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1. Introduction

Let X be a topological space and let Pn (n = 1, 2, . . . ) and P be probability
measures defined on the Borel sigma field generated by open subsets of X . We say
that the sequence {Pn} converges weakly to P , in notation Pn =⇒ P if

(1) lim
n→+∞

∫

X
f(x) dPn(x) =

∫

X
f(x) dP (x)

for every continuous and bounded real valued function f : X 7→ R. In terms of ran-
dom variables, let Xn (n = 1, 2, . . . ) and X be X -valued random variables defined
on a common probability space and let Pn and P be corresponding distributions,
that is, Pn(B) = Prob(Xn ∈ B), where B is a Borel set in X . Then we say that the
sequence Xn converges weakly to X and write Xn =⇒ X if and only if Pn =⇒ P .

As we shall see in Section 4, there are many stronger convergence concepts
than the introduced one. However, the weak convergence is a very powerful tool
in Probability Theory, partly due to its comparative simplicity and partly due to
its natural behavior in some typical problems. The weak convergence appears in
Probability chiefly in the following classes of problems.
• Knowing that Pn =⇒ P we may replace Pn by P for n large enough. A

typical example is the Central Limit Theorem (any of its versions), which
enables us to conclude that the properly normalized sum of random variables
has approximately a unit Gaussian law.

• Conversely, if Pn =⇒ P then we may approximate P with Pn, for n large
enough. A typical example of this sort is the approximation of Dirac’s delta
function (understood as a density of a point mass at zero) by, say triangle-
shaped functions.

• In some problems, like stochastic approximation procedures, we would like to
have a strong convergence result Xn → X. However, the conditions required
to prove the strong convergence are usually very complex and the proofs are
difficult and very involved. Then, one usually replaces the strong convergence
with some weaker forms; one is often satisfies with Xn =⇒ X.

• It is not always easy to construct a measure with specified properties. If we
need to show just its existence, sometimes we are able to construct a sequence
(or a net) of measures which can be proved to be weakly convergent and that
its limit satisfy the desired properties. For example, this procedure is usually
applied to show the existence of the Wiener measure.
The concept of weak convergence is so well established in Probability Theory

that hardly any textbook even mention its topological heritage. It, indeed, is not
too important in many applications, but a complete grasp of the definition of the
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weak convergence is not possible without understanding its rationale. The first
part of this paper (Sections 2 and 3) is an introduction to weak convergence of
probability measures from the topological point of view. Since the set of probabil-
ity measures is not closed under weak convergence (as we shall see, the limit of a
net of probability measures need not be a probability measure), for a full under-
standing of the complete concept, one has to investigate a wider structure, which
turns out to be the set of all finitely additive Radon measures. In this context we
present results concerning the Baire field and sigma field, which are usually omitted
when discussing probability measures. In Section 4 we consider weak convergence
of probability measures and present classical results regarding metrics of weak con-
vergence. In Section 5 we show that the set of probability measures is not closed
and effectively show the existence of a finitely, but not countably additive measure
in the closure of the set of probability measures. Section 6 deals with the famous
Prohorov’s theorem on metric spaces. In Section 7 we consider weak convergence of
probability measures on Hilbert spaces. Here we observe a separable Hilbert space
equipped with weak and strong topology and in both cases we give necessary and
sufficient conditions for relative compactness of a set of probability measures.

2. Weak convergence in topology

2.1. Topology induced by a subset of algebraic dual. Let X be a vector
space over a field F , where F stands for R or C. Let X ′ be the set of all linear
maps X 7→ F (so called algebraic dual space). Let Y ⊂ X ′ be a subspace such
that Y separates points in X , i.e., if ϕ(x) = ϕ(y) for all ϕ ∈ Y then x = y. Define
Y -topology on X by the sub-base

{ϕ−1(V ) | ϕ ∈ Y, V open set in F}

The base of Y -topology is obtained by taking finite intersections of sub-base ele-
ments. Equivalently, a base at zero for the Y -topology is consisted of sets

Oϕ1,... ,ϕn = {x ∈ X | ϕj(x) < 1 for j = 1, . . . , n},

where {ϕ1, . . . , ϕn} is an arbitrary finite set of elements in Y .
This topology is a Hausdorff one, since we assumed that Y separates point of

X . That is, if x 6= y are points in X , then there is a ϕ ∈ Y so that ϕ(x) 6= ϕ(y)
and consequently there are disjoint open sets Vx and Vy in F so that ϕ(x) ∈ Vx

and ϕ(y) ∈ Vy, hence ϕ−1(Vx) ∩ ϕ−1(Vy) = ∅.
The convergence in Y -topology may be described as

xd → x ⇐⇒ ϕ(xd) → ϕ(x) for all ϕ ∈ Y ,

where {d} is a directed set. It is important to know that Y -topology may not be
metrizable, even in some simple cases, as we shall see later. So, sequences must not
be used as a replacement for nets.
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If Y1 ⊂ Y2 ⊂ X ′, then the Y1 topology is obviously weaker (contains no more
open sets) than the Y2 topology. Therefore, if xd → x in Y2-topology, then it also
converges in Y1 topology, and the converse is not generally true.

2.2. Weak topology. Now we observe only locally convex Hausdorff (LC)
topological vector spaces (TVS) X , i.e., those that have a basis for the topology
consisted of convex sets. Let X ∗ be the topological dual of X , i.e., the space of all
continuous linear functionals X 7→ F . By one version of the Hahn-Banach theorem,
X ∗ separates points in X , if X is a LC TVS. Then X ∗-topology on X is called the
weak topology. Since for every ϕ ∈ X ∗ we have that

xd → x in the original topology of X =⇒ ϕ(xd) → x,

we see that the weak topology is weaker than the original (strong) topology of X .
The space X equipped with the weak topology will be denoted by Xw.

2.3. Example. Let X be a real separable infinitely dimensional Hilbert space,
with the inner product 〈·, ·〉 and the norm ‖ · ‖. Then xn converges weakly to x if
and only if 〈y, xn〉 → 〈y, x〉 for any y ∈ X . Let xn = en be an orthonormal base
for X . Then since ‖y‖2 =

∑〈y, en〉2 < +∞, we see that 〈y, en〉 → 0 for any y ∈ X
and so the sequence en converges weakly to 0. However, since ‖en− em‖2 = 2, this
sequence does not converge in the norm topology of X . ¤

On finitely dimensional TVS, the weak and the strong topology coincide. How-
ever, on infinitely dimensional spaces, the weak topology exhibits some peculiar
properties, as we shall see in the next subsection.

2.4. How weak is the weak topology? Let us firstly grasp some clues to
understand the weak topology. We start with kernels of linear functionals and we
prove the following theorem.

Theorem. If dimX > 1, then there is no linear functional ϕ ∈ X ′ with
kerϕ = {0}.

Proof. Suppose that kerϕ = {0} and let x1, x2 be arbitrary elements in X ,
x1, x2 6= 0. Then let λ = ϕ(x1)/ϕ(x2), which is well defined, since ϕ(x2) 6= 0 by
assumptions. Let y = x1 − λx2. Then ϕ(y) = ϕ(x1) − λϕ(x2) = 0, hence y = 0,
i.e., x1 = λx2. Since x1, x2 are arbitrary, the dimension of X is 1. ¤

Let sp A denote the set of all finite linear combinations of elements of the set
A.

2.5. Theorem. Let X be a vector space over F and let ϕ1, . . . , ϕn ∈ X ′.
Then (i) and (ii) below are equivalent:

(i) ϕ ∈ sp{ϕ1, . . . , ϕn} (ii)
⋂n

i=1 kerϕi ⊂ kerϕ

Proof. Suppose that (i) holds, that is, ϕ(x) =
∑n

i=1 αiϕi(x). Then clearly,
ϕi(x) = 0 for all i implies that ϕ(x) = 0, which proves (ii). Conversely, assume
that (ii) holds. Define a mapping T : X 7→ Fn by T (x) = (ϕ1(x), . . . , ϕn(x))
and define S(T (x)) = ϕ(x). Then S is well defined on the range of T , since if
T (x) = T (y) then x − y is in kerϕi for all i, hence x − y is in kerϕ and so
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S(x) = S(y). Clearly, S is a linear map and its extension to Fn must be of the
form F (t1, . . . , tn) = α1t1 + · · ·+ αntn, which means that

ϕ(x) = S(ϕ1(x), . . . , ϕn(x)) = α1ϕ1(x) + · · ·+ αnϕn(x),

which was to be proved. ¤
From Theorem 2.5 we get an immediate generalization of Theorem 2.4:

2.6. Corollary. If X is an infinitely dimensional TVS and if ϕ1, . . . , ϕn are
arbitrary linear functionals, then

⋂n
i=1 kerϕi 6= {0}.

Proof. Suppose that
⋂n

i=1 kerϕi = {0}. Then for any ϕ ∈ X ′ we have that
{0} ⊂ kerϕ and then, by Theorem 2.5, ϕ ∈ sp {ϕ1, . . . , ϕn}, which means that X ′
is finite dimensional, and so is X , which contradicts the assumption. ¤

The next theorem describes a fundamental weakness of the weak topology.

2.7. Theorem. If X is an infinitely dimensional TVS then each weakly open
set contains a non-trivial subspace.

Proof. Let U ⊂ X be a weakly open set. Without loss of generality, assume
that 0 ∈ U (otherwise, do a translation). Then U must contain a set of the form

Oϕ1,... ,ϕn = {x ∈ X | ϕ1(x) < 1, . . . , ϕn(x) < 1},

for some ϕ1, . . . , ϕn ∈ X ∗. Then clearly
⋃n

i=1 kerϕi ⊂ Oϕ1,... ,ϕn ⊂ U and according
to Corollary 2.6

⋃n
i=1 kerϕi is a non-trivial subspace.

2.8. Corollary. Let X be an infinitely dimensional normed space. Then an
open ball of X is not weakly open.

Proof. Let B be an open ball in X . If it were open in the weak topology,
then (by Theorem 2.7) it would have contained a nontrivial subspace, which is not
possible (for instance, it is not possible that ‖αx‖ < r for all scalars α). ¤

So, the next theorem may come as a surprise.

2.9. Theorem. Let X be a LC TVS. Then X and Xw have the same closed
convex sets. For each convex S ⊂ X we have that S̄w = S̄, where S̄w is the closure
of S in the weak topology. ¤

2.10. Example. Let X be a separable metric space. Denote by Bs the
Borel sigma field generated by norm-open sets and let Bw be the Borel sigma field
generated by weakly open sets. Since any weakly open set is also norm-open, we
generally have that Bw ⊂ Bs, but not conversely. In this special case, each strongly
open set is a countable union of closed balls, which are, by Theorem 2.9 also weakly
closed. So, Bs ⊂ Bw, which gives that, in a separable metric space, Bs = Bw. ¤

From Theorem 2.9 it follows that a closed ball in a normed space X is also
weakly closed. But from Theorem 2.7 we see that the weak interior of any ball in
an infinitely dimensional normed space is an empty set!

2.11. Weak star topology on a dual space. We are now going to introduce
a yet weaker than the weak topology. Let X be a LC TVS and let X ∗ be its
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topological dual. Define a mapping Φ : X 7→ (X ∗)′ by Φx(ϕ) = ϕ(x), where x ∈ X
and ϕ ∈ X ∗. This map is linear and one-to one (the one-to one property follows
from the fact that X ∗ separates points). Now we can observe the Φ(X )-topology
on X ∗. It is customary to identify Φ(X ) with X itself (especially in the case when
X is a normed space, since then the natural topologies on X and Φ(X ) coincide).
So, the X -topology on X ∗ is called the weak-∗ (weak star) topology. In fact, this
is the topology of pointwise convergence of functionals, since

ϕd → ϕ (w − ∗) ⇐⇒ ϕd(x) → ϕ(x) for every x ∈ X .

2.12. Three topologies on duals of normed spaces. Let X be a normed
space. Then its topological dual X ∗ is also normed, with ‖ϕ‖ = sup‖x‖≤1 |ϕ(x)|.
This norm defines the strong topology of X ∗. Further, the weak topology on X ∗ is
defined as X ∗∗-topology and the weak star is X -topology on X ∗. Since X ⊂ X ∗∗,
the weak star topology is weaker than the weak one, which is in turn weaker than
the strong topology. Due to the order between topologies, it is not possible that a
sequence (or a net) converges to one limit in one of mentioned topologies and to
another limit in other topology. So, for instance, if a sequence converges to some x
in the, say, weak star topology, then in the strong topology it either converges to
x or does not converge at all.

2.13. Example. Let c0 be the set of all real sequences converging to zero, with
the norm ‖x‖ = supn |xn|. Then it is well known that c∗0 = l1 and c∗∗0 = l∗1 = l∞,
where l1 is the space of sequences with the norm ‖x‖l1 =

∑ |xn| < +∞ and l∞ is
the space of bounded sequences with ‖x‖∞ = supn |xn|. Linear maps are realized
via so called duality pairing 〈x, y〉, acting like inner products with one component
from X and the other one from X ∗. Observe a sequence in l1, xn = {xk,n} and let
y = {yk} be an element in l1. Then xn converges to y:

- Strongly, if ‖xn − y‖ = supk |xk,n − yk| → 0 as n → +∞.
- Weakly, if 〈ξ, xn〉 =

∑
k ξkxk,n →

∑
k ξkyk, for any ξ = {ξk} ∈ l∞.

- Weak-star, if
∑

k ξkxk,n →
∑

k ξkyk, for any ξ = {ξk} ∈ c0.
Now observe the sequence en = (0, 0, . . . , 0, 1, 0, . . . ) ∈ l1 (with 1 as the n-th

component). Then 〈ξ, en〉 = ξn and if ξ ∈ c0 then 〈ξ, en〉 → 0, hence en converges
to 0 weak star. However, if ξ ∈ l∞, then 〈ξ, en〉 need not converge, so en does not
converge in the weak topology. Further, in the norm topology en does not converge
to zero, because ‖en‖ = 1 for all n; therefore, {en} is not convergent in the strong
topology of l1.

2.14. Canonical injections. Let X be a normed space, let X ∗ be its topo-
logical dual space and let X ∗∗ = (X ∗)∗ be its second dual. If ‖x‖ is a norm on X ,
then the norm on X ∗ is defined by ‖ϕ‖ = sup‖x‖≤1 ‖ϕ(x)‖. The norm on X ∗∗ is
then defined by ‖Φ‖ = sup‖ϕ‖≤1 |Φ(ϕ)|. Observe the canonical mapping X 7→ X ∗∗
which is defined, as in 2.11 by

Φx(ϕ) = ϕ(x).
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Then for each x ∈ X , Φx is a continuous linear functional defined on X ∗, and so it
is a member of X ∗∗ with the norm
(2)
‖Φx‖ = sup

‖ϕ‖≤1

|Φx(ϕ)| = sup
{∣∣∣ϕ

( x

‖x‖
)∣∣∣ · ‖x‖

∣∣∣ ϕ ∈ X ∗, sup
‖x‖≤1

|ϕ(x)| ≤ 1
}
≤ ‖x‖.

On the other hand, by one version of the Hahn-Banach theorem, if X is a normed
space, for each x ∈ X there exists ϕ0 ∈ X ∗ with ‖ϕ0‖ = 1 and ϕ0(x) = ‖x‖.
Therefore,

(3) ‖Φx‖ = sup
‖ϕ‖≤1

|Φx(ϕ)| ≥ Φx(ϕ0) = ϕ0(x) = ‖x‖.

From (2) and (3) it follows that ‖Φx‖ = ‖x‖. So, the canonical mapping x 7→ Φx

is bicontinuous, i.e.,
xn → x ⇐⇒ Φxn → Φx

Further, as we already observed in 2.11, this mapping is linear and one-to one
injection from X to X ∗∗. Since Φ(X ) is isomorphic and isometric to X , it can
be identified with X in the algebraic and topological sense. This fact is usually
denoted as X ⊂ X ∗∗. If Φ(X ) = X ∗∗, we say that X is a reflexive space, usually
denoted as X = X ∗∗.

2.15. Example. Each Hilbert space is reflexive. Due to the Riesz rep-
resentation theorem, any linear functional in a Hilbert space H is of the form
ϕy(x) = 〈y, x〉, where y ∈ H and also ‖ϕy‖ = ‖y‖. Hence, we may identify ϕy with
y and write H∗ = H. This equality means, in fact, that there exists a canonical
injection (in fact, bijection) H 7→ H∗ realized by the mapping y 7→ ϕy.

From H∗ = H it follows that H∗∗ = (H∗)∗ = H, i.e., H is reflexive.
The space c0 introduced in the example 2.13 is not reflexive, since c∗∗0 = l∞.

However, c0 ⊂ l∞. ¤

2.16. Inclusions. Now suppose that X1 ⊂ X2 are vector spaces with the same
norm ‖ · ‖. Let ϕ be a continuous linear functional defined on X2. Then clearly, the
restriction of ϕ to X1 is a continuous linear functional on X1 and therefore we have
that X ∗2 ⊂ X ∗1 . For the second duals we similarly find that X ∗∗1 ⊂ X ∗∗2 . Hence,

X1 ⊂ X2 =⇒ X ∗1 ⊃ X ∗2 =⇒ X ∗∗1 ⊂ X ∗∗2 .

A paradoxical situation may arise if we have two Hilbert spaces H1 ⊂ H2. Then by
canonical injection we have H∗

1 = H1 and H∗
2 = H2, which would lead to H2 ⊂ H1!

This example shows that we have to be cautious while using equality as a symbol
for canonical injection.

2.17. Weak star compact sets. For investigation of convergence, it is im-
portant to understand the structure of compact sets. Let X be a normed space. It
is well known that a closed ball of X is compact in the strong topology if and only
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if X ∗ is finitely dimensional. Since X ∗ is also a normed space, the same holds for
X ∗. However, in the weak star topology, we have the following result.

2.17. Theorem (Banach–Alaoglu). Let X be an arbitrary normed space. A
closed ball of X ∗ is weak star compact.

Proof. Without a loss of generality, observe a closed unit ball of X ∗, call it
B. Hence, B contains all linear continuous mappings ϕ from X to F such that
|ϕ(x)| ≤ ‖x‖ for all x ∈ X . For any x ∈ X , define Dx = {t ∈ F | |t| ≤ ‖x‖}
and K =

∏
x∈X Dx, with a product topology on K. If f is an element of K and

f(x) its co-ordinate in K, then f is a function f : X 7→ F . The product topology
is the topology of pointwise convergence: fd → f if and only if fd(x) → f(x) for
any x ∈ X . So, B with the weak topology on it is a subset of K. Since each Dx

is compact, Tychonov’s theorem states that K is also compact, so we just need to
show that B is closed in K. To this end, let ϕd be a net in B which converges to
some f ∈ K. Then it is trivial to show that f must be linear; then by |ϕd(x)| ≤ ‖x‖
it follows that f is also continuous and that ‖f‖ ≤ 1. Therefore, f ∈ B and B is
closed, hence compact. ¤

2.19. Remark. Tychonov’s theorem states that the product space
∏

i Xi in
the product topology as explained above, is compact if and only if each of Xi is
compact. The proof of Banach-Alaoglu theorem relies on Tychonov’s theorem, and
the proof of the latter, in the part which is used here, relies on the Axiom of Choice
(more precisely, Zorn’s lemma, cf. [9, 15, 35, 36]). ¤

This theorem implies that any bounded sequence in X ∗ must have a convergent
subnet. Unfortunately, such a subnet need not be a sequence, since the weak star
topology on X ∗ need not be metrizable. However, the next theorem claims that in
one special case we can introduce a metric.

2.20. Theorem. Let X be a separable normed vector space. Then the w−∗
topology on a closed ball of X ∗ is metrizable.

Proof. Assume, without a loss of generality that B is the closed unit ball
(centered at the origin) of the dual X ∗ of a separable normed vector space X . The
metrization of B can be realized, for instance, as follows. Let ϕ1, ϕ2 ∈ B, so

sup
‖x‖≤1

ϕi(x) ≤ 1, i = 1, 2.

Let {xn} be a dense countable set in the unit ball of X . Define

d(ϕ1, ϕ2) =
∑

n

|ϕ1(xn)− ϕ2(xn)|
2n

.

Then |ϕ1(xn) − ϕ2(xn)| ≤ ‖ϕ1 − ϕ2‖ · ‖xn‖ ≤ 2 and the series converges, so d is
a well defined function (even on the whole space X ∗). It is now a matter of an
exercise to show that the d-topology on B coincides with the w − ∗ topology.
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2.21. Corollary. Let X be a separable normed vector space and let X ∗ be
its topological dual space. Then every bounded sequence {ϕn} ∈ X ∗ has a weak
star convergent subsequence.

Proof. Every bounded sequence is contained in some closed ball B, which is,
by Theorem 2.18, weak star compact. By Theorem 2.20, the weak star topology
on B is metrizable, i.e., there is a metric d such that

ϕd → ϕ (w − ∗) ⇐⇒ d(ϕd, ϕ) → 0.

In a metric space, compactness is equivalent to sequential compactness, so, any
sequence in B has a convergent subsequence. ¤

2.22. Example. Let H be a separable Hilbert space. Since it is reflexive,
weak and weak star topology coincide. Define a metric

d(x, y) =
∑

n

|〈x− y, en〉|
2n

where {en} is an orthonormal base in H. We shall prove that this metric also
generates the weak topology on the unit ball of H. Suppose that xn → x weakly,
i.e., 〈xn, y〉 → 〈x, y〉 for any y ∈ H, where ‖xn‖ ≤ 1, ‖x‖ ≤ 1. Since

|〈xn − x, ek〉| ≤ ‖xn − x‖ · ‖ek‖ ≤ 2,

the series

d(xn, x) =
∑

k

|〈xn, ek〉 − 〈x, ek〉|
2k

converges uniformly in n and so, by evaluating limits under the sum, we conclude
that

lim
n→+∞

d(xn, x) = 0.

Conversely, let d(xn, x) → 0 as n → +∞, where ‖xn‖ ≤ 1 and ‖x‖ ≤ 1. Then it
follows that 〈xn − x, ek〉 → 0 for every k. Now for any y ∈ H,

〈xn, y〉 − 〈x, y〉 =
∑

k

〈xn − x, ek〉〈y, ek〉.

By Cauchy-Schwarz inequality,
∣∣∣
+∞∑

k=m

〈xn − x, ek〉〈y, ek〉
∣∣∣ ≤

+∞∑

k=m

|〈xn − x, ek〉| · |〈y, ek〉|

≤
( +∞∑

k=m

〈xn − x, ek〉2
+∞∑

k=m

〈y, ek〉2
)1/2

≤ ‖xn − x‖ ·
( +∞∑

k=m

〈y, ek〉2
)1/2

≤ 2
( +∞∑

k=m

〈y, ek〉2
)1/2
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and therefore, the series
∑

k〈xn − x, ek〉〈y, ek〉 converges uniformly with respect to
n. Hence,

lim
n→+∞

〈xn, y〉 − 〈x, y〉 =
∑

k

lim
n→+∞

〈xn − x, ek〉〈y, ek〉 = 0.

So, {xn} converges weakly to x.
However, the metric described here does not generate the weak topology on

the whole H. To see this, let xn = nen. Then d(xn, 0) → 0 as n → +∞, but
〈xn, y〉 = n〈en, y〉, which need not converge.

3. Finitely additive measures and Radon integrals

3.1. Spaces of measures as dual spaces. In general, it might be very hard
to find the dual space of a given space, i.e., to represent it (via canonical injections)
in terms of some well known structure. We are particularly interested in spaces of
measures; it turns out that they can be viewed as dual spaces of some spaces of
functions. The functionals on spaces of functions are expressed as integrals:

ϕ(f) =
∫

f(t) dµ(t)

where µ is a measure which determines a functional. Then by a canonical injection,
we can identify functionals and corresponding measures. There are several results
in various levels of difficulty, depending on assumptions that one imposes on the
underlying space X on which we observe measures. In this section we will present
the most general result [1] regarding an arbitrary topological space. It turns out
that finitely additive measures are the key notion in this general setting.

Although a traditional probabilist works solely with countably additive mea-
sures on sigma fields, their presence in Probability has a purpose to make mathe-
matics simpler and is by no means natural. As Kolmogorov [19, p. 15] points out,
“dots in describing any observable random process we can obtain only finite fields
of probability. Infinite fields of probability occur only as idealized models of real
random processes”. Finitely additive measures have recently arose an increasing
interest in Probability, so the exposition which follows may be interesting in its
own rights.

3.2. Fields and sigma fields. Let X be a set and F a class of its subsets such
that
1) X ∈ F ,
2) B ∈ F =⇒ B′ ∈ F ,
3) B1, B2 ∈ F =⇒ B1 ∪B2 ∈ F Then we say that F is a field. If 3) is replaced

by stronger requirement
3’) B1, B2, . . . ∈ F =⇒ ⋃∞

i=1 Bi ∈ F , then we say that F is a sigma field.
It is easy to see that a field is closed under finitely many set operations of any

kind. Further, let Fi, i ∈ I, be fields on X. Then F =
⋂

i∈I Fi is also a field, where
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I is any collection of indices. This follows trivially by verification of conditions
1)–3) above.

Given any collection of sets A which are subsets of X, there is a field which
contains A: it is the family of all subsets of X. The intersection of all fields that
contain A is called the field generated by A. Obviously, a field F generated by
A is the smallest field that contains A, in the sense that there is no field which is
properly contained in F and contains A.

A sigma field is closed under countably many set operations. We define a sigma
field generated by a collection of sets in much the same way as in the case of fields.

3.3. Borel field. Let X be a topological space. The field generated by the
collection of all open sets is called the Borel field. Since the complement of an open
set is a closed set, the Borel field is also generated by the collection of all closed
sets.

Borel sigma field is the sigma field generated by open or closed sets. In sepa-
rable metric spaces, the Borel sigma field is also generated by open or closed balls,
since any open set can be expressed as a countable union of such balls.

Specifically, on the real line, Borel sigma field is generated by open and closed
intervals of any kind. However, Borel field is not generated by intervals, since an
arbitrary open set need not be represented as a finite union of intervals.

3.4. Baire field. Let X be a topological space and let C(X) be the collection
of all bounded and continuous real valued functions defined on X. The Baire field
is the field generated by the collection of sets

A = {Z ⊂ X | Z = f−1(C)},

where f is any function in C(X) and C is any closed set of real numbers.
Boundedness of functions in C(X) is not relevant, but is assumed here for

the purposes of this paper. Indeed, for any continuous function f : X 7→ R, the
function g(x) = arctg f(x) is a continuous bounded function defined on X and the
collection of all g−1(C) coincides with the collection of all f−1(C), where C runs
over closed subsets of R.

It is well known that for any closed set C ⊂ R there is a continuous bounded
function gC such that g−1

C ({0}) = C (this is a consequence of a more general
result that holds, for instance, on metric spaces, see [6, Theorem 1.2]. For an
f ∈ C(X) and a closed set C ⊂ R, define F (x) = gC(f(x)). Then F ∈ C(X) and
F−1({0}) = f−1(C). Therefore, we may think of the Baire field as being generated
by sets of the form f−1({0}), for f ∈ C(X).

Let us recall that f−1(A∪B) = f−1(A)∪f−1(B) and f−1(A∩B) = f−1(A)∩
f−1(B); also f−1(A′) = (f−1(A))′ if the complement is taken with respect to the
domain of f . Hence, we have:

f−1(C1) ∪ f−1(C2) = f−1(C1 ∪ C2); (f−1(C))′ = f−1(C ′)

and also X = f−1(R), for any f . Therefore, the Baire field is also generated by
the collection of the sets f−1(O), where O is an open set of real numbers and
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f ∈ C(X). Further,

(f−1(C))′ = f−1(O), where O = C ′ is an open set.

Now it is clear that if A belongs to the Borel field in R and if f ∈ C(X), then
f−1(A) belongs to the Baire field in X.

From now on, sets of the form f−1(C), where C is closed in R, will be called
Z-sets, and the sets of the form f−1(O), with O being an open set in R, will be
called U -sets.

Since the inverse image (with a continuous function) of any open (resp. closed)
set is again an open (resp. closed) set, we see that Z-sets are closed and U -sets are
open in X. Hence, the Baire field is a subset of Borel field; the same relation holds
for the sigma fields. The converse is not generally true, since a closed set need not
be a Z-set. With some restrictions on topology of X, the converse becomes true,
for instance, in metric spaces. In general, in normal spaces in which every closed
set can be represented as a countable intersection of open sets (so called Gδ set),
every closed set is a Z-set (cf. [15, Corollary 1.5.11]) and so the Baire and the Borel
field coincide.

3.5. Theorem. The family of Z-sets is closed under finite unions and count-
able intersections. The family of U -sets is closed under countable unions and finite
intersections.

Proof. By 3.4, a set is a Z-set if and only if it is of the form f−1({0}) for
some f ∈ C(X). So, let Z1 = f−1

1 ({0}), Z2 = f−1
2 ({0}). If g(x) = f1(x)f2(x), then

g−1({0}) = Z1 ∪ Z2, so the union of two Z-sets is again a Z-set. Let Z1, Z2, . . .
be Z-sets. Then there are continuous and bounded functions f1, f2, . . . such that
Zn = f−1

n ({0}), n = 1, 2, . . . . Define the function

F (x) =
+∞∑
n=1

f2
n(x)

2n‖fn‖2 ,

where ‖fn‖ = supx∈X |f(x)|. Since the above series is uniformly convergent on
X, F is a continuous and bounded function; moreover, F (x) = 0 if and only if
fn(x) = 0 for all n ≥ 1. Hence F−1({0}) =

⋂∞
n=1 Zn, which proves that any

countable intersection of Z-sets is a Z-set.
Statements about U -sets can be proved by taking complements.

3.6. Measures and regularity. Let X be a topological space. Let µ be a
non-negative and finitely additive set function on some field or a sigma field F of
subsets of X, with values in [0,+∞] (allowing +∞ if not specified otherwise). Such
a function will be called a measure.

We say that a set A ∈ F is µ-regular if

(4) µ(A) = sup{µ(Z) | Z ⊂ A} = inf{µ(U) | A ⊂ U},

where Z and U are generic notations for Z-sets and U -sets respectively.
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If all sets in F are µ-regular, we say that the measure µ is regular.
Note that a prerequisite for regularity is that all Z-sets and U -sets must be

measurable, which is the case if F contains the Baire field. In the next theorem we
give alternative conditions for regularity.

3.7. Theorem. Let X be a topological space, F a field which contains the
Baire field and µ a measure on F . A set A ∈ F with µ(A) < +∞ is µ-regular if
and only if either of the following holds:
(i) For each ε > 0 there exists a Z-set Zε and an U -set Uε so that

(5) Zε ⊂ A ⊂ Uε and µ(Uε r Zε) < ε.

(ii) There are Z-sets Z1, Z2, . . . and U -sets U1, U2, . . . such that

Z1 ⊂ Z2 ⊂ · · · ⊂ A ⊂ · · ·U2 ⊂ U1

and
µ(A) = lim

n→+∞
µ(Zn) = lim

n→+∞
µ(Un).

Proof. (i) is straightforward, using properties of the infimum and the supre-
mum. (ii) Suppose that A is µ-regular. Then for each n there is a Z-set Z∗n such
that Z∗n ⊂ A and µ(A) − 1/n < µ(Z∗n) < µ(A). Let Zn = Z∗1 ∪ · · · ∪ Z∗n, for
n = 1, 2, . . . . Then Zn are Z-sets by Theorem 3.5. Further, Z1 ⊂ Z2 ⊂ · · · ⊂ A
and µ(A)− 1/n < µ(Zn) < µ(A), hence lim µ(Zn) = µ(A). The part regarding Un

can be proved similarly.
Conversely, if there exist Zn and Un as in the statement of the theorem, then

for a fixed ε > 0 there is an n such that Zn ⊂ A and 0 < µ(A)− µ(Zn) < ε, hence
µ(A) is the least upper bound for µ(Z) over all Z-subsets of A. Similarly, it follows
that µ(A) is the greatest lower bound for µ(U), over all U -sets that contain A.

3.8. Remark. The previous theorem does not imply either the countable
additivity or continuity of µ. Also it holds regardless whether µ is defined on a
sigma field or just on a field.

3.9. Theorem. Suppose that µ is a countably additive measure defined on
a sigma field F which contains the Baire field. Then a set A ∈ F , µ(A) < +∞, is
µ-regular if and only if there are Z-sets Z1, Z2, . . . and U -sets U1, U2, . . . such that

Z1 ⊂ Z2 ⊂ · · · ⊂ A ⊂ · · ·U2 ⊂ U1

and

µ
(
Ar

+∞⋃
n=1

Zn

)
= 0, µ

(+∞⋂
n=1

Un rA
)

= 0.

Proof. By the previous theorem, A is µ-regular if and only if µ(A) = lim µ(Zn)
= lim µ(Un); by continuity property of sigma additive measures we have that
limµ(Zn) = µ(

⋃
n Zn) and lim µ(Un) = µ(

⋂
n Un), which ends the proof.
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3.10. Theorem Let X be a topological space and F a field which contains
the Baire field. Let µ be a measure on F , with µ(X) < +∞. Then the family R of
all µ-regular sets in F is a field.

Proof. Since X = f−1(R) and R is open and closed, it follows that both
conditions in (4) hold and so X ∈ R.

Suppose that A ∈ R. Then for a fixed ε > 0 there are sets Zε and Uε such
that (5) holds. Taking complements we get

U ′
ε ⊂ A′ ⊂ Z ′ε, Z ′ε r U ′

ε = Uε r Zε,

which implies that A′ is also µ-regular.
Finally, suppose that A1, A2, . . . An ∈ R. By Theorem 3.7(i), for any given

ε > 0, there are Z-sets Zi and U -sets Ui such that

Zi ⊂ Ai ⊂ Ui and µ(Ui r Zi) <
ε

2i
, i = 1, 2, . . .

Let A =
⋃n

i=1 Ai, Z =
⋃n

i=1 Zi and U =
⋃n

i=1 Ui. Then Z is a Z-set and U is a
U -set and we have

(6) Z ⊂ A ⊂ U and µ(U r Z) ≤
∑

i

µ(Ui r Zi) ≤ ε,

so A ∈ R.

3.11. Theorem. Let X be a topological space, F a sigma field that contains
the Baire field. Let µ be a countably additive measure on F , with µ(X) < +∞.
Then the family R of all µ-regular sets in F is a sigma field.

Proof. In the light of Theorem 3.10, we need to prove only that a countable
union of µ-regular sets is µ-regular.

Let A1, A2, . . . be µ-regular sets; for any ε > 0, there are Z-sets Zi and U -sets
Ui such that

Zi ⊂ Ai ⊂ Ui and µ(Ui r Zi) <
ε

2i
.

Let A =
⋃∞

i=1 Ai, Z =
⋃∞

i=1 Zi and U =
⋃∞

i=1 Ui. Then U is a U -set (Theorem 3.5)
and Z can be approximated by a finite union Z(n) =

⋃n
i=1 Zi, where n is chosen in

such a way that µ(Z r Z(n)) < ε (continuity of the countably additive measure).
So, we have that

µ(U r Z(n)) ≤ µ(U r Z) + µ(Z r Z(n)) < 2ε,

which ends the proof.

3.12. Theorem. Let X be a topological space, F the Baire sigma field and
µ a countably additive measure on F , with µ(X) < +∞. Then µ is regular.

Proof. By Theorem 3.11, all µ-regular sets make a sigma field R. We need
to show that R = F , which will be accomplished if we show that each Z-set is
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µ-regular. So, let Z be a Z-set. Then there is a function f ∈ C(X) such that
Z = f−1(0). Let On = (−1/n, 1/n) and Un = f−1(On). Then U1 ⊃ U2 ⊃ · · · ⊃ Z
and

⋂
n Un = Z. By continuity of countably additive measure µ we have that

µ(Z) = limn µ(Un), so the condition of Theorem 3.7(ii) holds (with Zn = Z for all
n), hence Z is µ-regular.

3.13. Remark. Theorem 3.12 implies that only non-countably additive mea-
sures may be non-regular. The condition of regularity as defined here obviously
turns out to be natural for Baire fields. However, in Borel fields, one often uses
a different concept of regularity, which is the approximation by closed sets rather
than by sets of the form f−1(C). In spaces in which any closed set is Gδ, any
countably additive measure is regular (on Borel sigma field) in the latter sense, cf.
[27].

3.14. Radon measures and Radon integrals. Let X be a topological space
and let F be the Baire field on X. Let M+(X) be the set of all non-negative,
finite, finitely additive and regular measures on F . A generalized measure (or a
Radon finitely additive measure) is any set function on F which can be represented
as m(A) = m1(A) −m2(A), where m1,m2 ∈ M+(X). The set of all generalized
measures will be denoted by M(X). It is a linear vector space; a norm can be
introduced by the so called total variation of a measure:

(7) |m| = m+(X) + m−(X),

where m+(X) = sup{m(B) | B ∈ F}, m−(X) = − inf{m(B) | B ∈ F}. M(X)
with the norm (7) is a Banach space.

We are now ready to define an integral of a bounded function with respect to a
generalized measure. Let f be an F-measurable function and suppose that ‖f‖ =
K < +∞. Let A1, A2, . . . , An be any partition of the interval [−K, K] into disjoint
intervals (or, in general, sets from the Borel field on R) and let Bi = f−1(Ai). In
each Ai choose a point yi and make the integral sum

Sd =
n∑

i=1

yim(Bi), where d = (A1, . . . , An, y1, . . . , yn).

If we direct the set {d} in a usual way, saying that d1 ≺ d2 if the partition in d2 is
finer than the one in d1, then we can prove that Sd is a Cauchy net, hence there is
a finite limit, which is the integral of f with respect to the finitely additive measure
m,

∫
f(x) dm(x).

3.15. Theorem (Aleksandrov [1]). For an arbitrary topological space X, any
linear continuous functional on C(X) is of the form

(8) ϕ(f) = 〈f,m〉 =
∫

f(x) dm(x),

Moreover,

sup
‖f‖≤1

∣∣∣
∫

f(x) dm(x)
∣∣∣ = |m|.
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There is an isometrical, isomorphical and one to one mapping between the
space of all continuous linear functionals on C(X) and the space M(X); in that
sense we write C(X)∗ = M(X). ¤

In some special cases, C(X)∗ has a simpler structure. For example, if X is a
compact topological space, then C(X)∗ can be identified with the set of all Baire
countably additive R-valued measures on the Baire sigma-field of X. If, in addition,
X is a compact metric space, then C(X) is a separable normed vector space and
C(X)∗ is the set of all Borel R-valued countably additive measures on X.

4. Weak convergence in probability

4.1. Convergence of probability measures. Let now X be a metric space
and let B be the sigma field of Borel (= Baire) subsets of X. Let M1(X) be the
set of all probability measures on X. Then according to 3.15, M1(X) is a subset of
the unit ball in C(X)∗. The structure of the second dual C(X)∗∗ is too complex,
but it is well known that B(X) - the set of all bounded Borel-measurable functions
is a subset of C(X)∗∗. So, we have the following inclusions:

Original space: C(X)

Dual space: M(X); M1(X) ⊂M(X)

Second dual: C(X) ⊂ B(X) ⊂ C(X)∗∗.

Let 〈f, µ〉 be defined as in (8). On M(X) we may observe the following topologies:
• The uniform topology [struk], with the norm sup |〈f, µ〉|, where the supremum

is taken over the unit ball in B(X).
• The strong topology, defined by sup |〈f, µ〉|, where the supremum is taken over

the unit ball in C(X).
• The weak topology defined by 〈f, µ〉, for f ∈M∗(X) = C(X)∗∗.
• The B(X)-topology, defined by 〈f, µ〉, for f ∈ B(X).
• The weak star topology, defined by 〈f, µ〉, where f ∈ C(X).

First four topologies are too strong, and they do not respect a topological
structure of X, as the following example shows.

Example. Let δx, δy be point masses at x and y respectively. Then 〈f, δx〉 −
〈f, δy〉 = f(x) − f(y). If x and y are close in X, then f(x) and f(y) need not be
close unless f is continuous. So, in this example, the weak or B(X)-topology are
inadequate, but the weak star topology preserves the closedness of x and y. ¤

The convergence in the weak star topology is usually called the weak conver-
gence in the probabilistic literature. This does not lead to a confusion, since the
true weak convergence is never studied.

If µd converges weakly to µ, we write µd =⇒ µ.
The weak star convergence of probability measures is well investigated. We

shall firstly give equivalent bases for weak star topology on the whole set M+(X).
So, the next theorem is not restricted to probability measures.

Let us recall that we say that A is a continuity set for a measure µ on a Borel
algebra B if µ(∂A) = 0, or, equivalently, if µ(A) = µ(Ā) = µ(A◦), where ∂A is the
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boundary, Ā is the closure and A◦ is the interior of A. On a Baire algebra we will
say that A is a continuity set for µ if there is an U -set U and a Z-set Z such that
U ⊂ A ⊂ Z and µ(Z r U) = 0.

4.2. Theorem [34, p. 56]. Let W be the weak star topology on M+(X),
where X is a topological space. Then the following families of sets make a local
base of W around some measure µ0 ∈M+(X):

B0 = {µ | |〈fi, µ〉 − 〈fi, µ0〉| < ε, i = 1, . . . k}, fi ∈ C(X)

B1 = {µ | µ(Fi) < µ0(Fi) + ε, i = 1, . . . , k}, Fi are Z-sets in X

B2 = {µ | µ(Gi) > µ0(Gi)− ε, i = 1, . . . , k}, Gi are U -sets in X

B3 = {µ | |µ(Ai)− µ0(Ai)| < ε, i = 1, . . . , k}, Ai are continuity sets for µ0,

If X is a metric space, then we deal with the Borel algebra and so Fi above
can be taken to be closed and Gi to be open sets.

As a straightforward consequence, we get the following

4.3. Theorem. Measures with a finite support are dense in M+(X).
Proof. Let µ0 ∈M+(X) and let B(µ0) be its neighborhood of the form

B(µ0) = {µ | µ(Fi) < µ0(Fi) + ε, i = 1, . . . , k},

where Fi are fixed Z-sets. The family of sets Fi together with their intersections
and the complement of their union defines a finite partition of X. In each set B
of this partition choose a point xB and define µ1(xB) = µ0(B). The measure µ1 is
with a finite support (hence, countably additive!) and clearly µ1(Fi) = µ0(Fi); so
µ1 ∈ B(µ0).

4.4. Theorem. Let µd be a net of measures in M+(X) and let µ0 ∈M+(X).
The following statements are equivalent [6, 30, 34]:
(i) µd =⇒ µ0, i.e., limd

∫
f dµd =

∫
f dµ0, for each f ∈ C(X).

(ii) limµd(F ) ≤ µ0(F ) for any Z-set F ⊂ X and limµd(X) = µ0(X).
(iii) limµd(G) ≥ µ0(G) for each U -set G ⊂ X and limµd(X) = µ0(X).
(iv) limµd(A) = µ0(A) for each continuity set for µ0.

In a special case when we have probability measures on a metric space X,
there is a richer structure that yields additional equivalent conditions. To proceed
we need some facts on semicontinuous functions.

4.5. Semicontinuous functions. Let X be a metric space. A function f :
X 7→ R is called upper semicontinuous if lim f(xn) ≤ f(x) for each sequence {xn}
such that xn → x. The function f is lower semicontinuous if lim f(xn) ≥ f(x) for
each sequence xn → x.

An important property of semicontinuous functions is that for each M ∈ R
the set {x | f(x) < M} is open for an upper semicontinuous function and the set
{x | f(x) > M} is open for a lower semicontinuous functions.
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4.6. Theorem. Let µd be a net of probability measures on a metric space X
and let µ0 be a probability measure on X. The following statements are equivalent
[6, 30]:
(i) µd =⇒ µ0, i.e., limd

∫
f dµd =

∫
f dµ0, for each f ∈ C(X).

(ii) limd

∫
f dµd =

∫
f dµ0 for each f ∈ Cu(X) (uniformly continuous and bounded

functions).
(iii) limµd(F ) ≤ µ0(F ) for any closed set F ⊂ X.
(iv) limµd(G) ≥ µ0(G) for each open set G ⊂ X.
(v) limµd(A) = µ0(A) for each continuity set for µ0.
(vi) lim

∫
f dµd ≤

∫
f dµ0 for each upper semicontinuous and bounded from above

function f : X 7→ R.
(vii) lim

∫
f dµd ≥

∫
f dµ0 for each lower semicontinuous and bounded from below

function f : X 7→ R.
(viii) lim

∫
f dµd =

∫
f dµ0 for each µ0 a.e. continuous function f : X 7→ R.

4.7. Vague convergence. In [32], a concept of so called vague convergence
is introduced as follows. Let K(X) be the set of all continuous functions with a
compact support defined on X. Then we say that µd converges vaguely to µ if
〈f, µd〉 → 〈f, µ〉 for each f ∈ K(X). This kind of convergence is clearly weaker
than the weak star convergence. For example, the sequence δn converges vaguely
to 0, although it does not converge in the weak star sense.

4.8. Metrics of weak convergence. By Theorem 2.20, the weak star topology
on the closed unit ball of M(X) is metrizable if C(X) is a separable metric space,
which is the case if and only if X is a compact space. However, even if the weak
star topology of the unit ball of M is not metrizable, this topology on the set of all
probability measures may be metrizable; as a matter of fact, it probably is always
metrizable, as we shall see in the subsequent discussion.

4.9. Theorem. Let X be a separable metric space. Then the weak star
topology on M1(X) is metrizable by the metric

(9) d(P, Q) = inf{ε > 0 | Q(B) ≤ P (Bε) + ε, P (B) ≤ P (Qε) + ε, B ∈ B},
where Bε = {x ∈ S | d(x,B) < ε}, and B is the Borel sigma algebra. ¤

The metric (9) is known as Lévy’s metric or Prohorov’s metric [6, 30]. Al-
though the proof of Theorem 4.9 relies on separability of X, it has to be noted
that the metrizability of M1(X) is related to the so called problem of measure [6,
12] and that the examples of non-metrizable M1(X) are not known. So, there is a
strongly founded conjecture that for any metric space X, the topology of the weak
star convergence on the set M1(X) is metrizable and one metric is given by (9).

Moreover, it is known that, if X is a complete separable metric space (Polish
space), then so is M1(X).

There is another metric of weak star convergence [30, p. 117], similar to the
one introduced in Theorem 2.20.

4.10. Theorem. Let X be a separable metric space. Then there is a countable
set {f1, f2, . . . } of uniformly continuous bounded real valued functions with values
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in [0, 1] so that the span of this set is dense in the set of all uniformly continuous
and bounded functions on X. Now define

ρ(P, Q) =
+∞∑
n=1

|〈fn, P 〉 − 〈fn, Q〉|
2n

.

Then ρ is a metric on M1(X), which is topologically equivalent to Prohorov’s
metric.

This theorem can be proved by noticing that the condition ρ(Pd, Q) → 0 is
equivalent to the condition (ii) of Theorem 4.6 applied to Pd and Q. Since the
condition (ii) holds (as an equivalent condition to weak star convergence) only for
countably additive measures, we conclude that the metric of Theorem 4.10 can not
generally be extended to the unit ball of M(X); hence, the unit ball of M(X)
generally is not metrizable.

5. Finitely, but not countably additive measures
in the closure of the set of probability measures

In this section we discuss topics of relative weak star compactness and closed-
ness of the set of all probability measures. We will show that in a non-compact
topological space X, under slight additional assumptions (say, if X is a metric s-
pace) the set of probability measures M1 is not closed under the weak star limits.
We actually show the existence of an additive, but not countably additive measure
in the closure of M1. The fact that M1 is not closed is the main rationale for
Prohorov’s theorem, which will be presented in the next section.

5.1. Nets and filters. Nets and filters are introduced in Mathematics as
generalizations of sequences. Nets were defined and discussed in papers of Moore
[moore] in a context of determining a precise meaning of the limit of integral sums;
early developments of nets can be found in papers [8, 18, 25, 26, 33]. Filters were
introduced by Cartan [10, 11] in the second decade of 20th century. The theory of
both filters and nets was completed by the mid of 20th century. We will give here
a brief account of basic definitions and theorems, largely taken from [35, Sections
11 and 12].

A set D is called a directed set if there is a relation ≤ on D such that
(i) x ≤ x for all x ∈ D
(ii) If x ≤ y and y ≤ z then x ≤ z
(iii) For any x, y ∈ D there is a z ∈ D so that x ≤ z and y ≤ z.

A net in a set X is any mapping of a directed set D into X, usually denoted
by xd, say, like sequences.

Let D and E be directed sets and let ϕ be a function E → D such that:
(i) a ≤ b =⇒ ϕ(a) ≤ ϕ(b) for each a, b ∈ E;
(ii) For each d ∈ D there is an e ∈ E so that d ≤ ϕ(e).

Then xϕ(e) is a subnet of the net xd; more often denoted by xde .
Let X be a topological space. We say that a net xd, d ∈ D converges to some

point x ∈ X if for each neighborhood U of x there is a d0 ∈ D so that xd ∈ U
whenever d ≥ d0.
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Let S ⊂ X. We say that xd, d ∈ D is eventually (or residually) in S if there is
a d0 ∈ D so that xd ∈ S whenever d ≥ d0. Hence, a net xd converges to x iff it is
eventually in every neighborhood of x.

A net xd is called an ultranet if for each S ⊂ X it is eventually in S or eventually
in S′.

Let S be any nonempty set. A collection F of non-empty subsets of S is called
a filter if
(i) S ∈ F .
(ii) If B1, B2 ∈ F then B1 ∩B2 ∈ F .
(iii) If B1 ∈ F and B1 ⊂ B2 ⊂ S, then B2 ∈ F .

A subcollection F0 ⊂ F is a base for the filter F if F = {B ⊂ S | B ⊃
B0 for some B0 ∈ F0}, that is, if F is consisted of all supersets of sets in F0. Any
collection F0 can be a base for some filter F provided that given any two sets
A,B ∈ F0 there is a C ∈ F0 so that C ⊂ A ∩B.

In a topological space X, the set of all neighborhoods of some fixed point x is
a filter, called the neighborhood filter. Its base is the neighborhood base at x.

A filter F1 is finer than the filter F2 if F1 ⊃ F2.
We say that a filter F in a topological space X converges to x ∈ X if F is finer

than the neighborhood filter at x.
A filter F is called principal or fixed if

⋂
B∈F B 6= ∅; otherwise it is called

non-pricipal or free.
A filter F on S is called an ultrafilter if there no filter on S which is strictly

finer than F . It can be shown [35, Theorem 12.11] that a filter F is an ultrafilter
iff for any B ∈ S either B ∈ F or B′ ∈ F . For example, the family of all sets that
contain a fixed point x ∈ X is an ultrafilter on X.

5.2. Relation between nets and filters. Both nets and filters are used
to describe convergence and related notions. In fact, there is a close relationship
between nets and filters.

Let xd, d ∈ D be a net in X. The sets Bd0 = {xd | d ≥ d0} make a base for a
filter F ; we say that the filter F is generated by the net xd.

Conversely, let F be a filter on a set S. Let D be the set of all pairs (x, F ),
where F runs over F and x ∈ F . Define the order by (x1, F1) ≤ (x2, F2) ⇐⇒
F1 ⊃ F2. Then the mapping (x, F ) 7→ x is a net based on F .

5.3. Conditions for compactness. A topological space X is called compact
if every open cover has a finite subcover. The following conditions are equivalent
[35, Theorem 17.4]:
a) X is compact
b) each family of closed subsets of X with the finite intersection property has an

non-empty intersection,
c) for each filter in X there is a finer convergent filter,
d) each net in X has a convergent subnet,
e) each ultrafilter in X is convergent,
f) each ultranet in X is convergent.
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5.4. Space of probability measures is not closed in M. Since M(X), the
space of generalized measures introduced in 3.14, is the dual space of the normed
space C(X), by Theorem 2.18 its unit ball B1 = {m ∈ M | |m| = 1} is compact
in the weak star topology. If M1(X), the space of all probability measures, were
closed in M(X), then it would have been also compact, being a subset of B1. Then
(at least if X is a separable metric space), since the topology on M1(X) is metriz-
able, any sequence of probability measures would have had a weak star convergent
subsequence and Prohorov’s theorem and the notion of tightness (Section 6) would
not be of any interest. However, this is not generally true. For example, for X = R,
the sequence {Pn} of point masses at n = 1, 2, . . . clearly does not have any weak
star convergent subsequence. However, it must have a convergent subnet, and the
limiting measure is in MrM1.

Here we give a rather general result [20] which proves the existence of a mea-
sure in the closure of M1(X), which is not a probability measure (not countably
additive). Before we proceed, we need a lemma concerning normal spaces. Recall
that a topological space X is called normal if for any two disjoint closed sets A
and B in X there are disjoint open sets U and V such that A ⊂ U and B ⊂ V .
Equivalently, a space X is normal if and only if for any two disjoint sets A and B
there is an f ∈ C(X) such that f(A) = {0}, f(B) = {1} and 0 ≤ f(x) ≤ 1 for all
x ∈ X (Urysohn’s lemma).

5.5. Lemma. Let X be a normal space which contains an infinite sequence
S = {x1, x2, . . . } with no cluster points. Then for any infinite proper subset S0 ⊂ S
there is a function f ∈ C(X) such that f(x) = 0 if x ∈ S0 and f(x) = 1 if x ∈ SrS0.

Proof. Let S0 be any infinite proper subset of S and let S1 = SrS0. Then S0

and S1 are closed sets (no cluster points), hence by normality, the desired function
exists.

5.6. Theorem. Let X be a normal topological space and suppose that it
contains a countable subset S = {x1, x2, . . . } with no cluster points. Let Pn be
point masses at xn, that is, Pn(B) = 1 if xn ∈ B and Pn(B) = 0 otherwise. Then
there exists a w− ∗ limit of a subnet Pnd

of the sequence of point masses Pn. Any
such limit ψ satisfies:
(i) For any set B ⊂ X it holds either ψ(B) = 0 or ψ(B) = 1, with ψ(S) = 1.
(ii) ψ is a finitely (but not countably) additive set function
(iii) For every finite or empty set B ⊂ X, ψ(B) = 0.

The corresponding subnet nd is the net based on the filter of sets of ψ-measure
1.

Proof. From the previous considerations it follows that {Pn} has a cluster
point. Clearly, we must have a directed set D and a net xd ∈ S such that

(10) lim f(xd) =
∫

f(x) dψ(x),

for some measure ψ in the unit ball of M(X) and for all f ∈ C(X). Then ψ
is additive; further, it is a straightforward consequence of (10) that ψ has to be
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concentrated on S, i.e., ψ(S) = 1 and also that ψ(B) = 0 for any finite set B
(otherwise, one could modify f in such a way that the right hand side of (10)
changes without affecting the left hand side). Since ψ(S) = 1 and ψ(xn) = 0 for
each n, ψ is not countably additive. Hence, (ii) and (iii) are proved. It remains to
show that ψ(B) must be 0 or 1 for any B. Suppose contrary, that there exists a set
B with ψ(B) = q, 0 < q < 1. Then S ∩B is neither a finite nor a cofinite set. For
a d0 being fixed, infinitely many xd with d ≥ d0 belong either to B or to B′. By
Lemma 5.5, there is an f ∈ C(X) which takes value 1 at S ∩ B and 0 at S ∩ B′.
Then the right hand side of (10) equals ψ(B) = q and for any ε > 0 there is a d0

so that for each d ≥ d0, |f(xd) − q| < ε. Now suppose that B contains infinitely
many xd’s for d ≥ d0, then we’d have |1− q| < ε; otherwise |q| < ε which are both
impossible.

Therefore, we proved that any ψ which is a w − ∗ limit of a subnet {Pn}
satisfies conditions (i)–(iii). An analysis of the construction of Radon integral with
respect to ψ, in 3.14, reveals that the subnet of convergence is the net based on the
ultrafilter F consisted of sets with ψ(B) = 1.

5.7. Remarks. In any at least countable set X there exists a measure ψ
which satisfies conditions (i)–(iii). This can be shown using theory of filters and
the Axiom of Choice. The family of all sets B ⊂ X with ψ(B) = 1 makes a non-
principal ultrafilter. The existence of non-principal ultrafilters can be proved, but
there is no concrete example of such a filter.

Theorem 5.6 holds, for instance, in any non-compact metric space.

6. Tightness and Prohorov’s theorem

Although the notion of tightness can be defined in a more general context, in
this section we observe only probability measures on metric spaces. Hence, X will
denote a metric space, B a Borel sigma field and M1(X) the set of all probability
measures.

6.1. Definition. Let P be a set of probability measures on X. We say that
P is tight if for any ε > 0 there is a compact set K ⊂ X such that µ(K ′) ≤ ε.

The notion of tightness makes sense even if P is a singleton. In this case we
have the following result.

6.2. Theorem. If X is a complete and separable metric space, then each
probability measure is tight.

Proof. By separability of X, for each n there is a sequence An1 , An2 , . . . of
open balls of radii 1/n that cover X. Choose in so that

P
( ⋃

i≤in

Ani

)
> 1− ε

2n

and let
K =

⋂

n≥1

⋃

i≤in

Ani .
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Since K ⊂ ⋃
i≤in

Ain for each n, K is totally bounded set in a complete metric
space and hence K̄ is compact. Further,

P (K ′) ≤
+∞∑
n=1

P
(( ⋃

i≤in

Ani

)′)
< ε

+∞∑

i=1

1
2n

= ε,

hence P (K̄ ′) ≤ P (K ′) < ε.

6.3. Definition. We say that a set P of probability measures is relatively
compact if any sequence of probability measures Pn ∈ P contains a subsequence
Pnk

which converges weak star to a probability measure in M1(X). ¤
A precise topological term for relative compactness would be relative sequential

compactness in M1(X).

6.4. Remark. If X is compact, then from the previous section it follows
that any set of probability measures is relatively compact. Otherwise, we need
some conditions which are easier to check. One such condition is given in the next
theorem. The proof presented here relies on the material of the previous section
and departs from a classical presentation.

6.5. Theorem (Prohorov [28]). Let X be an arbitrary metric space and let
P be a tight set of measures. Then P is relatively compact.

Proof. Let X be a metric space and let P be a tight set of Borel probability
measures on it. Then for each n ∈ N , let Kn be a compact subset of X such that
P (Kn) > 1 − 1/n for all P ∈ P; we may assume that K1 ⊂ K2 ⊂ · · · . A unit
ball in any of spaces C(Kn)∗ is compact and metrizable. For a given sequence
{Pk} of probability measures in P, its restriction to a compact space Kn has a
convergent subsequence. Then we can use a diagonal argument to show that there
is a subsequence Pk′ such that

(11) Pk′ =⇒ P (n) on Kn, n = 1, 2, . . .

for some measures P (n) on Kn. Since Kn are increasing sets, the restriction of P (n)

to Kn−1 must coincide with P (n−1). Since P (n) is in the dual space of C(Kn), it
is countably additive, and by (11), P (n)(Kn) ≥ 1− ε.

Now if B is a Borel subset of X, define

P (B) = lim
n→+∞

P (n)(B ∩Kn).

The limit here exists because of

P (n)(B ∩Kn) ≥ P (n)(B ∩Kn−1) = P (n−1)(B ∩Kn−1),

hence the sequence {P (n)(B∩Kn)} is increasing and clearly is bounded from above
by 1. To show that Pk′ =⇒ P , we use the characterization of Theorem 4.6(iii).
Let F be any closed set in X. From (11) we have that

lim Pk′(F ∩Kn) ≤ P (n)(F ∩Kn) for each n = 1, 2, . . .
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Further,

Pk′(F ) ≤ Pk′(F ∩Kn) +
1
n

and so
lim Pk′(F ) ≤ limPk′(F ∩Kn) +

1
n
≤ P (n)(F ∩Kn) +

1
n

.

Letting now n → +∞ we get that

lim Pk′(F ) ≤ P (F ),

that is, Pk′ =⇒ P .

6.6. Theorem. Let X be a complete separable metric space. If P is a
relatively compact set of probability measures on X, then P is tight.

Proof. By Theorem 4.9, the weak star topology on M1 is metrizable, so
relative sequential compactness of P as defined in 6.3 becomes the topological
compactness of P̄, that is, any open cover of P̄ has a finite subcover. Here we
understand that the closure of P is in the metric space M1. Without loss of
generality, we may and will assume that P itself is compact in M1.

Fix ε > 0 and δ > 0. If P ∈ P, then by Theorem 6.2 it is tight, so there is a
compact set KP such that P (KP ) > 1−ε/2. Being compact, KP is totally bounded,
that is, it can be covered with finitely many open δ-balls BP,i, i = 1, 2, . . . , kP . Let
GP =

⋃kP

i=1 BP,i. By Theorem 4.2, there is a neighborhood of P (in the weak star
topology of M(X)) of the form

UP = {µ | µ(GP ) > P (GP )− ε/2}

The family {UP }P∈P makes an open cover of P and hence there is a finite subcover,
say UP1 , . . . , UPm . Then let Kδ =

⋃m
j=1 GPj . For any Q ∈ P we have that

Q(GP ) > P (GP ) + ε/2 ≥ P (KP )− ε/2 > 1− ε,

which implies that also Q(Kδ) > 1−ε. Let now K be the closure of the intersection
of all K1/n; it is a closed and totally bounded set, hence compact, and we have that
Q(K) > 1− ε for all P ∈ P.

7. Weak convergence of probability measures on Hilbert spaces

In this section we firstly review basic fact related to the weak convergence of
probability measures on finite dimensional vector spaces. The simple characteristic
function technique which is usually applied there, becomes more complex on infinite
dimensional Hilbert spaces.

7.1. Weak convergence of probability measures on Rk. On finite dimen-
sional spaces, the notion of weak convergence of probability measures coincides
with the notion of convergence of distributions (see [6], for example). If Fn and
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F are distribution functions of k-dimensional random variables Xn and X respec-
tively, and if lim Fn(x) = F (x) in each point x ∈ Rk where F is continuous, then
we say that the corresponding sequence Xn converges to X in distribution. This
occurs if and only if Pn =⇒ P , where Pn and P are probability measures on Rn

- distributions of Xn and X respectively.
A useful tool for investigation of weak convergence is the notion of a character-

istic function. If P is a probability measure on Rk, then its characteristic function
is defined by

(12) ϕ(t) =
∫

Rk

ei〈t,x〉 dP (x)

where

x = (x1, . . . , xk), t = (t1, . . . , tk), 〈t, x〉 =
k∑

i=1

tixi.

It is a well known fact (Bochner’s theorem) that a function ϕ defined on Rk

is a characteristic function of some probability measure if and only if it is positive
definite, continuous at origin and ϕ(0) = 1.

It is also a basic fact that Pn =⇒ P if and only if limn ϕn(t) = ϕ(t), where ϕn

and ϕ are the corresponding characteristic functions. This is indeed a very strong
result, since it says that it suffices to test the condition (1) with only two (classes
of) functions, x 7→ cos〈t,x〉 and x 7→ sin〈t, x〉.

7.2. Positive definite functions. Let X be any linear vector space. A
complex valued function ϕ defined on X is said to be positive (or non-negative)
definite if for any finite A = (a1, . . . , an) ∈ Cn and x = (x1, . . . , xn) ∈ Xn the
following holds:

n∑

i=1

n∑

j=1

aiājϕ(xi − xj) ≥ 0.

Positive definite functions have some interesting properties, which can be
proved directly from the above definition, using an appropriate choice of A and
x. We list some of these properties (see [21] for proofs):

ϕ(0) ≥ 0(i)

ϕ̄(x) = ϕ(−x)(ii)

|ϕ(x)| ≤ ϕ(0)(iii)

|ϕ(x)− ϕ(y)|2 ≤ 2ϕ(0)(ϕ(0)− Re ϕ(x− y))(iv)

ϕ(0)− Re ϕ(2x) ≤ 4(ϕ(0)− Re ϕ(x))(v)

From (iv) it immediately follows that a positive definite function is uniformly
continuous on X with respect to any metric topology if and only if its real part is
continuous at zero.
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7.3. Characteristic functions on Hilbert spaces. Let H be a real separable
Hilbert space. Let 〈·, ·〉 and ‖ · ‖ be the inner product and the norm which defines
the topology on H and let {ei} be an orthonormal basis.

Let P be a probability measure on H. The corresponding characteristic func-
tion is defined formally in the same way as in finite dimensional spaces:

(13) ϕ(x) =
∫

H

ei〈x,y〉 dP (y), x ∈ H.

A characteristic function uniquely determines the corresponding measure [27].
It is easy to see that the function defined by (13) is positive definite and

continuous at zero (with respect to the given norm). However, these properties are
not sufficient for a function to be a characteristic function, as in finite dimensional
cases. In order to proceed further, we need some facts about Hilbertian seminorms.

7.4. Hilbertian seminorms. A real valued function p defined on a vector
space X is called a Hilbertian seminorm if for all x, x1, x2 ∈ X and a ∈ R:
(i) p(x) ≥ 0
(ii) p(ax) = |a|p(x)
(iii) p(x1 + x2) ≤ p(x1) + p(x2)
(iv) p(x) > 0 for some x ∈ X
(v) p2(x1 + x2) + p2(x1 − x2) = 2(p2(x1) + p2(x2))

Due to (v), for a Hilbertian seminorm p one can define the corresponding inner
product:

(14) p(x, y) =
1
4
(p2(x1 + x2)− p2(x1 − x2)).

Let now H be a Hilbert space. Besides its norm, one can define various Hilber-
tian seminorms on H. One such seminorm is, for example,

(15) pn(x) =

√√√√
n∑

i=1

〈x, ei〉2, n ∈ N ,

where {ei} is an orthonormal basis with respect to the original norm. The inner
product which corresponds to the seminorm (15) is given by

pn(x, y) =
n∑

i=1

〈x, ei〉〈y, ei〉.

Let Π denotes the set of all Hilbertian seminorms p that satisfy

p(x) ≤ C‖x‖ for some C > 0(16)
+∞∑

i=1

p2(ei) < +∞,(17)
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for an orthonormal (with respect to the original norm) basis {ei}. It can be shown
that the quantity in (17) does not depend on the choice of an orthonormal basis in
H (see [22] for the proof and more details). Seminorms pn defined by (15) belong
to Π, since pn(x) ≤ ‖x‖ and

∑
p2

n(ei) = n.
It is easy to see that

(18) p ∈ Π =⇒ cp ∈ Π for any c > 0

and

(19) p1, . . . , pn ∈ Π =⇒
√

p2
1 + p2

2 + · · ·+ p2
n ∈ Π.

Now denote by I a topology on H defined by the following basis of neighbor-
hoods at zero:

{x ∈ H | p1(x) < ε1, . . . , pn(x) < εn},
where p1, . . . , pn ∈ Π, n ∈ N , εi > 0. Equivalently, by (18) and (19), a basis of
neighborhoods at zero for the I-topology is given by

{x ∈ H | p(x) < ε}, p ∈ Π, ε > 0.

Then a sequence {xn} converges in the I - topology to x if and only if limn p(xn−
x) = 0 for any p ∈ Π. The I-topology is stronger than the norm topology. If a
function ϕ defined on H is continuous in the I-topology it must be norm continuous,
but the converse does not hold.

7.5. Theorem. Let ϕ be the characteristic function of a probability measure
P on H. Then for any ε > 0 there is a seminorm pε ∈ Π such that for all x ∈ H,

(20) 1− Re ϕ(x) ≤ p2
ε(x) + ε

and ϕ is I-continuous on H.

Proof. Since H is a complete separable normed space, by Theorem 6.2 the
probability measure P is tight. That is, for a given ε > 0 there exists a compact
set Kε ⊂ H such that P (K ′) ≤ ε/2. So, we have that

1− Re ϕ(x) =
∫

(1− cos〈x, y〉) dP (y) ≤
∫

Kε

(1− cos〈x, y〉) dP (y) + ε

≤ 1
2

∫

Kε

〈x, y〉2 dP (y) + ε

Since Kε is compact and y 7→ 〈x, y〉2 is a continuous function, then it is bounded
on Kε and we may define

(21) pε =
(1

2

∫

Kε

〈x, y〉2 dP (y)
)1/2

.
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It is now easy to show that pε is a Hilbertian seminorm which satisfies (16) and
(17), hence (20) is proved. From the inequality (iv) in 7.2 and (20) we have that

|ϕ(x)− ϕ(y)|2 ≤ 2(p2
ε(x− y) + ε),

which implies the uniform continuity of ϕ in I topology.

7.6. Example. Consider the function f(x) = e−‖x‖
2/2. It is norm con-

tinuous and f(0) = 1. Using Schoenberg’s theorem [5] it can be shown that f
is a positive definite function. Suppose that f is I-continuous. Then the norm
is also I-continuous, which implies that there is a p ∈ Π and a δ > 0 so that
p(x) < δ =⇒ ‖x‖ < 1/2. For such a p we have that

∑
p2(ei) < +∞, hence there

is an ei such that p(ei) < δ and so ‖ei‖ < 1/2, which is a contradiction.
By Theorem 7.5, f is not a characteristic function on H. ¤
The next theorem is proved by Sazonov [29].

7.7. Theorem. A function ϕ : H 7→ C is the characteristic function of a
probability measure if and only if it is positive definite, I-continuous at zero and
ϕ(0) = 1.

7.8. Weak convergence on H via characteristic functions. Contrary to
finite dimensional cases, the convergence of characteristic functions alone is not
sufficient for weak convergence of probability measures. Here is where relative
compactness of probability measures plays a key role.

Theorem. Let {Pn} be a sequence of probability measures on H and let ϕn be
the corresponding characteristic functions. Let P and ϕ be a probability measure
and its characteristic function. If Pn =⇒ P then limn ϕn(x) = ϕ(x) for all x ∈ H.

Conversely, if a sequence Pn of probability measures on H is relatively compact
and limn ϕn(x) = ϕ(x) for all x ∈ H, then there exists a probability measure P
such that ϕ is its characteristic function and Pn =⇒ P .

Proof. Since the mapping x 7→ ei〈x,y〉 is norm-continuous, we have that
Pn =⇒ P implies ϕn(x) → ϕ(x) for all x ∈ H. To show the converse, assume that
{Pn} is relatively compact and that limn ϕn(x) = ϕ(x) for all x ∈ H, but {Pn}
does not converge weakly. Then there are two subsequences {Pn′} and {Pn′′} with
different limits, P (1) and P (2). Then characteristic functions ϕn′ and ϕn′′ converge
to different limits (i.e., to characteristic functions of P (1) and P (2) respectively),
which is a contradiction to the assumption that {ϕn} is a convergent sequence.

7.9. Example. Let Pn be point masses at en. The corresponding charac-
teristic functions are ϕn(x) = eixn , where xn = 〈x, en〉. Then for every x ∈ H,
limn ϕn(x) = 1 and 1 is the characteristic function of the point mass at zero, P0.
But clearly, {Pn} is not a weakly convergent sequence, assuming that H is equipped
with the norm topology. To show that exactly, note that if Pn =⇒ P in the norm
topology, then P can only be P0 because of convergence of characteristic functions.
Now since H is a normed space, there is an f ∈ C(H) such that f(B1/4) = 1 and
f(B′

1/2) = 0, where Br is the ball centered at zero with the radius r. For such a
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function we have
∫

f(x) dPn(x) = f(en) = 0 and
∫

f(x) dP0(x) = f(0) = 0,

so Pn does not weakly converge to P .

7.10. Weak convergence on H with respect to strong and weak topology.
In this item, we observe H with the strong (norm) topology (Hs) and with the weak
topology as defined in 2.2 (Hw). Although, by 2.10, the Borel sets are the same in
both cases, there is a difference in the concepts of weak convergence of measures,
arising from the fact that C(Hw) is in general a proper subset of C(Hs). Hence,
if Pn =⇒ P in Hw, we need some additional requirements to conclude that
Pn =⇒ P in Hs, unless H is finite dimensional, in which case Hw = Hs. In the
next two theorems we show that an additional necessary and sufficient condition is
“uniform finite dimensional approximation”, expressed by (22) below.

7.11. Theorem. Let {Pn} be a sequence of probability measures on H. If
Pn =⇒ P in Hw and for all ε > 0,

(22) lim
N

sup
n

Pn

(+∞∑

i=N

〈x, ei〉2 ≥ ε
)

= 0,

then Pn =⇒ P in Hs.

Proof. By Theorem 4.6(ii), it suffices to show that, under the above assump-
tions,

(23)
∫

f(x) dPn(x) →
∫

f(x) dP (x),

for every uniformly norm continuous and bounded function f . The idea of the
proof is to approximate f by a function which is continuous and bounded in Hw.
For x ∈ H let gN (x) =

∑N−1
i=1 〈x, ei〉ei. Then gN is a linear operator H 7→ H,

‖gN (x)‖ ≤ (N − 1)‖x‖ for all x ∈ H and hence ‖gN (x)− gN (y)‖ ≤ (N − 1)‖x− y‖,
so gN is uniformly continuous. Let now f be any norm continuous real valued
function on Hs, with ‖f‖ = Mf . The function x 7→ f(gN (x)) is continuous in Hw.
Consider the difference dN (x) = f(x) − f(gN (x)) and fix a δ > 0. By uniform
continuity of f , there is an ε > 0 so that

|dN (x)| < δ whenever ‖x− gN (x)‖2 =
+∞∑

i=N

〈x, ei〉2 < ε.

By (22), for such an ε we can find N0 so that for each N ≥ N0 we have

(24) Pn(AN ) < δ for every n, where AN =
{

x ∈ H
∣∣∣

+∞∑

i=N

〈x, ei〉2 ≥ ε
}

.
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Now for any N ≥ N0 we have

∣∣∣
∫

f(x) dPn(x)−
∫

f(gN (x)) dPn(x)
∣∣∣ =

∣∣∣
∫

dN (x) dPN (x)
∣∣∣

≤
∣∣∣
∫

A′N

dN (x) dPn(x)
∣∣∣ +

∣∣∣
∫

AN

dN (x) dPn(x)
∣∣∣(25)

≤ δ + 2Mfδ = δ(1 + 2Mf ).

Further, by continuity of f , the fact that gN (x) → x as N →∞ and the dominated
convergence theorem, for N ≥ N1 we have

(26)
∣∣∣
∫

f(gN (x)) dP (x)−
∫

f(x) dP (x)
∣∣∣ ≤ δ

Finally, since f(g(·)) ∈ C(Hw), we have that

(27)
∣∣∣
∫

f(gN (x)) dPN (x)−
∫

f(gN (x)) dP (x)
∣∣∣ ≤ δ,

where N ≥ max(N0, N1). The weak convergence of Pn in Hs follows now from
(25)–(27).

7.12. Theorem. Any weak star convergent sequence of probability measures
{Pn} in Hs satisfies (22).

Proof. Suppose that Pn =⇒ P in Hs. For an ε > 0, let AN be defined by
(24). Since AN is closed in the norm topology, by Theorem 4.6(iv) we have that,
for any fixed N ,

(28) lim Pn(AN ) ≤ P (AN ).

Since {AN} is a decreasing sequence of sets with
⋂+∞

N=1 AN = ∅, by continuity of
probability measures we have that

(29) lim
N→+∞

P (AN ) = 0.

Now fix a δ > 0 and choose N0 large enough so that P (AN0) ≤ δ for N ≥ N0. By
(28), there are only finitely many measures, say Pn1 , . . . , Pnk

such that Pni(AN0) >
ε; however, by continuity, there is an integer N1 > N0 such that Pni(AN ) ≤ ε for
all N ≥ N1. Hence, for N ≥ N1 we have that

sup
n

Pn(AN ) ≤ δ,

which is equivalent with (22).
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7.13. Theorem. Let P be a relatively compact set of probability measures
in Hw. Then it is relatively compact in Hs if and only if

(30) lim
N

sup
P∈P

P
(+∞∑

i=N

〈x, ei〉2 ≥ ε
)

= 0,

for any ε > 0.

Proof. By Theorem 7.11, (30) is a sufficient additional condition for relative
compactness in Hs. Conversely, suppose that P is relatively compact in Hs but
(30) does not hold. Then there is an ε > 0 and a λ > 0 such that for each n there
is an N ≥ n and Pn ∈ P so that

(31) Pn

(+∞∑

i=N

〈x, ei〉2 ≥ ε
)

> λ.

By weak compactness in Hs, there is a weakly convergent subsequence of {Pn},
which together with (31) contradicts Theorem 7.12. Therefore, (30) holds.

7.14. Theorem (Prohorov’s theorem in Hw). For r = 1, 2, . . . , let Br = {x ∈
H | ‖x‖ ≤ r}. A set of probability measures P is relatively compact on Hw if and
only if for every ε > 0 there is an integer r ≥ 1 such that P (B′

r) ≤ ε for all P ∈ P.

Proof. A key point in the proof is the observation that Hw may be represented
as the union of balls Br = {x ∈ H | ‖x‖ ≤ r}, r = 1, 2, . . . , which are compact sets
in the weak topology (Theorem 2.18) and the weak topology on Br is metrizable.
So, the proof of the “if” part goes in the same way as the proof of Theorem 6.5.

For the converse, it suffices to prove that if Pn is a weakly convergent sequence
in Hw then for each ε > 0 there is a ball Br such that Pn(B′

r) ≤ ε for all n. Indeed,
assuming that we proved such a claim, suppose that P is relatively compact and
that there is an ε > 0 such that for each positive integer n there is a measure Pn ∈ P
with P (B′

n) > ε. Then there is a subsequence Pn′ which is weakly convergent in Hw

to some probability measure P , and we have that Pn′(B′
n′) > ε. Since n′ → +∞,

this is a contradiction with the assumed claim.
So, let Pn =⇒ P in Hw, where Pn and P are probability measures. Then

by continuity of P , for any ε > 0 there is a ball Br such that P (Br) ≥ 1 − ε/2.
Consider now the open sets (in fact, U -sets) in Hw:

G
(r)
k,m =

{
x ∈ H

∣∣∣
k∑

i=1

〈x, ei〉2 < r2 +
1
m

}
, k,m = 1, 2, . . .

Then it is easy to see that the sets G
(r)
k,m are decreasing as k and m increase.

Moreover,

Br =
+∞⋂

k=1

+∞⋂
m=1

G
(r)
k,m.
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By Theorem 4.4, for each k and m we have

limPn(G(r)
k,m) ≥ P (G(r)

k,m) ≥ 1− ε

2
,

hence there is an n0 such that

Pn(G(r)
k,m) ≥ 1− ε for all n ≥ n0.

For a fixed n, letting here k → +∞ and m → +∞, we get

Pn(Br) ≥ 1− ε for all n ≥ n0.

Now, for each of measures Pi (1 ≤ i ≤ n0 − 1) there is a ball Bri such that
Pi(Bri

) ≥ 1 − ε. Let R = max{r, r1, r2, . . . , rn0−1}. Then Pn(BR) ≥ 1 − ε for all
n ≥ 1, which was to be proved.

7.15. Example. Let Pn be unit masses at en, as in Example 7.9. We will
show that Pn is relatively compact in Hw. Indeed, all Pn are concentrated in B1,
hence by Theorem 7.14, the sequence {Pn} is relatively compact. Moreover, since
en → 0 in the weak topology (Example 2.3), then f(en) → f(0) for any f ∈ C(Hw).
Hence,

∫
f(x) dPn(x) = f(en) =

∫
f(x) dP0(x), where P0 is the unit mass at 0. So,

{Pn} is a weakly convergent sequence in Hw, Pn =⇒ P0, which is also consistent
with Example 7.9.

7.16. Relative compactness via characteristic functions. In the next two
theorems, we give conditions for relative compactness in Hw and Hs in terms of
characteristic functions. Recall that by Theorem 7.5, to each characteristic function
ϕ and an ε > 0 there corresponds a Hilbertian seminorm pε such that (20) holds.
Let P = {Pα} be a set of probability, where α belongs to an index set A. A
seminorm which corresponds to the characteristic function ϕα of a given Pα with
an ε > 0 in the sense of (20), will be denoted by pα,ε. Let us note that pα,ε are not
uniquely determined. One natural choice is given by (21).

In the proofs of the next two theorems, a key role is played by the integration
of a Hilbertian seminorm with respect to a finite dimensional Gaussian measure.
Let p be a Hilbertian seminorm and p(·, ·) a corresponding inner product as in
(14). Suppose G is an N -dimensional Gaussian measure which is concentrated on
RN spanned by {e1, e2, . . . , eN}, as a product of N coordinate measures N (0, σ2).
Then

∫
p2(x) dG(x) =

∫

RN

p
( N∑

i=1

xiei,

N∑

j=1

xjej

)
dG(x)

=
N∑

i=1

N∑

j=1

∫

RN

xixjp(ei, ej) dG(x)

=
N∑

i=1

∫

RN

x2
i p(ei, ei) dG(x)

= σ2
N∑

i=1

p2(ei).(32)
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7.17. Theorem A set of probability measures P = {Pα | α ∈ A} is relatively
compact in Hw if and only if for every ε > 0 there is a set of seminorms {pα,ε}α∈A

such that

(33) sup
α∈A

+∞∑

i=1

p2
α,ε(ei) < +∞.

Proof. By Theorem 7.14, we need to show that the condition (33) is equivalent
to the condition that for any ε > 0 there is a ball Br such that

(34) Pα(B′
r) ≤ ε for all Pα ∈ P.

For a given ε > 0, assume that (34) holds for ε/2 in place of ε and with some
Br. Then, as in the proof of Theorem 7.5, we show that

1− Re ϕα(x) ≤ pα,ε + ε,

where ϕα is the characteristic function of Pα and

(35) 2
α,ε(x) =

1
2

∫

Br

〈x, y〉2 dPα(y).

Then we have that

+∞∑

i=1

p2
α,ε(ei) =

1
2

∫

Br

‖y‖ dPα(y) ≤ r2,

so (33) holds.
Conversely, fix an ε > 0 and assume that (33) holds for some family of semi-

norms {pα,ε}. Let

Ar,N =
{

y ∈ H
∣∣∣

N∑

i=1

〈y, ei〉2 > r2
}

, N = 1, 2, . . .

Note that Ar,1 ⊂ Ar,2 ⊂ · · · and
⋃+∞

N=1 Ar,N = B′
r, so

(36) lim
N→+∞

Pα(Ar,N ) = Pα(B′
r)

For an y ∈ Ar,N we have that

1− exp
(
− 1

2r2

N∑

i=1

〈y, ei〉2
)

> 1− e−1/2 >
1
3
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and so, for every Pα ∈ P,

1
3
Pα(Ar,N ) <

∫

Ar,N

(
1− exp

(
− 1

2r2

N∑

i=1

y2
i

))
dPα(y)

< 1−
∫

H

exp
(
− 1

2r2

N∑

i=1

y2
i

)
dPα(y).(37)

Let G be a Gaussian measure on RN , defined as the product of coordinate Gaussian
measures N (0, 1/r2). Its characteristic function is y 7→ exp

(
−∑N

i=1 y2
i /2r2

)
and

we have

(38)
∫

H

exp
(
− 1

2r2

N∑

i=1

y2
i

)
dPα(y) =

∫

RN

∫

H

exp
(
i

N∑

i=1

yixi

)
dPα(y) dG(x).

Let

ϕα,N (x) =
∫

H

exp
(
i

N∑

i=1

yixi

)
dPα(y).

For x =
∑N

i=1 xiei we have that ϕα,N (x) = ϕα(x) and so Re ϕα,N (x) ≥ 1−p2
α,ε(x)−

ε. Then from (38) we get

∫
exp

(
− 1

2r2

N∑

i=1

y2
i

)
dPα(y) ≥ 1−

∫

RN

p2
α,ε(x) dG(x)− ε

= 1− 1
r2

N∑

i=1

p2
α,ε(ei)− ε.(39)

From (37) and (39) we find that

Pα(Ar,N ) <
3
r2

N∑

i=1

p2
α,ε(ei) + 3ε.

Now let N → +∞ and use (36) to get

Pα(B′
r) ≤

3
r2

+∞∑

i=1

p2
α,ε(ei) + 3ε,

which proves that (33) implies (34).

7.18. Theorem. Suppose that P = {Pα | α ∈ A} is a relatively compact set
of probability measures in Hw. Then the following conditions are equivalent:
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(i) For any ε > 0 there is a choice of {pα,ε}α∈A so that

lim
N→+∞

sup
α∈A

+∞∑

i=N

p2
α,ε(ei) = 0,

(ii) For any ε > 0,

lim
N→+∞

sup
α∈A

Pα

(+∞∑

i=N

〈x, ei〉2 > ε
)

= 0.

Proof. Assume that (i) holds. From (20) it follows that

Re
∫

exp(i〈x, y〉) dPα(x) ≥ 1− ε− p2
α,ε(y).

Put here y =
∑S

j=N ajej and integrate with respect to the product of coordinate
Gaussian N (0, 1) measures to get

∫
exp

(
−1

2

S∑

j=N

〈x, ej〉2
)

dPα(x) ≥ 1− ε−
S∑

j=N

p2
α,ε(ej).

Now letting S → +∞ and using the monotone convergence theorem, we obtain

(40)
∫

exp
(
−1

2

+∞∑

j=N

〈x, ej〉2
)

dPα(x) ≥ 1− ε−
+∞∑

j=N

p2
α,ε(ej).

Introduce the notations:

+∞∑

j=N

p2
α,ε(ej) = Sα,ε(N),

1
2

S∑

j=N

〈x, ej〉2 = X(N).

Then for any λ > 0, (40) yields:

1− ε− Sα,ε(N) ≤
∫

exp(−X(N)) dPα(x)

=
∫

X(N)<λ

exp(−X(N)) dPα(x) +
∫

X(N)≥λ

exp(−X(N)) dPα(x)

≤ Pα(X(N) < λ) + e−λPα(X(N) ≥ λ)

= 1− (1− e−λ)Pα(X(N) ≥ λ),

wherefrom we get

sup
α

Pα(X(N) ≥ λ) <
ε + supα Sα,ε(N)

1− e−λ
.
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Letting here N → +∞ and then ε → 0 and assuming that (i) holds, we obtain (ii)
(with 2λ in place of ε). Note that this part is independent of the assumption that
P is relatively compact in Hw.

To prove the opposite direction, assume that P is relatively compact in Hw

and that (ii) holds. Let pα,ε be seminorms defined by (35). Then we have

2
+∞∑

i=N

p2
α,ε(ei) =

∫

Br

+∞∑

i=N

〈x, ei〉2 dPα(x) ≤ λ + r2Pα

(+∞∑

i=N

〈x, ei〉2 ≥ λ
)
.

Taking the supremum with respect to α, letting N → +∞ and λ → 0, we obtain
(i).

7.19. Theorem. A set P = {Pα | α ∈ A} of probability measures on Hs

is relatively compact if and only if for every ε > 0 there is a set of seminorms
{pα,ε}α∈A, related to Pα as in (20), such that the following two conditions hold:
(i) For every ε > 0,

sup
α∈A

+∞∑

i=1

p2
α,ε(ei) < +∞.

(ii) For every ε > 0,

lim
N→+∞

sup
α∈A

+∞∑

i=N

p2
α,ε(ei) = 0.

Proof. Directly from theorems 7.13, 7.17 and 7.18.

7.20. Remarks. Let us remark that if the above conditions on seminorms
hold for one choice of the family pα,ε, they need not hold for some other choice. For
instance, suppose that α = 1, 2, . . . and let pn,ε be a family of seminorms related to
characteristic functions via (20) and satisfying (33). Then the family of seminorms
qn,ε defined by q2

n,ε(x) = np2
n,ε(x)/

∑+∞
i=1 p2

n,ε(ei) also satisfies (20), but not (33).
Theorem 7.19 is proved in [27] by different means. The analysis of a rela-

tionship between weak convergence on Hw and Hs is adopted from [23]. Separate
conditions in Hw may be useful since they are easier to check.
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