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Abstract. The energy E = E(G) of a graph G is the sum of the
absolute values of the eigenvalues of G. The motivation for the in-
troduction of this invariant comes from chemistry, where results on
E were obtained already in the 1940’s. A graph G with n vertices is
said to be “hyperenergetic” if E > 2n− 2, and to be “hypoenergetic”
if E(G) < n. In this chapter we outline the main hitherto obtained
results related to hyperenergetic and hypoenergetic graph.
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1. Energy of a graph

Definition 1. Let G be a graph on n vertices and let λ1, λ2, . . . , λn be its eigen-
values [7, 11]. Then the energy of G is

(1) E = E(G) =

n∑
j=1

|λj |.

Although in the chemical literature the sum of absolute values of the eigenvalues
of some graphs was (in a more-or-less implicit manner) considered already since
the 1940s (see e.g., [5, 20, 41, 55, 59]), it was the present author who in the 1970s
used Eq. (1) as a definition, noticing that practically all results that until then
were obtained for the total π-electron energy (cf. the next section), pertain to the
quantity occurring on the right–hand side of (1).

Definition 1 was advocated by the present author on several lectures and seminars
held in the 1970s. In written form it was first stated in the paper [21]. Since this
paper is extremely difficult to acquire, it is not quite surprising that the graph-
energy concept was for a long time not recognized by other scholars. The same
definition was later given in the book [37], and elsewhere [22].

Nowadays, this is history. Its details have been outlined on several occasions
[10, 28, 29].

What from the present–day’s point of view is important is the following.
First, Eq. (1) does not require (and, in fact: does not permit) a chemical interpre-

tation. Consequently, the graph G needs not satisfy any of the several chemistry-
based conditions, such as that it must be connected, that its maximum vertex
degree must not exceed 3, etc. [37]. The graph energy is defined for all graphs and
mathematicians may study it without being restricted by any chemistry-caused
limitation.

Second, somewhere around the turn of the century mathematicians realized the
mathematical value (and, let us say: mathematical beauty) of graph energy, and



HYPERENERGETIC AND HYPOENERGETIC GRAPHS 115

a vigorous and world-wide mathematical research of E started. The current activ-
ities on the mathematical studies of E are remarkable: According to our records,
in the year 2006 the number of published papers was 11. In 2007, 2008, and 2009
this number increased to 30, 47, and 59, respectively. In the time of completion
of this chapter (August 2010) the author is aware of 54 papers on graph energy
published in 2010 or in press. Solely in the 21-th century several hundreds of
mathematicians from Australia, Austria, Brazil, Canada, Chile, China, Croatia,
Germany, India, Iran, Ireland, Italy, Mexico, Netherlands, Pakistan, Portugal, Ru-
mania, Russia, Serbia, South Africa, South Korea, Spain, Sweden, Turkey, UK,
USA, and Venezuela participated or are participating in research on graph energy.

Details of the (mathematical) theory of graph energy can be found in the reviews
[26, 29, 35, 54] and in the references cited therein. In this chapter we are going
to outline only two aspects of this theory, namely the results pertaining to the
conditions E > 2n− 2 and E(G) < n. Before doing this, in the subsequent section
we briefly repeat the details on E related to chemistry.

2. The chemical connection

Researches related to the energy of a graph can be traced back to the 1940s or
even to the 1930s. In the 1930s the German scholar Erich Hückel put forward a
method for finding approximate solutions of the Schrödinger equation of a class of
organic molecules, the so-called “unsaturated conjugated hydrocarbons”. Details
of this approach, often referred to as the “Hückel molecular orbital (HMO) theory”
can be found in appropriate textbooks [6, 62, 66].

The Schrödinger equation (or, more precisely: the time-independent Schrödinger
equation) is a second-order partial differential equation of of the form

(2) Ĥ Ψ = E Ψ

where Ψ is the so-called wave function of the system considered, Ĥ the so-called
Hamiltonian operator of the system considered, and E the energy of the system
considered. When applied to a particular molecule, the Schrödinger equation en-
ables one to describe the behavior of the electrons in this molecule and to establish
their energies. For this one needs to solve Eq. (2), which evidently is an eigenvalue–
eigenvector problem of the Hamiltonian operator. In order that the solution of (2)
be feasible (yet not completely exact), one needs to express Ψ as a linear combina-
tion of a finite number of pertinently chosen basis functions. If so, then Eq. (2) is
converted into:

HΨ = EΨ

where now H is a matrix - the so-called Hamiltonian matrix.
The HMO model enables to approximately describe the behavior of the so-called

π-electrons in an unsaturated conjugated molecule, especially of conjugated hydro-
carbons. In Fig. 1 is depicted the chemical formula of biphenylene – a typical con-
jugated hydrocarbon H . It contains n = 12 carbon atoms over which the n = 12
π-electrons form waves.
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Figure 1. Biphenylene H is a typical unsaturated conjugated hy-
drocarbon. Its carbon–atom skeleton is represented by the molec-
ular graph G. The carbon atoms in the chemical formula H and
the vertices of the graph G are labelled by 1, 2, . . . , 12 so as to be
in harmony with Eqs. (3) and (4).

In the HMO model the wave functions of a conjugated hydrocarbon with n
carbon atoms are expanded in an n-dimensional space of orthogonal basis functions,
whereas the Hamiltonian matrix is a square matrix of order n, defined so that:

[H]ij =

⎧⎪⎨
⎪⎩
α, if i = j

β, if the atoms i and j are chemically bonded

0, if there is no chemical bond between the atoms i and j.

The parameters α and β are assumed to be constants, equal for all conjugated
molecules. Their physical nature and numerical value are irrelevant for the present
considerations; for details see in [6, 62, 66].

For instance, the HMO Hamiltonian matrix of biphenylene is:

(3) H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α β 0 0 0 β 0 0 0 0 0 0
β α β 0 0 0 0 0 0 0 0 β
0 β α β 0 0 0 0 0 0 β 0
0 0 β α β 0 0 0 0 0 β 0
0 0 0 β α β 0 0 0 0 0 0
β 0 0 0 β α 0 0 0 0 0 0
0 0 0 0 0 0 α β 0 0 0 β
0 0 0 0 0 0 β α β 0 0 0
0 0 0 0 0 0 0 β α β 0 0
0 0 0 0 0 0 0 0 β α β 0
0 0 β 0 0 0 0 0 0 β α β
0 β 0 0 0 0 β 0 0 0 β α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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which can be written also as
(4)

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first matrix on the right-hand side of Eq. (4) is just the unit matrix of order
n = 12, whereas the second matrix can be understood as the adjacency matrix of a
graph on n = 12 vertices. This graph is also depicted in Fig. 1, and in an evident
manner corresponds to the underlying molecule (in our example: to biphenylene).

From the above example it is evident that also in the general case within the
HMO model one needs to solve the eigenvalue–eigenvector problem of an approxi-
mate Hamiltonian matrix of the form

(5) H = α In + βA(G)

where α and β are certain constants, In is the unit-matrix of order n, and A(G)
is the adjacency matrix of a particular graph G on n vertices, that corresponds to
the carbon-atom skeleton of the underlying conjugated molecule.

As a curiosity we mention that neither Hückel himself nor the scientists who did
early research in HMO theory were aware of the identity (5), which was first noticed
only in 1956 [19]. Much later, not knowing of [19], the same observation was made
by the present author (for details see [8, 30]). Anyway, the mere observation of
the existence of the connection between HMO theory and spectral graph theory
had little impact on theoretical chemistry. Chemists became interested in this
connection only after it was shown (to them) how by means of the Sachs theorem
some long-time open problems of HMO theory could easily be resolved [18, 27].

As a consequence of (5), the energy levels Ej of the π-electrons are related to the
eigenvalues λj of the graph G by the simple relation Ej = α+ β λj ; j = 1, 2, . . . , n.

In addition, the molecular orbitals, describing how the π-electrons move within
the molecule, coincide with the eigenvectors ψj of the graph G.

In the HMO approximation, the total energy of all π-electrons is given by

Eπ =

n∑
j=1

gj Ej
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where gj is the so-called “occupation number”, the number of π-electrons that move
in accordance with the molecular orbital ψj . By a general physical law, gj may
assume only the values 0, 1, or 2.

Details on Eπ and the way in which the molecular graph G is constructed can be
found in the books [13,17,37] and reviews [28,29]. There also more information on
the chemical applications of Eπ can be found. For what follows, it is only important
that because the number of π-electrons in the conjugated hydrocarbon considered
is equal to n, it must be g1 + g2 + · · ·+ gn = n which immediately implies

Eπ = αn+ β

n∑
j=1

gj λj .

In view of the fact that α and β are constants, and that in chemical applications n
is also a constant, the only non-trivial part in the above expression is

(6) E =

n∑
j=1

gj λj .

The right-hand side of Eq. (6) is just what in the chemical literature is referred to
as “total π-electron energy”; if necessary, then one says “total π-electron energy in
β-units”.

If the π-electron energy levels are labelled in a non-decreasing order: E1 � E2 �
· · · � En then the requirement that the total π-electron energy be as low as possible
is achieved if for even n,

gj =

{
2, for j = 1, 2, . . . , n/2

0, for j = n/2 + 1, n/2 + 2, . . . , n

whereas for odd n,

gj =

⎧⎪⎨
⎪⎩
2, for j = 1, 2, . . . , (n− 1)/2

1, for j = (n+ 1)/2

0, for j = (n+ 1)/2 + 1, (n+ 1)/2 + 2, . . . , n.

For the majority (but not all!) chemically relevant cases,

gj =

{
2, whenever λj > 0

0, whenever λj < 0.

If so, then Eq. (6) becomes: E = E(G) = 2
∑

+ λj where
∑

+ indicates summation
over positive eigenvalues. Because for all graphs, the sum of eigenvalues is equal to
zero, we can rewrite the above equality as

(7) E = E(G) =
n∑

j=1

|λj |

which by form (but not by “physical meaning”) is identical to Eq. (1).
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3. Hyperenergetic graphs

Definition 2. A graph G on n vertices is said to be hyperenergetic if

E > 2n− 2.

In order to understand the reason for defining “hyperenergeticity” in such a
seemingly awkward manner, one needs to recall the following.

In the times when computers were not commonly available, the calculation of
HMO total π-energy (that is, E) was not an easy task. Therefore, much work
was done on finding simple algebraic expressions that would make it possible to
obtain an approximate numerical value of E knowing the simple structural details
of the underlying molecular graph. A particularly successful such approximation
was discovered by McClelland [55], viz.

E ≈ a
√
2mn

where n andm are the number of vertices (resp., number of carbon atoms) and num-
ber of edges (resp., number of carbon–carbon bonds) of the corresponding molec-
ular graph (resp., conjugated hydrocarbon), and where a is an empirical constant
(a ≈ 0.9). Eventually, scores of other such (n,m)-type approximate expressions for
E were designed, whose details can be found in the surveys [23, 39].

Most of the (n,m)-type approximate expressions for E are monotonically in-
creasing functions of the parameter m. This, indeed, is in good agreement with the
observedE-values of molecular graphs, which because of the requirement 2m/n � 3,
necessarily have small number of edges.

By extrapolating this kind odm-dependence of E, one readily arrives at the con-
clusion that among n-vertex graphs, the complete graph Kn would have maximal
energy. Since E(Kn) = 2n− 2, one would thus arrive at:

Conjecture 3.1. [21] If G is an n-vertex graph, G �∼= Kn, then E(G) < 2n− 2.

This conjecture was stated by the present author in his first paper on graph
energy [21]. Soon thereafter, by means of counterexamples, Conjecture 3.1 was
shown to be false [9].

At this point it is worth mentioning that in the 1990s a Chinese mathematician
(whose name will be omitted) offered a proof of Conjecture 3.1. He had luck that the
present author refereed his paper. The error committed in the proof was trivial:
a simple quadratic equation was incorrectly solved. This minor mistake implied
then the expected conclusion that E(G) < 2n− 2. Of course, the paper was never
published.

The true work on hyperenergetic graphs started in the late 1990s, independently
by a group of Indian mathematicians [64] and the present author [25, 36].

Theorem 3.2. [64] (a) For n � 5 the line graph of the complete graph Kn is
hyperenergetic.
(b) For n � 4 the line graph of the complete bipartite graph Kn,n is hyperenergetic.
(c) For n � 6 the line graph of the n-vertex cocktail party graph is hyperenergetic.
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By Theorem 3.2, for the first time, infinitely many hyperenergetic graphs could
be systematically constructed. Hou and the present author later extended this
result as follows:

Theorem 3.3. [44] All graphs with more than 2n− 1 edges are hyperenergetic.

In [36] graphs obtained by deleting a few edges from Kn were studied. It was
shown that by deleting one, two, or three edges from Kn, the respective energy is
smaller than E(Kn). However, if four edges, forming a quadrangle, are deleted,
then the energy exceeds E(Kn). The works [25, 36] implied:

Theorem 3.4. [25] Hyperenergetic graphs on n-vertices exist for all n � 8. There
are no hyperenergetic graphs on less than 8 vertices.

Eventually, hyperenergeticity was verified for a variety of other classes of graphs:
Paley [46], circulant [61], Kneser [2], etc. [3]. For some other graphs, especially those
for which the maximal vertex degree is 3 or less, it was shown that they cannot be
hyperenergetic [32, 63].

The mortal blow to the research of hyperenergetic graphs was givew by Nikiforv,
who showed:

Theorem 3.5. [56] For almost all graphs

E(G) =

(
4

3π
+ o(1)

)
n3/2.

Theorem 3.5 immediately implies that almost all graphs are hyperenergetic,
making any further search for them pointless.

In view of Nikiforov’s negative result, it is interesting that in a recent work [60],
Shen at al. proved:

Theorem 3.6. [60] For any c <∞, there exists only a finite number of hyperen-
ergetic graphs with cyclomatic number c. In particular, there are no hyperenergetic
graphs with c � 8.

4. Hypoenergetic graphs

Definition 3. A graph G on n vertices is said to be hypoenergetic if

(8) E(G) < n.

Graphs for which

(9) E(G) � n

are said to be non-hypoenergetic.

In the chemical literature it was noticed long time ago that for the vast majority
of (molecular) graphs the energy exceeds the number of vertices. In 1973 the
theoretical chemists England and Ruedenberg published a paper [14] in which they
asked “why is the delocalization energy negative?”. Translated into the language of
graph spectral theory, their question reads: “why does the graph energy exceed the
number of vertices?”, understanding that the graph in question is “molecular”.
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Recall that in connection with the chemical applications of E, a “molecular
graph” means a connected graph in which there are no vertices of degree greater
than three [37]. The authors of [14] were, indeed, quite close to the truth. Today
we know that only five such graphs violate the relation (9), see below.

On the other hand, there are large classes of graphs for which the condition (9)
is satisfied. We first mention three elementary results of this kind.

Theorem 4.1. If the graph G is non-singular (i.e., no eigenvalue of G is equal to
zero), then G is non-hypoenergetic.

Proof. By the inequality between the arithmetic and geometric means,

1

n
E(G) �

(
n∏

i=1

|λi|
)1/n

= | detA(G)|1/n.

The determinant of the adjacency matrix is necessarily an integer. Because G is
non-singular, | detA(G)| � 1. Therefore, also | detA(G)|1/n � 1, implying (9). �

Theorem 4.2. If G is a graph with n vertices and m edges, and if m � n2/4, then
G is non-hypoenergetic.

Proof. It is known [4] that for all graphs, E � 2
√
m. Theorem 4.2 follows from

2
√
m � n. �

Theorem 4.3. [40] If the graph G is regular of any non-zero degree, then G is
non-hypoenergetic.

Proof. Let λ1 be the greatest graph eigenvalue. Then λ1 |λi| � λ2i holds for i =
1, 2, . . . , n, which summed over all i, yields E � 2m/λ1. For a regular graph of
degree r, λ1 = r and 2m = nr. �

In the case of regular graphs, the equality E(G) = n is attained if and only if G
consists of a copies of the complete bipartite graph Kb,b, where a � 1 and n = 2ab.

A straightforward consequence of Theorem 3.5 is:

Theorem 4.4. Almost all graphs are non-hypoenergetic.

Without proof we state here a few other, recently obtained, results related to
the inequalities (8) and (9).

Theorem 4.5. [31] All hexagonal systems are non-hypoenergetic.

Denote by Δ = Δ(G) the maximum vertex degree of the graph G.

Theorem 4.6. [34, 38] Among trees with Δ � 3, there are exactly four hypoener-
getic species, G1, G2, G3, and G4, depicted in Fig. 2.

Theorem 4.7. [34,38] Among trees with Δ = 4, there are infinitely many hypoen-
ergetic species. The same holds also if Δ > 4.
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In connection with Theorems 4.6 and 4.7 it is of importance to determine the
trees with maximum vertex degree Δ, having minimum energy. This problem was
recently completely solved by Heuberger andWagner [42,43]. For an earlier attempt
to treat the same problem, see [15]. Although in [15] the structure of the minimal-
energy trees has not be determined, it was established that (in the general case)
these differ from Volkmann trees [16, 48].

Theorem 4.8. [57] Among connected quadrangle-free graphs with Δ � 3, G1, G2,
G3, and G4, and only these are hypoenergetic.

Theorem 4.9. [49] Among connected graphs with Δ � 3, G1, G2, G3, G4, and
G5, and only these are hypoenergetic.

Theorem 4.10. [50] Among connected graphs with Δ � 3, G6, G7, G8, and G9,
and only these have energies equal to the number of vertices.

G G G

G GGG

GG
1 2 3 4 5

6 7 8 9

Figure 2. Graphs mentioned in Theorems 4.6-4.10

In connection with Theorem 4.7 it must be mentioned that if the maximum
vertex degree (Δ) is sufficiently large, then it is not difficult to find hypoenergetic
graphs. For instance, the n-vertex star (with Δ = n − 1) is hypoenergetic for all
n�3. In view of this, the recently reported result [67] that there exist hypoenergetic
connected unicyclic graphs for all n � 7 and hypoenergetic connected bicyclic
graphs for all n � 8 is no surprise whatsoever.

Theorem 4.11. [67] There are no hypoenergetic unicyclic graphs on n vertices
with n � 6. There exist hypoenergetic unicyclic graphs on n vertices for all n � 7.

Theorem 4.12. [67] If n is even and Δ ∈ [n/2, n − 1] or n is odd and Δ ∈
[(n + 1)/2, n− 1], then for all n � 9 there exist unicyclic hypoenergetic graphs of
order n with maximum vertex degree Δ.

Theorem 4.13. [67] There are no hypoenergetic bicyclic graphs on n vertices with
n = 4, n = 6, and n = 7. There exist hypoenergetic bicyclic graphs on n vertices
for n = 5 and all n � 8.
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Theorem 4.14. [67] If n is even and Δ ∈ [n/2 + 1, n − 1] or n is odd and
Δ ∈ [(n + 1)/2, n− 1], then for all n � 9 there exist bicyclic hypoenergetic graphs
of order n with maximum vertex degree Δ.

Results of the same kind as Theorems 4.11-4.14 have been obtained also for
c-cyclic graphs with c � 3 [45, 51, 68]. Of these we mention here only:

Theorem 4.15. [68] There exist hypoenergetic c-cyclic graphs for any c.

5. Interlude: biregular and triregular graphs

A graph is said to be regular if all its vertices have equal degrees. We now
generalize this simple concept to the case when the verticex degrees assume two or
three different values.

Definition 4. Let a and b be integers, 1 � a < b. A graph is said to be (a, b)-
biregular if the degrees of its vertices assume exactly two different values: a and b.

Because biregular graphs play an important role in the subsequent part of this
chapter, in Fig. 3 are depicted a few examples thereof.

Figure 3. Examples of biregular graphs: a (1,2)-biregular tree
(the 3-vertex path), a (1,6)-biregular tree (the 7-vertex star), a
(3,4)-biregular graph, and a (2,3)-biregular graph (a hexagonal
system).

Definition 5. Let x, a, and b be integers, 1 � x < a < b. A graph is said to be
(x, a, b)-triregular if its vertices assume exactly three different values: x, a, and b.

By Theorem 4.3, the problem considered in this chapter has been completely
solved for regular graphs [40]. Hexagonal systems (mentioned in Theorem 4.5)
have vertex degrees equal to 2 and 3, and therefore belong to a special class of
biregular graphs. From the proof of Theorem 4.5 [31], it can be seen that also
other types of biregular graphs have the same property, i.e., satisfy inequality (9).
Work along these lines has recently been extended [1,33,47,52,53]. In what follows
we report in due detail our [1,33] and other colleague’s [65] researches on biregular
graphs with cyclomatic number c � 2. These considerations may be of particular
value for beginners in the field. Namely, these show how by means of relatively
elementary graph-theoretic and algebraic reasoning one can obtain not quite trivial
results on graph energy. Analogous considerations for triregular graphs can be
found in [32, 53] and in the survey [54]. Tricyclic biregular graphs have also been
recently examined [52].
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6. A lower bound for energy and its applications

In this section we obtain a lower bound for graph energy, which will be needed in
the subsequent considerations. Our starting point is the Cauchy–Schwarz inequality

n∑
i=1

xi yi �

√√√√ n∑
i=1

(xi)2
n∑

i=1

(yi)2

which holds for any real numbers xi, yi, i = 1, 2, . . . , n. Setting xi = |λi|1/2 and
yi = |λi|3/2, we get (

n∑
i=1

(λi)
2

)4

�
(

n∑
i=1

|λi|
n∑

i=1

|λi|3
)2

By another application of the Cauchy–Schwarz inequality,

n∑
i=1

|λi|3 =

n∑
i=1

|λi| · (λi)2 �

√√√√ n∑
i=1

(λi)2
n∑

i=1

(λi)4

which substituted back into the previous inequality yields

(10)

(
n∑

i=1

(λi)
2

)4

�
(

n∑
i=1

|λi|
)2 n∑

i=1

(λi)
2

n∑
i=1

(λi)
4.

The k-th spectral moment of a graph G with eigenvalues λ1, λ2 . . . , λn is

Mk =Mk(G) =

n∑
i=1

(λi)
k.

In view of this and the definition of graph energy, Eq. (1), the inequality (10) can
be rewritten as

(11) E �M2

√
M2/M4 .

The lover bound (11) was independently discovered several times: two times
for general graphs [24, 69] and two times for bipartite graphs [12, 58]. Recently a
generalized version thereof was obtained [70].

The importance of the bound (11) lies in the fact that the structure-dependency
of the spectral moments M2 and M4 is well known. If G is a graph with n vertices
andm edges, if its vertex degrees are d1, d2, . . . , dn, and if it possesses q quadrangles,
then

M2(G) = 2m(12)

M4(G) = 2

n∑
i=1

(di)
2 − 2m+ 8q.(13)

Combining (11), (13), and (12), we arrive at:
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Theorem 6.1. Let G be a graph with n vertices and m edges, possessing q quad-
rangles, and let d1, d2, . . . , dn be its vertex degrees. If the condition

(14) M2(G)

√
M2(G)

M4(G)
≡ 2m

√
2m∑n

i=1(di)
2 − 2m+ 8q

� n

is obeyed, then G is non-hypoenergetic.

The application of Theorem 6.1 will be the basis for the considerations that
follow. Therefore it should be always kept in mind that condition (14) is a sufficient,
but not a necessary condition for the validity of the inequality (9).

7. On the energy of biregular graphs

In this section we use same the notation as in Definition 4. Thus the degrees of
the vertices of a biregular graph are denoted by a and b, and a < b.

7.1. Biregular trees. Let T be an (a, b)-biregular tree. Since trees necessarily
possess vertices of degree 1 (pendent vertices), it must be a = 1 and 1 < b � n− 1,
where n is the number of vertices. This tree has at least 3 vertices and m = n− 1
edges. The number of pendent vertices will be denoted by k.

From now on we search for necessary and sufficient conditions under which the
inequality (14) holds.

For trees, of course, q = 0.
We begin with the equalities

(15) k + nb = n

and

(16) 1 · k + b · nb = 2m = 2(n− 1),

where nb is the number of vertices of T of degree b. From (15) and (16) we have

k =
2 + n(b− 2)

b− 1
; nb =

n− 2

b− 1
.

Further,
n∑

i=1

d2i = 12 · k + b2 · nb =
2 + n(b− 2)

b− 1
+ b2

n− 2

b − 1
= n(b+ 2)− 2(b+ 1).

By Eqs. (13) and (12), for a biregular tree T we have

(17) M2 = 2(n− 1)

and

(18) M4 = 2[n(b+ 2)− 2(b+ 1)]− 2(n− 1) = 2b(n− 2) + 2(n− 1).

Substituting the expressions (17) and (18) back into (14) we get

(19)

√
4(n− 1)3

b(n− 2) + (n− 1)
� n.
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From (19) we obtain

b � 3n3 − 11n2 + 12n− 4

n2(n− 2)

or simplified

(20) b � 3n2 − 5n+ 2

n2
.

Bearing in mind that b � 2, the right-hand side of the latter inequality must be at
least 2, implying n � 5. By examining the function

f(x) =
3x2 − 5x+ 2

x2
, f : [5,+∞ >→ R

and its first derivative

f ′(x) =
5x− 4

x3

we see that f ′(x) > 0 ∀x ∈ [5,+∞), so f monotonically increases. Further,
the upper bound for f is 3 because limx→+∞ f(x) = 3, and lower bound for f is
f(5) = 52/25 = 2.08.

Inequality (20) holds if and only if b = 2 and n � 5. We thus arrive at the
following:

Theorem 7.1. Let T be a (1, b)-biregular tree with n vertices. Then (14) holds if
and only if b = 2 and n � 5.

Note that according to Theorem 7.1 the only biregular trees that satisfy condition
(14) are the paths with at least 5 vertices.

7.2. Unicyclic biregular graphs. For connected unicyclic (a, b)-biregular graphs
we have m = n, a = 1, and b � 3. Further, M2 = 2n whereas M4 we obtain in the
following way.

We have k + nb = n and 1 · k + b · nb = 2n, from which

k =
n(b − 2)

b− 1
; nb =

n

b− 1

and
n∑

i=1

d2i = 12 · k + b2 · nb =
n(b− 2)

b− 1
+ b2

n

b− 1
= n(b+ 2).

Therefore,

M4 = 2

n∑
i=1

d2i − 2n+ 8q = 2n(b+ 2)− 2n+ 8q = 2n(b+ 1) + 8q.

Now, the inequality (14) becomes√
8n3

2n(1 + b) + 8q
� n

and we obtain b � 3 − 4q/n. Because the graph G is unicyclic, the number of
quadrangles q can be either 0 or 1. For q = 0 we obtain b � 3, and with condition
b � 3 we conclude that b = 3.
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For q = 1 we obtain b � 3 − 4/n, from which we see that it must be b < 3.
This, however, is impossible, implying that there is no unicyclic biregular graph
with q = 1, for which the inequality (14) holds. Thus we obtain:

Theorem 7.2. Let G be a connected unicyclic (a, b)-biregular graph with n vertices.
Then (14) holds if and only if a = 1, b = 3, and q = 0.

A few examples of biregular graphs that satisfy Theorem 7.2 are shown in Fig. 4.
From these examples the general structure of such graphs should be evident:

Theorem 7.3. Let G be a connected unicyclic (a, b)-biregular graph for which (14)
holds. Then G is obtained from a cycle Cp, by attaching to each of its vertices
exactly one pendent vertex, where p = 3 or p � 5.

Figure 4. Examples of connected quadrangle-free (1,3)-biregular
unicyclic graphs.

7.3. Bicyclic biregular graphs. For bicyclic (a, b)-biregular graphs we have m =
n+ 1 and the inequality (14) becomes

(21)

√
4(n+ 1)3

(2a+ 2b− 1)(n+ 1)− abn+ 4q
� n.

There are three possible cases (cf. Fig. 5):
(a) the cycles are disjoint (they have no common vertices),
(b) the cycles have a single common vertex
(c) the cycles have two or more common vertices.

(a) (b) (c)

Figure 5. Types of bicyclic graphs.
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... ...

...

......

1

1

b-2

1

2 b-2

2

2 b-3

Figure 6. Sketches of (1, b)-, and (2, 3)-biregular bicyclic graphs
with disjoint cycles. The vertices that connect cycles in a (1, b)-
biregular graph (b � 3) are connected also with b − 3 pendent
vertices, whereas all other vertices in such a graph are connected
with b − 2 pendent vertices. In a (2, 3)-biregular graph there are
only two vertices of degree 3, those that connect cycles, while every
other vertex is of degree 2.

7.3.1. Biregular bicyclic graphs with disjoint cycles. If we have a bicyclic (a, b)-
biregular graph with disjoint cycles, then there are two types of such graphs: with
a = 1, b � 3, and with a = 2, b = 3, see Fig. 6.

If a = 1 and b � 3, then inequality (21) becomes√
4(n+ 1)3

b(n+ 2) + n+ 1 + 4q
� n

from which

(22) b � 3n3 + (11− 4q)n2 + 12n+ 4

n3 + 2n2
.

For q = 0 we obtain

b � 3n3 + 11n2 + 12n+ 4

n3 + 2n2

or simplified

(23) b � 3n2 + 5n+ 2

n2
.

For b � 3, the right-hand side of the latter inequality must be at least 3. Another
condition is n � 10, since the smallest bicyclic (1, b)-biregular graph with disjoint
cycles has exactly 10 vertices.

If we examine the function

f(x) =
3x2 + 5x+ 2

x2
, f : [10,+∞) → R

and its first derivative f ′(x) = −(5x+ 4)/x3 we conclude that f ′(x) < 0, ∀x ∈
[10,+∞). Thus f is a monotonically decreasing function. The lower bound for f is
3 because limx→+∞ f(x) = 3, and the upper bound for f is f(10) = 88/25 = 3.52.
We conclude that it must be b = 3.
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For q = 1 we have

(24) b � 3n3 + 7n2 + 12n+ 4

n3 + 2n2
.

Analogously, and by taking into account that n � 12, we conclude that b = 3.
For q = 2 we have

(25) b � 3n3 + 3n2 + 12n+ 4

n3 + 2n2
.

For n � 14 the right-hand side of the inequality (25) is less than 3 and thus there
is no bicyclic (1, b)-biregular graph with q = 2, such that the inequality (14) holds.

For bicyclic (2, 3)-biregular graphs we have√
4(n+ 1)3

3n+ 9 + 4q
� n

which implies n3 + (3− 4q)n2 + 12n+ 4 � 0.
For q = 0, 1, 2 we have

n3 + 3n2 + 12n+ 4 � 0

n3 − n2 + 12n+ 4 � 0

n3 − 5n2 + 12n+ 4 � 0

respectively. Each of these three inequalities holds for arbitrary n ∈ N.

Theorem 7.4. Let G be a connected bicyclic (a, b)-biregular graph with disjoint
cycles and let n be the number of its vertices. Then the inequality (14) holds if and
only if either a = 1, b = 3, q = 0 or a = 1, b = 3, q = 1 or a = 2, b = 3.

Some of the graphs satisfying the Theorem 7.4 are depicted in Fig. 7.

Figure 7. Connected bicyclic (1, 3)-biregular graphs with disjoint
cycles, with q = 0 and q = 1, and bicyclic (2, 3)-biregular graphs
with disjoint cycles, with q = 0, q = 1, q = 2. In all these examples
the number of vertices is as small as possible.



130 IVAN GUTMAN

7.3.2. Biregular bicyclic graphs whose cycles have a common vertex. If in a bicyclic
(a, b)-biregular graph, the cycles share one common vertex, then we have two types
of such graphs: with a = 1, b � 4, and with a = 2, b = 4, see Fig. 8.

... ...

...

1 2 b-2

Figure 8. Connected bicyclic (1, b � 4)- and (2, 4)-biregular
graph in which cycles have one common vertex. For the (1, b)-
biregular graph, b � 4, every vertex except the one belonging to
both cycles is connected with b − 2 pendent vertices. The vertex
belonging to both cycles is connected with b− 4 pendent vertices.
So, every vertex belonging to the cycles has degree b. In the (2, 4)-
biregular graphs there are no pendent vertices, so there is only one
(common) vertex of degree 4 and every other vertex is of degree 2.

For the first type of such graphs, the inequalities (23), (24), and (25) together
with the condition b � 4 are not fulfilled.

For bicyclic (2, 4)-biregular graphs we have√
4(n+ 1)3

3n+ 11 + 4q
� n

which is equivalent to n3 + (1− 4q)n2 + 12n+ 4 � 0. Taking q = 0, 1, 2, we obtain
inequalities that are satisfied for arbitrary n ∈ N. This implies:

Theorem 7.5. Let G be a connected bicyclic (a, b)-biregular graph with n vertices
in which the cycles share a single common vertex. Then condition (14) is obeyed if
and only if a = 2 and b = 4.

A few examples graphs specified in Theorem 7.5 are shown in Fig. 9.

7.3.3. Biregular bicyclic graphs whose cycles have several common vertices. If the
cycles of a bicyclic (a, b)-biregular graph posses two or more common vertices, then
we have two types of such graphs: with a = 1, b � 3, and with a = 2, b = 3, see
Fig. 10.

For the graphs depicted in Fig. 10 we obtain the same results as for bicyclic
graphs with disjoint cycles, but we must add the case when q = 3 because there
exists a unique bicyclic biregular graph in which the number of quadrangles is
exactly 3. This is the complete bipartite graph on 2 + 3 vertices, K2,3, shown in
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Figure 9. Bicyclic (2, 4)-biregular graphs in which the cycles have
one common vertex, with q = 0, 1, 2 quadrangles. In these exam-
ples the number of vertices is as small as possible.

...
...

...

1 2 b-2

1 2 b-3

...

Figure 10. Connected bicyclic (1, b � 3)- and (2, 3)-biregular
graphs in which the cycles have two or more common vertices.
Notice that the cycles of the graphs of the first type have only two
common vertices, whereas the cycles of the graphs of the second
type may have arbitrarily many common vertices (but more than
one, of course).

Fig. 11. From (22) for b = 3, we get the inequality −7n3 + 12n+ 4 � 0 that is not
fulfilled for n = 5.

Figure 11. The only bicyclic biregular graph in which the number
of quadrangles q is 3. For this graph inequality (14) is violated.
Recall that according to Theorem 4.9 this graph is hypoenergetic.

Theorem 7.6. Let G be a connected bicyclic (a, b)-biregular graph with n vertices,
whose cycles have two or more common vertices. Then inequality (14) holds if and
only if a = 1, b = 3, q = 0, 1 or a = 2, b = 3, q = 0, 1, 2.

Examples of graphs for which Theorem 7.6 holds are shown in Fig. 12.
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Figure 12. Bicyclic (1, 3)-biregular graphs in which cycles have
two common vertices and q = 0, 1, and bicyclic (2, 3)-biregular
graphs with q = 0, 1, 2.

7.3.4. Concluding remark. In this sections we established necessary and sufficient
conditions for the validity of the inequality (14), for certain types of acyclic, uni-
cyclic, and bicyclic graphs. In these considerations the graph energy was not men-
tioned at all. Therefore, at this point it seems to be purposeful to re-state Theorem
6.1:

Theorem 6.1.bis. If the graph G satisfies the inequality (14), then the energy
of G is greater than (or, exceptionally, equal to) the number of vertices of G, i.e.,
inequality (9) holds. Therefore G is necessarily not hypoenergetic. If, however, the
graph G does not satisfy the inequality (14), then it may be hypoenergetic, but need
not. Anyway, the search for hypoenergetic graphs must be done among those that
violate inequality (14).
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in: D. Cvetković, Grafovi kao inspiracija, Akademska misao, Beograd, 2006, pp. 26–31.

[31] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl. 429
(2008), 2670–2677.

[32] I. Gutman, Y. Hou, H.B. Walikar, H. S. Ramane, P.R. Hampiholi, No Hückel graph is
hyperenergetic, J. Serb. Chem. Soc. 65 (2000), 799–801.



134 IVAN GUTMAN
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