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1. Introduction: the Estrada index
and its various applications

This chapter is an updated, extended, and modified version of the survey [12] that
was a part of the booklet “Applications of Graph Spectra”. Since the completion
of [12], a number of relevant results came to the authors’ attention, that now are
appropriately taken care of.

Let G be a graph without loops and multiple edges. Let n andm be, respectively,
the number of vertices and edges ofG. Such a graph will be referred to as an (n,m)-
graph.

The eigenvalues of the adjacency matrix of G are said to be [4] the eigenvalues
of G and to form the spectrum of G. A graph of order n has n (not necessarily
distinct, but necessarily real-valued) eigenvalues; we denote these by λ1, λ2, . . . , λn,
and assume to be labelled in a non-increasing manner: λ1 � λ2 � · · · � λn. The
basic properties of graph eigenvalues can be found in the books [4, 5].

A graph-spectrum-based invariant, recently put forward by Estrada is defined
as

(1) EE = EE(G) =

n∑
i=1

eλi .

We proposed [8] to call it the Estrada index, a name that in the meantime has been
commonly accepted.

Although invented in year 2000 [15], the Estrada index has already found a
remarkable variety of applications. Initially it was used to quantify the degree of
folding of long-chain molecules, especially proteins [15–17]; for this purpose the EE-
values of pertinently constructed weighted graphs were employed. Another, fully
unrelated, application of EE (this time of simple graphs, like those studied in the
present paper) was put forward by Estrada and Rodŕıguez-Velázquez [21,22]. They
showed that EE provides a measure of the centrality of complex (communication,
social, metabolic, etc) networks; these ideas were recently further elaborated and
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extended [18]. In [23] a connection between EE and the concept of extended
atomic branching was established, which was an attempt to apply EE in quantum
chemistry. Another such application, this time in statistical thermodynamics, was
proposed by Estrada and Hatano [20] and later further extended in [19]. Recently,
Carbó–Dorca [3] endeavored to find connections between EE and the Shannon
entropy.

The proposed biochemical [15–17], physico–chemical [20,23], network–theoretical
[18, 21, 22], and infomation–theoretical [3] applications of the Estrada index are
nowadays widely accepted and used by other members of the scientific commu-
nity; see, for example [6, 14, 30, 44, 45, 47, 51, 57]. In addition, this graph invariant
is worth attention of mathematicians. Indeed, in the last few years quite a few
mathematicians became interested in the Estrada index and communicated mathe-
matical results on EE in mathematical journals. In what follows we briefly survey
the most significant of these results.

2. Elementary properties of the Estrada index

Directly from the definition of the Estrada index, Eq. (1) we conclude the fol-
lowing [22, 33].

1◦ Denoting by Mk = Mk(G) =
∑n

i=1(λi)
k the k-th spectral moment of the

graph G, and bearing in mind the power–series expansion of ex, we have

(2) EE(G) =

∞∑
k=0

Mk(G)

k!
.

At this point one should recall [4] that Mk(G) is equal to the number of self-
returning walks of length k of the graph G. The first few spectral moments of an
(n,m)-graph satisfy the following relations [4]:

M0 = n; M1 = 0; M2 = 2m; M3 = 6t

where t is the number of triangles.
2◦ As a direct consequence of (2), for any graph G of order n, different from the

complete graph Kn and from its (edgeless) complement K̄n,

EE(K̄n) < EE(G) < EE(Kn).

3◦ If G is a graph on n vertices, then EE(G) � n; equality holds if and only if
G ∼= K̄n [24].

4◦ The eigenvalues of a bipartite graph satisfy the pairing property [4]: λn−i+1 =
−λi, i = 1, 2, . . . , n. Therefore, if the graph G is bipartite, and if n0 is nullity (=
the multiplicity of its eigenvalue zero), then

(3) EE(G) = n0 + 2
∑
+

cosh(λi)

where cosh stands for the hyperbolic cosine [cosh(x) = (ex + e−x)/2], whereas
∑

+

denotes summation over all positive eigenvalues of the corresponding graph.
5◦ If A(G) is the adjacency matrix of the graph G, then EE(G) = tr eA(G), with

tr standing for the trace of the respective matrix.
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3. Bounds for the Estrada index

Numerous lower and upper bounds for the Estrada index have been commu-
nicated. In what follows we first state the simplest and earliest such bounds (as
Theorem 3.1), and provide them with complete proofs. The other bounds will only
be stated, and their proofs skipped.

Theorem 3.1. [8] Let G be an (n,m)-graph. Then the Estrada index of G is
bounded as

(4)
√
n2 + 4m � EE(G) � n− 1 + e

√
2m.

Equality on both sides of (4) is attained if and only if G ∼= K̄n.

Proof of the lower bound (4). From the definition of the Estrada index, Eq. (1), we
get

(5) EE2 =

n∑
i=1

e2λi + 2
∑
i<j

eλi eλj .

In view of the inequality between the arithmetic and geometric means,

2
∑
i<j

eλi eλj � n(n− 1)

(∏
i<j

eλi eλj

)2/[n(n−1)]

(6)

= n(n− 1)

⎡
⎣
(

n∏
i=1

eλi

)n−1
⎤
⎦
2/[n(n−1)]

= n(n− 1)
(
eM1

)2/n
= n(n− 1).

By means of a power–series expansion, and bearing in mind the properties of M0,
M1, and M2, we get

(7)

n∑
i=1

e2λi =

n∑
i=1

∑
k�0

(2λi)
k

k!
= n+ 4m+

n∑
i=1

∑
k�3

(2λi)
k

k!
.

Because we are aiming at an (as good as possible) lower bound, it may look plausible

to replace
∑

k�3
(2λi)

k

k! by 8
∑

k�3
(λi)

k

k! . However, instead of 8 = 23 we shall use a

multiplier γ ∈ [0, 8], so as to arrive at:
n∑

i=1

e2λi � n+ 4m+ γ

n∑
i=1

∑
k�3

(λi)
k

k!

= n+ 4m− γn− γm+ γ

n∑
i=1

∑
k�0

(λi)
k

k!

i.e.,

(8)

n∑
i=1

e2λi � (1− γ)n+ (4 − γ)m+ γEE.
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By substituting (6) and (8) back into (5), and solving for EE we obtain

(9) EE � γ

2
+

√(
n− γ

2

)2
+ (4− γ)m.

It is elementary to show that for n � 2 and m � 1 the function

f(x) :=
x

2
+

√(
n− x

2

)2
+ (4 − x)m

monotonically decreases in the interval [0, 8]. Consequently, the best lower bound
for EE is attained not for γ = 8, but for γ = 0.

Setting γ = 0 into (9) we arrive at the first half of Theorem 3.1.

Remark. If in Eq. (7) we utilize also the properties of the third spectral moment,
we get

n∑
i=1

e2λi = n+ 4m+ 8t+

n∑
i=1

∑
k�4

(2λi)
k

k!

which, in a fully analogous manner, results in

(10) EE �
√
n2 + 4m+ 8t.

Proof of the upper bound (4). Starting with Eq. (2) we get

EE = n+
n∑

i=1

∑
k�1

(λi)
k

k!
� n+

n∑
i=1

∑
k�1

|λi|k
k!

= n+
∑
k�1

1

k!

n∑
i=1

[
(λi)

2
]k/2 � n+

∑
k�1

1

k!

[
n∑

i=1

(λi)
2

]k/2

= n+
∑
k�1

1

k!
(2m)k/2 = n− 1 +

∑
k�0

(
√
2m)k

k!

which directly leads to the right–hand side inequality in (4).
From the derivation of (4) it is evident that equality will be attained if and only

if the graph G has no non-zero eigenvalues. This, in turn, happens only in the case
of the edgeless graph K̄n [4].

By this the proof of Theorem 3.1 is completed. �
Recently Zhou [54] arrived at the following generalizations of Theorem 3.1:

Theorem 3.2. [54] If G is a graph on n vertices and k0 is an integer, k0 � 2,
then

(11) EE(G) �

√√√√n2 +

k0∑
k=2

2k Mk(G)

k!

with equality if and only if G ∼= K̄n.

For k0 = 2 and k0 = 3, the right–hand side of (11) reduces to the lower bounds
(4) and (10), respectively.
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Theorem 3.3. [54] Let G be an (n,m)-graph and k0 same as in Theorem 3.2.
Then

EE(G) � n− 1−
√
2m+ e

√
2m +

k0∑
k=2

Mk −
(√

2m
)k

k!

with equality if and only if G ∼= K̄n.

Note that for k0 = 2, Theorem 3.3 yields EE � n − 1 + e
√
2m −√

2mm, which
is better than the right-hand side of (4).

If graph parameters other than n and m are included into consideration, then
further bounds for the Estrada index could be deduced.

Theorem 3.4. [54] Let G be a graph on n vertices, and di, i = 1, 2, . . . , n, the
degrees of its vertices. Let D =

∑n
i=1(di)

2. Then

EE(G) � e
√

D/n + (n− 1) e−
1

n−1

√
D/n

with equality if and only if either G ∼= Kn or G ∼= K̄n.

Theorem 3.5. [54] Let λ1 be the greatest eigenvalue of an (n,m)-graph G. Let
k0 be the same as in Theorems 3.2 and 3.3. Then

EE(G) � n− 2− λ1 −
√
2m− (λ1)2 + e

√
2m−(λ1)2

+

k0∑
k=2

Mk − (λ1)
k − (√2m− (λ1)2

)k
k!

with equality if and only if G ∼= K̄n.

The special cases of Theorem 3.5 for k0 = 2 and k0 = 3 read:

EE � n− 2− λ1 −
√
2m− (λ1)2 + eλ1 + e

√
2m−(λ1)2 and

EE � n− 2− λ1 −
√
2m− (λ1)2 + eλ1 + e

√
2m−(λ1)2

+ t− (λ1)
3

6
−
(√

2m− (λ1)2
)3

6
respectively.

Theorem 3.6. [31] If G is an (n,m)-graph either without isolated vertices or

having the property 2m/n � 1, then EE(G) � n cosh
(√

2m/n
)
with equality if

and only if G is a regular graph of degree 1.

Recall that 2m/n is equal to the average vertex degree. Thus, if G is connected,
then necessarily 2m/n � 1, and the 2-vertex complete graph (K2) is the only graph
for which equality holds.

Theorem 3.7. [31] If G is an (n,m)-graph, such that 2m/n < 1, then

EE(G) � n− 2m+ 2m cosh(1).

Equality holds if and only if G consists of n− 2m isolated vertices and m copies of
K2.
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Theorem 3.8. [31,38] If G is an (n,m)-graph with at least one edge, and if n0 is
its nullity, then

EE(G) � n0 + (n− n0) cosh

(√
2m

n− n0

)
.

Equality holds if and only if n− n0 is even, and if G consists of copies of complete
bipartite graphs Kri,si , i = 1, . . . , (n − n0)/2, such that all products ri · si are
mutually equal.

Theorem 3.8 should be compared with inequality (3). It was first proven for
bipartite graphs [38] and eventually extended to all graphs. The same result was
later communicated also in [54].

If the graph G is regular of degree r, then its greatest eigenvalue is equal to r. If,
in addition, G is bipartite, then its smallest eigenvalue is equal to −r [4]. Bearing
these facts in mind, some of the above bounds could have been simplified [8]:

Theorem 3.9. [8] Let G be a regular graph of degree r and of order n. Then

er +
√
n+ 2nr − (2r2 + 2r + 1) + (n− 1)(n− 2) e−2r/(n−1)

� EE(G) � n− 2 + er + e
√

r(n−r).

The lower bound is improved by including into the consideration also the third
spectral moment:

EE(G) � er +
√
n+ 2nr − (2r2+2r+1)+ (n−1)(n−2) e−2r/(n−1) − 4

3 (r
3−6t).

Theorem 3.10. [8] Let G be a bipartite regular graph of degree r and of order n.
Then

2 cosh(r) +
√
(n− 2)2 + 2nr − 4 r2

� EE(G) � n− 4 + 2 cosh(r) + 2 cosh
(√

nr/2− r2
)
.

In recent works [2, 7] several bounds for the Estrada index were obtained, of
which we state here the neat:

Theorem 3.11. [7] Let G be a connected graph with n vertices and m edges.
Then,

EE(G) � n+

(
2m

n

)2

+
1

12

(
2m

n

)4

.

4. Estrada indices of some graphs

For graphs whose spectra are known [4], by Eq. (1) one gets explicit expressions
for their Estrada index. In particular:

EE(Kn) = en−1 + (n− 1) e−1

EE(Ka,n) = a+ b− 2 + 2 cosh
(√

ab
)
.
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If Sn is the n-vertex star, then EE(Sn) = n− 2 + 2 cosh
(√

n− 1
)
. If Qn is the

hypercube on 2n vertices, then EE(Qn) = [2 cosh(1)]n [24].
The (n+1)-vertex wheel Wn+1 is obtained by joining a new vertex to each vertex

of the n-vertex cycle Cn. Then EE(Wn+1) = EE(Cn)−e2+2e cosh
(√

n− 1
)
[24].

The Estrada index of the cycle Cn can be approximated as EE(Cn) ≈ n I0, [36]
where

I0 =
1

π

π∫
0

e2 cosx dx =
∞∑
k=0

1

(k!)2
= 2.27958530 · · · .

In an analogous manner [26, 36]

EE(Pn) ≈ (n+ 1) I0 − cosh(2)

EE(Zn) ≈ (n+ 2) I0

EE(ZZn) ≈ (n+ 1) I0 + 2 + cosh(2)

where Pn is the n-vertex path, Zn is the (n+ 2)-vertex tree obtained by attaching
two pendent vertices to a terminal vertex of Pn, whereas ZZn is the (n+4)-vertex
tree obtained by attaching two pendent vertices to each of the two terminal vertices
of Pn.

For positive integers n and m, the tree Pn,m on (m+1)n vertices is obtained by
attaching m pendent vertices to each vertex of Pn. Then [26]

EE(Pn,m) ≈ (m− 1)n+ 2(n+ 1)Jm,

where

Jm =
1

π

π∫
0

ecosx cosh
(√

m+ cos2 x
)
dx.

Approximations for the Estrada index of Bethe and double-Bethe trees were
reported in [52]. Expressions and approximate expressions for EE of several other
graphs can be found in [24].

In [41] the following approximate expression for the Estrada index of an (n,m)-
graph was deduced using a Monte Carlo technique:

n
(√

6m/n
)−1

sinh
(√

6m/n
)

where sinh stands for the hyperbolic sine [sinh(x) = (ex − e−x)/2]. In [41] also
some more complicated approximations for EE of (n,m)-graphs were proposed.

4.1. Estrada index of line graphs.

Theorem 4.1. [1] If G is an r-regular graph with n vertices and m = rn/2 edges,
and L(G) is its line graph, then EE(L(G)) = er−2EE(G) + (m− n)e−2.

By Theorem 4.1, if G is a connected r-regular graph, then EE(L(G)) = EE(G)
holds if and only if r = 1, 2, i.e., if and only if either G ∼= K2 or G ∼= Cn

[24]. To see this, suppose that EE(L(G)) = EE(G) and r � 3. Then m > n
and EE(G) = (n − m)/[e2 (er−2 − 1)]. This would imply that EE(G) < 0, a
contradiction.
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The k-th iterated line graph Lk(G) of a graphG is defined recursively by Lk(G) =
L(Lk−1(G)) where L0(G) ≡ G and L1(G) ≡ L(G).

Theorem 4.2. [1] If G is an r-regular graph with n vertices, and k � 1, then

EE(Lk(G)) = ak(r)EE(G) + bk(r)n

where ak(r) and bk(r) are functions depending solely on the variable r and param-
eter k.

In [1] it was shown that ak(r) = e(r−2)(2k−1), which implies ak(r) = O
(
e(r−2)2k

)
.

An explicit expression for bk(r) could not be determined, but it was established [1]

that bk(r) has the same asymptotic behavior as ak(r), viz., bk(r) = O
(
e(r−2)2k

)
.

4.2. Estrada index of some graph products. Let G and H be two graphs with
disjoint vertex sets. The join G+H of G and H is the graph obtained by connecting
all vertices of G with all vertices of H . If G1, G2, . . . , Gn are graphs with mutually
disjoint vertex sets, then we denote G1 + G2 + · · · + Gn by

∑n
i=1 Gi. In the case

that G1 = G2 = · · · = Gn = G, we denote
∑n

i=1 Gi by nG.

Theorem 4.3. [24] Let G and H be r- and s-regular graphs with p and q vertices,
respectively. Then

EE(G+H) = EE(G) + EE(H)− (er+ es) + 2e(r+s)/2 cosh
(

1
2

√
(r−s)2 + 4pq

)
.

Corollary 4.4. [24] If G is an r-regular n-vertex graph then

EE(2G) = 2EE(G)− 2er + 2er cosh(n)

EE(3G) = 3EE(G)− 3er + 2er cosh(n) + 2e(2r+n)/2 cosh (3n/2)− er+n.

The Cartesian product G×H of graphs G and H has the vertex set V (G×H)
= V (G) × V (H) and (a, x)(b, y) is an edge of G × H if a = b and xy ∈ E(H),
or ab ∈ E(G) and x = y. If G1, G2, . . . , Gn are graphs with mutually disjoint
vertex sets, then we denote G1 × G2 × · · · × Gn by

∏n
i=1 Gi. In the case that

G1 = G2 = · · · = Gn = G, we denote
∏n

i=1 Gi by Gn.

Theorem 4.5. [24] EE(G×H) = EE(G)EE(H). More generally,

EE

(
r∏

i=1

Gi

)
=

r∏
i=1

EE(Gi).

In particular, EE(Gr) = EE(G)r.

5. Graphs with extremal Estrada indices

In [8] de la Peña, Gutman and Rada put forward two conjectures:

Conjecture A. Among n-vertex trees, the path Pn has the minimum and the star
Sn the maximum Estrada index, i.e., EE(Pn) < EE(Tn) < EE(Sn), where Tn is
any n-vertex tree different from Sn and Pn.

Conjecture B. Among connected graphs of order n, the path Pn has the minimum
Estrada index.
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Figure 1. The star Sn and the path Pn, and the labelling of their vertices.
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In what follows we first state some transformations of graphs and establish the
respective change in the spectral moments, and then provide a complete proof of
these conjectures.

Lemma 5.1. [10] Let Sn be the n-vertex star with vertices v1, v2, . . . , vn, and
center v1, as shown in Figure 1. Then there is an injection ξ1 from W2k(v2) to
W2k(v1), and ξ1 is not surjective for n � 3 and k � 1, where W2k(v1) and W2k(v2)
are the sets of self-returning walks of length 2k of v1 and v2 in Sn, respectively.

Proof. Let ξ1 : W2k(v2) → W2k(v1), ∀w ∈ W2k(v2), if w = v2v1vi1 . . . vi2k−3
v1v2,

then ξ1(w) = v1v2v1vi1 . . . vi2k−3
v1.

Obviously, ξ1 is injective. However, there is no w ∈ W2k(v2) such that

ξ1(w) = v1v3v1v3v1 . . . v3v1 ∈ W2k(v1)

and ξ1 is not surjective for n � 3 and k � 1. �

Lemma 5.2. [10] Consider the Transformation I shown in Figure 2. Let u be
a non-isolated vertex of a simple graph G. Let G1 and G2 be the graphs obtained
from G by, respectively, identifying a leaf v2 and the center v1 of the n-vertex star
Sn with the vertex u, cf. Figure 2. Then M2k(G1) < M2k(G2) for n � 3 and k � 2.

Proof. Let W2k(G) denote the set of self-returning walks of length 2k of G. Then
W2k(Gi) = W2k(G)∪W2k(Sn)∪Ai is a partition, where Ai is the set of self-returning
walks of length 2k of Gi, each of them containing both at least one edge in E(G) and
at least one edge in E(Sn), i = 1, 2. So, M2k(Gi) = |W2k(G)|+ |W2k(Sn)|+ |Ai| =
M2k(G) +M2k(Sn) + |Ai|. Obviously, it is enough to show that |A1| < |A2|.
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Let η1 : A1 → A2, ∀w ∈ A1, η1(w) = (w − w ∩ Sn) ∪ ξ1(w ∩ Sn), i.e., η1(w) is
the self-returning walk of length 2k in A2 obtained from w by replacing its every
maximal (v2, v2)-section in Sn (which is a self-returning walk of v2 in Sn) with its
image under the map ξ1.

By Lemma 5.1, ξ1 is injective. It is easily shown that η1 is also injective.
However, there is no w ∈ A1 such that η1(w) ∈ A2 and η1(w) does not pass
the edge v1v2 in G2. So, η1 is not surjective. Consequently, |A1| < |A2| and
M2k(G1) < M2k(G2). �

Lemma 5.3. [10] Let Pn = v1v2 . . . vn be the n-vertex path, depicted in Figure 1.
Then there is an injection ξ2 from W ′

2k(v1) to W ′
2k(vt), and ξ2 is not a surjection

for n � 3, 1 < t < n and k � 1, where W ′
2k(v1) and W ′

2k(vt) are the sets of
self-returning walks of length 2k of v1 and vt in Pn, respectively.

Proof. First, let f : {v1, v2, . . . , vt} → {v1, v2, . . . , vt}, f(vi) = vt−i+1 for i =
1, 2, . . . , t. Then we can induce a bijection by f from the set of self-returning walks
of length 2k of v1 in the sub-path Pt = v1v2 . . . vt and the set of self-returning walks
of length 2k of vt in Pt.

Secondly, let ξ2 : W ′
2k(v1) → W ′

2k(vt), ∀w ∈ W ′
2k(v1).

(i) If w is a walk of Pt = v1v2 . . . vt, i.e., w does not pass the edge vtvt+1, then
ξ2(w) = f(w).

(ii) If w passes the edge vtvt+1, we can decompose w into w = w1 ∪ w2 ∪ w3,
where w1 is the first (v1, vt)-section of w, w3 is the last (vt, v1)-section of w, and
the rest w2 is the internal maximal (vt, vt)-section of w, i.e., w is a self-returning
walk of v1, first passing the walk w1 from v1 to vt, next passing the walk w2 from
vt to vt, and last passing the walk w3 from vt to v1; then ξ2(w) = w−1

1 ∪w−1
3 ∪w2,

that is, ξ2(w) is a self-returning walk vt, first passing the reverse of w1 from vt to
v1, next passing the reverse of w3 from v1 to vt, and last passing the walk w2 from
vt to vt.

Obviously, ξ2 is injective. And ξ2 is not surjective since there is no w ∈ W ′
2k(v1)

such that ξ2(w) is a self-returning walk not passing the edge vtvt−1 in Pn of length
2k of vt. �

Lemma 5.4. [10] Let u be a non-isolated vertex of a simple graph H. If H1 and
H2 are the graphs obtained from H by identifying, respectively, an end vertex v1 and
an internal vertex vt of the n-vertex path Pn to u, cf. Figure 3, then M2k(H1) <
M2k(H2) for n � 3 and k � 2.

Proof. Let Bi be the set of self-returning walks of length 2k of Hi, each of them
containing both at least one edge in E(H) and at least one edge in E(Pn), i = 1, 2.
Similarly to the proof of Lemma 5.2, it is enough to show that |B1| < |B2|.

Let η2 : B1 → B2, ∀w ∈ B1, η2(w) = (w − w ∩ Pn) ∪ ξ2(w ∩ Pn), i.e., η2(w) is
the self-returning walk of length 2k in B2 obtained from w by replacing its every
section in Pn (which is a self-returning walk of v1 in Pn) with its image under the
map ξ2.
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Figure 3. Transformation II.

By Lemma 5.3, ξ2 is injective. It follows that η2 is also injective. But, η2 is not
surjective since there is no w ∈ B1 with η2(w) ∈ B2 not passing the edges vtvt−1

in H2. So, |B1| < |B2|. �

Theorem 5.5. [10] If Tn is a n-vertex tree different from Sn and Pn, then

(12) EE(Pn) < EE(Tn) < EE(Sn).

Proof. Repeating Transformation I, as shown in Figure 2, any n-vertex tree T can
be changed into the n-vertex star Sn. By Lemma 5.2, we have M2k(T ) < M2k(Sn)
for k � 2. This implies

EE(T ) =
∑
k�0

M2k(T )

(2k)!
<
∑
k�0

M2k(Sn)

(2k)!
= EE(Sn).

On the other hand, repeating Transformation II, as shown in Figure 3, any n-
vertex tree T can be changed into the n-vertex path Pn. By Lemma 5.4, we have
M2k(T ) > M2k(Pn) for k � 2. Consequently,

EE(T ) =
∑
k�0

M2k(T )

(2k)!
>
∑
k�0

M2k(Pn)

(2k)!
= EE(Pn).

So the inequalities (12) hold. �

Theorem 5.5 shows that the path Pn and the star Sn have the minimum and the
maximum Estrada indices among n-vertex trees, i.e., Conjecture A is true.

Zhao and Jia [53] have determined also the trees with the second and the third
greatest Estrada index. In fact, they proved:

Theorem 5.6. [53] Let S1
n
∼= Sn be the n-vertex star, cf. Figure 1, and let the

n-vertex trees Si
n, i = 2, 3, 4, 5, 6, be those shown in Figure 4. Let T1 and T2 be

n-vertex trees, such that T1 /∈ {Si
n | i = 1, 2, 3, 4, 5, 6} and T2 /∈ {Si

n | i = 1, 2, 3}.
Then for n � 6,

EE(S1
n) > EE(S2

n) > EE(S3
n) > EE(S5

n) > EE(S6
n) > EE(T1)

and

EE(S1
n) > EE(S2

n) > EE(S3
n) > EE(T2).

Consequently, among n-vertex trees, the first three trees with the greatest Estrada
indices are Sn, S

2
n and S3

n, respectively.
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Figure 4. The graphs Si
n, i = 2, 3, 4, 5, 6, having the second,

third, fourth, fifth, and sixth greatest Estrada indices among n-
vertex trees [11, 53].

Recently it was demonstrated [11] that EE(S3
n) > EE(S4

n) > EE(S5
n), from

which follows:

Theorem 5.7. [11] Among n-vertex trees, n � 6, the first six trees with the
greatest Estrada indices are Sn, S

2
n, S

3
n, S

4
n, S

5
n, S

6
n, respectively, cf. Figure 4.

Theorem 5.5 can be extended also in another way. Denote by Bn,Δ the tree
obtained by attaching Δ − 1 pendent vertices to a pendent vertex of the path
Pn−Δ+1. This tree is usually referred to as a “broom” (cf. [9]).

Theorem 5.8. [42] Among all trees on n vertices and maximum vertex degree Δ,
the broom Bn,Δ has minimum Estrada index.

Theorem 5.9. [42] Observing that Bn,n−1 ≡ Sn and Bn,2 ≡ Pn, we have

EE(Bn,n−1) > EE(Bn,n−2) > · · · > EE(Bn,3) > EE(Bn,2).

Let G be a connected graph of order n and let e be an edge of G. The graph
G′ = G−e is obtained from G by deleting the edge e. Obviously, any self-returning
walk of length k of G′ is also a self-returning walk of length k of G. Thus,

Mk(G
′) � Mk(G) and EE(G′) � EE(G).

In particular, if T is a spanning tree of G, then

Mk(T ) � Mk(G) and EE(T ) � EE(G).

From Theorem 5.5 it follows that EE(Pn) � EE(G). So, we have:

Theorem 5.10. [10] If G is a simple connected graph of order n different from
the complete graph Kn and the path Pn, then

EE(Pn) < EE(G) < EE(Kn).
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Theorem 5.10 shows that the path Pn and the complete graph Kn have the
minimum and the maximum Estrada indices among connected graphs of order n,
i.e., Conjecture B is true.

Independently of the work of one of the present author [10, 11], Das and Lee
also examined the Conjectures A and B [7]. For any connected (n,m)-graph G,
they were able to show that EE(G) > EE(Pn) provided m � 1.8n+ 4, and that
EE(G) � E(Pn) provided m � n2/6. In addition, they also proved that among
trees, the star has maximum Estrada index.

6. Estrada indices of molecular graphs

In view of the chemical origin of the Estrada index, it is natural than molecular
graphs [37], especially acyclic and benzenoid, were among the first whose structure–
dependence was systematically examined.

Figure 5. Correlation between the Estrada indices and the pa-
rameter D (= sum of squares of vertex degrees) for the 106 trees
on 10 vertices.

A chemical tree is a tree in which no vertex has degree greater than four [37].
Among the n-vertex chemical trees, Pn has minimum Estrada index. For the
Estrada index of chemical trees it was concluded [35] that the n-vertex chemical
tree with the greatest Estrada index might be the Volkmann tree V Tn(4). However,
this assertion cannot be considered as proven in a rigorous mathematical manner.
Such a proof awaits to be achieved in the future.

In the case of trees with a fixed number of vertices (including both chemical
and non-chemical trees) it was found that EE increases with the increasing extent
of branching [34]. This fact motivated investigations of the relation between EE
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Figure 6. Correlation between the Estrada index (EE) and the
greatest graph eigenvalue λ1 for the 106 trees on 10 vertices.

and other branching indices. It was established that there is a linear correlation
between EE and the quantity D =

∑n
i=1(di)

2, earlier encountered in Theorem 3.4,
see Figure 5.

The quantitative analysis of these correlations resulted in the following approx-
imate expression:

EE ≈ 1.735n− 0.13 + 0.11D.

This formula is capable of reproducing EE with an error less than 0.1%.
The Estrada index of trees was also correlated with the greatest graph eigenvalue

[35,40]; a characteristic example of such correlations is shown in Figure 6. One can
see that the EE/λ1 relation is not simple. The fact that the (EE, λ1) data points
are grouped on several (almost) horizontal lines indicates that EE is much less
sensitive to structural features than λ1.

Empirical studies revealed that the number of vertices n and number of edges
m are the main factors influencing EE-value of molecular graphs [34, 39, 41]. For
benzenoid systems, (m,n)-type approximations are capable of reproducing over
99.8% of EE-value [39, 41]. In order to find some finer structural details on which
EE depends, series of isomeric benzenoid systems (having equal n and m) were
examined. The Estrada indices of benzenoid isomers vary only to a very limited
extent. The main structural feature influencing these variations is the number of
bay regions, b. (The quantity b is equal to the number of edges on the boundary of
a benzenoid graph, connecting two vertices of degree 3; for details see [32].) Within
sets of benzenoid isomers, EE is an increasing linear function of b, see Figure 7.
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Figure 7. Correlation between the Estrada indices (EE) of the 36
catacondensed benzenoid systems with 6 hexagons and the number
b of their bay regions.

PH HS

Figure 8. A phenylene (PH) and its hexagonal squeeze (HS).

Phenylenes are molecular graphs consisting of hexagons and squares, joined
in a manner that should be evident from the example depicted in Figure 8. To
each phenylene a so-called “hexagonal squeeze” can be associated, containing only
hexagons, cf. Figure 8.

The Estrada index of phenylenes was studied in [25]. Within sets of isomers (hav-
ing equal number of hexagons) a good linear correlation exists between the Estrada
index of phenylenes, EE(PH) and of the corresponding hexagonal squeezes, EE(HS),
see Figure 9. Bearing in mind that the hexagonal squeezes are benzenoid systems,
and that the structure-dependence of EE of benzenoids is almost completely un-
derstood, the good linear correlation between EE(PH) and EE(HS) resolves also
the problem of structure–dependence of the Estrada index of phenylenes.

Concluding this section we wish to clearly emphasize that the relations estab-
lished for molecular graphs, in particular those illustrated in Figures 5, 6, 7, and 9,
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Figure 9. Correlation between the Estrada indices of phenylenes,
EE(PH), and the Estrada indices of the corresponding hexagonal
squeezes, EE(HS). The data points shown in this figure pertain
to phenylenes with 6 hexagons; there are 37 species of this kind.

are empirical findings that have not (yet) been proven in a rigorous mathematical
manner. It should be a challenge for the reader of this article to accomplish the
needed proofs.

7. Laplacian Estrada indices

The Estrada index is defined in terms of the ordinary graph spectrum, that is
the spectrum of the adjacency matrix. Another well developed part of algebraic
graph theory is the spectral theory of the Laplacian matrix [27, 28, 48–50]. The
Laplacian matrix of an (n,m)-graph G is defined as L(G) = Δ(G)−A(G), where
A is the adjacency matrix and Δ the diagonal matrix whose diagonal elements are
the vertex degrees. Let μ1, μ2, . . . , μn be the eigenvalues of L(G).

In view of Eq. (1), the Laplacian analogue of the Estrada index could in a natural
manner be defined as

LEE = LEE(G) =

n∑
i=1

eμi .

Such a definition was, indeed, put forward in [24].
Motivated by the fact that for any (n,m)-graph, μi � 0, i = 1, 2, . . . , n, and∑n
i=1 μi = 2m, Li, Shiu and Chang [46] proposed a slightly different definition:

LEELSC = LEELSC(G) =

n∑
i=1

e(μi−2m/n).
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Evidently,
LEELSC(G) = e−2m/n EE(G)

and therefore it is no surprise that the lower and upper bounds for LEE obtained
in [56] and those for LEELSC obtained in [46] were found to be equivalent. More
bounds for LEE were reported in [2, 55].

Generally speaking, the Laplacian Estrada index has properties closely analogous
to those of the ordinary Estrada index. Thus, we have:

Theorem 7.1. [43] If Tn is a n-vertex tree different from Sn and Pn, then

LEE(Pn) < LEE(Tn) < LEE(Sn).

This result is fully analogous to Theorem 5.5.
In [43] also the n-vertex tree with second-maximal Laplacian Estrada index was

characterized. Denote by Sn(a, b) the tree formed by adding an edge between the
centers of the stars Sa and Sb, in which case n = a+ b. This tree is called a “double
star”.

Theorem 7.2. [43] For n � 4, the unique n-vertex tree with second-maximal
Laplacian Estrada index is Sn(2, n− 2).

One of the present authors together with Jie Zhang could promptly improve
Theorem 7.2:

Theorem 7.3. [13] For n � 6, the n-vertex tree with third-maximal Laplacian
Estrada index is Sn(3, n− 3).

Among results that relate the Laplacian Estrada index with the ordinary Estrada
index we point out the trivial:

Theorem 7.4. If G is a regular graph of degree r, then LEE(G) = er EE(G).

and the less straightforward:

Theorem 7.5. [56] If G is a bipartite (n,m)-graph, then LEE(G) = n − m +
e2 EE(L(G)), where L(G) is the line graph of G.

Concluding this section we mention that also the distance Estrada index was
recently considered [29], in which instead of eigenvalues of the adjacency matrix
one used the eigenvalues of the distance matrix.
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