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SPECTRAL TECHNIQUES
IN COMPLEX NETWORKS

Abstract. Most physical, biological, chemical, technological and so-
cial systems have a network structure. Examples of complex networks
range from cell biology to epidemiology or to the Internet. In the re-
cent years, several models of complex networks have been proposed,
as the random graph of Erdds and Rényi, the small-world model of
Watts and Strogatz or the scale-free networks of Barabési and Albert.

The topological structure of such networks can be fully described
by the associated adjacency matrices and their spectral density. The
rich information about the topological structure and diffusion pro-
cesses can be extracted from the spectral analysis of the networks.
For instance, the power-law behavior of the density of eigenvalues is
a notable feature of the spectrum of scale-free networks. Dynami-
cal network processes, like synchronization can be determined by the
study of their Laplacian eigenvalues. Furthermore, the eigenvalues
are related to many basic topological invariants of networks such as
diameter, mean distance, betweenness centrality, etc.

Spectral techniques are also used for the study of several network
properties: community detection, bipartition, clustering, design of
highly synchronizable networks, etc.
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1. Introduction

Complex networks are everywhere. They are formed by a large set of vertices
representing the entities of the system, and a set of edges, representing the interac-
tions between their elements. Examples of complex networks include the Internet,
World Wide Web, social networks of acquaintances or other connections between
individuals, distribution networks such as postal delivery routes, neural networks,
food webs, metabolic networks, networks of citations between papers, organiza-
tional networks and networks of business relations between companies, and many
others (see Fig. 1). In the recent last years, two classes of complex networks have
aroused a great deal of interest in the literature: small-world networks and scale-free
networks, as many real networks exhibit characteristics of both classes.

The spectrum of the adjacency and Laplacian matrices provide a great deal of
information about the structure of a network. As usual, the eigenvalues of the
adjacency matrix are denoted by A;, 1 < ¢ < n. Recall that the Laplacian matrix
of a graph is a symmetric matrix L whose diagonal elements [;; are the degrees of
the vertices, and whose off-diagonal elements /;; are —1 if the vertex v; is connected
to v;, and 0 otherwise. More precisely, if D is the diagonal matrix of vertex degrees
d; and A is the adjacency matrix of the graph, L = D — A. Note that L is semi-
positive definite, 7 Lz > 0 for any vector x, its first eigenvector is j = (1,...,1)7
corresponding to the first eigenvalue 1 = 0, and the second largest eigenvalue 65 is
called the algebraic connectivity or Fiedler value, because its proximity to 0 reveals
whether the graph can be easily disconnected. Its corresponding eigenvector vs is
also known as the Fiedler vector, and is essential for the bisection method. The
Laplacian spectrum is denoted by

sp(L) ={0< 0 <...<6,}.
64
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FIGURE 1. A complex network: a picture of the World Wide Web,
from Hal Burch and Bill Cheswick, Lumeta Corp.

The normalized Laplacian matrix is introduced by Chung and defined as the
symmetric matrix £ whose diagonal elements [;; are 1, and whose off-diagonal
elements I;; = —1/+/d;d; if the vertex v; is connected to v;, and 0 otherwise. Its
relation with the Laplacian is given by £ = D~Y/2LD~1/2,

Several topological parameters are considered for the study of complex networks.
Some of them are well known in graph theory, like the diameter, mean distance,
isoperimetric number, maximum and minimum degree and edge connectivity.

The edge connectivity, e(G), of a graph G is the minimum number of edges
which must be deleted in G to disconnect it. The minimum and mazimum degree
of the graph are denoted by § and A respectively. Denoting by d(u,v) the distance
between two vertices u,v € V(G) (the length of the shortest path), the diameter is
D = max,, vev d(u,v), and the mean distance or average path length is

- 2
= m Z d(u, U).
(u,)eV(G)

The graph diameter provides an inverse measure of the vertex connectivity. In-
tuitively, we can say that two vertices in a network are weakly connected if their



66 SILVIA GAGO

shortest connection passes through many other vertices. When this happens for all
pairs of nodes, the diameter D of the graph is large.

The isoperimetric number of a graph is introduced by Mohar in [42] as the
number i(G) = min x| <z [6X|/|X]|, where X is a subset of vertices, 6X is the
boundary of X, i.e., the set of edges in G between vertices in X and vertices not
in X. It is a measure of whether or not a graph can be split in two subgraphs
of the same cardinality. In the same paper there are two different bounds for the
isoperimetric number.

New parameters and tools are also considered to characterize properties of these
new networks, like the degree distribution, eigenvalue distribution, spectral density,
clustering parameter and betweenness centrality.

Clustering parameter. Let e; be the number of edges connecting the neighbors of
a vertex u; of degree ¢;, then the clustering coefficient of u; is C; = 2e;/6;(6; — 1),
for any 1 < ¢ < n, and the clustering coefficient or parameter of the graph G is

defined as
1 n
C= - ;,1 C;.

Power-laws distributions. A power-law function follows the polynomial form
f(x) = ax™", where a,v are constants and 7 is called the power-law exponent.
This kind of distribution was previously known as Pareto distribution or Zipfs
law. The main property of power laws is their scale invariance, i.e., any scaling
of the argument = by a constant factor causes only a proportionate scaling of the
function itself, i.e., f(cz) = a(cx)™ = ¢V f(z) x f(x), which means that they are
proportional and therefore it preserves the shape of the function itself. Moreover,
by taking logarithms a linear relation is obtained log f(x) = loga — ylogz. A
network with degree power law distribution is called scale-free.

Spectral density. Given a graph G of order n, and adjacency matrix eigenvalues
Ai, 1 < i < n, the spectral density of the graph is defined as

1 1, ifz=0,
plz) = - 25(33 —j), where d(x)= { 0, ifxz#0.
=

is the Kronecker or delta function.

Betweenness centrality. Vertex betweenness centrality was introduced by a so-
ciologist Freeman [29] in 1977, as a measure of the importance of a vertex in a
network. Since the appearance of complex networks it has become an important
parameter to study networks features [45], generalizing the concept for edge be-
tweenness centrality. Spectral bounds for either the vertex betweenness and edge
betweennes of a graph are studied in [15], and more general properties can be found
in [32]. The mazimum betweenness centrality, Bmax, is also considered for studying
several aspects of the network, as its synchronization capability (Section 3), or used
for performance of bisection methods (Section 4).

To be more precise, if o,,(w) denotes the number of shortest paths from ver-
tex u to vertex v that go through w, and oy, is the total number of shortest
paths from u to v, then by, (u,v) = oyy(w)/0uy. The betweenness of a vertex w is
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By =3, ptw bw(u,v). The betweenness centrality of a graph G of order n is

- 1

B=- Bua
and the maximum betweenness of the graph G is Byax = max{B, | v € V'}. The
mean betweenness B is closely related with the mean distance [ of the graph as
B = (n—1)(I—1) [15]. The same parameters can be defined for edges, and the
most used one is the maximum edge betweenness centrality, BF.

2. Internet graph models and their spectra

Traditionally networks have been described by either regular graphs or random
models like the classical model of Erdés—Rényi [22]. The later consists of a graph on
n vertices, G(n, p), where the vertices are connected between them with probability
p. In particular the distribution of the degree of any particular vertex v is binomial

P(d, = k) = (Z)p’“(l —p)" k.
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FIGURE 2. Watts and Strogatz small-world model. The diagram
represents the rewiring probability p versus normalized mean dis-
tance | and clustering parameter C. Observe that as p increases,
both [ and C decrease. However, [ decays faster than C, which
allows a probability region, 0.01 < p < 0.1, where [ is a small and
C is still high.

However, the appearance of new networks like the Internet graph, which could
not be reproduced by these classical models, motivated Watts and Strogatz to intro-
duce a new model for describing them [60]. They observed that such networks have
a small diameter or mean distance as the former, and a large clustering parameter,
as the later. Sparse random graphs have a small clustering coefficient while real
world networks often have a coefficient significantly larger.
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The model proposed by Watts and Strogatz starts from a regular graph with a
large clustering parameter, which is transformed into a small world graph by the
random reconnection of only a small number of edges, as the diameter is drastically
reduced while the clustering coefficient of the regular graph remains large (see
Fig. 2).

Since the appearance of this breakthrough a large number of stochastic and
deterministic models have been appearing in the literature. For more information
about them we refer the reader to the surveys [6] and [14].

In 1999 Faloutsos, Faloutsos and Faloutsos [25] made an experimental study of
one part of the Internet graph, obtaining power laws in the distribution of many
of the different parameters of the network, as the vertex degrees or the adjacency
matrix eigenvalues. A typical value for the degree power-law exponent in real
networks is 2 < v < 3. For obtaining the eigenvalue power-law, the eigenvalues
A; of the adjacency matrix are sorted in decreasing order and plotted versus the
associated increasing sequence of numbers ¢ representing the order of the eigenvalue
(see Fig. 3). A similar relation has been recently obtained for the normalized
Laplacian eigenvalues in [53] and for the weighted Laplacian and the weighted
adjacency matrix in [38]. Former experimental studies indicate that the power
law exponents have not changed over the years in spite of the exponential network
growth [34, 52].
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F1GURE 3. Power law distributions at the AS level Oregon Internet
network, from [25]. On the left it is represented the histogram
of 10000 highest vertex degrees and on the right the 100 largest
eigenvalues versus their order, both in a log-log scale.

Mihail et al. in [41] found a surprising relationship between the degree and the
eigenvalue exponents: the eigenvalue exponent is approximately half of the degree
exponent. This fact indicates that the first largest eigenvalues are the square root
of the first largest degrees. They also claimed that the eigenvalue distribution
is a consequence of the degree distribution. However, in [31] it is proved by the
construction of a deterministic model based on direct products of star graphs that
the eigenvalue power-law is not a consequence of the degree power-law.
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Among the scale-free models the most studied one is proposed by Barabési and
Albert in 1999 [2]. The model is based on two observed facts in real networks:
networks expand continuously by the addition of new vertices, and new vertices
attach preferentially to sites that are already well connected. They used the so-
called preferential attachment model. The model starts with a small number of
vertices mg at step ¢ = 0, and at every time step a new vertex u is connected to
m < my vertices of the existing graph. The probability of the new vertex u of being
connected to an existing vertex u; depends on its degree d;, i.e.,

Zjdj’

The Barabasi—Albert model produces a degree power-law distribution with expo-
nent v = —3, meanwhile the Watts and Strogatz and the Erdés-Rényi follow a
Poisson distribution. This means that vertices with higher degree have stronger
ability to grab links added to the network.

The main tool used for studying the spectra of large complex networks is the
spectral density p(A). For a uncorrelated random graph, a graph where the prob-
ability for any pair of its vertices being connected is the same, p, and where these
probabilities are independent variables, the adjacency matrix A is a real symmet-
ric n X n uncorrelated random matrix, i.e., FA;; = 0 and EAfj = ¢. For this
matrix, the limit of the spectral density when n — co converges to a semicircular
distribution (if rescaled as A’ = A[np(1 — p)]~%/2 o< An~1/2)

p(A,)_{ @2m) WA= N2, if [N < 20,

0, otherwhise.

p(u is connected to u;) = p; = forl << m.

This theorem is known as Wigner’s semicircular law [61]. Surprisingly, the semi-
circular spectral density is not valid for any realistic graph models.

The spectrum and the corresponding eigenvectors of the Barabasi and Albert
model have been studied by Goh et al. in [35] obtaining that the distribution of
the spectra is quite far from a semicircle. The eigenvalues decay exponentially
around the center and have power-law long tails at both edges. The same result
was obtained by Farkas et al. in [26], where the spectral density of both Watts
and Strogatz and Barabdsi and Albert models are studied, finding that they have
a special shape. In particular, scale-free graphs develop a triangle-like spectral
density with a power-law tail when plotted in log-log scale (see Fig. 4), while small-
world graphs have a complex spectral density consisting of several sharp peaks
(Fig. 5). They also found that the eigenvalues A\; and |\,| depend on n as n'/4
for large n, and that the eigenvector corresponding to the largest eigenvalue is
strongly localized at the vertex with the largest degree and is independent of the
system size n.

Nevertheless, Chung et al. [11] showed that, depending on the matrix, under a
certain mild condition (that the minimum expected degree is significantly larger
than the square root of the expected average degree), the eigenvalues of the nor-
malized Laplacian of a random power-law graph follow the semicircle law, whereas
the spectrum of the adjacency matrix of a power-law graph obeys the power law.
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FIGURE 4. The spectral density of a Barabasi-Albert graph with
m = 5, and n = 7000 has a triangle-like shape compared with
the semicircle, with a power-law decay in both sides. The isolated
peak corresponds to the principal eigenvalue. In the upper corner
the power-law decay is represented in a log-log scale. (from [26])

Furthermore, it has been reported that the k largest eigenvalues of the adjacency
matrix of random power-law graphs have a power-law distribution (provided that
the largest k degrees are large in the terms of the second-order average degree)
[11, 26, 35, 41]. The k largest eigenvalues and eigenvectors have several applica-
tions in complex networks, as the search of clusters or communities (Section 4).
For instance, Gkantsidis et al. [34] performed a comparison of clustering coeffi-
cients using the eigenvectors of the k largest eigenvalues of the adjacency matrices
of Autonomous Systems (AS) topologies, where k is chosen to retain the strongest
eigenvectors discarding most of the others. These and further results indicate that
the spectra of correlated graphs represent a practical tool for graph classification
and can provide useful insight into the relevant structural properties of real net-
works.

The spectra of the normalized Laplacian matrix of complex networks have been
also studied, as its reflects global properties of the graph whereas the spectrum
of the adjacency matrix contains information about local properties of the graph
[11, 12]. Vukadinovi¢ et al. [57] were the first to investigate the properties of the AS
topology based on the normalized Laplacian spectrum. They observed that it can
be used to distinguish between synthetic topologies generated by graph generators
like Inet and BGP. The eigenvectors corresponding to the largest eigenvalues of the
Laplacian matrix can also be used to find clusters of AS with certain characteristics
34]

Other feature studied in [26] is the relation between the largest eigenvalue A
and the "bulk” part of the spectrum Ao,...,\,. It is showed that in the case
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FIGURE 5. Spectral densities of several Watts and Strogatz small
world models. The solid line shows the semicircular distribution for
comparison: (a) with p =0, k = 10 and n = 1000, the regular ring
density is composed by a great deal of singularities, (b) with p =
0.01 the small-world graph density still has important singularities,
(c¢) with p = 0.3 the small-world graph density is different from
the semicircle shape, (d) and finally with p = 1 the uncorrelated
random graph density has the semicircle shape. (from [26])

of random networks the largest adjacency eigenvalue grows much faster than the
second largest one: lim,_,(A1/n) = p with probability 1, while for any € > 1/2,
lim,, o0 (A2/n€) = 0. A similar relation holds for the smallest eigenvalue as well.
This means that the spectral gap g(4) = A\ — Ay grows very fast, while the bulk
of the spectrum is concentrated in a semi-circle denoted by w(A) = A2 — A, (see
Fig. 4). Similar situations have been observed for small-world graphs as well as
for scale-free graphs. The bulk part of the scale-free graphs the spectral density
is triangle-like instead of semi-circular in the scale-free case. For this reason, the
quantity R = (A1 —A2)/(A2 — Ap,) has been proposed as a measure of the distance of
the first eigenvalue from the main part of the distribution of eigenvalues normalized
by the extension of the main part (see Fig. 6). This ratio is intimate-related to some
dynamical properties of the graph, as its synchronizability (Section 3).

Finally, the second largest eigenvalue of the Laplacian matrix or algebraic con-
nectivity, has been also studied for either the Watts and Strogatz small-world model
and the Barabasi and Albert scale-free model in [58, 59]. For the former, they find
a linear dependency between —6s and the rewiring probability p for a fixed n, that
is, for any given value of n, —0s decreases to —n as p increases from 0 to 1. And
for the later they find that for any given value of p € (0,1], —f2 decreases to —co
as n increases to +oo (see Fig. 7 and Fig. 8)
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FIGURE 6. The ratio R = (A1 —A2)/(A2—Ay,) for a sparse uncorre-
lated random graph (4), small-world graph with p = 0.01 (e) and
scale-free network (A), versus the size of the graph n. Observe
that for the first R converges to a constant, whereas for the others
decays rapidly as n — oco. (from [26])

. 0
-100

50
-200
100 00
150 -400
500

200

0 05 1 g 05
(@) b (b) p

FIGURE 7. The opposite of the algebraic connectivity, —fs, at two
Watts and Strogatz models as a function of the probability, for
(a) n =200 and (b) n = 500. (from [59])

The opposite of the algebraic connectivity at the Barabasi and Albert model is
studied in [58] for three cases, obtaining in all of them that —f; bounded function
as n increases to co (Fig. 9). Observe that it has a small value, which implies that
scale-free networks have poor synchronizability (Section 3).

3. Synchronization

Synchronization is the process where two or more systems interact with each
other and come to move together. Synchronization processes are ubiquitous in na-
ture and are present in many different contexts such as biology, technology, sociol-
ogy, climatology, etc. The dynamics e.g., of the human cardiorespiratory system, of
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F1GURE 8. The opposite of the algebraic connectivity, —f, at two
Watts and Strogatz models as a function of the size of the network
n, for (a) p=0.05 and (b) p =0.1. (from [59])
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F1GURE 9. The opposite of the algebraic connectivity, —fs, at the
Barabdési and Albert model with mo = m = 3 (lower), mo =m =5
(middle) and mo =m =7 (upper). (from [58])

an extended ecological system, of the magnetoencephalographic activity of Parkin-
sonian patients, and of electrosensitive cells of the paddlefish, have been shown to
display synchronization features.

Historically, in 1667 Huygens observed the first synchronization phenomenon
between two pendulum metronomes: putting them side by side oscillating at the
same frequency with a 180° out of phase, after a small perturbation the clocks
ended up synchronizing and persisted indefinitely. The synchronization of a few
interacting oscillators has been widely studied in physics and mathematics litera-
ture, and also other aspects like the stability of the synchronization state against
small perturbations. Initially, the attention was mainly focused to synchronization
of periodic systems, while recently the interest for synchronization has moved to
chaotic systems, as they are bound to be more common in nature. A dynamical
system is called chaotic whenever its evolution sensitively depends on the initial
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conditions. There are several types of synchronization features in chaotic systems:
complete synchronization, lag synchronization, generalized synchronization, phase
and imperfect phase synchronization. The most studied is the complete synchro-
nization, which consists of the perfect hooking of the trajectories of a system of
identical chaotic oscillators in the course of the time.

From different theoretical frameworks considered to study the synchronization
of complex networks, their topology has turned out to play a crucial role in de-
termining their dynamical behavior. Several models for real networks associated
with complex systems are used to study relationships between the system synchro-
nization and graph invariants, as well as some of the system relevant topological
parameters. To be more precise, the Laplacian spectra and the algebraic connectiv-
ity or second smallest eigenvalue of the Laplacian matrix are important factors for
obtaining the synchronization state or the stability of the synchronization state for
some of these theoretical models. Their relation with other topological parameters
of the network, as the diameter or the mean distance, provides some interesting
conditions for existence of the synchronization. Besides, the recent appearance of
large complex networks and the study of their dynamical characteristics, has be-
come a new challenge for the scientific community. Synchronization in small-world
and scale-free networks have aroused a great deal of interest. For more information
about synchronization theory in dynamical systems we refer the reader to review
papers [1, 5].

Therefore in this section we first study two of these theoretical frameworks re-
lating synchronization with Laplacian eigenvalues. By using known bounds for the
algebraic connectivity 65 and the largest Laplacian eigenvalue 6,, we derive bounds
for the synchronization ratio 6,,/62. And finally we take advantage of the classical
techniques from the spectral graph theory [17] to construct a large family of highly
synchronizable networks.

Coupled identical oscillators. In the work [50] of Pecora and Caroll the stability
of the synchronized state of a network of coupled identical oscillators is studied
by using the so-called Master Stability Function. When all the oscillators are
initially synchronized it is a crucial question to know whether this state is stable
in the presence of small perturbations. The motion of a system is described by the
general equation

& =F(x), zeR"

Considering linear time-continuous systems, this equation turns out into:

(3.1) j?i(t)ZF($i(t))+UZLin($j(t)), 1=1,...,n,

Jj=1

where x;(t) = (x4, (t),...,2;, (t))T € R" represents the state variables at each
oscillator 7. The first part of the equation, &(t) = F(x(t)) explains the dynamics
of each node, and the function H(z(t)) is the output function (the same at each
node), which represents the influence of network in the oscillator i. The parameter
o is the coupling strength, and L is the Laplacian matrix. There is a completely
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synchronized state if
w1 (t) = wa(t) = -+ = wn(t) = s(t),

where s(t) is the desired synchronized state. When all the oscillators are initially
synchronized, they remain synchronized until the presence of small perturbation
interferes. Now the question is whether the synchronization state is stable in the
presence of small perturbations dx;. In this case x;(t) = s(t) + dz;, and expanding
the functions F and H to first order in a Taylor series, i.e., F(x;) = F(s)+DF(s)dx;
and H(z;) = H(s)+DH(s)dx;, where DF(s) and DH (s) are the Jacobian matrices
of L and H on s respectively, we obtain the following variational linear equations
for 6x;

dz; = DF(s)+ 0DH(s) Y  Lijdz;, i=1,...,n.
j=1

By projecting dfx; into the eigenspaces spanned by the eigenvectors v; of the
Laplacian matrix L, the former equations that can be diagonalized into blocks as

y(t) = [DF(s) + 0DH(s)]y(1),

where y represents the different perturbation modes from the synchronized state,
0 = o0, for each i-block, with 6; the i-th eigenvalue of the Laplacian matrix, i =
1,...,n. The idea is to project dx; into the eigenspace spanned by the eigenvectors
v; of the coupling matrix L.

The linear stability of the synchronized state for any linear coupling is provided
by the largest Lyapunov exponent of this equation A(#). In [50] it is shown that
the synchronization state is stable if A(c6;) < 0 for ¢ = 2,...,n. Moreover, it has
been found [3] that for many chaotic oscillators there exists a range of values in the
interval (o, a2) where this condition is satisfied. In this case, there exists a value
of the coupling strength o such that the synchronization state is linearly stable if
and only if

gn/02 < 042/041 = ﬂ,
where [ is a constant independent of the Laplacian matrix L. The values for g
depend on the different kind of oscillator, but for many chaotic oscillators they use
to be between 5 and 100 [50]. Therefore, for large values of 6,,/6 it is not possible
to obtain synchronization, independently of the value of the coupling strength and
the kind of oscillator.

Furthermore, Wang and Chen in a former paper [58], study the asymptotical
synchronization of a dynamical network model characterized by Equation 3.1 with
H(z;(t)) = —x;(t). It is said that the dynamical system reaches a state of asymp-
totical synchronization if

1 (t) = - = an(t) = s(t),
when ¢ — oo, where s(t) can be an equilibrium point, a periodic orbit, or a chaotic
attractor. They show that the system is exponentially stable if 1/605 is bounded by
a constant.
In both models we can see that the synchronization of the network depends on
algebraic connectivity 6. When it is close to 0, 1/65 is large, then the network
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cannot reach a synchronization state. Besides, in the first model the largest Lapla-
cian eigenvalue 6,, has also a great influence, and more precisely the ratio 6,,/6a,
should also be small to attain synchronizability. Nevertheless, these two Laplacian
eigenvalues by themselves do not provide information about the relationship be-
tween the network topology and the dynamics of synchronization. In the following
subsection we will study some spectral bounds obtained from the classical spec-
tral graph theory that will provide a connection between the synchronization of a
network and several of its main invariants and parameters.

3.1. Synchronization and topological parameters. In order to characterize the
synchronization of a network, we study the relationship between the inverse of the
second eigenvalue of the Laplacian matrix, 1/62, and the ratio ,,/62, with other
graph topological parameters like the minimum and maximum degrees, diameter,
mean distance, isoperimetric number, betweenness centrality and clustering param-
eter. Most of these bounds can be found in [16]. From the bounds that can be
obtained for 1/62 and by using the classical bound A < 6, < 2A provided by
Fiedler [27] we can derive new lower and upper bounds for the synchronization
ratio 6,,/0s.
Minimum and mazimum degrees of the graph. The minimum degree of a graph,
d, is related to the minimum connectivity of the graph. As 6 < dn/(n — 1), and
0, = (A + 1) (see [36]), one can be obtain
IN(A+1 0
(1 _ _) @+l on
n 1) 92
When the difference between the maximum and minimum degree is large (het-
ereogenity), the synchronizability will be not reached. Now considering scale-free
networks, for which 6 = 1, and A, n are large then 1—1/n ~ 1, and (A+1) < 6,,/62,
which means that the network has a very low synchronization capability.
Edge connectivity. From a bound in [27] it can be easily obtained:
0_" < $
2 = e(G)(1—cosZ)
Observe that when n is large the bound becomes independent of the value of e(G),
which does not provide much information.
Diameter. One of the bounds relating the algebraic connectivity with the diam-
eter was given by Mohar in [43] as D > 4/(n#s2) and so we obtain:
0, _nDA
ML ety
02 2
For graphs with a large D or n, this equation provides a large upper bound. How-
ever, if both values are small then the network will be easy to synchronize. A lower

bound for the inverse algebraic connectivity can be obtained from the diameter
bound D < 2[%{552 In(n — 1)| from [43], where A is the maximum degree of the

raph 4 D (A+1) 6
mom—plzl -V <3
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From the former equation, note that if D > In(n — 1), then the bound is greater
than 1, and it will be difficult to reach a synchronization state provided that the
maximum degree A is very large.

Now, consider the following bound in [43]: if there are two subsets of vertices,
B and C, at distance r + 1:

|BJIC] bn

(n—|B[=|C])-(IBI+|C]) ~ 6,

where |B] are |C| are the cardinalities of the subsets. If both subsets have only one
vertex and they are at maximum distance D, the bound results

2(D — 2)? - 0 .
(TL — 2) 92

For large n and a small D the bound will tend to 0 and synchronization is possible.
Also, for graphs with a diameter close to n would lead to large lower bound and
the networks will not synchronize.

Studies about the diameter in small-world networks show that many real net-
works associated with complex systems have a logarithmic diameter D ~ Inn (sim-
ilar to). In this case, the lower bound can be written approximately as 1/A < 1/65.
Since the maximum degree A is also large, in scale-free networks the lower bound
will approach 0 and synchronization is possible.

4(r —1)?

Mean distance. In [43] several bounds relating the mean distance with the al-
gebraic connectivity can be found. Firstly we find this bound relating the mean
distance with Q:

et e o T G s )

where o > 1 is a parameter. A large mean distance hinders the network synchro-
nization. A lower bound can be obtained from

1 (A ] ),

20n—1)—n| 1\4(A+1)  On
(lann(n—l)J_Z) A S0y
Note that as n becomes large, the bound takes a lower value if the mean distance is
also small. However, if n is small and [ relatively large, the bound is also large and
the synchronization of the network would not be possible. The maximum degree

also is an influence on the synchronization, larger degrees make it easier.

n—1

Isoperimetric number of a graph or Cheeger constant. In [42] we find two different
bounds for the isoperimetric number. The lower bound i(G) > 63/2, gives us
Atl On
QZ(G) 92
From this bound, if the isoperimetric number is near 0, the network will be easy

to disconnect in two parts and by using the previous bound the inverse algebraic
connectivity will be large, and the synchronization would not be possible. Cheeger
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inequalities relate the isoperimetric number of a graph with its algebraic connectiv-
ity 02 and its maximum degree A. From the upper bound i(G) < /02(2A — 65),
we have the inequality 03 — 2A6; + i(G)? < 0 which leads us to

n 2

2

< - < .
L++/1-((G)/A)?2 02 " 1-/1-(i(G)/A)2

In this case, if {(G) ~ A, then both bounds in reach 2 and the synchronization

should be possible, meanwhile i(G) ~ 0 the lower bound goes to infinity and the
network cannot synchronize.

N

Betweenness centrality and mazimum betweenness centrality. The maximum
betweenness centrality, Bpyax, is larger than B, so the corresponding lower bounds
can also be used to obtain lower bounds. Moreover, in [15] a bound can be found
that relates Bpax to the isoperimetric number:

n

VO 2A = 65)

Bmax+2>

Therefore it can be easily deduced that
A O 2A

< - < .
A+ /A2 — (n/(Bmax +2))2 02~ A~ /A2 — (n/(Bmax + 2))2
Observe that if (Bmax + 2)/A ~ n, then 6,,/02 < 2 and synchronization is
possible, but if Bpax+2 ~ 2n(n—1)+2 (as in a star graph), then 1/2A < 1/62 < oo
and the bounds are not useful to describe the synchronizability of a network.

The following lower and upper bounds are given in [49]:
INA 6 E

(1 - 5)3 < g <(n=1ABE,

where BE,_ is the maximum edge betweenness of the network [15, 33]. From the
lower bound it can be deduced that the heterogeneity of degrees affects the synchro-
nization of the network. A large difference between the maximum and minimum
degrees makes the network more difficult to synchronize, which uses to happen

in scale-free networks. However, homogeneous networks not always synchronize.
Several studies on model networks corroborate this result in [30].

D,

3.2. Design of synchronizable networks. As seen in previous sections, both scale-
free and small-world networks display better synchronization than regular graphs
[3]. However, it has also been observed that networks with strong heterogeneity in
the degree distribution are much more difficult to synchronize than random homo-
geneous networks [49]. Donetti et al. in [19, 20] proposed entangled networks, which
are extremely homogeneous regular networks, as examples of highly synchronizable
networks. These graphs are obtained by using a numerical optimization algorithm,
which excludes the possibility of using mathematical tools to generate infinitely
many such networks. However, Estrada et al. [24, 7] propose a different approach,
introducing a family of graphs (golden spectral graphs) which can be built by using
analytical tools from the classical algebraic graph theory [17].



SPECTRAL TECHNIQUES IN COMPLEX NETWORKS 79

Observe that for a regular graph the synchronization ratio is related with R by

0, Al — A A —An A1 — A\ 1
= — = = . f— . - — 1
Tl il v vl v with v winl L ORI C Rl -
where
= Y.
wl(G)* /\1_)\27 >‘17£>‘27 WQ(G)* )\2_/\n’ )‘27é>‘na

are inverse, and therefore it is not easy to find graphs in which their product is
small. This fact clearly hampers the synchronization of the network. In the search
of graphs with small @ = w1(G) - w2(G), we consider those where both spectral
ratios are equal, as it is straightforward to check that in this case w1 (G) = w2(G) =

@:(1+\/5)/2andthusQ:<p2:sg+1.

Definition 3.1. A golden spectral graph (GSG) is a graph for which both spectral
ratios are identical, that is

wi(G) = w2 (G) = ¢,
where ¢ = (1 ++/5)/2 is the golden section, golden mean or divine proportion.

The first examples and properties of golden spectral graphs are found by Estrada
in [7] and amplified in [24] by using classical spectral techniques, finding infinite
families of such graphs (see Fig. 10).

F1GURE 10. Two examples of highly synchronizable networks:
Cs ® J3 and the icosahedral graph.

4. Community detection and spectral bisection

Empirical studies reveal a common property between many networks: commu-
nity structure, i.e., the division of network vertices into groups with dense connec-
tions between them and sparse connections between groups [33, 47]. Communities
are important because they often correspond to functional units such as cycles
or pathways in metabolic networks or collections of pages on a single topic on the
web. Moreover, networks can have properties at the community level that are quite
different for the entire network.
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A huge variety of community detection techniques have been developed, based on
centrality measures, spectral techniques, flow models, random walks, resistor net-
works, optimization and many other approaches [18, 47]. There is a large literature
about finding connections between divisions of networks and matrix spectra, the
so-called spectral partition or spectral clustering [56]. The main tools for spectral
clustering are graph Laplacian matrices or normalized Laplacian matrices. Most
approaches to graph partitioning are based on iterative bisection methods, that is,
finding the best division of the graph into two groups and then further subdividing
those two into more groups. The spectral bisection method is originally due to
Fiedler [27] and popularized by Pothen et al. [51], and is based on the Laplacian
matrix eigenvectors. We describe here the simplest form of this method.

For dividing the graph into two subgraphs it is usual to consider the following
parameter:

Definition 4.1. Given two subsets A and B of the vertex set V(G) of a graph G
and forming a partition of it, the number of edges connecting them is called the
cut size

1
(4.1) R:5 Z ai g,

i€A, jEB
where the factor 1/2 compensates for counting each edge twice.

Now consider an index vector s with n elements as

1, ifie A,
(42) 5 _{ ~1, ifieB.
Observe that s”s = n, and
1(1 ~oisy) = 1, if ¢ and j are in different groups,
2 *°777 1 0, ifiand j are in the same group.

This allows us to rewrite Equation 4.1 as
1
R = Z A Z (1 — sisj)am.
i, jEV(G)
Recalling that the degree of a vertex i is k; = ) ; Gijs then
Z aij = Z Ifl = Z S%ki = Z sisjkiéij,
i,5EV(G) ieV (@) ieV(Q) 1,jEV(Q)
where §;; = 1 if i = j and 0 otherwise. Therefore
R=2 S sisj(hidy —asy) = 2571
=1 sisj(kidij — aij) = 7" Ls.
i,jEV(G)

Considering an orthogonal basis of Laplacian eigenvectors v;, for 1 < i < n, the in-
dex vector s can be expressed as a linear combination of the Laplacian eigenvectors,
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s =Y, a;v;, where a; = vl's. Note that ) ;" | a? = n, then

D=

R = ( Z aw?)L( Z aivi) = Z af@i.
i€V (Q) iEV(Q) i€V (Q)

Therefore minimizing R implies minimizing «?. So fixing both sizes of the sub-
graphs |A| = ny and |B| = na, observe that a2 = (v{s)? = (n; — n2)?/n. As we
cannot vary this coefficient, R would be minimized by taking s proportional to v
(the Fiedler vector, which is orthogonal to v;, for ¢ > 3). However, the restriction
due to Equation 4.2 implies that this cannot be possible in most of the cases, but
a good approximation could be taking s as close to a parallel vector with v as
possible. This implies maximizing the quantity

n
<> P,
=1

are the i-components of the Fiedler vector. The maximum of |v1 s| is
2

%

n

Z ’UZ@) S;

i=1

v | =

(2)

reached when v

where v

si = 0 for all 1 < i < n, that means that s; must have the
same sign as v§2). Therefore, the sign of each component v§2) of the Fiedler vector
determines if the vertex ¢ belongs to either A or B, which very often is against
the condition of the desired sizes of the two subgraphs. In such a case, several
options can be taken, as assigning either the most positive elements of s to the
smaller group or to the larger group, and then taking the option which gives the

smallest R.

F1GURE 11. Community structure in the social network of bot-
tlenose dolphins assembled by Lusseau et al. extracted using the
algorithm of Girvan and Newman. The squares and circles denote
the initial split of the network by using the bisection method. (from
47])

Consequently, the method does not guarantee to minimize R, but in many cases
(when 6, is well separated from the rest of the eigenvalues), it does it very well.
Generalizations of this method for a partition of k£ vertices subsets has been also
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studied, and besides using other kinds of Laplacian matrices. For an extensive
study about this subject we refer the reader to [56].

However, the method is a poor tool for detecting natural community structure
in real-world networks, as the sizes of the groups are fixed from the beginning.
Several approaches have been proposed to solve this problem. For this reason,
Girvan and Newman [33] implemented an algorithm for calculating the modularity
of the network, a new measure of how good is a particular division of the network
is (see Fig. 11). That is, for a division with k groups, consider the k x k matrix E
whose component e;; is the fraction of edges in the original network that connect
vertices in group 4 to those in group j. Then the modularity index is defined as

Q= g €ii — E €ij€hki-
i

ijk

Physically @ is the fraction of all edges that lie within communities minus the ex-
pected value of the same quantity in a graph in which the vertices have the same
degrees but where edges are placed at random without regard for the communi-
ties. If @ = 0 the community structure is not stronger than the one that can be
expected by random chance. Local peaks in the modularity during the progress
of the community structure algorithm indicate particularly good divisions of the
network.

Modularity can also be approached by spectral methods. In [48] three spectral
techniques can be found for approximating this parameter: the leading eigenvector
method, other eigenvectors of the modularity matrix and a vector partitioning
algorithm. All of them follow similar spectral techniques to the ones used in the
first part of this section.
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