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1. Introduction

The problem of reasoning with uncertain knowledge is an ancient problem dat-
ing, at least, from Leibnitz and Boole. However, in the last decades there is a
growing interest in the field connected with applications to computer science and
artificial intelligence. Researchers from those areas have studied uncertain reason-
ing using different tools. Some of the proposed formalisms for representing, and
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reasoning with, uncertain knowledge are based on probabilistic logics. That ap-
proach extends the classical (propositional or first order) calculus with expressions
that speak about probability, while formulas remain true or false. Thus, one is able
to make statements of the form (in our notation) P>sα with the intended meaning
“the probability of α is at least s”.

The probability operators behave like modal operators and the corresponding se-
mantics consists in special types of Kripke models (possible worlds) with addition
of probability measures defined over the worlds. One of the main proof-theoretical
problems with that approach is providing an axiom system which would be strongly
complete (“every consistent set of formulas has a model”, in contrast to the weak
completeness “every consistent formula has a model”). This results from the in-
herent non-compactness of such systems. Namely, in such languages it is possible
to define an inconsistent infinite set of formulas, every finite subset of which is
consistent (e.g., {¬P=0α} ∪ {P<1/nα : nis a positive integer}). As it was pointed
in [85, 125], there is an unpleasant consequence of finitary axiomatization in that
case: there exist unsatisfiable sets of formulas that are consistent with respect to
the assumed finite axiomatic system (since all finite subsets are consistent and de-
ductions are finite sequences). Another important theoretical problem is related to
the decidability issue.

In this paper we present a number of probabilistic logic. The main differences
between the logics are:

• some of the logics are infinitary1, while the others are finitary,
• the corresponding languages contain different kinds of probabilistic opera-

tors, both for unconditional and conditional probability,
• some of the logics are propositional, while the others are based on the

first-order logic,
• for most of the logics we start from classical logic, but in some cases the

basic logic can be intuitionistic or temporal,
• in some of the logics iterations of probabilistic operators are not allowed,
• for some of the logics restrictions of the following kinds are used: only

probability measures with fixed finite range are allowed in models, only
one probability measure on sets of possible worlds is allowed in a model,
the measures are allowed to be finitely additive.

For all these logics we give the corresponding axiomatizations, prove completeness,
and discuss their decidability. More precisely, we consider the following logics (the
notation was taken from the corresponding papers):

• LPP1 (L for logic, the first P for propositional, and the second P for proba-
bility), probability logic which starts from classical propositional logic, with
iterations of the probability operators and real-valued probability functions
[83, 85],

1In this paper the terms finitary and infinitary concern meta language only. Object languages
are countable, formulas are finite (except where it is explicitly said), while only proofs are allowed
to be infinite.
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• LPP
Fr(n)
1 and LPPS

1 that are similar to LPP1, but with probability func-
tions restricted to have ranges {0, 1/n, . . . , (n−1)/n, 1} and S, respectively
[81, 83, 85],

• LPPA,ω1,Fin
1 , probability logic similar to LPP

Fr(n)
1 , but with probability

functions restricted to have arbitrary finite ranges [26],
• LPPLTL

1 , probability logic similar to LPP1, but the basic logic is discrete
linear-time logic LTL [82, 83, 91],

• LPP2, LPP
Fr(n)
2 , LPPA,ω1,Fin

2 and LPPS
2 , probability logics similar to the

above logics, but without iterations of the probability operators [83, 85,
106],

• LPP2,P,Q,O, probability logic which extends LPP2 by having a new kind
of probabilistic operators of the form QF , with the intended meaning “the
probability belongs to the set F” [84],

• LPP2,¹ and LPP
Fr(n)
2,¹ , probability logics similar to LPP2 and LPP

Fr(n)
2 ,

but allowing reasoning about qualitative probabilities [93],
• LPP I

2 , probability logics similar to LPP2, but the basic logic is proposi-
tional intuitionistic logic [74, 75, 76],

• LFOP1, LFOP
Fr(n)
1 , LFOPA,ω1,Fin

1 , LFOPS
1 and LFOP2, first-order coun-

terparts of the above logics [85, 110],
• LPCPS,≈

2 , propositional Kolmogorov’s style-conditional probability logic,
without iterations of the probability operators, with probability functions
restricted to have the range S and probability operators that can express
approximate probabilities [88, 92, 112, 113, 114], and

• LPCPChr
2 , propositional conditional probability logic, which corresponds

to de Finetti’s view on coherent conditional probabilities [50, 90].

The rest of the paper is organized in the following way. In section 2 we give a
short overview of studies relating logic and probability until the mid 1980’s, and
the work of H. J. Keisler and N. Nilsson [41, 42, 78, 116, 122]. Syntax and se-
mantics, an infinitary axiomatization, the corresponding extended completeness,
decidability and complexity of LPP2 are presented in Section 3.1. As a seman-
tics we introduce a class of models that combine properties of Kripke models and
probabilities defined on sets of possible worlds. We consider the class of so called
measurable models (which means that all sets of possible worlds definable by clas-
sical formulas are measurable) and some of its subclasses: in the first case all
subsets of worlds are measurable, then probabilities are required to be σ-additive,
while models in the last subclass satisfy that only empty set has the zero prob-
ability. The proposed axiomatization is infinitary, i.e., there is an inference rule
with countably many premisses and one conclusion. That rule corresponds to the
following property of real numbers: if the probability is arbitrary close to s, it is
at least s. Thus, proofs with countably many formulas are allowed. The proof of
extended completeness follows Henkin procedure: starting from a consistent set we
construct its maximal consistent extension and the corresponding canonical model
which satisfies the considered set of formulas. Decidability of LPP2 is proved by



PROBABILITY LOGICS 39

reducing the satisfiability problem to linear programming problem. Since the re-
lated linear systems can be of exponential sizes, in the same section we describe
some heuristical approaches (genetic algorithms and variable neighborhood search)
to the probabilistic satisfiability problem [51, 86, 87, 89]. Some variants of LPP2

(LPP
Fr(n)
2 , LPPA,ω1,Fin

2 and LPPS
2 obtained by putting some restrictions on ranges

of probability functions) and the logic LPP1 are considered in the sections 4 and
5, respectively. In Section 6 we consider some extensions of the basic probability
language. The first extension, LPP2,P,Q,O, contains probability operators of the
form QF with the intended meaning “the probability belongs to the set F”. It turns
out that in a general case neither P>-operators are definable from QF -operators,
nor are QF -operators operators definable from P>-operators. Then, we discuss
two logics that allow expressing qualitative probabilities: LPP2,¹ and LPP

Fr(n)
2,¹ .

It is proved elsewhere that the set of probability first-order valid formulas is not
recursively enumerable and that no recursive complete axiomatization is possible.
In Section 7 we extend our approach for the propositional case and give a complete
infinitary first order axiomatization. That section also contains a discussion on the
(dis)similarities between probability and modal logics. Intuitionistic and temporal
probability logics are presented in Section 8. Two logics with conditional proba-
bilities (LPCPS,≈

2 and LPCPChr
2 ), and their applications are described in Section

9. One of the infinitary inference rules for LPCPS,≈
2 enables us to syntactically

define the range of probability functions. In the case of LPCPS,≈
2 , that range is

the unit interval of a recursive non-archimedean field which makes it possible to
express statements about approximate probabilities: CP≈s(α, β) which means “the
conditional probability of α given β is approximately s”. Furthermore, formulas of
the form CP≈1(α, β) can be used to model defaults, i.e., expressions of the form
“if β, then generally α”. It relates LPCPS,≈

2 with the well known system P which
forms a core of default reasoning. It is proved that if we restrict attention only to
formulas of the form CP≈1(α, β), the resulting system coincides with P when we
work only with finite sets of assumptions. If we allow inferences from infinite sets of
such “defaults”, our system is somewhat stronger. The main advantage, however,
is ability to use LPCPS,≈

2 to combine uncertain knowledge and defaults. Finally,
Section 10 discusses some of the more recent related papers.

2. History

Gottfried Wilhelm Leibnitz (1646–1716) investigated universal basis for all sci-
ences and tried to establish logic as a generalized mathematical calculus. He con-
sidered probabilistic logic as a tool for the uncertainty estimation, and defined
probability as a measure of knowledge. In some of his essays [67, 68, 69] Leibnitz
suggested that tools developed for analyzing games of chance should be applied in
developing a new kind of logic treating degrees of probability which, in turn, could
be used to make rational decisions on conflicting claims. He distinguished two
calculi. The first one, forward calculus, was concerned with estimating the proba-
bility of an event if the probabilities of its conditions are known. In the second one,
called reverse calculus, estimations of probabilities of causes, when the probability
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of their consequence is known, were considered. Leibnitz’s logical works were for
the most part published long after his death (by L. Couturat in the early 1900s).
However, Leibnitz had some successors, the most important of whom, when the
probabilistic logic is in question, were the brothers Jacobus (1654–1705) and Jo-
hann (1667–1748) Bernoulli, Thomas Bayes (1702–1761), Johann Heinrich Lambert
(1728–1777), Pierre Simon de Laplace (1749–1827), Bernard Bolzano (1781–1848),
Augustus De Morgan (1806–1871), George Boole (1815–1864), John Venn (1834–
1923), Hugh MacColl (1837–1909), Charles S. Peirce (1839–1887), Platon Sereye-
vich Poretskiy (1846–1907), etc. We shall briefly mention some of their results.

Jacobus Bernoulli in his unfinished work [7, Part IV, Chapter III], was the first
who made advance along the Leibnitz’s ideas. Using Huygen’s notion of expec-
tation, i.e., the value of a gamble in games of chance, he offered a procedure for
determining numerical degrees of certainty of conjectures produced by arguments.
The word argument was used to represent statements as well as the implication
relation between premises and conclusions. He divided arguments into categories
according to whether the premises, and the argumentation from premises to conclu-
sions are contingent or necessary. For example, if an argument exist contingently
(i.e., it is true in b > 0 cases, while it is not in c > 0 cases) and implies a conclusion
necessarily, then such an argument establishes b

b+c as the certainty of the conclu-
sion. Bernoulli also discussed the question of computing the degree of certainty
when there were more then one argument for the same conclusion.

J.H. Lamber in [65], analyzed syllogistic inference of the form “if three quarters
of the A’s are B’s, and C is A, then with probability 3

4 , C is B”. In [5], writ-
ten by T. Bayes, there was the first occurrence of a result involving conditional
probability. In modern notation, he considered the problem of finding the condi-
tional probability P (A|B) where A is the proposition “P (E) ∈ [a, b]”, while B is
the proposition “an event E happened p and failed q times in p + q independent
trials”. For B. Bolzano [11] logic was a theory of science, while probability was
a part of logic. Using contemporary language it can be said that he understood
validity of a proposition A(x) as a measure of the set {c : ² A(c)}, i.e., as the
ratio |{x:x∈U∧U |=A(x)}|

|{x:x∈U}| . Relative validity was a relation between propositions and
had the same properties as what we call conditional probability. Bolzano derived
a number of theorems regarding relative validity. A. De Morgan devoted a chapter
of [21], to probability inference offering a defense for the numerical probabilistic
approach as a part of logic. Instead of giving a systematic treatment of the field,
he rather described some problems and tried to apply logical concepts to them. It
is interesting that De Morgan made some mistakes, mainly due to his ignoring of
(in)dependence of events.

The calculus inaugurated by G. Boole in [12, 13] initiated rapid development of
mathematical logic. Boole sought to make his system the basis of a logical calcu-
lus as well as a more general method for the application in the probability theory.
He wrote “... Every system of interpretation which does not affect the truth of
the relations supposed is equally admissible, and it is thus that the same process
may under one scheme of interpretation represent the solution of a question on the
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properties of numbers, under another that of a geometrical problems, and under
the third that of a problem of dynamics or optics...” Since 1854 Boole concentrated
on unification of various elements of truth. He hoped to continue the advance-
ment toward probable indications concerning the nature and structure of human
thought. The most general problem (originally called “general problem in the the-
ory of probability”) Boole claimed that he could solve, concerned an arbitrary set
of logical functions {f1(x1, . . . , xm), . . ., fk(x1, . . . , xm), F (x1, . . . , xm)} and the
corresponding probabilities p1 = P (f1(x1, . . . , xm)), . . ., pk = P (fk(x1, . . . , xm)),
and asked for P (F (x1, . . . , xm)) in terms of p1, . . . , pk. He explained the relation
between the logic of classical connectives and the formal probability properties of
compound events using the following assumptions. He restricted disjunctions to the
exclusive ones, and believed that any compound proposition can be expressed in
terms of, maybe ideal, simple and independent components. Thus, the probability
of an or-compound is equal to the sum of the components, while the probability
of an and-compound is equal to the product of the components. In such a way, it
was possible to convert logical functions of events into a system of algebraic func-
tions of the corresponding probabilities. Boole tried to solve such systems using
a procedure equivalent to Fourier–Motzkin elimination. His procedure, although
not entirely successful, provided a basis for probabilistic inferences. In [40, 41] a
rationale and a correction for the Boole’s procedure were given using the linear
programming approach. It was noted that analytical expressions of the lower and
upper bounds of the probabilities could be obtained.

The successors of Boole tried to improve the form of Boole’s ideas. One of
them was P. S. Poretskiy [96]. C. S. Pierce in [95] and H. MacColl in [71] clarified
the notion of conditional probability, as the chance that a statement is true on
the assumption that another statement is true, and introduced the corresponding
symbol xa (P (x|a), in the contemporary formal language).

McColl also developed, contemporaneously with Frege, propositional logic as a
branch of logic independent of the class calculus or term logic of the traditional
syllogisms. He was the first author who made an attempt, in [72], to augment the
two-valued logical formalism with a third truth value. It was a system of proposi-
tional logic with certain, impossible, and variable propositions. The propositions of
the former two types are either necessary true or necessary false, while the propo-
sitions of the last type are sometimes true and sometimes false. MacColl’s idea of
proceeding along the probabilistic lines in the development of many-valued logic is
of particular interest because he applied the calculus of variable propositions to the
calculus of probabilities. His truth-values, like probabilities, cannot be combined
in a truth-functional way. For example, if p is a variable proposition, so are p ∧ p
and ¬p, while p∧¬p is impossible rather than variable. Later systems, for example
the ones of Lukasiewicz, were deficient in this respect.

In the 1870’s J. Venn developed the idea of extending the frequency of occurrence
concept of probability to logic. Venn thought that probability logic is the logic of
sequence of statements. A single element sequence of this type attributes to the
given proposition one of two values 0 or 1, while an infinite sequence attributes any
real number which lies in the interval [0, 1]. Some of the traditional logicians were
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dissatisfied with the inclusion of the induction in the definition of the concept of
probability, but the others continued to work in that direction.

During the first half of XX century there were at least three directions in the
development of theory of probability. The researchers that belonged to the first one,
Richard von Miss (1883–1953) and Hans Reichenbach (1891–1953), for example,
regarded probability as a relative frequency and derived rules of the theory from
that interpretation. The second approach was characterized by the development
of formal calculus of probability. Some of the corresponding authors were Georg
Bohlmann (1869–1928) [10], Sergei Natanovich Bernstein (1880–1968) [8], andÉmil
Borel (1871–1956) [14, 15]. These investigations culminated in A. N. Kolmogorov’s
(1903–1987) axiomatization of probability [60]. Finally, some of the researcher, like
John M. Keynes (1883–1946) [59], Hans Reichenbach [115, 116], and Rudolf Carnap
(1891–1970) [18, 19] continued Boole’s approach connecting probability and logic.

In work of J. Keynes probability was seen as an undefined primitive concept. He
presented an axiomatic analysis of a relation between propositions which behaved
like conditional probability. That axiomatic system is not acceptable, at least from
the point of the recent logical standards. For example, no specification of syntax
was given, there were no inference rules, etc.

R. Carnap’s work on logical foundations of probability was an attempt to develop
a pure logical concept of probability. Carnap connected the concepts of inductive
reasoning, probability and confirmation. He was among the first researchers who
clearly acknowledged that there are two distinct concepts of probability. The con-
cept of probability as the relative frequency (in the long run) which is used in
statistical investigations is empirical in nature and, therefore, unsuitable for the
development of inductive logic. For the development of inductive logic, which in
his view is the same as probability logic, he needed the logical concept of probabil-
ity as a degree of confirmation of some hypothesis on the basis of some evidence,
i.e., a logical relation between two propositions, denoted by c(h, e). Carnap fixed
an unary first order language to express h and e, and studied properties of c. Even
though Carnap’s work was not completely successful, it stimulated a line of research
on probabilistic first-order logics [33, 34, 120, 123]. In [33] there was a generaliza-
tion of the notion of a model for a first-order language in which probability values
replaced truth-values, and some kind of completeness theorem was proven. Sim-
ilarly, in [34] a first order language L of arithmetic and a set of its models were
considered. To every sentence the set of models in which it is true was associated,
and the probability was defined on such definable sets. Then, they studied random
sequences and some other notions from the theory of probability defined over L. In
[120] the ideas from [33] were extended to infinitary languages. Boolean algebras
with attached probability measures were considered as suitable models for reason-
ing about probability. Let I and m denote an interpretation and a probability
defined on a Boolean algebra, respectively. A probability assertion A is a tuple
(a, s1, . . . , sn), where a is a formula of the language of real closed fields with n free
variables, while si’s are sentences of an infinitary first order language. A speaks
about probabilities such that it holds in a model if a(m(I(s1)), . . . ,m(I(sn))) is
true in the reals. Then, a probability assertion A is a consequence of a set T of
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assertions if A holds in every model of T . In [120] a number of results about such
a consequence relation were proved.

H. Reichenbach investigated the logical structure of probability statements from
the philosophical and technical points of view. He introduced a fundamental
probability relation between classes and real numbers using formulas of the form
P (A,B) = p which could be read as “for every i, if xi belongs to the class
A, then yi belongs to the class B with probability p”. Reichenbach gave a fre-
quency interpretation for the probability relation, and the corresponding axioms
((A → B) → (P (A,B) = 1), for example). If xi ∈ A for every i, he used P (B) = p
instead of P (A,B) = p, and constructed truth tables for the classical connectives
with a continuous scale of truth (if P (A) = p, P (B) = q, and P (A, B) = u, then
P (A ∨ B) = p + q − pu, for example). However, as can be seen, the value of
P (A∨B) = p + q− pu depends on three values, i.e., on P (A), P (B), and P (A,B),
and not on P (A) and P (B) only, as it is the case in the classical two-valued logic.

Aleksandar Kron (1938–2000), Belgrade’s logician and philosopher, studied re-
lationship between multi-valued logics and probability theory [64]. He considered a
unary operation generating a Boolean algebra of sets of formulas, and a probability
function defined on that algebra, and gave some statement connecting notions from
probability theory (conditional probability, independence) and logic (implication,
proof).

In spite of the mentioned works of Reichenbach, Carnap and their followers, the
mainstreams of development of logic and probability theory were almost separated
during second half of XX century. Namely, in the last quarter of XIX century,
independently of the algebraic approach, there was a development of mathematical
logic inspired by the need of giving axiomatic foundations of mathematics. The
main representative of that effort was Gottlob Frege (1848–1925). He tried to
explain the fundamental logical relationships between the concepts and propositions
of mathematics. Truth-values, as special kinds of abstract values, were described by
Frege according to whom every proposition is a name for truth or falsity. It is clear
that, according to Frege, the truth values had a special status that had nothing to
do with probabilities. That approach culminated with Kurt Gödel’s (1904–1977)
proof of the completeness for the first order logic [37]. Since those works, the first
order logic played the central role in the logical community for many years, and
only in the late 70’s a wider interest in probability logics reappeared.

The most important advancement in probability logic, after work of Leibnitz
and Boole, was made by H. Jerome Keisler. The purpose of his famous paper [54]
was to give model-theoretic approach to probability theory. Also it is important
to emphasize that in this paper he makes use of nonstandard analysis as an useful
method.

Keisler introduced several probability quantifiers, as for example Px > r. The
formula (Px > r)φ(x) means that the set {x : φ(x)} has probability greater than
r. A recursive axiomatization for that kind of logics (the main one denoted by
LAP ) was given by D. Hoover [46]. He used admissible and countable fragments of
infinitary predicate logic (but without ordinary quantifiers ∀ and ∃). In the follow-
ing years Keisler and Hoover made very important contributions in the field. They
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proved Completeness theorem for various kinds of models (probability, graded,
analytic, hyperfinite etc.) and many other model-theoretical theorems. The de-
velopment of probability model theory has engendered the need for the study of
logics with greater expressive power than that of the logic LAP . The logic LAI ,
introduced in [55] as an equivalent of the logic LAP , allows us to express many prop-
erties of random variables in an easier way. In this logic the quantifiers

∫
. . . dx are

incorporated instead of the quantifiers Px > r. The completeness proof for LAI

used the Loeb construction of the Daniell integral (see also [22, 23, 24, 25]).
The logic LAI is not rich enough to express probabilistic notions involving condi-

tional expectations of random variables with respect to σ-algebras, such as martin-
gale, Markov process, Brownian motion, stopping time, optional stochastic process,
etc. These properties can be naturally expressed in a language with both integral
quantifiers and conditional expectation operators. The logics LAE and Lad intro-
duced by Keisler in [55], are appropriate for the study of random variables and
stochastic processes. The model theory of these logics has been developed further
by Hoover in [47], Keisler in [57, 58], Rodenhausen in [118] and Fajardo in [29].

In [97] Rašković introduced new LAM logic which, instead of probability measure,
has σ-finite one and give the method how to transfer results from LAP to LAM . In a
series of papers [98, 99, 101, 104, 108], he also gave answers to a number of problems
proposed by Keisler in [55]. In [98, 99] a new method of using Barwise compactness
theorem [4] in proving completeness theorems was presented. It is difficult to
mix ordinary and probability quantifiers because of the fact that projection of a
measurable set can be nonmeasurable. As a consequence of that it is hard (if
not impossible) to expect adequate logic in its full strength. But some effort in
that direction has been made in [100, 102, 103, 105]. The notion of a cylindric
probability algebra can be considered as a common algebraic abstraction from a
geometry associated with basic set-theoretic notions on the one hand and the theory
of deductive systems of probability logic on the other. These two sources are
connected because models of deductive systems of probability logic give rise in
natural way to probability structures within set-theoretical algebras. As is well
known, the theory of Boolean algebras is related to the sentential calculus, and
theory of cylindric algebras to the first-order predicate logic. The theory of cylindric
probability algebras, designed to provide an apparatus for an algebraic study of
probability logics, is presented in [49, 109, 111] analogously to Boolean algebras
and cylindric algebras. The model theory for probability logic with undetermined
finite range is given in [104]. Continuous time probability logic Lt

AP , developed in
[107], is a logic appropriate for the study of a space with a family of continuous
time probability measures. The set of universal conjunctive formulas of Lt

AP is the
least set containing all quantifier-free formulas and closed under arbitrary ∧, finite
∨, and quantifiers (Px > r), r ∈ Q ∩ [0, 1]. The completeness theorem and finite
compactness theorem (for universal conjunctive formulas) were proven.

Since the middle of 1980’s the interest in probabilistic logics started growing
because of development of many fields of application of reasoning about uncer-
tain knowledge: in economics, artificial intelligence, computer science, philosophy
etc. Researchers attempt to combine probability-based and logic-based approaches
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to knowledge representation. In the logical framework for modelling uncertainty,
probabilities express degrees of belief. For example, one can say that “probability
that Homer wrote Iliad is at most a half” expressing one’s disbelief that Homer is
the real author of Iliad. The first of those papers is [79] (see also: [80]) which re-
sulted from the work on developing an expert system in medicine, where N. Nilsson
tried to give a logic with probabilistic operators as a well-founded framework for
uncertain reasoning. Sentences of the logic spoke about probabilities. He was able
to express a probabilistic generalization of modus ponens as “if α holds with the
probability s, and β follows from α with the probability t, then the probability of
β is r”.

3. Logic LPP2

In this section we present the logic LPP2. We describe its syntax and some
classes of models, give an infinitary axiomatization and prove that it is sound and
complete with respect to the mentioned classes of models.

3.1. Syntax. Let S be the set of all rational numbers from [0, 1]. The language
of LPP2 consists of the denumerable set φ = {p, q, r, . . .} of primitive propositions,
classical propositional connectives ¬, and ∧, and a list of probability operators P>s

for every s ∈ S. The set ForC of all classical propositional formulas over the set φ
is defined as usual. The formulas from the set ForC will be denoted by α, β,. . . If
α ∈ ForC and s ∈ S, then P>sα is a basic probability formula. The set ForP of all
probability formulas is the smallest set

• containing all basic probability formulas, and
• closed under formation rules: if A,B ∈ ForP , then ¬A, A ∧B ∈ ForP .

The formulas from the set ForP will be denoted by A, B,. . . Let ForLPP2 =
ForC ∪ForP . The formulas from the set ForLPP2 will be denoted by Φ, Ψ,. . .

We use the usual abbreviations for the other classical connectives, and also
denote:

• ¬P>sα by P<sα,
• P>1−s¬α by P6sα,
• ¬P6sα by P>sα,
• P>sα ∧ P6sα by P=sα, and
• both α∧¬α and A∧¬A by ⊥, letting the context determine the meaning.

As it can be seen, neither mixing of pure propositional formulas and probabil-
ity formulas, nor nested probability operators are allowed. Thus, α ∧ P>sβ and
P>sP>rα do not belong to the set ForLPP2 .

Let p1,. . . , pn be a list of all primitive propositions from Φ ∈ ForLPP2 . An atom
a of Φ is a formula of the form ±p1 ∧ . . . ∧ ±pn, where ±pi is either pi, or ¬pi.

3.2. Semantics. The semantics for ForLPP2 will be based on the possible-world
approach.

Definition 1. An LPP2-model is a structure M = 〈W,H, µ, v〉 where:
• W is a nonempty set of objects called worlds,
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• H is an algebra of subsets of W , and
• µ is a finitely additive measure, µ : H → [0, 1],
• v : W × φ → {true, false} provides for each world w ∈ W a two-valued

evaluation of the primitive proposition, that is v(w, p) ∈ {true, false}, for
each primitive proposition p ∈ φ and each world w ∈ W ; a truth-evaluation
v(w, ·) is extended to classical propositional formulas as usual.

If M is an LPP2-model and α ∈ ForC , the set {w : v(w, α) = true} is denoted
by [α]M. We will omit the subscript M from [α]M and write [α] if M is clear
from the context. An LPP2-model M = 〈W,H, µ, v〉 is measurable if [α]M ∈ H
for every formula α ∈ ForC . In this section we focus on the class of all measurable
LPP2-models (denoted by LPP2,Meas).

Definition 2. The satisfiability relation ²⊆ LPP2,Meas × ForLPP2 fulfills the fol-
lowing conditions for every LPP2,Meas-model M = 〈W,H, µ, v〉:

• if α ∈ ForC , M ² α iff for every w ∈ W , v(w,α) = true,
• if M ² P>sα iff µ([α]) > s,
• if A ∈ ForP , M ² ¬A iff M,2 A,
• if A,B ∈ ForP , M ² A ∧B iff M ² A and M ² B. ¤

Definition 3. A formula Φ ∈ ForLPP2 is satisfiable if there is an LPP2,Meas-model
M such that M ² Φ; Φ is valid if for every LPP2,Meas-model M, M ² Φ; a set of
T formulas is satisfiable if there is an LPP2,Meas-model M such that M ² Φ for
every Φ ∈ T .

Example 4. Consider the set T = {¬P=0α} ∪ {P<1/nα : n is a positive integer}.
Although every finite subset of T is LPP2,Meas-satisfiable, the set T itself is not.
So, the compactness theorem “If every finite subset of T is satisfiable, then T is
satisfiable” does not hold for LPP2. ¤

Example 5. Note that the classical formulas do not behave in the usual way:
for some α and β ∈ ForC and an LPP2,Meas-model M it can be M ² α ∨ β, but
that neither M ² α, nor M ² β. Similarly, it can be simultaneously M 2 α and
M 2 ¬α. Nevertheless, the set of all classical formulas that are valid with respect
to the above given semantics and the set of all classical valid formulas coincide,
because every world from an arbitrary LPP2,Meas-model can be seen as a classical
propositional interpretation.

In the sequel we will also consider the following classes of LPP2-models:

LPP2,Meas,All, LPP2,Meas,σ and LPP2,Meas,Neat.

A model M = 〈W,H, µ, v〉 belongs to the first class if H is the power set of W , i.e.,
if every subset of W is µ-measurable. A model M belongs to the second class if it
is a σ-additive measurable model, i.e., if µ is a σ-additive probability measure. A
model M belongs to the second class if it is a measurable model such that µ(H1) = 0
iff H1 = ∅, i.e., if only the empty set has the zero probability.
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3.3. Complete Axiomatization. The set of all valid formulas can be characterized
by the following set of axiom schemata:

(1) all instances of the classical propositional tautologies
(2) P>0α
(3) P6rα → P<sα, s > r
(4) P<sα → P6sα
(5) (P>rα ∧ P>sβ ∧ P>1(¬(α ∧ β))) → P>min(1,r+s)(α ∨ β)
(6) (P6rα ∧ P<sβ) → P<r+s(α ∨ β), r + s 6 1

and inference rules:
(1) From Φ and Φ → Ψ infer Ψ.
(2) From α infer P>1α.
(3) From A → P>s− 1

k
α, for every integer k > 1

s , and s > 0 infer A → P>sα.
We denote this axiomatic system by AxLPP2 .

Definition 6. A formula Φ is deducible from a set T of formulas (denoted by
T ` Φ) if there is an at most denumerable sequence of formulas Φ0, Φ1, . . . , Φ, such
that every Φi is an axiom or a formula from the set T , or it is derived from the
preceding formulas by an inference rule. A proof for Φ from T is the corresponding
sequence of formulas. A formula Φ is a theorem (denoted by ` Φ) if it is deducible
from the empty set. ¤
Definition 7. A set T of formulas is consistent if there are at least a formula from
ForC , and at least a formula from ForP that are not deducible from T , otherwise
T is inconsistent. A consistent set T of formulas is said to be maximal consistent
if the following holds:

• for every α ∈ ForC , if T ` α, then α ∈ T and P>1α ∈ T , and
• for every A ∈ ForP , either A ∈ T or ¬A ∈ T .

A set T of formulas is deductively closed if for every Φ ∈ ForLPP2 , if T ` Φ, then
Φ ∈ T .

Alternatively, we can say that T is inconsistent iff T ` ⊥. Also, note that
classical and probability formulas are handled in different ways in Definition 7:
it is not required that for every classical formula α, either α or ¬α belongs to a
maximal consistent set, as it is done for formulas from ForP .

Let us now discuss the above axioms and rules. First note that, by Axiom 1,
the classical propositional logic is a sublogic of LPP2. It is also easy to see that
every LPP2-proof consists of two parts (one of them may be empty). In the first
one only classical formulas are involved, while the second one uses formulas from
ForP . Two parts are separated by some applications of Rule 2. There is no inverse
rule, so we can pass from the classical to the probability level, but we cannot
come back. It follows that LPP2-logic is a conservative extension of the classical
propositional logic. The axioms 2– 6 concern the probabilistic aspect of LPP2.
Axiom 2 announces that every formula is satisfied by a set of worlds of the measure
at least 0. By substituting ¬α for α in the axiom, the formula P>0¬α is obtained.
According to our definition of the operator P61, we have the following instance of
Axiom 2:
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2′. P61α (= P>1−s¬α, for s = 1).
It forces that every formula is satisfied by a set of time instants of the measure
at most 1, and gives the upper bound for probabilities of formulas in LPP2,Meas-
models. In a similar way,the axioms 3 and 4 are equivalent to

3′. P>tα → P>sα, t > s
4′. P>sα → P>sα

respectively. The axioms 5 and 6 correspond to the additivity of measures. For
example, in Axiom 5, if sets of worlds that satisfy α and β are disjoint, then the
measure of the set of worlds that satisfy α ∨ β is the sum of the measures of the
former two sets. Rule 1 is classical Modus Ponens. Rule 2 can be considered as the
rule of necessitation in modal logics, but it can be applied on the classical proposi-
tional formulas only. Rule 3 is the only infinitary inference rule in the system, i.e.,
it has a countable set of assumptions and one conclusion. It corresponds to the
Archimedean axiom for real numbers and intuitively says that if the probability is
arbitrary close to s, then it is at least s.

3.4. Soundness and completeness.

3.4.1. Soundness. Soundness of our system follows from the soundness of classi-
cal propositional logic, as well as from the properties of probabilistic measures, so
we give only a sketch of a straightforward but tedious proof.

Theorem 8 (Soundness). The axiomatic system AxLPP2 is sound with respect to
the class of LPP2,Meas-models.

Proof. We can show that every instance of an axiom schemata holds in every model,
while the inference rules preserve the validity. For example, let us consider Axiom 5.
Suppose that P>rα, P>sβ, and P>1¬(α ∨ β) hold in a model M = 〈W,H, µ, v〉. It
means that µ([α]) > r, µ([β]) > s, and that [α] and [β] are disjoint sets. By the
definition of finitely additive measures, the measure of [α] ∪ [β] (which is [α ∨ β])
is µ([α]) + µ([β]). Hence, M ² P>min(1,r+s)(α ∨ β), and Axiom 5 holds in M . The
other axioms can be proved to be valid in a similar way.

Rule 1 is validity-preserving for the same reason as in classical logic. Consider
Rule 2 and suppose that a formula α ∈ ForC is valid. Then, for every model
M = 〈W,H, µ, v〉, [α] = W , and µ([α]) = 1. Hence, P>1α is valid too. Rule 3
preserves validity because of the properties of the set of real numbers. ¤

3.4.2. Completeness. In the proof of the completeness theorem the following
strategy is applied. We start with a form of Deduction theorem (Theorem 9) and
some other auxiliary statements (the lemmas 10, 11, 12). Then, we show how to
extend a consistent set T of formulas to a maximal consistent set T ∗ (Theorem
13). Finally, the canonical model MT is constructed using the set T ∗ (Theorem
14) such that MT ² ϕ iff ϕ ∈ T ∗ (Theorem 15).

Theorem 9 (Deduction theorem). If T is a set of formulas and ϕ,ψ ∈ ForC or
ϕ,ψ ∈ ForP , then

T ∪ {ϕ} ` ψ iff T ` ϕ → ψ.
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Proof. The implication from right to left can prove exactly in the same way as
in the classical propositional case. For the other direction we use the transfinite
induction on the length of the proof of ψ from T ∪{ϕ}. The cases when either ` ψ
or ϕ = ψ or ψ is obtained by application of Modus Ponens (Rule 1) are standard.

Thus, let us consider the case where ψ = P>1α is obtained from T ∪ {ϕ} by an
application of Rule 2, and ϕ ∈ ForS

P . In that case:
T, ϕ ` α
T, ϕ ` P>1α by Rule 2

However, since α ∈ ForC , and ϕ ∈ ForS
P , ϕ does not affect the proof of α from

T ∪ {ϕ}, and we have:
(1) T ` α
(2) T ` P>1α by Rule 2
(3) T ` P>1α → (ϕ → P>1α)
(4) T ` ϕ → P>1α by Rule 1.

Next, let us consider the case where ψ = A → P>sα is obtained from T ∪ {ϕ} by
an application of Rule 3, and ϕ ∈ ForP . Then:

(1) T, ϕ ` A → P>s− 1
k
α, for every integer k > 1

s

(2) T ` ϕ → (A → P>s− 1
k
α), for k > 1

s , by the induction hypothesis
(3) T ` (ϕ ∧A) → P>s− 1

k
α, for k > 1

s

(4) T ` (ϕ ∧A) → P>sα, from (3) by Rule 3
(5) T ` ϕ → ψ. ¤

Lemma 10.
(1) ` P>1(α → β) → (P>sα → P>sβ),
(2) if ` α ↔ β, then ` P>sα ↔ P>sβ,
(3) ` P>sα → P>rα, s > r,
(4) ` P6rα → P6sα, s > r.

Proof. (1) First note that using Rule 2, from ` ¬α ∨ ¬⊥, we obtain

(1) ` P>1(¬α ∨ ¬⊥),

and similarly, from ` (¬α ∧ ¬⊥) ∨ ¬¬α we have

(2) ` P>1((¬α ∧ ¬⊥) ∨ ¬¬α).

By Axiom 5, we have ` (P>sα ∧ P>0⊥ ∧ P>1(¬α ∨ ¬⊥)) → P>s(α ∨ ⊥). Since
` P>0⊥ by Axiom 2, from (1) it follows that

(3) ` P>sα → P>s(α ∨ ⊥).

The expression P>s(α ∨ ⊥) denotes P>s¬(¬α ∧ ¬⊥), P>1−(1−s)¬(¬α ∧ ¬⊥), and
P61−s(¬α ∧ ¬⊥). Similarly, ¬P>s¬¬α denotes P<s¬¬α. By Axiom 6, we have

` (P61−s(¬α ∧ ¬⊥) ∧ P<s¬¬α) → P<1((¬α ∧ ¬⊥) ∨ ¬¬α).

Since P>1((¬α∧¬⊥)∨¬¬α) denotes ¬P<1((¬α∧¬⊥)∨¬¬α), from (2) we obtain

` (P61−s(¬α ∧ ¬⊥) ∧ P<s¬¬α) →
(P<1((¬α ∧ ¬⊥) ∨ ¬¬α) ∧ ¬P<1((¬α ∧ ¬⊥) ∨ ¬¬α)).
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It follows that ` P61−s(¬α ∧ ¬⊥) → ¬P<s¬¬α, i.e.,

(4) ` P>s(α ∨ ⊥) → P>s¬¬α.

From (3) and (4) we obtain ` P>sα → P>s¬¬α. The negation of the formula
P>1(α → β) → (P>sα → P>sβ) is equivalent to P>1(¬α∨β)∧P>sα∧P<sβ. Since
` P>sα → P>s¬¬α, this formula implies P>1(¬α∨β)∧P>s¬¬α∧P<sβ which can
be rewritten as P>1(¬α ∨ β) ∧ P61−s¬α ∧ P<sβ. From:

• Axiom 6, P61−s¬α ∧ P<sβ → P<1(¬α ∨ β), and
• P<1α = ¬P>1α,

we have

` ¬(P>1(α → β) → (P>sα → P>sβ)) → P>1(¬α ∨ β) ∧ ¬P>1(¬α ∨ β),

a contradiction. It follows that

` P>1(α → β) → (P>sα → P>sβ).

(2) It is an easy consequence of Lemma 10(1).
(3) This formula expresses monotonicity of probabilities. From Axiom 3’ P>sα →

P>rα, s > r, and Axiom 4’ P>rα → P>rα, we obtain ` P>sα → P>rα for s > r.
If s = r, the formula is trivially a theorem of the form ` ϕ → ϕ.

(4) Similarly as (3). ¤
Lemma 11. Let T be a consistent set of formulas.

(1) For any formula A ∈ ForP , either T ∪ {A} is consistent or T ∪ {¬A} is
consistent.

(2) If ¬(α → P>sβ) ∈ T , then there is some n > 1
s such that T ∪ {α →

¬P>s− 1
n
β} is consistent.

Proof. (1) The proof is standard: if T ∪{A} ` ⊥, and T ∪{¬A} ` ⊥, by Deduction
Theorem we have T ` ⊥.

(2) Suppose that for every n > 1
s :

T, α → ¬P>s− 1
n
β ` ⊥.

By Deduction Theorem, and manipulation at the propositional level, we have

T ` α → P>s− 1
n
β,

for every n > 1
s . By application of Rule 3 we obtain T ` α → P>sβ, a contradiction

with the fact that ¬(α → P>sβ) ∈ T . ¤
Lemma 12. Let T be a maximal consistent set of formulas. Then,

(1) for any formula A ∈ ForP , exactly one member of {A,¬A} is in T ,
(2) for all formulas A, B ∈ ForP , A ∨B ∈ T iff A ∈ T or B ∈ T ,
(3) for all formulas ϕ,ψ, where either ϕ, ψ ∈ ForC or ϕ, ψ ∈ ForP , ϕ ∧ ψ ∈ T

iff {ϕ,ψ} ⊂ T ,
(4) for every ϕ ∈ ForLPP2 , if T ` ϕ, then ϕ ∈ T ,
(5) for all formulas ϕ,ψ, where either ϕ,ψ ∈ ForC or ϕ,ψ ∈ ForP , if {ϕ,ϕ →

ψ} ⊂ T , then ψ ∈ T ,
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(6) for all formulas ϕ,ψ, where either ϕ,ψ ∈ ForC or ϕ,ψ ∈ ForP , if ϕ ∈ T
and ` ϕ → ψ, then ψ ∈ T ,

(7) for any formula α, if t = sups{P>sα ∈ T}, and t ∈ S, then P>tα ∈ T .

Proof. Proofs (1)–(6) are standard.
(7) Let t = sups{P>sα ∈ T} ∈ S. By the monotonicity of the measure (Lemma

10(12)), for every s ∈ S, s < t, T ` P>sα. Using Rule 3 we have T ` P>tα. Since
T is a maximal consistent set, it follows from Lemma 12(4) that P>tα ∈ T . ¤
Theorem 13. Every consistent set can be extended to a maximal consistent set.

Proof. Let T be a consistent set, CnC(T ) the set of all classical formulas that are
consequences of T , and A0, A1,. . . an enumeration of all formulas from ForP . We
define a sequence of sets Ti, i = 0, 1, 2,. . . such that:

(1) T0 = T ∪ CnC(T ) ∪ {P>1α : α ∈ CnC(T )}
(2) for every i > 0,

(a) if Ti ∪ {Ai} is consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
(b) if Ai is of the form β → P>sγ, then Ti+1 = Ti∪{¬Ai, β → ¬P>s− 1

n
γ},

for some positive integer n, so that Ti+1 is consistent, otherwise
(c) Ti+1 = Ti ∪ {¬Ai}.

(3) T =
⋃∞

i=0 Ti.
The set T0 is consistent since it is contains consequences of an consistent set, and
similarly for the other members of the family of sets, by Lemma 12 each Ti, i > 0,
is consistent.

It remains to show that T is maximal and consistent. The steps 1 and 2 of the
above construction fulfill all requirements from Definition 7 which guarantees that
T is maximal. We continue by showing that T is a deductively closed set which
does not contain all formulas, and, as a consequence, that T is consistent.

First of all, T does not contain all formulas. If α ∈ ForC , by the construction of
T0, α and ¬α cannot be simultaneously in T0. For a formula A ∈ ForP the set T
does not contain both A = Ai and ¬A = Aj , because Tmax(i,j)+1 is consistent.

I remains to show that T is deductively closed. If a formula α ∈ ForC and
T ` α, then by the construction of T0, α ∈ T and P>1α ∈ T . Let A ∈ ForP . It
can be proved by the induction on the length of the inference that if T ` A, then
A ∈ T . Note that if A = Aj and Ti ` A, it must be A ∈ T because Tmax(i,j)+1 is
consistent. Suppose that the sequence ϕ1, ϕ2,. . . , A forms the proof of A from T .
If the sequence is finite, there must be a set Ti such that Ti ` A, and A ∈ T . Thus,
suppose that the sequence is countably infinite. We can show that for every i, if
ϕi is obtained by an application of an inference rule, and all the premises belong
to T , then it must be ϕi ∈ T . If the rule is a finitary one, then there must be a set
Tj which contains all the premises and Tj ` ϕi. Reasoning as above, we conclude
ϕi ∈ T . Next, we consider the only infinitary rule 3. Let ϕi = B → P>sα be
obtained from the set of premises {ϕk

i = B → P>sk
γ : sk ∈ S}. By the induction

hypothesis, ϕk
i ∈ T for every k. If ϕi /∈ T , by the step 2b of the construction, there

are some l and j such that ¬(B → P>sα), B → ¬P>s− 1
l
γ ∈ Tj . It means that for

some j′ > j:
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• B ∧ ¬P>sα ∈ Tj′ ,
• B ∈ Tj′ ,
• ¬P>s− 1

l
γ, P>s− 1

l
γ ∈ Tj′ ,

which is in contradiction with consistency of Tj′ . ¤

The set T is used to define a tuple MT = 〈W,H, µ, v〉, where:
• W = {w ² CnC(T )} contains all classical propositional interpretations that

satisfy the set CnC(T ) of all classical consequences of the set T ,
• [α] = {w ∈ W : w ² α} and H = {[α] : α ∈ ForC},
• µ : H → [0, 1] such that µ([α]) = sups{P>sα ∈ T }, and
• for every world w and every primitive proposition p ∈ φ, v(w, p) = true iff

w ² p.
The next theorem states that MT is an LPP2,Meas-model.

Theorem 14. Let MT = 〈W,H, µ, v〉 be defined as above and α, β ∈ ForC . Then,
the following hold:

(1) H is an algebra of subsets of W ,
(2) If [α] = [β], then µ([α]) = µ([β]),
(3) µ([α]) > 0.
(4) µ(W ) = 1 and µ(∅) = 0.
(5) µ([α]) = 1− µ([¬α]).
(6) µ([α] ∪ [β]) = µ([α]) + µ([β]), for all disjoint [α] and [β].

Proof. (1) Let α, α1, α2,. . . αn be formulas from ForC . It is not hard to see that
the following hold:

• W = [α ∨ ¬α], and W ∈ H,
• if [α] ∈ H, then its complement [¬α] belongs to H, and
• if [α1],. . . , [αn] ∈ H, then the union [α1] ∪ . . . ∪ [αn] ∈ H because [α1] ∪

. . . ∪ [αn] = [α1 ∨ . . . ∨ αn].
Thus, H is an algebra of subsets of W .

(2) It is enough to prove that [α] ⊂ [β] implies µ([α]) 6 µ([β]). By the com-
pleteness of the propositional logic, [α] ⊂ [β] means that α → β ∈ CnC(T ) and
P>1(α → β) ∈ T . By Lemma 10(1) we have that for every s ∈ S, P>sα → P>sβ ∈
T . Thus, µ([α]) 6 µ([β]).

(3) Since P>0α is an axiom, µ([α]) > 0.
(4) Since p ∨ ¬p ∈ CnC(T ) and P>1(p ∨ ¬p) ∈ T for every p ∈ φ, we have

W = [p ∨ ¬p] and µ(W ) = 1. On the other hand, obviously, µ(∅) > 0. Since
P>1(p ∨ ¬p) = P>1−0(p ∨ ¬p) = P60¬(p ∨ ¬p) = P60(p ∧ ¬p) = ¬P>0(p ∧ ¬p), by
Axiom 3’, sups{P>s(p ∧ ¬p) ∈ T } = 0, and µ(∅) = 0.

(5) Let r = µ([α]) = sups{P>sα ∈ T }. Suppose that r = 1. By Lemma 12(7),
P>1α) ∈ T . Thus, ¬P>0¬α(= P60¬α = P>1α) belongs to T . If for some s > 0,
P>s¬α ∈ T , by Axiom 3’ it must be P>0¬α ∈ w, a contradiction. It follows
that µ([¬α]) = 1. Next, suppose that r < 1. Then, for every rational number
r′ ∈ (r, 1], ¬P>r′α = P<r′α, and P<r′α ∈ T . By Axiom 4, P6r′α and P>1−r′¬α
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belong to T . On the other hand, if there is a rational number r′′ ∈ [0, r) such that
P>1−r′′¬α ∈ T , then ¬P>r′′α ∈ T , a contradiction. Hence, sups{P>s(¬α) ∈ T } =
1− sups{P>sα ∈ T }, i.e., µ([α]) = 1− µ([¬α]).
(6) Let [α]∩ [β] = ∅, µ([α]) = r and µ([β]) = s. Since [β] ⊂ [¬α], by the above steps
(2) and (5), we have r + s 6 r + (1 − r) = 1. Suppose that r > 0, and s > 0. By
the well known properties of the supremum, for every rational number r′ ∈ [0, r),
and every rational number s′ ∈ [0, s), we have P>r′α, P>s′β ∈ T . It follows by the
axiom 5 that P>r′+s′(α ∨ β) ∈ T . Hence, r + s 6 t0 = supt{P>t(α ∨ β) ∈ T }. If
r + s = 1, then the statement trivially holds. Suppose r + s < 1. If r + s < t0, then
for every rational number t′ ∈ (r + s, t0) we have P>t′(α ∨ β) ∈ T . We can choose
rational numbers r′′ > r and s′′ > s such that:

¬P>r′′α, P<r′′α ∈ T , ¬P>s′′β, P<s′′(β) ∈ T and r′′ + s′′ = t′ 6 1.

By Axiom 4, P6r′′α ∈ T . Using Axiom 6 we have

P<r′′+s′′(α ∨ β) ∈ T , ¬P>r′′+s′′(α ∨ β) ∈ T and ¬P>t′(α ∨ β) ∈ T ,

a contradiction. Hence, r+s = t0 and µ([α]∪[β]) = µ([α])+µ([β]). Finally suppose
that r = 0 or s = 0. Then we can reason as above, with the only exception that
r′ = 0 or s′ = 0. ¤

Theorem 15 (Extended completeness theorem for LPP2,Meas). A set T of formu-
las is AxLPP2-consistent iff it is LPP2,Meas-satisfiable.

Proof. The (⇐)-direction follows from the soundness of the above axiomatic system.
In order to prove the (⇒)-direction we can construct the LPP2,Meas-model MT ,
and show that for every ϕ ∈ ForLPP2 , MT ² ϕ iff ϕ ∈ T .

To begin the induction, let ϕ = α ∈ ForC . If α ∈ CnC(T ), then by the defi-
nition of MT , MT ² α. Conversely, if MT ² α, by the completeness of classical
propositional logic, α ∈ CnC(T ).

Next, let ϕ = P>sα. If P>sα ∈ T , then supr{P>r(α) ∈ T } = µ([α]) > s,
and MT ² P>sα. For the other direction, suppose that MT ² P>sα, i.e., that
supr{P>r(α) ∈ T } > s. If µ([α]) > s, then, by the well known property of
supremum and monotonicity of µ, P>sα ∈ T . If µ([α]) = s, then by Lemma 12(7),
P>sα ∈ T .

Let ϕ = ¬A ∈ ForP . Then MT ² ¬A iff MT 2 A iff A /∈ T iff (by Lema 12(1))
¬A ∈ T .

Finally, let ϕ = A ∧ B ∈ ForP . MT ² A ∧ B iff MT ² A and MT ² B iff A,
B ∈ T iff (by Lema 12(3)) A ∧B ∈ T . ¤

In the last part of this section the canonical model MT from Theorem 15 will
be used as a weak model, i.e., as a tool in proving completeness with respect to the
classes: LPP2,Meas,All, LPP2,Meas,σ and LPP2,Meas,Neat.

Theorem 16 (Extended completeness theorem for LPP2,Meas,All). A set T of
formulas is AxLPP2-consistent iff it is LPP2,Meas,All-satisfiable.
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Proof. The proof can be obtained by applying the extension theorem for additive
measure2. on the measure µ from the weak canonical model MT . Thus, there is a
finitely additive measure µ defined on the power set of W that is an extension of
the measure µ. ¤

Theorem 17 (Extended completeness theorem for LPP2,Meas,σ). A set T of for-
mulas is AxLPP2-consistent iff it is LPP2,Meas,σ-satisfiable.

Proof. By the Loeb process and a bounded elementary embedding [46] we can
transform the weak canonical model MT into a σ-additive probability model ∗MT

such that for every formula Φ, MT ² Φ iff ∗MT ² Φ. ¤

Theorem 18 (Extended completeness theorem for LPP2,Meas,Neat). A set T of
formulas is AxLPP2-consistent iff it is LPP2,Meas,Neat-satisfiable.

Proof. In this proof we use a slightly changed construction of the set T from The-
orem 13. Using the same notation as above, the sequence of sets Ti, i = 0, 1, 2, . . .
is now defined in the following way:

(1) T0 = T ∪ CnC(T ) ∪ {P>1α : α ∈ CnC(T )}
(2) for every i > 0,

(a) if Ti ∪ {Ai} is consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
(b) if Ai is of the form β → P>sγ, then Ti+1 = Ti∪{¬Ai, β → ¬P>s− 1

n
γ},

for some positive integer n, so that Ti+1 is consistent, otherwise
(c) Ti+1 = Ti ∪ {¬Ai}.
(d) if Ti is enlarged by a formula of the form P=0α, add ¬α to Ti+1 as

well.
(3) T =

⋃∞
i=0 Ti.

As it can be seen, the only new step is 2d. We can show that it produces consistent
sets, too. So, suppose that for some α ∈ ForC , (Ti ∪ {P=0α}) ∪ {¬α} ` ⊥. By
Deduction theorem, we have that Ti ∪ {P=0α} ` α. Since α ∈ ForC , α belongs
to CnC(T ), and by the construction, we have that P>1α ∈ T0 which leads to
inconsistency of Ti ∪ {P=0α} since:

(1) Ti, P=0α ` P>1α, since P>1α ∈ Ti,
(2) Ti, P=0α ` P60α, by the definition of P=0,
(3) Ti, P=0α ` P<1α, by Axiom 3

and P<1α = ¬P>1α. The rest of the completeness proof is the same as in Theo-
rem 17. ¤

The situation that the axiomatic system AxLPP2 is sound and complete with
respect to three different classes of models is similar to the one from the modal
framework where, for example, the system K is characterized by the class of all

2Theorem 3.2.10 from [9]. Let C be an algebra of subsets of a set Ω and µ(w) a positive
bounded charge-a finitely additive measure-on C. Let F be an algebra on Ω containing C. Then

there exists a positive bounded charge µ(w) on F such that µ(w) is an extension of µ(w) from C

to F and that the range of µ(w) is a subset of the closure of the range of µ(w) on C



PROBABILITY LOGICS 55

models, but also by the class of all irreflexive models. In other words, LPP2-
formulas cannot express the differences between the mentioned classes of probability
models.

3.5. Decidability and Complexity. In this subsection we will consider the prob-
lem of satisfiability of ForLPP2 formulas. Since there is a procedure for deciding
satisfiability and validity for classical propositional formulas, we will consider ForP -
formulas only.

So, let A ∈ ForP . Recall that an atom a of A is a formula of the form ±p1∧ . . .∧
±pn, where ±pi is either pi, or ¬pi, and p1,. . . , pn are all primitive propositions
appearing in A. Note that for different atoms ai and aj we have ` ai → ¬aj . Thus,
in every LPP2,Meas-model µ(ai∨aj) = µ(ai)+µ(aj). It is easy, using propositional
reasoning and Lemma 10(2), to show that A is equivalent to a formula

DNF (A) =
m∨

i=1

ki∧

j=1

Xi,j(p1, . . . , pn)

called a disjunctive normal form ofA, where:
• Xi,j is a probability operator from the set {P>si,j , P<si,j}, and
• Xi,j(p1, . . . , pn) denotes that the propositional formula which is in the scope

of the probability operator Xi,j is in the complete disjunctive normal form,
i.e., the propositional formula is a disjunction of the atoms of A.

Theorem 19 (Decidability theorem). The logic LPP2 is decidable.

Proof. As it is noted above, a ForP -formula A is equivalent to

DNF (A) =
m∨

i=1

ki∧

j=1

Xi,j(p1, . . . , pn).

A is satisfiable iff at least one disjunct from DNF (A) is satisfiable. Let the
measure of the atom ai be denoted by yi. We use an expression of the form
at ∈ X(p1, . . . , pn) to denote that the atom at appears in the propositional part of
X(p1, . . . , pn). A disjunct D =

∧k
j=1 Xj(p1, . . . , pn) from DNF (A) is satisfiable iff

the following system of linear equalities and inequalities is satisfiable:
2n∑

i=1

yi = 1

yi > 0 for i = 1, . . . , 2n

∑

at∈X1(p1,...,pn)∈D

yt

{
> s1 if X1 = P>s1

< s1 if X1 = P<s1

(5)

. . .

∑

at∈Xk(p1,...,pn)∈D

yt

{
> sk if Xk = P>sk

< sk if Xk = P<sk
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Since the problem of LPP2,Meas-satisfiability of A is reduced to the linear systems
solving problem, the satisfiability problem for LPP2-logic is decidable. Finally,
since A is LPP2,Meas-valid iff ¬A is not LPP2,Meas-satisfiable, the validity problem
is also decidable. ¤

We can show that the LPP2,Meas-satisfiability problem is NP-complete.

Theorem 20. The LPP2,Meas-satisfiability problem is NP-complete.

Proof. The lower bound follows from the complexity of the same problem for clas-
sical propositional logic. The upper bound is a consequence of the NP-complexity
of the satisfiability problem for weight formulas from [27, Theorem 2.9]3. ¤

3.6. A heuristical approach to the LPP2,Meas-satisfiability problem. Since the
LPP2,Meas-satisfiability problem is NP-complete, it is natural to try to solve its
instances using heuristics. In this section we describe such an approach which is
based on genetic algorithms.

Genetic algorithms (GA) use populations of individuals. Each individual (also
called chromosome) is seen as a possible solution in the search space for the par-
ticular problem. Thus, a GA can be seen as a searching procedure for the global
optima of the corresponding problem. Individuals are represented by genetic code
over a finite alphabet. An evaluation function assigning fitness values to individuals
has to be defined. Fitness values indicate quality of the corresponding individu-
als, while average fitness of entire populations may be good measures of obtained
quality of the procedures. GA’s consist of applications of the genetic operators to
populations that must ensure that average fitness values are continually improved
from each generation to subsequent. Basic genetic operators are selection, crossover
and mutation, but some additional operators such as inversion, local search, etc.,
may be used.

Selection mechanism favourizes highly fitted individuals (as well as parts of ge-
netic code of individuals, i.e., genes) to have better chances for reproduction into

3Statements about complexity of the satisfiability problem for weight formulas from [27]. |A|
and ‖A‖ denote the length of A (the number of symbols required to write A), and the length of
the longest coefficient appearing in A, when written in binary, respectively. The size of a rational
number a/b, where a and b are relatively prime, is defined to be the sum of lengths of a and b,
when written in binary.
Theorem 2.6 Suppose A is a weight formula that is satisfied in some measurable probability
structure. Then A is satisfied in a structure (S, H, µ, v) with at most |A| states where every set of
states is measurable, and where the probability assigned to each state is a rational number with
size O(|A|‖A‖+ |A| log(|A|)).
Lemma 2.7 If a system of r linear equalities and/or inequalities with integer coefficients each of
length at most l has a nonnegative solution, then it has a nonnegative solution with at most r
entries positive, and where the size of each member of the solution is O(rl + r log(r)).
Lemma 2.8 Let A be a weight formula. Let M = (S, H, µ, v) and M0 = (S, H, µ, v′) be probability
structures with the same underlying probability space (S, H, µ). Assume that v(w, p) = v′(w, p)
for every state w and every primitive proposition p that appears in A. Then M ² A iff M0 ² A.
Theorem 2.9 The problem of deciding whether a weight formula is satisfiable in a measurable
probability structure is NPcomplete.
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InputData();
PopulationInit();
while(not FinishedGA()){

for (i = 0 ; i < Npop ; i + +) pi = ObjectiveFunction();
HeuristicImprovement();
ComputeFitnesses();
Selection();
Crossover();
Mutation();

}
OutputResults();

Figure 1. A general description of GA’s

next generations. On the other hand, chances for reproduction for less fitted mem-
bers are reduced, and they are gradually wiped out from populations. Crossover
operator partitions a population into a set of pairs of individuals named parents.
For each pair a recombination of their genetic material is performed with some
probability. In that way nondeterministic exchange of genetic material in popula-
tions is obtained. Multiple usage of selection and crossover operators may produce
that the variety of genetic materials is lost. It means that some areas of search
spaces become not reachable. This usually causes the convergence in local opti-
mums far from the global optimal values. Mutation operator can help to avoid this
shortcoming. Parts of individuals (genes) can be changed with some small proba-
bility to increase diversibility of genetic material. An initial population is usually
generated by random, although sometimes it may be fully or partially produced by
an initial heuristic. A general description of GA’s is given in Figure 1, where Npop

and pi denote the number of individuals and their objective values, respectively.
The objective value of an individual corresponds to the value which the individ-
ual owns in the case of the considered problem. The for-loop is repeated until a
finishing criterion (the global optima is found, the maximal number of iterations
is reached,. . . ) is satisfied. Since the procedure is not complete, if the maximal
number of iterations is reached, we do not know whether the considered problem is
solvable. HeuristicImprovement() can be optionally included to improve efficiency
of GA and/or to help the procedure to escape from local optima.

In this section, we slightly change syntax of probabilistic formulas. Namely, as
we will mention below in Section 10, sometimes is suitable to consider boolean
combinations of basic weight formulas of the form: a1w(α1) + · · · + anw(αn) > c,
where ai’s and c are rational numbers, and αi’s are classical propositional formulas
containing primitive propositions from φ. The intended meaning of w(α) is “the
probability of α”. Note that w(α) > s can be written as P>sα in our notation. A
weight literal is an expression of the form

∑
i aiw(αi) > c or

∑
i aiw(αi) < c. The

logic that allows such kind of formulas is still NP-complete-which can be proved as
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above, i.e., by reducing the LPP2,Meas-satisfiability problem to linear programming
problem – so by using this logic we just add some expressiveness to our language.

Since ForP -formulas can be equivalently translated into their disjunctive normal
forms, and a disjunction is satisfiable if at least one disjunct is satisfiable, in the
sequel we will only consider formulas of the following form:

k∧

j=1

aj
1w(CDNF(αj

1)) + · · ·+ aj
nj

w(CDNF(αj
nj

))rhoj cj ,

where ρj ∈ {>, <}, aj
i ’s and cj are rational numbers, and CDNF(α) denotes the

complete disjunctive normal form of α. We say that such a formula is in the weight
conjunctive form (wfc-form). Also, we will use at ∈ CDNF(α) to denote that the
atom at appears in CDNF(α).

Example 21. The formula w(p → q) + w(p) > 1.7∧w(q) > 0.6 is satisfiable since
the same holds for the linear system

µ(p ∧ q) + µ(p ∧ ¬q) + µ(¬p ∧ q) + µ(¬p ∧ ¬q) = 1
µ(p ∧ q) > 0
µ(p ∧ ¬q) > 0
µ(¬p ∧ q) > 0
µ(¬p ∧ ¬q) > 0
µ(p ∧ ¬q) + µ(¬p ∧ q) + µ(¬p ∧ ¬q) + 2µ(p ∧ q) > 1.7
µ(p ∧ q) + µ(¬p ∧ q) > 0.6. ¤

The input for the LPP2,Meas-satisfiability checker based on genetic algorithms
is a weight formula f in the wfc-form with L weight literals. Without loss of
generality, we demand that classical formulas appearing in weight terms are in
disjunctive normal form. Let φ(f) = {p1, . . . , pN} denote the set of all primitive
propositions from f , and |φ(f)| = N .

An individual M consists of L pairs of the form (atom, probability) that describe
a probabilistic model. The first coordinate is given as a bit string of length N , where
1 at the position i denotes ¬pi, while 0 denotes pi. Probabilities are represented
by floating point numbers.

For an individual M =
(
(at1, µ(at1)), . . . , (atN , µ(atN ))

)
, the linear system is

equivalent to:
∨L

i=1

( ∑L
j=1 aijµ(atj))ρi ci

)
. Note that it is possible that some

aij = 0, though [aij ] matrix is usually not sparse.
The individuals are evaluated using function d(M), which measures a degree

of unsatisfiability of an individual M . Function d(M) is defined as the distance
between left and right hand side values of the weight literals not satisfied in the
model described by M :

d(M) =

√√√√
∑

M2ti ρi ci

[
ai
1

∑

at∈CDNF(αi
1)

µ(at) + · · ·+ ai
ni

∑

at∈CDNF(αi
ni

)

µ(at)− ci

]2

.

If d(M) = 0, all the inequalities in the linear system are satisfied, hence the indi-
vidual M is a solution.
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Some features of GA have been set for all tests:

• the population consists of 10 individuals,
• one set of tests has been performed with a population of 20 individuals,
• selection is performed using the rank-based roulette operator (with the rank

from 2.5 for the best individual to 1.6 for the worst individual-the step is
0.1),

• The crossover operator is one-point, with the probability 0.85
• the elitist strategy with one elite individual is used in the generation re-

placement scheme,
• multiple occurrences of an individual are removed from the population.

Two problem-specific two-parts mutation operator were used. The first operator
(TP1 ) features two different probabilities of mutation for the two parts (atoms,
probabilities) of an individual; after mutation, the real numbers in probabilities
part of an individual have to be scaled since their sum must equal 1. The second
operator (TP2 ) is a combination of ordinary mutation on atoms part, and a special
mutation on probabilities part of an individual. Instead of performing mutation
on two bits in the representation of probabilities part, two members pi1, pi2 of
probabilities part are chosen randomly and then replaced with random p′i1 , p

′
i2

,
such that pi1 + pi2 = p′i1 + p′i2 and 0 6 p′i1 , p

′
i2

6 1. The sum of probabilities does
not change and no scaling is needed.

We have experimented with the following choices in the local search procedure:
LS1 (LS denotes “local search”): For an individual M all the weight literals

are divided into two sets: the first set (B) contains all satisfied literals, while the
second one (W ) contains all the remaining literals. The literal tB ρB cB ∈ B
(called the best one) with the biggest difference |µ(tB)− cB | between the left and
the right side, and the literal tW ρW cW ∈ W (the worst one) with the biggest
difference |µ(tW ) − cW | are found. Two sets of atoms are determined: the first
set BAt(f) contains all the atoms from M satisfying at least one classical formula
αB

i from tB = aB
1 w(αB

1 ) + · · ·+ aB
kB

w(αB
kB

), while the second one WAt(f) contains
all the atoms from M satisfying at least one classical formula αW

i from tW =
aW
1 w(αW

1 )+ · · ·+aW
kW

w(αW
kW

). The probabilities of a randomly selected atom from
BAt(f) rWAt(f) and a randomly selected atom from WAt(f) r BAt(f) are changed
so that tB ρB cB remains satisfied, while the distance |µ(tW )− cW | is decreased or
tW ρW cW is satisfied.

LS2: For na individual M , the worst weight literal tW ρW cW from W (the
set of unsatisfied literals) with the biggest difference |µ(tW ) − cW | is found. The
literal can be represented as

∑L
j=1 aWjµ(atj)ρW cW . We try to change the vector of

probabilities [µ(atj)], so that the linear equation
∑L

j=1 aWjµ(atj) = cW is satisfied.
The equation

∑L
j=1 aWjµ(atj) = cW represents a hyper-plane in Rn while [aWj ]

denotes a vector normal to the hyper-plane. The projection of [µ(atj)] to the
hyper-plane, which satisfies the equation, is [µ′(atj)] = [µ(atj)] + kW [aWj ]. The
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calculation of k and the projection vector is simple and straightforward, and gives

k =
cw − aW ◦ [µ(atj)]

|aW |2 =
cw −

∑L
j=1 µ(atj)aWj∑L
j=1 aWj

2
.

We set the new vector of probabilities to be

[µ′′(atj)] =
[max{µ′(atj), 0}]∑L
k=1 max{µ′(atk), 0}

(negative coordinates are replaced with 0, and the vector is scaled so that the sum
of its coordinates

∑L
j=1 µ′′(atj) equals 1).

LS3 is similar to LS2, with the difference being made when choosing the weight
literal tW ρW cW from W (the set of unsatisfied literals). The chosen literal is the
one with the smallest difference |µ(tW )− cW |; it is the best bad literal.

LS4 is similar to LS2 and LS3. Instead of calculating the projection [µ′(atj)] =
[µ(atj)] + kW [aWj ] for one chosen weight literal tW ρW cW from W , we calculate
kWi

[aWij ] for each literal tWi
ρWi

cWi
from W (the set of unsatisfied literals)

and calculate the intermediate vector [µ′(atj)], by adding the linear combination
to the original vector: [µ′(atj)] = [µ(atj)] +

∑
Wi

kWi [aWij ]. The new vector of
probabilities [µ′′(atj)] is then calculated in same fashion as in LS2.

In our methodology, introduced in [86], the performance of the system is eval-
uated on a set of PSAT-instances, i.e., on a set of randomly generated formulas
in the wfc-form (with classical formulas in disjunctive normal form). The advan-
tage of this approach is that a formula can be randomly generated according to
the following parameters: N -the number of propositional letters, L-the number of
weight literals, S-the maximal number of summands in weight terms, and D-the
maximal number of disjuncts in DNF’s of classical formulas. The considered set of
test problems contains 27 satisfiable formulas. Three PSAT-instances were gener-
ated for each of 9 pairs of (N, L), where N ∈ {50, 100, 200}, and L ∈ {N, 2N, 5N}.
For every instance S = D = 5. Having the above parameters, L atoms and their
probabilities (with the constraint that the sum of probabilities must be equal to
1) are chosen. Next, a formula f containing L basic weight formulas is generated.
It contains primitive propositions from the set {p1, . . . , pN} only. Every weight
literal contains at most S summands in its weight term. Every classical formula
is in disjunctive normal form with at most D disjuncts, while every disjunct is a
conjunction of at most N literals. For every weight term t coefficients are chosen,
and the value of t is computed. Next, the sum sp(t) of positive coefficients and the
sum sn(t) of negative coefficients are computed. Finally, the right side value of the
weight literals between sp(t) and sn(t), and the relation sign are chosen such that
f is satisfiable.

We prefer to test more problem instances of different sizes (even very large scale
instances) rather than making more trials on a smaller set of instances (of smaller
or average size). Since the tests are of large sizes, the necessity to perform them in
a reasonable time imposed to set the maximal number of generations to be: 10000
for N = 50, 7000 for N = 100 and 5000 for N = 200.
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Table 1. Average time (rounded to seconds) used by the test
computer to execute successful tests for some selected parameters.
(Note: Value 0 means that the average time was less than half
second.)
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As an illustration of the corresponding results we give Table 1 which contains
the average running time of successful tests as measured on our test computer (a
Pentium P4 2.4GHz, 512MB-based Linux station). The table shows running times
only for selected tests. Columns 2 and 3 show times for tests without LS’s, with
different population size (10 individuals vs 20 individuals). Increased population
size does result in smaller number of iterations needed to find the solution, but the
computational cost for each iteration is increased and the overall computational
cost is greater than with smaller population size. In columns 4-7 and 8-11 we
can compare the efficiency of various LS’s. It is clear that LS2 and LS3 are more
efficient than LS1 and LS4 when used for large problem instances, however it is
not clear which of them is the most efficient. The running times in columns 8–
11 (LS’s applied in each third generation) are on average smaller than times in
columns 4-7 (LS’s applied in each generation). However, this does not mean that
the principle of reducing application of LS’s to each third generation is always more
efficient. Finally, columns 12-14 show execution times for tests using combination
of LS’s. Combined usage of LS’s is not justified in terms of time efficiency, but it
is justified in terms of increased success rate. Higher mutation rate in this setup
leads to better time efficiency and higher success rate, except for a few less complex
problem instances.

4. Some variants of the logic LPP2

The lack of compactness in the presence of a finitary axiomatization might cause
a logical problem: there are consistent sets of formulas that have no model. Exam-
ple 4 contains such a set for LPP2. One way to avoid consistency of unsatisfiable
sets is to employ infinitary logic as we do above. On the other hand, the lack of com-
pactness motivates also investigations of models in which probabilities have a fixed
finite range in which case a finitary axiomatization does not imply the above prob-
lem any more. In this section we present three logics inspired by the idea of restrict-
ing the range of probability measures. In the first logic (denoted LPP

Fr(n)
2 ) we give

a finitary sound and complete axiomatization with respect to a class of models with
measures which have a fixed finite range of the form {0, 1/n, 2/n, . . . , n − 1/n, 1}.
Then we introduce another logic (denoted LPPA,ω1,Fin

2 ) in which the assumption
about the range of the measure is relaxed, and we consider the class of all probabilis-
tic models whose measures have arbitrary finite ranges (without the requirement
that the range is fixed in advance). Finally, we analyze the logic LPPS

2 . It involves
a rule that enables us to syntactically define the range of the probability function
which will appear in the interpretation.

4.1. Logic LPP
Fr(n)
2 . Let n be a fixed positive integer, and Range = {0, 1/n, . . . ,

(n − 1)/n, 1}. If s ∈ [0, 1), then s+ denotes min{r ∈ Range : s < r}. If s ∈ (0, 1],
s− = max{r ∈ Range : s > r}. The most of the notions defined in Section 3 are
also used for the logic LPP

Fr(n)
2 . The main, but important, differences are:

• in Definition 1-the finitely additive measure µ maps the algebra H to Range
and
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• in Definition 6-proofs are finite sequences of formulas.

Note that LPP
Fr(n)
2 -models are given relatively to n, and that different choices of n

produce different logics. The axiomatic system Ax
LPP

Fr(n)
2

contains all the axioms
from the system AxLPP2 , and the inference rules 1 and 2 (but note Rule 3), as well
as the following new axiom:

(7) P>sα → P>s+α

Since the only infinitary inference rule from AxLPP2 (Rule 3) is not included in
Ax

LPP
Fr(n)
2

, it is a finitary axiomatic system. Nevertheless, many statements from
the previous section still hold. The next lemma states that Axiom 7 implies that
the range of measures must be the set Range.

Lemma 22. Let α be a sentence. Then:
(1) ` P<rα → P6r−α,
(2) ` P>rα ↔ P>r+α,
(3) ` P6r−α ↔ P<rα,
(4) ` ∨

s∈Range P=sα,
(5) ` ∨s∈RangeP=sα, where ∨ denotes the exclusive disjunction.

Proof. (1) The considered formula is equivalent to Axiom 7 because P>rα =
¬P6rα = ¬P>1−r¬α = P<1−r¬α, and P>r+α = P>1−(1−r+)α = P61−r+¬α =
P6(1−r)−¬α.

(2) The formula is obtained from the axioms 7 and 3′.
(3) The formula is obtained from Axiom 3, and Lemma 22(1).
(4) From Axiom 2’ P61α (= ¬P>1α), we have ` (P>1α∨¬P>1α)∧¬P>1α. Thus,

` (P>1α ∧ ¬P>1α) ∨ (¬P>1 ∧ ¬P>1α).

From P>1α∧¬P>1α = P=1α, and ` P<1α → P61α, we have ` P=1α∨P<1α. From
` P<1α ↔ ((P>1−α ∨ ¬P>1−α) ∧ P<1α), ` (P>sα → P>s−α) ↔ (P<s−α → P<sα),
we have

` P<1α ↔ ((P>1−α∧¬P>1−α)∨ (P<1−α∧P<1α)), and ` P=1α∨P=1−α∨P<1−α.

In such a way we obtain ` (
∨

s∈Range P=sα) ∨ P<0α. Since ` ¬P<0α, we finally
have ` ∨

s∈Range P=sα.
(5) From P=rα = P>rα ∧ ¬P>rα, and the axiom 3, we have ` P=rα → ¬P=sα,

for s > r. Similarly, by the axiom 3′, we have ` P=rα → ¬P=sα, for s < r. It
follows that ` P=rα → ¬P=sα, for r 6= s, and ` ∨s∈RangeP=sα. ¤

The completeness proofs for the classes:

LPP
Fr(n)
2,Meas, LPP

Fr(n)
2,Meas,All, LPP

Fr(n)
2,Meas,σ and LPP

Fr(n)
2,Meas,Neat

are similar to the corresponding proofs from the previous section. In the sequel we
sketch this proof and emphasize some modified steps.

We begin as in the statements 8, 9 and 10. In the counterpart of Theorem 13 we
do not use the step 2b of the construction of a maximal consistent set, but otherwise
follow the corresponding proof. Then, the statements 12(1)–12(6) obviously hold,
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while Lemma 12(7) needs some explanation. By Lemam 22(5), the supremum s
of the set {r : P>rα ∈ T} must be in the set Range. Also, for that s, it must be
P>sα ∈ T , where T is the considered maximal consistent set. Thus, Lemma 12(7)
holds. A canonical model MT = 〈W,H, µ, v〉 is introduced as above. Note that in
the counterpart of Theorem 14 for every formula α ∈ ForC , sup{r : P>rα ∈ T }
is the same as max{r : P>rα ∈ T , r ∈ Range}, because the set Range is finite.
Theorems 15– 18 can be now proved similarly as it is done above.

Theorem 23 announces a property that does not hold for the systems considered
in the previous section. Another difference between logics from this and the previous
sections is illustrated in Example 24.

Theorem 23 (Compactness theorem for LPP
FR(n)
2 ). Let L be any class of models

considered in this section and T be a set of formulas. If every finite subset of T is
L-satisfiable, then T is L-satisfiable.

Proof. If T is not L-satisfiable, then it is not Ax
LPP

FR(n)
2

-consistent. It follows that
T ` ⊥. Since the axiomatic system Ax

LPP
FR(n)
2

is finitary one, there must be a
finite set T ′ ⊂ T such that T ′ ` ⊥. It is a contradiction because every finite subset
of T is both L-satisfiable and Ax

LPP
FR(n)
2

-consistent. ¤

Example 24. For every positive integer n and Range defined as above, it is easy
to construct an LPP2,Meas-model M = 〈W,H, µ, v〉 which does not satisfy that
Axiom 7. For example, let n = 3, and p ∈ φ:

• W = {w1, w2},
• H is the power set of W
• µ(w1) = 1/2, µ(w2) = 1/2 and
• v(w1, p) = true, v(w2, p) = false.

Since µ([p]M) = 1/2, obviously M ² P>1/3p, and M 2 P>2/3p, so the instance
P>1/3p → P>2/3p of Axiom 7 does not hold in M. ¤

Finally, decidability of the satisfiability problem for the classes of models con-
sidered in this section can be proved similarly as Theorem 19. Only, note that the
measures of atoms must be in the set Range. Since that set is always finite, there
are only finitely many possibilities for such distributions, and decidability easily
follows.

4.2. Logic LPPA,ω1,Fin
2 . In Section 4.1 the considered measures have a fixed fi-

nite range. Using ideas from [98], that assumption is relaxed, and we prove the
completeness theorem with respect to the class of all probabilistic models whose
measures have arbitrary finite ranges (without the requirement that the range is
fixed in advance). In the sequel some notions from [4] are used.

Let A be a countable admissible set and ω ∈ A. We use LPPA,ω1,Fin
2 to denote

our logic. The language of LPPA,ω1,Fin
2 is a subset of A. It is the classical propo-

sitional language (¬, ∧, ∨) augmented by a list of unary probabilistic operators of
the form P>s, for every s ∈ [0, 1]∩A. An important characteristic of LPPA,ω1,Fin

2 is
that the conjunction symbol and the disjunction symbol may be applied to finite or
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countable sets of probability formulas. It means that if G ∈ A is a set of formulas of
LPPA,ω1,Fin

2 , then:
∧

B∈G Φ and
∨

B∈G Φ and are also LPPA,ω1,Fin
2 -formulas (but

note that all formulas from the set G must be from ForP ). For an LPPA,ω1,Fin
2 -

formula Φ, the formula Φ¬ is obtained by moving a negation inside the formula
Φ over the classical connectives. For example, (

∧
Φ∈G Φ)¬ denotes

∨
Φ∈G ¬Φ, and

similarly for the other classical connectives.
Here we consider a particular subclass of the class LPP2,Meas of all measurable

probabilistic models. We denote it LPPA,ω1,Fin
2,Meas ,and it contains all measurable

models whose measures have finite ranges. The satisfaction relation ² generalizes
the corresponding relation from Definition 2. The new cases are related to infinitary
formulas:

• if G is a finite or countable set of ForP -formulas, M ²
∧

G iff for every
B ∈ G, M ² B, and

• if G is a finite or countable set of ForP -formulas, M ²
∨

G iff there is some
b ∈ G so that M ² B.

The axiomatic system Ax
LPP

A,ω1,Fin
2

contains all the axioms and rules from the
system AxLPP2 , and also the following new axioms:

(7) (¬Φ) ↔ (Φ¬)
(8) (

∧
B∈G B) → C, C ∈ G, G ∈ A, G is a set of probability formulas

(9)
∨

c>0

∧
α∈G(P>0α → P>cα), G ∈ A, G is a set of classical propositional

formulas
and the rule

(4) From B → C, for all C ∈ G, infer B → ∧
C∈G C, G is a set of probability

formulas
introduced in [53]. In the completeness proof a result4 from [9] and the weak-strong
model construction from [98] will be used. A weak model is an LPPA,ω1,Fin

2,Meas -model
defined above.

Theorem 25. An LPPA,ω1,Fin
2 -formula Φ is consistent iff it is satisfiable in a weak

model in which every LPPA,ω1,Fin
2 -theorem is true.

Proof. The simpler direction follows from the soundness of the axiomatic system.
For the other direction, let A1, A2, . . . be an enumeration of all LPPA,ω1,Fin

2 -ForP -
formulas. We modify the construction from Theorem 13:

(1) T0 = {Φ} ∪ CnC(Φ) ∪ {P>1α : α ∈ CnC(Φ)}
(2) for every i > 0,

(a) if Ai =
∨

B∈G B and Ti ∪ {Ai} is consistent, then for some B ∈ G,
Ti+1 = Ti ∪ {Ai} ∪ {B} such that Ti+1 is consistent, otherwise

(b) if Ti ∪ {Ai} is consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
(c) if Ai is of the form β → P>sγ, and Ti ∪ {Ai} is not consistent, then

Ti+1 = Ti∪{¬Ai, β → ¬P>s− 1
n
γ}, for some positive integer n, so that

Ti+1 is consistent, otherwise

4Theorem 3.2.10 from [9] If µ is a finitely additive measure and there is a real number
c ∈ (0, 1) such that µ(θ) > c, whenever µ(θ) 6= 0, then µ has a finite range.¤
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(d) Ti+1 = Ti ∪ {¬Ai}.
(3) T =

⋃∞
i=0 Ti.

We can show that every Ti obtained by the new step in the construction (the
step 2a) is also consistent. To prove that, suppose that Ti ∪ {Ai} is consistent,
where A =

∨
B∈G B, but that for every B ∈ G, the set Ti+1 = Ti ∪ {Ai} ∪ {B} is

not consistent. It means that
• Ti ∪ {Ai} ∪ {B} ` ⊥, for every B ∈ G
• Ti ∪ {Ai} ` ¬B, for every B ∈ G
• Ti ∪ {Ai} `

∧
B∈G ¬B, by Rule 4

• Ti ∪ {Ai} ` ¬
∨

B∈G B, by Axiom 7
which contradicts consistency of Ti ∪ {Ai}. Then, we can follow the completeness
prof for LPP2,Meas, and construct the canonical model MΦ. The axioms guarantee
that MΦ is a weak model in which every LPPA,ω1,Fin

2 -theorem is true, and that
MΦ ² ϕ iff ϕ ∈ T . ¤

Note that, although in a weak model (since Axiom 9 holds) for every ForC-
formula α the following condition is fulfilled:

(6) if M ² P>0α then M ² P>cα.

it may be the case that there is no single c > 0 such that the condition (6) holds
for all formulas. Thus, we will now construct the corresponding strong model, i.e.,
a weak model M which satisfies that there is a c > 0 such that for every ForC-
formula α the condition (6) holds. By Theorem 3.2.10 from [9] (see Footnote 4),
measures from a strong model have finite ranges, and the model belongs to the
LPPA,ω1,Fin

2,Meas -class.

Theorem 26. An LPPA,ω1,Fin
2 -formula Φ is consistent iff it is satisfiable in a

strong model in which every LPPA,ω1,Fin
2 -theorem is true.

Proof. Again, the simpler direction follows from the soundness of the axiomatic
system. To prove another part of the statement we consider a language LA con-
taining:

• the following three kinds of variables:
– variables for sets (X, Y , Z,. . . ),
– variables for elements (x, y, z,. . . ),
– variables for reals from [0, 1] (r, s,. . . ), and
– variables for positive reals greater than 1 (u,v,. . . )

• the predicates: 6 for reals, V (u, u), E(x, X) and µ(X, r),
• a set constant symbol Wα for every LPPA,ω1,Fin

2 -ForC-formula α,
• a constant symbol r′ for every real number r ∈ [0, 1] ∩A, and
• two function symbols for additions and multiplications for reals.

The intended meaning of E(x,X) is x ∈ X, V (u, u) means that a formula Φ
with the Gödel-number u (denoted gb(Φ) = u) holds in the model, while µ(X, r)
can be understood as “r is the measure of X”. We use µ(X) > r to denote
(∃s)(s > r ∧ µ(X, s)), and V (Φ) to denote V (gb(Φ), gb(Φ)).
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We define a theory T of Lω1ω ∩A which contains the following formulas:
(1) (∀X)(∀Y )((∀x)(E(x,X) ↔ E(x, Y )) ↔ X = Y )
(2) (∀x)(E(x,Wα∧β) ↔ (E(x, Wα) ∧ E(x, Wβ))) for every α ∧ β ∈ ForC

(3) (∀x)(E(x,W¬α) ↔ ¬E(x,Wα)), for every α ∈ ForC

(4) (∀x)(E(x,Wp∨¬p)
(5) V (α) ↔ Wα = Wp∨¬p, for every α ∈ ForC

(6) V (P>sα) ↔ µ(Wα) > s, for every α ∈ ForC

(7) V (
∧

B∈G B) ↔ ∧
B∈G V (B), for every set of probability formulas G ∈ A

(8) V (¬B) ↔ ¬V (B), for every LPPA,ω1,Fin
2 -ForP -formula B

(9) (∀X)(∃1r)µ(X, r)
(10) (∀X)(∀Y )((µ(X, r) ∧ µ(Y, s) ∧ ¬(∃y)(E(y, X) ∧ E(y, Y ))) →

→ (∃Z)((∀y)((E(y,X) ∨ E(y, Y )) ↔ E(y, Z)) ∧ µ(Z, r + s)))
(11) (∀X)((∀y)E(y,X) → µ(X, 1))
(12) (∃r > 0)(∀X)(µ(X) > 0 → µ(X) > r)
(13) Axioms for Archimedian fields for real numbers
(14) (∀x)E(x,WΨ) where Ψ is an axiom of LPPA,ω1,Fin

2

(15) (∃x)E(x,WΦ) where Φ is the formula from the formulation of the statement.
Let a standard model for LA be 〈W,H,F, V, E, µ, +, ∗,6,Wα, r〉α∈ForC ,r∈F , where
H ⊂ 2W , F = F ′ ∩ [0, 1], F ′ ⊂ R a field, V ⊂ R × R, E ⊂ W × H, µ : H → F ,
+, ∗ : F 2 → F , 6⊂ F 2, and Wα ∈ H.

Let M = 〈W,H, µ, v〉 be a weak model for LPPA,ω1,Fin
2 . If we define Wα =⋃

w∈W [α]w, and H = {Wα : α ∈ ForC}, it easy to show that M can be transformed
to a standard model. On the other hand, if Ψ is a consistent LPPA,ω1,Fin

2 -formula,
then there is a weak model in which it is satisfied, and consequently there is a
standard model in which V (Ψ) holds.

Let T0 ⊂ T , T0 ∈ A. Since Axiom 9 holds in the weak model M it follows
that every T0 has a model. Hence, by the Barwise compactness theorem, T has a
model M′ = 〈W,H, F, V,E, µ, +, ∗,6,Wα, r〉α∈ForC ,r∈F . We define a strong model
M′′ = 〈W,H, µ, v〉 such that the following holds:

• for every w ∈ W , v(w, p) = true iff w ∈ Wp for every primitive proposi-
tion p,

• H = {Wα : α ∈ ForC},
• µ(X) = r iff µ(X, r) holds in M′.

Since (15) holds in M′, M′′ ² Φ. ¤

Completeness also holds for Σ1 definable theories, but we it is possible to show
that it cannot be generalized to arbitrary theories.

4.3. Logic LPPS
2 . Another generalization of the logic LPPA,ω1,Fin

2 contains an
infinitary rule which enables us to syntactically define the range S of the probability
function which appears in the interpretation:

• From A → P 6=sα, for every s ∈ S, infer A → ⊥.
However, we will skip all technical details here and discuss another logic which
extends LPPS

2 in Subsection 9.1.
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5. Logic LPP1

In this section we will present the logic LPP1 which extends LPP2 so that
iterations of the probabilistic operators are allowed. For example, α ∧ P>sP>rβ
is a formula of LPP1. In that way we can express statements about higher order
probabilities and mix classical and probabilistic formulas. More formally, the set
ForLPP1 of formulas is the smallest set containing primitive propositions, and closed
under formation rules: if α and β are formulas, then P>sα, ¬α and α ∧ β are
formulas. The formulas from the set ForLPP1 will be denoted by α, β,. . .

The corresponding semantics can be given as follows:

Definition 27. An LPP1-model is a structure M = 〈W,Prob, v〉 where:
• W is a nonempty set of objects called worlds,
• Prob is a probability assignment which assigns to every w ∈ W a probability

space, such that Prob(w) = 〈W (w),H(w), µ(w)〉, where:
– W (w) is a non empty subset of W ,
– H(w) is an algebra of subsets of W (w) and
– µ(w) : H(w) → [0, 1] is a finitely additive probability measure.

• v assigns to every w ∈ W a two-valued evaluation of the primitive propo-
sitions, i.e., for every w ∈ W , v(w) : φ → {true, false}.

Note that, in contrast to Definition 1, there are as many probability spaces (in a
model M = 〈W,Prob, v〉) as the worlds (in the set W ), i.e., for every world w there
is a particular 〈W (w),Prob(w), µ(w)〉. As a consequence, the satisfiability relation
is now defined between worlds and formulas:

Definition 28. The satisfiability relation ² fulfills the following conditions for
every LPP1-model M = 〈W,Prob, v〉 and every world w ∈ W :

• if p ∈ φ is a primitive proposition, M, w ² α iff v(w)(p) = true,
• M, w ² ¬α iff M, w 2 α,
• M, w ² α ∧ β iff M, w ² α and M, w ² β, and
• M, w ² P>sα iff µ(w)([α]M,w) > s,

where [α]M,w denotes the set {u ∈ W (w) : M, u ² α}. We will omit M from
M, w ² α and write w ² α if M is clear from the context. Similarly, we will write
[α]w instead of [α]M,w.

Similarly as above, we consider measurable models only. An LPP1-model M =
〈W,Prob, v〉 is measurable if for every w ∈ W the set H(w) = {[α]w : α ∈ ForLPP1}.
LPP1,Meas denotes the class of all measurable LPP1-models.

Definition 29. A formula α ∈ ForLPP1 is satisfiable if there is a world w in an
LPP1,Meas-model M such that w ² α; α is valid if it is satisfied in each world in
each LPP1,Meas-model. A set T of formulas is satisfiable if there is a world w in an
LPP1,Meas-model M such that w ² α for every α ∈ T .

5.0.1. Axiomatization, completeness, decidability. It is interesting that a
sound and complete axiomatization with respect to the mention class LPP1,Meas can
be given by the axiomatic system AxLPP2 from Section 3. Of course, instances of
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axiom schemata must obey the syntactical rules that hold in this section. However,
the notions of deducibility and consistency introduced in the definitions 6 and 7
must be changed.

Definition 30. A formula α is deducible from a set T of formulas (T ` α) if there
is an at most denumerable sequence of formulas α0, α1,. . . , α, such that every αi is
an axiom or a formula from the set T , or it is derived from the preceding formulas
by an inference rule, with the exception that Rule 2 can be applied to the theorems
only. If ∅ ` α, we say that α is a theorem (` α).

Definition 31. A set T of formulas is inconsistent if T ` α, for every formula α,
otherwise it is consistent. Equivalently, T is inconsistent iff T ` ⊥. A set T of
formulas is maximal if for every formula α either α ∈ T or ¬α ∈ T .

Now, the restriction from Definition 30 that Rule 2 can be applied to the the-
orems only guarantees that Deduction theorem for LPP1 holds. Also, the coun-
terparts of the statements 10–13 can be proved in the same way as above. The
canonical model M = 〈W,Prob, v〉 can be defined such that:

• W = {w : w is a maximal consistent set of formulas},
• for every primitive proposition p ∈ φ, and every w ∈ W , v(w)(p) = > iff

p ∈ w, and
• for every w ∈ W , Prob(w) = 〈W (w), H(w), µ(w)〉 is defined as follows:

– W (w) = W ,
– H(w) = {{u : u ∈ W,α ∈ u} : α ∈ ForLPP1}, and
– µ(w)({u : u ∈ W,α ∈ u}) = sup{s : P>sα ∈ w}.

Similarly as above, we can prove that for every formula α and every world w, α ∈ w
iff w ² α. It follows that:

• for all α and w, [α]w = {u : u ∈ W,α ∈ u},
• for all w, Prob(w) = 〈W (w), H(w), µ(w), 〉 is a probability space,
• the canonical model M is an LPP1,Meas-model, and
• every consistent set of formulas is satisfiable in some world from M,

i.e., we obtain the extended completeness theorem for the class LPP1,Meas. Fur-
thermore, reasoning as in the sections 3.4 and 4, we can prove completeness for
the following classes of models LPP1,Meas,All, LPP1,Meas,σ and LPP1,Meas,Neat, and
logics LPP

Fr(n)
1 , LPPA,ω1,Fin

1 and LPPS
1 .

Decidability and complexity of the satisfiability problem for the class LPP1,Meas

are analyzed in the sequel of this section.

Theorem 32. If a formula α is satisfiable, then it is satisfiable in an LPP1,Meas-
model with a finite number of worlds. The number of worlds in that model is at
most 2k, where k denotes the number of subformulas of α.

Proof. Suppose that α holds in a world of an LPP1,Meas-model M = 〈W,Prob, v〉.
Let Subf(α) denote the set of all subformulas of α, and k = |Subf(α)|. Let ≈ denote
the equivalence relation over W 2, such that w ≈ u iff for every β ∈ Subf(α), w ² β
iff u ² β. The quotient set W/≈ is finite. From every class Ci we choose an element
and denote it wi. We consider the model M∗ = 〈W ∗,Prob∗, v∗〉, where:
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• W ∗ = {wi},
• Prob∗ is defined as follows:

– W ∗(wi) = {wj ∈ W ∗ : (∃u ∈ Cwj
)u ∈ W (wi)}

– H∗(wi) is the powerset of W ∗(wi),
– µ∗(wi)(wj) = µ(wi)(Cwj

), and for any D ⊂ H∗(wi), µ∗(wi)(D) =∑
wj∈D µ∗(wi)(wj),

• v∗(wi)(p) = v(wi)(p), for every primitive proposition p ∈ φ.

It is easy to show that M∗ is an LPP1,Meas-model. For example, for every wi,
µ∗(wi) is a finitely additive probability measure, since

µ∗(wi)(W ∗(wi)) =
∑

wj∈W∗(wi)

µ∗(wi)(wj) =
∑

Cwj
∈W/≈

µ∗(wi)(Cwj
) = 1.

We can now show that for every β ∈ Subf(α), β is satisfiable in M iff it is
satisfiable in M∗. If β ∈ φ, M, w ² β iff for wi ∈ Cw, M, wi ² β iff M∗, wi ² β.
The cases related to ∧ and ¬ can be proved as usual. Finally, let β = P>sγ. Then,
M, w ² P>sγ iff for wi ∈ Cw, M, wi ² P>sγ iff

s 6 µ(wi)([γ]M,wi) =
∑

Cu:M,u²γ

µ(wi)(Cu) =
∑

Cu:M∗,u²γ

µ∗(wi)(Cu) = µ∗(wi)([γ]M∗,wi)

iff M∗, wi ² P>sγ.
Finally, it is clear that the number of different classes in W/≈ is at most 2k, and

the same holds for the number of worlds in M∗. ¤

Theorem 33 (Decidability theorem). The logic LPP1 is decidable.

Proof. As it is noted above, a formula α is LPP1,Meas-satisfiable iff it is satisfiable
in an LPP1,Meas-model with at most 2k worlds, where k denotes the number of
subformulas of α. Observe that it does not necessary imply decidability of the
satisfiability problem for the class LPP1,Meas because there are infinitely many
such models. Nevertheless, the next procedure decides the satisfiability problem.
The procedure is applied for every such l 6 2k.

Let Subf(α) = {β1, . . . , βn, γ1, . . . , γm}, and k = n + m. In every world w from
M exactly one of the formulas of the form

δw = β1 ∧ . . . ∧ βn ∧ ¬γ1 ∧ . . . ∧ ¬γm

holds. For every l 6 2k we will consider l formulas of the above form. The chosen
formulas are not necessarily different, but at least one of the formulas must contain
the examined formula α. Using probabilistic constraints (i.e., formulas of the form
P>sβ, ¬P>sβ) from the formulas we shall examine whether there is an LPP1,Meas-
model M with l worlds such that for some world w from the model w ² α. We do
not try to determine probabilities precisely. Rather, we just check whether there are
probabilities such that probabilistic constraints are satisfied in the corresponding
world. To do that, for every world wi, i < l, we consider a system of linear equalities
and inequalities of the form (we write β ∈ δw to denote that β occurs positively in
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the top conjunction of δw, i.e., if δw can be seen as
∧

i δi, then for some i, β = δi):

(7)

l∑

j=1

µ(wi)(wj) = 1

µ(wi)(wj) > 0, for every world wj∑

wj :β∈δwj

µ(wi)(wj) > s, for every P>sβ ∈ δwi

∑

wj :β∈δwj

µ(wi)(wj) < s, for every ¬P>sβ ∈ δwi

The first two rows correspond to the general constraints: the probability of the
set of all worlds must be 1, while the probability of every measurable set of worlds
must be nonnegative. The last two rows correspond to the probabilistic constraints,
because ∑

wj :β∈δwj

µ(wi)(wj) = µ(wi)([β]wi).

Such a system is solvable iff there is a probability µ(wi) satisfying all probabilistic
constraints that appear in δwi . Note that there are finitely many such systems that
can be solved in a finite number of steps.

If the above test is positively solved there is an LPP1,Meas-model in which every
world wi ² δwi . Since α belongs to at least one of the formulas δwi , we have that α
is satisfiable. If the test fails, and there is another possibility of choosing l and/ot
the set of l formulas δw, we continue with the procedure, otherwise we conclude
that α is not satisfiable.

It is easy to see that the procedure terminates in a finite number of steps. Thus,
the satisfiability problem for the class LPP1,Meas is decidable. Since ² α iff ¬α is
not satisfiable, the LPP1,Meas-validity problem is also decidable. ¤

The satisfiability problem for the class LPP1,Meas is in PSPACE, while NP is
the lower bound of the complexity. The former statement is a consequence of
the PSPACE-completeness of a more expressive logic from [28], while the later
statement follows from the fact that the logic LPP2 can be seen as a sublogic of
LPP1.

6. Some extensions of the probabilistic language

In this section we will analyze some possible extensions of the considered prob-
abilistic language. The first extension contains probabilistic operators of the form
QF with the intended meaning “the probability belongs to the set F”. The next
extension allows reasoning about qualitative probabilities. Finally, we mention a
logic introduces in [27] in which linear combinations of probabilities can be ex-
pressed. All extensions will be considered in the framework of the logic LPP2, but
analogue analysis can be performed for the other above presented logics.
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6.1. Probability operators of the form QF . We will use LPP2,P,Q,O to denote
a probability logic which depends on a recursive family O of recursive subsets of S
in a manner which will be explained below, while P and Q in the index means that
two kinds of probabilistic operators will be used. More precisely, the language of
LPP2,P,Q,O extends the LPP2-language with a list of unary probabilistic operators
of the form QF , where F ∈ O. For example, the set ForLPP2,P,Q,O

of formulas
contains QF α → ¬P>sβ. Note that every particular choice of the family O of sets
produces a different probability language, a different set of probability formulas
and a distinct LPP2,P,Q,O-logic.

To give semantics to formulas, we use the class LPP2,Meas of measurable LPP2-
models, and the corresponding satisfiability relation (from Definition 2) with addi-
tional requirement that:

• M ² QF α iff µ([α]) ∈ F , for every F ∈ O

which covers the case of the new operators. Note that ¬QF α is not equivalent to
Q[0,1]rF α because [0, 1]r F /∈ O, and the later is not a well formed formula.

It is obvious, using the semantics of P>s and QF -operators, that for a set F =
{f1, f2, . . .} ∈ O, QF α ↔ ∨

fi∈F P=fi
α. But, if the set F is not finite, the right

side of this equality is an infinitary disjunction which does not belong to the set
ForLPP2,P,Q,O

of formulas. Similarly for the formula P>sα ↔ Q[s,1]α, where s is a
rational number from [0, 1), the formula Q[s,1]α /∈ ForLPP2,P,Q,O . More formally:

Definition 34. Let Φ, Ψ ∈ ForLPP2,P,Q,O
. The set Mod(Φ) = {M ∈ LPP2,Meas :

M ² Φ} consists of all LPP2,Meas-models of the Φ. Φ is definable from Ψ if
Mod(Φ) = Mod(Ψ).

The above discussion suggests that in a general case neither the P>.-operators
are definable from the Q.-operators (i.e., some formulas on the language {¬,∧, P>.}
are not definable from the formulas on the language {¬,∧, Q.}), nor are the Q.-
operators definable from the P>.-operators. The next theorems formalize these
conclusions.

Theorem 35. Let O be a recursive family of recursive rational subsets of [0, 1],
F ∈ O an infinite set, and LPP2,P,Q,O the corresponding logic. For an arbitrary
primitive proposition p ∈ φ, there is no probabilistic formula A on the sublanguage
{¬,∧, P>.} such that QF p is definable from α.

Proof. Suppose that there is a formula A on the language {¬,∧, P>.} such that
Mod(QF p) = {〈W,H, µ, v〉 : µ([p]) ∈ F} = Mod(A). Recall that A is satisfiable iff
at least a system from the set of all linear systems that correspond to DNF (A)
is satisfiable. Let at’s be the atoms of A and yt’s be the corresponding measures.
The solutions of any of those systems must satisfy

∑
at∈DNF (p) yt ∈ F . But, the

solutions of the systems are of the following form: yt ∈ (r, s), yt ∈ [r, s), yt ∈ (r, s],
and yt ∈ [r, s]. Such sets of solutions cannot produce the infinite, but denumerable
set F as it is required. Hence, QF p is not definable over A. ¤

Theorem 36. Let O be a recursive family of recursive rational subsets of [0, 1],
LPP2,P,Q,O the corresponding logic, and s ∈ S r {1}. For an arbitrary primitive
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proposition p ∈ φ, there is no probabilistic formula A on the sublanguage {¬,∧, Q.}
such that P>sp is definable from A.

Proof. Suppose that there is a formula A on the language {¬,∧, Q.} such that
Mod(P>sp) = Mod(A). The models of A are exactly those that satisfy µ[p] > s.
But, similarly as above, the set of values for µ[p] produced by Mod(A) can be either
denumerable, or its complement is denumerable. Hence, P>sp cannot be definable
over A. ¤
Example 37. Formulas with the new probabilistic operators are suitable for rea-
soning about discrete sample spaces. For example, consider an experiment which
consists of tossing a fair coin an arbitrary, but finite number of times. Then, QF α
holds in this model, where α means that only heads (i.e., no tails) is observed in
the experiment, and F denotes the set {1

2 , 1
22 , 1

23 , . . .}. Since QF is not definable
over the probability language {¬,∧, P>.}, this sentence cannot be described in the
probability logics used so far.

6.1.1. Expressiveness of LPP2,P,Q,O-logics. As it is noted above, every par-
ticular choice of the family of sets O produces a different LPP2,P,Q,O-logic. In
this section we describe a relation of “being more expressive” between these logics.
The fact that the corresponding hierarchy has no upper bounds, is a good reason
for introducing many probabilistic logics with new type of probability operators,
since no single probabilistic logic covers all contexts. The choice of particular logic
depends on the particular situation that we wish to formalize.

Definition 38. Let F be a rational subset of [0, 1]. The quasi complement of F is
a set 1− F = {1− f : f ∈ F}.
Example 39. If F = { 1

2i : i = 1, 2, . . .}, then, following Definition 38, 1 − F =
{2i−1

2i : i = 1, 2, . . .}.
It is easy to see that the quasi complement has the following properties:
• 1− (F ∩G) = (1− F ) ∩ (1−G),
• 1− (F ∪G) = (1− F ) ∪ (1−G),
• 1− (F rG) = (1− F )r (1−G) and
• 1− (1− F ) = F .

These properties, as well as the properties of ∪,∩ andr, guarantee that an arbitrary
expression on the language {∪,∩,r, 1−} can be rewritten in a normal form as a
finite union of finite intersections of differences between sets and quasi complements
of sets.

Definition 40. Let O1 and O2 be recursive families of recursive rational subsets
of [0, 1]. Let F1 ∈ O1. F1 is representable in O2 if it is equal to a finite union of
finite intersections of sets, differences between sets and quasi complements of sets
from O2 and sets [r, s], [r, s), (r, s] and (r, s), where r and s are rational numbers
from [0, 1]. The family of sets O1 is representable in O2 if each set F1 ∈ O1 is
representable in O2.

Example 41. Let us consider a positive integer k > 0, the sets
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F1 = { 1
2i : i = k, k + 1, . . .} ∪ { 3i−1

3i : i = k, k + 1, . . .},
F2 = { 1

2i : i = 1, 2, . . .},
F3 = { 1

3i : i = 1, 2, . . .},
and the family O2 = {F2, F3}. By Definition 40, F1 is representable in O2 because

F1 =
(
F2 ∩ [0, 1/2k]

) ∪ (
(1− F3) ∩

[
(3k − 1)/3k, 1

])
.

On the other hand, the set F4 = {1/22i : i = 1, 2, . . .} is not representable in O2.

Theorem 42. Let O1 and O2 be recursive families of recursive rational subsets of
[0, 1]. Let F1 ∈ O1 be representable in O2. For an arbitrary formula α ∈ ForC ,
there is a formula φ ∈ ForLPP2,P,Q,O2

such that Mod(QF1α) = Mod(φ), i.e., QF1α
and φ have the same models.

Proof. Suppose that F1 =
⋃m

i=1

⋂ki

j=1 Fi,j (for the meaning of Fi,j see below). It is
easy to see that for an arbitrary formula α ∈ ForC we have (in the LPP2,P,Q,O1∪O2):

` QF1α ↔
m∨

i=1

ki∧

j=1

RFi,j
α

where

RFi,j α =





P>sα ∧ P6rα, if Fi,j = [s, r]
P>sα ∧ P<rα, if Fi,j = [s, r)
P>sα ∧ P6rα, if Fi,j = (s, r]
P>sα ∧ P<rα, if Fi,j = (s, r)
QFi,j α, if Fi,j ∈ O2

QF ′i,j
¬α, if Fi,j = 1− F ′i,j , F

′
i,j ∈ O2

QF ′i,j
α ∧ ¬QF ′′i,j

α, if Fi,j = F ′i,j r F ′′i,j , F
′
i,j , F

′′
i,j ∈ O2

QF ′i,j
α ∧ ¬(P>sα ∧ P6rα), if Fi,j = F ′i,j r [s, r], F ′i,j ∈ O2

QF ′i,j
α ∧ ¬(P>sα ∧ P<rα), if Fi,j = F ′i,j r [s, r), F ′i,j ∈ O2

QF ′i,j
α ∧ ¬(P>sα ∧ P6rα), if Fi,j = F ′i,j r (s, r], F ′i,j ∈ O2

QF ′i,j
α ∧ ¬(P>sα ∧ P<rα), if Fi,j = F ′i,j r (s, r), F ′i,j ∈ O2

Formula
∨m

i=1

∧ki

j=1 RFi,j α belongs to LPP2,P,Q,O2 , and

Mod(QF1α) = Mod
( m∨

i=1

ki∧

j=1

RFi,j α

)
. ¤

Definition 43. Let O1 and O2 be recursive families of recursive rational subsets
of [0, 1], and L1 and L2 be the corresponding LPP2,P,Q,O-logics. The logic L2 is
more expressive than the logic L1 (L1 6 L2) if for every formula φ ∈ ForLPP2,P,Q,O1

there is a formula ψ ∈ ForLPP2,P,Q,O2
such that Mod(φ) = Mod(ψ).

Theorem 44. Let O1 and O2 be recursive families of recursive rational subsets
of [0, 1], and L1 and L2 be the corresponding LPP2,P,Q,O-logics. The family O1 is
representable in the family O2 iff L1 6 L2.
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Proof. (⇒) Let A ∈ ForLPP2,P,Q,O1
. A is equivalent to

DNF (A) =
m∨

i=1

ki∧

j=1

Xi,j(p1, . . . , pn),

where every Xi,j can be from the set {P>si,j , P<si,j , QFi,j ,¬QFi,j}. Furthermore,
Mod(A) =

⋃m
i=1

⋂ki

j=1 Mod(Xi,j(p1, . . . , pn)). Let us consider the case where Xi,j =
QFi,j

. By the hypothesis the set Fi,j is representable in O2. Using the theorem
42 there is a formula Bi,j ∈ ForLPP2,P,Q,O2

such that Mod(Xi,j(p1, . . . , pn)) =
Mod(Bi,j), and similarly for Xi,j = ¬QFi,j , whilst the cases where Xi,j = P>si,j ,
or Xi,j = P<si,j

are both expressible in the logics L1 and L2. Hence, there is a
formula B ∈ ForLPP2,P,Q,O2

such that Mod(A) = Mod(B).

(⇐) To avoid repetition of similar arguments, in the sequel of this proof we will
use Q{f} instead of P=f . By the hypothesis, for every primitive proposition p ∈ φ,
and every F1 ∈ O1 there is a formula Φ ∈ ForLPP2,P,Q,O2

so that Mod(QF1p) =
Mod(Φ). If F1 is an empty set, or a finite set, the formula QF1p ↔

∨
f∈F1

Q{f}p
is a theorem (an empty disjunction is a contradiction), and F1 =

⋃
f∈F1

[f, f ] is
representable in O2.

We can show that, if F1 = {f1, f2, . . .} is an infinite set of rational numbers from
[0, 1], the formula Φ cannot be propositional. Suppose that B ∈ ForC . Then, the
following cases must be distinguished:

• if Φ → ¬p and Φ → p are not theorems, consider the model M = 〈{w1, w2},
2{w1,w2}, µ, v〉 such that µ({w1}) = q, µ({w2}) = 1 − q, where q is an irrational
number, v(w1)(p) = v(w1)(β) = >, and v(w2)(¬p) = v(w2)(β) = >; since µ([p]) =
q, it follows that M ∈ Mod(Φ) and M /∈ Mod(QF1p), a contradiction,
• if Φ → ¬p is not a theorem, whilst Φ → p is a theorem, consider an s ∈
F1 r {0}, and the model M = 〈{w1, w2}, 2{w1,w2}, µ, v〉 such that µ({w1}) = s,
µ({w2}) = 1 − s, v(w1)(p) = v(w1)(¬Φ) = >, and v(w2)(¬p) = v(w2)(¬Φ) = >;
since µ([p]) = s, it follows that M /∈ Mod(Φ) and M ∈ Mod(QF1p), a contradiction,
and
• if Φ → ¬p is a theorem, consider an s ∈ F1 r {0}, and the model M =
〈{w1, w2}, 2{w1,w2}, µ, v〉 such that µ({w1}) = s, µ({w2}) = 1 − s, v(w1)(p) =
v(w1)(¬Φ) = >, and v(w2)(¬p) = v(w2)(Φ) = >; since µ([p]) = s, it follows that
M /∈ Mod(Φ) and M ∈ Mod(QF1p), a contradiction.

Hence, Φ ∈ ForLPP2,P,Q,O2
rForC . Let the disjunctive normal form of Φ be

DNF (Φ) =
∨m

i=1

∧ki

j=1 Xi,j(p1, . . . , pn) such that all
∧ki

j=1 Xi,j(p1, . . . , pn) are con-
sistent. Since Φ ↔ (Φ∧P>0p) is a valid formula, we can suppose that the primitive
proposition p appears in Φ. Let p be p1, and a1,. . . , a2n be the list of all atoms
of Φ ordered such that ai = p ∧ . . ., for i = 1, . . . , 2n−1, and ai = ¬p ∧ . . .,
for i = 2n−1 + 1, . . . , 2n. Let y1,. . . , y2n denote the atoms’ measures. All the
LPP2,Meas-models can be seen as points 〈s1, s2, . . . , s2n〉 in the 2n-dimensional
space E, such that ith coordinate corresponds to yi, for all i = 1, . . . , 2n. Since
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Mod(QF1p1) = Mod(Φ), we have for every y ∈ [0, 1]:

〈y, 0, . . . , 0, 1− y, 0, . . . , 0〉 ∈ Mod(QF1p1) iff 〈y, 0, . . . , 0, 1− y, 0, . . . , 0〉 ∈ Mod(Φ),

where the entry 1− y is in the 2n−1 + 1’st position. Thus,

y ∈ F1 iff y ∈
m⋃

i=1

ki⋂

j=1

{
y | 〈y, 0, . . . , 0, 1− y, 0, . . . , 0〉 ∈ M(Xi,j(p1, . . . , pn))

}
,

and by straightforward inspection of equalities, inequalities and constraints that
can appear in the systems corresponding to the disjuncts from DNF (Φ), the set

F1 =
{
y | 〈y, 0, . . . , 0, 1− y, 0, . . . , 0〉 ∈ Mod(Xi,j(p1, . . . , pn))

}
,

is representable in the family O2.
Since every F1 ∈ O1 is representable in the family O2, the family O1 is repre-

sentable in O2. ¤

Theorem 44 correlates the relations of “being more expressive” between the
LPP2,P,Q,O-logics, and “being representable in” between the corresponding families
of sets. In the sequel we investigate the later relation having in mind the former
one. The relation “being more expressive” describes the hierarchy of expressiveness
of the LPP2,P,Q,O-logics.

Definition 45. Let O be a recursive family of rational subsets of [0, 1]. The family
of all rational subsets of [0, 1] that are representable in O is denoted by O.

It is easy to see, using Definition 40, that a family O is closed under finite
union, finite intersection, quasi complement and difference of sets. Each family
O contains all finite rational subsets of [0, 1]. Since the operations of union and
intersection satisfy the commutative, associative, absorption and distributive laws,
every family O with the standard set operations is a distributive lattice. Note that,
if complement of a set F is understood as [0, 1] r F , O is not a Boolean algebra
since [0, 1]r F 6⊂ S. On the other hand, if S ∈ O, and complement is understood
as S r F , O becomes a Boolean algebra.

Definition 46. Let O1 and O2 be recursive families of rational subsets of [0, 1].
The binary relation ∼ is defined such that O1 ∼ O2 iff O1 = O2.

The relation ∼ is an equivalence relation on the set O of all recursive families
of rational subsets of [0, 1]. We use O/∼ to denote the corresponding quotient set.
Each equivalence class o ∈ O/∼ contains a unique maximal family Oo such that
Oo = O. For such an equivalence class o and the corresponding family Oo we say
that Oo represents o. Let the set {Oo : Oo represents o ∈ O/∼} be denoted by O∗.
Clearly, O∗ is countable.

Definition 47. Let O1 and O2 be different families from O∗. Then O1 < O2 iff
O1 is representable in O2.

Theorem 48. Let O1 and O2 be different families from O∗. Then O1 < O2 iff
O1 ⊂ O2.
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Proof. The statement is an immediate consequence of the corresponding definitions.
¤

Theorem 49. The structure (O∗, <) is a lattice.

Proof. Since ⊂ is a partial ordering, by Theorem 48, the relation < defined on
O∗ is a partial ordering, too. Moreover, any two elements of (O∗, <) posses both
the least upper bound, and the greatest lower bound. Suppose O1, O2 ∈ O∗. Let
O3 = O1 ∪O2. Obviously, O1 < O3, and O2 < O3. Suppose that there is an
O4 ∈ O∗, such that O1 < O4 and O2 < O4. But then, by Theorem 48, O1 ⊂ O4,
O2 ⊂ O4, and O1 ∪ O2 ⊂ O4. It follows that O3 < O4. Hence, O1 ∪O2 is the
least upper bound of {O1, O2}. Similarly, the greatest lower bound of {O1, O2} is
O1 ∩O2. Since (O∗, <) is a partially ordered set such that any two elements posses
both a least upper bound, and a greatest lower bound, it is a lattice. ¤

The meet (·) and join (+) operations can be defined as usual:

O1 ·O2 = O1 ∩O2, and O1 + O2 = O1 ∪O2.

Since every set that is representable both in O1 and in O2, is representable in
O1 ∩O2, we have O1 ∩O2 = O1 ∩O2, and O1 ·O2 = O1 ∩O2. On the other hand,
note that the join operation and the set union do not coincide, because for some
O1, O2 ∈ O∗, it can be O1 ∪O2 6= O1 ∪O2.

Theorem 50. The lattice (O∗, <) is not a modular.

Proof. We can find a counter example for the modularity law: if O2 < O1, then
(O1 · (O2 + O3)) = (O2 + (O1 ·O3)). Let Prim = {k1, k2, . . .} denote the set of all
prime numbers. Then, consider the sets: F1 = { 1

21 : i = 1, 2, . . .}, F2 = { 1
2ki

: i =
1, 2, . . .}, and F3 = F1 r { 1

2k2i−1
: i = 1, 2, . . .}, and the families O1, O2, O3 ∈ O∗,

such that O1 = {F1, F2}, O2 = {F2}, and O2 = {F3}. Obviously, O2 ⊂ O1,
and O2 < O1. Since F1 = F2 ∪ F3, F1 is representable in O2 + O3, and also in
O1 · (O2 + O3). On the other hand, F1 is neither representable in O2 nor in O3.
Thus, F1 is not representable in O2 + (O1 · O3), and the modularity law does not
hold. ¤

Theorem 51. ∅ is the smallest element of (O∗, <).

Proof. ∅ contains all the finite rational subsets of [0, 1] only. Since an arbitrary
O ∈ O∗ contains these sets, ∅ ⊂ O and ∅ < O. ¤

Let F1 = {r0, r1, . . .} be a rational subset of [0, 1] with only one accumulation
point. Let O1 = {F1}, O2 ∈ O∗, and O2 < O1. Note that a set F2 ∈ O2 can
be either a finite set, or an infinite set such that symmetric difference of either
F1 and F2, (F1 r F2) ∪ (F2 r F1), or 1 − F1 and F2 is finite. If all the sets from
O2 are finite, then O2 = 0. Suppose that there is an infinite set F2 ∈ O2 that
is representable in O1. F2 differs from F1 (or 1 − F1) in finitely many elements.
It follows that F1 is representable in O2, O1 < O2, and O1 = O2. Hence, O1 is
an atom of (O∗, <). Suppose that a family O ∈ O∗ contains a set F with finitely
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many accumulation points. For every F1 ⊂ F with only one accumulation point,
and O1 = {F1} holds O1 < O. Finally, let us consider a family which contains a
set with infinitely many accumulation points. Suppose that a set F0 is dense in
(a0, b0) ⊂ [0, 1], and O0 = {F0}. We can obtain two sequences a0 < a1 < a2 < · · ·
and b0 > b1 > b2 > · · · such that ai < bj for every i and j, a sentence of sets
F0 ⊃ F1 ⊃ F2 ⊃ · · · that are dense in (a1, b1) ⊂ [0, 1], (a2, b2) ⊂ [0, 1], · · · ,
respectively, and an infinite sentence of families O1 = {F1}, O2 = {F2},. . . , such
that 0 < · · · < O2 < O1 < O0. Obviously, there is no atom in this sequence.

In particular, we have the following theorems:

Theorem 52. A necessary and sufficient condition that an O ∈ O∗ be an atom
is that O = {F}, where F is a set with only one accumulation point. The lattice
(O∗, <) is non-atomic.

Theorem 53. There is no greatest element in (O∗, <). Consequently, the lattice
O∗ is σ-incomplete.

Proof. Since the family of all recursive subsets of S is not recursive, for each recur-
sive family O of recursive subsets of S there is a recursive F ⊆ S non-representable
by O. Hence, there is no greatest element in O∗. Furthermore, σ-incompleteness
is an immediate consequence of the fact that O∗ is a countable ordering without
upper bounds. ¤

Thus, we can define a hierarchy of the LPP2,P,Q,O-logics, so that a logic L1 is
less expressive that a logic L2 (L1 < L2) iff the corresponding families O1 and O2

of rational subsets of [0, 1] satisfy a similar requirement (O1 < O2). The hierarchy
of the probability logics is isomorphic to (O∗, <). Thus, the probability logic LPP2

is on the lowest level in the hierarchy of the LPP2,P,Q,O-logics and corresponds to
the 0-element of (O∗, <).

6.1.2. Complete axiomatization. Let us consider a fixed recursive family O
of recursive subsets of S and the corresponding LPP2,P,Q,O-logic. The axiomatic
system AxLPP2,P,Q,O extends the system AxLPP2 with the following axiom:

(7) P=sα → QF α, where F ∈ O and s ∈ F

and the inference rule:
(4) From P=sα ⇒ φ, for all s ∈ F , infer QF α ⇒ φ.

As an illustration we give a list of useful theorems of AxLPP2,P,Q,O
:

Theorem 54. If all the mentioned formulas belong to the set ForLPP2,P,Q,O
, the

following holds in the corresponding LPP2,P,Q,O-logic:
(1) ` QF α → QGα, for F ⊂ G
(2) ` (QF α ∧QGα) ↔ QF∩Gα
(3) ` (QF α ∨QGα) ↔ QF∪Gα
(4) ` (QF α ∧ P>sα) ↔ Q[s,1]∩F α, and similar for P≥sα, P≤sα, P6sα
(5) ` QF α ↔ Q1−F¬α, where 1− F = {1− f : f ∈ F}
(6) ` (QF α ∧ ¬QGα) ↔ QFrGα
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Proof. Let us consider the case (1). If F, G ∈ O:
` P=sα → QGα for every s ∈ F ⊂ G, by Axiom 7
` QF α → QGα, by Rule 4.

The other statements follow similarly. ¤

The completeness proof for AxLPP2,P,Q,O
follows the ideas from the correspond-

ing proof from Section 3.4.

6.1.3. Decidability. In Section 3.5 we proved decidability of the LPP2 logic
which can be seen as an LPP2,P,Q,O-logic with the empty family O. The proof
involves a reduction of a formula to a system of linear (in)equalities. A look on
this method indicates that the similar procedure might be applied for an arbitrary
LPP2,P,Q,O-logic. However, since there are also the operators of the form QF ,
instead of the system (5), we have to consider linear systems of the following form:

(8)

2n∑

i=1

yi = 1

yi > 0, for i = 1, . . . , 2n

∑

at∈X1(p1,...,pn)∈D

yt





> s1 if X1 = P>s1

< s1 if X1 = P<s1

∈ F1 if X1 = QF1

/∈ F1 if X1 = ¬QF1

. . .

∑

at∈Xk(p1,...,pn)∈D

yt





> sk if Xk = P>sk

< sk if Xk = P<sk

∈ Fk if X1 = QFk

/∈ Fk if X1 = ¬QFk

An obvious statement holds:

Theorem 55. An LPP2,P,Q,O-logic is decidable iff for every probabilistic formula
A ∈ ForLPP2,P,Q,O rForC there is at least one disjunct from DNF (A) such that the
corresponding system (8) is solvable.

The requirement from Theorem 55 is very strong. For example, consider the
system

y1 + y2 = 1
yi > 0, for i = 1, 2
y1 > s

y1 ∈ F

obtained from the formula P>sp∧QF p. The system is solvable only if F ∩ [s, 1] 6= ∅
is decidable, and this depends on the set F . If F is a codomain of a suitable
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rational-valued function, the system can be solved, but, in the general case, decid-
ability of the set F does not imply that either the system is solvable or that the
LPP2,P,Q,O-logic is decidable. However, there are recursive families O such that
the corresponding probabilistic logics are decidable. A trivial example of this kind
is any recursive O ⊆ [S]<ω, where [S]<ω is the family of all finite subsets of S. A
nontrivial example of a decidable logics concerns the logic which is characterized
by the family O such that each F ∈ O is definable (with rational parameters) in
the language of ordered groups.

6.2. Qualitative probabilities. Reasoning about qualitative probabilities is one of
the most common cases of qualitative reasoning. Here we offer the first strongly
complete formalization of the notion of qualitative probability within the framework
of probabilistic logic. We obtain the language of the corresponding logic (denoted
LPP2,¹) by extending the LPP2-language with an additional binary operator ¹,
such that for some ForC-formulas α and β, α ¹ β means “β is at least proba-
ble as α”. Similarly as in Section 6.1, we use the class LPP2,Meas of measurable
LPP2-models, and the corresponding satisfiability relation (from Definition 2) with
another additional requirement that:

• If α, β ∈ ForC , M ² α ¹ β iff µ([α]) 6 µ([β]),
The axiomatic system AxLPP2,¹ extends the system AxLPP2 with the following
axioms:

(7) (P6sα ∧ P>sβ) → α ¹ β
(8) (α ¹ β ∧ P>sα) → P>sβ,

and the inference rule:
(4) From A → (P>sα → P>sβ) for every s ∈ S, infer A → α ¹ β.

The next theorem gives us some useful properties of the probability operator ¹:

Theorem 56. Suppose that T is a set of formulas and that α, β, γ ∈ ForC . Then
the following holds:

(1) T ` α ¹ β if and only if T ` P>s(α) → P>s(β) for all s ∈ S;
(2) ` α ¹ β ∨ β ¹ α;
(3) ` (α ¹ β ∧ β ¹ γ) → α ¹ γ;
(4) ` α ¹ α;
(5) If T ` P>1(α → β) then T ` α ¹ β;
(6) If T ` α → β then T ` α ¹ β.

Proof. Since (5) directly follows from (1), (4) from (2), and (6) is a consequence of
(5) and Rule 2, we will prove only the first three statements.

(1) Suppose that T ` α ¹ β. By the axioms 1 and 8 we have that

T ` α ¹ β → (P>s(α) → P>s(β)).

Now applying Rule 1 we obtain that T ` P>s(α) → P>s(β). Conversely, suppose
that T ` P>s(α) → P>s(β) for each s ∈ S. Then by Axiom 1

T ` P>0(α) → (P>s(α) → P>s(β))
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for each s ∈ S. Applying Rule 4 we deduce that T ` P>0(α) → α ¹ β. Finally,
since T ` P>0(α) (Axiom 2), by Rule 1 we conclude that T ` α ¹ β.

(2) First let us observe that Axiom 7 is equivalent to

¬(α ¹ β) → (P>s(β) → P>s(α)).

Since ` P>s(α) → P>s(α), we have that ` ¬(α ¹ β) → (P>s(β) → P>s(α)) for
every s ∈ S, so by Rule 4 we obtain ` ¬(α ¹ β) → β ¹ α, which is equivalent to
` α ¹ β ∨ β ¹ α.

(3) According to Deduction theorem, it is sufficient to prove that

α ¹ β, β ¹ γ ` α ¹ γ.

Since α ¹ β ` P>s(α) → P>s(β) and β ¹ γ ` P>s(β) → P>s(γ), we have that

α ¹ β, β ¹ γ ` P>s(α) → P>s(γ).

This holds for all s ∈ S, so applying the statement (1) from this theorem, we obtain
that α ¹ β, β ¹ γ ` α ¹ γ. ¤

The corresponding completeness proof follows the same steps as above for LPP2.
Also, decidability can be proved in the same way as in Section 3.5 since the only
new type of formulas (α ¹ β) can be reduced to an inequality of the form:

∑

ak∈CDNF(α)

µ([ak]) 6
∑

ak∈CDNF(β)

µ([ak]).

It is also interesting that, if we add the qualitative probability operator to the
logic LPP

Fr(n)
2 , due to the fact that the set Range (which denotes the range of the

considered probability functions) is finite, α ¹ β can be seen as an abbreviation of
the formula

∧
s∈Range(P>sα → P>sβ). Thus, the notion of the qualitative proba-

bility is definable in LPP
Fr(n)
2 , and the logics LPP

Fr(n)
2 and LPP

Fr(n)
2,¹ coincide (in

the sense that the later one is a conservative extension of the former logic).

7. First order probability logics

This section is devoted to a probabilistic extension of first order classical logic.
In this case interleaving of the probabilistic operators and the classical quantifiers
is important, especially when we compare first order probability logics to first order
modal logics. Thus, to avoid repetition and contrary to Section 3, we will start here
with the logic LFOP1, the first order counterpart of the propositional probability
logic LPP1.

7.1. Syntax. The language of the LFOP1-logic is an extension of the classical first
order language. It is a countable set which contains for each non negative integer
k, k-ary relation symbols P k

0 , P k
1 , . . ., and k-ary function symbols F k

0 , F k
1 , . . ., and

the logical symbols ∧, and ¬, quantifier ∀, a list of unary probability operators P>s

for every rational number s ∈ [0, 1], variables x, y, z, . . ., and parentheses.
The notions of existential quantifier, arity of a functional or a relational symbol,

term, atomic formula, bound and free variables, sentence, and a term free for a
variable in a formula can be defined as usual, while the set ForLFOP1 of formulas
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is the smallest set containing atomic formulas and closed under formation rules: if
α and β are formulas, then ¬α, P>sα, α ∧ β and (∀x)α are formulas.

Example 57. An example of a formula is:

P>s(∀x)P 1
1 (x) → P 2

3 (y, F 0
0 ) ∧ P>rP>tP

1
1 (F 0

1 ).

α(x1, . . . , xm) indicates that free variables of the formula α form a subset of
{x1, . . . , xm}. If t is a term free for x in α, then α(t/x) denotes the result of
substituting in α the term t for all free occurrences of x. We will also use the
shorter form α(t) to denote the same substitution.

7.2. Semantics. The models we will use are similar to LPP1,Meas-models with
an important difference that worlds of models are now classical first order models.
More formally:

Definition 58. An LFOP1-model is a structure M = 〈W,H, µ, v〉 where:
• W is a non empty set of objects called worlds,
• D associates a non empty domain D(w) with every world w ∈ W ,
• I associates an interpretation I(w) with every world w ∈ W such that:

– I(w)(F k
i ) is a function from D(w)k to D(w), for all i, and k,

– I(w)(P k
i ) is a relation over D(w)k, for all i, and k.

• Prob is a probability assignment which assigns to every w ∈ W a probability
space, such that Prob(w) = 〈W (w),H(w), µ(w)〉, where:

– W (w) is a non empty subset of W ,
– H(w) is an algebra of subsets of W (w) and
– µ(w) : H(w) → [0, 1] is a finitely additive probability measure.

The next definitions reflect the mentioned fact that worlds in LFOP1-models
are classical first order models.

Definition 59. Let M = 〈W,D, I, Prob〉 be an LFOP1-model. Avariable valuation
v assigns some element of the corresponding domain to every world w and every
variable x, i.e., v(w)(x) ∈ D(w). If w ∈ W , d ∈ D(w), and v is a valuation, then
vw[d/x] is a valuation like v except that vw[d/x](w)(x) = d.

Definition 60. For an LFOP1-model M = 〈W,D, I, Prob〉 and a valuation v
thevalue of a term t (denoted by I(w)(t)v) is:

• if t is a variable x, then I(w)(x)v = v(w)(x), and
• if t = Fm

i (t1, . . . , tm), then
I(w)(t)v = I(w)(Fm

i )(I(w)(t1)v, . . . , I(w)(tm)v).

Definition 61. The truth value of a formula α in a world w ∈ W for a given
LFOP1-model M = 〈W,D, I, Prob〉, and a valuation v (denoted by I(w)(α)v) is:

• if α = Pm
i (t1, . . . , tm), then I(w)(α)v = > if 〈I(w)(t1)v, . . . , I(w)(tm)v〉 ∈

I(w)(Pm
i ), otherwise I(w)(α)v = ⊥,

• if α = ¬β, then I(w)(α)v = > if I(w)(β)v = ⊥, otherwise I(w)(α)v = ⊥,
• if α = P>sβ, then I(w)(α)v = > if µ(w){u ∈ W (w) : I(u)(β)v = >} > s,

otherwise I(w)(α)v = ⊥,
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• if α = β ∧ γ, then I(w)(α)v = > if I(w)(β)v = >, and I(w)(γ)v = >,
otherwise I(w)(α)v = ⊥, and

• if α = (∀x)β, then I(w)(α)v = > if for every d ∈ D, I(w)(β)vw[d/x] = >,
otherwise I(w)(α)v = ⊥.

Definition 62. A formula holds in a world w from an LFOP1-model M = 〈W,D,
I,Prob〉 (denoted by (M,w) ² α) if for every valuation v, I(w)(α)v = >. If
d ∈ D(w), we will use (M, w) ² α(d) to denote that for every valuation v,
I(w)(α(x))vw[d/x] = >.

A sentence α issatisfiable if there is a world w in an LFOP1-model M such
that (M, w) ² α. A set T of sentences is satisfiable if there is a world w in an
LFOP1-model M such that for every α ∈ T , (M, w) ² α.

A sentence α isvalid if for every LFOP1-model M = 〈W,D, I, Prob〉 and every
world w ∈ W , (M, w) ² α.

In the sequel we will consider a class of all LFOP1-models that satisfy:
• all the worlds from a model have the same domain, i.e., for all v, w ∈ W ,

D(v) = D(w),
• for every sentence α, and every world w from a model M the set {u ∈

W (w) : I(u)(α)v = >} of all worlds from W (w) that satisfy α is measurable,
and

• the terms are rigid, i.e., for every model their meanings are the same in all
worlds.

We use LFOP1,Meas to denote that class of all fixed domain measurable models
with rigid terms.

Example 63. Let us consider the formula P>sP
1
1 (x), and suppose that for an

LFOP1,Meas-model M = 〈W,D, I, Prob〉, w ∈ W , (M, w) ² P>sP
1
1 (x). By Defi-

nition 62, this holds iff for every valuation v, I(w)(P>sP
1
1 (x))v = > iff (M, w) ²

(∀x)P>sP
1
1 (x).

On the other hand, as we will show in Example 64, the satisfiability of the formula
P>sP

1
1 (x) does not imply the satisfiability of P>s(∀x)P 1

1 (x). The example assures
an already existing impression that, although probability and modal logics are
closely related, modal necessity (denoted by ¤) is a stronger notion than probability
necessity (probability one, P>1).

Example 64. Let us consider, the well known Barcan formula of the first order
modal logic:

BF (∀x)¤α(x) → ¤(∀x)α(x)

It is proved that BF holds in the class of all first order fixed domain modal models,
and that it is independent from the other first order modal axioms. However, the
behavior of the reminiscence of this formula:

BF(s) (∀x)P>sα(x) → P>s(∀x)α(x)

is quite different.
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If s = 0, BF(0) is valid, because P>0(∀x)α(x) always holds since probability
functions are nonnegative. So, suppose that s > 0. Let us consider the LFOP1,Meas-
model M such that:

• W = {w1, w2, w3, w4}
• D = {d1, d2},
• (M, w2) ² P 1

1 (d1), (M, w2) 2 P 1
1 (d2), (M, w3) ² P 1

1 (d1), (M, w3) ² P 1
1 (d2),

(M, w4) 2 P 1
1 (d1), (M, w4) ² P 1

1 (d2),
• µ(w1)(w2) = 1

n , µ(w1)(w3) = s− 1
n µ(w1)(w4) = 1

n

It is easy to see that (M, w1) ² (∀x)P>sP
1
1 (x), because

µ(w1)({w : w ² P 1
1 (d1)}) = µ(w1)({w2, w3}) = s,

µ(w1)({w : w ² P 1
1 (d2)}) = µ(w1)({w3, w4}) = s.

On the other hand, (M, w1) 2 (∀x)P 1
1 (x), (M, w2) 2 (∀x)P 1

1 (x), and (M, w4) 2
(∀x)P 1

1 (x), whilst (M, w3) ² (∀x)P 1
1 (x). Since µ(w1)({w3}) = s − 1

n , (M, w1) 2
P>s(∀x)P 1

1 (x), and for s > 0, (M, w1) 2 BF(s).

7.3. A sound and complete axiomatic system. The axiomatic system AxLFOP1

is a combination of a classical first order axiomatization and the probabilistic axioms
introduced in Section 3. It involves the following axiom schemas:

(1) all the axioms of the classical propositional logic
(2) (∀x)(α → β) → (α → (∀x)β), where x is not free in α
(3) (∀x)α(x) → α(t/x), where α(t/x) is obtained by substituting all free oc-

currences of x in α(x) by the term t which is free for x in α(x)
(4) P>0α
(5) P6rα → P<sα, s > r
(6) P<sα → P6sα
(7) (P>rα ∧ P>sβ ∧ P>1(¬α ∨ ¬β)) → P>min(1,r+s)(α ∨ β)
(8) (P6rα ∧ P<sβ) → P<r+s(α ∨ β), r + s 6 1

and inference rules:
(1) From α and α → β infer β.
(2) From α infer (∀x)α
(3) From α infer P>1α.
(4) From β → P>s− 1

k
α, for every integer k > 1

s , infer β → P>sα.
We use the notions of deducibility and consistency introduced in the definitions 30
and 31 from Section 5. The theorems 65 and 66 show that AxLFOP1 characterizes
the set of all LFOP1,Meas-valid sentences.

Theorem 65 (Soundness theorem). The axiomatic system AxLFOP1 is sound with
respect to the LFOP1,Meas class of models.

Proof. Let α′ be an instance of a classical propositional axiom α obtained by sub-
stituting propositional letters by formulas. Suppose that the formula α′ is not valid,
i.e., that for some world w from a model M, and a valuation v, I(w)(α′)v = ⊥. It
follows that we can find a classical propositional valuation ρ such that ρ(α) = ⊥, a
contradiction. Let M = 〈W,D, I, Prob〉 and w ∈ W such that (M, w) ² (∀x)α(x).



PROBABILITY LOGICS 85

It means that I(w)((∀x)α(x))v = > for every valuation v. Among these valua-
tions there must be one (denoted v′) which assigns to x the value d = I(w)(t)v.
For this valuation I(w)(α(x))v′ = >. Since I(w)(α(x))v′ = I(w)(α(t/x))v, we
have I(w)(α(t/x))v = > for every valuation. Thus, every instance of Axiom 3
is valid. Note that the assumptions about fixed domains and rigidness of terms
are crucial. If it is not the case, and α(t/x) is of the form P>sβ(t/x), the term
t refers to objects in other worlds (different from w). It can have a consequence
that I(w)(α(t/x))v = ⊥. The axioms 4– 8 concern the properties of measures from
LFOP1,Meas-models and obviously hold in every model. The inference rules 1 and 2
are validity-preserving for the same reason as in the classical first order logic. Con-
sider Rule 3 and suppose that a formula α is valid. It must hold in every world from
every LFOP1,Meas-model. Thus, for every model M = 〈W,D, I, Prob〉, and w ∈ W ,
the sets {u ∈ W (w) : (M, u) ² α} and W (w) coincide. Since µ(w)(W (w)) = 1, it
follows that (M, w) ² P>1α. Rule 4 preserves validity because of the properties of
the set of rational numbers. ¤
Theorem 66 (Extended completeness theorem for LFOP1,Meas). The axiomatic
system AxLFOP1 is sound with respect to the LFOP1,Meas class of models.

Proof. The completeness proof follows the same ideas as above, for example as in
Section 5. The main new step is that, since we work with first-order formulas, we
have a special kind of maximal consistent sets called saturated sets. A set T of
formulas is saturated if it is maximal consistent and satisfies:

• if ¬(∀x)α(x) ∈ T , then for some term t, ¬α(t) ∈ T .
We can prove a counterpart of Theorem 13, where the new step:

• if the set Ti+1 is obtained by adding a formula of the form ¬(∀x)β(x) to
the set Ti, then for some c ∈ C, ¬β(c) is also added to Ti+1, so that Ti+1

is consistent,
guarantees that every consistent set of sentences can be extended to a saturated
set (C is a countably infinite set of new constant symbols). Then, the canonical
model M = 〈W,D, I, Prob〉 can be defined in the following way:

• W is the set of all saturated sets,
• D is the set of all variable-free terms,
• for every w ∈ W , I(w) is an interpretation such that:

– for every function symbol Fm
i , I(w)(Fm

i ) is a function from Dm to D
such that for all variable-free terms t1, . . . , tm in L, Fm

i : 〈t1, . . . , tm〉 →
Fm

i (t1, . . . , tm), and
– for every relation symbol Pm

i , I(w)(Pm
i ) = {〈t1, . . . , tm〉 for all variable-

free terms t1, . . . , tm ∈ L : Pm
i (t1, . . . , tm) ∈ w}.

• for every w ∈ W , Prob(w) = 〈W (w), H(w), µ(w)〉 such that:
– W (w) = W ,
– H(w) is a class of sets [α] = {w ∈ W : α ∈ w}, for every sentence α,

and
– for every set A ∈ H(w), µ(w)(A) = sups{P>sα ∈ w}.

and the rest of the proof is standard. ¤
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The same arguments as in Section 3.4 can be used to prove completeness of
AxLFOP1 with respect to the classes: LPFOP1,Meas,All, LFOP1,Meas,Neat and
LFOP1,Meas,σ, while the modifications similar to the ones from the previous sec-
tions will be appropriate for logics LFOP

Fr(n)
1 , LFOPA,ω1,Fin

1 , LFOPS
1 , and the

logic LFOP2 (the first order probability logic without iterations) and its variants.

7.4. Decidability. The logic LFOP1 and its variants contain classical first order
logic. Thus, they are undecidable. The monadic fragments of the considered sys-
tems are undecidable, too. To show that, we can use the procedure due to Saul
Kripke [48, 62] and consider a translation of classical first order formulas that
contain only one binary relation symbol P 2 to monadic probability formulas such
that a classical first order formula is valid if and only if its translation is a valid
probability formula. The original translation replaces every expression of the form
P 2(t1, t2) in a classical formula by ♦(P 1

1 (t1) ∧ P 1
2 (t2)), and instead of the modal

formula we can use its probabilistic counterpart P>0(P 1
1 (t1) ∧ P 1

2 (t2)). Since the
fragment of the classical first order logic with a single binary relation symbol is not
decidable, the same holds for the monadic fragments of the first order probability
logics with iterations of probability operators. However, it is interesting that the
monadic fragment of LFOP2 is decidable.

8. Probabilistic logics with the non-classical base

Let us use the termthe basic logic for a logic from which we start building a
probability logic. So far, we have used only classical (propositional or first order)
logic as the basic logic, and it might be usefull to provide some motivation for other
possible choices. The most important reason to change the basic logic, from our
point of view, might be the very nature of classical logic. Namely, it is basically
the logic of mathematics conceived as pertaining to some outside (Platonic) reality.
On this conception, statements are either true or false and forever so (truth is
independent of time and place), there is no room for modality (maybe, possibly,. . . )
or value judgment. It is not surprising that the resulting logic will have some
consequences which seem rather odd in real-life situations and this issue has been
debated throughout the last century, often under the heading “paradoxes of the
material implication”. In this section we will address those issues, and consider
two logics: in the first one we will use intuitionistic logic as the basic logic, while
in the second we will start from a temporal base. However, we do not argue that
either “classical” or any of “non-classical” probabilistic logics is the unique logic
for modelling probabilistic reasoning. Our view is more pragmatic: we believe that
there are real-life situations in which the former approach could be appropriate,
but the same holds for the later one.

8.1. An intuitionistic probability logic. Intuitionistic logic arises quite naturally
from a conception of mathematics as a human endeavor not pertaining to some out-
side reality. Since the statements of mathematics are not about something which
exists out there, they cannot be true or false but only proved or disproved. This
leaves another category of statements, those which are as yet undetermined. Thus
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intuitionistic logic may be viewed as the logic of the growth of human knowledge
(as opposed to the classical logic which we may regard as the logic of the static
Platonic universe of mathematical objects). Thanks to this, intuitionistic logic has
less consequences which would seem rather unintuitive in a real-life situation (e.g.,
(p → q) ∨ (q → p) and (p → (q ∨ r)) → ((p → q) ∨ (p → r)) are not intuitionistic
theorems, i.e., there are models in which they are false). In reality, there is the fact
that the intuitionistic logic might be the least popular non-classical logic among the
practitioners of artificial intelligence and computer science in general. However, for
those comfortable with the ubiquitous S4-modal logic and uncomfortable with intu-
itionism, we should emphasize that these two logics are practically the same: their
models are the same, while the Gödel translation enables us to interpret syntax.
Furthermore, as we shall show in the Remark at the end of this section, intuition-
istic logic arises naturally whenever we deal with possible worlds semantics. In
any case, starting with intuitionistic logic, we naturally have, besides proved state-
ments (probability is 1) and disproved statements (probability is 0), undetermined
statements whose probability should range between 0 and 1. This is more obvious
if we consider a Kripke model in which we can assign a probability to a formula on
the basis of the number of possible worlds in which it is true. In our approach the
probabilistic operators have the classical treatment. As a justification, we may say
that once we determine the probability of an uncertain proposition α, it should be
either greater or equal to some s ∈ [0, 1] or not, so it is not unreasonable to assume
P>sα ∨ ¬P>sα (even if we reject α ∨ ¬α).

We use LPP I
2 to denote the corresponding intuitionistic probability logic. At

the propositional level, the language contains the connectives ¬, ∧, ∨ and →,
while on the probabilistic level we have two lists of unary probabilistic operators
(P>s)s∈S , and (P6s)s∈S , and the connectives ¬ and ∧. Note that, since we have
the intuitionistic base:
• at the propositional level, the propositional connectives are independent, and
• at the probabilistic level, the probabilistic operators P>., and P6. are indepen-
dent, but ∨ and → can be defined from ¬ and ∧.
Similarly as for the logic LPP2, we do not allow iterations of probabilistic operators,
and define the sets ForI of propositional formulas, ForP of probabilistic formulas,
and ForLPP I

2
of all formulas, as in Section 3.1.

8.1.1. Semantics. Corresponding to the structure of the set ForLPP I
2
, there are

two levels in the definition of models. At the first level there is the notion of
intuitionistic Kripke models [63], while probability comes in the picture at the
second level.

Definition 67. An intuitionistic Kripke model for the language ForI is a structure
〈W,6, v〉 where:

• 〈W,6〉 is a partially ordered set of possible worlds which is a tree, and
• v is a valuation function, i.e., v maps the set W into the powerset P(φ),

which satisfies the condition: for all w, w′ ∈ W , w 6 w′implies v(w) ⊆
v(w′).
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The last requirement from Definition 67 allows that v does not determine the
status of some primitive propositions from φ in some worlds. In each Kripke model
we define the forcing relation °⊂ W × ForI by the following definition:

Definition 68. Let 〈W,6, v〉 be an intuitionistic Kripke model. The forcing rela-
tion ° is defined by the following conditions for every w ∈ W , α, β ∈ ForI :

• if α ∈ φ, w ° α iff α ∈ v(w),
• w ° α ∧ β iff w ° α and w ° β,
• w ° α ∨ β iff w ° α or w ° β,
• w ° α → β iff for every w′ ∈ W if w 6 w′ then w′ 1 α or w′ ° β, and
• w ° ¬α iff for every w′ ∈ W if w 6 w′ then w′ 1 α.

We read w ° α as “w forces α” or “α is true in the world w”. Validity in the
intuitionistic Kripke model 〈W,6, v〉 is defined by 〈W,6, v〉 ² α iff (∀w ∈ W )w ° α.
A formula α is valid (² α) if it is valid in every intuitionistic Kripke model.

Let MI = 〈W,6, v〉 be an intuitionistic Kripke model. We use [α]MI
(or shortly

[α] if MI is clear from the context) to denote {w ∈ W : w ° α} for every α ∈ ForI .
The family HI = {[α]MI

: α ∈ ForI} is a Heyting algebra with operations:

[α]∪[β] = [α∨β], [α]∩[β] = [α∧β], [α] ⇒ [β] = [α → β], and ∼ [α] = [¬α].

Thus, HI is a lattice on W , but it may be not closed under complementation.

Definition 69. Ameasurable probabilistic model is a structure M = 〈W,6, v, H, µ〉
where:

• MI = 〈W,6, v〉 is an intuitionistic Kripke model,
• H is an algebra on W containing HI = {[α]MI

: α ∈ ForI},
• µ : H → [0, 1] is a finitely additive probability.

Note that H contains all sets of the form W r [α]MI
, even if for some α ∈ ForI

it may be that W r [α]MI
6= [¬α]MI

. The fact that [¬α] does not have to contain
the complement of [α] is the reason why we need both P>s and P6s operators since
P6sα will not imply P>1−s¬α.

We use LPP I
2,Meas to denote the class of all measurable probabilistic models.

Definition 70. The satisfiability relation ² is defined by the following conditions
for every LPP I

2,Meas-model M = 〈W,6, v, H, µ〉:
• if α ∈ ForI , M ² α if (∀w ∈ W )w ° α,
• M ² P>sα if µ([α]) > s,
• M ² P6sα if µ([α]) 6 s,
• if A ∈ ForP , M ² ¬A if M ² A does not hold, and
• if A,B ∈ ForP , M ² A ∧B if M ² A, and M ² B.

Definition 71. A formula Φ ∈ ForLPP I
2

issatisfiable if there is a LPP I
2,Meas-model

M such that M ² Φ; Φ isvalid if for every LPP I
2,Meas-model M, M ² Φ; a set of

formulas is satisfiable if there is an LPP I
2,Meas-model M such that for every formula

Φ from the set, M ² Φ.
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v(w2) = {q}
v(w1) = {p}
v(w0) = ∅

µ({w2}) = 1/3

µ({w1}) = 1/3

µ({w0}) = 1/3

Figure 2. A tree-like probabilistic model

8.1.2. Examples. In this section we consider some consequences of probabilistic
reasoning which is based on classical logic and which can be avoided using proba-
bilistic logic based on intuitionistic logic.

Example 72. It is well known that ¬(p ∧ q) → (¬p ∨ ¬q) is a classical tautology,
called De Morgan’s law which is not an intuitionistic tautology. Still, even if we
believe that it is impossible to have your cake and eat it, we do not believe that it
is impossible to have your cake and we also do not believe that it is impossible to
eat your cake. More formally, we would like to have P>1¬(p ∧ q), but also P6ε¬p
and P6ε¬q for come small ε, which is impossible with classical logic.

Example 73. Consider the classical tautology (p → q) ∨ (q → p) and probabil-
ity logic based on classical logic. Since tautologies have probability equal to 1,
P>1((p → q)∨ (q → p)) is valid. Let us now take a real-life situation, where p and q
mean “it rains” and “the sprinkler is on”, respectively. It is clear that the sprinkler
should not be on when it rains, i.e., that p → q should have low probability, say
less than ε (P6ε(p → q)). Since probability is additive, the measure of the union
of two sets is less or equal than the sum of the measures of those sets. Thus, the
probability of q → p has to be high. In other words, we get that it is very probable
that it will rain whenever the sprinkler is on (P>1−ε(q → p)). If we were designing
a controller for the sprinkler, this certainly would not be a desirable consequence.

On the other hand, (p → q)∨(q → p) is not an intuitionistic tautology. Consider
the model from Figure 2. Recall that p → q being false in a Kripke model means
that there is at least one possible world in which it is raining but the sprinkler is
off. It is easy to see that w1 ° q → p, w1 1 p → q w2 ° p → q, w2 1 q → p,
w0 1 (p → q) ∨ (q → p), µ([(p → q) ∨ (q → p)]M ) = 2/3, and M 2 P>1((p →
q) ∨ (q → p)). Thus, the above consequence, that with high probability sprinkler
causes raining, does not follow any more.

Note also that we can construct a model in which both p → q and q → p will
have very low probability, say less than 1/n, by simply adding n−3 linearly ordered
new worlds below w0 in M , and having µ(w) = 1/n, w ∈ W . In the same model we
have P>1¬(p ∧ q), P61/n¬p and P61/n¬q, demonstrating the point of the previous
example.

Example 74. Consider the classical (but not intuitionistic) tautology (p → (q ∨
r)) → ((p → q)∨ (p → r)). Starting with classical logic makes P>1((p → (q∨ r)) →
((p → q)∨(p → r))) valid in probabilistic logic. If we take now p to be a description
of our knowledge, q to be the P=NP-hypothesis, and r its negation, we obtain that
P>1((p → (q ∨ r)) since q ∨ r is q ∨ ¬q. It follows that P>1((p → q) ∨ (p → r)),
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which either means that our knowledge is inconsistent or that there is a considerable
probability of at least one of the sentences “The P=NP-hypothesis follows from our
current knowledge”, “The negation of P=NP-hypothesis follows from our current
knowledge”, which is not very much likely. Again, since the above propositional
formula is not intuitionisticaly valid, there is no such conclusion in the “intitionistic”
probability logic.

8.1.3. Axiomatization, completeness, decidability. An axiomatization that
characterizes the set of all LPP I

2,Meas-valid formulas can be obtain by combining:
• any propositional intuitionistic axiomatization for ForI ,
• any classical propositional axiomatization for ForP and
• probabilistic axioms and rules from Section 3.3

with the proviso that in this framework the probabilistic operators P>., and P6.

are independent, so for example, Axiom 3 from the system AxLPP2 should be
rewritten in the form: P>1−r¬α → ¬P>sα for s > r. We skip the corresponding
completeness proof, but the proof of decidability for LPP I

2 contains more new
details and we give it in the next theorems. Let A ∈ ForP and SubfI(A) = {α ∈
ForI : αis a subformula ofA}. Let |A| and |SubfI(A)| denote the length of A, and
the number of formulas in |SubfI(A)|, respectively. Obviously, |SubfI(A)| 6 |A|.
Theorem 75. A probabilistic formula A ∈ ForP is satisfiable iff it is satisfiable in
a finite probabilistic model containing at most 2|A|

2
worlds.

Proof. Let M = 〈W,6, v,H, µ〉, and M ² A. For every w ∈ W , we use SubfI(w)
to denote the set of all formulas from SubfI(A) forced in w, i.e., SubfI(w) = {α ∈
SubfI(A) : w ° α}.

In the sequel we will follow the idea from [121, Theorem 5.3.4], and select some
of the worlds from W to construct a finite model M∗ satisfying A.

Let w0 be the least element from W . We define the worlds of M∗ (indexed by
finite sequence) in the following way:

• u〈〉 = w0, where 〈〉 denotes the empty sequence,
• given uσ let uσ∗〈1〉,. . . ,uσ∗〈k〉 be the maximal set of worlds w(1),. . . ,w(k)

from W such that for every i, j ∈ {1, . . . , k}:
– uσ 6 w(i),
– SubfI(uσ) 6= SubfI(w(i)),
– if uσ 6 w 6 w(i), then either SubfI(uσ) = SubfI(w) or SubfI(w) =

SubfI(w(i)), and
– if i 6= j, then SubfI(w(i)) 6= SubfI(w(j)).

Let W ∗ = {σ : uσ is defined}, 6∗ be the usual ordering of finite sequences, and for
all σ ∈ W ∗, and α ∈ Var, α ∈ v∗(σ) iff α ∈ v(uσ).

Using the induction on complexity of formulas we can prove that for every α ∈
SubfI(A) and every σ ∈ W ∗, σ ° α in 〈W ∗,6∗, v∗〉 iff uσ ° α in 〈W,6, v〉. If
α ∈ Var, the statement holds by the definition of v∗. Let α = β → γ. Suppose that
σ 1 β → γ. Then there is some ρ ∈ W ∗ such that σ 6∗ ρ, ρ ° β and ρ 1 γ. By the
induction hypothesis, uρ ° β and uρ 1 γ, uσ 6 uρ, and uσ 1 β → γ. On the other
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hand, suppose that uσ 1 β → γ. Then, there are two possibilities. First, if uσ ° β
it must be uσ 1 γ, and by the induction hypothesis σ ° β and σ 1 γ, which means
that σ 1 β → γ. In the second case there is some w ∈ W such that uσ 6 w, w ° β,
and w 1 γ. Since uσ 1 β, obviously SubfI(uσ) 6= SubfI(w). According to the
above construction, there must be some uθ ∈ W such that uσ 6 uθ 6 w, σ 6∗ θ,
uθ ° β, and uθ 1 γ. By the induction hypothesis, θ ° β, θ 1 γ, and σ 1 β → γ.
The other cases follow similarly.

Let µ′ be the finitely additive probability defined on {{w ∈ W ∗ : w ° α} :
α ∈ SubfI(A)} such that µ′({w ∈ W ∗ : w ° α}) = µ([α]M ). Since for every
α ∈ SubfI(A), [α]M 6= ∅ iff {w ∈ W ∗ : w ° α} 6= ∅, is easy to see that µ′ is
correctly defined. Let M∗ = 〈W ∗, 6∗, v∗,H∗, µ∗〉 be the probabilistic model such
that H∗ is the smallest algebra on W ∗ containing family {[α]M∗ : α ∈ ForI}, while
µ∗ is a finitely additive probability on H∗ which is an extension of µ′. Note that
it follows from Theorem 2 that such an extension always exists. Since probabilities
of ForI -subformulas of A remain the same, M∗ ² A.

Finally, note that the set W ∗ is finite because every world has at most 2|SubfI(A)|

immediate successors and every branch contains at most |SubfI(A)| worlds. Thus
|W ∗| 6 (2|SubfI(A)|)|SubfI(A)| 6 2|A|

2
. ¤

Theorem 76. The satisfiability problem for probabilistic formulas is decidable.

Proof. It follows from Theorem 75 that A is satisfiable iff it is satisfiable in a prob-
abilistic model with at most kA = 2|A|

2
worlds. Thus, we can check satisfiability

following ideas from Theorem 33: for every l, 1 6 l 6 kA, there is only finitely many
intuitionistic models with different valuations with respect to the set of proposi-
tional letters that occur in A. For every such intuitionistic model MI = 〈W,6, v〉
we can find the algebra H generated by the set {[α]MI : α ∈ SubfI(A)}, and
consider a linear system similar to the system (7). As there is a finite number of
models and linear systems we have to check, and since linear programming problem
is decidable, the same holds for the considered satisfiability problem. ¤

8.1.4. Remark. We will show here that even if we start with classical logic,
possible-worlds semantics naturally produces intuitionistic logic. It turns out that
intuitionistic implication will coincide with conditional probability when probability
is equal to 1.

Let us start with a standard possible-world model M = 〈W,H, µ, v〉. We may
define a pre-order (reflexive and transitive relation) R on W by: uRw iff for every
primitive proposition p, v(u, p) = true implies v(w, p) = true. From this we may
obtain a partial order in the usual way. First we introduce an equivalence relation ∼
defined by: u ∼ w iff uRw and wRu, and then we split W into equivalence classes:
Cu = {w : u ∼ w}. Now we may pick a selection W ′ ⊂ W of representatives of
equivalence classes (one for each class). So we have (∀u ∈ W )(∃w ∈ W ′)(u ∼ w).
Obviously, R induces a partial order 6 on W ′ such that u 6 w iff uRw. Now we
have a Kripke model with a partial ordering relation on worlds 〈W ′, 6, v〉 which
makes it a model for intuitionistic logic. Namely, we may define (semantically)
a new propositional connective → by: w ² α → β iff (∀w′ > w)(w′ ² α implies
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w′ ² β). We may also define a new, intuitionistic, negation by: −α = α → ⊥.
Therefore, even if we start with classical logic, when we come to models, we have
an intuitionistic implication built in.

The interest in intuitionistic implication, besides the arguments proposed at the
start of this section, comes from the fact that conditional probability, which is often
used as the proper form of entailment in the context of probability logic, coincides
in a sense with the intuitionistic implication, as can be seen from the following
theorem.

Theorem 77. µ(α → β) = 1 iff
µ(α ∧ β)

µ(α)
= 1.

However, this symmetry holds only in the case when probability is equal to 1.
It is possible to construct models in which conditional probability is high while
the probability of (intuitionistic) implication is low and vice versa. The reason is
that, despite the fact that both operators are define globally (and not locally, in
each world) the definitions are quite different. Conditional probability considers
(i.e., counts) only worlds in which α is true, while intuitionistic implication takes
into account also their predecessors. We may say, in a sense, that conditional
probability disregards the development of events and regards only the final stages
(with regard to the validity of α), i.e., the analysis starts with the worlds in which
α is true and disregards the previous stages in which α may be “not yet true”.
Existence of long time-lines which end with worlds in which α is not true adds to
the probability of α → β, while it is irrelevant for the conditional probability. On
the other hand, a long sequence which has an ending in which α is true and β is
not, reduces considerably the probability of α → β, while it may, in the presence
of a relevant number of worlds in which both α and β are true, be insignificant for
conditional probability.

8.2. A discrete linear-time probabilistic logic. In this section we describe a way
in which probabilistic reasoning can be enriched with some temporal features. The
temporal part of the logics is a standard discrete linear-time logic LTL [119], where
the flow of time is isomorphic to natural numbers, i.e., each moment of time has a
unique possible future, while the corresponding language contains the “next” oper-
ator (©) and the reflexive strong “until” operator (U), (the operators “sometime”
F and “always” G are definable: (Fα = >Uα and Gα = ¬F¬α). Similarly as in
Section 7, nesting of the probabilistic and temporal operators is important and we
will start from the logic LPP1. In our logic, denoted LPPLTL

1 , the probabilistic
operators quantify events along a single time line. It allows us to express sentences
such as “(according to the current set of information) the probability that, some-
time in the future, α is true is at least s”. And, as the knowledge can evolve during
the time, the probability of α might change too. Note that, since the operators
“sometime” and “always” can be seen as the existential and universal quantifiers
over time instants, the probabilistic operators give more refined quantitative char-
acterization of sets of time instants definable by formulas. We may try to motivate
the proposed semantics in the following way.
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Example 78. A suitable representation of all possible outcomes of an infinite
sequence of probabilistic experiments (let us say that experiments A and B are
permanently repeated resulting in a or ¬a, and b or ¬b, respectively) could be
an inifinite tree, where every branch corresponds to a possible realization of the
sequence of the experiments, and every time instant is described in the form ±a,±b
depending on obtaining (or not obtaining) a and b in the corresponding experiment.
We might be interested in probabilistic properties that hold for all branches. In
that case we can reason about an arbitrary branch and need ability to express
probabilities of events along it, for example that the probability of the event a is
at least s, or some more complicated conditions, like that in every time instant, if
the probability of a is less than r, then b must hold forever.

The set ForLPP LT L
1

of formulas is defined inductively as the smallest set con-
taining primitive propositions and closed under formation rules: if α and β are
formulas, then ¬α, ©α, P>sα, for every s ∈ S, α ∧ β, and αUβ are formulas. We
will use the following notational definition: ©0α = α, and ©i+1α = ©©i α for
i > 0. If T = {α1, α2, . . .} is a set of formulas, then ©T denotes {©α1,©α2, . . .}.

Example 79. An example of a formula is (©P>rp ∧ FP<s(p → q)) → GP=tq
which can be read as “if the probability of p in the next moment is at least r and
sometime in the future q follows from p with the probability less than s, then the
probability of q will always be equal to t.”

8.2.1. Semantics. The semantics for LPPLTL
1 is a Kripke-style one using se-

quences of natural numbers as frames.

Definition 80. An LPPLTL
1 -model is a structure M = 〈W,Prob, v〉 where:

• W = {w0, w1, . . .} is a sequence of time instants,
• Prob is a probability assignment which assigns to every w ∈ W a probability

space, such that Prob(w) = 〈W (w),H(w), µ(w)〉, where:
– W (w) = {wj : j > i},
– H(w) is an algebra of subsets of W (w) and
– µ(w) : H(w) → [0, 1] is a finitely additive probability measure.

• v assigns to every w ∈ W a two-valued evaluation of the primitive propo-
sitions, i.e., for every w ∈ W , v(w) : φ → {true, false}.

Definition 81. Let M = 〈W,Prob, v〉 be a LPPLTL
1 -model, i ∈ ω and α be a

formula. The satisfiability relation ² is inductively defined as follows:

• if p ∈ φ is a primitive proposition, wi ² p if v(wi)(p) = true,
• wi ² ¬α if wi 2 α,
• wi ² P>sα if µ(wi)({wi+j , j > 0 : wi+j ² α}) > s,
• wi ² ©α if wi+1 ² α,
• wi ² α ∧ β if wi ² α and wi ² β.
• wi ² αUβ if there is an integer j > 0 such that wi+j ² β, and for every k

such that 0 6 k < j, wi+k ² α.
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We concern a reflexive, strong version of the until operator, i.e., if αUβ holds in
a time instant, β must eventually hold. In the above definition the future includes
the present, so that:

• wi ² Fα if there is j > 0 such that wi+j ² α, and
• wi ² Gα if for every j > 0, wi+j ² α.

Also, the present time instant is included when the probability of formulas are
considered. All the presented results then can be proved with essentially no change
if we use the temporal and probabilistic operators referring to the strict future that
does not concern the present.

Again, we will considermeasurable models only, i.e., the class LPPLTL
1,Meas of all

LPPLTL
1 -models such that for every wi ∈ W the set H(wi)) = {[α]wi

: α ∈
ForLPP LT L

1
}, where [α]wi

= {wi+j : j > 0, wi+j ² α}.
The notions of satisfiable and valid formulas and satisfiable sets of formulas are

defined as in Section 5.

8.2.2. Axiomatization. An axiomatization AxLPP LT L
1

that characterizes the set
of all LPPLTL

1,Meas-valid formulas extends the system AxLPP2 (having in mind that in-
stances of the axiom schemas and rules must obey the syntactical rules for LPPLTL

1 )
with the following axiom schemas:

(7) ©(α → β) → (©α →©β)
(8) ¬© α ↔©¬α
(9) αUβ ↔ β ∨ (α ∧©(αUβ))

(10) αUβ → Fβ
(11) Gα → P>1α

while the inference rules should be rewritten in the following form:

(1) from α and α → β infer β
(2) from α infer ©α
(3) from β →©iα for all i > 0, infer β → Gα
(4) from β → ©mP>s− 1

k
α, for any m > 0, and for every k > 1

s , infer β →
©mP>sα.

The main novelty in AxLPP LT L
1

concerns axioms about temporal reasoning (the
axioms 7 and 8 are the usual axioms for the next operator ©, as well as the axioms
9 and 10 for the until operator) and mixing of probabilistic and temporal reasoning
(Axiom 11). There are two infinitary inference rules: 3 and 4. The former one
characterizes the always operator.

In this framework we can use the definitions 30 and 31 of deduction and consis-
tency.

Note that, similarly to the probabilistic logics, compactness does not hold for
LTL. For example, every finite subset of the set {Fnp : nis a positive integer} ∪
{FG¬p} is satisfiable, while the set itself is not. So, the temporal part of AxLPP LT L

1

offers possibility to prove extended completeness which cannot be proved using
finitary means.
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Modifications of AxLPP LT L
1

according to ideas presented in the previous sections
could produce the corresponding axiomatic systems for a first order logic for reason-
ing about discrete linear time and probability, a temporal probabilistic logic with
probabilistic functions with a fixed finite range, etc. Also, we can specify additional
relationships between the flow of time and the probability measures by adding new
axioms:

Example 82. The formula ¬α → (P>sα →©P>sα), considered as an additional
axiom scheme, characterizes models with the property that if a formula does not
hold in a time instant, then in the next time instant its probability will be not
decreased.

8.2.3. Completeness and decidability. The proof of extended completeness
again follows the ideas given in the previous sections, so we only outline the main
new details.

Theorem 83 (Extended completeness theorem for LPPLTL
1,Meas). A set T of formu-

las is AxLPP LT L
1

-consistent iff it is LPPLTL
1,Meas-satisfiable.

Proof. We start with Deduction theorem. For example, assume that T, α ` β →
Gβ′ is obtained by Rule 3. Then:

(1) T, α ` β →©iβ′, for i > 0,
(2) T ` α → (β →©iβ′), for i > 0, by the induction hypothesis,
(3) T ` (α ∧ β) →©iβ′, for i > 0,
(4) T ` (α ∧ β) → Gβ′, by Rule 3,
(5) T ` α → (β → Gβ′).

The axioms and rules imply some auxiliary statements (T denotes a consistent set
of formulas):

(1) ` Gα ↔ α ∧©Gα,
(2) ` G© α ↔©Gα,
(3) ` (©α →©β) →©(α → β),
(4) ` ©(α ∧ β) ↔ (©α ∧©β),
(5) ` ©(α ∨ β) ↔ (©α ∨©β),
(6) Gα ` ©iα for every i > 0,
(7) if ` α, then ` Gα,
(8) if T ` α, where T is a set of formulas, then ©T ` ©α.
(9) for j > 0, ©jβ,©0α, . . . ,©j−1α ` αUβ,

(10) For any formula α, either T ∪ {α} is consistent or T ∪ {¬α} is consistent.
(11) If ¬(α → Gβ) ∈ T , then there is j0 > 0 such that T ∪ {α → ¬©j0 β} is

consistent.
(12) If ¬(α → ©mP>sβ) ∈ T , then there is j0 > 1

s such that T ∪ {α →
¬©m P>s− 1

j0
β} is consistent.

For example, the statement (9) follows in the following way. Assume ` α. By
application of Rule 2, we get ` ©kα, for every k ∈ ω. We obtain ` Gα by Rule 3.
From Axiom 11 and by application of Modus Ponens, we have ` P>1α.
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Then we can show that every consistent set T of formulas can be extended to
a maximal consistent set. Let α0, α1,. . . be an enumeration of all formulas. A
maximal consistent extension T of T can be obtained as follows:

(1) T0 = T .
(2) For every i > 0 if Ti∪{αi} is consistent, then Ti+1 = Ti∪{αi}. Otherwise,

if αi is of the form γ → Gβ, then Ti+1 = Ti ∪ {¬αi, γ → ¬ ©j0 β} for
some j0 > 0 such that Ti+1 is consistent. Otherwise, αi is of the form
γ → ©mP>sβ, then Ti+1 = Ti ∪ {¬αi, γ → ¬ ©m P>s− 1

j0
β} for some

j0 > 0 such that Ti+1 is consistent. Otherwise, Ti+1 = Ti ∪ {¬αi}.
(3) T =

⋃∞
i=0 Ti.

For a maximal consistent extension T of a consistent set T of formulas we define
the canonical model MT = 〈W,Prob, v〉 such that:

• W = w0, w1, . . ., w0 = T , and for i > 0, wi = {α : ©α ∈ wi−1},
• for i > 0, Prob(wi) = 〈W (wi),H(wi), µ(wi)〉 is defined as follows:

– W (wi) = {wi+j : j > 0},
– H(wi) = {{wi+j : j > 0, α ∈ wi+j}},
– for µ(wi)({wi+j : j > 0, α ∈ wi+j}) = sups{P>sα ∈ wi},

• for every primitive proposition p ∈ φ, and every wi ∈ W , v(wi)(p) = > iff
p ∈ wi.

First of all, we can prove that for every i > 0, wi is a maximal consistent set. By
hypothesis, w0 is maximal and consistent. Suppose that wi+1 is not maximal. There
is a formula α such that {α,¬α} ∩wi+1 = ∅. Consequently, {©α,©¬α} ∩wi = ∅.
We obtain that {©α,¬©α}∩wi = ∅ which is in contradiction with the maximality
of wi. Suppose that wi+1 is not consistent, i.e., that wi+1 ` α ∧ ¬α. Then,
wi ` ©(α ∧ ¬α), and wi ` ©α ∧ ¬© α which is in contradiction with consistency
of wi.

Then, similarly as in the previous sections, we can show that MT is an LPPLTL
1,Meas-

model such that for all wi and α, α ∈ wi iff wi ² α. For example, if α = ©β, we
have wi ² α iff wi+1 ² β iff β ∈ wi+1 iff α ∈ wi (by the construction of wi+1). ¤

For the previously presented logics as the first step in the proofs of their decid-
ability we have used some kind of the filtration technique which helps as to show
that every formula is satisfiable iff it is satisfiable in a finite model. The problem
is that the filtration cannot be used here since the LPPLTL

1,Meas-models are (by their
definition) infinite. However, we can show (following the ideas presented in [119])
that a formula is satisfiable if and only if it is satisfiable in an model such that the
sequence of time instants of the model has a finite initial sequence of time instants
followed by another finite sequence of time instants which permanently repeats and
in that way forms the rest of the whole time-line. The lengths of both sequences
are bounded by functions of the size of the considered formula. The full proof of
decidability and complexity of the LPPLTL

1,Meas-satisfiability problem can be found
in [91]. As it is rather long, we give only the corresponding main statements:

Theorem 84. Every LPPLTL
1,Meas-satisfiable formula α is satisfiable in a model with

the starting sequence of time instants, followed by the sequence of time instants
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which permanently repeats. The length of the former sequence is 6 22|α| + 1, and
the length of the later sequence is 6 (2|α| + 1) × 2|α|, where |α| denotes the length
of α.

Theorem 85 (Decidability and complexity for LPPLTL
1 ). The LPPLTL

1 is decid-
able. The LPPLTL

1,Meas-satisfiability problem is PSPACE-hard and in non-determin-
istic exponential time.

9. Logics with conditional probability

An important reason to consider conditional probability logics is given in [80].
It is argued there that conditional probability offers a more natural generalization
of the rule “if α, then β” than probability of implication. Namely, if α has a low
non-negative probability and ¬α∧β is very likely to happen, then “the probability
of α → β” could be very high (since α → β holds whenever α is false) and does not
properly reflect the meaning of the rule, while on the other hand, “the conditional
probability of β given α” is more appropriate.

Also, it turns out that a specific kind of conditional probability (with a nonar-
chimedean range) is useful in modelling default reasoning. We start this section
by presenting a logic (denoted LPCPS,≈

2 ) which formalizes such conditional prob-
ability and represents approximate probabilistic knowledge, but in a similar way
axiomatizations could be given to ordinary [0, 1]-real-valued conditional probability.
LPCPS,≈

2 can be seen as a generalization of the logic LPPS
2 from Section 4.3.

In the second part of the section we introduce another logic LPCPChr
2 which

axiomatizes so-called de Finetti’s view of conditional probability [20]. In that ap-
proach conditional probability is seen as more primitive concept than unconditional
probability, in contrast to Kolmogorov’s definition where conditional probability is
defined via unconditional probability. Conditional probability in the sense of de
Finetti can be defined using a structure 〈W,H, µ〉, where W is a non empty set,
H is an algebra of subsets of W , and µ : H × H0 → [0, 1], H0 = H r {∅}, is a
(coherent) conditional probability satisfying:

• µ(A,A) = 1, for every A ∈ H0,
• µ(·, A) is a finitely additive probability on H for any given A ∈ H0,
• µ(C ∩B, A) = µ(B, A) ·µ(C, B ∩A), for all C ∈ H and A, B, A∩B ∈ H0.

Note that µ(A,B) has a meaning with the only condition that B is different from
the impossible event.

9.1. A logic with approximate conditional probabilities. In this subsection, we
use notions defined in Section 3, and only emphasize the main novelties. Let S be
the unit interval of the Hardy field Q[ε]. Q[ε] is a recursive nonarchimedean field
which contains all rational functions of a fixed positive infinitesimal ε which belongs
to a nonstandard elementary extension ∗R of the standard real numbers [56, 117].
An element ε of ∗R is an infinitesimal if |ε| < 1

n for every natural number n. Q[ε]
contains all rational numbers. Let Q[0, 1] denote the set of rational numbers from
[0, 1].
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The language of LPCPS,≈
2 , beside the set φ of primitive propositions and Boolean

connectives ¬ and ∧, contains binary probabilistic operators:

(CP6s)s∈S , (CP>s)s∈S , and (CP≈r)r∈Q[0,1].

If α, β ∈ ForC and s ∈ S, r ∈ Q[0, 1] then CP>s(α, β), CP6s(α, β) and
CP≈r(α, β) are basic probability formulas with the intended meaning “the con-
ditional probability of α given β is at least (at most) s and, approximately r”. The
set ForP of probabilistic propositional formulas is the smallest set containing all
basic probability formulas and closed under Boolean formation rules (so, there are
no iterations of the probabilistic operators). The set of formulas ForLPCP S,≈

2
is

ForC ∪ForP . Also:
• CP<s(α, β) denotes ¬CP>s(α, β) for α, β ∈ ForC , s ∈ S,
• CP>s(α, β) denotes ¬CP6s(α, β) for α, β ∈ ForC , s ∈ S,
• CP=s(α, β) denotes CP>s(α, β) ∧ CP6s(α, β) for α, β ∈ ForC , s ∈ S and
• Pρ sα denotes CPρ s(α,>) for α ∈ ForC and ρ ∈ {>,6, >, <, =,≈}.

It should be noted that CP> and CP6 are not interdefinable since the appropriate
equivalence breaks down when the probability of the condition is 0.

9.1.1. Semantics. We consider the class LPCPS,≈
2,Meas,Neat of all measurable neat

LPCPS,≈
2 -models, which can be defined in the same way as the class LPP2,Meas,Neat

from Section 3.2, with the important difference that:
• µ is an S-valued finitely additive measure, i.e., µ : H → S.

The neatness condition is used to make our models a subclass of ∗R-probabilistic
models of [61, 66]. This facilitates the explanation of a possible application of
LPCPS,≈

2 to default reasoning. All the results can be also proved for the class of
measurable (but not necessarily neat) LPCPS,≈

2 -models.

Definition 86. The satisfiability relation ²⊆ LPCPS,≈
2,Meas,Neat×ForLPCP S,≈

2
fulfills

the following conditions for every LPCPS,≈
2,Meas,Neat-model M = 〈W,H, µ, v〉:

(1) if α ∈ ForC , M ² α if (∀w ∈ W )v(w)(α) = true,
(2) M ² CP6s(α, β) if either µ([β]M) = 0 and s = 1 or µ([β]M) > 0 and

µ([α∧β]M)
µ([β]M) 6 s,

(3) M ² CP>s(α, β) if either µ([β]M) = 0 or µ([β]M) > 0 and µ([α∧β]M)
µ([β]M) > s,

(4) M ² CP≈r(α, β) if either µ([β]M) = 0 and r = 1 or µ([β]M) > 0 and for
every positive integer n, µ([α∧β]M)

µ([β]M) ∈ [max{0, r − 1/n},min{1, r + 1/n}].
(5) if A ∈ ForS

P , M ² ¬A if M 2 A,
(6) if A,B ∈ ForS

P , M ² A ∧B if M ² A and M ² B.

Condition 3 is formulated on the useful assumption that the conditional proba-
bility is by default 1, whenever the condition has the probability 0. Also, note that
the condition 4 is equivalent to saying that the conditional probability equals r− εi

(or r + εi) for some infinitesimal εi ∈ S. It is easy to see that the defined operators
will behave as expected, e.g., M ² P<sα iff µ([α]M) < s.
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9.1.2. Axiomatization and completeness. The axiomatic system AxLPCP S,≈
2

which characterizes the set of all LPCPS,≈
2,Meas,Neat-valid formulas contains the fol-

lowing set of axiom schemata:
(1) all ForC-instances of classical propositional tautologies
(2) all ForP -instances of classical propositional tautologies
(3) CP>0(α, β)
(4) CP6s(α, β) → CP<t(α, β), t > s
(5) CP<s(α, β) → CP6s(α, β)
(6) P>1(α ↔ β) → (P=sα → P=sβ)
(7) P6sα ↔ P>1−s¬α
(8) (P=sα ∧ P=tβ ∧ P>1¬(α ∧ β)) → P=min(1,s+t)(α ∨ β)
(9) P=0β → CP=1(α, β)

(10) (P=tβ ∧ P=s(α ∧ β)) → CP=s/t(α, β), t 6= 0
(11) CP≈r(α, β) → CP>r1(α, β), for every rational r1 ∈ [0, r)
(12) CP≈r(α, β) → CP6r1(α, β), for every rational r1 ∈ (r, 1]

and inference rules:
(1) From ϕ and ϕ → ψ infer ψ.
(2) If α ∈ ForC , from α infer P>1α.
(3) From A → P 6=sα, for every s ∈ S, infer A → ⊥.
(4) For every r ∈ Q[0, 1], from A → CP>r−1/n(α, β), for every integer n > 1/r,

and A → CP6r+1/n(α, β) for every integer n > 1/(1 − r), infer A →
CP≈r(α, β).

It is easy to see (just put > instead of β) that the axioms 3–5 generalize the cor-
responding axioms from the system AxLPP2 . Axiom 9 conforms with the useful
practice of assuming conditional probability to be 1, whenever the condition has the
probability 0. Axiom 10 expresses the standard definition of conditional probability,
while the axioms 11 and 12 and Rule 4 describe the relationship between the stan-
dard conditional probability and the conditional probability infinitesimally close to
some rational r ∈ Q[0, 1]. The rules 3 and 4 are infinitary. Rule 3 guarantees that
the probability of a formula belongs to the set S.

A useful, but straightforward theorem is:

Theorem 87. Let α, β ∈ ForC . Then:
(1) ` CP>t(α, β) → CP>s(α, β), t > s
(2) ` CP6t(α, β) → CP6s(α, β), t < s
(3) ` CP=t(α, β) → ¬CP=s(α, β), t 6= s
(4) ` CP=t(α, β) → ¬CP>s(α, β), t < s
(5) ` CP=t(α, β) → ¬CP6s(α, β), t > s
(6) ` CP=r(α, β) → CP≈r(α, β), r ∈ Q[0, 1].
(7) ` CP≈r1(α, β) → ¬CP≈r2(α, β), for r1, r2 ∈ Q[0, 1], r1 6= r2.
(8) ` P=0β → ¬CP6s(α, β), for s < 1.
(9) ` P61α.

Note that, by restricting β to >, we obtain analogous statements for uncondi-
tional probabilities.
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The main novelty in the completeness proof follows concerns the construction
of a maximal consistent extensions of a consistent set. Following notations from
Theorem 13, now the construction is:

(1) T0 = T ∪ CnC(T ) ∪ {P>1α : α ∈ CnC(T )}
(2) for every i > 0,

(a) if T2i ∪ {Ai} is consistent, then T2i+1 = T2i ∪ {Ai};
(b) otherwise, if T2i ∪ {Ai} is not consistent, we have:

(i) if Ai is of the form A → CP≈r(α, β), then T2i+1 = T2i ∪
{¬Ai, A → ¬CP>r−1/n(α, β)}, or T2i+1 = T2i ∪ {¬Ai, A →
¬CP6r+1/n(α, β)}, for some integer n, where n is chosen such
that T2i+1 is consistent (we prove that this is possible below);

(ii) otherwise, T2i+1 = T2i ∪ {¬Ai},
(3) for every i > 0, T2i+2 = T2i+1 ∪ {P=sαi}, where s is chosen to be an

arbitrary element of S such that T2i+2 is consistent (we prove that this is
possible below),

(4) for every i > 0, if Ti is enlarged by a formula of the form P=0α, add ¬α to
Ti ∪ {P=0α} as well.

(5) T =
⋃∞

i=0 Ti.

Let us consider the step (3) of the construction, and suppose that for every s ∈ S,
T2i+1 ∪{P=sαi} is not consistent. Let T2i+1 = T0 ∪T+

2i+1, where T+
2i+1 denotes the

set of all formulas B ∈ ForP that were added to T0 in the previous steps of the
construction. Then the following contradicts consistency of T2i+1:

(1) T0, T
+
2i+1, P=sαi ` ⊥, for every s ∈ S, by the hypothesis

(2) T0, T
+
2i+1 ` ¬P=sαi, for every s ∈ S, by Deduction theorem

(3) T0 ` (
∧

B∈T+
2i+1

B) → ¬P=sαi, for every s ∈ S, by Deduction theorem
(4) T0 ` (

∧
B∈T+

2i+1
B) → ⊥, by Rule 3

(5) T2i+1 ` ⊥,

The set T satisfies:

(1) There is exactly one s ∈ S such that P=sα ∈ T .
(2) There is exactly one s ∈ S such that CP=s(α, β) ∈ T .
(3) If CP>s(α, β) ∈ T , there is r ∈ S such that r > s and CP=r(α, β) ∈ T .
(4) If CP6s(α, β) ∈ T , there is r ∈ S such that r 6 s and CP=r(α, β) ∈ T .
(5) If CP≈r1(α, β) ∈ T and r2 ∈ Q[0, 1]r {r1}, then CP≈r2(α, β) /∈ T

As an example, let us consider the statement (1). According to Theorem 87 (3), if
P=sα ∈ T , then for every t 6= s, P=tα /∈ T . On the other hand, if for every s ∈ S,
¬P=sα ∈ T , then T ` ¬P=sα for every s ∈ S. By Rule 3, T ` ⊥ which contradicts
consistency of T . Thus, for every α ∈ ForC , there is exactly one s ∈ S such that
P=sα ∈ T . Finally, the corresponding canonical model MT can be defined as in
Section 3.4, and we have:

Theorem 88 (Extended completeness theorem for LPCPS,≈
2,Meas,Neat). A set T of

formulas is AxLPCP S,≈
2

-consistent iff it is LPCPS,≈
2,Meas,Neat-satisfiable.
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9.1.3. Decidability. The proof of decidability of LPCPS,≈
2 [114] is rather long,

and, similarly as in Section 8.2, we will omit it here. The proof contains a reduc-
tion of the the LPCPS,≈

2,Meas,Neat-satisfiability to linear programming problem, as
in Section 3.5. However, note that Section 3.5 deals with the standard real-valued
probabilities, while in LPCPS,≈

2 the range of probabilities is recursive and contains
non-standard values, and there are operators of the form CP≈r that do not appear
above. Thus, in the reduction we have to eliminate the CP≈.-operators and to
try to solve linear systems in an extension of Q[ε]. The next example contains an
illustration of the technique from [114].

Example 89. Let us consider the formula A = C∧((D∨B) → (D∧B)), where B,
C and D denote CP≈0(q,>), CP≈1(¬p∧¬q,¬q) and CP≈0.4(p∧ q, q), respectively.
The set of atoms, At(A), contains a1 = p ∧ q, a2 = p ∧ ¬q, a3 = ¬p ∧ q and
a4 = ¬p ∧ ¬q. Let xi denote the measure of atom ai. The formula A is equivalent
to (B ∧C ∧D) ∨ (¬B ∧C ∧ ¬D). We start with the first conjunct B ∧C ∧D and
suppose that the measures of q and ¬q are greater than zero, i.e., that x1 +x3 > 0,
and x2 +x4 > 0. B∧C∧D is satisfiable iff the same holds for the following system:

x1 + x2 + x3 + x4 = 1, xi > 0 for i = 1, 4
x1 + x3 > 0 x2 + x4 > 0
x1 + x3 ≈ 0

x2/(x2 + x4) ≈ 1

x1/(x1 + x3) ≈ 0.4

which is equivalent to

x1 + x2 + x3 + x4 = 1, xi > 0 for i = 1, 4
x1 + x3 > 0 x2 + x4 > 0

0 < x1 + x3 < n1ε

x4/(x2 + x4) < 1/n2

0.4− n3ε < x1/(x1 + x3) < 0.4 + n3ε

for some n1, n2, n3 ∈ N . If we replace n1, n2, n3 by their maximum denoted by
n, we obtain an equivalent system. Since ≈ does not appear in the last system,
Fourier-Motzkin elimination can be performed in the standard way. The procedure
finishes with the true condition (1 − nε)/n < 1 which means that the considered
formula is satisfiable.

9.1.4. Modelling default reasoning. The central notion in the field of default
reasoning is the notion of default rules. A default rule, which can be seen as a
sentence of the form “if α, then generally β”, can be written as5 α ½ β. A default
base ∆ is a set of default rules. Default reasoning is described in terms of the
corresponding consequence relation |∼, i.e., we are interested in determining the set

5Note that the other authors use different symbols (→, |∼, for example) to denote the “default
implication”. In the present setting those symbols may cause confusion, so we prefer to introduce
a new symbol here.
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of defaults that are the consequences of a default base. Then, if α is a description
of our knowledge and ∆|∼ α ½ β, we (plausibly) conclude that β is the case.
There are a number of papers which describe |∼ in terms of classes of models and
the corresponding satisfiability relations ² such that ∆|∼ α ½ β if for every model
M satisfying ∆, M ² α ½ β. In [61, 66] a set of properties which form a core of
default reasoning, called the system P, and the corresponding deduction relation
`P were proposed. The system P is based on the following axiom and rules (²
denotes classical validity):

• α ½ α (Reflexivity)
• from ² α ↔ α′ and α ½ β, infer α′ ½ β (Left logical equivalence)
• from α ½ β and α ½ γ, infer α ½ β ∧ γ (And)
• from α ½ γ and β ½ γ, infer α ∨ β ½ γ (Or)
• from α ½ β and α ½ γ, infer α ∧ β ½ γ (Cautious monotonicity).

Then, for a default base ∆, ∆ `P α ½ β if α ½ β is deducible from ∆ using the
above axiom and rules. Default consequence relation was also described in terms
of preferential models, and it was proved that the system P is sound and complete
with respect to the class of all such models:

Theorem 90. [61, Theorem 5.18] ∆|∼ α ½ β with respect to the class of all
preferential models if and only if ∆ `P α ½ β.

The same holds for a special proper subclass of the class of preferential mod-
els, the so-called rational models, also considered in [66]. These two classes are
not distinguishable using the language of defaults. It turns out that many other
approaches to default reasoning are characterized by P. For example, in [66] a fam-
ily of nonstandard (∗R) probabilistic models characterizing `P was proposed. An
∗R-probabilistic model can be defined in a similar way as LPCPS,≈

2,Meas,Neat-models,
with the exception that µ : H → R∗. A default α ½ β holds in an ∗R-probabilistic
model if either the probability of α is 0 or the conditional probability of β given α
is infinitesimally close to 1.

We can use CP≈1(β, α) to syntactically represent the default α ½ β. In the
sequel, we will use α ½ β both in the original context of the system P and to
denote the corresponding translation CP≈1(β, α). In the case of a finite default
base our approach produces the same result as the other mentioned approaches,
namely it is equivalent to P .

Theorem 91. For every finite default base ∆ and for every default α ½ β

∆ `P α ½ β iff ∆ `Ax
LP CP

S,≈
2

α ½ β.

Theorem 91 cannot be generalized to an arbitrary default base ∆, as it is illus-
trated by the following example.

Example 92. It is proved in [66, Lemma 2.7] that the infinite set of defaults T =
{pi ½ pi+1, pi+1 ½ ¬pi}, where pi’s are propositional letters for every integer i > 0,
has only non well-founded preferential models (a preferential model containing an
infinite descending chain of states) in which p0 6½ ⊥, i.e., p0 is consistent. It
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means that T 0P p0 ½ ⊥. On the other hand, T `Ax
LP CP

S,≈
2

p0 ½ ⊥ since the

following holds. Let an LPCPS,≈
2,Meas,Neat-model M = 〈W,H, µ, v〉 satisfy the set T .

If µ([pi]) = 0, for some i > 0, then it must be µ([p0]) = 0, and M ² p0 ½ ⊥. Thus,
suppose that µ([pi]) 6= 0, for every i > 0. Then, for every i > 0: µ([pi∧pi+1])

µ([pi])
≈ 1

and µ([¬pi∧pi+1])
µ([pi+1])

≈ 1, i.e., µ([pi∧pi+1])
µ([pi])

= 1 − ε1 and µ([¬pi∧pi+1])
µ([pi+1])

= 1 − ε2, for
some infinitesimals ε1 and ε2. A simple calculation shows that which means that
µ([pi]) 6 ε0µ([pi+1]) for some infinitesimal ε0. Since, for some c and k, ε0 6 cεk,
it follows that for every i > 0, 0 6 µ([p0]) 6 εi. Since µ([p0]) ∈ S and there is no
positive element of S with such property, it follows that µ([p0]) = 0, [p0] = ∅ and
M ² p0 ½ ⊥. Since M is an arbitrary LPCPS,≈

2,Meas,Neat-model, T `LPCP S,≈
2

p0 ½
⊥.

Note that the above proof of µ([p0]) = 0, does not hold in the case when the range
of the probability is the unit interval of ∗R because ∗R is ω1-saturated (which means
that the intersection of any countable decreasing sequence of nonempty internal
sets must be nonempty). As a consequence, thanks to the restricted ranges of
probabilities that are allowed in LPCPS,≈

2,Meas,Neat-class of models, our system goes
beyond the system P, when we consider infinite default bases.

LPCPS,≈
2 is rich enough not only to express formulas that represents defaults but

also to describe more: probabilities of formulas, negations of defaults, combinations
of defaults with the other (probabilistic) formulas etc. Let us now consider some
situations where these possibilities allow us to obtain more conclusions than in the
framework of the language of defaults.

Example 93. The translation of rational monotonicity, ((α ½ β)∧¬(α ½ ¬γ)) →
((α ∧ γ) ½ β), is LPCPS,≈

2,Meas,Neat-valid since rational monotonicity is satisfied in
every ∗R-probabilistic model, and LPCPS,≈

2,Meas,Neat is a subclass of that class of
models. The same holds for the formula ¬(true ½ false) corresponding to another
property called normality in [31].

Note that in this example we use negated defaults that are not expressible in P.

Example 94. Let the default base consist of the following two defaults s ½ b and
s ½ t, where s, b and t means Swedes, blond and tall, respectively [6]. Because
of the inheritance blocking problem, in some systems (for example in P) it is not
possible to conclude that Swedes who are not tall are blond ((s ∧ ¬t) ½ b). Since
our system and P coincide if the default base is finite, the same holds in our
framework. In fact, there are some LPCPS,≈

2,Meas,Neat-models in which the previous
formula is not satisfied. Avoiding a discussion of intuitive acceptability of the above
conclusion, we point out that by adding some additional assumptions (CP=1−ε(t, s)
and CP=1−ε2(b, s)) to the default base we can entail that conclusion too. First, note
that the assumptions are compatible with defaults s ½ t and s ½ b. Then, an easy
calculation shows that P (s∧¬t)

P (s) = P (s)−P (s∧t)
P (s) = P (s)−P (s)+P (s)ε

P (s) = ε, and similarly
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P (s∧¬b)
P (s) = ε2. Finally, we can estimate the conditional probability of b given s∧¬t:

P (s ∧ ¬t ∧ b)
P (s ∧ ¬t)

=
P (s ∧ ¬t)− P (s ∧ ¬t ∧ ¬b)

P (s ∧ ¬t)
> εP (s)− ε2P (s)

εP (s)
= 1− ε.

It follows that (s ∧ ¬t) ½ b.

9.2. A logic with coherent conditional probabilities. In this subsection S again
denotes the unit interval of rational numbers. The set ForP containsbasic probability
formulas of the form CP>s(α, β) and their boolean combinations.

Definition 95. An LPCPChr
2 -model is a structure M = 〈W,H, µ, v〉 where:

• W is a nonempty set,
• H is an algebra of subsets of W , H0 = H r {∅}
• µ : H ×H0 → [0, 1], is a conditional probability satisfying
• µ(A,A) = 1, for every A ∈ H0,

– µ(·, A) is a finitely additive probability on H for any given A ∈ H0,
and

– µ(C∩B,A) = µ(B, A)·µ(C, B∩A), for all C ∈ H and A,B, A∩B ∈ H0.
• v : W × φ → {true, false} provides for each world w ∈ W a two-valued

evaluation of the primitive proposition.
Let LPCPChr

2,Meas denote the class of all measurable LPCPChr
2 -models.

The axiomatic system AxLPCPChr
2

which characterizes the set of all LPCPChr
2,Meas-

valid formulas contains the following axiom schemata:
(1) all instances of the classical propositional tautologies,
(2) CP>0(α, β),
(3) CP6r(α, β) → CP<s(α, β), s > r,
(4) CP<s(α, β) → CP6s(α, β),
(5) (CP>r(α,γ) ∧ CP>s(β,γ) ∧ CP>1(¬α∨¬β,γ))→CP>min{1,r+s}(α∨β,γ),
(6) (CP6r(α, γ) ∧ CP<s(β, γ)) → CP<r+s(α ∨ β, γ), r + s < 1,
(7) CP>s(α, γ) ∧ CP>r(β, α ∧ γ) → CP>s·r(α ∧ β, γ),
(8) CP>1(β, γ) ∧ CP>s(α ∧ β, γ) → CP>s(α, β ∧ γ),

and inference rules:
(1) from α and α → β infer β,
(2) from α → β infer CP>1(β, α),
(3) from A → (CP>t(β, γ) → CP>s·t(α ∧ β, γ)), for every rational number t

from (0, 1), infer A → CP>s(α, γ ∧ β).
Note that Rule 3 is the only infinitary rule in AxLPCPChr

2
. It corresponds to the

last part in the definition of conditional probability. The proof of

Theorem 96 (Extended completeness theorem for LPCPChr
2,Meas). A set T of for-

mulas is AxLPCPChr
2

-consistent iff it is LPCPChr
2,Meas-satisfiable.

follows the main steps from the previous sections, while by reducing the LPCPChr
2,Meas

satisfiability problem to the problem of checking coherence of conditional probabil-
ity assessments which is decidable [20], we have that
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Theorem 97. The logic LPCPChr
2 is decidable.

The next example contains two formulas that illustrate some peculiarities of
LPCPChr

2 .

Example 98. The formula A = CP=0(α, β) → CP>0(β,>) is not LPCPChr
2 -valid.

Let us consider the following LPCPChr
2,Meas-model M:

• W = {w1, w2},
• H = 2W ,
• µ({w1},W ) = 0, µ({w2},W ) = 1, µ({w1}, {w1}) = 1, µ({w2}, {w1}) = 0,

µ({w1}, {w2}) = 0, µ({w2}, {w2}) = 1,
• v(w1, p) = v(w2, p) = v(w1, q) = true, v(w2, q) = false.

In this model µ([p], [q]) = µ({w1, w2}, {w1}) = 1, µ([¬p], [q]) = µ(∅, {w1}) = 0, and
µ([q], [>]) = µ({w1},W ) = 0. It means that M ² CP=0(¬p, q) ∧ CP=0(q,>), and
A is not LPCPChr

2,Meas-valid.
The formula B = CP=0(β,>) ∧CP> 1

2
(α, β) → CP6 1

2
(¬α, β) is LPCPChr

2 -valid
since µ([·], [β]) is finitely additive probability measure.

Note that both formulas from Example 98 have the opposite behavior when
we use the Kolmogorov’s approach to conditional probability (with the very often
and useful assumption that the conditional probability of α given β is 1, if the
probability of β is 0), i.e., A is valid, while B is not.

10. Related work

As we mentioned in Section 2, a lot of recent interest in probability logic was
initiated by [79] in which Nillson gave a procedure for probabilistic entailment
which, given probabilities of premises, could calculate bounds on probabilities of
the derived sentences. The Nillson’s approach was semantic and stimulated some
authors to provide axiomatizations and decision procedures for the logic. In the
same year Gaifman published a paper [35] which studied higher order probabilities
and connections with modal logics.

In [27] Fagin, Halpern and Megiddo presented a propositional logic with real-
valued probabilities in which higher level probabilities were not allowed (the logic
was similar to LPP2). The language of that logic allowed basic probabilistic for-
mulas of the form a1w(α1) + · · · + anw(αn) > s, where ai’s and s are rational
numbers, αi’s classical propositional formulas, and w(αi)’s denote probabilities of
αi’s. Probabilistic formulas are boolean combinations of basic probabilistic for-
mulas. The corresponding class of models was LPP2,Meas. A finitary axiomatic
system for the logic was given. Since the compactness theorem does not hold for
their logic, the authors were able to prove only the simple completeness. As we
mentioned above, the paper contains a proof of decidability and complexity of the
logic. Models that are not measurable were also considered there. Dropping the
measurability requirement made things more complicated. In that case inner and
outer measures should be used since the finite additivity does not hold for the
considered models. Finally, conditional probabilities were also discussed. To ob-
tain a complete axiomatization, the authors used the machinery of the theory of
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real closed fields. We note that our syntax can be extended in a straightforward
manner, such that the set of well formed formulas and the related results from [27]
can be exactly obtained. The papers [28, 44] of the same authors introduced a
probabilistic extension of the modal logic of knowledge which is similar to LPP1.

The papers [30, 125] presented logics with probability functions that have a fixed
finite range, similar to the logic LPP

Fr(n)
2 .

Frisch and Haddawy presented in [32] an incomplete iteration procedure which
computes increasingly narrow probability intervals. The procedure can be stopped
at any time yielding partial information about the probability of sentences, and
allowing one to make a tradeoff between precision and computational time. Com-
putational aspects of probabilistic logics were also discussed in [36]. The paper [52]
showed that it is possible to apply a very efficient numerical method of column
generation to solve the LPP2,Meas-satisfiability problem.

First order probability logics were discussed in [1, 43]. It was shown that the
set of valid formulas of the considered logic (which was similar to LFOP1) is not
recursively enumerable. Thus, no finitary axiomatization is possible.

In [38] a propositional logic which can be used for reasoning about probabilistic
processes was presented. Besides all differences between our logic and that one, in
[38] an idea to prove completeness using an infinitary rule was used similarly as in
our approach.

A rule similar to Rule 3 from the axiomatic system AxLPCP S,≈
2

was given in [3]
by Alechina. The main difference is that her rule was restricted to rationals only.

A sound first order axiomatization (which is not complete) for a logic which
formalized probabilistic temporal reasoning was given in [39]. This system differs
from our LPPLTL

1 since time intervals and a branching structure of time were
considered there.

In [16, 17] Boričić and Rašković extended Heyting propositional logic by prob-
abilistic operators. Since predicates “at lest r” and “at most r” are not mutually
expressible in that context, both types of operators P>r and P6r were present in
the corresponding language. Marchioni and Godo presented in [73] a modal fuzzy
logic approach to model probabilistic reasoning in the sense of De Finetti. Also, in
that logic, ÃLukasiewicz implication can be used to express comparative statements.
Conditional probabilities were combined with default reasoning in a semantically
based approach in [2, 70].

Uncertain reasoning is also interesting in the framework of economy. For ex-
ample, an axiomatization for so-called type spaces (a notion that plays the role of
probabilistic models in our paper) within the framework of probabilistic logic was
given in [45]. The proposed axiomatization was simply complete with respect to
the introduced semantics. A strongly complete infinitary axiomatization for type
spaces is given in [77]. The main difference between that system and our approach
is that infinitary formulas are allowed in [77]. As a consequence, that logic is
undecidable, due to the cardinality argument.

Finally, for more comprehensive list of the papers on probability logics the reader
could consult [94].
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[23] R. -Dord̄ević, Analytic completeness theorem for absolutely continuous biprobability models,

Z. Math. Logik Grundlag. Math. 38 241–246, (1992).
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[75] Z. Marković, Z. Ognjanović, and M. Rašković, An intuitionistic logic with probabilistic

operators, Publ. Inst. Math., Nouv. Sér. 73(87), 31–38, 2003.
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