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Abstract. The nullity η = η(G) of a graph G is the multiplicity of
the number zero in the spectrum of G . The chemical importance of
this graph-spectrum based invariant lies in the fact, that within the
Hückel molecular orbital model, if η(G) > 0 for the molecular graph
G , then the corresponding chemical compound is highly reactive and
unstable, or nonexistent. This chapter in an updated version of the
an earlier survey [B. Borovićanin, I. Gutman, Nullity of graphs, in:
D. Cvetković, I. Gutman, Eds. Applications of Graph Spectra, Math.
Inst., Belgrade, 2009, pp. 107–122] and outlines both the chemically
relevant aspects of η (most of which were obtained in the 1970s and
1980s) and the general mathematical results on η obtained recently.
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1. Graph nullity and its chemical applications

This chapter is an updated, extended, and modified version of the survey [3] that
was a part of the booklet “Applications of Graph Spectra”. Since the completion
of [3], a number of relevant results came to the authors’ attention, that now are
appropriately taken care of.

Let G be a graph of order n, having vertex set V (G) and edge set E(G). Let
A(G) be the adjacency matrix of G. The graph G is said to be singular (resp. non-
singular) if its adjacency matrix A(G) is singular (resp. non-singular). The nullity
of G, denoted by η = η(G), is the algebraic multiplicity of the number zero in the
spectrum of G.1

In addition to its evident relevance in “pure” spectral graph theory, the nul-
lity has a noteworthy application in chemistry. The recognition of this fact, first
outlined in [8], was not only an important discovery per se, but happened to be
the starting point of an unprecedented activity in theoretical and mathematical
chemistry, resulting in thousands of published papers, and leading to a new field of
research, nowadays referred to as Chemical Graph Theory [13, 19, 23, 40].

In order to explain the role of the nullity of graphs in chemistry, we need to recall
a few basic facts from the quantum theory of molecules [12]. The behavior of the
electrons in molecules is considered to be responsible for the majority of properties
of chemical compounds. This behavior is governed by laws of quantum theory and
is described by the so-called Schrödinger equation. Finding the solutions of the
Schrödinger equation is one of the main tasks of quantum chemistry.

In an early stage of quantum chemistry, during the time when computers were
not available, the German theoretical chemist Erich Hückel proposed an approxi-
mate method for solving the Schrödinger equation for a special (for chemistry very
important) class of organic molecules, the so-called unsaturated conjugated hydro-
carbons [28]. Nowadays, this method is known under the name Hückel molecular
orbital (HMO) theory [5, 12, 41].

A quarter of century was needed to recognize that the mathematics on which
the HMO theory is based is graph spectral theory [20, 35]. In a nutshell: The
(approximate) energies E1, E2, . . . that the electrons may possess are related to the

1The symbol η for nullity was first used by I. G. in his correspondence with Dragoš Cvetković,
which eventually resulted in the paper [8]. The choice for η was fully arbitrary. Yet, nowadays
this symbol is used by the majority of scholars. Another notation for nullity is n0.
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eigenvalues λ1, λ2, . . . of a so-called “molecular graph” as

Ej = α+ β λj , j = 1, 2, . . . , n

where α and β are certain constants; for more detail see [19, 23]. Because β < 0, if
the graph eigenvalues are labelled in the usual non-increasing manner as

λ1 � λ2 � · · · � λn

then E1 is the lowest energy level, E2 is the second–lowest energy level, etc.
Each energy level in a molecule can be occupied by at most two electrons. Usu-

ally, the total number of electrons to which HMO theory is applied is equal to n,
and n is most frequently an even number. Usually, En/2+1 < En/2 or, what is the
same, λn/2 > λn/2+1.

If so, then in order to achieve the lowest-energy state of the underlying molecule,
it has to possess two (= the maximum possible number) of electrons with energy
E1, two (= the maximum possible number) of electrons with energy E2, . . . and two
(= the maximum possible number) of electrons with energy En/2. This will result
in a stable arrangement of electrons; in the language of theoretical chemistry, the
molecule will have a “closed–shell electron configuration”.

If, however, En/2+1 = En/2, then a total of four electrons could fill the two
“degenerate” energy levels. Because the number of available electrons is only two,
an irregular and unstable arrangement of electrons will result; in the language of
theoretical chemistry, the molecule will have an “open–shell electron configuration”.

The above described filling of the energy levels with electrons is in quantum
chemistry referred to as the Aufbau principle (a word originating from German
language). Details on this matter can be found elsewhere [33].

Molecules with an open-shell electron configuration are known to be highly re-
active and in many cases are simply not capable of existence.

We now show how the nullity of the molecular graph is related to the closed/open-
shell character of the underlying molecule.

Long before the above-sketched graph-spectral connections were envisaged, some
important results in HMO theory were discovered. One of these is the so-called
“Pairing theorem” [6]. According to it, for the majority of unsaturated conjugated
hydrocarbons, the eigenvalues of the molecular graph are “paired”, so that

(1) λj = −λn−j+1

holds for all j = 1, 2, . . . , n. In the language of HMO theory, the hydrocarbons
to which the Pairing theorem applies are referred to as “alternant”. With today’s
knowledge it is straightforward to recognize that an unsaturated conjugated hydro-
carbon is “alternant” if and only if its molecular graph is bipartite. Indeed, the
relation (1) is a well known spectral property of bipartite graphs [7].

An immediate consequence of the Pairing theorem is that a molecular graph with
even number of vertices has either nullity zero (in which case λn/2 > 0 > λn/2+1),
or its nullity is an even positive integer (in which case λn/2 = λn/2+1 = 0). In
HMO theory this means the following [32]:
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• If the nullity of the molecular graph of an alternant unsaturated conjugated
hydrocarbon is zero, then the respective molecule is predicted to have a
stable, closed-shell, electron configuration and the respective compound
predicted to have a low chemical reactivity and to be chemically stable.

• If the nullity of the molecular graph of an alternant unsaturated conjugated
hydrocarbon is greater than zero, then the respective molecule is predicted
to have an unstable, open-shell, electron configuration and the respective
compound is expected to be highly reactive, chemically unstable and often
not capable of existence.

Thus, the nullity of a molecular graph has a far-reaching inference on the ex-
pected stability of unsaturated conjugated hydrocarbons. This prediction of HMO
theory has been experimentally verified in numerous cases. The most drastic such
case is the fact that whereas there exist more than a thousand benzenoid hydro-
carbons whose molecular graphs have nullity zero, not a single such hydrocarbon
is nowadays known, whose molecular graph would have a non-zero nullity.

2. Elementary properties of nullity

Let r(A(G)) be the rank of A(G). Clearly, η(G) = n − r(A(G)). The rank
of a graph G is the rank of its adjacency matrix A(G), denoted by r(G). Then,
η(G) = n−r(G). Each of η(G) and r(G) determines the other (once n is specified).

Lemma 1. Let G be a graph on n vertices. Then η(G) = n if and only if G is a
graph without edges (empty graph).

For some classes of graphs the spectrum is known and thereby so is the nullity
η. We list some examples.

Lemma 2. [7, 8, 36] (i) The spectrum of the complete graph Kn consists of two
distinct eigenvalues n − 1 and −1, with multiplicities 1 and n − 1, respectively.
Thus, η(Kn) = 1 for n = 1 and η(Kn) = 0 for n > 1.

(ii) The eigenvalues of the path Pn are of the form 2 cos πr
n+1 , r = 1, 2, . . . , n.

According to this,

η(Pn) =

{
1, if n is odd

0, if n is even.

(iii) The eigenvalues of the cycle Cn are 2 cos 2πr
n , r = 0, 1, . . . , n−1. Therefore,

η(Cn) =

{
2, if n ≡ 0 (mod 4),

0, otherwise.

Lemma 3. (i) Let H be an induced subgraph of G. Then r(H) � r(G).
(ii) Let G = G1 ∪G2 ∪ · · · ∪Gt, where G1, G2, . . . , Gt are connected components

of G. Then r(G) =
∑t

i=1 r(Gi), i.e., η(G) =
∑t

i=1 η(Gi).

In the sequel we give some simple inequalities concerning η(G) that are direct
consequences of Lemmas 2 and 3.



NULLITY OF GRAPHS: AN UPDATED SURVEY 141

Recall that the path P is a graph with V (P ) = {v1, v2, . . . , vk} and E(P ) =
{v1v2, v2v3, . . . , vk−1vk}, where the vertices v1, v2, . . . , vk are all distinct. We say
that P is a path from v1 to vk, or a (v1, vk)-path. It can be denoted by Pk, where
k is its length. The distance d(x, y) in G of two vertices x, y is the length of a
shortest (x, y)-path in G; if no such path exists, we define d(x, y) to be infinite.
The greatest distance between any two vertices in G is the diameter of G, denoted
by diam(G).

Lemma 4. [11] Let G be a simple graph on n vertices, and let the complete graph
Kp be a subgraph of G, where 2 � p � n. Then η(G) � n− p.

A clique of a simple graphG is a complete subgraph of G. A clique S is maximum
if G has no clique S′ with |V (S′)| > |V (S)|. The number of vertices in a maximum
clique of G is called the clique number of G and is denoted by ω(G).

The following inequality is clear from the previous result.

Corollary 1. [11] Let G be a simple non-empty graph on n vertices. Then η(G) +
ω(G) � n.

From Lemma 3 and Lemma 2(iii) we arrive at:

Lemma 5. [11] Let G be a simple graph on n vertices and let the cycle Cp be an
induced subgraph of G, where 3 � p � n. Then

η(G) �
{
n− p+ 2, if p ≡ 0 (mod 4),

n− p, otherwise.

The length of the shortest cycle in a graph G is the girth of G, denoted by gir(G).
A relation between η(G) and gir(G) is given by:

Corollary 2. [11] If G is a simple graph on n vertices, and G has at least one
cycle, then

η(G) �
{
n− gir(G) + 2, if gir(G) ≡ 0 (mod 4),

n− gir(G), otherwise.

If we bear in mind Lemma 2(ii) and Lemma 3, the following result is obvious.

Lemma 6. [11] Let G be a simple graph on n vertices and let the path Pk be an
induced subgraph of G, where 2 � k � n. Then

η(G) �
{
n− k + 1, if k is odd,

n− k, otherwise.

Corollary 3. [11] Suppose that x and y are two vertices in G and that there exists
an (x, y)-path in G. Then

η(G) �
{
n− d(x, y), if d(x, y) is even,

n− d(x, y)− 1, otherwise.
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Corollary 4. [11] Suppose G is a simple connected graph on n vertices. Then

η(G) �
{
n− diam(G), if diam(G) is even,

n− diam(G)− 1, otherwise.

3. Relations between nullity and graph structure

In the general case, the problem of finding connections between the structure of
a graph G and its nullity seems to be difficult. For example, η(G) is not determined
by the set of vertex degrees of G (see Fig. 1)

Figure 1

In what follows we consider mostly bipartite graphs, although some of the the-
orems stated below can be extended to non-bipartite graphs (see [9]).

Before proceeding we need some definitions. A matching of G is a collection
of independent (mutually non-adjacent) edges of G. A maximum matching is a
matching with the maximum possible number of edges. The size of a maximum
matching of G, i.e., the maximum number of independent edges of G, is denoted
by m = m(G).

Denote by PG(λ) the characteristic polynomial of G. Let

PG(λ) = |λI −A| = λn + a1λ
n−1 + · · ·+ an

Then [7]

(2) ai =
∑
U

(−1)p(U) 2c(U) (i = 1, 2, . . . , n),

where the sum is over all subgraphs U of G consisting of disjoint edges and cycles
and having exactly i vertices (called “basic figures”). If U is such a subgraph, then
p(U) is the number of its components, of which c(U) components are cycles.

For some special classes of bipartite graphs it is possible to find relatively easily
the relation between the structure of G and η(G). The problem is solved for trees
by the following theorem [8].

Theorem 1. [8] Let T be a tree on n � 1 vertices and let m be the size of its
maximum matching. Then its nullity is equal to η(T ) = n− 2m.
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This theorem is an immediate consequence of the statement concerning the co-
efficients of the characteristic polynomial of the adjacency matrix of a tree (which
can be easily deduced from eq. (2)).

Theorem 1 is a special case of one more general theorem that will be formulate
in the following.

Theorem 2. [10] If a bipartite graph G with n � 1 vertices does not contain any
cycle of length 4s (s = 1, 2, . . .), then η(G) = n − 2m, where m is the size of its
maximum matching.

Proof. According to the assumption, a bipartite graph G does not contain any basic
figure (with an arbitrary number of vertices) with cycles of lengths 4s (s = 1, 2, . . .).
For a particular basic figure U it holds that p(U) is equal to the total number
of cycles of lengths 4s + 2 (s = 1, 2, . . .) and of graphs K2. Let 4ti + 2 (i =
1, 2, . . . , p(U)) be the numbers of vertices contained in these cycles or graphs K2.
If U is a basic figure with 2q (2q � n) vertices we get

p(U)∑
i=1

(4ti + 2) = 2q and 2

p(U)∑
i=1

ti + p(U) = q.

Hence, p(U) ≡ q (mod 2) and all terms (summands) in the expression for the
coefficient a2q of the characteristic polynomial have the same sign. Because of this,
a2q �= 0 if and only if there is at least one basic figure with 2q vertices. Since m
is the size of maximum matching of G the statement of the theorem now follows
immediately. �

The formula η(G) = n − 2m was shown to hold also for all benzenoid graphs
(which may contain cycles of the size 4s) [22]. As a curiosity, we mention that
almost twenty years later, Fajtlowicz (using his famous computer system Grafitty)
conjectured the precisely same result. Although being informed about the existence
of the proof of this “conjecture” [22], Sachs and John produced an independent
paper on this “discovery” and (together with Fajtlowicz) published it [15].

The problem concerning the relation between the structure of a bipartite graph
and its nullity can be reduced to another problem which can be solved in certain
special cases. The vertices of a bipartite graph may be numbered so that the
adjacency matrix has the following form:

A =

(
0 B
BT 0

)
.

The matrix B is the “incidence matrix” between the two sets X and Y of vertices
of the bipartite graph G = (X,Y, U) (U is the set of edges).

Theorem 3. [32] For the bipartite graph G with n vertices and incidence matrix B,
η(G) = n− 2 r(B), where r(B) is the rank of B.

Since for G = (X,Y, U), we have r(B) � min(|X |, |Y |) and Theorem 3 yields the
following:

Corollary 5. [8] η(G) � max(|X |, |Y |)−min(|X |, |Y |).
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If the number of vertices is odd, then |X | �= |Y | and η(G) > 0. Thus a necessary
condition to have no zeros in the spectrum of a bipartite graph is that the number
of vertices is even (what is also in accordance with Theorem 2).

The following three theorems ([8], [10]) enable, in special cases, the reduction of
the problem of determining η(G) for some graphs to the same problem for simpler
graphs.

Theorem 4. [8] Let G1 = (X1, Y1, U1) and G2 = (X2, Y2, U2), where |X1| = n1,
|Y1| = n2, n1 � n2, and η(G1) = n2 − n1. If the graph G is obtained from G1 and
G2 by joining (any) vertices from X1 to vertices in Y2 (or X2), then the relation
η(G) = η(G1) + η(G2) holds.

Proof. Let B1, B2, B be the incidence matrices of the graphs G1, G2, G. We may
assume that

B =

(
B1 M
0 B2

)
where B1 is an n1 × n2 matrix, 0 is a zero matrix, and M is an arbitrary matrix
with entries from the set {0, 1}.

From η(G1) = n2 − n1 we have r(B1) = n1. Thus B1 contains n1 linearly
independent columns. Consequently, each column of the matrixM can be expressed
as a linear combination of the aforementioned columns of B1. Hence, the matrix B
can be reduced by operations not changing the rank to the form

B′ =
(
B1 0
0 B2

)
.

whence r(B) = r(B1) + r(B2). Theorem 3 gives η(G) = η(G1) + η(G2). �
Corollary 6. [8] If the bipartite graph G contains a pendent vertex, and if the
induced subgraph H of G is obtained by deleting this vertex together with the vertex
adjacent to it, then η(G) = η(H).

This corollary of Theorem 4 is proved in the following way: we take the complete
graph with two vertices as G1 and the graph H as G2.

Corollary 7. [8] Let G1 and G2 be bipartite graphs. If η(G1) = 0, and if the graph
G is obtained by joining an arbitrary vertex of G1 by an edge to an arbitrary vertex
of G2, then η(G) = η(G2).

Example 1. See Fig. 2.

Theorem 5. [10] A path with four vertices of degree 2 in a bipartite graph G can
be replaced by an edge (see Fig. 3) without changing the value of η(G).

Theorem 6. [10] Two vertices and the four edges of a cycle of length 4, which
are positioned in a bipartite graph G as shown in Fig. 4, can be removed without
changing the value of η(G).

Remark. Corollary 6 of Theorem 4, as well as Theorems 5 and 6 hold also in the
case when the graph G is non-bipartite [9].
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Figure 2

Figure 3

Figure 4

Example 2. See Fig. 5.

4. Graphs with maximum nullity

If we bear in mind Lemmas 1 and 4, it is obvious that 0 � η(G) � n− 2 if G is
a simple non-empty graph on n vertices.
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Figure 5

A natural problem is to characterize the extremal graphs whose nullities attain
the upper bound n− 2 and the second upper bound n− 3.

Theorem 7. [11] Suppose that G is a simple graph on n vertices and G has no
isolated vertices. Then

(i) η(G) = n − 2 if and only if G is isomorphic to a complete bipartite graph
Kn1,n2 , where n1 + n2 = n, n1, n2 > 0.

(ii) η(G) = n − 3 if and only if G is isomorphic to a complete tripartite graph
Kn1,n2,n3 , where n1 + n2 + n3 = n, n1, n2, n3 > 0.

Several results on the graphs satisfying η = n − t for some fixed value t, t > 3
were obtained. Before stating them we give some necessary definitions.

Let Gn be the set of all n-vertex graphs, and let [0, n] = {0, 1, . . . , n}. A subset
N of [0, n] is said to be the nullity set of Gn provided that for any k ∈ N , there
exists at least one graph G ∈ Gn such that η(G) = k.

A connected simple graph on n vertices is said to be unicyclic if it has n edges
and bicyclic if it has n + 1 edges. Denote by Un and Bn the set of all n-vertex
unicyclic and bicyclic graphs, respectively. For convenience, let Tn denote the set
of n-vertex trees.

First we determine all graphs with pendent vertices that attain the third-maxim-
um nullity n− 4 and the fourth-maximum nullity n− 5, using the results of Li [30].
Then we proceed recursively, as in [30], to construct all graphs having pendent
vertices with η(G) > 0.

Let G∗
1 be an n-vertex graph obtained from a complete bipartite graph Kr,s and

a star K1,t by identifying a vertex of Kr,s with the center of K1,t, where r, s, t � 1
and r + s + t = n. Let K1,l,m be a complete tripartite graph with the maximum-
degree vertex v, where l,m > 0. Then let G2 be the n-vertex graph created from
K1,l,m and a star K1,p by identifying the vertex v with the center of K1,p, where
l,m, p � 1 and l +m+ p+ 1 = n.

Theorem 8. [30] Let G be a connected n-vertex graph with pendent vertices. Then
η(G) = n − 4 if and only if G is isomorphic to the graph G∗

1 or G∗
2, where G∗

1 is
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depicted in Fig. 6, and G∗
2 is a connected spanning subgraph of G2 (see Fig. 6) and

contains Kl,m as its subgraph.

Figure 6

Let G∗
3 be an n-vertex graph obtained from a complete tripartite graph Kr,s,t

and a star K1,q by identifying a vertex of Kr,s,t with the center of K1,q, where
r, s, t, q > 0 and r + s + t + q = n. Let K1,l,m,p be a tetrapartite graph with the
maximum-degree vertex v, where l,m, p > 0. Then let G4 be the n-vertex graph
created from K1,l,m,p and a star K1,d by identifying the vertex v and the center of
K1,d, where l,m, p, d > 0 and l +m+ p+ d+ 1 = n.

Figure 7

Theorem 9. [30] Let G be a connected graph on n vertices and assume that G has
no isolated vertex. Then η(G) = n−5 if and only if G is isomorphic to the graph G∗

3

or G∗
4, where G∗

3 is depicted in Fig. 7, G∗
4 is a connected spanning subgraph of G4

(see e.g. Fig. 7) and contains Kl,m,p as its subgraph.
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Using similar reasoning as in Theorems 8 and 9, we may proceed recursively to
construct all n-vertex graphs having pendent vertices with η(G) = n − 6, n − 7,
n− 8, and so on. In that way, all n-vertex graphs with pendent vertices satisfying
η(G) > 0 can be determined [30]. Recently, also graphs with pendent trees were
examined with regard to their nullity [18].

In the sequel we formulate some results on the extremal nullity of trees, unicyclic
and bicyclic graphs. We also give the characterization of their nullity sets.

For an n-vertex tree, if it is a complete bipartite graph, then the tree should
be the star. Since any complete tripartite graph is cyclic, there does not exist a
tree that is a complete tripartite graph. Therefore, the following result is a direct
consequence of Theorems 7, 8, and 9.

Theorem 10. [14, 30] Let Tn be the set of all n-vertex trees.
(i) Let T ∈ Tn. Then η(T ) � n− 2, and the equality holds if and only if T ∼= Sn

[14].
(ii) Let T ∈ Tn � {Sn}. Then η(T ) � n− 4, and the equality holds if and only if

T ∼= T1 or T ∼= T2, where T1 and T2 are depicted in Fig. 8 [30].
(iii) Let T ∈ Tn � {Sn, T1, T2}. Then η(T ) � n− 6, and the equality holds if and

only if T ∼= T3 or T ∼= T4 or T ∼= T5, where trees T3, T4, T5 are shown in Fig. 8
[30].

Figure 8

Just as in Theorem 10, we can use graphs in Tn (see [30]) whose nullity is n− 6
to determine n-vertex trees whose nullity is n− 8, and so on. This implies:

Corollary 8. [30] The nullity set of Tn is {0, 2, 4, . . . , n− 4, n− 2} if n is even and
{1, 3, 5, . . . , n− 4, n− 2}, otherwise.
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Figure 9

As already mentioned, for the cycle Cn, if n ≡ 0 (mod 4), then η(Cn) = 2 and
η(Cn) = 0, otherwise. Therefore, unicyclic graphs with maximum nullity must
contain pendent vertices. On the other hand, the cycle C4 is the only cycle which
is also a complete bipartite graph and the cycle C3 is the only cycle which is also a
complete tripartite graph. So, for the unicyclic graphs with maximum nullity Tan
and Liu obtained:

Theorem 11. [39] Let U ∈ Un (n � 5). Then η(U) � n− 4 and the equality holds
if and only if G is isomorphic to some of the graphs U1, U2, U3, U4 and U5,depicted
in Fig. 9.

The nullity set of unicyclic graphs was also determined in [39].

Theorem 12. [39] The nullity set of Un (n � 5) is [0, n− 4].

Recently, Guo, Yan, and Yeh [21] have somewhat extended the results of [39] by
characterizing unicyclic graphs for which η = n− 5. They also proved:

Theorem 13. [21] Let G ∈ Un . Let m be the size of a maximum matching of G.
Then η(G) = n− 2m− 1 or η(G) = n− 2m or η(G) = n− 2m+ 2.

In [21] the structure of the graphs belonging to each of the three cases in Theorem
13 was fully determined.

In [39] the characterization of unicyclic graphs for which η = 0 remained as an
open problem. In [21] the following was shown:

Theorem 14. Let G ∈ Un and let C� be the unique cycle of G. Then η(G) = 0
holds if and only if either G has a unique perfect matching, or � is odd and G−C�

has a perfect matching, or � �≡ 0 (mod 4) and G has two perfect matchings.

In the set of bicyclic graphs, the graph K2,3 is the only complete bipartite graph
and the graph K4 − e is the only complete tripartite graph [26, 29]. Thus, the
following results are proved.
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Figure 10

Theorem 15. [26, 29] Let B ∈ Bn. Then

(i) η(B) = n− 2 if and only if B ∼= K2,3.
(ii) η(B) = n− 3 if and only if B ∼= K4 − e.
(iii) If B ∈ Bn� {K2,3,K4− e}, then η(B) � n− 4 and the equality holds if and

only if B ∼= Bi (1 � i � 7) (Fig. 10)

Theorem 16. [26, 29] The nullity set of Bn is [0, n− 2].

From previous considerations it is clear that the problem of finding trees with
maximum nullity is easily solved. In the sequel we are concerned with a related
problem: namely, determining the greatest nullity among n-vertex trees in which
no vertex has degree greater than a fixed value Δ [17].

Let Δ be a positive integer. Denote by T (n,Δ) the set of all n-vertex trees in
which all vertex degrees are less than or equal to Δ. Furthermore, let T (Δ) =⋃

n�1 T (n,Δ).

For Δ = 1 and n � 3, T (n,Δ) = ∅. For Δ = 2 and n � 3, each set T (n,Δ)
consists of a single element (the n-vertex path Pn for which η(Pn) � 1). Therefore
in what follows we assume that Δ � 3.

Theorem 17. [17] For all n � 1 and Δ � 3, if T ∈ T (n,Δ), then η(T ) �
n− 2�(n− 1)/Δ	. For all n � 1 and Δ � 3 there exist trees T ∈ T (n,Δ) such that
η(T ) = n− 2�(n− 1)/Δ	.

Let T (n,Δ,max) be the set of trees from T (n,Δ) with maximum nullity (equal
to n− 2�(n− 1)/Δ	).

In [17] a method for constructing the trees in T (n,Δ,max) was given, and it is
conjectured that these trees are all of maximum nullity. Li and Chang [31] gave a
counter-example, showing that there exist additional trees with maximum nullity.
Furthermore, they slightly modified way in which the elements of T (n,Δ,max) are
constructed.
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Before presenting the Li–Chang method, we need some preparation.
An edge belonging to a matching of a graph G is said to cover its two end

vertices. A vertex is said to be perfectly covered (PC) if it is covered in all maximum
matchings of G. Obviously, any vertex adjacent to a pendent vertex is a PC-vertex,
and there is at most one vertex between any consecutive PC-vertices. However,
there may exist PC-vertices that are not adjacent to pendent vertices.

A subset of T (n,Δ,max), denoted by T ∗
1 (n,Δ,max) is constructed as follows.

For n = 1, 2, . . . ,Δ, the unique element of T ∗
1 (n,Δ,max) is the n-vertex star. For

n = kΔ + i, k � 1, i = 1, 2, . . . ,Δ, any tree in T ∗
1 (n,Δ,max) is obtained from

tree T ′ ∈ T ∗
1 (n −Δ,Δ,max) ∪ T ∗

2 (n −Δ,Δ,max) and a copy of a Δ-vertex star,
by joining one vertex of T ′ with degree less than Δ to the center of SΔ, where
T ∗
2 (n − Δ,Δ,max) is obtained by moving (one-by-one) some pendent vertices of

T ∈ T ∗
1 (n−Δ,Δ,max) to some other PC-vertices, taking care that

(i) the vertex degrees do not exceed Δ, and that
(ii) in each step the vertex to which a pendent vertex is added is PC.

Theorem 18. [31] T (n,Δ,max) = T ∗
1 (n,Δ,max) ∪ T ∗

2 (n,Δ,max).

A result analogous to Theorem 17 has recently been proved for bipartite graphs:

Theorem 19. [34] Let G be a bipartite graph with n � 1 vertices, e edges and
maximum vertex degree Δ. If G does not have as subgraph any cycle whose size is
divisible by 4, then η(G) � n− 2�e/Δ	.

For bipartite graphs Fan and Qian [16] obtained the following results. Let Bipn
be the set of all bipartite graphs on n vertices.

Theorem 20. [16] The nullity set of Bipn is {n− 2k | k = 0, 1, 2, . . . , 
n/2�}.
In order to formulate the next two theorems, we need to define the concepts of

extended path and extended cycle.
Let for n � 2, Pn := v1v2 · · · vn be a path on vertices v1, v2, . . . , vn with edges

(vi, vi+1 for i = 1, 2, . . . , n− 1. Let Op denote the p-vertex graph without edges, an
empty graph. Replace each vertex vi of Pn by an empty graphOpi for i = 1, 2, . . . , n,
and add edges between each vertex of Opi and each of Opi+1 for i = 1, 2, . . . , n− 1.
The graph thus obtained is of order N = p1 + p2 + · · ·+ pn and will be referred to
as an extended path of length n. In an analogous manner we construct an extended
cycle of length n, n � 3, by additionally joining all vertices of Op1 with all vertices
of Opn .

At this point we note that the nullity of an extended path of length n, n � 2,
and of order N is equal to N − n if n is even, and is equal to N − n+ 1 if n is odd
[16].

Theorem 21. [16] Let G ∈ Bipn, n � 4. Then η(G) = n − 4 if and only if G is
isomorphic to a graph H to which possibly some isolated vertices are added, where
H is either the union of two extended paths of length 2, or an extended path of
length 4, or an extended path of length 5.

Theorem 22. [16] Let G ∈ Bipn, n � 6. Then η(G) = n − 6 if and only if G is
isomorphic to a graph H to which possibly some isolated vertices are added, where
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H is either the union of three extended paths of length 2, or an extended cycle of
length 6, or an extended cycle of length 8, and in any of these graphs the number
of all extended vertices (i.e., the pi-values) are mutually equal.

Finally, we mention another family of graphs where the nullity problem has been
solved [25]. It is the class of line graphs of trees.

We first observe that the nullity of line graphs may assume any positive integer
value. A trivial example for this is L(pK2), whose nullity is p (see Fig. 11).

Figure 11

If we restrict ourselves to connected graphs then the nullity of the line graph
may still be any positive integer. For instance [25], for the graph Gr depicted in
Fig. 12, η(L(Gr)) = r + 1.

Figure 12

With the line graphs of trees the situation is different:

Theorem 23. [25] If T is a tree, then L(T ) is either non-singular or has nullity
one.

Remark. It is easy to find examples of trees with η(L(T ))=0 and with η(L(T ))=1.
For instance, η(L(Pn)) = 0 and η(L(Pn)) = 1 for, respectively, odd and even value
of n.

More results on graphs whose nullity is one can be found in the papers [37, 38].
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[7] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application, Academic
Press, New York, 1980.
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