
Dragoš Cvetković
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This is an introductory chapter to our book. We start with basic definitions
and present some results from the theory of graph spectra. A short survey of
applications of this theory is presented. Selected bibliographies on applications to
particular branches of science are given in the sequel.

The plan of the chapter is as follows.
Section 1 presents basic definitions related to the theory of graph spectra. Some

selected results, which will bi used in other chapters, are given in Section 2. A
short survey of applications of graph eigenvalues is contained in Section 3. Section
4 contains selected bibliographies of books and papers which are related to appli-
cations of the theory of graph spectra in Chemistry, Physics, Computer Science,
Engineering, Biology and Economics.

1. Basic notions

A graph G = (V,E) consists of a finite non-empty set V (the vertex set of G),
and a set E (of two elements subsets of V , the edge set of G). We also write V (G)
(E(G)) for the vertex (resp. edge) set of G. The number of elements in V (G),
denoted by n (= |V (G)|), is called the order of G. Usually, we shall assume that
V (G) = {1, 2, . . . , n}.

Let eij be the edge connecting vertices i and j. The set {ei1j1 , ei2j2 , . . . , eikjk}
of distinct edges, such that i = i1, j1 = i2, j2 = i3, . . . , jk = j, is called path (of
length k) connecting vertices i and j. The length of the shortest path connecting
i and j is called the distance between these two vertices. The maximum distance
between any two vertices in G is called the diameter of G, and it is denoted by D.
If there exists a path between any two vertices in G, then G is connected ; otherwise
it is disconnected.



APPLICATIONS OF GRAPH SPECTRA: AN INTRODUCTION TO THE LITERATURE 11

Two vertices are called adjacent (or neighbors) if they are connected by an edge;
the corresponding relation between vertices is called the adjacency relation. The
number of neighbors of a vertex i, denoted by di, is its vertex degree. The maximum
vertex degree (of G) is denoted by Δ. A graph in which all vertex degrees are equal
to r is regular of degree r (or r-regular, or just regular if r is unimportant).

The adjacency matrix A is used to represent the adjacency relation, and so the
graph G itself. The element aij of the adjacency matrix A is equal to 1 if vertices
i and j are adjacent, and 0 otherwise.

The characteristic polynomial det(xI − A) of the adjacency matrix A (of G) is
called the characteristic polynomial of G, and is denoted by PG(x). The eigenvalues
of A (i.e., the zeros of det(xI−A)), and the spectrum of A (which consists of the n
eigenvalues) are also called the eigenvalues and the spectrum of G, respectively. The
eigenvalues of G are usually denoted by λ1, λ2, . . . , λn; they are real because A is
symmetric. Unless we indicate otherwise, we shall assume that λ1 � λ2 � · · · � λn.
We also use the notation λi = λi(G) for i = 1, 2, . . . , n. The largest eigenvalue, i.e.,
λ1, is called the index of G.

If λ is an eigenvalue of G, then a non-zero vector x ∈ R
n, satisfying Ax = λx,

is called an eigenvector of A (or of the labeled graph G) for λ; it is also called a
λ-eigenvector. The relation Ax = λx can be interpreted in the following way: if
x = (x1, x2, . . . , xn)

T , then for any vertex u we have λxu =
∑

v∼u xv, where the
summation is over all neighbours v of u. If λ is an eigenvalue of G, then the set
{x ∈ R

n : Ax = λx} is a subspace of Rn, called the eigenspace of G for λ; it is
denoted by E(λ). Such eigenspaces are called eigenspaces of G.

For the index of G, since A is non-negative, there exists an eigenvector whose
all entries are non-negative.

Example. Let G be the graph shown in Fig. 1 together with its adjacency matrix.
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1 2 3 4
A =

∥
∥
∥
∥
∥
∥
∥
∥

0 1 0 0
1 0 1 0
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0 0 1 0
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Figure 1. An example

For G we have

PG(λ) =

∣
∣
∣
∣
∣
∣∣
∣

λ −1 0 0
−1 λ −1 0
0 −1 λ −1
0 0 −1 λ

∣
∣
∣
∣
∣
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∣

= λ4 − 3λ2 + 1 .

Eigenvalues of G are

1 +
√
5

2
≈ 1.6180,

−1 +
√
5

2
≈ 0.6180,

1−√
5

2
≈ −0.6180,

−1−√
5

2
≈ −1.6180.
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The following vector x = (1, λ, λ2 − 1, λ3 − 2λ)T is a λ-eigenvector of G. �

Besides the spectrum of the adjacency matrix of a graph G we shall consider
the spectrum of another matrix associated with G. The matrix L = D−A, where
D = diag(d1, d2, . . . , dn) is the diagonal matrix of vertex degrees, is known as the
Laplacian of G. The matrix L is positive semi-definite, and therefore its eigenval-
ues are non-negative. The least eigenvalue is always equal to 0; the second least
eigenvalue is also called the algebraic connectivity of of G [Fie].

The basic reference for the theory of graph spectra is the book [CvDSa]. Other
books on graph spectra include [CvDGT], [CvRS1], [CvRS3], [CvRS4]. For any
notion, not defined here, the reader is referred to [CvRS4] or [CvDSa].

As usual, Kn, Cn, Sn and Pn denote respectively the complete graph, the cycle,
the star and the path on n vertices; Kn1,n2 denotes the complete bipartite graph
on n1 + n2 vertices.

A tree is a connected graph without cycles. A connected graph with n vertices
and n edges is a unicyclic graph. It is called even (odd) if its unique cycle is even
(resp. odd). A dumbbell is the graph obtained from two disjoint cycles by joining
them by a path.

The complement of a graph G is denoted by G, while mG denotes the union of
m disjoint copies of G.

For v ∈ V (G), G − v denotes the graph obtained from G by deleting v, and all
edges incident with it. More generally, for U ⊆ V (G), G− U is the subgraph of G
obtained from G by deleting all vertices from U and edges incident to at least one
vertex of U ; we also say that GU is induced by the vertex set V (G) \ U .

The join G∇H of (disjoint) graphs G and H is the graph obtained from G and
H by joining each vertex of G with each vertex of H . For any graph G, the cone
over G is the graph K1∇G.

The line graph L(H) of any graph H is defined as follows. The vertices of
L(H) are the edges of H and two vertices of L(H) are adjacent whenever the
corresponding edges of H have a vertex of H in common.

A set of disjoint edges in a graph G is called a matching. A set of disjoint edges
which cover all vertices of the graph is called an 1-factor of G.

2. Some results

We present here some known results from the theory of graph spectra that will
be used in other chapters.

In graph theory and in the theory of graph spectra, some special types of graphs
are studied in detail and their characteristics are well known and summarized in
the literature (see, for example, [CvDSa]). Here, we will survey some of them.

Recall, Kn is a complete graph, i.e., a graph with each two vertices connected
by an edge (so, the number of edges is equal to

(
n
2

)
). The spectrum of Kn consists

of m = 2 distinct eigenvalues: λ1 = n−1 which is a simple eigenvalue, and λi = −1
for i = 2, . . . , n.

A path Pn is a tree on n vertices (and n − 1 edges) without vertices of degree
greater than two. Two “ending” vertices (for n � 2) have degree one, while the rest
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of them (the internal vertices) have degree two. A spectral characteristic of paths
is that they have all distinct eigenvalues. In fact, the spectrum of Pn consists of
the following eigenvalues: 2 cos π

n+1 i, i = 1, 2, . . . , n.
The Cn is a 2-regular connected graph. It contains the following eigenvalues:

2 cos 2π
n i, i = 0, 1, . . . , n − 1. It has m = �n

2 � + 1 distinct eigenvalues. Here �x�
denotes the largest integer smaller than or equal to x.

The star Sn is a tree having a vertex (central vertex) which is adjacent to all
remaining vertices (all of them being of degree one). Each star on n � 3 vertices
has m = 3 distinct eigenvalues. It contains the following eigenvalues: ±√

n− 1
which are both simple, and λi = −1 for i = 2, . . . , n− 1.

A complete bipartite graph Kn1,n2 consists of n1 + n2 vertices divided into two
sets of the cardinalities n1 and n2 with the edges connecting each vertex from one
set to all the vertices in the other set. This means that the number of edges is
n1n2. In particular, Sn = K1,n−1. More generally, bipartite graphs consist of two
sets of vertices with the edges connecting a vertex from one set to a vertex in the
other set. The spectrum of Kn1,n2 (for n1 +n2 � 3) also consists of m = 3 distinct
eigenvalues (simple eigenvalues ±√

n1n2, and 0 of multiplicity n1 + n2 − 2).
In the theory of graph spectra an important role play the graphs with λ1 = 2,

known as Smith graphs. They are well studied, and all of them are given in [CvDSa],
on Fig. 2.4, p. 79. There are 6 types of Smith graphs (namely, Cn (n � 3), Wn

(n � 6), S5 H7, H8 and H9 – see also Fig. 2). Four of them are concrete graphs S5,
H7, H8 and H9, while the remaining two types (cycles Cn and double-head snakes
Wn, of order n, can have an arbitrary number of vertices); in Fig. 2 we reproduce
those which are not cycles Cn, nor the star S5 = K1,4.
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H9

Figure 2. Some Smith graphs

In our study we need also graphs with λ1 < 2. To obtain such graphs, it is
enough to study (connected) subgraphs of Smith graphs. By removing vertices
out of Smith graphs, we obtain paths Pn, n = 2, 3, . . .; single-head snakes Zn,
n = 4, 5, . . ., given in the upper row of Fig. 3 up to n = 7; and the three other
graphs given in the second row of Fig. 3 and denoted by E6, E7 and E8. It is
enough to consider only one vertex removal; removing further vertices leads to the
graph already obtained in another way.
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Figure 3. Subgraphs of some Smith graphs

By Theorem 3.13. from [CvDSa] for the diameter D of a graph G we have

(1) D � m− 1,

where m is the number of distinct eigenvalues.
The largest eigenvalue λ1 of G and the maximum vertex degree Δ are related in

the following way (cf. [CvDSa, p. 112 and p. 85]):

(2)
√
Δ � λ1 � Δ.

A graph is called strongly regular with parameters (n, r, e, f) if it has n vertices
and is r-regular, and if any two adjacent (non-adjacent) vertices have exactly e
(resp. f) common neighbors [CvDSa]. One can show that the number n of vertices
of a strongly regular graph is determined by the remaining three parameters. Note
that a complement of a strongly regular graph is also a strongly regular graph.
Usually, strongly regular graphs which are disconnected, or whose complements
are disconnected are excluded from considerations (trivial cases). Under this as-
sumption, the diameter of a strongly regular graph is always equal to 2, and also
it has 3 distinct eigenvalues.

A graph is called integral if its spectrum consists entirely of integers. Each
eigenvalue has integral eigenvectors and each eigenspace has a basis consisting of
such eigenvectors.

Graphs with a small number of distinct eigenvalues have attracted much atten-
tion in the research community.

The number of distinct eigenvalues of a graph is correlated with its symmetry
property [CvDSa]: the graphs with a small number of distinct eigenvalues are (very
frequently) highly symmetric. They also have a small diameter, what follows from
(1). Let m be the number of distinct eigenvalues of a graph G. Trivial cases are
m = 1 and m = 2. If m = 1, all eigenvalues are equal to 0 and G consists of isolated
vertices. In the case m = 2 G consists of, say k � 1 copies of complete graphs on
s � 2 vertices (so the distinct eigenvalues are s − 1 (of multiplicity k) and −1 (of
multiplicity k(s− 1))).

Further, we shall consider only connected graphs. If m = 3 and G is regular,
then G is strongly regular (cf. [CvDSa, p. 108]). For example, the well known
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Petersen graph (see Fig. 4) is strongly regular with distinct eigenvalues 3, 1,−2 of
multiplicities 1, 5, 4, respectively.
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Figure 4. The Petersen graph

It is difficult to construct families of strongly regular graphs which contain graphs
for any number of vertices. It could be rather expected that one can find sporadic
examples with nice properties like it appears in the Petersen graph.

There are also some non-regular graphs with three distinct eigenvalues [Dam].
Such graphs usually have a vertex adjacent to all other vertices (like in stars), i.e.,
they are cones over some other graphs.

Several classes of regular graphs with four distinct eigenvalues are described in
[Dam], but the whole set has not been described yet.

3. A survey of applications

In this section we shall give a short survey of applications of the theory of graph
spectra.

The applications are numerous so that we cannot give a comprehensive survey in
limited space that we have at the disposal. We shall rather limit ourselves to review
representative examples of applications so that the reader can get an impression on
the situation but also to become able to use the literature.

The books [CvDSa], [CvDGT] contain each a chapter on applications of graph
eigenvalues.

The book [CvRS4] also contains a chapter on applications . There are sections
on Physics, Chemistry, Computer Sciences and Mathematics itself.

We shall first mention applications to Chemistry, Physics, Computer Sciences
and Mathematics itself (we devote a subsection of this section to each). Graph
spectra are used in many other branches of science including Biology, Geography,
Economics and Social Sciences and the fifth subsection contains some information
about that. In all fields we are forced to give only examples of applications.

3.1. Chemistry. Motivation for founding the theory of graph spectra has come
from applications in Chemistry and Physics.

The paper [Huc] is considered as the first paper where graph spectra appear
though in an implicit form. The first mathematical paper on graph spectra [CoSi]
was motivated by the membrane vibration problem i.e., by approximative solving
of partial differential equations.

One of the main applications of graph spectra to Chemistry is the application in
a theory of unsaturated conjugated hydrocarbons known as the Hückel molecular
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orbital theory. Some basic facts of this theory are given at the beginning of the
chapter “Selected Topics from the Theory of Graph Energy” in this book.

More detail on the Hückel molecular orbital theory the interested reader can find,
for example, in books [CvDSa], [Bal], [CoLM], [Dia], [GrGT], [Gut], [GuTr], [Tri].
For more references to the Hückel theory as well as to other chemical applications
see Section 4.

Three separate chapters of this book are devoted to applications in Chemistry.

3.2. Physics. Treating the membrane vibration problem by approximative solving
of the corresponding partial differential equation leads to consideration of eigenval-
ues of a graph which is a discrete model of the membrane (see [CvDSa, Chapter 8]).

The spectra of graphs, or the spectra of certain matrices which are closely related
to adjacency matrices appear in a number of problems in statistical physics (see,
for example, [Kas], [Mon], [Per]). We shall mention the so-called dimer problem.

The dimer problem is related to the investigation of the thermodynamic prop-
erties of a system of diatomic molecules (“dimers”) adsorbed on the surface of a
crystal. The most favorable points for the adsorption of atoms on such a surface
form a two-dimensional lattice, and a dimer can occupy two neighboring points.
It is necessary to count all ways in which dimers can be arranged on the lattice
without overlapping each other, so that every lattice point is occupied.

The dimer problem on a square lattice is equivalent to the problem of enumer-
ating all ways in which a chess-board of dimension n × n (n being even) can be
covered by 1

2n
2 dominoes, so that each domino covers two adjacent squares of the

chess-board and that all squares are so covered.
A graph can be associated with a given adsorption surface. The vertices of

the graph represent the points which are the most favorable for adsorption. Two
vertices are adjacent if and only if the corresponding points can be occupied by
a dimer. In this manner an arrangement of dimers on the surface determines a
1-factor in the corresponding graph, and vice versa. Thus, the dimer problem is
reduced to the task of determining the number of 1-factors in a graph. Enumera-
tion of 1-factors involves consideration of walks in corresponding graphs and graph
eigenvalues (see [CvDSa, Chapter 8]).

Not only the dimer problem but also some other problems can be reduced to
the enumeration of 1-factors (i.e. dimer arrangements). The best known is the
famous Ising problem arising in the theory of ferromagnetism (see, for example,
[Kas], [Mon]).

The graph-walk problem is of interest in physics not only because of the 1-
factor enumeration problem. The numbers of walks of various kinds in a lattice
graph appear in several other problems: the random-walk and self-avoiding-walk
problems (see [Kas], [Mon]) are just two examples.

See also Chapter Applications of Graph Spectra in Quantum Physics.

3.3. Computer science. It was recognized in about last ten years that graph spec-
tra have several important applications in computer science. Graph spectra appear
in internet technologies, pattern recognition, computer vision and in many other
areas. Here we mention applications in treating some of these and other problems.



APPLICATIONS OF GRAPH SPECTRA: AN INTRODUCTION TO THE LITERATURE 17

(See Chapter Multiprocessor Interconnection Networks for applications in design-
ing multiprocessor interconnection topologies and Chapter Spectral Techniques in
Complex Networks for applications on Internet).

One of the oldest applications (from 1970’s) of graph eigenvalues in Computer
Science is related to graphs called expanders. Avoiding a formal definition, we
shall say that a graph has good expanding properties if each subset of the vertex
set of small cardinality has a set of neighbors of large cardinality. Expanders and
some related graphs (called enlargers, magnifiers, concentrators and superconcen-
trators, just to mention some specific terms) appear in treatment of several prob-
lems in Computer Science (for example, communication networks, error-correcting
codes, optimizing memory space, computing functions, sorting algorithms, etc.).
Expanders can be constructed from graphs with a small second largest eigenvalue
in modulus. Such class of graphs includes the so called Ramanujan graphs. For an
introduction to this type of applications see [CvSi1] and references cited therein.
Paper [LuPS] is one of the most important papers concerning Ramanujan graphs.

Referring to the book [CvDSa] as “the current standard work on algebraic graph
theory”, Van Mieghem gave in his book [Van] a twenty page appendix on graph
spectra, thus pointing out the importance of this subject for communications net-
works and systems.

The paper [Spi] is a tutorial on the basic facts of the theory of graph spectra and
its applications in computer science delivered at the 48th Annual IEEE Symposium
on Foundations of Computer Science.

The largest eigenvalue λ1 plays an important role in modelling virus propagation
in computer networks. The smaller the largest eigenvalue, the larger the robustness
of a network against the spread of viruses. In fact, it was shown in [WaCWF] that
the epidemic threshold in spreading viruses is proportional to 1/λ1. Motivated by
this fact, the authors of [DaKo] determine graphs with minimal λ1 among graphs
with given numbers of vertices and edges, and having a given diameter.

Some data on using graph eigenvalues in studying Internet topology can be found
in [ChTr] and in the references cited therein.

Web search engines are based on eigenvectors of the adjacency and some related
graph matrices [BrPa, Kle].

The indexing structure of object appearing in computer vision (and in a wide
range of other domains such as linguistics and computational biology) may take
the form of a tree. An indexing mechanism that maps the structure of a tree into
a low-dimensional vector space using graph eigenvalues is developed in [ShDSZ].

Statistical databases are those that allow only statistical access to their records.
Individual values are typically deemed confidential and are not to be disclosed,
either directly or indirectly. Thus, users of a statistical database are restricted to
statistical types of queries, such as SUM, MIN, MAX, etc. Moreover, no sequence
of answered queries should enable a user to obtain any of the confidential individual
values. However, if a user is able to reveal a confidential individual value, the data-
base is said to be compromised. Statistical databases that cannot be compromised
are called secure.
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One can consider a restricted case where the query collection can be described
as a graph. Surprisingly, the results from [Bra, BrMS] show an amazing connection
between compromise-free query collections and graphs with least eigenvalue -2.
This connection was recognized in the paper [BraCv].

It is interesting to note that original Doob’s description [Doo] in 1973 of the
eigenspace of −2 in line graphs in terms of even cycles and odd dumbbells has been
extended to generalized line graphs by Cvetković, Doob and Simić [CvDS] in 1981
in terms of the chain groups, not explicitly dealing with cycles and dumbbells. The
independent discovery of Branković, Miller and Širáň [BrMS] in 1996 put implicitly
some light on the description of the eigenspace in generalized line graphs a bit
before Cvetković, Rowlinson and Simić in 2001 (the paper [CvRS2] was submitted
in 1998), using the star complement technique and without being aware of [BrMS],
gave the entire description of the eigenspace.

Another way to protect the privacy of personal data in databases is to randomize
the network representing relations between individuals by deleting some actual
edges and by adding some false edges in such a way that global characteristics
of the network are unchanged. This is achieved using eigenvalues of the adjacency
matrix (in particular, the largest one) and of the Laplacian (algebraic connectivity)
[YiWu].

Additional information on applications of graph spectra to Computer Science
can be found in [CvSi2]. These applications are classified there in the following
way:

1. Expanders and combinatorial optimization,
2. Complex networks and the Internet,
3. Data mining,
4. Computer vision and pattern recognition,
5. Internet search,
6. Load balancing and multiprocessor interconnection networks,
7. Anti-virus protection versus spread of knowledge,
8. Statistical databases and social networks,
9. Quantum computing.

3.4. Mathematics. There are many interactions between the theory of graph spec-
tra and other branches of mathematics. This applies, by definition, to linear al-
gebra. Another field which has much to do with graph spectra is combinatorial
optimization.

Combinatorial matrix theory studies matrices by the use of and together with
several digraphs which can be associated to matrices. Many results and techniques
from the theory of graph spectra can be applied for the foundations and develop-
ment of matrix theory. A combinatorial approach to the matrix theory is given in
the book [BrCv]. Particular topics, described in the book, include determinants,
systems of linear algebraic equations, sparse matrices, the Perron–Frobenius theory
of non-negative matrices, Markov chains and many others.
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Relations between eigenvalues of graphs and combinatorial optimization have
been known for last twenty years. The section titles of an excellent expository arti-
cle [MoPo] show that many problems in combinatorial optimization can be treated
using eigenvalues: 1. Introduction, 1.1. Matrices and eigenvalues of graphs; 2.
Partition problems; 2.1 Graph bisection, 2.2. Connectivity and separation, 2.3.
Isoperimetric numbers, 2.4. The maximum cut problem, 2.5. Clustering, 2.6.
Graph partition; 3. Ordering, 3.1. Bandwidth and min-p-sum problems, 3.2. Cut-
width, 3.3 Ranking, 3.4. Scaling, 3.5. The quadratic assignment problem; 4. Stable
sets and coloring, 4.1. Chromatic number, 4.2. Lower bounds on stable sets, 4.3.
Upper bounds on stable sets, 4.4. k-colorable subgraphs; 5. Routing problems, 5.1.
Diameter and the mean distance, 5.2. Routing, 5.3. Random walks; 6. Embed-
ding problems; A. Appendix: Computational aspects; B. Appendix: Eigenvalues of
random graphs. The paper [MoPo] contains a list of 135 references.

See [CvDSa], third edition, pp. 417–418, for further data and references.
The travelling salesman problem (TSP) is one of the best-known NP-hard com-

binatorial optimization problems, and there is an extensive literature on both its
theoretical and practical aspects. The most important theoretical results on TSP
can be found in [LaLRS], [GuPu] (see also [CvDM]). Many algorithms and heuris-
tics for TSP have been proposed. In the symmetric travelling salesman problem
(STSP), it is assumed that the cost of travelling between two points is the same in
both directions.

We shall mention here only one approach, which uses semi-definite programming
(SDP) to establish a lower bound on the length of an optimal tour. This bound
is obtained by relaxing the STSP and can be used in an algorithm of branch-and-
bound type. The semi-definite relaxations of the STSP developed in [CvCK1] are
based on a result of M. Fiedler [Fie] related to the Laplacian of graphs and algebraic
connectivity (the second smallest eigenvalue of the Laplacian).

A semi-definite programming model for the travelling salesman problem was also
obtained by Cvetković et al. [CvCK2, CvCK3].

The largest eigenvalue of a minimal spanning tree of the complete weighted
graphs, with distances between cities serving as weights, can be used as a complexity
index for the travelling salesman problem [CvDM].

3.5. Other sciences. Networks appearing in biology have been analyzed by spec-
tra of normalized graph Laplacian in [Ban], [BaJo].

Research and development networks (R&D networks) are studied by the largest
eigenvalue of the adjacency matrix in [KoBNS1], [KoBNS2].

Some older references on applications of graph spectra to Geography and social
Sciences can be found in [CvDGT, Section 5.17].
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22 DRAGOŠ CVETKOVIĆ
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4. Selected bibliographies on applications of the theory of graph spectra

Subsections contain bibliographies related to Chemistry, Physics, Computer Sci-
ence, Engineering, Biology and Economics.

4.1. Chemistry. In this bibliography are included books and expository articles
that are either completely or to a significant extent concerned with some aspect(s)
of chemical applications of graph spectral theory. Some books and expository
articles in which graph–spectrum–related topics are mentioned only marginally (not
necessarily in an explicit manner) are also included; these are marked by [XX].

Original research papers concerned with chemical applications of graph spectral
theory are to numerous to be covered by this bibliography. Some of these papers,
of exceptional (mainly historical) relevance, are nevertheless included; these are
marked by [OR].
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[27] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application, Academic
Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg, 1995.
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