 2

Remark 5.1. A planar 3-smooth convex set is a convex set in the Euclidean plane
whose boundary consists of a finite number of arcs having continuous third order
derivatives and a positive curvature at every point, except the end points of the
arcs. These conditions exclude the existence of straight boundary segments.

Remark 5.2. Despite being given for convex sets, Theorem 5.3 also holds for finite
unions and intersections of convex sets.

Moments estimated from a coverage digitization. Fuzzy moments and the
centre of gravity of a fuzzy set are among the first defined fuzzy concepts.

Definition 5.3. The p1, p2, . . . , pn-moment of a fuzzy subset S of a reference set
X ⊂ Rn is

mp1,p2,...,pn
(S) =

∫∫
. . .

∫

X

µS(x)

n∏

i=1

xpi

i dx1dx2 . . . dxn,

where µS(x) is the membership of the point x to the set S.
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The membership function µ, defining a fuzzy set, can be any mappingX → [0, 1].
We further study the special case where the membership of a point x is defined by
the coverage α(x) of the corresponding spel σ(x).

Replacing the Gauss digitization in Definition 5.2 with a coverage digitization,
and replacing membership µ in Definition 5.3 with coverage values α, the following
three definitions follow naturally.

Definition 5.4. The discrete coverage moment M p1,p2,...,pn
(S) of a crisp set S ∈

Rn is

M p1,p2,...,pn
(S) =

∑

(x,α(x))∈Dc(S)

α(x)

n∏

i=1

xpi

i ,

where x = (x1, x2, . . . , xn), and Dc(S) is given by Definition 3.2.

Definition 5.5. The ℓ-level quantized discrete coverage moment M ℓ
p1,p2,...,pn

(S) of
a crisp set S ∈ Rn is

M
ℓ
p1,p2,...,pn

(S) =
∑

(x,αℓ(x))∈Dℓ
c(S)

αℓ(x)

n∏

i=1

xpi

i ,

where Dℓ
c(S) is given by Definition 3.3.

Definition 5.6. The r-sampled discrete coverage moment M̂
r
p1,p2,...,pn

(S) of a crisp
set S ∈ Rn is

M̂
r
p1,p2,...,pn

(S) =
∑

(x,α̂r(x))∈D̂ℓ
c(S)

α̂r(x)

n∏

i=1

xpi

i ,

where D̂ℓ
c(S) is given by Definition 3.5.

In the following we derive error bounds for estimation of moments of a continuous
shape from its discrete coverage moments. Theorems are formulated for the n-
dimensional case, extending the results presented in [50].

Given a closed and bounded set S ⊂ R
n, satisfying conditions I and II, we

compare the rf -sampled coverage moment M̂
rf (rsS) of an rs times dilated set

S, with the crisp moment m̃p1,p2,...,pn
(rsrfS) of an rf times further dilated set

(corresponding to rf times higher image resolution).

Theorem 5.4. The discrete moments (Definition 5.2) of a set rsrfS ⊂ Rn, can
be estimated by the rf -sampled coverage moments of a set rsS by

m̃p1,p2,...,pn
(rsrfS) = rq+n

f M̂
rf
p1,p2,...,pn

(rsS) +O
(
rq+n−2
s rq+n

f

)
,

where q = p1 + p2 + . . .+ pn is the order of the moment.

Combining this result with Theorems 5.2 and 5.3 leads to the following corollary
(extending [50]):

Corollary 5.1. The moments of a closed and bounded set S ⊂ R
n, satisfying

conditions I and II, can be estimated by

(5.3) mp1,p2,...,pn
(S) =

1

rq+n
s

M̂
rf
p1,p2,...,pn

(rsS) +O
( 1

r2s

)
+O

( 1

rsrf

)
,
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where q =
∑n

i=1 pi, q ∈ N. The moments of a planar 3-smooth convex 2D shape S
can, for p1 + p2 6 2, be estimated by

(5.4) mp1,p2(S) =
1

rp1+p2+2
s

M̂
rf
p1,p2

(rsS) +O
( 1

r2s

)
+O

( 1

(rsrf )
15
11−ε

)
.

We note that Theorem 5.4 and Corollary 5.1 also hold for estimations based on
ℓ-level quantized discrete coverage moments M ℓ

p1,p2,...,pn
(rsS), with ℓ = rnf . This

follows from the fact that the coverage values of an ℓ-level quantized coverage digi-
tization, with ℓ = rnf , do not differ from the values assigned by a real coverage

digitization more than the (corresponding) values assigned by an rf -sampled cov-
erage digitization (see Section 3.1). We conclude that once the spatial resolution
is high enough to fully “exploit” the coverage values of spels, i.e., when rs > Crf ,
where C is a constant derived from the asymptotic expression for the error bound,
using rnf coverage values provides the same accuracy of moment estimation as in-

creasing the (crisp) spatial resolution of the image rf times.

Proof of Theorem 5.4. Without loss of generality, we assume that S is fully con-
tained within [0, 1]n. The rsrf times dilated shape rsrfS, then fits in ID =
[0, rsrf ]

n. Let us partition this region (image domain) into rns nonoverlapping
blocks of size rnf . Each such part of the image space can be expressed as an rf
times dilated spel, such that

⋃
x∈Id

rfσ(x) = ID, where Id = { 1
2 ,

3
2 , . . . ,

2rs−1
2 }n is

the set of half-integer points of the rf times smaller domain [0, rs]
n. The moment

m̃ can be computed as a sum of the moments of all such parts of the image space.

(5.5) m̃p1,p2,...,pn
(rsrfS) =

∑

x∈Id

m̃p1,p2,...,pn
(rsrfS ∩ rfσ(x))

Assume that for a block rfσ(x),x ∈ Id, there are k out of the rnf spels which have
their centroids within the continuous crisp shape rsrfS. The moment of such a
block is

m̃p1,p2,...,pn
(rsrfS ∩ rfσ(x)) =

k∑

j=1

n∏

i=1

(rfxi + rf∆i,j)
pi = rqf

k∑

j=1

n∏

i=1

(xi +∆i,j)
pi ,

where rf∆i,j , denotes the ith coordinate of the displacement of the jth covered
spel with respect to the centre of the block, rfx. ∆i,j takes values in the range
[− 1

2 ,
1
2 ].

We consider two different cases: (i) the block rfσ(x) is completely covered by
the set rsrfS and k = rnf ; (ii) the block is partly covered and 1 6 k 6 rnf . The
moment of an empty block, k = 0, is correctly estimated as zero, and does not
contribute to any estimation error.
Case (i): k = rnf . Since the spels are symmetrically distributed around x, then for

each spel j, there is a corresponding spel j′ such that ∆i,j′ = −∆i,j , for all i. We
count both contributions each time and divide by two.

m̃p1,p2,...,pn
(rsrfS ∩ rfσ(x)) =

1

2
rqf

rnf∑

j=1

( n∏

i=1

(xi −∆i,j)
pi +

n∏

i=1

(xi +∆i,j)
pi

)
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For xi = O (rs), and ai ∈ R, such that xi ≫ ai, it holds that
n∏

i=1

(xi − ai)
pi +

n∏

i=1

(xi + ai)
pi

=
n∏

i=1

(
xpi

i − aix
pi−1
i +O

(
rpi−2
s

))
+

n∏

i=1

(
xpi

i + aix
pi−1
i +O

(
rpi−2
s

))

=

n∏

i=1

xpi

i −
n∑

j=1

ajx
pj−1
j

n∏

i=1
i6=j

xpi

i +O
(
rq−2
s

)
+

n∏

i=1

xpi

i +

n∑

j=1

ajx
pj−1
j

n∏

i=1
i6=j

xpi

i +O
(
rq−2
s

)

=2

n∏

i=1

xpi

i +O
(
rq−2
s

)

And, therefore,

m̃p1,p2,...,pn
(rsrfS ∩ rfσ(x)) = rqf

rnf∑

j=1

( n∏

i=1

xpi

i +O
(
rq−2
s

))

= rq+n
f

n∏

i=1

xpi

i +O
(
rq−2
s rq+n

f

)

= rq+n
f M̂

rf
p1,p2,...,pn

(rsS ∩ σ(x)) +O
(
rq−2
s rq+n

f

)

Case (ii): k = O
(
rnf

)
. To cover the worst case, we assume that all covered spels are

at maximal distance from the centre of the block; ∆i,j =
1
2 .

m̃p1,p2,...,pn
(rsrfS ∩ rfσ(x)) ≈ rqf

k∑

j=1

n∏

i=1

(
xi +

1

2

)pi

=
xi≫ 1

2

rqf · k
n∏

i=1

xpi +O
(
rq−1
s rq+n

f

)

= rq+n
f M̂

rf
p1,p2,...,pn

(rsS ∩ σ(x)) +O
(
rq−1
s rq+n

f

)

For a closed and bounded set S, satisfying conditions I and II, there are O (rns )
blocks of type (i) and O

(
rn−1
s

)
blocks of type (ii) in the sum of Eq. (5.5), leading

to the final result:

m̃p1,p2,...,pn
(rsrfS) = rq+n

f M̂
rf
p1,p2,...,pn

(rsS) +O
(
rq+n−2
s rq+n

f

)
.

�

Statistical study on synthetic test images. We perform a statistical study
to examine the properties of moments estimated at low resolutions. Multigrid
resolution is expressed by dilations of the observed objects. Tests are performed on
squares and disks of increasing size. For each of the observed real-valued side lengths
a large number of randomly positioned squares (in various rotations) are considered.
Similarly, for each of the observed real-valued radii, a large number of disks with
random centre position, are observed. The continuous objects are digitized using
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Figure 7. Plots of maximal observed errors for first and second
order moments estimation for different spatial and coverage reso-
lutions. Top: Moment estimation of a square. Bottom: Moment
estimation of a disk.

rf -sampled coverage digitization, with different super-sampling levels. Note that
rf = 1 corresponds to crisp segmentation, and that rf = 16 approximates the upper
limit for the coverage resolution of 8-bit pixel depth.

For each size of an object, we determine the maximal relative estimation error for
moments up to the order two. We present the results for m1,0 and m2,0 moments
estimation, both for squares and for disks, in Figure 7. The estimation errors
for squares show asymptotic behaviour in accordance with expression (5.3). Disks
are 3-smooth convex objects, and the corresponding estimation bounds agree with
expression (5.4).

Plots are presented in a logarithmic scale so that the “slopes” of the curves
correspond to the order of estimation error, and can be compared with the plotted
straight line which has a slope equal to the theoretically derived order of error
(−1 for squares and − 15

11 for disks). Note that the plots show accordance with
the asymptotic bounds also at low spatial resolutions. The relative positions of
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the curves clearly show how the estimation error becomes smaller both with the
increase of spatial and coverage resolution.

5.3. Perimeter. The length of the boundary (perimeter) of an object in a two
dimensional (2D) image is an essential object features in image analysis. Despite
its apparent simplicity, it is a feature that is very difficult to accurately compute
from the information provided in a digital image. Accordingly, a large number of
publications have addressed the issue of achieving accurate and precise estimates
of object perimeter.

Most methods presented in the literature deal with binary images, where pixels
either have a value one, being assigned to the object, or zero, if they are assigned to
the background; for an overview, see, e.g., [6] and [9]. The binary model corresponds
well with the output of the Gauss centre point digitization scheme. It, however,
discards a large amount of useful information, especially along the object boundary.

In this section we show how perimeter of a continuous object can be accurately
estimated from its coverage digitization. For the case of a quantized coverage
digitization, we derive optimal scale factors, minimizing the maximal estimation
error for straight edge segments. Both proven theoretically, for straight edges, and
observed empirically, for more general shapes, a significant improvement in the
accuracy and precision of perimeter estimates is achieved by utilizing the coverage
information.

Background. The length of the boundary of a digitized object can be estimated as
the cumulative sum of the lengths of local steps along the border of the object. Such
estimates are straightforward to accomplish by summing the distances between
pixel centres as determined from the Freeman chain code [14]. Doing so, however,
results in rather big overestimates; the (intuitive) local step weights, 1 for isothetic

and
√
2 for diagonal steps, are not optimal when measuring digitized line segments,

this is illustrated in Figure 8.
Starting from an assumption that the boundary of an object is locally planar,

optimal weights for the local steps along the border have been derived, [23, 39],
leading to improved perimeter estimates. Weights for the 2D case, optimized to
provide an unbiased estimator with minimal mean square error for straight lines
with length tending to infinity, have been proven to perform even better for curved
contours [9]. This last property is important to notice since it provides much more
general applicability of the estimator.

In addition to the local type of estimators mentioned above, different nonlocal
perimeter estimators have been developed; see e.g [6] for an overview. By basing
the estimate on information from larger regions of the image, nonlocal estimators
can be made to ensure convergence toward the true value, as the spatial grid reso-
lution increases [22]. Such estimators are often referred to as multigrid convergent
estimators. A common approach for nonlocal perimeter estimation is to recognize
straight boundary segments, and to perform a polygonalization of the object. In
spite of the fact that local methods can not be made multigrid convergent in a gen-
eral sense (see e.g., [59]), they are still often preferred to nonlocal ones, due to their
several advantages. Local methods are relatively easy to implement, parallelizable
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Figure 8. Estimation of the length of a straight edge using lo-
cal steps, (left) using 4 directions, and (right) using 8 directions.
Direct use of Euclidean lengths of the steps leads to estimates
which are too large for certain directions, due to the shown stair-
case effect. Errors can be reduced by scaling the estimate with an
appropriate factor. However, the estimate remains variant to rota-
tion, and the maximal error (for the better, 8 direction version) is
still almost 4%. This error does not decrease with increased image
resolution.

(enabling very fast implementations), and inherently stable (in a sense that a small
change in an image causes only a small change of the estimate). These important
properties do not in general hold for nonlocal methods.

In this section we present an algorithm, proposed in [67], for estimating the
boundary length of a continuous object from its coverage digitization. The method
uses only local data and a parallel implementation is straightforward. Effects of
quantization of coverage values are considered and the optimal scale factor for the
(Freeman-style) cumulative sum of local steps is derived, as a function of the number
of coverage levels available. The maximal error (difference from the Euclidean
length of the original continuous line segment) is minimized for digital straight
segments with the length tending to infinity. The method is applied and evaluated
on objects with nonstraight boundaries as well. The issue of a trade-off between
spatial and coverage resolution for a good performance of the estimator is explored
by observing the performance of the method on shapes digitized at increasing spatial
resolution, for a range of coverage resolutions. The results show that the accuracy
and precision of estimates rapidly increase with the increase of coverage resolution,
once a “reasonable” spatial resolution is provided.

Edge length estimation based on difference of column sums.
Non-quantized case A well known formula for computing the arc length of a

function y = f(x) over an interval [a, b] is l =
∫ b

a

√
1 + [f ′(x)]2dx. Applied to a

linear function, y = kx+m, with k ∈ [0, 1], this formula gives the length l of a line
segment for x ∈ [0, N ], N > 0 as

(5.6) l = N
√
1 + k2 .
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Figure 9. Example illustrating edge length estimation based
on the difference dc of column sums sc for a segment (N = 4) of
a halfplane edge given by y 6 0.45x + 0.78. The true halfplane
edge is shown as a solid white line. The approximations of the
edge segment using local steps of slope dc and d̃c, respectively, are
shown as dashed lines with × marking the ends of each step.

Given a halfplaneH defined by y 6 kx+m, k ∈ [0, 1], m > 0, we can use Eq. (5.6) to
compute the length of the edge segment y = kx+m, x ∈ [0, N ]. For the straight edge

y = kx+m ofH , the slope k can be expressed as k = y(x+∆x)−y(x)
∆x = y(x+1)−y(x).

Observing integrated function values over a unit interval, sc =
∫ c+1/2

c−1/2
y(x) dx + 1

2 ,

and denoting dc = sc+1 − sc, we conclude that k = dc for all c ∈ R.
Assume N ∈ Z+. If we observe c ∈ {0, 1, . . . , N − 1}, then each unit-wide

interval used in the integration above defining sc corresponds to one column of
pixels in a digital grid. More precisely, given an image I of width N , being a
coverage digitization of the halfplane H , I = Dc(H), the length l in Eq. (5.6) can
be computed as

(5.7) l(I) =
N−1∑

c=0

lc , for lc =
√
1 + d2c ,

where the value dc = sc+1 − sc is the difference of two consecutive column sums of
the pixel values of the image. This is illustrated in Figure 9(a). The corresponding
results for k /∈ [0, 1] follow by symmetries of the square grid.

Quantized case If the observed image I is, instead, an ℓ-level quantized pixel
coverage digitization I = Dℓ

c(H), then the differences dc are computed from quan-
tized pixel coverage values. We denote such column differences, derived from a
quantized coverage digitization, by d̃c. These values are from the set Qℓ and an
edge with real valued slope k ∈ [0, 1] is thereby approximated using local steps with
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slopes from Qℓ. An illustration is given in Figure 9(b). Due to the quantization,
and the edge line only being approximated, an error is unavoidable. With an aim to
minimize the maximal error, we introduce a scale factor γℓ, providing the following
formula for the estimation of the length of the edge present in the image:

(5.8) l̂(I) =

N−1∑

c=0

l̂c , where l̂c = γℓ

√
1 + d̃2c .

In the next section we derive a formula for the optimal value of the scale factor γℓ
as a function of the number of quantization levels ℓ so as to minimize the estimation
error of (5.8) and we show that limℓ→∞ γℓ = 1; this is when formula (5.8) reduces
to formula (5.7).
Binary case. Let us observe the special case of a 1-level quantized pixel digitiza-
tion, that is, a binary image. The differences d̃c of column sums for a binary image
of a given edge with k ∈ [0, 1] belong to the set Q1 = {0, 1}; the difference value

d̃c = 0 corresponds to a horizontal step (with slope k = 0) and the value d̃c = 1
corresponds to a diagonal step (with slope k = 1). In this way, any edge with a real
valued slope k ∈ [0, 1] is approximated by a sequence of steps with slopes k = 0 or
k = 1.

The estimation error for this situation is studied in e.g. [23, 39]. As already

mentioned, to approximate the length l with l̃ =
∑N−1

c=0

√
1 + d̃2c leads to an over-

estimate of the true edge length, in all cases when the slope k of the edge is not
equal to 0 or 1. By scaling the step length with a properly chosen factor γ1, esti-
mates with a minimal error are achieved. In [64] a value γ1 ≈ 0.9604 is shown to
minimize the maximal error for the binary case.

Optimization to minimize maximal error. Let a set of linearly independent
vectors S =

{
Si = (1, i

ℓ ), i ∈ {0, 1, . . . , ℓ}
}
be given. Their slopes are i

ℓ ∈ Qℓ and

they correspond to the possible slopes of local steps, d̃c, as derived in the previous
section. The length Si of the vector Si is Si =

√
1 + (i/ℓ)2.

The edge segment y = kx+m, k ∈ [0, 1], on the interval [0, N ], represented by
the vector l = (N, kN), can be expressed as a linear combination of two vectors Si

and Sj from the set S, having slopes i
ℓ ,

j
ℓ ∈ Qℓ such that i

ℓ 6 k 6
j
ℓ , as follows:

(5.9) l =
(j − ℓk)N

j − i
Si +

(ℓk − i)N

j − i
Sj .

The length of l can be estimated by using Eq. (5.9) as

(5.10) l̂ = γ
(i,j)
ℓ

(
(j − ℓk)N

j − i
Si +

(ℓk − i)N

j − i
Sj

)
.

This corresponds to an edge segment such that d̃c ∈
{

i
ℓ ,

j
ℓ

}
for all c, for which

Eq. (5.8) is equivalent to Equation (5.10).

We derive γ
(i,j)
ℓ as a function of ℓ to minimize the maximal error of estima-

tion formula (5.10). In the given context, the coefficients (j−ℓk)N
j−i and (ℓk−i)N

j−i of

Eq. (5.10) represent the nonnegative number of repetitions of each of the local steps
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Figure 10. Relative error ε
(i,j)
ℓ (k), for k ∈ [0, 1], γℓ = 1, ℓ = 5.

The values ε
(i,j)
max are indicated. (a) Theoretically derived behaviour

of ε
(i,j)
ℓ (k), for i ∈ {0, 1, 2, 3, 4}, and q = j − i ∈ {1, 2, 3}. (b) Em-

pirically observed values of ε
(i,j)
ℓ (k) for straight edges y = kx+m

of length l = 1000 for 10 000 values of k and random m, superim-
posed on the theoretical results shown in (a).

Si and Sj in approximation of l and are therefore required to be integers. This
condition is, however, rather difficult to impose in the general case. We avoid the
problem of integer valued coefficients by deriving the theory for segments of infinite
length (N → ∞) (see also [64]).

The signed relative error of the length estimate l̂ of an edge segment with slope
k, such that k ∈ [ iℓ ,

j
ℓ ], is given by the formula

(5.11) ε
(i,j)
ℓ (k) =

l̂− l

l
= γℓ

(j − ℓk)Si + (ℓk − i)Sj

(j − i)
√
1 + k2

− 1 .

To get a visual impression of the error function given by Eq. (5.11), we plot ε
(i,j)
ℓ (k)

as a function of k in Figure 10(a), for the case γℓ = 1, ℓ = 5 and for a number of
combinations of i and j.

The best trade-off to minimize
∣∣ε(i,j)ℓ (k)

∣∣ is found when

max
k∈[ i

ℓ
, j
ℓ
]
ε
(i,j)
ℓ (k) = − min

k∈[ i
ℓ
, j
ℓ
]
ε
(i,j)
ℓ (k)

which gives the following optimal value for γ
(i,j)
ℓ

γ
(i,j)
ℓ =

2(j − i)ℓ

(j − i)ℓ+

√(√
ℓ2 + i2

√
ℓ2 + j2 − (ℓ2 + ij)

)2
+ ℓ2(j − i)2

,
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where, for two given vectors Si and Sj , the maximal error is
∣∣ε(i,j)ℓ

∣∣ = 1 − γ
(i,j)
ℓ .

The derivation of this result is given in [51].
If we assume that j − i = q is constant, i.e., that vectors Si and Si+q are used

for the approximation of a given line, it can be derived, [51], that the error
∣∣ε(i,i+q)

ℓ

∣∣
is the largest for i = 0. To minimize the maximal error for i ∈ {0, 1, . . . , ℓ}, it is

sufficient to observe γ
(0,q)
ℓ :

(5.12) γ
(0,q)
ℓ =

2q

q +

√(√
ℓ2 + q2 − ℓ

)2
+ q2

=
2

1 +

√(√
(ℓ/q)2 + 1− ℓ/q

)2
+ 1

.

The value γ
(0,q)
ℓ is denoted γℓ and is used as optimal scale factor in the length

estimation defined by Equation (5.10). The corresponding maximal estimation
error, |εℓ|, is given by

|εℓ| =
∣∣ε(0,q)ℓ

∣∣ = 1− γ
(0,q)
ℓ .

Observing that
√
(ℓ/q)2 + 1−ℓ/q decreases as the ratio ℓ

q increases, we conclude

that γ
(0,q)
ℓ increases, and consequently the length estimation error decreases, with

ℓ
q increasing. In other words, by either increasing ℓ or decreasing q the maximal

estimation error is reduced. This supports our main motivation for this work: using
more coverage levels reduces the length estimation error.

It can be noticed that for ℓ = 1, corresponding to a binary image, and with
q = 1, being the only option for q 6 ℓ, Eq. (5.12) provides that the scale factor γ1
that minimizes the maximal length estimation error is

γ1 = γ
(0,1)
1 =

2

1 +

√(√
2− 1

)2
+ 1

≈ 0.9604

which is a well known optimal result, [64]. The corresponding estimation error is
|ε1| = 1− γ1 6 4%.

More generally, observing the estimation error corresponding to γℓ = γ
(0,q)
ℓ as a

function of ℓ, as given by Eq. (5.12), we conclude that for any constant q ≪ ℓ

(5.13) |εℓ| = O(ℓ−2) ,

which gives an asymptotic upper bound for the estimation error as ℓ → ∞. The
derivation of this result is given in [51]. Empirical studies performed and presented
in [67] are in agreement with this theoretical results.

The value of q = j− i, appearing in the factor γℓ, deserves some more attention.
It reflects the difference in slope of the vectors Si and Sj used in the linear com-

bination, Eq. (5.9). Their slopes i
ℓ and j

ℓ correspond to the column differences d̃c
of the image I = Dℓ

c(H). A larger value of q leads to a larger error (according to
Eq. (5.12)). For the purpose of minimization w.r.t. the maximal error, we observe
the worst case situation, i.e., the value q should reflect the larges range of possible
column differences d̃c for any ℓ-level digitization of a halfplane edge for any given
slope k ∈ [0, 1]
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We have proved [51] that q = 3 corresponds to the worst case situation. Accord-
ing to this observation and Equation (5.12), the optimal scale factor is:

γ
(0,3)
ℓ =

6

3 +

√(√
ℓ2 + 9− ℓ

)2
+ 9

.

This leads to the maximal estimation error for the general case: |εℓ| = 1 − γ
(0,3)
ℓ .

Combining this result with the asymptotic convergence as ℓ → ∞, Equation (5.13),
the quantization level convergence of the length estimate follows straightforwardly:

Theorem 5.5. [52] Let I = Dℓ
c(H) be an ℓ-level quantized coverage digitization

of a halfplane H : y 6 kx+m, k ∈ [0, 1]. The length l of the straight edge segment
y = kx+m for x ∈ [0, N ], N ∈ Z+ can be estimated from I by using Formula (5.8)

and it holds that l = l̂ + 1/ℓ2.

However, for a coverage digitization with few coverage levels ℓ, the worst case
situation with q = 3 does not appear. As already noticed, for ℓ = 1 only two
different slopes are available, and thus q cannot be greater than 1. We proved that
q relates to ℓ as follows:

(5.14) q 6





1, ℓ 6 2,

2, 3 6 ℓ 6 8,

3, ℓ > 9

We have also found examples where the upper bounds of q, in relation (5.14), are
reached, i.e., for ℓ > 9, q = 3 has to be considered for the (theoretical) maximal
error bound estimation.

However, despite explicit examples that q = 3 is required for ℓ > 9, empirical
studies show that the situations where more than two different slopes appear in
the estimation are very rare in practise. Observing the plot in Figure 10(b), we see

that very few edges have an unscaled error greater than ε
(0,1)
max , which supports the

idea that computing γℓ using q = 1 may be a better choice in practise, than using

the theoretically derived worst case value q = 3. To use γ
(0,1)
ℓ rather than γ

(0,3)
ℓ is,

therefore, recommended in general case, since it is observed as a better choice in
our empirical test performed on other shapes, as well.

Local computation of length. Local computation of the edge length relies on
local computation of the d̃c values of Equations (5.8). How to estimate the slope
of the observed edge from a small neighbourhood is a very important question
which was answered in details in [51, 52]. The answers addressed issues related
to the effects of quantization on the estimation algorithm, as well as what step
are required to obtain an algorithm generally applicable, i.e., handling cases when
k /∈ [0, 1].

Here, we only briefly summarize the most important observations and steps of
the algorithm.

First observation is that for lines of a slope k ∈ [0, 1], each value d̃c depends on
at most six pixels, located in a 3× 2 rectangle; the remaining pixels in the column
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pair do not contribute to the difference, neighbouring pixels in each row being the
same. The difference d̃c of two columns can thus be computed using information
only from one, appropriately selected, 3 × 2 region–a subset of the two observed
columns. We denote such a 3 × 2 configuration D(c,r), where the left pixel of the

middle row is located at (c, r), and with d̃(c,r) the difference of column sums within
D(c,r). We then formulate a criterion to detect which D(c,r), for each observed pair
of neighbouring columns, is intersected by the straight edge. Carefully treating the
effects of quantization we prove that the following holds (see [51]):
For ũ(c, r) defined as

ũ(c, r) = 1
2

∑

p̃∈D(c,r)

p̃+ (r − 3
2 ) ,

then
ũ(c, r) ∈ [r − 1

2 , r +
1
2 ] ⇒ d̃c = d̃(c,r).

Based on this, we derive an estimation formula for the length of a line segment,
with a slope k ∈ [0, 1], from a local neighbourhood of a size 3× 2.

Further, we observe that if the slope k of the observed line is greater than one,
then the differences calculated to determine d̃(c,r) should be taken row-wise instead
of column-wise, and a 2×3 region should therefore be used instead of a 3×2 region.
To simplify application of the method, we suggest to not use two different region
sizes for the two situations (|k| 6 1 and |k| > 1), but instead to use a 3× 3 region
in all the cases. Assigning a local edge length contribution to the central pixel of
each 3 × 3 configuration also provides a more appealing output of the algorithm,
where edge length values are associated with pixels instead of with edges in between
pixels. We denote a 3× 3 configuration, with the central pixel located at (c, r), by
T(c,r), with (quantized) pixel values p̃i, i = 1, 2, . . . , 9, indexed row-wise, from left
to right and top to bottom. A 3 × 3 configuration T(c,r) contains (if we consider
lines of slope k ∈ [0, 1]) two 3× 2 sub-configurations, D(c−1,r) and D(c,r).

Based on the above, we derive the following local edge length l̂T(c,r), assigned to

one 3× 3 configuration T(c,r):

l̂T(c,r) = l̂l + l̂r, where

l̂l =

{
γℓ

2

√
1 + d̃2(c−1,r), ũc−1 ∈

[
r − 1

2 , r +
1
2

)

0, otherwise,

l̂r =

{
γℓ

2

√
1 + d̃2(c,r), ũc ∈

(
r − 1

2 , r +
1
2

]

0, otherwise.

The proposed edge length estimate over the whole image I is

(5.15) l̂T (I) =
∑

T(c,r)⊂I

l̂T(c,r) .

Finally, it remains to observe a general situation–a 3 × 3 configuration T(c,r) ⊂
I, where the image I = Dℓ

c(H) is an ℓ-level quantized coverage digitization of a
halfplane H : y 6 kx + m or H : y > kx + m, where the slope k is in [−∞,∞].
We present a method to isometrically transform every general configuration T(c,r)

so that the transformed configuration T ′
(c,r) corresponds to that of a halfplane
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H ′ : y 6 k′x + m′, where k′ ∈ [0, 1]. In that way we extend application of the
estimation formula (5.15) to the general case. We have defined criteria for selection
of the appropriate transformation to be applied to an observed configuration T(c,r),
and proved their correctness also for the quantized case.

Combining all of the above, the following algorithm is presented to compute the

edge length contribution l̂T(c,r) for a given 3 × 3 configuration. To compute the

complete edge length l̂T , the algorithm is applied to all pixels (or, alternatively,
only to those adjacent to the object edges, if information about edges of the object
is available), and the total length is obtained as a sum of the local edge length
contributions, according to formula (5.15). For quantized coverage digitizations of
straight edges, this algorithm provides the accuracy guaranteed by Theorem 5.5.

Algorithm 2.

Input: Pixel coverage values p̃i, i = 1, . . . , 9, from a 3× 3 neighbourhood T(c,r).

Output: Local edge length l̂T(c,r) for the given 3× 3 configuration.

if p̃7 + p̃8 + p̃9 < p̃1 + p̃2 + p̃3 /* y > kx+m */
swap(p̃1, p̃7)
swap(p̃2, p̃8)
swap(p̃3, p̃9)

endif

if p̃3 + p̃6 + p̃9 < p̃1 + p̃4 + p̃7 /* k < 0 */
swap(p̃1, p̃3)
swap(p̃4, p̃6)
swap(p̃7, p̃9)

endif

if p̃4 + p̃7 + p̃8 < p̃2 + p̃3 + p̃6 /* k > 1 */
swap(p̃2, p̃4)
swap(p̃3, p̃7)
swap(p̃6, p̃8)

endif

s̃1 = p̃1 + p̃4 + p̃7
s̃2 = p̃2 + p̃5 + p̃8
s̃3 = p̃3 + p̃6 + p̃9

ũl = (s̃1 + s̃2)/2
ũr = (s̃2 + s̃3)/2

if 1 6 ũl < 2

d̃l = s̃2 − s̃1

l̂l =
γℓ

2

√
1 + d̃2l

else

l̂l = 0
endif

if 1 < ũr 6 2

d̃r = s̃3 − s̃2

l̂r =
γℓ

2

√
1 + d̃2r

else

l̂r = 0
endif

l̂T(c,r) = l̂l + l̂r

Estimator performance on synthetic test images. To study the accuracy and
stability of the method applied to (both convex and nonconvex) curves, we evaluate
the presented algorithm with respect to the accuracy of length estimation on a set
of synthetic objects digitized using coverage digitization. We use the set of test
shapes proposed in [21] (also used in e.g. [6]), containing convex and nonconvex
objects with known perimeter, see Figure 11. The test shapes are digitized at a
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Figure 11. Pixel coverage digitizations of the test data set; one
high resolution (grid resolution 512) (top) and one rotated low
resolution (grid resolution 20) digitization (bottom).

range of resolutions, with random alignment in the digitization grid. Results of
this evaluation are presented in Figure 12. We use q = 1 when computing the

scale factor γℓ = γ
(0,q)
ℓ , since that shows to provide empirically better results than

using q = 2 or q = 3. For each test shape and for a number of resolutions the
coverage digitizations for several different rotations and positions of the shape in
the digital grid are computed. A number of quantization levels are observed and
the nonquantized digitization, indicated with ℓ = ∞, is also included. The average
performance of the method is plotted as a function of resolution. The true pixel
coverage digitizations of the test shapes are approximated by 256-sampled coverage
digitizations, D̂256

c (S).
As noticed in [21], the thin elongated peak of the yin-yang curve slows down the

convergence to the true value quite significantly. For complementary comparison
we also show Figure 13, where the yin-yang shape is removed from the test material.

As an additional test (also performed in [6]), we estimate the perimeter of a
rotated square and plot, in Figure 14, the estimate as a function of angle. As can
be seen the rotational variation decreases rapidly with the increase of number of
coverage levels, and is for ℓ > 3 within ±1% of the mean estimate. The slight
overall underestimate of the perimeter of the square (less than 0.5%) is attributed
to its four corners.

In general, we observe that the presented local estimator for boundary length
estimation performs very well in comparison with the nonlocal multigrid conver-
gent estimators evaluated in [6]. Note that this holds also for estimates based on
relatively few coverage levels.

6. Defuzzification and high resolution reconstruction

As described in previous sections, there are several reasons to consider discrete
fuzzy representations as a useful way to for represent objects in images. Among
first mentioned were advantages of fuzzy representations in handling noise and
intensity variations in images, as well as imprecision of various types. No matter
what physical property is imaged (reflection of light, density of a material, intensity
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Figure 12. Relative errors (in percent) of perimeter estimates for
the test shapes (shown in Figure 11) digitized at increasing reso-
lution for 5 different degrees of quantization and for nonquantized
(ℓ = ∞) coverage digitization.
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Figure 13. Relative errors (in percent) of perimeter estimates
when the yin-yang shape is removed from the set of test shapes.

of a flow, or amount of movement), and independently of if a crisp real object or a
naturally fuzzy one (such as a cloud, or a flame, for example, but also properties
like blood flow, or activity of cells) are represented in an image, an appropriately
chosen membership function can always be chosen so that a corresponding fuzzy
representation provides better preservation of information relevant for the imaged
object and better treatment of appearing imprecision, than the crisp one.
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Figure 14. Relative errors (in percent) of perimeter estimates for
a rotating square of size 128 × 128, from images with 5 different
degrees of quantization and for the nonquantized (ℓ = ∞) case.

Our focus has been on preservation of geometric features of the crisp continuous
imaged objects; for that purpose we find the coverage representation most appro-
priate. Features such as perimeter, area, and other geometric moments are good
examples for that.

In spite of mentioned advantages of utilizing fuzzy segmented images, a crisp
representation of objects may still be needed. Reasons for that are, e.g., to facilitate
easier visualization and interpretation. Even though it contains less information,
a crisp representation is often easier to interpret, understand, and manipulate,
especially if the spatial dimension of the image is higher than two. Moreover,
analogues for many tools available for the analysis of binary images are still not
developed for fuzzy images. This may force us to perform at least some steps in the
analysis process by using a crisp representation of the objects, requiring the ability
to “switch to” an appropriate crisp representation at any point in the process.

In our work, presented in [28, 30, 54], we explored possibilities to generate crisp
representations of image objects, starting from fuzzy ones. The process of replacing
a fuzzy set with an appropriately chosen crisp set is, in fuzzy set theory, referred to
as defuzzification. It can be performed either as an inverse of fuzzification, [40], with
the intention to recover a fuzzified crisp original, or as a process independent of any
fuzzification, but based on some pre-defined conditions that should be fulfilled for a
crisp set to be the representation of a given fuzzy set [24,44]. In image analysis the
fuzzification function is rarely known, and practically never analytically defined; as
mentioned earlier, fuzzification of an image is a consequence of a combination of
properties of the continuous original, discretization effects, and imaging conditions.
Therefore, the inverse of a fuzzification function cannot, in general, be used to
define defuzzification. Defuzzification is rather performed so that certain predefined
criteria are respected in the process. It seems both natural and beneficial to, for
this purpose, impose criteria that reflect properties of a (possible) continuous crisp
original. By that, the two approaches to defuzzification are combined. We refer
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to such defuzzification, which is defined based on some set of imposed criteria, but
with “awareness” of the crisp original, as object reconstruction.

It can be observed that defuzzification, following fuzzy segmentation, is an alter-
native to crisp segmentation. We found reasonable to expect that such an approach
to crisp segmentation can be tuned so that it enables preservation of the most rele-
vant information (features) of the observed object (and available in the given fuzzy
representation) for the application in question. In other words, loss of information
is inevitable when defuzzification is performed, but preservation of some features
can be prioritized, if appropriate for the application.

The reconstruction that we propose is based on preservation of geometric prop-
erties of an object; they are estimated with high precision from a fuzzy object
representation and imposed as defuzzification criteria. We determine a crisp rep-
resentative of the given fuzzy set to be a crisp set which has the selected features
as similar as possible to the corresponding features of a given fuzzy set. In this
way, defuzzification is defined as an optimization process, where the distance be-
tween the given fuzzy set and its crisp reconstruction (defuzzification) should be as
small as possible. Formal definition, together with further details related to choice
of features to consider, choice of distance to minimize, and choice of optimization
method to perform, are given below, in accordance with [28, 30, 54].
Optimal defuzzification. Let F(X) be the set of fuzzy subsets of a reference set
X , and P(X) be the set of crisp subsets of X , also known as the power set of X .

Definition 6.1. Given a fuzzy set A ∈ F(X), an optimal defuzzification R (A) of
A, with respect to the distance measure d, is

(6.1) R (A) = argmin
B∈P(X)

[d(A,B)] .

Distance Measure. For any injective mapping Φ from F(X) into a metric space
H , we can define a metric on F(X) by requiring that Φ is an isometry. Assuming
a mapping Φ : F(X) → H ⊂ Rn, where the vector Φ(A) contains different features
of a fuzzy set A, we define a feature distance between fuzzy sets.

Definition 6.2. The feature distance dΦp (A,B) between fuzzy spatial sets A and
B, on the same reference set X, is the Minkowski distance dp between the repre-
sentations Φ(A) and Φ(B) of the sets A and B in the feature space H ⊂ Rn:

(6.2) dΦp (A,B) = dp(Φ(A),Φ(B)).

For x,y ∈ Rn, the Minkowski distance is defined as dp(x,y) =
p
√∑n

i=1 |xi − yi|p.
By suitably designing the mapping Φ, i.e., by considering suitable relevant fea-

tures of the observed sets, the above distance measure can be tuned to provide
defuzzifications where both shape characteristics and membership values are taken
into account. This enables defuzzification that fits the individual problem well, and
provides a powerful family of defuzzification methods.
Features. Preservation of geometric features of shapes in fuzzy representations
gives good motivation to include them into the representation Φ of a fuzzy set.
In the 2D case, area, perimeter, and geometric moments of a continuous shape are
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shown to be preserved with a high precision in a fuzzy representation. They are used
in reconstruction as global features, providing information about global geometric
properties of the object. Memberships of all the points should be considered as
well; they are referred to as local features of the object. Gradient in each point is
another relevant feature considered. In addition to the local and global features,
a range of meso-scale features can be considered. Our work, presented in [30],
introduces meso-scale area measurements into the defuzzification procedure.

Different combinations of features were included in representations of the ob-
served sets and their influence on reconstruction is evaluated in [54]. Even though
the selection of features is highly dependent on the requirements imposed by the
task, and often on the type of objects, it is clear that inclusion of features of different
scales (local, meso, and global) improves the reconstruction.

Tests performed in [54] gave insight in behaviour of Minkowski distances de-
pending on values of p. In most cases, choices p = 1 and p = 2 showed to be best
suited for our needs, and requirements of the observed tasks.
Optimization. In general, the optimization problem (6.1) cannot be solved ana-
lytically. In addition, the search space P(X) is too big to be exhaustively traversed.
As a consequence, we are forced to rely on some numerical optimization method, to
minimize the distance between the fuzzy set and its crisp counterpart. In [54], two
methods, floating search and simulated annealing, are used to find an approximate
solution for Eq. (6.1). Simulated annealing performs very well for the task. It
is, however, nondeterministic, while at the same time the trade-off between com-
putation efficiency and performance may lead to long computation time required.
The optimization task is a well separated problem, so many other search methods
can be used to approximately solve Eq. (6.1). We applied DC (Difference of Con-
vex functions) in [32], and SPG (Spectral Projected Gradient) based optimization
in [27]. These methods are deterministic and fast, however less flexible with respect
to inclusion of features into the feature vector representations Φ.
Reconstruction by optimal α-cut. In general, we do not impose any topology
related constraint to defuzzification, even though the proposed defuzzification al-
gorithm allows inclusion of such constraints and control of, e.g., the number of
connected components of the resulting reconstruction. Further, we do not, in gen-
eral, impose criterion of preservation of monotonicity of membership values, i.e.,
we do not require that an obtained reconstruction must be an α-cut of the starting
fuzzy set. The optimization method used in the process is allowed to “decide”
about the most appropriate selection of points included in the crisp representation;
it may therefore happen that for two points of a fuzzy set one with lower member-
ship is included in defuzzification, while the one with higher membership is not, if
that leads to overall better optimization result.

If appropriate, monotonicity preservation can be imposed. Such an approach
leads to defuzzification by α-cutting; the defuzzified set is found by thresholding the
fuzzy membership function at an appropriate level. This is an appealingly simple
method, however, the selection of a threshold is to be determined in some way
(in most cases depending of an application) an this is often a rather difficult task.
We notice that the simplicity of the method somewhat restricts its performance
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a b

Figure 15. Example of fuzzy segmented 2D image. (a) A part
of a microscopy image of a bone implant. (b) Fuzzy segmentation
of a bone region in (a).

and applicability; this is a commonly known disadvantage of thresholding as a
segmentation method in image processing. However, defuzzification by α-cutting
fits well, as one specific case, within the proposed framework of defuzzification by
feature distance minimization, and we have tested and compared its performance
with other, less restricted, defuzzifications.

With the constraint to preserve monotonicity added, the task of minimization of
differences between relevant selected (geometric) features of the fuzzy set and its
defuzzification is restricted to the selection of the optimal α-cut, i.e., the α-cut at
the smallest distance from the fuzzy set in terms of feature distance. The search
space in this type of optimization is much smaller (there are as many α-cuts to
explore as there are different membership levels in the fuzzy set), and exhaustive
search can easily be performed to select the optimal α-cut.

Figure 16 presents examples of different defuzzifications; threshold at α = 0.5,
optimal α-cut, and defuzzification without monotonicity constraint are observed.
Achieved minimal distances, as well as reconstructed sets are presented, for a part
of a histological image shown in Figure 15.
Reconstruction at increased spatial resolution. A fuzzy representation, in
general, contains a lot more information than a crisp representation at the same
spatial resolution. If defuzzification is performed at a given spatial resolution, i.e.,
the crisp representative is generated at the same spatial resolution as the given
fuzzy set, this additional information is, to a high extent, lost. It is reasonable
to pose the question whether, instead, this information can be utilized to provide
a crisp reconstruction at an increased spatial resolution. We explored this issue
in [28, 30].

If rF is the spatial resolution of the given fuzzy set, and rC is the spatial resolu-
tion of the crisp (defuzzified) set, then increase of a spatial resolution is expressed
by a factor r = rC

rF
. This factor is required to have an integer value. In that case,
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Figure 16. Different defuzzification approaches, and their re-
spective feature distances. (a) Plots of feature distance pΦ1 as a
function of α for defuzzification by α-cutting. The minimum is
indicated with a star (+×), while the vertical line is positioned at
α = 0.5. (b) Defuzzification by α-cutting at α = 0.5. (c) De-
fuzzification by α-cutting at optimal α. (d) Defuzzification by
simulated annealing, starting from the optimal α-cut.

Figure 17. One pixel in a low resolution (fuzzy) image, and the
corresponding block of 4 × 4 pixels of a 4 times higher resolution
(crisp) reconstruction.

each spel in the low resolution representation corresponds to a block of r × r spels
in the high resolution representation; a 2D illustration is shown in Figure 17.

As in Section 5.2, we recall that there are two approaches to perform multigrid
studies: one is to observe the (r times) dilated object in the unchanged grid, whereas
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Table 1. The contribution of the different features to the fea-
ture distance, and the total distance, without (Dist 1), and with
(Dist 2), the meso-scale area features.

Figure Perimeter Area Centroid Membership Meso-scale Dist 1 Dist 2

18(b) 0.0000 0.0000 0.0000 0.0957 0.3828 0.0957 0.4785
18(c) 0.0015 0.0381 0.0000 0.0957 0.1758 0.1353 0.3111

the other is to observe the unchanged object inscribed in the (r times) refined grid.
These two approaches are dual. We use the first one, which implies that the size of
the spel is equal to 1 in all the observed grids, whereas the object features calculated
in different grids are resolution-variant.

A main idea is to interpret the membership value of a (n-dimensional) spel as
an additive property which is distributed over the whole (hyper)-volume of the
spel. As such, membership can be summed over blocks of spels, or divided into
parts if a spel is divided into sub-spels. This corresponds to the area/volume of
a fuzzy set, which by definition is the sum of membership values of all elements
of the set [41]. Therefore, instead of comparing pairs of corresponding spels in
the fuzzy and the crisp image, we relate the membership value of a spel in the
fuzzy image to the sum of membership values of the corresponding block of rn

spels (i.e., for the crisp set, the number of object covered (sub-)spels) in the high
resolution representation. This approach can be further generalized so that blocks
of spels can be observed in both fuzzy and crisp representations. In that way an
additional range of features can be incorporated in defuzzification; local sums of
membership values (i.e. area/volume/Lebesgue measure) computed for blocks of
spels and interpreted as meso-scale features, ranging from the local (one spel size)
to the global (whole object size). This scale space approach provides an appropriate
treatment of details in images, where the details are usually relevant only in some
range of scales. We addressed it in [30].

An illustrative example is given in Figure 18, where defuzzifications without,
and with, meso-scale features are shown, for a synthetic example. The result of de-
fuzzification of the object in Figure 18(a), using the proposed scale space approach,
is shown in Figure 18(c). Even though the global features are perfectly matched in
the solution presented in Figure 18(b) (obtained without meso-scale features), we
consider the solution in Figure 18(c) to better preserve the properties of the original
set. A problem which we refer to as “transportation of area” over the image appears
if no meso-scale features are used (Figure 18(b)), and is avoided if such features
are included in feature vector and considered in defuzzification (Figure 18(c)). The
contributions of the different features to the overall distance are, for this example,
given in Table 1. From the presented data, it is clear that selection of features con-
sidered in defuzzification has very high influence on the result. If understanding of
the scene, or a priori knowledge about the object are available, this can be used to
obtain the most appropriate reconstruction of an observed object.
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(a) (b) (c)

Figure 18. (a) Four discrete disks of radius 4 and membership
0.5. (b) Optimal defuzzification using feature distance without
meso-scale area components. (c) Defuzzification using feature dis-
tance including meso-scale area components.

a b c

d e f

g h i

Figure 19. Top row: High resolution crisp representations of
three crisp continuous shapes. Middle row: Fuzzy representations
of the same crisp continuous shapes at relatively low resolution.
Bottom row: Defuzzifications of the sets given in the middle row,
at 16 times higher resolution.
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High resolution reconstruction of a shape by the suggested method is illustrated
in Figure 19. Defuzzifications of the fuzzy sets in the middle row of Figure 19, at
16 times higher resolution, are shown in the bottom row of Figure 19. The defuzzi-
fication performed is based on minimization of differences between area, perimeter,
centroid and membership values of the fuzzy and crisp representations. The amount
of information in the images shown in the top row, considered to constitute “ground
truth” for this example, as the best possible crisp representations of the observed
objects, is 256 × 256 × 1 bit while the amount of information in the fuzzy images
in the middle row, and consequently, in the high resolution reconstructions in the
bottom row, is 16 × 16 × 8 bit. This means that, without increasing the amount
of information by a factor of 32 beyond initially available, an exact reconstruc-
tion (shown in the top row) is not possible. Some artefacts are therefore visible in
the images in the bottom. However, considering the amount of available informa-
tion, the visual appearance of the reconstruction result is, in our opinion, rather
appealing and facilitates judgement on the original continuous crisp shape.

In order to simplify the notation, we describe the necessary steps in the process
of scale-space high resolution reconstruction in the 2D case. Generalization to nD
is straightforward, up to availability of appropriate feature estimates.
Weighting of Features. In order to provide that the effect of the total contribu-
tion of all measures of one (type of) feature, observed at one particular scale, is of
approximately the same size as the effect of one global feature, features of multi-
plicity h are scaled with 1

p
√
h
, where p is the exponent of the Minkowski distance in

Eq. (6.2).
To compare features calculated at different scales, measures also have to be

rescaled with respect to the spatial resolution of the image and the dimensionality of
the particular feature; e.g., perimeter of an object increases linearly with the spatial
resolution, whereas area increases quadratically. To get resolution invariant global
features we divide each feature with the feature value of the observed reference set
X , that is, for an arbitrary feature F , we observed the resolution invariant feature

F̃ (S) = F (S)
F (X) .

Feature Vector Representation. For a given fuzzy set S ∈ F(X) of size 2m×2m

pixels, we generate (m+ 1) partitions of the set into square blocks of 2m−i × 2m−i

pixels, for i = 0, . . . ,m. Each partition i consists of 22i blocks. Let Bi
j represent

the jth block of 2k−i × 2k−i pixels, where j = 1, . . . , 22i, i = 0, . . . ,m. A feature of
highest interest is area of a set, at all levels (block sizes). Block B0

1 is equal to the

set S and, correspondingly, F̃ (S) = F̃ (B0
1), for all the observed features F . The

membership values of all the pixels are included in such a representation, being
local areas of one-pixel-size blocks (i = m). In addition, the perimeter of the set S,
as well as the coordinates of its centroid, are included in the feature representation.
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This leads to the following form of the feature representation Φm(S) of S:

Φm(S) =
( 1

p
√
22m

Ã(Bm
1 ), . . . ,

1
p
√
22m

Ã(Bm
22m),

1
p
√
22(m−1)

Ã(Bm−1
1 ), . . . ,

1
p
√
22(m−1)

Ã(Bm−1
22(m−1)),

. . .
1

p
√
20

Ã(B0
1), P̃ (S), C̃x(S), C̃y(S)

)
.

A convenient way to efficiently implement and utilize scale dependent features
in defuzzification is to use a resolution pyramid. We use two resolution pyramids
for storing the areas of the blocks Bi

j of the fuzzy original set, and of the crisp

defuzzification. Pyramids are built by grouping 2×2 neighbouring (children) pixels
in the image at the current resolution level, and create one (parent) pixel at the
next, lower, resolution level, where the value of the parent pixel is assigned to be
the sum of the values of the children pixels. The process is repeated at every newly
created resolution level, until the lowest possible resolution.
Defuzzification. For a given fuzzy set S, containing 2m × 2m pixels, a resolution
pyramid representation with m+ 1 resolution levels is built. For reconstruction at
r = 2k times increased resolution a resolution pyramid for the crisp set K, with m+
k+1 resolution levels, is created and defuzzification is performed by minimizing the
feature distance dΦ(S,K) = d(Φm(S),Φm(K)), where d is the Minkowski distance
for appropriate choice of p.

Depending on the optimization method selected, a starting configuration may
be an important issue; performance of simulated annealing, e.g., highly depends on
the selection of the initial configuration. We suggested to use the optimal α-cut
of S, i.e., the α-cut at minimal distance dΦ to S, as the starting configuration for
defuzzification. In order to obtain the initial configuration K at r times increased
resolution, each pixel in the α-cut is subdivided into 2r sub-pixels.
Scale space defuzzification of 3D fuzzy sets. The defuzzification method, sug-
gested for 2D discrete spatial fuzzy sets is straightforwardly generalized to the 3D
case. The features selected to be included in the feature distance are local, meso-
scale, and global volumes, obtained by iterative grouping of blocks of 2 × 2 × 2
voxels, and surface area and centroid, as additional global features.

Once when the feature representation is generated, the defuzzification process
is exactly the same as in the 2D case. However, due to a rapid increase of data,
compared to 2D images, some practical implementation related issues may become
relevant. An important one is certainly the choice of optimization strategy; in our
work presented in [27, 32] we have addressed utilization of optimization methods
(DC based, SPG based) applicable to large scale optimization problems to the task
of defuzzification. Examples of application of a 3D high resolution reconstruction
on real medical images are given in Section 7.4.
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Figure 20. (a) Close up of the straight edge of a white paper
imaged with a digital camera. (b) Segmentation output from Al-
gorithm 1, utilizing 130 positive grey-levels. Approximating edge
segments are superimposed (dashed lines) on the image (compare
with Figure 9).

7. Performance of the presented approach

The coverage model, in our opinion, offers an appealing way to improve infor-
mation preservation in image processing. With fast advancement in imaging tech-
niques, which naturally comes with development of technology, it becomes less and
less acceptable to lower the quality of image processing results and subsequent con-
clusions by suboptimal methods, not suited to handle the available information and
achieved precision in imaging. The coverage model is one of the potential answers
to the challenge of “keeping up with the technological development”. However, a
lot of work still remains, in order to have a complete tool-box for image processing
with the coverage model. We have presented in this paper our results obtained
along the way; they include segmentation methods, methods for feature extraction,
and methods for object reconstruction. Some properties and theoretical evaluation
of the proposed approaches are given, separately for each of the methods. Our
main interest is in having a processing “chain” consisting of methods developed
for the coverage model. We therefore evaluated some of the combinations of the
described methods, applied on different real tasks. In some cases, we have used real
images obtained in controlled environment, where ground truth is known and the
performance evaluation of the method is direct, whereas in some cases we showed
applicability of the method in real conditions, where no ground truth is available
and conclusions related to performance are derived more implicitly.
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7.1. Comparison of different perimeter estimation methods. We a created con-
trolled real environment for testing performance of the perimeter estimator pre-
sented in Section 5.3. This test is also presented in [52]. We took a number of
photos of a straight edge of a white paper on black background at a number of
angles, using a digital camera in grey-scale mode. All images were cropped to the
same width and the slope of each edge was computed using moments [48]. The
edge lengths were computed according to Eq. (5.6). We consider these estimates
to be correct edge lengths and we use them as the ground truth.

We have evaluated the perimeter estimator presented in Section 5.3 on the task
of edge length estimation for the described images, by comparing its performance
with performances of several methods previously presented in the literature. In
order to confirm that utilization of grey-levels indeed improves the performance,
we compared the proposed estimator with most known and best performing es-
timators for bi-level (crisp) images; we considered the method in [64] (which is
equivalent with the proposed one if binary case is observed), and the corner count
method, [66]. In order to confirm superiority of the proposed method over pre-
viously existing ones applicable to grey-level images, we considered the method
of Eberly and Lancaster [11]. Observing high noise-sensitivity of the original ap-
proach described in [11], where the gradient components are computed only based
on the difference of two pixels, we complemented this method with an additional
smoothing step. Two Gaussian filters of different sizes are used to smooth the im-
ages prior to length estimation. This improved the performance of the method [11]
when applied to straight edges estimation. However, Gaussian filtering is expected
to reduce performance on nonstraight edges.

Figure 20(a) shows a part of one image taken as described above, where an edge of
a half-plane is presented. The correct value of the slope, k = 0.42, is computed. The
original image presented in Figure 20(a) is segmented by the coverage segmentation
method described in Section 4.1. Figure 20(b) shows the output of the coverage
segmentation. Double thresholding is performed, and the number of grey-levels
preserved in a one pixel thick border of the object is found to be between 90 and
140 (out of 255) for the different photos. Values of estimated slopes, d̄c, and lengths,
l̄c, for local steps, are indicated, as well.

Binary segmentation, required for testing binary estimators, is performed by
using Otsu’s thresholding method [38], which works very well on the high contrast
scene.

Evaluation results are presented in Figure 21. Relative estimation errors for six
considered methods are shown, for digital straight segments with different slopes.
The maximal errors for the observed methods are presented in Table 2. These
results confirm superior performance of the proposed coverage model, and in par-
ticular, the proposed perimeter estimation method.

7.2. Coverage segmentation followed by feature estimation for noisy data.
The segmentation method presented in Section 4.2 provides exact coverage values
if continuous pixel coverage values and a noise-free environment are ensured. These
ideal conditions, however, never exist in practise; quantization errors and presence
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Figure 21. Relative errors for different methods when used to
estimate the length of the edge of a white paper photographed at
different angles with a digital camera.

Table 2. Maximal perimeter estimation error when using differ-
ent approaches.

Method Max error

Proposed coverage based method [52] 0.14%
Binary method [64] 3.95%
Corner count [66] 1.61%
Eberly & Lancaster, [11] 8.78%
Smoothing (σ = 2) & Eberly & Lancaster 0.57%
Smoothing (σ = 4) & Eberly & Lancaster 0.58%

of noise are unavoidable in real images. Performance tests of the method in such
environment are certainly of interest.

Being interested in coverage segmentation primarily for its further use for precise
and accurate feature estimation, we have, in addition to directly testing the per-
formance of the proposed segmentation method, also evaluated feature extraction
based on such segmentations. We have observed perimeter estimates computed
by the method presented in [52] (see Section 5.3), and area estimates computed
according to [50] (Section 5.2).

We have performed two types of tests, also presented in [53]. First, we have
observed synthetic objects with known feature values, affected by simulated noise.
We have evaluated both coverage values assignment in the segmentation method
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and subsequent feature extraction. Second test is performed on real histological
colour images.

7.2.1. Synthetic noisy images. A synthetic object (Fig. 22(a)) of known dimen-
sions is randomly placed (rotated and translated) at a number of different positions
in the square grid and digitized using coverage digitization. A zoomed-in part of the
resulting object, with a (one-pixel thick) partial coverage at its boundary, as well
as its superimposed crisp discretization, are shown in Fig. 22(b). Each digitization
is subsequently corrupted by increasing levels of additive uncorrelated Gaussian
noise, which provides our observed set of test images.

Crisp digital representations of continuous objects are created by a Gauss centre
point digitization. This digitization is considered to be equivalent to an ideal, er-
ror free, crisp segmentation, and is used as a starting crisp segmentation, required
for our proposed coverage segmentation method described in Section 4.2. In that
way, evaluation of the method is not dependent of the properties of any particular
segmentation method, and is therefore more objective. The same (Gauss centre
point) crisp digitization is also used as a reference in comparisons. The neighbour-
hood required for estimating pure class values is defined by using an appropriate
2D Gaussian mask.

To evaluate the pixel coverage segmentation, the assigned coverage values are,
per pixel, compared with the true ones, for increasing amounts of added noise. The
average absolute error for coverage values of boundary pixels,

ε =
1

N

∑

p∈B

|α̂(p)− α(p)|

where B is the set of evaluated boundary pixels, N is the cardinality of B, and
α̂(p) and α(p) are, respectively, assigned and true coverage for a pixel p ∈ B, is
computed and presented in Fig. 22(d). A number of random displacements of the
object are observed for each level of noise. In Fig. 22(e) we show the relative error of
perimeter estimation for the observed synthetic object for increasing levels of noise,
whereas Fig. 22(f) presents the area estimation on the same test object, under the
same conditions.

As it is visible from the plots in Fig. 22(d-f), the improvement when using the
suggested method, compared to the results obtained for an ideal (noise free) crisp
segmentation, is significant when the standard deviation of the present noise does
not exceed 20%. Above that level, the suggested method does not provide any
improvement in terms of accuracy. It is, however, worth noting that the preci-
sion of the feature estimates (exhibited as low variation of the obtained results)
is significantly higher for the proposed method, and in the case of area estimation
provides improvement of the result for all the observed noise levels (i.e., for up to
40% of noise). These observations confirm applicability and excellent performance
of the proposed methods–coverage segmentation and feature extraction–for analysis
of noisy images.

7.2.2. Quantitative analysis of a histological image. After performing tests
on synthetic images, we have tested applicability of the coverage segmentation
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Figure 22. (a) Continuous synthetic test object. (b) Part of a
pixel coverage segmentation of (a), with superimposed border of its
crisp segmentation. (c) Part of the set B. Grey pixels are removed
in the thinning step. Superimposed is the border of the original
continuous object. (d) Average absolute error of pixel coverage
values in B for increasing levels of noise, lines represent means of
100 observations and bars show max and min errors. (e) and (f)
Relative error for the estimated perimeter and area of the object,
respectively.

method followed by feature extraction methods on a real example. We use the
coverage segmentation method presented in Section 4.2 to segment a microscope
slide from a histomorphometrical study. Starting from the obtained coverage seg-
mentation, we compute feature estimates. Comparison with results obtained by
previously existing methods, and with results considered to be the ground truth,
confirm that the proposed coverage model provides estimates with increased preci-
sion. Details of this work are presented in [53]. Here we give a brief summary.

The image shown in Fig. 23(a) is a part of material used in a histomorphometrical
study described in [47]. It contains three regions: a screw-shaped implant, bone
region, and soft tissue. Quantification is performed by measuring the length of the
contact between the implant and the bone region, relative to the overall length of
the implant border, and by measuring the percentage of bone area in the vicinity of
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(a) (b) (c) (d) (e)

Figure 23. (a): The screw-shaped implant (black), bone (pur-
ple with a number of hollow spaces) and soft tissue (light blue).
(b) Part of a crisp (manual) segmentation of (a) into the three
regions. (c) The set B of (grey and black) pixels. Partial coverage
values are assigned to the black pixels. (d) and (e) Pixel coverage
segmentations of the soft tissue and the bone region, respectively.

the implant; for a detailed description see [47]. Measurements obtained manually,
by an expert using integrated microscope software and with higher magnification
available, are used as a ground truth.

We applied the proposed coverage segmentation method to segment the RGB
image; this example is an illustration of applicability of the proposed method to
multi-channel images. First step was to perform a crisp segmentation of the image.
For this illustrative example, manual crisp segmentation is used, to get a good
starting segmentation and to not mix errors from the crisp segmentation process
with errors from the pixel coverage estimation. A part of the manual segmentation
is presented in Fig. 23(b). The extracted set B of pixels to be re-evaluated in the
process is shown in Fig. 23(c) as the union of black and grey pixels. The grey pixels
are detected as pure in the thinning step and only the one-pixel thick 4-connected
region in black is assigned partial coverage values. The result of the suggested
pixel coverage segmentation method is presented in Fig. 23(d) and 23(e). The first
presents segmented soft tissue, whereas the second shows segmented bone. Grey
values, visible on the borders between the regions, correspond to partial coverage
of pixels.

The aim of the study is to obtain bone-implant contact length estimates, as
well as bone area estimates, which provide an improvement in terms of accuracy
and precision, compared to those obtained in [47]. We apply the length estimation
method presented in [52], and the area estimation method presented and analysed
in [50], to the coverage segmentation. While the estimation of area is straightfor-
ward, some adjustments of the length estimation method are required. The method,
as presented in [52], is applicable for estimation of the border between two classes,
whereas in the observed example there may exist pixels which are partly covered
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by three classes. To adjust the method appropriately, we observe the border line
as being between the two classes– implant and nonimplant (soft tissue and bone
together)–where the existing method is directly applicable. After the border line
within a pixel is estimated, it is distributed to the two nonimplant classes pro-
portionally to their coverage of that pixel. This approach is attractive due to its
simplicity, and is acceptably accurate. Due to very low number of pixels in the im-
age which are covered by three classes, potentially introduced errors have minimal
impact on the result. Pixels covered by more than two classes are presumably rare
in most applications.

Table 3. Feature estimation results for manual (using integrated
microscope software), crisp [47], and the herein suggested method.
See [47] for notation details.

Method Contact length Bone area R Bone area M

Manual 79% 48% 78%
Crisp 88% 50% 81%
Suggested 85% 49% 81%

The results of feature estimates (based on length and area measurements) are
presented in Table 3. It is clear that the proposed method provides feature estimates
closer to the manual measurements, compared to the previously used methods.
This, again, confirms the high performance and applicability of the proposed pixel
coverage approaches.

7.3. Estimation of affine deformations of shapes. Image registration is an im-
portant task of image processing. Its goal is to find the geometric correspondence
between images. Many approaches have been proposed for a wide range of prob-
lems in the past decades [69]. Shape matching, that is object registration based
on geometry alone, and not on radiometric information, is a viable model when
the image intensities are only weakly related and the relation between intensities
of two images is hard to model; this happens in, e.g., multimodal registration (be-
tween images acquired by rather different imaging modalities) or when the image
intensities undergo strong nonlinear deformations, e.g., in case of X-ray imaging.
Shape matching requires an initial segmentation step, where the same region is
segmented in the two images to match. This segmentation can be performed in a
crisp or in a fuzzy way. In the following we present shape matching with improved
precision based on coverage representations of shapes. This approach is described
in details in [60, 61]. It gives additional evidence about advantages of using the
coverage model to improve quality of image processing steps.

Domokos et al. proposed an extension [8] to the parametric estimation method
of Francos et al. [17] to handle affine matching of crisp shapes. Estimation methods
of this type have the advantage of providing accurate and computationally simple
solution, avoiding both the need for finding point correspondences in the images as
well as the need for computationally demanding optimization. Appropriate (global)
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low-dimensional representations of a shape are instead utilized and correspondence
between such representations is found by a direct computation. We have extended
this approach to the case when the segmentation method is capable of producing a
coverage segmentation instead of a classic crisp segmentation [60]. We know that
the information preserved by using coverage representation may be successfully
utilized to improve precision and accuracy of several shape descriptors. Precise
moment estimation is essential for a successful application of the object registration
method presented in [8] and the advantage of coverage representations is clearly
noticeable in the represented study.

Observation that all individual correspondences between pairs of points of the
two shapes, related by an affine transformation to be recovered, can be observed
at the same time (instead of, e.g., only correspondences between some selected
pairs), and can be integrated over the shape, is what the approach, developed for
binary shape registration, and described in details in [8], relies on. Extending the
established correspondences by applying appropriately chosen mappings to them,
and integrating, a system of independent equations can be created. Unknowns of
the system are the parameters of the applied unknown affine transform. For 2D
shapes, six parameters are to be recovered, and therefore six equations are required
in the system. It is observed that polynomial equations, for polynomials of at least
second order, are simplest ones being at the same time linearly independent. The
suggested system is therefore:

(7.1) |A|
∫

Ft

xn
k dx =

n∑

i=0

(
n

i

) i∑

j=0

(
i

j

)
qn−i
k1 qi−j

k2 qjk3

∫

Fo

yn−i
1 yi−j

2 dy,

where k = 1, 2; n = 1, 2, 3 and qki denote the unknown elements of the inverse
transformation A−1 with Jacobian |A|.

This polynomial system is derived in the continuous space. However, digital
image space provides only limited precision for these derivations and the integral
can only be approximated by a discrete sum over the pixels. In [8] the Gauss centre
point digitization is used. We explored whether using a coverage digitization would
improve the registration performance. The coefficients of the system of equations
in Eq. (7.1) are the first, second and third order geometric moments of the template
and observation. Replacing them with their corresponding discrete approximations,
we expect that the increased precision achieved from a coverage representation [50]
will lead to improved registration performance.

Following the definition of discrete moments, the approximating discrete system
of polynomial equations corresponding to Eq. (7.1) can now be produced:

|A|
∑

x∈Xt

µFt
(x)pnk =

n∑

i=0

(
n

i

) i∑

j=0

(
i

j

)
qn−i
k1 qi−j

k2 qjk3

∑

x∈Xo

µFo
(x)pn−i

1 pi−j
2 .

Clearly, the spatial resolution of the images affects the precision of this approxi-
mation. We note that sufficient spatial resolution may be unavailable in real appli-
cations or may lead to too large amounts of data to be successfully processed within
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the time constraints. On the other hand, it was shown in [50] that increasing the
number of grey-levels ℓ, representing pixel coverage, by a factor r2 provides asymp-
totically the same increase in precision as an r times increase of spatial resolution.
This makes the suggested approach, utilizing increased membership resolution, a
very powerful way to compensate for insufficient spatial resolution, while still pre-
serving desired precision of moments estimates.

Evaluation of the transformation estimation–synthetic tests. Evaluation
tests are first performed on a database of synthetic binary shapes. We examine the
effect of the number of quantization levels on the precision of registration and com-
pare results with the binary case. Pairs of corresponding synthetic fuzzy shapes are
obtained by applying known affine transformations and the presented registration
results for synthetic images are neither dependent nor affected by a segmentation
method. This also means that the ground truth is available.

The data set consists of a number of different shapes and their transformed ver-
sions, a total of 2000 images. The transformation parameters (including rotations,
translations, shear, and scaling) were randomly selected from uniform distributions.
The templates are binary images, i.e., pixels in them are assigned coverage values
either 0 or 1 (this corresponds to 1-bit representation). The coverage represen-
tations of the observation images are quantized and represented by integer values
using k-bit (k = 1, . . . , 8) representation. Some typical examples of these images
and their registration accuracies are shown in Figure 24.

In order to quantitatively evaluate the results, we use two error measures. The
first error measure (denoted by ǫ) is the average distance in spels between the true

(Ax), and recovered (Âx) positions of the transformed spels over the template.
This measure can be used for evaluation only if the true transformation is known;
this is the case in the tests on synthetic images. Another error measure is the
absolute difference (denoted by δ) between the registered template image and the
observation image

ǫ =
1

|T |
∑

x∈T

∥∥Ax− Âp
∥∥, and δ =

|R△O|
|R|+ |O| ,

where |T | is the number of template spels, △ denotes the symmetric difference,
while R and O are the set of spels of the registered shape and the observation
respectively. Before computing the errors, the images are binarized by taking the
α-cut at α = 0.5.

The medians of errors for both ǫ and δ are presented in Table 4 for different
quantization levels. Experimental data confirm the theoretical results on increased
precision of moments estimation based on coverage representation. Consequently,
the registration results, compared to the binary case, are improved. It is important
to notice that registration based on coverage representation may be applied for
lower image resolutions, i.e. where the binary approach becomes unstable.

An important property of the proposed registration method is that, although
based on solving a system of polynomial equations, it provides the result without
any iterative optimization step. Its performance is based on the precision and
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δ = 0.17% δ = 0.25% δ = 1.1% δ = 8.87% δ = 23.79% δ = 25.84%

Figure 24. Examples of templates (top row) and observations
(middle row) images. In the third row, grey pixels show where the
registered images matched each other and black pixels show the
positions of registration errors.

Table 4. Registration results of 2000 images using different quan-
tization levels of the fuzzy boundaries.

Fuzzy representation
1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

ǫ median (pixels) 0.168 0.080 0.0443 0.0305 0.0225 0.0186 0.0169 0.0147
δ median (%) 0.157 0.072 0.0439 0.0292 0.0196 0.0151 0.0125 0.0116
Registered 1905 1919 1934 1943 1933 1929 1925 1919

Not registered 95 80 66 57 67 71 75 81

0.00

0.05

0.10

0.15

0.20

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

epsilon median error

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

delta median error

accuracy of moments estimates. The time complexity of the method is O (N),
where N is the number of the pixels of the image, enabling real time registration
of shapes.
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Experiments on real X-ray images. Hip replacement is a surgical procedure in
which the hip joint is replaced by a prosthetic implant. In the short post-operative
time, infection is a major concern. An inflammatory process may cause bone re-
sorption and subsequent loosening or fracture, often requiring revision surgery. In
current practise, clinicians assess loosening by inspecting a number of post-operative
X-ray images of the patient’s hip joint, taken over a period of time. Obviously, such
an analysis requires the registration of X-ray images. Even visual inspection benefit
from registration, as clinically significant prosthesis movement can be very small.

There are two main challenges in registering hip X-ray images: One is the highly
nonlinear radiometric distortion [12] which makes any grey-level-based method un-
stable. Fortunately, the segmentation of the prosthetic implant is quite straight-
forward [37] so shape registration is a valid alternative here. Herein, we used an
appropriate coverage segmentation method to segment the implant. The second
problem is that the true transformation is a projective one which depends also on
the position of the implant in 3D space. Indeed, there is a rigid-body transfor-
mation in 3D space between the implants, which becomes a projective mapping
between the X-ray images. Fortunately, the affine assumption is a good approxi-
mation here, since the X-ray images are taken in a well defined standard position
of the patient’s leg.

For the diagnosis, the area around the implant (especially the bottom part of
it) is the most important for the physician. It is where the registration must be
the most precise. Fig. 25 shows some registration results. Since the best aligning
transformation is not known, only the δ error measure can be evaluated. We also
note, that in real applications the δ error value accumulates the registration error
and the segmentation error.

The preliminary results obtained on real X-ray images of hip prosthetic implants
taken during post-operative controls are, in our opinion, very encouraging; they
show that our approach using coverage segmentation and subsequent registration
as described above can be used in real applications. Further research on possible
improvements, generalizations, and thorough evaluation of these initial studies is
in progress.

7.4. High resolution reconstruction–two examples. Some examples of the per-
formance of our proposed high resolution reconstruction method are shown already
in Section 6. 2D objects are observed, and one illustrations of influence of selection
of features in feature representation to the reconstruction result is given. More
elaborate evaluation of various relevant issues of defuzzification is presented in [54].
In this section we present two examples of application of the proposed method on
3D images. Both examples are within medical imaging, imaging modalities are
different (CT and X-rays), sizes and complexity of data differ (first one is a solid
object, of a rather simple structure, second is an object of a high complexity, but
smaller in data size). Issues of interest are choice of an optimization method that
gives a good result at a reasonable cost, selection of a starting position for the op-
timization, decision about topology preservation constraint, selection of (scales of)
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δ = 2.17% δ = 4.81% δ = 1.2%

Figure 25. Real X-ray registration results. (a) and (b) show
full X-ray observation images and the outlines of the registered
template shapes. (c) shows a close up view of a third study around
the top and bottom part of the implant.

features to be used in feature vector representation. Both examples show applica-
bility and very good performance of the proposed method. Topological constraints,
size of the data, complexity of the task are all addressed well by the presented
method.

3D CT image of a bone implant. First example of high resolution reconstruc-
tion is performed on a 3D object presented in Figure 26. The data volume is a CT
image of a bone implant (inserted in a leg of a rabbit). We applied the method
to a part of the image (Figure 26(a) shows a slice through the volume) containing
a connected piece of bone area (dark grey), surrounded by a nonbone area (light
grey). Figure 26(b) shows a slice through a 3D fuzzy set representing the bone
region.

All features are matched well in this example; there are no large regions of high
fuzziness, and the global features do not provide any reason for “transportation” of
volume as in the example in Section 6. Defuzzifications with or without meso-scale
features are therefore practically identical. No topological constraints are required,
since this object appears to be simple enough for the process to handle the topology
automatically. Main challenge can be seen in the size of a data set (even though
this particular example is made small enough); regarding this issue a selection
of an optimization method is of rather high importance. The result presented
here is obtained by simulated annealing, but increasing difficulties in optimization,
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(a) (b) (c)

(d) dΦ = 0.02749 (e) dΦ = 0.01377

Figure 26. Defuzzification of a part of a 3D image of a bone
implant. (a) Slice through the image volume. The dark grey area is
bone, the light parts are nonbone areas. (b) Slice through a fuzzy
segmentation of the bone region in the image volume. (c) Slice
through a defuzzification, using meso-scale volume features, of the
fuzzy segmented image volume. (d) 3D rendering of the α-cut at
smallest feature distance to the fuzzy object. (e) 3D rendering
of a high resolution defuzzification of the fuzzy segmented object.
A four times scaled up version of the best α-cut (d) was used as
starting set for the simulated annealing search.

caused by increasing size of data, motivated our research on alternative options
for optimization strategy. Results are presented in [27, 32]. Starting position can
influence result significantly; a good choice, used in the example shown in Figure 26,
is an optimal α-cut.

High resolution reconstruction of X-ray image of vessels. Fuzzy represen-
tations, and coverage representation in particular, of image objects are especially
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useful when the spatial resolution is too low to provide a good crisp representation.
One such situation can be seen in Figure 27(b), which displays a maximum intensity
projection of a part of a rotational b-plane X-ray scan of the arteries of the right
half of a human head (provided by Philips Research, Hamburg, Germany), shown in
Figure 27(a). A contrast agent is injected into the blood and an aneurism is shown
to be present. The intensity values of the image voxels correspond fairly well with
partial volume coverage, and are therefore used directly as coverage membership
values.

This example image violates the sampling theorem; the vessels imaged are not
resolved since they are less than one voxel thick. This fact causes a number of
problems related to information extraction. Using a priori knowledge about the
image, it is still possible to obtain a reasonable high resolution reconstruction. One
such a priori piece of information is the knowledge that the vessel tree is simply
connected. Starting from one simply connected component, and preserving topol-
ogy [2] throughout the search, it is provided that the obtained crisp representation
(reconstruction) is also simply connected.

Centroid position is not an intuitive feature to use for defuzzification of a vessel
tree. It may interfere in undesirable ways with the topology preservation during
the search procedure, so we exclude centroid from the feature representation in this
example.

It is clear that high resolution reconstruction is really needed here; any crisp
representative at the same resolution as the original image would be a rather bad
representation; to preserve the volume of the fuzzy image, many parts of the vessel
tree would not be included in the crisp set.

Performing reconstruction at two times the original resolution, we get the result
presented in Figure 27(c). The result is not visually appealing, due to severe under-
estimation of the surface area of a crisp thin (less than one voxel thick) structure
by the surface area of the fuzzy set. This problem is not present for a crisp object
whose fuzzy representation is obtained at sufficiently high resolution and contains
points with memberships equal to one in the interior of the object. In the case
presented in Figure 27, however, the reconstruction using the inaccurate surface
area estimate fails to preserve the vessel structure.

It would be of high interest to have a better surface area estimate for the de-
fuzzification; study about this feature estimate is certainly included in our future
work. In the absence of such, we perform reconstruction without the surface area
feature. Using only volume based information (at a range of scales) the high resolu-
tion reconstruction is fairly unconstrained, which leads to the rather jagged result
of Figure 27(d). Dropping the meso-scale feature from the feature representation,
we get the result presented in Figure 27(e).

We note that, although not visible in Figure 27, the topology is in deed preserved;
all the resulting objects are simply connected. However, the vessels may not always
be connected in a correct way, so some additional information on how vessels branch
and bend may be required in this case.
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(a) (b)

(c) (d) (e)

Figure 27. Defuzzification of a selected part of an angiography
3D image, showing the arteries of the right half of a human head.
(a) Maximum intensity projection through the image volume; the
white square in the upper part of the image indicates the loca-
tion of the selected part of the volume that is defuzzified in this
example. (b) Maximum intensity projection through the selected
part the volume. (c) 3D rendering of a defuzzification at twice
the resolution using volumes of all scales and surface area. (d) 3D
rendering of a defuzzification at twice the resolution using only
volumes of all scale. (e) 3D rendering of a defuzzification at twice
the resolution using only global and local volumes.

8. Conclusions and future work

In the field of computerized image processing and analysis, increasing attention is
lately given to methods that provide results with sub-pixel precision. Such methods
are especially important for applications where precision is a key factor, for example
in medicine. When working with 3D images (CT, MR), systematic errors of the size
of a pixel may accumulate to unacceptably large overall errors in the final results.
In addition, analysis of images at low resolution is constantly a hot research topic;
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with the resent progress in imaging techniques, allowing imaging to reach nanometer
scales, a previously inaccessible world of structures of sizes all the way down to
molecular scale, opens up.

The work presented in this chapter is a summary of our research on develop-
ment of image processing methods that provide results at sub-pixel precision; this
research was conducted during last couple of years. In our opinion, it is of highest
importance for the field of image processing to go on with this type of research
and with further development of high precision image processing tools and algo-
rithms; a call imposed by the technological development is already shown to be well
addressed by this very promising research track with obvious high applicability.

Object representations that facilitate utilization of sub-pixel precision methods,
and particularly those based on spel coverage by an object, were in our research fo-
cus throughout the recent years. We developed segmentation methods characterized
by generality and wide applicability, as well as some important feature estimators.
We explored crisp object reconstruction methods based on the derived feature esti-
mators and we showed that information preserved in coverage representation can be
successfully used to compensate for lacking spatial resolution, both in estimations,
and in reconstructions. The following natural step in research is development of
more methods for analysis of images segmented by some of the coverage segmen-
tation methods, in an attempt to make a complete tool-box of processing methods
for images providing sub-pixel information precision. Tasks related to development
of methods for feature estimation and object description, primarily in 3D, will be
first addressed. Our intention is to develop strong theoretical background for every
method we suggest, and to test and prove their applicability on real world tasks
and challenges.

Application fields for our developed methods, as well as those that are to be
developed, are numerous. Medical applications have already been addressed, and
increased precision of the methods has shown to be of high importance and benefit
for them. We intend to continue with development of image registration methods;
an additional research track will be improvement of distance measures so that they
are applicable to objects represented at sub-pixel precision. Developed appropriate
distances, together with new high precision features (descriptors) will find applica-
tions in content retrieval. Studies and utilization of sub-pixel methods in the field
of optical character recognition (OCR), being of high interest in a wide range of
fields, including, e.g., digitization of cultural heritage, are also envisioned in our
future work.

Finally, an application field that is particularly in our interest for future work,
is the field of biometrics. Biometrics, which in a broad sense refers to the science
and technology of measuring and statistically analyzing biological data, and there-
fore already concerns the presented medical applications of our work, is attracting
more and more attention also outside the fields of medicine and biomedicine, e.g.,
in (information) security, where it finds use for identification and authentication
purposes. Biometrics, provides a variety of research challenges; increased precision
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of representations and analysis methods are certainly of highest importance for bio-
metrics applications, and we feel that our approaches, involving coverage (sub-pixel
precision) models, may provide improvements for methods used in biometrics tasks.

Biometrics considers methods for uniquely recognizing humans based upon one
or more intrinsic physical or behavioural properties/characteristics. In particular,
biometrics is used as a form of identity access control, being of highest importance
in (information) security related issues. Applications of biometrics recognition sys-
tems include computer systems security, secure electronic banking, mobile phones,
credit cards, secure access to buildings, health and social services. As opposed
to several traditionally used access control tools, such as passwords and ID cards,
biometric can not be borrowed, stolen, or forgotten, which makes it increasingly
popular in security systems. Nowadays, most often used biometrics characteris-
tics and methods are fingerprint, face, DNA, palm print, hand geometry, and iris
recognition.

Biometric recognition assumes representation of individuals by a feature vec-
tor derived from their physiological and/or behavioural characteristic; automatic
recognition of these individuals becomes recognition of their representations. Fea-
ture vectors are usually stored in appropriate databases. Searching procedures and
matching algorithms are typical tasks involved. Our so far developed methods in-
volve feature extraction algorithms, feature selection and object representations,
geometric matching of objects, as well as studies related to distance measures, [26].
Performance of biometrics systems strongly depends on distinctiveness of the rep-
resentations, as well as their accuracy and precision. It should be possible to
measure/estimate the selected features accurately every time when data is required
and acquired, which demands high precision of estimation algorithms used: it is
also important to have distance/similarity measures and matching algorithms offer-
ing high precision performance, to ensure full discriminative power of the system.
All these requirements are met by our proposed concept of sub-pixel (coverage)
model. We find very promising to adjust existing algorithms and propose new ones
to address the tasks of this rapidly developing and highly important field.
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[32] T. Lukić, N. Sladoje, and J. Lindblad, Deterministic defuzzification based on spectral pro-

jected gradient optimization, in: Proc. of Symp. of the German Association for Pattern

Recognition (Munich, Germany), LNCS, vol. 5096, Springer-Verlag, 2008, 476–485.
[33] F. Malmberg, J. Lindblad, and I. Nyström, Sub-pixel segmentation with the Image Foresting

Transform, in: Proc. of Int. Workshop on Combinatorial Image Analysis (Playa del Carmen,
Mexico), LNCS, vol. 5852, Springer-Verlag, 2009, 201–211.

[34] F. Malmberg, J. Lindblad, N. Sladoje, and I. Nyström, A graph-based framework for sub-pixel

image segmentation, Theor. Comput. Sci. 412 (2011), no. 15, 1338–1349.
[35] F. Malmberg, I. Nyström, A. Mehnert, C. Engstrom, and E. Bengtsson, Relaxed Image

Foresting Transforms for interactive volume image segmentation, in: Proc. of SPIE Medical

Imaging, vol. 7623, SPIE, 2010.
[36] W. J. Niessen, K. L. Vincken, J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever,

Multiscale segmentation of three-dimensional MR brain images, Int. J. Comput. Vision 31
(1999), no. 2/3, 185–202.

[37] A. Oprea and C. Vertan, A quantitative evaluation of the hip prosthesis segmentation quality

in X-ray images, in: Proc. of Int. Symp. on Signals, Circuits and Systems (Iasi, Romania),
vol. 1, IEEE, 2007, 1–4.

[38] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. on System
Man and Cybernetics 9 (1979), no. 1, 62–66.

[39] D. Proffit and D. Rosen, Metrication errors and coding efficiency of chain-encoding schemes

for the representation of lines and edges, Comput. Graphics and Image Process. 10 (1979),
318–332.

[40] L. Rondeau, R. Ruelas, L. Levrat, and M. Lamotte, A defuzzification method respecting the

fuzzification, Fuzzy Sets Syst. 86 (1997), 311–320.

[41] A. Rosenfeld, The fuzzy geometry of image subsets, Pattern Recognit. Lett. 2 (1984), 311–
317.

[42] A. Rosenfeld, Fuzzy geometry: An updated overview, Information Sciences 110 (1998), no. 3–
4, 127–133.

[43] A. Rosenfeld and S. Haber, The perimeter of a fuzzy subset, Pattern Recognition 18 (1985),
125–130.

[44] E. Roventa and T. Spircu, Averaging procedures in defuzzification processes, Fuzzy Sets Syst.
136 (2003), 375–385.

[45] E.H. Ruspini, A new approach to clustering, Inf. Control 15 (1969), 22–32.
[46] P. Santago and H.D. Gage, Quantification of MR brain images by mixture density and partial

volume modeling, IEEE Trans. on Medical Imaging 12 (1993), no. 3, 566–574.



THE COVERAGE MODEL AND ITS USE IN IMAGE PROCESSING 117

[47] H. Sarve, J. Lindblad, C. B. Johansson, G. Borgefors, and V. F. Stenport, Quantification of

bone remodeling in the proximity of implants, in: Proc. of Int. Conf. on Comput. Analysis

of Images and Patterns (Vienna, Austria), LNCS, vol. 4673, Springer-Verlag, 2007, 253–260.
[48] N. Sladoje, A straight line segment estimation by using discrete moments, in: Proc. of XIII

Conf. on Applied Mathematics (Igalo, Yugoslavia), 1998, 121–129.
[49] N. Sladoje, On analysis of discrete spatial fuzzy sets in 2 and 3 dimensions, Ph.D. thesis,

Swedish University of Agricultural Sciences, Uppsala, 2005.
[50] N. Sladoje and J. Lindblad, Estimation of moments of digitized objects with fuzzy borders,

in: Proc. of Int. Conf. on Image Analysis and Process. (Cagliari, Italy), LNCS, vol. 3617,
Springer-Verlag, 2005, 188–195.

[51] N. Sladoje and J. Lindblad, Perimeter estimation based on grey level object representation,
Internal Report 33, Centre for Image Analysis, Uppsala, Sweden, 2008, Available from the
authors.

[52] N. Sladoje and J. Lindblad, High-precision boundary length estimation by utilizing gray-level

information, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009), no. 2, 357–363.
[53] N. Sladoje and J. Lindblad, Pixel coverage segmentation for improved feature estimation,

in: Proc. of Int. Conf. on Image Analysis and Process. (Vietri sul Mare, Italy), LNCS, vol.
5716, Springer-Verlag, 2009, 923–938.

[54] N. Sladoje, J. Lindblad, and I. Nyström, Defuzzification of spatial fuzzy sets by feature

distance minimization, Image Vis. Comput. 29 (2011), no. 2-3, 127–141.
[55] N. Sladoje, I. Nyström, and P. K. Saha, Measurements of digitized objects with fuzzy borders

in 2D and 3D, Image Vis. Comput. 23 (2005), 123–132.
[56] M. Soret, S. L. Bacharach, and I. Buvat, Partial-volume effect in PET tumor imaging, The

J. Nuclear Medicine 48 (2007), no. 6, 223–235.
[57] A. Souza, J.K. Udupa, and PK. Saha, Volume rendering in the presence of partial volume

effects, IEEE Trans. on Medical Imaging 24 (2005), no. 2, 223–235.
[58] R. Strand, Distance functions and image processing on point-lattices, Ph.D. thesis, Uppsala

University, 2008.
[59] M. Tajine and A. Daurat, On local definitions of length of digital curves, in: Proc. of Int.

Conf. on Discrete Geometry for Comput. Imagery (Naples, Italy), LNCS, vol. 2886, Springer-
Verlag, Nov. 2003, 114–123.
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