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1. Introduction

Description logics (DL) are a family of knowledge representation languages which
can be used to represent the terminological knowledge of an application domain in a
structured and formal way [StaStu04]. Besides representation enabling, they have
the task to provide tools for reasoning about the knowledge described by them.
They lie on the tracks of the research in the field of knowledge representation.

DL were established with a motivation of providing a formal foundation on
network-based knowledge representation systems. In the 1970’s research in the field
of knowledge representation was very intensive. It gave a wide spectrum of ideas
and solutions which were more or less usable or GENERAL. Roughly speaking,
there were two types of knowledge representation approaches [Baa et al. 02]: logic-
based formalisms as more general and formal and non-logic-based representations,
as specialized and, often, ad hoc approaches.

Among these specialized non-logic-based representations there were semantic
networks and frames, broadly used in practice. Although they were significantly
different, they could both be regarded as network structures, where the structure
of the network aims at representing domain knowledge as a set of individuals and
their relationships [Baa et al. 02]. Hence, they were often referred to as network-
based structures (see [Leh92]). Owing to their more human-centered origins, the
network-based systems were often considered as more usable in practice than the
logical systems. On the other hand, their less precise semantic characterization
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[Baa et al. 02], i.e., concepts as general classes and individuals as instances of con-
cepts were mixed in one vocabulary, which resulted in the absence of general rea-
soning functionalities.

Attempt on making the system better was representing basic elements of network-
based systems by relaying on the first-order logic. It turned out that some con-
straints were not describable. Moreover, in many cases first-order theorem provers
were a too big machinery. However, using only fragments of the first-order logic,
depending on features of representation language, was good enough. These conclu-
sions were made in big part owing to development of KL-ONE system [BraSch85],
the first realized system of the so-called “structured inheritance networks” [Bra77,
Bra78, SchSmo91]. KL-ONE family of languages are considered as DL ancestors.

The following three ideas, induced by work on KL-ONE systems, have largely
shaped the subsequent development of DLs [Baa et al. 02]:

• The basic syntactic building blocks are atomic concepts (unary predicates),
atomic roles (binary predicates), and individuals (constants).

• The expressive power of the language is restricted in using a rather small set
of (epistemologically adequate) constructors for building complex concepts
and roles.

• Implicit knowledge about concepts and individuals can be inferred auto-
matically with help of inference procedures. In particular, subsumption
relationships between concepts and instance relationships between individ-
uals and concepts play an important role: unlike IS-A links in Semantic
Networks, which are explicitly introduced by the user, subsumption rela-
tionships and instance relationships are inferred from the definition of the
concepts and the properties of the individuals.

Having above in mind it is clear why the research in the area of Description Logics
began under the label of terminological systems. ”Later, the emphasis was on the
set of concept-forming constructs admitted in the language, giving rise to the name
concept languages. In more recent years, after attention was further moved towards
the properties of the underlying logical systems, the term Description Logics became
popular” [Baa et al. 02].

Major characteristics of description logics are:

• emphasis on reasoning;
• formal logic-based semantics;
• inference patterns;
• subsumption relations between concepts of a terminology;
• hierarchy of concepts derived from subsumption relations.

Reasoning procedures in DL must be decidable and their complexity depends on
expressiveness.

All improvements that were brought by DL were the consequences of the fact that
they were, in most cases, developed with formal background and with a concrete
area of application in mind. Today, there are various implemented systems based
on Description Logics which are used in various application domains. Depend-
ing on domains and system requirements necessary description formalisms differ
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by expressive power and, consequently, by formal and computational properties of
reasoning. With the same motivation different extensions of DL were investigated,
too. Although semantics of extensions could be interesting for studying, most of
the researches associated with language extensions are focused on finding reasoning
procedures for the extended languages. Within these, extensions depending on ap-
plication domain constructs for non-monotonic, epistemic, and temporal reasoning,
and constructs for representing belief and uncertain and vague knowledge could be
interesting.

The conventional description logics were designed to represent knowledge only
about static application domains. To capture various dynamic features, for in-
stance, intensional knowledge (in multi-agent systems), dependence on time or
actions (in distributed systems), description logics are combined with suitable
“modal” (propositional) logics, say epistemic, temporal, or dynamic. Again, there is
a variety of possible combinations (see e.g. [Sch93, Laux94, BaaLau95, BaaOhl93]).
Some of them are rather simple and do not increase substantially the complex-
ity of the combined logics (for example, the temporal description logic of Schild
[Sch93] is ExpTime-complete); others are too expressive and undecidable (e.g. the
multi-dimensional description logic of Baader and Ohlbach [BaaOhl93]).

An optimal compromise between the expressive power and decidability was found
in the series of papers [WolZakh98, WolZakh99c, WolZakh99b, MosZakh99], where
various expressive and yet decidable description logics with epistemic, temporal,
and dynamic operators were constructed.

This paper gives an overview of basic description logics as well as original re-
sults, which concern the temporal extensions of Description Logics. The paper is
organized as follows. Section 2 is based on [Baa et al. 02] and gives an introduction
to description logics as a formal language for representing knowledge and reasoning
based on that knowledge. It gives bases of syntax and semantics, and the typical
reasoning tasks are described. At the end of the section some extensions of basic
language are given. Section 3 mainly refers to modal extensions of description log-
ics with emphasis on temporal extensions of description logics, precisely DLRUS
as temporal extension of non-temporal description logic DLR. It also gives an
example of how the presented logics can be applied in temporal databases.

2. Basic description logics

Description logic (DL) is a common name1 for a family of knowledge represen-
tation formalisms applied on a domain (the “world”) by defining relevant domain
terminology. They are based on a common family of languages, called description
languages, which provide a set of constructors to build class (concept) and prop-
erties (role) descriptions. Such description can be used in axioms and assertions
of DL knowledge bases and can be reasoned about with respect to DL knowledge
bases by DL systems.

1Previously used names where terminological knowledge representation languages, concept lan-
guages, term subsumption languages, KL-ONE-based knowledge representation languages
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2.1. Definition of the basic formalism. Knowledge base generated from a knowl-
edge representation system based on DL has two components: TBox and ABox.
TBox introduces terminology, i.e., vocabulary of an application domain, while ABox
gives assertions about named individuals of concepts from introduced terminology.

The terminology consists of concepts and roles. Concepts denote sets of individ-
uals, while roles denote binary relations between individuals. Complex descriptions
of concepts and roles can be built by users in all DL systems. Description language
for building these descriptions has model-theoretic semantics. Statements in the
TBox and the ABox can be translated into first-order logic or an extension of it.

DL system also offers to reason about terminologies, individuals and assertions.
Typical tasks for reasoning on a TBox level are

• determining satisfiability of terminology and
• subsumption relations of concepts.

Important reasoning problems an a ABox level are:
• determining consistency of sets of assertions (i.e., if ABox has a model) and
• whether a set of assertions entails that an individual is an instance of a

given concept.
These checks can help to determine whether a knowledge base is meaningful or to
organize concepts into a hierarchy according to their generality.

Knowledge representation (KR) system is integrated into a wider environment
of an application. Other components interact with KR system by querying and
modifying the knowledge base by adding and retracting concepts, roles and asser-
tions. Rules present unlimited mechanism for adding assertions. They represent
an extension of a logic core of formalism that can be logically interpreted.

TBox

ABox

Description
Language

Reasoning

Application
Programs

Rules

KB

Figure 1. Architecture of KR system based on DL

2.1.1.The basic description language AL. Elementary descriptions are atomic
concepts and atomic roles. Complex descriptions can be built from them induc-
tively with concept constructors. In abstract notation, we use the letter A for
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atomic concepts, the letter R for atomic roles, and the letters C and D for concept
descriptions. We shall discuss various languages from the family of AL-languages2.

Concept descriptions in AL are formed according to the following syntax rule:
C,D → A | (atomic concept)

� | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C �D | (intersection)
∀R.C | (value restriction)
∃R.� (limited existential quantification)

In AL only the � is allowed in the scope in an existential quantification over a
role and negation can only be applied to atomic concept. The sublanguage of
AL obtained by disallowing atomic negation is FL−. The sublanguage of FL−

obtained by disallowing limited existential quantification is FL0.

Example 1. Let Person and Female be atomic concepts. Then Person � Female
and Person � ¬Female are AL-concepts describing those persons that are female
and those that are not. If hasChild is an atomic role, then the concept Person �
∃hasChild.� denotes those persons that have a child, and the concept Person �
∀hasChild.Female denotes those persons all of whose children are female. Using
the bottom concept we describe persons without a child by the concept Person �
∀hasChild.⊥.

In order to define a formal semantics of AL-concepts, we introduce interpreta-
tions I that consist of a non-empty set �I (the domain of the interpretation) and
an interpretation function, which assigns to every atomic concept A a set AI ⊆ �I

and to every atomic role R a binary relation RI ⊆ �I ×�I . The interpretation
function is extended to concept descriptions by the following inductive definitions:

�I = �I

⊥I = ∅
(¬A)I = �I �AI

(C �D)I = CI ∩DI

(∀R.C)I = {a ∈ �I | (∀b)(a, b) ∈ RI → b ∈ CI}
(∃R.�)I = {a ∈ �I | (∃b)(a, b) ∈ RI}

Two concepts C and D are equivalent (C ≡ D) if CI = DI for all interpretation I.
For example, it is easy to verify that concepts ∀hasChild.Female�∀hasChild.Student
and ∀hasChild.(Female � Student) are equivalent.

2.1.2. The family of AL-languages. More expressive languages are obtained
by adding further constructors to AL.

2The language AL=(attributive language) has been introduced in [SchSmo91] as a minimal
language that is of practical interest.
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The union of concepts (indicated by the letter U) is written as C � D, and
interpreted as (C �D)I = CI ∪DI .

Full existential quantification (indicated by the letter E) is written by ∃R.C, and
interpreted as (∃R.C)I = {a ∈ �I | (∃b)(a, b) ∈ RI ∧ b ∈ CI}. Note that ∃R.C
differs from ∃R.� in that arbitrary concepts are allowed to occur in the scope of
the existential quantifier.

Number restrictions (indicated by the letter N ) are written as � nR(at-least
restriction) and as � nR (at-most restriction), where n represents a nonnegative
integer. They are interpreted as

(� nR)I =
{
a ∈ �I ∣∣ |{b | (a, b) ∈ RI}| � n

}
,

(� nR)I =
{
a ∈ �I ∣∣ |{b | (a, b) ∈ RI}| � n

}
respectively, where “| · |” denotes the cardinality of a set.

The negation of arbitrary concepts (indicated by the letter C, for “complement”)
is written by ¬C, and interpreted as (¬C)I = �I � CI .

With the additional constructors concept:

Person � (� 1hasChild � (� 3hasChild � ∃hasChild.Female))

describes those persons that have either not more than one child or at least three
children, one of which is female.

By extension by AL any subset of the above constructors generates a particular
AL-language. Each AL-language is named by a string of the form AL[U ][E ][N ][C],
where each letter represents the corresponding constructor.

From the semantic point of view, not all of these languages are distinct. The
semantics enforces the equivalences (C �D) ≡ ¬(¬C � ¬D) and ∃R.C ≡ ¬∀R.¬C
(union and full existential quantification can be expressed using negation). We
assume that union and full existential quantification are available in every language
that contains negation and vice versa (ALC is used instead of ALUE and ALCN
instead of ALUEN ).

2.1.3. Description languages as fragments of predicate logic. Since an in-
terpretation I assigns to every atomic concept (role) a unary (binary) relation over
�I , we can view atomic concepts (roles) as unary (binary) predicates. Then:

• any concept C can be translated into a predicate logic formula φC(x) with
one free variable x such that for every interpretation I the set of elements
of �I satisfying φC(x) is exactly CI

• an atomic concept A is translated into the formula A(x)
• the constructors intersection, union, and negation are translated into logical

conjunction, disjunction, and negation, respectively
• if C is already translated into φC(x) and R is an atomic role, then value

restriction and existential quantification are captured by the formulae

φ∀R.C(y) = (∀x)(R(y, x) → φC(x))

φ∃R.C(y) = (∃x)(R(y, x) ∧ φC(x))

where y is a new variable
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• number restrictions are expressed by the formulae

φ�nR(x) = (∃y1, . . . , yn)R(x, y1) ∧ . . . ∧R(x, yn) ∧
∧
i<j

yi �= yj

φ�nR(x) = (∀y1, . . . , yn+1)R(x, y1) ∧ . . . ∧R(x, yn+1) →
∨
i<j

yi = yj

2.1.4. Terminologies. In the sequel, we will introduce:
• terminological axioms, which make statements about relations between con-

cepts or roles,
• definitions as specific axioms and
• terminologies as sets of definitions by which we introduce atomic concepts

as abbreviations or names for complex concepts.
Terminological axioms. In the most general case, terminological axioms have the
form

C � D (R � S) or C ≡ D (R ≡ S)
where C, D are concepts (and R, S are roles). Axioms of the first kind are called
inclusions, while axioms of the second kind are called equalities.

An interpretation I satisfies an inclusion C � D if CI ⊆ DI , and it satisfies
an equality C ≡ D if CI = DI . If T is a set of axioms, then I satisfies T iff I
satisfies each element of T . If I satisfies an axiom (resp. a set of axioms), then it
is a model of this axiom (resp. set of axioms). Two axioms or two sets of axioms
are equivalent if they have the same models.
Definitions. An equality whose left-hand side is an atomic concept is a definition.
Definitions are used to introduce symbolic names for complex descriptions.

A set of definitions should be unequivocal. A finite set of definitions T is a
terminology or TBox if no symbolic name is defined more than once, that is, if for
every atomic concept A there is at most one axiom in T whose left-hand side is A.

Example 2. A terminology (TBox) with concepts about family relationships can
be introduced as follows:

Woman ≡ Person � Female

Man ≡ Person � ¬Woman

Mother ≡ Woman � ∃hasChild.Person

Father ≡ Man � ∃hasChild.Person

Parent ≡ Father � Mother

Grandmother ≡ Mother � ∃hasChild.Parent

MotherWithManyChildren ≡ Mother� � 3hasChild

MotherWithoutDaughter ≡ Mother � ∀hasChild.¬Woman

Wife ≡ Woman � ∃hasHusband.Man �
Suppose, that T is a terminology. We divide the atomic concepts occurring in T

into two sets, the name symbols NT (defined concepts) that occur on the left-hand
side of some axiom and the base symbols BT (primitive concepts) that occur only
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on the right-hand side of axioms. Based on this, terminologies define name symbols
using base symbols.

A base interpretation for T is an interpretation that interprets only the base
symbols. Let J be a base interpretation. An interpretation I that interprets
also the name symbols is an extension of J if it has the same domain as J , i.e.,
�I = �J , and if it agrees with J for the base symbols. We say that T is definitorial
if every base interpretation has exactly one extension that is a model of T . In
other words, if we know what the base symbols stand for, and T is definitorial,
then the meaning of the name symbols is completely determined. If a terminology
is definitorial, then every equivalent terminology is also definitorial.

The question whether a terminology is definitorial or not is related to the ques-
tion whether or not its definitions are cyclic.

(1) Human′ ≡ Animal � hasParent.Human′

Let A, B be atomic concepts occurring in T . We say that A directly uses B in T
if B appears on the right-hand side of the definition of A. The transitive closure
of the relation “directly uses” is called “uses”. Then T contains a cycle iff there
exists an atomic concept in T that uses itself. Otherwise, T is called acyclic.

If a terminology T is acyclic, then it is definitorial. Definitions in terminology
T can be expanded by replacing each occurrence of a name on the right-hand side
of a definition with the concepts that it represents. If T is a acyclic this process
eventually stops giving a terminology T ′ containing solely definitions of the form
A ≡ C′, where C′ contains only base symbols and no name symbols. T ′ is the
expansion of T . Size of the expansion can be exponential in the size of the original
terminology.
Example 3. The expansion of the Family TBox previously introduced is:

Woman ≡ Person � Female

Man ≡ Person � ¬(Person � Female)
Mother ≡ (Person � Female) � ∃hasChild.Person

Father ≡
(
Person � ¬(Person � Female)

)
� ∃hasChild.Person

Parent ≡
(
(Person � ¬(Person � Female)) � ∃hasChild.Person

)
�

(
(Person � Female) � ∃hasChild.Person

)
Grandmother ≡

(
(Person � Female) � ∃hasChild.Person

)
� ∃hasChild.

(
((Person � ¬(Person � Female))
� ∃hasChild.Person)

� ((Person � Female) � ∃hasChild.Person)
)

MotherWithManyChildren ≡
(
(Person � Female) � ∃hasChild.Person

)
� � 3hasChild

MotherWithoutDaughter ≡ ((Person � Female) � ∃hasChild.Person)
� ∀hasChild.(¬(Person � Female))

Wife ≡ (Person � Female)
� ∃hasHusband.(Person � ¬(Person � Female))
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Lemma 1. Let T be an acyclic terminology and T ′ be its expansion. Then
(1) T and T ′ have the same name and base symbols;
(2) T and T ′ are equivalent;
(3) T and T ′ are definitorial.

Proof. Let T1 be a terminology. Suppose A ≡ C and B ≡ D are definitions in T1

such that B occurs in C. Let C′ be the concept obtained from C by replacing each
occurrence of B in C with D, and let T2 be the terminology obtained from T1 by
replacing the definition A ≡ C with A ≡ C′. Then both terminologies have the
same name and base symbols. Moreover, since T2 has been obtained from T1 by
replacing equals by equals, both terminologies have the same models. Since T ′ is
obtained from T by a sequence of replacement steps like the ones above, this proves
statements (1) and (2).

Suppose now that J is an interpretation of the base symbols. We extend it to
an interpretation I that covers also the name symbols by setting AI = C′J , if
A ≡ C′ is the definition of A in T ′. Clearly, I is a model of T ′, and it is the only
extension of J that is a model of T ′. This shows that T ′ is definitorial. Moreover,
T is definitorial as well, since it is equivalent to T ′. �

Of course, there are also terminologies with cycles that are definitorial, but:

Theorem 1. Every definitorial ALC-terminology is equivalent to an acyclic ter-
minology.

The theorem is a reformulation of Beths Definability Theorem [Gab72] for the
modal propositional logic Kn.

2.1.5. Terminologies with inclusion axioms. In the case of concepts that can-
not be defined completely necessary conditions for concept membership are still
stated using an inclusion. Inclusion whose left-hand side is atomic is a specializa-
tion.

For example, concept “Women” from TBox in Example 2 can be described in
less detail with the specialization

(2) Woman � Person

If specialization is allowed in a terminology, then the terminology looses its defin-
itorial impact, even if it is acyclic. A set of axioms T is a generalized terminology if
the left-hand side of each axiom is an atomic concept and for every atomic concept
there is at most one axiom where it occurs on the left-hand side.

Generalized terminology T can be transformed into a regular terminology T̄ ,
containing definitions only, such that T̄ is equivalent to T in a sense specified below.
T̄ is obtained from T by choosing a new base symbol Ā for every specialization
A � C in T and by replacing the specializationA � C with the definition A ≡ Ā�C.
The terminology T̄ is the normalization of T .

If a TBox contains the specialization (2), then the normalization contains the
definition Woman ≡ Woman � Person. The additional base symbol Woman stands
for the qualities that distinguish a woman among persons.
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Lemma 2. Let T be a generalized terminology and T̄ its normalization. Then
(1) Every model of T̄ is a model of T .
(2) For every model I of T there is a model Ī of T̄ that has the same domain

as I and agrees with I on the atomic concepts and roles in T .

Proof. The first statement holds because a model Ī of T̄ satisfies AĪ = (Ā�C)Ī =
ĀĪ ∩ C Ī , which implies AĪ ⊆ C Ī . Conversely, if I is a model of T , then the
extension Ī of I, defined by ĀĪ = AI , is a model of T̄ , because AI ⊆ CI implies
AI = AI ∩CI = ĀI ∩ CI , and therefore Ī satisfies A ≡ Ā � C. �

In theory, inclusion axioms do not extend the expressivity of terminologies, while,
in practice, they are a convenient means to introduce terms into a terminology that
cannot be defined completely.

2.1.6. World Descriptions. The second component of a knowledge base, in ad-
dition to the terminology or TBox, is the world description or ABox.
Assertions about individuals. In the ABox, individuals are introduced, by giving
them names, and properties of these individuals are asserted. We denote individual
names by a, b, c. Using concepts C and roles R, one can make assertions of the
following two kinds in an ABox: C(a), and R(b, c). The first kind are concept
assertions, and they state that a belongs to (the interpretation of) C. The second
kind are role assertions, and they state that c is a filler of the role R for b. An
ABox, denoted as A, is a finite set of such assertions.

Example 4. If JOHN, PAUL, and MARY are individual names, then Father(JOHN)
means that John is a father, and hasChild(MARY, PAUL) means that Paul is a child
of Mary. An example of an ABox for TBox from Example 2:

MotherWithoutDaughter(MARY) Father(JOHN)

hasChild(MARY, JOHN) hasChild(JOHN,HARRY)

hasChild(MARY,PAUL)

In a simplified view, an ABox can be seen as an instance of a relational database
with only unary and binary relations. Contrary to the “closed-world semantics” of
classical databases, the semantics of ABoxes is an “open-world semantics”, since
normally knowledge representation systems can be applied in situations where it
cannot be assumed that the knowledge in the KB is complete. The TBox also
imposes semantic relations between the concepts and roles in the ABox that do not
have counterparts in database semantics.

ABoxes are given semantics by extending interpretations to individual names.
From this point on, an interpretation I = (�I , ·I) not only maps atomic concepts
and roles to sets and relations, but also maps each individual name a to an element
aI ∈ �I . This mapping is constructed with respect to the unique name assumption
(UNA), that is, if a, b are distinct names, then aI �= bI . The interpretation I
satisfies the concept assertion C(a) if aI ∈ CI , and it satisfies the role assertion
R(a, b) if (aI , bI) ∈ RI . An interpretation satisfies the ABox A if it satisfies each
assertion in A. In this case we say that I is a model of the assertion or of the
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ABox. Finally, I satisfies an assertion α or an ABox A with respect to a TBox T
if in addition to being a model of α or of A, it is a model of T . Thus, a model of A
and T is an abstraction of a concrete world where the concepts are interpreted as
subsets of the domain as required by the TBox and where the membership of the
individuals to concepts and their relationships with one another in terms of roles
respect the assertions in the ABox.
Individual names in the description language. Sometimes, it is convenient to allow
individual names (also called nominals) not only in the ABox, but in the description
language as well. The most basic constructor employing individual is the “set” (or
one-of), written by {a1, . . . , an}, where a1, . . . , an are individual names. As one
could expect, such a set concept is interpreted as

(3) {a1, . . . , an}I = {aI1 , . . . , aIn}
With sets in the description language one can, for instance, define the concept of

permanent members of the UN security council as
{
CHINA, FRANCE, RUSSIA, UK, US

}
.

Another constructor involving individual names is the “fills” constructor R : a
for a role R. The semantics of this constructor is:

(4) (R : a)I = {d ∈ �I | (d, aI) ∈ RI}
that is, R : a stands for the set of those objects that have a as a filler of the role R.

2.2. Inferences. A knowledge representation system can perform specific types of
reasoning. Knowledge base, containing TBox and ABox has semantics that makes
it equivalent to a set of axioms in first-order predicate logic. Like any other set of
axioms, it contains implicit knowledge that can be made explicit through inferences.

Further discussion shows that the main problem with inference is consistency
check for ABox, to which all other inferences can be reduced.

2.2.1. Reasoning tasks for concepts. During the modeling of a domain termi-
nology T is constructed by defining new concepts. It is important to check if new
concepts are contradictory or not. A concept is meaningful if there is an interpre-
tation that satisfies the axioms of T , such that the concept denotes a nonempty set
in that interpretation. Such a concept is satisfiable with respect to T , otherwise it
is unsatisfiable.

To check whether a domain model is contradictory or not, or to optimize queries
that are formulated as concepts, it might be needed to know whether a concept
is more general than another one (the subsumption problem). A concept C is
subsumed by a concept D if in every model of T the set denoted by C is a subset
of the set denoted by D. The algorithms that check the subsumption may also be
used for organizing concepts of a TBox in a taxonomy according to their generality.

Two more relationships between concepts are equivalence and disjointness. These
properties are formally defined as follows. Let T be a TBox.

Satisfiability: A concept C is satisfiable with respect to T if there exists a
model I of T such that CI is nonempty – I is a model of C.

Subsumption: A concept C is subsumed by a concept D with respect to T
if CI ⊆ DI for every model I of T – C �T D or T � C � D.
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Equivalence: Two concepts C and D are equivalent with respect to T if
CI = DI for every model I of T – C ≡T D or T � C ≡ D.

Disjointness: Two concepts C and D are disjoint with respect to T if CI ∩
DI = ∅ for every model I of T .

If the TBox is empty, we simply write � C � D if C is subsumed by D, and
� C ≡ D if C and D are equivalent.

Lemma 3 (Reduction to Subsumption). For concepts C, D we have
(1) C is unsatisfiable ⇔ C is subsumed by ⊥;
(2) C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C;
(3) C and D are disjoint ⇔ C �D is subsumed by ⊥.

The statements also hold with respect to a TBox.

Most DL systems that can check subsumption can perform all four inferences
defined above, because almost all of description languages implemented in actual
DL systems contain an unsatisfiable concept and all of them include the intersection
operator “�”.

Subsumption, equivalence, and disjointness of concepts can be reduced to the
satisfiability problem if in addition to intersection, a system allows forming of the
negation of a description [Smo88].

Lemma 4 (Reduction to Unsatisfiability). For concepts C, D we have
(1) C is subsumed by D ⇔ C � ¬D is unsatisfiable;
(2) C and D are equivalent ⇔ both (C � ¬D) and (¬C �D) are unsatisfiable;
(3) C and D are disjoint ⇔ C �D is unsatisfiable.

The statements also hold with respect to a TBox.

Since, for sets M , N we have M ⊆ N iff M �N = ∅, then the reduction of sub-
sumption becomes apparent and easy to understand. The reduction of equivalence
is correct because C and D are equivalent, if and only if C is subsumed by D and
D is subsumed by C. Finally, the reduction of disjointness is just a rephrasing of
the definition.

In an AL-language without full negation, subsumption and equivalence cannot
be reduced to unsatisfiability in the way shown in Lemma 4. The complexity of
such inferences is somewhat different.

As seen in Lemma 3, from the viewpoint of worst-case complexity, subsumption
is the most general inference for any AL-language. Lemma 5 shows that unsatisfi-
ability is a special case of each of the other problems. Lemma 3 and 5 show that,
in order to obtain complexity bounds for inferences on concepts in AL-languages
(more precisely, for the complexity of the unsatisfiability, the equivalence, and the
disjointness problem), it suffices to assess lower bounds for unsatisfiability and up-
per bounds for subsumption.

Lemma 5 (Reducing Unsatisfiability). Let C be a concept. Then the following
statements are equivalent:

(1) C is unsatisfiable; (3) C and ⊥ are equivalent;
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(2) C is subsumed by ⊥; (4) C and � are disjoint.
The statements also hold with respect to a TBox.

2.2.2. Eliminating the TBox. This section shows that, if T is an acyclic TBox,
it is always possible to reduce reasoning problems with respect to T to problems
with respect to the empty TBox. As seen in Lemma 1, T is equivalent to its
expansion T ′. Recall that in the expansion every definition is of the form A ≡ D
such that D contains only base symbols, but no name symbols. For each concept C
we define the expansion of C with respect to T as the concept C′ that is obtained
from C by replacing each occurrence of a name symbol A in C by the concept D,
where A ≡ D is the definition of A in T ′, the expansion of T .

Since the expansion C′ is derived from C by replacing names with descriptions
in such a way that both are interpreted in the same way in any model of T ′, it
follows that

• C ≡T C′.
Thus, C is satisfiable with respect to T iff C′ is satisfiable with respect to T .

However, C′ contains no defined names, and thus C′ is satisfiable with respect to
T iff it is satisfiable. This yields that

• C is satisfiable with respect to T iff C′ is satisfiable.
IfD is another concept, thenD ≡T D′, and this yields that C �T D iff C′ �T D′

and C ≡T D iff C′ ≡T D′. Since C′ and D′ contain only base symbols, this implies
• T � C � D iff � C′ � D′

• T � C ≡ D iff � C′ ≡ D′.
With similar arguments we can show that

• C and D are disjoint with respect to T iff C′ and D′ are disjoint.
Expanding concepts with respect to an acyclic TBox allows removing the TBox

from reasoning problems.
Expanding concepts may substantially increase computational complexity, since

in the worst case the size of T ′ is exponential in the size of T . A complexity analysis
of the difficulty of reasoning with respect to TBoxes shows that the expansion of
definitions is a source of complexity that cannot always be avoided.

2.2.3. Reasoning tasks for ABoxes. After designed a terminology and using
the reasoning services of DL system to check that all concepts are satisfiable and
that the expected subsumption relations hold, the ABox can be filled with assertions
about individuals. An ABox contains two types of assertions: concept assertions
of the form C(a) and role assertions of the form R(a, b). It is understandable that
the representation of such knowledge has to be consistent.

An ABox A is consistent with respect to a TBox T , if there is an interpretation
that is a model of both A and T . It is simply said that A is consistent if it is
consistent with respect to the empty TBox.

For example, the set of assertions {Mother(MERY),Father(MERY)} is consistent
with respect to the empty TBox, however, the assertions are not consistent with
respect to the Family TBox.
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Similarly as for concepts, checking the consistency of an ABox with respect to
an acyclic TBox can be reduced to checking an expanded ABox. The expansion of
A with respect to T is defined as the ABox A′ that is obtained from A by replacing
each concept assertion C(a) in A with the assertion C′(a), where C′ is the expansion
of C with respect to T . In every model of T , a concept C and its expansion C′ are
interpreted in the same way. Therefore, A′ is consistent with respect to T iff A is
consistent with respect to T . However, since A′ does not contain a name symbol
defined in T it is consistent with respect to T iff it is consistent. The conclusion is:

• A is consistent with respect to T iff its expansion A′ is consistent.

Other inferences that are going to be introduced can also be defined with respect
to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for
ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded
ABoxes.

Over an ABox A, queries can be posed about the relationships between concepts,
roles and individuals. The prototypical ABox inference on which such queries are
based is the instance check, or the check whether an assertion is entailed by an
ABox. An assertion α is entailed by A and we write A � α if every interpretation
that satisfies A, that is, every model of A, also satisfies α. If α is a role assertion,
the instance check is easy, since description language does not contain constructors
to form complex roles. If α is of the form C(a), the instance check can be reduced
to the consistency problem for ABoxes because there is the following connection:

• A � C(a) iff A ∪ {¬C(a)} is inconsistent.

Reasoning about concepts can also be reduced to consistency checking. We
have seen in Lemma 4 that the important reasoning problems for concepts can
be reduced to the one to decide whether a concept is satisfiable or not. Similarly,
concept satisfiability can be reduced to ABox consistency because for every concept
C it holds:

• C is satisfiable iff {C(a)} is consistent,

where a is an arbitrarily chosen individual name.
Conversely, in [Sch94] it has been shown that ABox consistency can be reduced

to the concept satisfiability in languages with the “set” and the “fills” constructors.
If knowledge bases are considered as means to store information about individu-

als, it may be needed to know all individuals that are instances of a given concept
description C, that is, the description language is used to formulate queries. Given
an ABox A and a concept C, the retrieval problem is to find all individuals a such
that A � C(a). A non-optimized algorithm for a retrieval query can be realized by
testing whether each individual occurring in the ABox is an instance of the query
concept C.

The dual inference to retrieval is the realization problem: given an individual
a and a set of concepts, find the most specific concepts C from the set such that
A � C(a). Here, the most specific concepts are those that are minimal with respect
to the subsumption ordering �.
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2.3. Reasoning algorithms. As it was shown in the previous section, if conjunc-
tion and negation are allowed in certain DL, then all relevant inference problems
can be reduced to consistency problem for ABoxes. If negation is not allowed,
then subsumption of concepts can be computed by so-called structural subsump-
tion algorithms, i.e., algorithms that compare the syntactic structure of (possibly
normalized) concept descriptions. Such algorithms are, usually, very efficient, but
they are only complete for rather simple languages with little expressivity. In par-
ticular, DLs with (full) negation and disjunction cannot be handled by structural
subsumption algorithms. For such languages, tableau-based algorithms are often
used.

Designing new algorithms for reasoning in DLs can be unnecessary in many
cases. Trying to reduce the problem to a known inference problem in logics is a
good way. For example, decidability of the inference problems for ALC and many
other DLs can be obtained as a consequence of the known decidability result for the
two variable fragment of the first-order predicate logic. The language L2 consists
of all formulae of the first-order predicate logic that can be built with the help of
predicate symbols (including equality) and constant symbols (but without function
symbols) using only the variables x, y [Mor75]. By appropriately reusing variable
names, any concept description of the language ALC can be translated into an L2-
formula with one free variable [Bor96]. This connection between ALC and L2 shows
that any extension of ALC by constructors that can be expressed with the help of
only two variables yields a decidable DL. Number restrictions and composition of
roles are examples of constructors that cannot be expressed within L2, but number
restrictions can be expressed in C2, the extension of L2 by counting quantifiers,
which has recently been shown to be decidable [Grä et al. 97, Pac97]. However, the
complexity of the decision procedures obtained in this way is usually higher than
necessary: for example, the satisfiability problem for L2 is NExpTime-complete,
whereas satisfiability of ALC-concept descriptions is “only” PSpace-complete.

Lower complexity decision procedures can be obtained by using the connection
between DLs and propositional modal logics. ALC is a syntactic variant of the
propositional multi-modal logic K [Sch91] and the extension of ALC by transitive
closure of roles corresponds to Propositional Dynamic Logic (PDL) [Baa91]. Some
of the algorithms used in propositional modal logics for deciding satisfiability are
very similar to the tableau-based algorithms newly developed for DLs. Instead of
using tableau-based algorithms, decidability of certain propositional modal logics
(and thus of the corresponding DLs), can also be shown by establishing the fi-
nite model property [Fit93] of the logic (i.e., showing that a formula/concept is
satisfiable iff it is satisfiable in a finite interpretation) or by using tree automata
[VarWol86].

2.3.1. Structural subsumption algorithms. These algorithms usually proceed
in two phases. First, the descriptions to be tested for subsumption are normalized,
and then the syntactic structure of the normal forms is compared. Ideas underlying
this approach will be shown for the language FL0, which allows for conjunction (C�
D) and value restrictions (∀R.C). Then the bottom concept (⊥), atomic negation
(¬A) and number restrictions (� nR and � nR) handling will be presented.



REASONING IN BASIC DESCRIPTION LOGICS 129

An FL0-concept description is in a normal form iff it is of the form

A1 � . . . �Am � ∀R1.C1 � . . . � ∀Rn.Cn
where A1, . . . , Am are distinct concept names, R1, . . . , Rn are distinct role names,
and C1, . . . , Cn are FL0-concept descriptions in normal form. Using associativity,
commutativity and idempotence of �, and the fact that the descriptions ∀R.(C�D)
and (∀R.C) � (∀R.D) are equivalent, it is easy to see that any description can be
transformed into an equivalent one in the normal form.

Lemma 6. Let A1 � . . . �Am � ∀R1.C1 � . . . � ∀Rn.Cn be the normal form of the
FL0-concept description C, and B1�. . .�Bk�∀S1.D1�. . .�∀Sl.Dl the normal form
of the FL0-concept description D. Then C � D iff the following two conditions
hold:

(1) for all i, 1 � i � k there exists j, 1 � j � m such that Bi = Aj
(2) for all i, 1 � i � l there exists j, 1 � j � n such that Si = Rj and Ci � Dj

Having this lemma in mind, it is easy to construct recursive algorithm for com-
puting subsumption. That algorithm has a polynomial time complexity [LevBra87].

If FL0 is extended by language constructors that can express unsatisfiable con-
cepts, then the definition of the normal form must be changed. On the other hand,
the structural comparison of the normal forms must take into account that an
unsatisfiable concept is subsumed by every concept. The simplest DL where this
occurs is FL⊥ the extension of FL0 by the bottom concept ⊥.

An FL⊥-concept description is of the normal form iff it is ⊥ or of the form

A1 � . . . �Am � ∀R1.C1 � . . . � ∀Rn.Cn
where A1, . . . , Am are distinct concept names different from ⊥, R1, . . . , Rn are
distinct role names, and C1, . . . , Cn and FL⊥-concept descriptions in the normal
form. Such a normal form can easily be computed. In principle, one just computes
the FL0-normal form of the description (where ⊥ is treated as an ordinary concept
name): B1 � . . .�Bk � ∀R1.D1 � . . . � ∀Rn.Dn. If one of the Bis is ⊥ then replace
the whole description by ⊥. Otherwise, apply the same procedure recursively to
the Djs. The structural subsumption algorithm for FL⊥ works just like the one
for FL0 with the only difference that ⊥ is subsumed by any description.

Extension of FL⊥ by atomic negation can be treated similarly. During the
computation of the normal form, negated concept names are treated like concept
names. If a name and its negation occur on the same level of the normal form,
then ⊥ is added, which can then be treated as described above. The structural
comparison of the normal forms treats negated concept names just like concept
names.

Finally, if we consider the language ALN , the additional presence of number
restrictions leads to a new type of conflict. On one hand, as in the case of atomic
negation, number restrictions may be conflicting with each other (e.g. � 2R and
� 1R). On the other hand, at-least restrictions � nR for n � 1 are in conflict with
value restrictions ∀R.⊥. When computing the normal form, number restrictions
can be treated like concept names. The next step is taking care of the new types of
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conflicts by introducing ⊥ and using it for normalization as described above. Dur-
ing the structural comparison of normal forms, inherent subsumption relationships
between number restrictions (e.g. � nR �� mR iff n � m) must also be taken into
account [BorPat94].

Structural subsumption algorithms, like described above, usually fail to be com-
plete for larger DLs. In particular, they cannot treat disjunction, full negation, and
full existential restriction ∃R.C. These constructors can be more efficiently treated
in subsumption algorithms that are constructed in a tableau-based style.

2.3.2. Tableau algorithms. Tableau algorithms use another idea to examine
subsumption of concept descriptions. Precisely, as it was shown in Subsection 2.2,
they use negation to reduce subsumption to (un)satisfiability of concept descriptions
using: C � D iff C � ¬D is unsatisfiable.

Before describing a tableau-based satisfiability algorithm for ALCN in more
detail, we illustrate the underlying ideas using a few basic rules:

• For any existential restriction the algorithm introduces a new individual as
role filler, and this individual must satisfy the constraints expressed by the
restriction.

• The algorithm uses value restrictions in interaction with already defined
role relations to impose new constraints on individuals.

• For disjunctive constraints, the algorithm tries both possibilities in succes-
sive attempts. It must backtrack if it reaches an obvious contradiction, i.e.,
if the same individual must satisfy constraints that are obviously conflict-
ing.

• If an at-most number restriction is violated, then the algorithm must iden-
tify different role fillers.

2.3.3. A tableau-based satisfiability algorithm for ALCN . Describing the
algorithm needs introducing an appropriate data structure which will be used for
representing constraints like ”a belongs to (the interpretation of) C” and “b is an R-
filler of a”. Although many papers on tableau algorithms for DLs introduce the new
notion of a constraint system for this purpose, considering the types of constraints
that must be expressed, ABox assertions can be used for their representations.
Since the presence of at-most number restrictions may lead to the identification of
different individual names, the unique name assumption (UNA) will not be imposed
on the ABoxes considered by the algorithm. Instead, explicit inequality assertions
of the form x � .= y for individual names x, y, with the obvious semantics that an
interpretation I satisfies x � .= y iff xI �= yI will be allowed. These assertions are
assumed to be symmetric, i.e., saying that x � .= y belongs to an ABox A is the same
as saying that y � .= x belongs to A.

Let C0 be an ALCN -concept. In order to test satisfiability of C0, the algo-
rithm starts with the ABox A0 = {C0(x0)}, and applies consistency preserving
transformation rules (see Figure 2) to do ABox until no more rules apply. If the
“complete” ABox obtained in this way does not contain an obvious contradiction
(called clash), then A0 is consistent (and thus C0 is satisfiable), and inconsistent
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(unsatisfiable) otherwise. The transformation rules that handle disjunction and
at-most restrictions are non-deterministic in the sense that a given ABox is trans-
formed into finitely many new ABoxes such that the original ABox is consistent iff
one of the new ABoxes is so. For this reason instead of single ABoxes finite sets of
ABoxes S = {A1, . . . ,Ak} are considered. Such a set is consistent iff there is some
i, 1 � i � k such that Ai is consistent. A rule in Figure 2 is applied to a given
finite set of ABoxes S as follows: it takes an element A of S and replaces it by one
ABox A′, by two ABoxes A′ and A′′, or by finitely many ABoxes Ai,j .

The →�-rule
Condition: A contains (C1 � C2)(x), but it does not contain both C1(x) and
C2(x)
Action: A′ = A ∪ {C1(x), C2(x)}.
The →�-rule
Condition: A contains (C1 � C2)(x), but neither C1(x) nor C2(x)
Action: A′ = A ∪ {C1(x)}, A′′ = A ∪ {C2(x)}.
The →∃-rule
Condition: A contains (∃R.C)(x), but there is no individual name z such that
C(z) and R(x, z) are in A
Action: A′ = A∪ {C(y), R(x, y)} where y is an individual name not occurring
in A.

The →∀-rule
Condition: A contains (∀R.C)(x) and R(x, y), but it does not contain C(y)
Action: A′ = A ∪ {C(y)}.
The →�-rule
Condition: A contains (� nR)(x) and there are no individual names z1, . . . , zn
such that R(x, zi) (1 � i � n) and zi � .= zj (1 � i < j � n) are contained in A
Action: A′ = A ∪ {R(x, yi) | 1 � i � n} ∪ {yi � .= yi | 1 � i < j � n} where
y1 . . . , yn are distinct individual names not occurring in A.

The →�-rule
Condition: A contains distinct individual names y1, . . . , yn+1 such that
(� nR)(x) and R(x, y1), . . . , R(x, yn+1) are in A and yi � .= yj is not in A for
some i �= j
Action: For each pair yi, yj such that i > j and yi � .= yj is not in A, the ABox
Ai,j = [yi/yj]A is obtained from A by replacing each occurrence of yi by yj .

Figure 2. Transformation rules of the satisfiability algorithm.

Consequent to the definition of the transformation rules the following lemma is
valid:

Lemma 7 (Soundness). Assume that S′ is obtained from the finite set of ABoxes
S by application of a transformation rule. Then S is consistent iff S′ is consistent.
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The second important property of the set of transformation rules is that the
transformation process always terminates:

Lemma 8 (Termination [BaaSat99, Don et al. 97]). Let C0 be an ALCN -concept
description. There cannot be an infinite sequence of rule applications

{{C0(x0)}} → S1 → S2 → . . .

Lemma 9. Let A be an ABox contained in Si for some i � 1. Then:
• For every individual x �= x0 occurring in A, there is a unique sequence
R1, . . . , Rl (l � 1) of role names and a unique sequence x1, . . . , xl−1 of
individual names such that {R1(x0, x1), R2(x1, x2), . . . , Rl(xl−1, x)} ⊆ A.
In this case, we say that x occurs on level l in A.

• If C(x) ∈ A for an individual name x on level l, then the maximal role
depth of C (i.e., the maximal nesting of constructors involving roles) is
bounded by the maximal role depth of C0 minus l. Consequently, the level
of any individual in A is bounded by the maximal role depth of C0.

• If C(x) ∈ A, then C is a subdescription of C0. Consequently, the number
of different concept assertions on x is bounded by the size of C0.

• The number of different role successors of x in A (i.e., individuals y such
that R(x, y) ∈ A for a role name R) is bounded by the sum of the num-
bers occurring in at-least restrictions in C0 plus the number of different
existential restrictions in C0.

Starting with {{C0(x0)}}, we thus obtain after a finite number of rule appli-
cations a set of ABoxes Ŝ, to which no more rules apply. An ABox A is called
complete iff none of the transformation rules applies to it. Consistency of a set of
complete ABoxes can be determined by looking for clashes. The ABox A contains
a clash iff one of the following three situations occurs:

(i) {⊥(x)} ⊆ A for some individual name x;
(ii) {A(x),¬A(x)} ⊆ A for some individual name x and some concept name A;
(iii) {(� nR)(x)}∪{R(x, yi) | 1 � i � n+1}∪{yi � .= yj | 1 � i < j � n+1} ⊆ A

for individual names x, y1, . . . , yn+1, a nonnegative integer n, and a role
name R.

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all
the ABoxes in Ŝ contain a clash, then Ŝ is inconsistent, and thus by the soundness
lemma {C0(x0)} is inconsistent as well. Consequently, C0 is unsatisfiable. If,
however, one of the complete ABoxes in Ŝ is clash-free, then Ŝ is consistent. By
soundness of the rules, this implies consistency of {C0(x0)}, and thus satisfiability
of C0.

Lemma 10 (Completeness). Any complete and clash-free ABox A has a model.

This lemma can be proved by defining the canonical interpretation IA induced
by A:

(i) the domain �IA of IA consists of all the individual names occurring in A;
(ii) for all atomic concepts A we define AIA = {x | A(x) ∈ A};
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(iii) for all atomic roles R we define RIA = {(x, y) | R(x, y) ∈ A}.
IA satisfies all the role assertions in A, by definition, and, by induction on the

structure of concept descriptions, it is easy to show that it satisfies the concept
assertions as well. The inequality assertions are satisfied since x � .= y ∈ A only if x,
y are different individual names.

The facts stated in Lemma 9 imply that the canonical interpretation has the
shape of a finite tree whose depth is linearly bounded by the size of C0 and whose
branching factor is bounded by the sum of the numbers occurring in at-least restric-
tions in C0 plus the number of different existential restrictions in C0. Consequently,
ALCN has the finite tree model property, i.e., any satisfiable concept C0 is satisfi-
able in a finite interpretation I that has the shape of a tree whose root belongs to
C0.

Theorem 2. It is decidable whether or not an ALCN -concept is satisfiable.

Theorem 3. Satisfiability of ALCN -concept descriptions is PSpace-complete.

2.3.4. Extension to the consistency problem for ABoxes. Algorithm that
decides consistency of ALCN -ABoxes can be constructed as an extension of de-
scribed tableau-based satisfiability algorithm. Let A be an ALCN -ABox. To test
A for consistency, we first add inequality assertions a � .= b for every pair of distinct
individual names a, b occurring in A. Let A0 be the ABox obtained in this way.
The consistency algorithm applies the rules of Figure 2 to the singleton set {A0}.
Soundness and completeness of the rule set can be shown as before.

Termination can be enabled by requiring that generating rules →∃ and →� may
only be applied if none of the other rules are applicable.

Following a similar idea, the consistency problem for ALCN -ABoxes can be re-
duced to satisfiability of ALCN -concept descriptions [Hol96]. Roughly speaking,
this reduction works as follows: In a preprocessing step, one applies the transfor-
mation rules only to old individuals (i.e., individuals present in the original ABox).
Subsequently, one can forget about the role assertions, i.e., for each individual name
in the preprocessed ABox, the satisfiability algorithm is applied to the conjunction
of its concept assertions.

Theorem 4. Consistency of ALCN -ABoxes is PSpace-complete.

2.3.5. Extension to general inclusion axioms. In the above subsections, we
have considered the satisfiability problem for concept descriptions and the consis-
tency problem for ABoxes without an underlying TBox. In fact, for acyclic TBoxes
one can simply expand the definitions. Expansion is, however, no longer possible
if general inclusion axioms of the form C � D, where C and D may be com-
plex descriptions, are allowed. Instead of considering finitely many such axioms
C1 � D1, . . . , Cn � Dn, it is sufficient to consider the single axiom � � Ĉ, where

Ĉ = (¬C1 �D1) � · · · � (¬Cn �Dn).

The axiom � � Ĉ simply claims that any individual must belong to the concept Ĉ.
The tableau algorithm introduced above can easily be modified in such a manner



134 MILENKO MOSUROVIĆ, TATJANA STOJANOVIĆ, ANA KAPLAREVIĆ-MALIŠIĆ

that it takes the following axiom into account: all individuals (both the original
individuals and the ones newly generated by the →∃- and →�-rule) are simply
asserted to belong to Ĉ. However, this may produce nonterminating algorithm.

Termination can be regained by detecting cyclic computations, and then blocking
the application of generating rules: the application of the rules →∃ to an individual
x is blocked by an individual y in an ABox A iff {D | D(x)∈A} ⊆ {D′ | D′(y)∈A}.
The main idea underlying blocking is that the blocked individual x can use the role
successors of y instead of generating new ones.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration
of all individual names, and define that an individual x may only be blocked by
individuals y that occur before x in this enumeration. This notion of blocking,
together with some other technical assumptions, enables soundness, completeness
as well as termination of algorithm [Buc et al. 93, Baa96]. Thus, consistency of
ALCN -ABoxes with respect to general inclusion axioms is decidable. Since an
algorithm may generate role paths of exponential length before blocking, it is no
longer in PSpace. In fact, even for the language ALC, satisfiability with respect
to a single general inclusion axiom is known to be ExpTime [DonMas00]. The
tableau-based algorithm sketched above is a NExpTime algorithm. However, us-
ing the translation technique mentioned at the beginning of this section, it can
be shown [DeG95] that ALCN -ABoxes and general inclusion axioms can be trans-
lated into PDL(Propositional Dynamic Logic), which satisfiability can be decided
in exponential time.

Theorem 5. Consistency of ALCN -ABoxes with respect to general inclusion ax-
ioms is ExpTime-complete.

2.3.6. Extension to other language constructors. The tableau-based algo-
rithms for checking concept satisfiability and ABox consistency can also be em-
ployed for languages with other concept and/or role constructors. Each new con-
structor requires a new rule, and this rule can usually be obtained by simply con-
sidering the semantics of the constructor. Soundness of such a rule is often very
easy to show. Completeness and termination are more difficult to control, since
they must also take into account interactions between different rules. As it was
shown above, termination can sometimes only be obtained if the application of
rules is restricted by an appropriate strategy. Of course, one may only impose such
a strategy if one can show that it does not perturb completeness.

2.3.7. Reasoning with respect to terminologies. As it was said before, ter-
minologies (TBoxes) are sets of concept definitions (i.e., equalities of the form
A ≡ C where A is atomic) such that every atomic concept occurs at most once as
a left-hand side.
Acyclic terminologies. As shown in Section 2.2, reasoning with respect to acyclic
terminologies can be reduced to reasoning without terminologies by expanding the
TBox, followed by replacing name symbols by their definitions in the terminology.
Unfortunately, this increases the complexity of reasoning, since the expanded TBox
may be exponentially larger than the original one [Neb90].
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For more expressive languages, the presence of acyclic TBoxes does not necessar-
ily increase the complexity of the subsumption problem. For example, subsumption
of concept descriptions in the language ALC is PSpace-complete, and so is sub-
sumption with respect to acyclic terminologies. Of course, in order to obtain a
PSpace-algorithm for subsumption in ALC with respect to acyclic TBoxes, one
cannot first expand the TBox completely since this might need exponential space.
The main idea is that one uses a tableau-based algorithm like the one described,
with the difference that it receives concept descriptions containing name symbols
as input. Expansion is then done by the following rule: if the tableau-based algo-
rithm encounters an assertion of the form A(x), where A is a name occurring on the
left-hand side of a definition A ≡ C in the TBox, then it adds the assertion C(x).
However, it does not further expand C at this stage. It is not difficult to show that
this yields a PSpace-algorithm for satisfiability (and thus also for subsumption) of
concepts with respect to acyclic TBoxes in ALC [Lut99].

There are, however, extensions of ALC for which this technique is not proper.
One such example is the language ALCF , i.e., ALC extended by functional roles as
well as agreements and disagreements on chains of functional roles (see Section 2.4
below). Satisfiability of concepts is PSpace-complete for this language [HolNut90],
but satisfiability of concepts with respect to acyclic terminologies is NExpTime-
complete [Lut99].
Cyclic terminologies. For cyclic terminologies, expansion would not terminate. If
we use descriptive semantics, then cyclic terminologies are a special case of ter-
minologies with general inclusion axioms. Thus, the tableau-based algorithm for
handling general inclusion axioms previously introduced can also be used for cyclic
ALCN -TBoxes with descriptive semantics.

For less expressive DLs, more efficient algorithms can, however, be obtained with
the help of techniques based on finite automata.

2.4. Language extensions. In Section 2.1 we have introduced the languageALCN
as a Description Logic prototype. For many applications, the expressive power of
ALCN is not sufficient. For this reason, various other language constructors have
been introduced in the literature and are employed by systems. In [Baa et al. 02]
these language extensions were roughly classified into two categories, “classical”
and “nonclassical” extensions. Intuitively, a classical extension is one whose se-
mantics can easily be defined within the model-theoretic framework introduced in
Section 2.1, whereas defining the semantics of a nonclassical constructor is more
problematic and requires an extension of the model-theoretic framework. Here-
after, the most important classical extensions of Description Logics will be briefly
introduced.

2.4.1. Role constructors. Since roles are interpreted as binary relations, it is
quite natural to employ the usual operations on binary relations (such as Boolean
operators, composition, inverse, and transitive closure) as role forming constructors.

Definition 1 (Role constructors). Every role name is a role description (atomic
role), and if R, S are role descriptions, then R�S (intersection), R�S (union), ¬R
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(complement), R ◦ S (composition), R+ (transitive closure), R− (inverse), id(C)
(role identity) are also role descriptions.

Given an interpretation I is extended to (complex) role descriptions as follows:
(i) (R � S)I = RI ∩ SI , (R � S)I = RI ∪ SI , (¬R)I = �I ×�I �RI ;
(ii) (R ◦ S)I = {(a, c) ∈ �I ×�I | (∃b)(a, b) ∈ RI ∧ (b, c) ∈ SI};
(iii) (R+)I =

⋃
i�1(R

I)i, i.e., (R+)I is the transitive closure of (RI);
(iv) (R−)I = {(b, a) ∈ �I ×�I | (a, b) ∈ RI}
(v) id(C)I = {(a, a) ∈ �I × �I | a ∈ CI}, i.e., each instance of concept to

itself.
For example, the union of the roles hasSon and hasDaughter can be used to

define the role hasChild, and the transitive closure of hasChild expresses the role
hasOffspring. The inverse of hasChild yields the role hasParent.

Example 5. The following ALCIreg TBox Tfile models a file-system constituted
by file-system elements:

FSelem � ∃name.String

FSelem ≡ Directory � File

Directory � ¬File

Directory � ∀child.FSelem

File � ∀child.⊥
Root � Directory

Root � ∀child−.⊥
The axioms in Tfile imply that in a model every object connected by a chain of
role child to an instance of Root is an instance of FSelem. Formally,

Tfile � ∃(child−)+.Root � FSelem

It is shown that the complexity of satisfiability and subsumption of concepts
in the language ALCN� (also called ALCNR in the literature and which extends
ALCN by intersection of roles) are still PSpace-complete [Don et al. 97, Tob01].
Decidability of the extension of ALCN by the three Boolean operators and the
inverse operator is a direct consequence of the fact that concepts of the extended
language can be expressed in C2, i.e., first-order predicate logic with two vari-
ables and counting quantifiers, which is known to be decidable in NExpTime
[Grä et al. 97, Pac97]. It is also shown [LutSat00] that ALC extended by role com-
plement is ExpTime-complete, whereas ALC extended by role intersection and
atomic role complement is NExpTime-complete.

For ALCtrans (which extends ALC by transitive-closure, composition, and union
of roles) subsumption and satisfiability problem have been shown to be decid-
able [Baa91] and ExpTime-complete [FisLad79, Pra79, Pra80]. The extension
of ALCtrans by the inverse constructor corresponds to converse PDL [FisLad79],
which can also be shown to be decidable in deterministic exponential time [Var85].
ALCtrans extended by inverse and number restrictions does not have the finite
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model property. Nevertheless, this DL still has an ExpTime-complete subsump-
tion and satisfiability problem.

2.4.2. Expressive number restrictions. First, we will consider the so-called
qualified number restrictions, where the number restrictions are concerned with
role-fillers belonging to a certain concept.

Example 6. Given the role hasChild, the simple number restrictions introduced
above can only state that the number of all children is within certain limits, such
as in the concept � 2hasChild� � 5hasChild. Qualified number restrictions can also
express that there are at least 2 sons and at most 5 daughters:

� 2hasChild.Male� � 5hasChild.Female

Adding qualified number restrictions to ALC leaves the important inference prob-
lems (like subsumption and satisfiability of concepts, and consistency of ABoxes)
decidable: the worst-case complexity is still PSpace-complete. The language is
decidable if general sets of inclusion axioms are allowed [Buc et al. 93].

The second group of extensions are those which allow for complex role expressions
inside number restrictions. The extension of ALCN by number restrictions involv-
ing composition has a decidable satisfiability and subsumption problem. On the
other hand, if any number restrictions involving composition, union and inverse, or
number restrictions involving composition and intersection are added, then satisfi-
ability and subsumption become undecidable [BaaSat96, BaaSat99]. For ALCtrans
the extension by number restrictions involving compositionis already undecidable
[BaaSat99].

Third, if the explicit numbers n in number restrictions are replaced by variables α
that stand for arbitrary nonnegative integers, the expressive power of language can
further be increased by introducing explicit quantification of the numeric variables.

It is shown that ALCN extended by such symbolic number restrictions with
universal and existential quantification of numerical variables has an undecidable
satisfiability and subsumption problem. If one restricts this language to existen-
tial quantification of numerical variables and negation on atomic concepts, then
satisfiability becomes decidable, but subsumption remains undecidable.

2.4.3. Role-value-maps. Role-value-maps are a family of very expressive con-
cept constructors, which were, however, available in the original KL-One-system.

Definition 2 (Role-value-maps). A role chain is a composition R1 ◦ · · ·◦Rn of role
names. If R, S are role chains, then R ⊆ S and R = S are concepts.

A given interpretation I is extended to role-value-maps as follows:

(i) (R ⊆ S)I =
{
a ∈ �I | (∀b)((a, b) ∈ RI → (a, b) ∈ SI)

}
(ii) (R = S)I =

{
a ∈ �I | (∀b)((a, b) ∈ RI ↔ (a, b) ∈ SI)

}
Example 7. The concept

Person � (hasChild ◦ hasFriend ⊆ knows)
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describes the persons knowing all friends of their children, and

Person � (marriedTo ◦ likesToEat = likesToEat)

describes persons having the same favorite foods as their spouse.

Unfortunately, in the presence of role-value-maps, the subsumption problem is
undecidable, even if the language allows only for conjunction and value restriction
as additional constructors.

Solution to this problem is restricting the attention to role chains of functional
roles, also called attributes or features in the literature. An interpretation I inter-
prets the role R as a functional role iff {(a, b), (a, c)} ⊆ RI implies b = c. In the
following, it will be assumed that the set of role names is partitioned into the set
of functional roles and the set of ordinary roles. Any interpretation must interpret
the functional roles as such. Functional roles will be denoted with small letters f ,
g, possibly with index.

Definition 3 (Agreements). If f , g are role chains of functional roles, then f .= g
and f � .= g are concepts (agreement and disagreement).

A given interpretation I is extended to agreements and disagreements as follows:

(i) (f .= g)I =
{
a ∈ �I | (∃b)((a, b) ∈ fI ∧ (a, b) ∈ gI)

}
(ii) (f � .= g)I =

{
a ∈ �I | (∃b1, b2)(b1 �= b2 ∧ (a, b1) ∈ fI ∧ (a, b2) ∈ gI)

}
In the literature, the agreement constructor is sometimes also called the “same-

as” constructor. Since f , g are the role chains between the functional roles, there
can be at most one role filler for a with respect to the respective role chain. The
semantics of agreements and disagreements requires these role fillers to exist (and
be equal or distinct) for a to belong to the concept.

Example 8. Roles such as hasMother, hasFather and hasLastName with their usual
interpretation are functional roles, whereas hasParent and hasChild are not. The
concept

Person � (hasLastName
.= hasMother ◦ hasLastName)

� (hasLastName � .= hasFather ◦ hasLastName)

describes persons whose last name coincides with the last name of their mother,
but not with the last name of their father.

The restriction to functional roles makes reasoning in ALC extended by agree-
ments and disagreements decidable [HolNut90]. However, if general inclusion ax-
ioms (or transitive closure of functional roles or cyclic definitions) are allowed,
then agreements and disagreements between chains of functional roles again cause
subsumption to become undecidable.

2.4.4. Functional restrictions (F). Functional restrictions are the simplest form
of number restrictions considered in description logics, and allow for specifying local
functionality of roles, i.e., that instances of certain concepts have unique role-fillers
for a given role. By adding functional restrictions on atomic roles and their inverse
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to ALCIreg we obtain the description logic ALCFIreg. Functional restrictions has
a form � 1Q, where Q is a basic role, i.e., either an atomic role or the inverse of
an atomic role. Such a functional restriction is interpreted as follows:

(� 1Q)I =
{
a ∈ �I | |{b ∈ �I | (a, b) ∈ QI}| � 1

}
Reasoning in ALCFIreg is ExpTime-complete. Also, ALCFIreg has the tree

model property, which states that if a ALCFIreg-concept C is satisfiable then it
is satisfied in an interpretation which has the structure of a (possibly infinite) tree
with bounded branching degree. This makes the space for using of techniques based
on automata on infinite trees.

2.4.5. Qualified number restrictions (Q). Qualified number restrictions is the
most general form of number restrictions, and allow for specifying arbitrary car-
dinality constraints on roles with role-fillers belonging to a certain concept. In
particular we will consider qualified number restrictions on basic roles, i.e., atomic
roles and their inverse. By adding such constructs to ALCIreg we obtain the de-
scription logic ALCQIreg.

Qualified number restrictions has a form � nQ.C and � nQ.C, where n is
a nonnegative integer, Q is a basic role, and C is an ALCQIreg-concept. Such
constructs are interpreted as follows:

(� nQ.C)I =
{
a ∈ �I | |{b ∈ �I | (a, b) ∈ QI ∧ b ∈ CI}| � n

}
(� nQ.C)I =

{
a ∈ �I | |{b ∈ �I | (a, b) ∈ QI ∧ b ∈ CI}| � n

}
Reasoning in ALCQIreg is still ExpTime-complete.

2.4.6. Relations of arbitrary arity. A limitation of traditional description log-
ics is that only binary relationships between instances of concepts can be repre-
sented, which is a quite limitation in a process of modeling relationships among
more than two objects in some real world situations. Such relationships can be
described by making use of relations of arbitrary arity instead of (binary) roles.

Let us consider the description logic DLR, which represents a natural generaliza-
tion of traditional description logics towards n-ary relations. The basic elements of
DLR are atomic relations and atomic concepts, denoted by P and A, respectively.
Arbitrary relations, of given arity between 2 and nmax, and arbitrary concepts are
formed according to the following syntax

R → �n | P | (i/n : C) | ¬R | R1 � R2

C → �1 | A | ¬C | C1 � C2 | ∃[i]R | � k[i]R

where i denotes a component of a relation, i.e., an integer between 1 and nmax, n
denotes the arity of a relation, i.e., an integer between 2 and nmax, and k denotes
a nonnegative integer.

For DLR interpretation I = (�I , ·I) is introduced as follows:

�I
n ⊆ (�)n

PI ⊆ �I
n
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(¬R)I = �I
n � RI

(R1 � R2)I = RI
n ∩ RI

n

(i/n : C)I = {(d1, . . . , dn) ∈ �I
n | di ∈ CI}

�I
1 = �I

AI ⊆ �I

(¬C)I = �I � CI

(C1 � C2)I = CI
1 ∩ CI

2

(∃[i]R)I = {d ∈ �I | (∃(d1, . . . , dn) ∈ RI)di = d}
(� k[i]R)I = {d ∈ �I |

∣∣{(d1, . . . , dn) ∈ RI
1 | di = d}

∣∣ � k}

Theorem 6. Logical implication in DLR is ExpTime-complete.

DLR can be extended to include regular expressions built over projections of
relations on two of their components, thus obtaining DLRreg (decidability is also
ExpTime-complete).

DLR and DLRreg are generalizations of ALCQI and ALCQIreg, and they can
be extended by Boolean constructs on roles and role inclusion axioms. Obtained
languages have ExpTime-complete logical implication.

Reasoning in SHIQ, which is ALCQI extended with roles that are transitive,
and with role inclusion axioms on arbitrary roles (direct, inverse, and transitive),
is still ExpTime-complete.

3. Description logics with modal operators

3.1. Preliminaries. We begin by defining the modal concept description language
ALCM and its semantics.
The primitive symbols of ALCM are:

• concept names C0, C1, . . . ,
• role names R0, R1, . . . , and
• object names a0, a1, . . . .

Starting from these we can form compound concepts and formulas using the follow-
ing constructs. Suppose R is a role name and C, D are concepts (for the basis of
our inductive definition we assume concept names to be atomic concepts). Then �,
C �D, ¬C, ∃R.C, and ♦C (or CUD, CSD for a strict linear order) are concepts.

Atomic formulas are expressions of the form �, C = D, a : C, and aR b, where
a, b are object names. If ϕ and ψ are formulas then so are ϕ ∧ ψ, ¬ϕ, and ♦ϕ (or
ψUϕ, ψSϕ for a strict linear order).

The pure description part of this language is ALC. By adding the constructs for
the formation of the union R � S, composition R ◦ S, transitive reflexive closure
R∗ and test C?, we can extend it to C, and to CI (CIQ) by adding still inversion
R− (inversion R− and number restrictions ∃�nB.C, where B is a role name or its
converse). The corresponding modal description language is denoted then by CM,
CIM and CIQM.
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A model of ALCM based on a frame F = 〈W,�〉 is a pair M = 〈F, I〉 in which
I is a function associating with each w ∈W a structure

I(w) =
〈
ΔI,w, RI,w0 , . . . , CI,w0 , . . . , aI,w0 , . . .

〉
,

where ΔI,w is a nonempty set of objects, the domain of w, RI,wi are binary relations
on ΔI,w, CI,wi subsets of ΔI,w, and aI,wi are objects in ΔI,w such that aI,wi = aI,vi ,
for any v, w ∈W .

One can distinguish between three types of models: those with constant, expand-
ing, and varying domains. In models with constant domains ΔI,v = ΔI,w, for all
v, w ∈ W . In models with expanding domains ΔI,v ⊆ ΔI,w whenever v � w. And
models with varying domains are just arbitrary models.

Given a model M and a world w in it, we define the value CI,w of a concept C
in w and the truth-relation (M, w) � ϕ (or simply w � ϕ, if M is understood) by
taking:

�I,w = Δ, and CI,w = CI,wi , for C = Ci;

(C �D)I,w = CI,w ∩DI,w; (¬C)I,w = Δ � CI,w;

x ∈ (♦C)I,w iff ∃v � w x ∈ CI,v;

x ∈ (∃R.C)I,w iff ∃y ∈ CI,w xRI,wy;

w � C = D iff CI,w = DI,w;

w � a : C iff aI,w ∈ CI,w;

w � aRb iff aI,wRI,wbI,w;
w � ♦ϕ iff ∃v � w v � ϕ;
w � ϕ ∧ ψ iff w � ϕ and w � ψ;
w � ¬ϕ iff w � ϕ.

If F = 〈W,<〉 is a strict linear order with modal operators U and S, than we have
x ∈ (C U D)I,w iff there is u > w such that x ∈ DI,u and x ∈ CI,v for all v ∈ (w, u);
x ∈ (C S D)I,w iff there is u < w such that x ∈ DI,u and x ∈ CI,v for all v ∈ (u,w);

w � ψ U χ iff there is u > w such that u � χ and v � ψ for all v ∈ (w, u); and
w � ψ S χ iff there is u < w such that u � χ and v � ψ for all v ∈ (u,w).

A formula ϕ is satisfiable in a class of models M if there is a model M ∈ M and
a world w in M such that w � ϕ. We will use special names for certain classes of
models with one accessibility relation. Namely,

K the class of all models;
S5 the class of models based on frames with the universal relations,

i.e., u� v for all u and v;
KD45 the class of transitive, serial (∀u∃v u� v) and Euclidean

(u� v ∧ u� w → v � w) models;
S4 the class of all quasi-ordered models;
K4 the class of transitive models;
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GL the class of transitive Noetherian models
(i.e., containing no infinite ascending chains); and

N the class of models based on 〈N, <〉.
We are in a position now to present known decidability and complexity results
concerning formula-satisfiability problems [MosZakh99, Mos2000].

Theorem 7. (1) The formula-satisfiability problem, when we adopt expanding do-
main assumption, for the language ALCM in each of the classes K, N , GL, S4,
and K4 is NExpTime-hard.

(2) The formula-satisfiability problem for the language ALCM and CIM in the
classe K is NExpTime-complete (no matter whether the models have constant or
expanding domains).

(3) The formula-satisfiability problem for the language ALCM and CIQM in the
classe S5 is NExpTime-complete.

(4) The formula-satisfiability problem for the language ALCM and CIQM in the
class N is ExpSpace-complete.

For these logics, tableau algorithms were developed [Lutz et al. 01, Lutz et al. 02].
Further on, we will continue with presenting of one temporal extension of descrip-
tion logics [Arta et al. 01, Arta et al. 02], as a special case of modal extension of
description logics.

3.2. The Temporal Description Logic. Here, we adopt the snapshot represen-
tation of abstract temporal databases (and temporal conceptual models); see for
example [ChoSaa98]. The flow of time T = 〈Tp, <〉, where Tp is a set of time points
(or chronons) and < a binary precedence relation on Tp, is assumed to be isomor-
phic to 〈Z, <〉. Thus, a temporal database can be regarded as a map from time
points in T to standard (relational) databases with the same domain of attributes
and the same interpretation of constants.

As a language of temporal database conceptual schemas we use a natural com-
bination of the propositional linear temporal logic with Since and Until [SisCl85,
Gab et al. 94] and the (non-temporal) description logic DLR [Cal et al. 98]. The
resulting temporal description logic will be denoted by DLRUS .

The basic syntactical types of DLRUS are entities (i.e., unary predicates, also
known as concepts) and nary relations of arity � 2. Starting from a set EN of
atomic entities and a set RN of atomic relations we define inductively (complex)
entity and relation expressions as is shown in the upper part of Fig. 3, where the
binary constructs (�,�,U ,S) are applied to relations of the same arity, i, j, k, n are
natural numbers, i � n, and j does not exceed the arity of R.

A temporal conceptual database schema (or a knowledge base) is a finite set Σ of
DLRUS -formulas. Atomic formulas are formulas of the form E1 � E2 andR1 � R2,
with R1 and R2 being relations of the same arity. If ϕ and ψ are DLRUS formulas,
then so are ¬ϕ, ϕ ∧ ψ, ϕUψ, ϕSψ. E1

.= E2 is used as an abbreviation for
(E1 � E2) ∧ (E2 � E1), for both entities and relations. Temporal conceptual
database schemas will serve as constraints for temporal databases.
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R → �n|RN |¬R|R1 �R2|R1 �R2|i/n : E|
♦+R|♦−R|�+R|�−R| ⊕R| �R|R1UR2|R1SR2

E → �|EN |¬E|E1 � E2|E1 � E2|∃≷k[j]R|
♦+E|♦−E|�+E|�−E| ⊕ E| � E|E1UE2|E1SE2

(�n)I(t) ⊆ (ΔI)n

RN I(t) ⊆ (�n)I(t)
(¬R)I(t) = (�n)I(t) �RI(t)

(R1 �R2)I(t) = R
I(t)
1 ∩RI(t)2

(i/n : E)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | di ∈ EI(t)}
(R1UR2)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v > t.(〈d1, . . . , dn〉 ∈ R

I(v)
2

∧∀w ∈ (t, v).〈d1, . . . , dn〉 ∈ R
I(w)
1 )}

(R1SR2)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v < t.(〈d1, . . . , dn〉 ∈ R
I(v)
2

∧∀w ∈ (v, y).〈d1, . . . , dn〉 ∈ R
I(w)
1 )}

(♦+R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v > t.〈d1, . . . , dn〉 ∈ RI(v)}
(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}
(♦−R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v < t.〈d1, . . . , dn〉 ∈ RI(v)}
(�R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}
�I(t) = ΔI

EN I(t) ⊆ �I(t)
(¬E)I(t) = �I(t) � EI(t)

(E1 � E2)I(t) = E
I(t)
1 ∩ EI(t)2

(∃≷k[j]R)I(t) = {d ∈ �I(t) | �{〈d1, . . . , dn〉 ∈ RI(t)|dj = d} ≷ k}
(E1UE2)I(t) = {d ∈ �I(t) | ∃v > t.(d ∈ E

I(v)
2 ∧ ∀w ∈ (t, v).d ∈ E

I(w)
1 )}

(E1SE2)I(t) = {d ∈ �I(t) | ∃v < t.(d ∈ E
I(v)
2 ∧ ∀w ∈ (v, t).d ∈ E

I(w)
1 )}

Figure 3. Syntax and semantics of DLRUS .

The language of DLRUS is interpreted in temporal models over T , which are
triples of the form I

.=
〈
T ,ΔI , ·I(t)

〉
, where ΔI is nonempty set of objects (the

domain of I) and ·I(t) an interpretation function such that, for every t ∈ T , every
entity E, and every n-ary relation R, we have EI(t) ⊆ ΔI and RI(t) ⊆ (ΔI)n. The
semantics of entity and relation expressions is defined in the lower part of Fig. 3,
where (u, v) = {w ∈ T | u < w < v} and the operators �+ (always in the future)
and �− (always in the past) are the duals of ♦+ (some time in the future) and ♦−

(some time in the past), respectively, i.e., �+E ≡ ¬♦+¬E and �−E ≡ ¬♦−¬E, for
both entities and relations. For entities, the temporal operators ♦+, ⊕ (at the next
moment), and their past counterparts can be defined via U and S: ♦+E ≡ �UE,
⊕E ≡ ⊥UE, etc. However, this is not possible for relations of arity > 1, since
�n—the top nary relation—can be interpreted by different subsets of the n-ary
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cross product � × · · · × � at different time points.3 The operators ♦∗ (at some
moment) and its dual �∗ (at all moments) can be defined for both entities and
relations as ♦∗E ≡ E � ♦+E � ♦−E and �∗E ≡ E � �+E � �−E, respectively.

The nontemporal fragment of DLRUS coincides with DLR. For both entity
and relation expressions all the Boolean constructs are available. The selection
expression i/n : E denotes an nary relation whose i-th argument (i � n) is of type
E; if it is clear from the context, we omit n and write (i : E). The projection
expression ∃≷k[i]R is a generalization with cardinalities of the projection operator
over the ith argument of the relation R (which coincides with ∃�1[i]R). It is also
possible to use the named attribute version of the model by replacing argument
position numbers with role names.

Given a formula ϕ, an interpretation I, and a time point t ∈ T , the truthrelation
I, t � ϕ (ϕ holds in I at moment t) is defined inductively as follows:

I, t � E1 � E2 iff E
I(t)
1 ⊆ E

I(t)
2

I, t � R1 � R2 iff R
I(t)
1 ⊆ R

I(t)
2

I, t � ϕ ∧ ψ iff I, t � ϕ and I, t � ψ
I, t � ¬ϕ iff I, t � ϕ

I, t � ϕUψ iff ∃v > t.(I, v � ψ ∧ ∀w ∈ (t, v).I, w � ϕ)

I, t � ϕSψ iff ∃v < t.(I, v � ψ ∧ ∀w ∈ (t, v).I, w � ϕ)

A formula ϕ is called satisfiable if there is a temporal model I such that I, t � ϕ,
for some time point t. A conceptual schema Σ is satisfiable if the conjunction

∧
Σ

of all formulas in Σ is satisfiable (we write I, t � Σ instead of I, t �
∧

Σ); in this
case I is called a model of Σ. We say that Σ is globally satisfiable if there is I
such that I, t � Σ for every t (I, t � Σ, in symbols). An entity E (or relation R) is
satisfiable if there is I such that EI(t) �= ∅ (respectively, RI(t) �= ∅), for some time
point t. Finally, we say that Σ (globally) implies ϕ and write Σ � ϕ if we have
I � ϕ whenever I � Σ.

Note that an entity E is satisfiable iff ¬(E � ⊥) is satisfiable. An n-ary relation
R is satisfiable iff ¬(∃�1[i]R � ⊥) is satisfiable for some i � n. A conceptual schema
Σ is globally satisfiable iff �∗(

∧
Σ) is satisfiable. And Σ � ϕ iff �∗(

∧
Σ)∧¬ϕ is not

satisfiable. Thus, all reasoning tasks connected with the notions introduced above
reduce to satisfiability of formulas.

The logic DLRUS can be regarded as a rather expressive fragment of the first
-order temporal logic L{since,until}; cf. [ChoSaa98, Hod et al. 2000].

3.3. Temporal queries. One more important reasoning task is known as the prob-
lem of query containment (see, e.g., [ChoSaa98, Cho94, Abi et al. 96] for a survey
and a discussion about temporal queries). A non-recursive Datalog query (i.e., a
disjunction of conjunctive queries or SPJqueries) over a DLRUS schema Σ is an

3For instance, we may have 〈d1, d2〉 ∈ (♦+R)I(t) because 〈d1, d2〉 ∈ (♦+R)I(t+2), but

〈d1, d2〉 /∈ (�2)I(t+1).
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expression of the form
Q(−→x ) : −

∨
j

Qj(−→x ,−→yj ,−→cj ),

where each Qj is a conjunction of atoms

Qj(−→x ,−→yj ,−→cj ) ≡
∧
i

P ij (
−→
xij ,

−→
yij ,

−→
cij ),

P ij are DLRUS entity or relation expressions,
−→
xij ,

−→
yij , and

−→
cij are sequences of dis-

tinguished variables, existential variables, and constants, respectively, the number
of which is in agreement with the arity of P ij . The variables −→x in the head are
the union of all the distinguished variables in each Qj; the existential variables are
used to make coreferences in the query, and constants are fixed values. The arity
of Q is the number of variables in −→x .

It is to be noted that we allow entities and relations in the query to occur in
the conceptual schema Σ. This approach is similar to that of [Cal et al. 98], where
atoms in a query can be constrained by means of schema formulas.

The semantics of queries is defined as follows. Let I be a temporal model and
t a time point in T such that I satisfies Σ at t, i.e., I, t � Σ. The snapshot
interpretation

I(t) =
〈
ΔI , {EI(t) | E ∈ EN}, {RI(t) | R ∈ RN}

〉
can be regarded as a usual firstorder structure (i.e., a snapshot nontemporal data-
base at time t conforming in a sense to the conceptual schema), and so the whole
I as a first-order temporal model (with constant domain ΔI in which some values
of the query constants are specified). The evaluation of a query Q of arity n under
the constraints Σ in the model I at moment t is the set

ans(Q, I(t)) =
{−→o ∈ (ΔI)n | I, t �

∨
j

∃−→yj .Qj(−→o ,−→yj ,−→cj )
}

Given two queries (of the same arity)Q1 and Q2 over Σ, we say that Q1 is contained
in Q2 under the constraints Σ and write Σ � Q1 ⊆ Q2 if, for every temporal model
I and every time point t, we have ans(Q1, I(t)) ⊆ ans(Q2, I(t)) whenever I, t � Σ.
Note that the query satisfiability problem—given a query Q over a schema Σ, to
determine whether there are I and t such that I, t � Σ and ans(Q, I(t)) �= ∅—is
reducible to query containment: Q is satisfiable iff Σ � Q(−→x ) ⊆ P (−→x ) ∧ ¬P (−→x ),
where P is a DLRUSrelation of the same arity as Q.

3.4. Conceptual Schema and Query Examples. As an example, let us consider
the following conceptual schema Σ, where we introduce a shortcut for global atomic
formulas E1 �∗ E2 ≡ �∗(E1 � E2), for both entities and relations:

Works-for �∗ emp/2 : Employee � act/2 : Project

Manages �∗ man/2 : TopManager � prj/2 : Project

Employee �∗ ∃=1[from]PaySlipNumber

� ∃=1[from](PaySlipNumber � to/2 : Integer)
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� ∃=1[from]Salary � ∃=1[from](Salary � to/2 : Integer)

� �∗ ∃�1[to](PaySlipNumber � from/2 : Employee)

Managerv �∗ Employee � (AreaManager � TopManager)

AreaManager �∗ Manager � ¬TopManager

TopManager �∗ Manager � ∃=1[man]Manages

Project �∗ ∃�1[act]Works-for � ∃=1[prj]Manages

Employee � ¬(∃�1[emp]Works-for) �∗ Manager

Managerv �∗ ¬(∃�1[emp]Works-for) � (Qualified S (Employee � ¬Manager))

The theory introduces Works-for as a binary relation between Projects and employ-
ees, and Manages as a binary relation between managers and projects. Employees
have exactly one pay slip number and one salary each, which are represented as
binary relations (with from and to roles) with an integer domain; moreover, a pay
slip number uniquely identifies an employee (it acts as a key). It is stated that
managers are employees, and are partitioned into area managers and top man-
agers. Top Managers participate exactly once in the relation Manages, i.e., every
top manager manages exactly one project. Projects participate at least once to the
relation Works-for and exactly once in the relation Manages. Finally, employees not
working for a project are exactly the managers, and managers should be qualified,
i.e., should have passed a period of being employees. The meaning of the above
conceptual schema (with the exception of the last two formulas) is illustrated by
the left-hand part of the diagram in Fig. 4.

AreaManager TopManager

X©
����

����
⇑

Manager

�
Employee

◦
PaySlipNumber(Integer)

��◦Salary(Integer)

man

(1,1)

���
���

���
���

Manages

(1,1)prj

Project

(1,n)act
�

�
◦

ProjectCode(String)
���
���

���
���

Works-for
emp

prj���
���

���
���

Resp-for
org

Department InterestGroup

X©
����

����
⇑

OrganisationalUnit

Figure 4. The example EER diagram.

The conceptual schema Σ globally logically implies that, for every project, there
is at least one employee who is not a manager, and that a top manager worked in
a project before managing some (possibly different) project:

Σ � Project �∗ ∃�1[act](Works-for � emp : ¬Manage)

Σ � TopManager �∗ ♦−∃�1[emp](Works-for � act : Project)
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Note also that if we add to Σ the formula

Employee �∗ ∃�1[emp]Works-for

saying that every employee should work for at least one project, then all the entities
and the relations mentioned in the conceptual schema are interpreted as the empty
set in every model of Σ, i.e., they are not satisfiable relative to Σ.

The expressivity of the query language can be understood with the following
examples:

“Find all people who have worked for only one project”

Q(x) : − (∃=1[emp](♦∗Works-for))(x)

“Find all managers whose terminal project has code prj342”

Q(x) : − Manager(x) ∧ Manages(x, prj342) ∧ (�+¬Manages)(x, y)

“Find all projecthoppers—people who never spent more than two consecutive
years in a project”

Q(x) : −
(
�∗¬∃�1[emp](Works-for � ⊕Works-for �⊕⊕ Worksfor)

)
(x)

“Find all people who did not work between two projects”

Q(x) : −
(
♦−∃�1[emp]Works-for

)
(x) ∧

(
: ∃�1[emp]Works-for

)
(x)

∧
(
♦+∃�1[emp]Works-for

)
(x)

We now consider the problem of query containment under constraints, where
the constraints are expressed by the above exemplified schema Σ. Consider the
following queries

Q1(x, y) : − ¬AreaManager(x) ∧ Manages(x, z) ∧ Project(z)∧
Resp-for(y, z) ∧ Department(y)

Q2(x, y) : − (♦−∃�1[1]Works-for)(x) ∧ Manages(x, z)∧
Resp-for(y, z) ∧ ¬InterestGroup(y)

It is not difficult to see that these two queries are equivalent under the constraints
in Σ, i.e., Σ � Q1 ⊆ Q2 and Σ � Q2 ⊆ Q1.

3.5. Decidability and complexity. In this section we only summarise the com-
putational behaviour of DLRUS and its fragments over the flow of time 〈Z, <〉.
Unfortunately, full DLRUS , even restricted to atomic formulas, turns out to be
undecidable.

Theorem 8. The global satisfiability problem for DLRUS conceptual schemas con-
taining only atomic formulas is undecidable.

Proof. The proof is by reduction of the well-known undecidable tiling problem
[Rob71]: given a finite set of square tiles of fixed orientation and with coloured
edges, decide whether it can tile the grid Z × N. Suppose T = {T1, . . . , Tk} is a
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set of tiles with colours left(Ti), right(Ti), up(Ti), and down(Ti). Consider the
following schema Σ, where D1, . . . , Dk are concepts and R is a binary relation:

R
.= �+R, R

.= ♦+R, � .= ∃R.�,
Di � ¬Dj , � .= D1 � · · · �Dk, for i �= j,

Di �
⊔

right(Ti)=left(Tj)

∀R.Dj, for i � k,

Di �
⊔

up(Ti)=down(Tj)

⊕Dj, for i � k.

(Here ∃R.C = ∃�1[1](R� 2/2 : C), ∀R.C = ¬∃R.¬C.) It is readily checked that
Σ is globally satisfiable iff T tiles Z × N. �

The main technical reason for undecidability is the possibility of temporalising
binary relations. The proof uses a very small fragment of DLRUS : even ALC with
�+ or one global role is enough to get undecidability. This gives us some grounds to
conjecture that already the basic temporal EER model with just snapshot relations
is undecidable.

The fragment DLR−
US , in which the temporal operators can be applied only to

entities and formulas, exhibits a much better computational behaviour. In this case
we have the following hierarchy:

Theorem 9. Let the flow of time be 〈Z, <〉. Then
(1) the problem of logical implication in DLR−

US involving only atomic formulas
is ExpTime-complete;

(2) the formula satisfiability problem (and so the problem of logical implication)
in DLR−

US is ExpSpace-complete;
(3) the querycontainment problem for nonrecursive Datalog queries under

DLR−
US-constraints is decidable in 2ExpTime and is ExpSpacehard.

In the remainder of the section we sketch a proof of this theorem. To make
it more transparent, we confine ourselves to considering only the future fragment
DLR−

U of DLRUS . (From now on � stands for �+ and © for ⊕.) The main
technical tool in the proof is the method of quasimodels developed in [WolZakh98,
WolZakh99b]. The idea behind the notion of a quasimodel is to represent the state
of the (in general, infinite) domain of a temporal model at a each moment of time
by finitely many types of the domain objects at this moment (modulo a given finite
set of formulas); the evolution of types in time is described by special functions
called runs.

Suppose that Γ consists of a finite set f(Γ) of DLR−
U -formulas and a finite set

c(Γ) of concepts, f(Γ) is closed under sub-formulas, c(Γ) under subconcepts, both
are closed under (single) negation, and each concept occurring in f(Γ) belongs c(Γ).
A concept type for Γ is a subset t of c(Γ) such that

C �D ∈ t iff C,D ∈ t, for all C �D ∈ c(Γ);

¬C ∈ t iff C /∈ t, for all C ∈ c(Γ).
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A formula type for Γ is a subset Φ of f(Γ) such that

ψ ∧ χ ∈ Φ iff ψ, χ ∈ Φ, for all ψ ∧ χ ∈ f(Γ);

¬ψ ∈ Φ iff ψ �∈ Φ, for all ψ ∈ f(Γ).

A pair 〈T,Φ〉, where T is a set of concept types and Φ a formula type for Γ, is called
a quasistate candidate for Γ. We say that the quasistate candidate C = 〈T,Φ〉 is a
quasistate for Γ if the following (non-temporal) DLR-formula αC( ⊔

t∈T
c(t) .= �

)
∧

∧
t∈T

¬(c(t) .= ⊥) ∧
∧

Φ

is satisfiable. Here c(t) denotes the conjunction of all concepts in t, concepts of the
form CUD are regarded as atomic concepts ACUD, and formulas of the form ϕUψ
in Φ are regarded as atomic formulas AϕUψ = �.

Consider now a sequence of quasistates Q = 〈Q(n) : n ∈ Z〉, where Q(n) =
〈Tn,Φn〉. A run in Q is a sequence r = 〈r(n) : n ∈ Z〉 such that

1. r(n) ∈ Tn for every n ∈ Z;
2. for every CUD ∈ c(Γ) and every n ∈ Z, we have CUD ∈ r(n) iff there is
l > n such that D ∈ r(l) and C ∈ r(k) for all k ∈ (n, l).

Finally, Q is called a quasimodel for Γ if the following conditions hold:
3. for every n ∈ Z and every t ∈ Tn there is a run r in Q such that r(n) = t;
4. for every ψUχ ∈ f(Γ) and every n ∈ Z, we have ψUχ ∈ Φn iff there is l > n

such that χ ∈ Φl and ψ ∈ Φk for all k ∈ (n, l).
Given a DLR−

U -formula ϕ, we denote by cl(ϕ) the closure under (single) negation
of the set of subformulas and subconcepts of ϕ.

Theorem 10. DLR−
U -formula ϕ is satisfiable iff there is a quasimodel for cl(ϕ)

such that ϕ ∈ Φ0.

Proof. Suppose ϕ is satisfied in a model I with domain Δ. For every n ∈ Z, define
Q(n) = 〈Tn,Φn〉 by taking Tn = {tn(x) : x ∈ Δ}, Φn = {ψ ∈ cl(ϕ) : I, n � ψ},
where tn(x) = {C ∈ cl(ϕ) : x ∈ CI(n)}. It is easy to see that 〈Q(n) : n ∈ Z〉 is a
quasimodel for ϕ. (Note that the sequence 〈tn(x) : n ∈ Z〉 is a run through tn(x),
for every n ∈ Z and every x ∈ Δ). To show the converse we require the following
lemma.

Lemma 11. For any cardinal κ � ℵ0 and any quasistate C for ϕ, the formula αC

is satisfied in a (non-temporal) DLR-model J in which |[x]J | = κ for all x in the
domain Δ of J , where [x]J = {y ∈ Δ : ∀C ∈ cl(ϕ)(x ∈ CJ ⇔ y ∈ CJ )}.
Proof. As DLR is a fragment of first-order logic, we have a countable DLR-model
I satisfying αC. Define J as the disjoint union of κ copies of I; more precisely, let

ΔJ = {〈x, ξ〉 : x ∈ ΔI , ξ < κ},
P Ji = {〈〈x0, ξ〉, . . . , 〈xn, ξ〉〉 : 〈x0, . . . , xn〉 ∈ P Ii , ξ < κ},

(�n)J = {〈〈x0, ξ〉, . . . , 〈xn, ξ〉〉 : 〈x0, . . . , xn〉 ∈ (�n)I , ξ < κ}.
It is easy to see that J is as required. �
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Suppose now that ϕ ∈ Φ0, for a quasimodel Q. Let κ be a cardinal exceeding the
cardinality of the set Ω of all runs in Q and ℵ0, and let Δ = {〈r, ξ〉 : r ∈ Ω, ξ < κ}.

Note that |{〈r, ξ〉 ∈ Δ : r(n) = t}| = κ, for every n ∈ Z and every t ∈ Tn. By
Lemma 11, for every n ∈ Z there is a DLR-model J(n) with domain Δ satisfying
αQ(n) and such that {C ∈ cl(ϕ) : 〈r, ξ〉 ∈ CJ(n)} = r(n), for all r ∈ Ω and ξ < κ.
It is easy to see that the temporal DLR-model I = 〈Z,Δ, ·I(n)〉 defined by taking
I(n) = J(n), for every n ∈ Z, satisfies ϕ at moment 0. �

Thus, the satisfiability problem for DLR−
U -formulas reduces to checking satisfi-

ability in quasimodels. Consider now a DLR−
U -schema Σ and two queries

Qi(−→x ) : −
∨
j

Qij(
−→x ,−→yij ,−→ωij), i = 1, 2.

Denote by cl(Σ, Q1, Q2) the closure under (single) negation of the set of all
formulas and concepts occurring in Σ, Q1 and Q2. Given a formula or a concept
χ, denote by χ the result of replacing all subformulas (subconcepts) in χ of the
form χ1Uχ2 with Aχ1Uχ2 = � (respectively, Aχ1Uχ2). Thus, χ is a DLR formula
or concept, and the Qi are non-temporal DLR-queries.

Theorem 11. Q1 is not contained in Q2 relative to Σ iff there is a quasimodel Q
for cl(Σ, Q1, Q2) such that Q1 is not contained in Q2 relative to Σ ∪ {αQ(0)}.

Proof. (⇒) Without loss of generality we may assume that we have a model I such
that I(0) � Σ and ans(Q1, I(0)) �⊆ ans(Q2, I(0)). Construct a quasimodel Q for
cl(Σ, Q1, Q2) as in the proof of Theorem 10. To show that Q1 is not contained in
Q2 relative to Σ∪{αQ(0)}, it is enough to extend the (non-temporal) model I(0) to
the new surrogate atoms of the form AC1UC2 and Aχ1Uχ2 in accordance with their
behaviour in I at time point 0:

A
I(0)
C1UC2

= (C1UC2)I(0) and A
I(0)
χ1Uχ2

=

{
�, if I(0) � χ1Uχ2

⊥, otherwise.

(⇐) is also proved similarly to Theorem 10. The only difference is that now we
select J(0) such that J(0) � Σ ∧ {αQ(0)} and ans(Q1, J(0)) � ans(Q2, J(0)). �

So, the query-containment problem for DLR−
U reduces to satisfiability in quasi-

models and the query-containment problem for (non-temporal) DLR. The latter
problem was shown to be decidable in 2ExpTime time in [Cal et al. 98]. But
how to check satisfiability in quasimodels? First of all, we need a procedure de-
ciding whether a quasistate candidate is a quasistate for a given set of formulas
and concepts. The following proposition can be proved using the reduction in
[Cal et al. 98].

Proposition 1. (i) Given a DLR−
U -formula ϕ, it is decidable in NExpTime

whether a quasistate candidate for cl(ϕ) is a quasistate.
(ii) Given a DLR−

U -schema Σ and queries Q1, Q2, it is decidable in 2ExpTime

whether Q1 is contained in Q2 relative to Σ∪{αC} for a quasistate candidate C for
cl(Σ, Q1, Q2).
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Now, given a set Γ as defined above, we have at most O(22|Γ|
) distinct quasistates

for Γ. The problem then is whether they can be properly arranged to form a
quasimodel for Γ. As we have no past temporal operators, it is enough to consider
the flow of time 〈N, <〉 and quasimodels of the form Q = 〈Q(n) : n ∈ N〉.

Let Q be a sequence of quasistates Q(i) = 〈Ti,Φi〉, i ∈ N, and r a sequence of
elements from Ti such that r(i) ∈ Ti. Say that r realises CUD ∈ r(n) in m steps
if there is l � m such that D ∈ r(n + l) and C ∈ r(n + k) for all k ∈ (0, l). A
formula ψUχ ∈ Φn is realised in m steps if there is l � m such that χ ∈ Φn+l and
ψ ∈ Φn+k for all k ∈ (0, l). We also say that a pair t, t′ of concept types is suitable
if for every CUD ∈ Γ, CUD ∈ t iff either D ∈ t′ or C ∈ t′ and CUD ∈ t′.

Suppose Q1 and Q2 are finite sequences of quasistates for Γ of length l1 and
l2, respectively, and let Q = Q1 ∗ Q∗

2 (i.e., Q = Q1 ∗ Q2 ∗ Q2 ∗ Q2 ∗ . . . ) with
Q(n) = 〈Tn,Φn〉. One can check that Q is a quasimodel for Γ if the following
conditions hold:

(a) for every i � l1 + l2 and every t′ ∈ Ti+1, there is t ∈ Ti such that the pair
t, t′ is suitable;

(b) for every i � l1 + 1 and every ti ∈ Ti, all concepts of the form CUD ∈ ti
are realised in l1 + l2 − i steps in some sequence ti, ti+1, . . . , tl1+l2 in which
ti+j ∈ Ti+j and every pair of adjacent elements is suitable;

(c) for every i � l1 + l2, and every ψUχ ∈ Γ, ψUχ ∈ Φi iff either χ ∈ Φi+1 or
ψ ∈ Φi+1 and ψUχ ∈ Φi+1;

(d) for every i � l1 + 1, all formulas of the form ψUχ ∈ Φi are realised in
l1 + l2 − i steps.

Moreover, given a quasimodel for Γ, one can always extract from it a subquasi-
model Q = Q1 ∗Q∗

2 which satisfies (a)-(d) above, all quasistates in Q1 are distinct
and |Q2| = O(22|Γ|

).
Using this observation together with Proposition 1 one can construct an Ex-

pSpace formula-satisfiability checking algorithm and a 2ExpTime query-contain-
ment checking algorithm.

A proof of ExpSpace-hardness of the formula-satisfiability problem we show for
a much weaker logic ALCU .

The primitive symbols of ALCU are: concept names C0, C1, . . . and role names
R0, R1, . . . . Starting from these we can form compound concepts and formulas
using the following constructs. Suppose R is a role name and C, D are concepts
(for the basis of our inductive definition we assume concept names to be atomic
concepts). Then �, C �D, ¬C, ∃R.C, and CUD are concepts. Atomic formulas
are expressions of the form �, and C = D. If ϕ and ψ are formulas then so are
ϕ ∧ ψ, ¬ϕ, and ψUϕ.4

Lemma 12. Let the flow of time be N = 〈N, <〉5. Then the formula satisfiability
problem in ALCU is ExpSpace-hard.

4Language ALCU is a fragment of DLR−
U since ∃R.C is abbreviation for ∃�1[1](R � 2/2 : C).

5The class of models based on 〈N, <〉
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In the proof we will use abbreviations (having in mind that we do not use S)
�∗ψ = ψ ∧ �ψ, ♦∗ψ = ψ ∨ ♦ψ for formula ψ, and for a concept C abbreviations
�∗C = C � �C, ♦∗C = C � ♦C; ∀R.C = ¬∃R.¬C.

Proof. We will show here the lower bound for the satisfaction problem in N by
reducing to it the n-CORIDOR tiling problem, n given in binary, which is known
to be ExpSpace-complete [Boas96]. Namely, for a set T = {t1, . . . , ts} of tiles
and n < ω, we construct an ALCU -formula ϕ of length O(n2 + s2) such that ϕ is
satisfied iff T tiles 2n ×m rectangle, for some m < ω in such a way that sides of
this rectangle are, say, white.

To encode the 2n column, we define 2n concepts Bj , 0 � j < 2n, using n concept
names C0, . . . , Cn−1 and a role name R. Let ψ1 be the conjunction of the following
formulas:

∃R.� = �, ¬((¬C0 � · · · � ¬Cn−1) = ⊥),
n−1∧
i=0

(i−1∏
j=0

Cj → (Ci → ∀R.¬Ci) � (¬Ci → ∀R.Ci) = �
)
,

n−1∧
i=0

(i−1⊔
j=0

¬Cj → (Ci → ∀R.Ci) � (¬Ci → ∀R.¬Ci) = �
)
.

For any j ∈ {0, . . . , 2n − 1} written in binary as (dn−1, . . . , d0), we put Bj =
Cd00 � · · · � Cdn−1

n−1 , where Cd is C if d = 1 and ¬C otherwise. If ψ1 is satisfied in
an ALC-model, then the sets Bj in this model are nonempty, pairwise disjoint and
cover the domain of the model.

Let B,Q0, . . . , Qn−1 be (n + 1) new concept names. We use them to encode
2n sets [j] of worlds containing all wj for which wj � Qd00 � · · · � Qdn−1

n−1 = � and
(dn−1, . . . , d0) is binary representations of j. B will coincide with Bj in the all
worlds from [j]. This is ensured by the formula ψ2:

n−1∧
i=0

(♦∗Ci = �∗Ci) ∧
(
B =

n−1∏
i=0

(
(Ci �Qi) � (¬Ci � ¬Qi)

))
∧ �∗(♦∗B = �)

∧ �∗
(n−1∧
i=0

(
(Qi = �) ∨ (Qi = ⊥)

))
∧ (Z = �) ∧ �∗(Z = ¬Q0 � · · · � ¬Qn−1).

Let w0
0 < w1

0 < · · · be the ordering of worlds in [0]. Worlds w ∈ [j] such that
wi0 < w < wi+1

0 will be denoted by wij . For example, we may have:

w0
0<w

0
3<w

0
1<w

0
2<w

0
1<w1

0<w
1
2<w

1
2<w

1
1<w2

0<w
2
1<w

2
2<w3

0<w4
0< · · ·

To encode the 2n × m grid, we will use new concept names D,F, Fu, A,Au to
construct the conjunction ψ3 of the formulas

�∗(¬(D = ⊥) ∧ (D � ♦D = ⊥)
)

�∗(F = ♦(Z � ♦∗D) � ¬♦(Z � ♦(Z � ♦∗D))
)

�∗(Fu = ♦(Z � ♦∗F ) � ¬♦(Z � ♦(Z � ♦∗F ))
)
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�∗((A = B � F ) ∧ (Au = B � Fu) ∧ ¬(A = ⊥)
)

�∗((Z � F ⊆ ♦∗A) ∧ (Z � Fu ⊆ ♦∗Au)
)
.

Let

Fi = F I(w
j
i ) =

⋃
wi+1

0 �w<wi+2
0

DI(w) and Aij = Fi ∩Bj .

Then (Fu)I(w
i
j) = Fi+1, AI(w

i
j) = Aij and (Au)I(w

i
j) = Ai+1,j . If ψ1 ∧ ψ2 ∧ ψ3 is

satisfied in a model N , then for every w ∈ N, there is a unique pair (i, j), i ∈ N,
j < 2n such that w = wij . Conversely, for any such pair (i, j), there is a w ∈ N such
that w = wij .

Let ψ4 be the conjunction of the following formulas

�∗((P = �) ∨ (P = ⊥)) ∧ ♦(Z � P = �) ∧ �∗((P = �) → �(P = ⊥)),

�∗(S = ♦P ) ∧ (♦(Z � ♦P ) = ⊥),

�∗((K = �) ∨ (K = ⊥)) ∧ ♦(Z �K = �) ∧ �∗((K = �) → �(K = ⊥)),

�∗(E = ♦(Z �K) � ¬♦(Z � ♦(Z �K)), �∗(W = ♦K � ¬E).

For each tile ti ∈ T we take a concept name Ti. Its intended meaning is as
follows: we say that tk covers an element (i, j) in the grid iff Aij ⊆ Tk. We are now
in position to guarantee that every element of the grid is covered by precisely one
tile and that the colours on adjacent edge of adjacent tiles match.

ψ5 =
s∧
i=1

(♦∗Ti = �∗Ti) ∧
( s⊔
i=1

Ti = �
)
∧

∧
i
=j

(Ti � Tj = ⊥)

∧ �∗
s∧
i=1

(
(A � Ti = ⊥) ∨ (A � Ti = A)

)
,

ψ6 = �∗
n−1∧
k=0

((
¬Qk �

k−1∏
j=0

Qj

)
= � → Ar = F �

k−1∏
i=0

¬Ci �Ck

�
n−1∏
i=k+1

(
(Ci �Qi) � (¬Ci � ¬Qi)

))
,

(If A = Aij in some world, then Ar = Ai,j+1 in this world.)

ψ7 = �∗
(
Z �A ⊆

⊔
left(l)=white

Tl

)
∧ �∗

(( n−1∏
i=0

Qi

)
�A ⊆

⊔
right(l)=white

Tl

)
,

ψ8 = �∗
(
S �A ⊆

⊔
down(l)=white

Tl

)
∧ �∗

(
E �A ⊆

⊔
up(l)=white

Tl

)
,

ψ9 = �∗
(
¬
(( n−1∏

i=0

Qi

)
= �

)
→

s∧
j=1

(
W �A ⊆ Tj →W �Ar ⊆

⊔
right(j)=left(l)

Tl

))
,
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ψ10 = �∗
( s∧
j=1

(
W �A ⊆ Tj →W �Au ⊆

⊔
up(j)=down(l)

Tl

))
.

One can show that ϕ = ψ1 ∧ · · · ∧ ψ10 is as required. �

It follows, in particular, that the query-containment problem is ExpSpace-hard
as well. It is an open problem, however, whether there exists an ExpSpace algo-
rithm deciding this problem.

Finally, we show ExpTime-completeness of the logical implication for atomic
formulas in DLR−

U by means of a polynomial reduction of DLR−
U to the logic

DLRreg of [Cal et al. 98]. For our purposes, it is enough to know that DLRreg

allows one to form the transitive closure R∗ of every binary relation R, and that
the satisfiability problem in DLRreg is in ExpTime. To simplify the presentation,
we reduce here the fragment DLR−

�© of DLR−
U with the temporal operators �

and © only (the reader should not have problems to extend this reduction to the
language with U).

Fix a binary relation R and define a translation ∗ from DLR−
�© to DLRreg as

follows: P ∗ = P for every atom P of DLR, (©C)∗ = ∀R.C∗ and (�C)∗ = ∀R∗.C∗;
∗ commutes with the remaining constructs, and (P1 � P2)∗ = P ∗

1 � P ∗
2 .

Lemma 13. Suppose that Γ ∪ {ϕ} is a set of atomic DLR−
�©-formulas and that

R does not occur in Γ ∪ {ϕ}. Then Γ � ϕ iff ϕ∗ is a logical consequence of the
following set Ξ of DLRreg-formulas

Γ∗, ∃=1R.� .= �, ∃=1R−.� .= �,
where ∃=1R−.C = ∃=1[2](R � 1/2 : C).

Proof. Suppose Γ � ϕ. Then there is a model I such that I, 0 � ϕ, but I, n � Γ for
all n ∈ Z. Define a DLR-model J = 〈Δ′, P J1 , . . . , R

J〉 by taking Δ′ = ΔI × Z,

〈〈x1, n1〉, . . . , 〈xl, nl〉〉 ∈ P Ji iff ni = nj , for i, j � l, and 〈x1, . . . , xn〉 ∈ P
I(n1)
i

〈〈x1, n1〉, 〈x2, n2〉〉 ∈ RJ iff x1 = x2 and n2 = n1 + 1.

It is readily checked that J � Ξ and J � ϕ∗.
Conversely, suppose that J = 〈Δ, P J1 , . . . , RJ〉 is a model such that J � Ξ but

J � ϕ∗. Let Σ =
⋃
{cl(χ) : χ ∈ Γ ∪ {ϕ}} and, for every x ∈ Δ,

t(x) = {C ∈ c(Σ) : x ∈ (C∗)J}.
Then the pair 〈T,Φ〉, where T = {t(x) : x ∈ Δ} and Φ = {χ ∈ f(Σ) : J � χ∗},

is a quasistate for Σ. Define a map Q by taking Q(n) = 〈T,Φ〉 for all n ∈ Z. It
is easy to see that Q is a quasimodel. Hence, by Theorem 10, we have a model I
such that I � Γ but I, 0 � ϕ. �

4. Conclusion

DLs are a family of knowledge representation languages constructed for a wide
area of application domains. This paper presents one type of expressive descrip-
tion logic DLRUS , which has been modeled with an aim to overcome problems
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of reasoning over conceptual schemas and queries in temporal databases. It is a
special type of description logic extended with modal operators. DLRUS is a DLR
description logic with a temporal dimension.

DLR have been used in the area of non-temporal databases to characterize in
a uniform way both conceptual modeling and queries [LevRous98, Cal et al. 98].
Some of interesting properties of DLR logic are [ArtaFra01]:

• allows the logical reconstruction and the extension of data and knowledge
representational tools,

• has an ability to completely define entities and relations as DLR views over
other entities and relation over conceptual schemas

• can express a large class of integrity constraints
• enables a view-based query answering.

Its combination with the propositional temporal logic, enabled with operators Since
and Until [SisCl85, Gab et al. 94] resulted in a DLRUS . DLRUS allowed using
temporal operators to all syntactical terms of DLR: entities, relations and schemas.

In this paper we presented the syntax and the semantics of DLRUS as well as
the solution of the query containment task problem. An example of conceptual
schema and query is given. At the end we summarize the computational behavior
of DLRUS and its fragments over the flow of time.

References

[Abi et al. 96] S. Abiteboul, L. Herr, J. Van den Bussche, Temporal versus firstorder logic to query
temporal databases; in: Proc. 15th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’96), 1996, pp 49–57 .

[ArtaFra01] A. Artale, E. Franconi, A survey of temporal extensions of description logics, Ann.
Math. Art. Intell. 30(14) (2001).

[Arta et al. 01] A. Artale, E. Franconi, M. Mosurović, F. Wolter, M. Zakharyaschev, The
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