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INTRODUCTION

This lecture notes give a survey of basic facts related to geometry of manifolds
endowed with a torsion free connection. We pay the attention especially on geome-
tries which come from the existence on some characteristic torsion free connection
closely related to some metric, in general case of an arbitrary signature. So we study
in this spirit affine differential geometry, Weyl and Codazzi geometries. One can
join naturally these two structures: a torsion free connection and a metric, and the
corresponding groups of transformations. We present basic facts related to these
groups. To study geometry of manifolds endowed with a torsion free connection, a
powerful tool is, of course, the corresponding curvatures. Therefore the curvature
is appeared in all five sections of this lecture notes. In Section I we give the defini-
tions of curvatures and some of their properties. Section II is devoted to curvatures
which are invariant with respect to some groups of transformations. These groups
are closely related to classical groups: GL(m,R), U(m), SO(m) etc. We use well
developed representation theory of these groups to enlight curvature from this point
of view. It is the content of Section III. To prove the irreducibility of some vector
space of curvatures one can use different methods. We pay the attention especially
on these ones closely related to the Weyl classical invariance theory. It allows to
study also some relations between topology and analysis of these manifolds with
their geometry. So we develop the theory of characteristic classes in Section IV and
differential operators of Laplace type in Section V. Among characteristic classes
we pay the attention on Chern classes and their dependence on some groups of
transformations and curvature symmetries. To fulfill our programme related to the
influence of Weyl classical invariance theory into the theory of differential operators
of Laplace type we study the heat equation method. Several operators of Laplace
type are studied more sistematically.

Finally, there are various possibilities to present some material related to this
topic. The author of this lecture notes choose this one closely related to her main
interest through previous twenty years. Her interest yields in the cooperation with
other colleagues a series of results which are presented too.

We omit the proofs as it is far from the framework of these notes. We rather
give the advantage to the results to present the riches of this topic to motivate the
readers into further investigations. Of course to go into this level we suggest to use
the corresponding monographs and papers, mentioned in the convenient moment
throughout this notes.

As it is usual the contribution of colleagues friends and institutions to the
quality of manuscript is significant. I would like to acknowledge all of them, bur
first of all to Prof. B. Stanković, who has initiated and encouraged writing this
manuscript.



I. MANIFOLDS WITH A TORSION FREE CONNECTION

I.1. Definitions and basic notions

The straight lines play a very important role in the geometry of a plane. There-
fore, it would be useful to have lines on surfaces with the analogous properties to
these ones of straight lines. But the definition of such lines on surfaces is not so
evident as straight lines have several characteristic properties and hence it is not
clear which one should characterize “straight lines” on surfaces, i.e., which one can
be generalized, and specially which generalizations give the same and which one
give different lines. Among these properties are the followings:
(PL1) The curvature of a straight line (in a plane) vanishes.
(PL2) For any two points there exists the unique straight line which consists both

of them.
(PL3) The tangent vectors on a straight line are mutually parallel

All of these properties can be generalized for lines on a surface. To obtain this
one we use heavily a linear connection. Studying the same problem on a smooth
manifold Mm of the dimension m we need also a linear connection. Hence we give
its definition in a full generality. More details one can find in [61], [82], [85], etc.

Definition 1.1. Let X be the modul of vector fields over the ring of smooth
functions C∞(M) on M . A linear connection on the manifold M is a map ∇ :
X(M) × X(M) → X(M), such that for all x, y, z ∈ X(M), r ∈ R and f ∈ C∞(M)
it yields

∇x(y + z) = ∇xy +∇xz and ∇xry = r∇xy,(i)

∇x+yz = ∇xz +∇yz and ∇fxy = f∇xy,(ii)

∇xfy = (xf)y + f∇xy (Leibnitz formula).(iii)

The operator ∇x : X(M) → X(M) is the covariant derivative in the direction
of a vector field x. ¤

If (u,U) is a chart and {∂/∂ui}p, 1 ≤ i ≤ m the corresponding coordinate base
of tangent space TpM , for any p ∈ U , then arbitrary vector field x can be given in
the following way

∑
Xi ∂

∂ui , Xi ∈ C∞(M). A linear connection ∇ is determined
by the vector fields

∑
∂/∂ui(∂/∂uj). It allows to introduce the Christoffel symbols

of ∇.

Definition 1.2. Let ∇ be a linear connection on the manifold M and (u,U)
a chart. Christoffel symbols of ∇ with respect to the chart (u, U) are functions
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Γk
ij ∈ C∞(M) defined by

∇∂/∂ui

( ∂

∂uj

)
=

∑

k

Γk
ij

∂

∂uk
. (¤)

Let α : I → M be a curve. The tangent vector field Tα of a curve α is given
by (Tα)α(t) = (α∗)(d/dt), t ∈ R. Usually we use the notation T for Tα if there is no
confusion. Locally we have

Tα(t) =
∑ dαi

dt
(t)

(
∂

∂ui

)

α(t)

.

Let y be a vector field defined along a curve α. We say y is parallel along α if
∇Tα

y = 0. A curve α on a manifold M is geodesic (with respect to the connection
∇) if ∇Tα

Tα = 0. Let (M, g) be a Riemannian manifold endowed with a linear
connection ∇. The connection ∇ is metric if it satisfies

xg(y, z) = g(∇xy, z) + g(y,∇xz),

for all x, y, z ∈ X(M). A linear connection ∇ is symmetric or torsion free if we have

(1.1) ∇xy −∇yx = [x, y]

for all x, y ∈ X(M). A connection ∇ is torsion free if and only if it yields Γk
ij = Γk

ji

for all 1 ≤ i, j, k ≤ m in an arbitrary coordinate chart. There exists a unique metric
symmetric connection ∇ on a Riemannian manifold (M, g). This connection ∇ is
called Levi-Civita connection.

Definition 1.3. The curvature tensor of type (1,3) of arbitrary connection∇ is
the map R : X×X×X → X defined by relation R(x, y)z = ∇x∇yz−∇y∇xz−∇[x,y]z.
The curvature tensor of Levi-Civita connection is called Riemann curvature tensor.

¤
In a local coordinate system one can find

R
( ∂

∂uj
,

∂

∂uk

) ∂

∂ui
=

∑
Rjki

l ∂

∂ul
,

where the components Rjki
l are defined by

Rjki
l = Γl

ji,k − Γl
ki,j +

∑
m

Γm
jiΓ

l
mk and Γl

ji,k =
∂

∂uk
(Γl

ji).

Riemann curvature tensor of type (0,4) is the map R : X×X×X×X → C∞(M),
given by the relation R(x, y, z, w) = g(R(x, y)z, w).
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The curvature tensor of type (1,3) of arbitrary connection ∇ satisfies the fol-
lowing relation

(1.2) R(x, y)z = −R(y, x)z;

for torsion free connection we have also

(1.3) R(x, y)z + R(z, x)y + R(y, z)x = 0,

(the first Bianchi identity), and

(1.4) (∇vR)(x, y)z + (∇xR)(y, v)z + (∇yR)(v, x)z = 0

(the second Bianchi identity). Riemann curvature tensor fulfills all these relations
(1.2)–(1.4) and

R(x, y, z, w) = −R(x, y, w, z),(1.5)

R(w, z, x, y) = R(x, y, w, z).(1.6)

The curvature tensor of a metric connection satisfies symmetry relations (1.2),
(1.5) and (1.6).

Let Π be a 2-dimensional subspace of tangent space TpM . The sectional cur-
vature of Π is Kp(Π) = R(x, y, y, x)(p), where {x, y} is an orthonormal base of Π.
If x, y are two arbitrary vectors in Π, then

Kp(Π) =
R(x, y, y, x)

‖x‖2‖y‖2 − g(x, y)2
,

where ‖x‖2 = g(x, x). M is a space of the constant sectional curvature if Kp(Π)
is independent of the choice of Π in TpM , where p is an arbitrary point of M and
depends on p ∈ M . The Riemann curvature tensor of this space is given by

R(u, v, z, w) = Kp(g(u, z)g(v, w)− g(u,w)g(v, z)).

If Kp(Π) is independent of Π in TpM in all p ∈ M then Kp is same everywhere on
M .

Some information about the geometry of M give Ricci and scalar curvatures.
These curvatures are very powerful tool in studying of Einstein spaces and other
topics. Let Θp(xp, yp) : TpM → TpM be the map defined by the relation

Θp(xp, yp)vp = R(vp, xp)yp.

Then Θp(xp, yp) is linear for all p ∈ M and xp, yp ∈ TpM . Consequently, there
exists the trace of Θp(xp, yp).
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Definition 1.4. Ricci curvature tensor ρ is the correspondence between points
p ∈ M and maps Sp : TpM × TpM → R, given by ρp(xp, yp) = trace(Θp(xp, yp)).
Ricci curvature in a direction x is ρp(x, x). ¤

Definition 1.5. Let (M, g) be a Riemann manifold with Ricci curvature ρ.
The scalar curvature τ of M in a point p is defined by τ =

∑n
i=1 ρp((xi)p, (xi)p),

where {x1p, . . . , xnp} is an orthonormal base of the tangent space TpM . ¤
Einstein space is Riemann space (M, g) such that ρp = τ

mgp.

In general case Ricci curvature tensor is neither symmetric nor skew-symmetric.
But, ρp corresponding to Levi-Civita connection is symmetric. Manifolds endowed
with special type connections will be studied in next sections.

A skew-symmetric Ricci tensor naturally appeared on manifolds which admit
absolute parallelizability of directions (see for example [100, §§49, 89]). More
precisely, it means the following. Let (M,∇) be a differentiable manifold with a
symmetric connection ∇. If a vector field v defined along a curve γ collinear with
some parallel vector field w we say the direction of v is parallel. A manifold M
admits absolute parallelizability of directions if every direction given in a p ∈ M
can be included in some field with parallel directions along every curve.

A skew-symmetric Ricci tensor is appeared also in the complete decomposition
of a curvature tensor for ∇ in the spirit of the representation theory of classical
groups (see Section III).

I.2. Affine differential geometry

Torsion free, Ricci symmetric connections arise naturally in affine differential
geometry and motivate the discussion of the previous section. We review this
geometry briefly and refer to [10], [33], [97], [111], [124] for further details.

Let A be a real affine space which is modeled on a vector space V of dimension
m+1. Let V ∗ be the dual space. If a ∈ A, we may identify TaA = V and T ∗a A = V ∗.

Let 〈·, ·〉 : V ∗ × V → R be the natural pairing between V ∗ and V . Let x be a
smooth hypersurface immersion of M into A. If p ∈ M , let

C(M)p = {X ∈ V ∗ : 〈X, dx(v)〉 = 0, ∀v ∈ TpM}

be the conormal space at p; we let C(M) be the corresponding conormal line bundle
over M . We assume C(M) is trivial and choose a non vanishing conormal field X.

We say the hypersurface x(M) is regular if and only if rank (X, dX) = m + 1,
for every point of M ; we impose this condition henceforth. Then X is an immersion
X : M → V ∗ which is transversal to X(M). Define y = y(X) : M → V by the
conditions 〈X, y〉 = 1 and 〈dX, y〉 = 0.

The triple (x,X, y) is called a hypersurface with relative normalization; we
remark that y need not be an immersion. The relative structure equations given
below contain the fundamental geometric quantities of hypersurface theory: two
connections ∇,∇∗, the relative shape (Weingarten) operator S, and two symmetric
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forms h and Ŝ. Let ∇̄ be the flat affine connection on A.

(2.1)

∇̄vy = dy(v) = −dx(S(v)),

∇̄wdx(v) = dx(∇̄wv) + h(v, w)y,

∇̄wdX(v) = dX(∇∗wv)− Ŝ(v, w)X.

The first equation is called the Weingarten equation, the second two are the Gauss
equations. Symmetric form h is called the Blaschke metric. Generally, it is indefi-
nite. If h is positive definite, this means that the immersed hypersurface x(M) is
locally strongly convex.

The relative shape operator S is self-adjoint with respect to h and is related to
the auxiliary shape operator Ŝ by the identity Ŝ(v, w) = h(S(v), w) = h(v, S(w)).
It is useful to define a (1, 2) difference tensor C, a totally symmetric relative cubic
form Ĉ, and the Tchebychef form T̂ by:

C :=
1
2
(∇−∇∗), Ĉ(v, w, z) := h(C(v, w), z), T̂ (z) := m−1 Trh(C(z, ·)).

Let ′;′ denotes multiple covariant differentiation with respect to the Levi-Civita
connection ∇(h). T̂ has the following useful symmetry property [123]: T̂i;j = T̂j;i.

We note that both ∇ (the induced connection) and ∇∗ (the conormal connec-
tion) are torsion free connections on TM . They are conjugate with respect to the
Levi-Civita connection; which implies 1

2 (∇ + ∇∗) = ∇(h). Consequently, we may
express ∇ = ∇(h) + C and ∇∗ = ∇(h)− C.

The curvature tensors R, R∗, R(h) of ∇, ∇∗, ∇(h) respectively can be ex-
pressed by the Gauss equations

(2.2)

R(u, v)w = h(v, w)Su− h(u,w)Sv,

R∗(u, v)w = Ŝ(v, w)u− Ŝ(u,w)v,

R(h)(w, v)u = C(C(w, u), v)− C(C(v, u), w)

+
1
2
{Ŝ(v, u)w − Ŝ(w, u)v + h(v, u)S(w)− h(w, u)S(v)}.

Let Rij , R∗ij , R(h)ij be the components of Ricci tensors Ric, Ric∗, Ric(h) for
∇, ∇∗, ∇(h) respectively relative to a local orthonormal frame. We use the metric
to raise and lower indices and identify Ŝ = S. Then:

Rij = δijSkk − Sij and R∗ij = (m− 1)Sij .

We denote the normalized mean curvature by H := m−1Sii; the normalized
traces are then equal

(m− 1)−1 Trh(Ric) = (m− 1)−1 Trh Ric∗ = mH.
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We construct the extrinsic curvature invariants of relative geometry from S
and h. Let {λ1, . . . , λm} be the eigenvalues of S relative to h:

det(S − λh) = 0.

These are the principal curvatures. Let {H1, . . . ,Hm} be the corresponding
normed elementary symmetric functions. For example the relative mean curvature
is given by mH1 = λ1 + · · ·+ λm.

We fix a volume form or determinant on A. Then there is, up to orientation, a
unique equiaffine unimodular normalization which is invariant under the unimod-
ular group. Admitting arbitrary volume forms, all such normalizations differ by a
non-zero constant factor. The class of equiaffine normalizations can be character-
ized within the class of relative normalizations by the vanishing of the Tchebychev
form. We call such a hypersurface with equiaffine normalization a Blaschke hyper-
surface. The vanishing of T simplifies the local invariants greatly.

We take y = −x to define the centroaffine normalization. This geometry is
invariant with respect to the subgroup of regular affine mappings which fix the
origin of A. Let Xe be the equiaffine conormal field and let ζ = −〈x,Xe〉 be the
equiaffine support function. We choose the orientation so that ζ > 0. Then

Ŝ = h, Hr = 1 for r = 1, . . . ,m, and T̂ =
2 + m

2m
d ln(ζ).

Among relative normalizations significant one is Euclidean normalization. Let
x : M → E be a hypersurface, let Y be a conormal and y transversal. The
pair {Y, y} is called a Euclidean normalization with respect to the given Euclidean
structure of E if Y and y can be identified by the Riesz theorem and 〈Y, y〉 = 1.
We write Y = y = µ.

As a consequence of this definition one can express the regularity of a hypersur-
face in terms of Euclidean hypersurface geometry. More precisely, let x : M → E
be a hypersurface. Then the following properties are equivalent:
(i) x is non-degenerate.
(ii) The Euclidean Gauss-map is an immersion.
(iii) The Euclidean Weingarten operator is regular.
(iv) The third fundamental form III is positive definite on M .
(v) The second fundamental form II is regular.

We express the relative quantities (in the following on the left) for the Eu-
clidean normalization in terms of quantities of Euclidean hypersurface theory (on
the right).
(a) S(E) = b, (b) h(E) = II, (c) ∇(E) = ∇(I),
(d) Ŝ(E) = III, (e) ∇∗(E) = ∇(III), (f) ∇(h) = ∇(II),
(g) −2Ĉ(E) = ∇(I)II = −∇(III)II, (h) −2C(E)(v, w) = b−1((∇(I)vb)(w)),
(i) C(E) = 1

2 (∇(I)−∇(III)) = ∇(I)−∇(II) = ∇(II)−∇(III),
(j) T̂ (E) = − 1

2md lg |Hm(E)|, where b is the Weingarten operator.
Consider a pair of non-degenerate hypersurfaces x : M → V and ∗x : M → V ∗

such that 〈x, ∗x〉 = −1, 〈d∗x, x〉 = 0, and 〈x, dx〉 = 0. Such a pair is called a polar
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pair. These relations are satisfied for a non degenerate hypersurface x : M → V and
its centroaffine conormal map ∗x := X : M → V ∗. This indicates the important
role which centroaffine differential geometry has for the investigation of polar pairs.
We recall some facts about the controlling geometry of polar pairs and refer to [OS,
§7.2] for further details

Ŝ = h = ∗h =
∗
Ŝ,

∇ = ∗∇∗, ∇∗ = ∗∇,

C = − ∗C, T̂ = − ∗
T̂ , R = ∗R .

Let µ be a unit normal on an Euclidean sphere Sm(r) ⊂ E of radius r and
with center x0. Sm(r) can be characterized by the relation rµ = x − x0, or more
generally by µ and (x − x0) being parallel. Studying quadrics we conclude that
all quadrics with center x0 have the property that the equiaffine normal satisfies
y(e) = −H(e)x+x0. One can generalizes this notion in relative geometry as follows.

Let x : M → A be a regular hypersurface with relative normalization {Y, y}.
Then {x, Y, y} is called a proper relative sphere with center x0 if

(2.3) y = λ(x− x0), λ ∈ C∞(M).

{x, Y, y} is called an improper relative sphere if y = const 6= 0. A point p ∈ M is
called a relative umbilic if the relative principal curvatures coincide

k1(p) = k2(p) = · · · = km(p).

A consequence of the Weingarten equation in (2.1) is that λ = const in (2.3).
Since y = −x per definition in centroaffine geometry it follows any hyper-

surface with centroaffine normalization is a relative sphere with respect to this
normalization.

Usually relative spheres with respect to the equiaffine normalization are called
affine spheres (instead of equiaffine spheres). Any quadric is an affine sphere. If a
regular quadric has a center x0, it is a proper affine sphere with center x0 (exam-
ples: ellipsoids, hyperboloids are proper affine spheres; paraboloids are improper
affine spheres). In the following theorems we give some characterizations of relative
spheres and affine ones.

Theorem 2.1. (a) Each of the following properties (i)–(vi) characterizes a
relative sphere:

(i) S = λ · id on M (where λ ∈ C∞(M) and λ 6= 0 for proper relative spheres
and λ = 0 for improper relative spheres).

(ii) Ŝ = λ · h on M , λ ∈ C∞(M).
(iii) m∇(h)T̂ = ÷C on M .

(iv) ∇(h)Ĉ is totally symmetric on M .

(v) ∇Ĉ is totally symmetric on M .
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(vi) Ric = Ric∗ on M .

(b) Ŝ = λh implies λ = const = H.
(c) If x is a relative sphere, then for each p ∈ M :

(i) p is an umbilic;

(ii)
∑

i<j(ki − kj)2 = m‖Hh− Ŝ‖2 = m[‖Ŝ‖2 −mH2] = 0. ¤

Theorem 2.2. Let x be regular with relative normalization {Y, y}. Then x is
a proper relative sphere with center x0 if and only if ρ(x0) = 〈Y, x0−x〉 = const 6= 0.

¤
Theorem 2.3. A regular hypersurface x with relative normalization {Y, y} is

an improper relative sphere if and only if S = 0. ¤

We refer to [10], [11], [32], [68]–[72], [74]–[76], [95], [111], [122], [134], for
many examples including classifications of subclasses of affine spheres.

The complete classification is yet unknown. One tries to classify subclasses of
affine spheres. In the following theorem is given a result related to this topic.

Theorem 2.4. A locally strongly convex affine hypersphere with constant
equiaffine sectional curvature is either a quadric or equiaffinely equivalent to the
hypersurface x1x2 . . . xm+1 = 1, where xi : A → R is a coordinate function. ¤

We refer to [133] for the proof.
In case of an indefinite metric there are classifications for m = 2 in [75], [120],

and for m = 3 in [76]. Other classifications results one can find in [31], [117],
[134], etc.

There is a serious of results about compact affine spheres where many of the
results are related to the spectral geometry of the equiaffine Laplacian (see [114],
[115], [119] etc). We refer also Section V of this paper.

In [122] was studied existence and uniqueness problem about 2-spheres. Cer-
tain types of PDE’s play an important role for the local and global classification of
affine spheres in the equiaffine theory. One of the first PDE which was used in the
theory of affine spheres is an expression for the Laplacian of the Pick invariant (see
[10, §76]). Simon [121] extends this PDE to non-degenerate hypersurface. Monge-
Ampère equations are used to investigate improper affine spheres and hyperbolic
affine spheres.

A characterization of quadrics and improper affine spheres in terms of symme-
try properties of ∇Ĉ and ∇2Ĉ is given in [22].

I.3. Weyl geometry

As we know the metric h of a semi-Riemannian manifold (M, h) is parallel
or covariantly constant with respect to the corresponding Levi-Civita connection.
The main purpose of this section is to study a torsion free connection w∇ satisfying
the recurrence condition for the metric. This connection has been introduced by
H. Weyl.

Weyl [138] attempted a unification of gravitation and electromagnetism in a
model of space-time geometry combining both structures. His particular approach
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failed for physical reasons but his model is still studied in mathematics (see, for ex-
ample, [42], [49]–[53], [106], [130],) and in mathematical physics (see, for example
[54]).

We begin our discussion by introducing some notational conventions. Let
(M, h) be a semi-Riemannian manifold of dimension m ≥ 2. Fix a torsion free
connection w∇, called the Weyl connection, on the tangent bundle of M . We begin
the definition of a Weyl structure by assuming that there exists a one-form θ̂ = θ̂h

so that

(3.1) w∇h = 2θ̂h ⊗ h.

Let C = C{W} be the conformal class defined by h (for more details, see
Section II, 4), and let T = T{W} be the corresponding collection of one-forms θ̂h.
Here and in the following we identify metrics in C which merely differ by a constant
positive factor. So there is a bijective correspondence between elements of C and
of T. We will call the triple W = (w∇, C, T) a Weyl structure on M and we will
call (M, W) a Weyl manifold.

The compatibility condition described in equation (3.1) is invariant under so-
called gauge transformations

(3.2) h → βh := βh and θ̂ → β θ̂ := θ̂ + d
1
2
(lnβ),

for β ∈ C∞+ (M). We note that C∞+ (M) acts transitively on C and on T.
It is well known that a Weyl structure W can be generated from a given

pair {h, θ̂} (where h is a semi-Riemannian metric and where θ̂ is a 1-form) in the
following way. Let, u, v, . . . be vector fields on M and let h∇ = ∇(h) be the
Levi-Civita connection of h. Let θ be the vector field dual to the 1-form θ̂, i.e.,
h(w, θ) = θ̂(w). We define α(u, v, w) := h((w∇u−h∇u)v, w). Since w∇ and h∇ are
torsion free, α(u, v, w) = α(v, u, w). Since h∇h = 0 and since w∇ satisfies equation
(3.1), we have

(3.3)

α(u, v, w) + α(u,w, v) + 2θ̂(u)h(v, w) = 0,

α(u, v, w) = −θ̂(u)h(v, w)− θ̂(v)h(u, w) + θ̂(w)h(u, v),
w∇uv =h ∇uv − θ̂(u)v − θ̂(v)u + h(u, v)θ.

Conversely, if equations (3.3) are satisfied, then w∇ = w∇(h, θ̂) is a torsion free
connection and equation (3.1) is satisfied. One can generates a Weyl structure from
an arbitrary semi-Riemannian metric h and from an arbitrary 1-form θ̂ by using
equation (3.3) to define w∇ and using the action of C∞+ (M) defined in equation
(3.2) to generate the classes C and T; see [138] or [42] for further details.

We use the sign convention of [61] to define the curvature of w∇. Hence

wR(u, v) := w∇u
w∇v −w∇v

w∇u−w∇[u,v]
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is the curvature corresponding to Weyl connection w∇. For h ∈ C, Weyl introduced
the 2-form wF := dθ̂h as a gauge invariant of a given Weyl structure. He called it
the length curvature or distance curvature [138, p. 124]. We have that F and wR
are related by the equation

(3.4) h(z, wR(u, v)z) = wF (u, v)h(z, z).

Weyl defined the directional curvature wK by

(3.5) wK(u, v)w := wR(u, v)w − wF (u, v)w.

The curvature wR of w∇ and the Weyl directional curvature wK are also gauge in-
variants. Relations (3.4) and (3.5) imply the orthogonality relation h(wK(u, v)w,w)
= 0, for any h ∈ C and for any vector field w. Moreover wF and wK satisfy re-
spectively symmetry and skew-symmetry relations

h(wF (u, v)w, z) = h(wF (u, v)z, w),

h(wK(u, v)w, z) = −h(K(u, v)z, w).

As a local result the following is known: if the Weyl connection w∇ is metric,
then the length curvature vanishes identically. Conversely, if F = dθ̂h = 0, equation
(3.2) implies that the cohomology class [θ̂h(W)] ∈ H1(M) of the closed form θ̂h(W)
does not depend on the choice of a metric in W. Conversely, if wF = dθ̂h = 0
equation (3.2) implies that the cohomology class [θ̂h(W)] ∈ H1(M) of the closed
form θ̂h(W) is gauge invariant and does not depend on the choice of a metric in W.
The following is well known; see, for example, [52], [106], [130].

Proposition 3.1. The following assertions are equivalent:

(i) we have wF (W) = 0 and [θ̂h(W)] = 0 in H1(M);
(ii) there exists h ∈ C(W) such that w∇h = 0; i.e., w∇ is the Levi-Civita

connection of h. ¤

II. SOME TRANSFORMATIONS OF SMOOTH MANIFOLDS

II.1. Projective transformations

The main purpose of this section is to study projective transformations of a
smooth manifold (M,∇) endowed with a torsion free connection ∇. More details
one can find in [41], [64], [109], [112].

A map f : (M̃, ∇̃) → (M.∇) of manifolds with torsion free connections is called
projective if for each geodesic γ of ∇̃, f ◦ γ is a reparametrization of a geodesic of
∇, i.e., there exists a strictly increasing C∞ function h on some open interval such
that f ◦ γ ◦ h is a ∇-geodesic. Linear connections ∇̃ and ∇ on M are projectively
equivalent if the identity map of M is projective. A projective transformation of



96 Bokan

(M,∇) is a diffeomorphism which is projective. The transformation s is projective
on M , if the pull back s∗∇ of the connection is projectively related to ∇, i.e., if
there exists a global 1-form π = π(s) on M such that

(1.1) s∗∇uv = ∇uv + π(u)v + π(v)u,

for arbitrary smooth vector fields u, v ∈ X(M). Having (1.1) in mind, if s and t
are two projective transformations, we find π(st) = π(s) + ŝ · π(t), where ŝ is the
cotangent map, i.e. [ŝ · π]s(p) = ŝ · [π]p.

If a transformation s of M preserves geodesics and the affine character of
the parameter on each geodesic, then s is called an affine transformation of the
connection ∇ or simply of the manifold M , and we say that s leaves the connection
∇ invariant.

It is well-known that the Weyl projective curvature tensor has the form

(1.2)

P (R)(u, v)w = R(u, v)w +
1

m2 − 1
[mρ(u,w) + ρ(w, u)]v

− 1
m2 − 1

[mρ(v, w) + ρ(w, v)]u

+
1

m + 1
[ρ(u, v)− ρ(v, u)]w,

for any m > 2, and for m = 2 we have P (R)(u, v)w = 0, where u, v, w, · · · ∈ X(M)
(see for example [110], [112], [136]). P (R) is a tensor that is invariant with respect
to each projective transformation of M . P (R) characterizes a space of constant
sectional curvature in very nice way: P (R) = 0 if and only if Mm (m > 2) is space
of constant curvature (in that case R is the Riemannian curvature of Mm).

A manifold (M,∇) is said to be a projectively flat, if it can be related to a flat
space by a projective map. We know that the curvature tensor of a flat space is
equal to zero: R(u, v) = 0, and therefore the Ricci tensor ρ is equal to zero also.
Due to this fact from (1.2) we have the Weyl projective curvature tensor P (R) of
a flat space vanishes. Since the tensor P (R) is invariant with respect to projective
transformations, we have immediately P (R) of a projectively flat space vanishes.
The inverse theorem is valid also. Namely, if P (R) of a manifold (M,∇) vanishes
then (M,∇) is a projectively flat space.

One can use (2.2) in Section I to see (M,∇∗) is a projectively flat space.
Ishihara studied in [56] the groups of projective and affine transformations.

Among others he investigated the conditions that these groups coincide.

Theorem 1.1. If (M,∇) is a compact manifold with a torsion free connection
∇ and the Ricci tensor of ∇ vanishes identically in M , then the group of projective
transformations of M coincides with its subgroup of affine transformations. ¤

If M is also irreducible then Ishihara has proved that the group of projective
transformations of M coincides with its group of isometries.

Projective transformations are closely related with projective structures (see
[60]). A projective structure on a m-dimensional manifold is determined if there
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exists an atlas on M with transition functions being projective transformations [65].
Projective structure can be considered also in terms of subbundles of principal fiber
bundles of 2-frames which structure group satisfies certain conditions (see [60]).

We refer also [83] for the references related this topic.

II.2. Holomorphically projective transformations

Before studying holomorphically projective transformations we need to intro-
duce an almost complex structure.

An almost complex structure J on a smooth manifold M2m is an endomorphism
J such that J2 = −I on TM , where I is the identity. We say ∇ is a complex
symmetric connection if it satisfies (1.1) of Section I and the following relation

(2.1) ∇J = 0.

The curvature R of ∇ satisfies besides of (1.2)–(1.4) of Section I also the Kähler
identity R(u, v) ◦ J = J ◦R(u, v), for u, v ∈ X(M). A manifold M2m endowed with
an almost complex structure J is an almost complex manifold (M, J). An almost
complex manifold (M, J) may be endowed with a complex symmetric connection
∇ if the Nijenhuis tensor S of M , given by

S(u, v) = [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv]

vanishes (see [101], [105]). An almost complex manifold (M, J) such that S = 0
may be also endowed with a complex atlas, i.e., with complex coordinates. This
manifold is called a complex manifold.

Especially, a complex symmetric connection ∇ is a holomorphic affine con-
nection if R(u, v) = −R(Ju, Jv), or an affine Kähler connection when one has
R(u, v) = R(Ju, Jv).

Holomorphic affine connections naturally appeared in the context of semi-
Riemannian manifolds with the metric of signature (n, n) as well as in complex
affine and projective differential geometry (see [38], [59], [96], [98], [99] for more
details).

If a semi-Riemannian manifold (M, g) is endowed with an almost complex
structure J satisfying (2.1) with respect to the corresponding Levi-Civita connec-
tion then (M, g, J) is a Kähler manifold.

Let ΠH be a 2-dimensional subspace of tangent space TpM , spanned by vectors
(u, Ju), for any unit vector u ∈ TpM . The holomorphic sectional curvature of ΠH is
KHp(ΠH) = R(u, Ju, Ju, u)(p). M is a space of the constant holomorphic sectional
curvature if KHp(ΠH) is independent of the choice of ΠH in TpM , where p is an
arbitrary point of M and depends on p ∈ M . Its Riemann curvature tensor is given
by

R(u, v, z, w) = KHp(g(u, z)g(v, w)

− g(u,w)g(v, z) + g(u, Jz)g(v, Jw)

− g(u, Jw)g(v, Jz) + 2g(u, Jv)g(z, Jw)).
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Let (M2m, g, J) be a connected Kähler manifold (m ≥ 2). If KHp(ΠH) is
invariant by J , depends only on p, then M is a space of constant holomorphic
sectional curvature.

A Hermitian manifold is a complex manifold endowed with a Riemannian
metric g such that

(2.2) g(Ju, Jv) = g(u, v),

for all u, v ∈ X(M). More details about other types of almost complex manifolds
endowed with a metric g satisfying (2.2) one can find in [46].

A curve γ is the holomorphically planar curve if its tangent vector field T
belongs to the plane spanned by the vectors T and JT under parallel displacement
with respect to a complex symmetric connection ∇ along the curve γ; i.e., if T
satisfies the relation ∇T T = ρ(t)T +σ(t)JT, where ρ(t) and σ(t) are some functions
of a real parameter t.

A diffeomorphism f : (M̃, ∇̃) → (M,∇) of manifolds with complex symmetric
connections is called holomorphically projective if the image of any holomorphically
planar curve of M̃ is also holomorphically planar curve of M . More details about
these diffeomorphisms and curves one can find in [83].

Let (M2m,∇, J) be a complex manifold, where ∇ is the corresponding com-
plex symmetric connection. Tashiro [129] has studied some transformations of
(M2m,∇, J). The transformation s is holomorphically projective on (M2m,∇, J) if
it preserves the system of holomorphically planar curves, i.e., if the pull back s∗∇
of the complex symmetric connection ∇ is holomorphically projective related to ∇,
i.e., if there exists a global 1-form π = π(s) on M such that

s∗∇uv = ∇uv + π(u)v + π(v)u− π(Ju)Jv − π(Jv)Ju,

for arbitrary smooth vector fields u, v. He has proved that the holomorphically
projective curvature tensor

HP (R)(u, v)w = R(u, v), w + P (v, w)u− P (u,w)v − P (u, v)w + P (v, u)w

− P (v, Jw)Ju + P (u, Jw)Jv + P (u, Jv)Jw − P (v, Ju)Jw,

where

P (u, v) = − 1
2(m + 1)

[
ρ(u, v)+

1
2(m− 1)

(ρ(u, v)+ρ(v, u)−ρ(Ju, Jv)−ρ(Jv, Ju))
]
,

is invariant with respect to each holomorphically projective transformation of ∇.
This tensor plays a similar role in studying of a manifold endowed with a complex
symmetric connection as the Weyl projective curvature tensor in studying of mani-
folds with a torsion free connection. So, HP (R) of a holomorphically projective flat
space vanishes. A complex manifold (M2m, J,∇) is said to be a holomorphically
projective flat, if it can be related to a flat space by a holomorphically projective
map. HP (R) characterizes a space of constant holomorphical sectional curvature
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as follows: HP (R) = 0 if and only if M2m is a space of constant holomorphic
sectional curvature. Ishihara in [55] has found the conditions that the group of
holomorphically projective transformations coincides with its subgroup of affine
transformations. More precisely, he proved the following theorem.

Theorem 2.1. If a complex manifold M of complex dimension m > 1 is
complete with respect to a complex symmetric connection ∇ and the Ricci ten-
sor of M vanishes identically in M , then the group of holomorphically projective
transformations of M coincides with its subgroup of affine transformations. ¤

Moreover, if M is a compact Kähler manifold then Ishihara has proved that
the identity component of its group of holomorphically projective transformations
for the Levi-Civita connection coincides with the identity component of its group
of isometries.

II.3. C-holomorphically projective transformations

As we have seen in II.2 a C∞ differentiable manifold M2m is said to have
an almost complex structure if there exists on TM a field J of endomorphisms
of tangent spaces such that J2 = −I, I being the identity transformation. Every
manifold carrying an almost complex structure must have an even dimension.

The notion of almost contact structure generalizes these structures in the case
of the odd dimension. A (2m + 1)-dimensional C∞ manifold M is said to have an
almost contact structure (ϕ, ξ, η) if it admits a field of endomorphisms ϕ, a vector
field ξ and a 1-form η such that ϕ2 = −I +η⊗ξ, 4η(ξ) = 1. The following relations
also hold ϕ(ξ) = 0, η ◦ ϕ = 0, rank ϕ = 2m. We remark that any odd dimensional
orientable compact manifold M has Euler characteristic equal to zero, and there
exists at least one non singular vector field ξ on M . On every almost contact
manifold M there exists a Riemannian metric g satisfying

g(x, ξ) = η(x), g(ϕx, ϕy) = g(x, y)− η(x)η(y),

g is said to be compatible with the structure (ϕ, ξ, η) and (ϕ, ξ, η, g) is called an
almost contact metric structure. We refer to [7] for more details.

Example 3.1. Let M2m+1 be a C∞ orientable hypersurface of an almost
Hermitian manifold M̄2m+2 with almost complex structure J and Hermitian metric
G.

Then there exists a vector field C along M2m+1 transverse to M2m+1 such
that JC is tangent to M2m+1 (otherwise an almost complex structure on M2m+1

would exist, which is impossible). Thus, we can find a vector field ξ on M2m+1 such
that C = Jξ is transverse to M2m+1. The relation Ju = ϕu + η(u)C defines the
tensor field ϕ of type (1,1) and the 1-form η on M2m+1 satisfying ϕ2 = −I + η⊗ ξ
and η ◦ ϕ = 0. Since ϕξ = 0 and η(ξ) = 1 also hold, (ϕ, ξ, η) defines an almost
contact structure on M2m+1. Moreover, the metric g induced by G is the metric
compatible with the almost contact structure (ϕ, ξ, η). ¤

Example 3.2. Let M2m be an almost complex manifold with almost complex
structure J . We consider the manifold M2m+1 = M2m × R, though a similar



100 Bokan

construction can be made for the product M2m × S1. Denote a vector field on
M2m+1 by (u, f d

dt ) where u is tangent to M2m, t is the coordinate of R and f is a
C∞ function on M2m+1. Then η = dt, ξ = (0, d

dt ) and ϕ(u, f d
dt ) = (Ju, 0) define

an almost contact structure (ϕ, ξ, η) on M2m+1. ¤
An odd-dimensional parallelizable manifold, especially any odd-dimensional

Lie group, carries an almost contact structure.
As is well known, if (M2m+1, ϕ, ξ, η) is an almost contact manifold, the linear

map J defined on the product M2m+1 × R by the relation

J
(
u, f

d

dt

)
=

(
ϕu− fξ, η(u)

d

dt

)
,

where f is a C∞ real-valued function on M2m+1×R, is an almost complex structure
on M2m+1 ×R; thus we have J2 = −I. In particular, if J is integrable, the almost
contact structure (ϕ, ξ, η) is normal.

The almost contact structure (ϕ, ξ, η) is said to be normal if and only if the
tensors N, N (1), N (2), N (3) vanish on M2m+1, where

(3.6)
N(u, v) = [ϕ,ϕ](u, v) + dη(u, v)ξ, N (2)(u, v) = (Lvϕ)(u),

N (1)(u, v) = (Lϕuη)(v)− (Lϕvη)(u), N (3)(u) = (Lξη)(u),

L denotes the Lie differentiation and [ϕ,ϕ] is the Nijenhuis torsion tensor of ϕ.
The normal almost contact structure generalizes, in the odd dimension, the

complex structure.
If an almost complex structure J is integrable then [J, J ] = 0. As a consequence

there exists a torsion free adopted connection ∇̄, i.e., satisfying ∇̄J = 0. Thus it
appears of interest to construct some connection ∇ on the almost contact manifold
(M2m+1, ϕ, ξ, η) which gives rise to an adapted connection ∇̄ on M2m+1 × R.

Definition 3.3. [79] A linear connection ∇ on an almost contact manifold
(M2m+1, ϕ, ξ, η) is called an adopted connection if it satisfies the following system

(3.1)

(∇uϕ)v = η(v)hu +
1
4
(dη(ϕu, hv)− dη(u, ϕv))ξ,

(∇uη)(v) =
1
4
(dη(u, v) + dη(ϕu, ϕv)),

∇uξ = ϕu− 1
4
dη(u, ξ)ξ,

where h = I − ξ ⊗ η. ¤
We refer to [80] for more details related to the results which follow. Notice that

the system (3.1) is not the only solution to our initial problem ∇J = 0. One can
check that the general family of the adopted connections ∇ on the almost contact
manifold (M2m+1, ϕ, ξ, η) is given by the equation

∇uv = ∇̆uv + P (u, v),
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where ∇̆ is an arbitrary initial connection and P is given by

P (u, v) =
1
2
(∇̆uϕ)ϕv − (∇̆uξ)η(v) +

1
2
(∇̆uϕ)(v)ξ +

1
2
η(∇̆uξ)η(v)ξ

+ η(v)ϕu− 1
4
{dη(u, v) + dη(ϕu, ϕv)}ξ + (Φ−Θ)Q(u, v).

Here Q denotes an arbitrary tensor field of type (1.2) and Φ = 1
2 (I⊗I−ϕ⊗ϕ),

Θ = 1
2 (I ⊗ I − h⊗ h).
We remark the curvature tensor as well as the Ricci tensor of an adopted

connection on a normal almost contact manifold (M2m+1, ϕ, ξ, η) have some inter-
esting properties which allow us to consider some transformations, in the spirit of
the sections II.2.

Definition 3.4. Let ∇ be a torsion free connection adopted to the normal
almost contact structure (ϕ, ξ, η) on M2m+1. A curve γ is C-flat (almost-contact
flat) with respect to ∇ if ∇T T = ρ(t)T + σ(t)ϕT, where T denotes the vector
tangent to γ and ρ, σ are smooth real valued functions along γ. ¤

We remark that in this case the subspace spanned by T and ϕT is not trans-
ported by parallelism along γ. Namely, ∇T (ϕT ) does not belong to the space
spanned by T and ϕT . However, one can show that the dimension of this subspace
is constant along γ and this dimension can be 2,1 or 0.

Remark. We introduced in [25] the concept of C-flat paths, obtaining a C-
projective tensor in normal almost contact manifolds, endowed, with a torsion free
connection whose fundamental tensors ϕ, ξ and η are parallel.

The torsion free linear connections ∇, ∇̃ adapted to the normal almost contact
structure (ϕ, ξ, η) are C-projectively related if they have the same C-flat curve.
One can show that two torsion free connections ∇, ∇̃ adopted to the normal almost
contact structure (ϕ, ξ, η) are C-projectively related if and only if

∇̃uv = ∇uv + P (u, v),

where P (u, v) = α(u)hv + α(v)hu− β(u)ϕv − β(v)ϕu, with α an arbitrary 1-form
satisfying α(ξ) = 0, β(u) = α(ϕu). Consequently, since ∇, ∇̃ fulfill the same
conditions (3.1), their difference tensor P satisfies the same relations as in the case
where ϕ, ξ, η are parallel.

Matzeu has proved in [80] that the tensor field W (R) given by

W (R)(u, v)z = hR(u, v)z + {L(u, v)− L(v, u)}hz + {L(u, v) + η(u)η(z)}hv

− {L(v, z) + η(v)η(z)}hu− {L(u, ϕv)− L(v, ϕu) + dη(u, v)}ϕz

−
{

L(u, ϕz) +
1
2
dη(u, z)

}
ϕv +

{
L(v, ϕz) +

1
2
dη(v, z)

}
ϕu,(3.2)

with

(3.3) L(u, v) =
1

2(m + 1)

{
ρ(R)(u, hv) +

1
2(m− 1)

[ρ(R)(hu, v)

+ ρ(R)(hv, u)− ρ(R)(ϕu, ϕv)− ρ(R)(ϕv, ϕu)]
}

+ kdη(u, ϕv), k = const,



102 Bokan

is C-projectively invariant. Moreover, if k in (3.3) is given by k =
1

2m + 2
, all traces

of W (R)

trace(W (R)(u, v)), trace(u → W (R)(u, v)z)

trace(ϕW (R)(u, v)), trace(u → ϕW (R)(u, v)z)

vanish.
We say torsion free connection adopted to the normal almost contact structure

(ϕ, ξ, η) is C-projectively flat if its C-projective curvature tensor W (R) vanishes.
We refer [80] for the proof of the following theorem.

Theorem 3.5. For m > 2 the torsion free adopted connection ∇ is C-
projectively flat if and only if it can be transformed locally by a C-projective
transformation into a torsion free adopted connection ∇̃ whose curvature tensor R̃
satisfies the condition

hR̃(u, v)z = {−η(u)hv + η(v)hu}η(z) + dη(u, v)ϕz +
1
2
dη(u, z)ϕv − 1

2
dη(v, z)ϕu.¤

The case m = 1 has been studied by Oproiu in [103]. It is also interesting that
there does not exist a flat adopted connection from a C-projective transformation.
But, in the framework of ∇ with parallelizable (ϕ, ξ, η) it exists.

A special class of normal almost contact metric spaces (M2m+1, ϕ, ξ, η, g) is
Sasakian one satisfying the condition η ∧ dηm 6= 0 (dηm is m-th exterior power).
The Levi-Civita connection ∇ of g for Sasakian manifold is an adopted one. A
Sasakian manifold is C-projectively flat if and only if it has constant ϕ-sectional
curvature.

II.4. Conformal transformations

Let (M, g) be an m-dimensional Riemannian manifold. Locally the metric is
given by ds2 = gijdxidxj , where the gij are the components of g with respect to the
natural frames of a local coordinate system (xi). A metric g∗ on M is said to be
conformally related to g if it is proportional to g, that is, if there is a function β > 0
on M such that g∗ = β2g. We denote by C a conformal class of Riemannian metrics
on a smooth manifold M , of dimension m ≥ 2. By a conformal transformation of M
is meant a differentiable homeomorphism f of M onto itself with the property that
f∗(ds2) = β2ds2, where f∗ is the induced map in the bundle of frames and β is a
positive function on M . The set of conformal transformations of M forms a group.
Moreover, it can be shown that it is a Lie transformation group. A diffeomorphism
f of M onto itself is called an isometry if it preserves the metric tensor.

Under a conformal transformation of metric, the curvature tensor R(u, v)w
will be transformed into

R∗(u, v)w = R(u, v)w − σ(w, u)v + σ(w, v)u− g(w, u)v + g(w, v)u,
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where σ is the tensor of type (0,2) with components σjk = βj;k−βjβk+ 1
2gbcβbβcgjk,

and µ the corresponding type (1,1) tensor with components

µi
l = σklg

ki,
(
βj =

∂ log β

∂uj

)
.

Let m > 2. The tensor

C(u, v)w = R(u, v)w − 1
m− 2

(ρ(w, u)v − ρ(w, v)u + g(w, u)S(v)− g(w, v)S(u))

+
τ

(m− 1)(m− 2)
(g(w, u)v − g(w, v)u),

where S is the Ricci endomorphism g(Su, v) = ρ(u, v), is invariant under a confor-
mal transformation of a metric, i.e. C∗(u, v)w = C(u, v)w. This tensor is called
the Weyl conformal curvature tensor. The case m = 3 is interesting. Indeed, by
choosing an orthogonal coordinate system (gij = 0, i 6= j) at a point, it is readily
shown that the Weyl conformal curvature tensor vanishes.

Consider a Riemannian manifold (M, g) and let g∗ be a conformally related
locally flat metric. Under these circumstances M is said to be locally conformally
flat. Let

C(u, v, w) =
1

m− 2
((∇wρ)(u, v)− (∇vρ)(w, v))

− 1
2(m− 1)(m− 2)

(g(u, v)∇wτ − g(u,w)∇vτ).

One can prove the following theorem

Theorem 4.1. A necessary and sufficient condition that a Riemannian mani-
fold of dimension m > 3 be a conformally flat is that its Weyl conformal curvature
tensor vanish. For m = 3, it is necessary and sufficient that the tensor C(u, v, w)
vanishes, i.e. C(u, v, w) = 0. ¤

There exist numerous examples of conformally flat spaces. For example, a
Riemannian manifold of constant curvature is conformally flat, provided m ≥ 3.

Any two 2-dimensional Riemannian manifolds are conformally related, as the
quadratic form ds2 for m = 2 is reducible to the form λ[(du1)2+(du2)2] (in infinitely
many ways).

For more details one can use [45], [64], [140] etc.

II.5. Codazzi geometry

Codazzi structure is constructed from a conformal and a projective structure
using the Codazzi equations. A torsion free connection ∗∇ and a semi-Riemannian
metric h are said to satisfy the Codazzi equation or to be Codazzi compatible if

(5.1) (∗∇uh)(v, w) = (∗∇vh)(u,w).
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A projective class P of torsion free connections and a conformal class C of semi-
Riemannian metrics are said to be Codazzi compatible if there exists ∗∇ ∈ P and
h ∈ C which are Codazzi compatible. We extend the action of the gauge group to
define ∗∇ → ∗

β∇ where ∗β∇ is defined by taking π = d ln β in (1.1):

(5.2) ∗
β∇uv = ∗∇u v + d ln β(u)v + d ln β(v)u.

One can check easily the Codazzi equations are preserved by gauge equivalence.
A Codazzi structure K on M is a pair (C, P) where the conformal class of semi-
Riemannian metrics C and the projective class P are Codazzi compatible. A Co-
dazzi manifold (M, K) is a manifold endowed with the Codazzi structure.

Suppose now that (h, ∗∇) are Codazzi compatible. Let C := ∗∇−∇(h) be a
(1,2) tensor and let Č be the associated cubic form. Since ∗∇ and ∇(h) are torsion
free, C is a symmetric (1,2) tensor and Č(u, v, w) = Č(v, u, w). The relation (5.1)
and this symmetry implies Č(u, v, w) = Č(w, v, u) and consequently Č is totally
symmetric.

Assuming that h is a semi-Riemannian metric and Č is a totally symmetric
cubic form one can construct a conjugate triple (∗∇, h,∇), i.e. a triple (∗∇, h,∇)
satisfying

(5.3) uh(v, w) = h(∇uv, w) + h(v,∗∇uw).

Therefore, let ∗∇ := ∇(h) + C, where C is the associated symmetric (1,2) tensor
field. Since Č is symmetric, ∗∇ is torsion free and the Codazzi equation (5.1) is
satisfied. If we put ∇ := ∇(h) − C one can check the triple (∗∇, h,∇) satisfies
(5.3), i.e., it is a conjugate triple.

If W is a Weyl structure one can define an associated Codazzi structure K(W).
We may recover also the Weyl structure from the associated Codazzi structure. We
refer to [20] for more details.

III. DECOMPOSITIONS OF CURVATURE TENSORS
UNDER THE ACTION OF SOME CLASSICAL GROUPS

AND THEIR APPLICATIONS

The main purpose of this section is to consider a curvature for a torsion free
connection from the algebraic point of view and to see why it does provide insight in
some problems of differential geometry, topology etc. It is possible also to study the
various curvatures which appear in differential geometry in different context (see
[73]). Let us mention that it is possible in this spirit to study some classification of
almost Hermitian manifolds [48], Riemannian homogeneous structure [132] etc. Of
course all these decompositions are, in principle, consequences of general theorems
of groups representations (see [135]).

More precisely, the proofs of theorems are based on the following facts. Let
G be a Lie group, V a real vector space and V ∗ its dual space. When ξ is a G-
concomitant between two spaces, G acting on these spaces then the image for ξ
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of an invariant subspace is also invariant. Further, the image is irreducible when
the first space is irreducible. Also an invariant subspace of ⊗rV ∗ is irreducible
for the action of some group if and only if the space of its quadratic invariants is
1-dimensional.

III.1. Some historical remarks

The development of the theory of the decomposition was initiated by Singer
and Thorpe [125]. Let (V, g) be an m-dimensional real vector space with positive
definite inner product and denote by Rb(V ) the vector space of all symmetric
linear transformations of the space of 2-vectors of V . All tensors having the same
symmetries as the Riemannian curvature tensor including the first Bianchi identity
belong also to Rb(V ). Singer and Thorpe gave a geometrically useful description of
the splitting of Rb(V ) under the action of O(n) into four components. One of the
projections gives the Weyl conformal tensor. Their considerations are as follows.

Let a tensor R of type (1,3) over V be a bilinear mapping

R : V × V → Hom(V, V ) : (x, y) 7→ R(x, y).

We use the notation R(x, y, z, w) = g(R(x, y)z, w). Let Rb(V ) and R(V ) be
the subspaces of ⊗4V ∗ consisting of all tensors having the same symmetries as
the curvature tensor, the first for metric connections, the second for Levi-Civita
connections. It means, R ∈ Rb(V ) if it yields
(a) R(x, y) = −R(y, x)
(b) R(x, y) is a skew-symmetric endomorphism of V , i.e.,

R(x, y, z, w) + R(x, y, w, z) = 0

and R ∈ R(V ) if R satisfies (a), (b) and the first Bianchi identity
(c) σR(x, y)z = 0, where σ denotes the cyclic sum over x, y and z.

The Ricci tensor ρ(R) of type (0,2) associated with R is symmetric bilinear
function on V × V defined by ρ(R)(x, y) = trace (z ∈ V 7→ R(z, x)y ∈ V ). Then
the Ricci tensor Q = Q(R) of type (1,1) is given by ρ(R)(x, y) = g(Qx, y) and the
trace of Q is called the scalar curvature τ = τ(R) of R.

Further, let α be the standard representation of the orthogonal group O(n) in
V . Then there is a natural induced representation α̃ of O(n) in Rb(V ) given by

α̃(a)(R)(x, y, z, w) = R(α(a−1)x, α(a−1)y, α(a−1)z, α(a−1)w).

for all x, y, z, w ∈ V , R ∈ Rb(V ) and a ∈ O(n).

Theorem 1.1. Rb(V ) = R1 ⊕R2 ⊕R3 ⊕R4, R(V ) = R2 ⊕R3 ⊕R4.
(i) R ∈ R1 iff the sectional curvature is zero.
(ii) R ∈ R1 ⊕R2 iff the sectional curvature of R is constant.
(iii) R ∈ R1 ⊕R3 iff the Ricci tensor of R is zero.
(iv) R ∈ R1⊕R2⊕R3 iff the Ricci tensor of R is a scalar multiple of the identity.
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(v) R ∈ R1 ⊕R3 ⊕R4 iff the scalar curvature of R is zero. ¤

Furthermore, the action of O(n) in Rb(V ) is irreducible on each Ri, i =
1, 2, 3, 4. Since a curvature tensor R, corresponding to the Levi Civita connec-
tion ∇ of a Riemannian manifold M satisfies the first Bianchi identity, we have
R ∈ R⊥1 = R2 ⊕ R3 ⊕ R4. Statement (iv) of Theorem 1.1 implies a very nice
characterization of an Einstein space as follows: a Riemannian manifold M has
curvature tensor in E = R2 ⊕ R3 at each point if and only if M is an Einstein
space. The R3-component of a curvature tensor of M is its Weyl conformal curva-
ture tensor.

To study the action of SO(n), especially for dim V = 4, Singer and Thorpe have
used the star operator ∗. They studied also in [125] the problem of a normal form
for the curvature tensor of a 4-dimensional oriented Einstein manifold by analyzing
the critical point behavior of the sectional curvature function σ. In this case, the
function σ on each 2-plane is equal to its value on the orthogonal complement. Using
this characterization, they have shown that the curvature function σ is completely
determined by its critical point behaviour and they have shown what the locus of
critical points looks like.

The relationship between the Euler-Poincaré characteristic, the arithmetic
genus α(M) and the decomposition of the space of curvature operators at a point
of 4-dimensional compact Riemannian manifold has been studied by Gray [47].
Applications of the decomposition of R(V ) involving orthogonal Radon transfor-
mations were given by Strichartz [127]. An algebraic interpretation of the Weyl
conformal curvature tensor due to Singer and Thorpe makes possible the develop-
ment of the theory of submanifolds in conformal differential geometry more up to
date (see [67]).

The complete decomposition of Rk(V ) ⊂ R(V ), dim V = 2m, satisfying the
Kähler identity, under the action of U(V ) was treated by Sitaramaya [126] (see also
[57], [88]). Tricerri and Vanhecke [131] have found the complete decomposition
of R(V ) under the action of U(V ). They have obtained new conformal invariants
among components of the complete decomposition of R(V ) on almost Hermitian
manifolds.

We refer to [24] for more details.

III.2. The action of general linear group

The main purpose of this section is to interpret the Weyl projective curvature
tensor as one of the projection operators in the decomposition of tensors having all
the symmetries of curvature tensors for torsion free connections under the action
of the general linear group GL(V ). We refer to [127] for some details.

In this section V denotes m-dimensional (m ≥ 2) real vector space, V ∗ its dual
space, and V1

3 the space of (1,3) tensors T (u, v, z, w) with u, v, z ∈ V and w ∈ V ∗.
The group GL(V ) acts naturally on V1

3 by

π(g)T (u, v, z, w) = T (g−1u, g−1v, g−1z, (g−1)T w).
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Let π(m) be representations of GL(V ), where m = (m1, . . . , mm) is the highest
weight of the representation, with m1 ≥ m2 ≥ · · · ≥ mm, all mi integers, and
for simplicity of notation we delete strings of zeroes (so that π(2,−1) stands for
π(2, 0, . . . , 0,−1). Let R(V ) be a subspace of tensors with symmetries as the cur-
vature of a torsion free connection. So for R ∈ R(V ) we have

R(u, v, z, w) = −R(v, u, z, w),(2.1)

R(u, v, z, w) + R(v, z, u, w) + R(z, u, v, w) = 0,(2.2)

where R(u, v, z, w) = 〈R(u, v)z, w〉. We denote the Ricci contraction by ρ(R) =
con(1, 4)R. It maps R(V ) onto V2. The space V2 splits as π(2) ⊕ π(1, 1), the
symmetric and skew-symmetric tensors. Consequently, we have

R(V ) = π(2)⊕ π(1, 1)⊕ ker(ρ).

One can check easily that ker(ρ) is also irreducible. We introduce two special
products ¯1 and ¯2 to describe the corresponding projection operators. For Q ∈ V1

1

and S ∈ V2 we have

Q¯ S(u, v, z, w) = Q(v, w)(S(u, z) + S(z, u)−Q(u,w)(S(v, z) + S(z, v))

Q¯2 S(u, v, z, w) = Q(v, w)(S(u, z)− S(z, u))−Q(u,w)(S(v, z)− S(z, v))

+ 2Q(z, w)(S(u, v)− S(v, u)).

By direct computation one can check Q ¯1 S, Q ¯2 S ∈ R(V ) with ρ(Q ¯1 S)
symmetric and ρ (Q¯2 S) skew-symmetric. Henceforth we have

Theorem 2.1. Under the action of GL(V ), the space R(V ) decomposes as

π(2)⊕ π(1, 1)⊕ π(2, 1,−1),

(when m = 2 the third component is deleted) with corresponding projections

P(2)R =
1

2(m− 1)
δ ¯1 ρ(R), P(1,1)R =

1
2(m + 1)

δ ¯2 ρ(R),

P(2,1,−1)R = R− 1
2(m− 1)

δ ¯1 ρ(R)− 1
2(m + 1)

δ ¯2 ρ(R),

where δ is Kronecker symbol.

The π(2, 1,−1) component is the kernel of ρ, while

ρ(P(z)R)(u, v) =
1
2
(ρ(R)(u, v) + ρ(R)(v, u))

ρ(P(1,1)R)(u, v) =
1
2
(ρ(R)(v, u)− ρ(T )(u, v)).
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The corresponding dimensions and highest weight vectors are as follows:

Components Dimension Highest Weight Vector

π(2) 1
2 m(m + 1)

∑
k(e1 ∧ ek)⊗ e1 ⊗ e∗k

π(1, 1) 1
2m(m− 1)

∑
k(2(e1 ∧ e2)⊗ ek ⊗ e∗k + (e1 ∧ ek)⊗ e2 ⊗ e∗k+

(ek ∧ e2)⊗ e1 ⊗ e∗k)

π(2, 1,−1) 1
3 m2(m2 − 4) (e1 ∧ e2)⊗ e1 ⊗ e∗m

R(V ) 1
2 m2(m2 − 1)

If V = TpM then one can compare (1.2) in Section II with P(2,,1,−1)R to see
that they coincide and consequently the Weyl projective curvature tensor is really
an irreducible component in the proceeding decomposition. One can see easily that
the Weyl projective curvature tensor fulfills the algebraic conditions (2.2), (2.3) and
ρ(P (R)) = 0.

Strichartz in [127] has studied the complete decomposition of the vector space
of the first covariant derivative of curvature tensors for torsion free connections
under the action of GL(V ). Using these decompositions he has proved that a pro-
jectively flat affine manifold with skew-symmetric Ricci curvature must be locally
affine symmetric.

III.3. The action of the group SO(m)

Studying projective transformations of a Riemannian manifold (M, g) we nat-
urally combine two structures: the positive definite metric g and torsion free con-
nections ∇, which can be, for example, projectively equivalent to the Levi-Civita
connection. Therefore we are interested now in the complete decomposition of
R(V ) from the section III.2 under the action of SO(m). We refer to [23] for more
details.

Let V be an m-dimensional real vector space endowed with positive definite
inner product 〈·, ·〉. A tensor R of type (1,3) over V is a bilinear mapping

R : V × V → Hom(V, V ) : (x, y) 7→ R(x, y).

R is called a curvature tensor over V if it has the following properties for all
x, y, z, w ∈ V :
(i) R(x, y) = −R(y, x),
(ii) the first Bianchi identity, i.e. σR(x, y)z = 0, where σ denotes the cyclic sum

with respect to x, y and z.
We also use the notation R(x, y, z, w) = g(R(x, y)z, w). We denote by R(V )

the vector space of all curvature tensors over V . In addition to the Ricci tensor
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ρ(R) for a curvature tensor R ∈ R(V ) it makes sense to define the second trace
ρ̂(R) by

ρ̂(R)(x, y) =
m∑

i=1

R(ei, x, ei, y), x, y ∈ V,

where {ei} is an arbitrary orthonormal basis of V . The traces ρ(R) and ρ̂(R) are
orthogonal. Moreover, they are neither symmetric nor skew-symmetric in general
case. The scalar curvature τ = τ(R) of R is defined as the trace of Q = Q(R),
given by ρ(R)(x, y) = 〈Qx, y〉. Now one can define all the components of the
decomposition of R(V ). We put

Ra(V ) = {R ∈ R(V ) | ρ(R) and ρ̂(R) are skew-symmetric},
Rs(V ) = {R ∈ R(V ) | ρ(R) and ρ̂(R) are symmetric},
Rp(V ) = {R ∈ R(V ) | ρ(r) is zero},
R0(V ) = Ra(V ) ∩Rs(V ) = {R ∈ R(V ) | ρ(R) and ρ̂(R) are zero},

W4 = orthogonal complement of R0(V ) in Rp(V ) ∩Ra(V ),

W5 = orthogonal complement of R0(V ) in Rp(V ) ∩Rs(V ),

W3 = orthogonal complement of Rp(V ) ∩Ra(v) in Ra(V ),

W1 ⊕W2 = orthogonal complement of Rp(V ) ∩Rs(V ) in Rs(V ),

W2 = {R ∈ W1 ⊕W2 | τ(R) is zero},
W1 = orthogonal complement of W2 in W1 ⊕W2,

W6 = {R ∈ R0(V ) | R(x, y, z, w) = −R(x, y, w, z); x, y, z, w ∈ V },
W7 = {R ∈ R0(V ) | R(x, y, z, w) = R(x, y, w, z); x, y, z, w ∈ V },
W8 = orthogonal complement of W6 ⊕W7 in R0(V ).

So we can state the decomposition theorem for R(V ).

Theorem 3.1. We have

(3.1) R(V ) = W1 ⊕ · · · ⊕W8,

where Wi are orthogonal invariant subspaces under the action of SO(V ) (m ≥ 2).
Moreover,
(i) The decomposition (3.1) is irreducible for m ≥ 4.
(ii) For m = 4 we have W6 = W+ ⊕W− where W± = {R ∈ W6 | R∗ = ±R},

and the other factors are irreducible.
(iii) For m = 3 we have W6 = W8 = {0} and the other factors are irreducible.
(iv) For m = 2 we have W4 = W5 = W6 = W7 = W8 = {0} and the other factors
are irreducible. ¤

We compare the decompositions in subsections III.2 and III.3 to see

π(2) = W1 ⊕W2, π(1, 1) = W3, π(2, 1,−1) = Rp(V ).
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If we suppose x, y, z, . . . ∈ X(M), the algebra of C∞ vector fields on (M, g) and R
and ρ the curvature and the Ricci tensor respectively then the projective curvature
tensor P (R) associated with R is the orthogonal projection of R on Rp(X(M)).
We recall that the Weyl conformal curvature tensor belongs to the R3-component
from Singer-Thorpe decomposition, which is irreducible under the action of the
group O(V ). The projective component Rp(V ) is not irreducible under the action
of O(V ) or SO(V ).

The complete decomposition of R(V ) given by Theorem 3.1. is very useful in
the study of the group of projective transformations on some manifold Mm and its
subgroups. We recall that an equiaffine transformation is an affine volume preserv-
ing transformation of a manifold (M,∇). On a manifold (Mm,∇) there exists an
equiaffine transformation if and only if the Ricci tensor ρ(R), corresponding to any
symmetric connection ∇, is symmetric. Let us mention some of these results.

Theorem 3.2. Let (M,∇, g) be a Riemannian manifold endowed with a sym-
metric connection ∇ such that W3 = 0. Then the group of affine transformations
coincides with its subgroup of equiaffine transformations. ¤

Theorem 3.3. If a Riemannian manifold (Mm, g) is compact and W1 = W2 =
W3 = 0 then the group P(M) of all projective transformations coincides with its
subgroup A(M) of all affine transformations. ¤

Some of components in (3.1) have other interesting geometric properties. So,
Nikčević has proved in [91] that R0(X(M)) is conformally invariant.

Let us point out that for some torsion free connections the corresponding
curvature tensor has some of its projections on Wi (i = 1, . . . , 8) equal to zero.
Namely, if ∇ is the Levi-Civita connection then we have

P (R) ∈ W5 ⊕W6, for m > 4,

P (R) ∈ W5 ⊕W+ ⊕W−, for m = 4,

P (R) ∈ W5, for m = 3.

We refer to [28] for more details.
The decomposition (3.1) is not unique. The second one is given in [23] which

is closely related with the decomposition of curvature tensors for Weyl connections
under the action of the conformal group CO(m) [53].

III.4. The action of the group U(m)

The main purpose of this section is to study algebraic properties of a holo-
morphically projective curvature tensor on Hermitian manifold. Therefore we start
with some considerations in a vector space endowed with some structures. We refer
to [81] for some details.

Let V be a 2m-dimensional real vector space endowed with the complex struc-
ture J , compatible with the positive definite inner product g, i.e.

J2 = −I, g(Jx, Jy) = g(x, y),
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for all x, y ∈ V and where I denotes the identity transformation of V . A tensor R
of type (1,3) over V is bilinear mapping

R : V × V → Hom(V, V ) : (x, y) 7→ R(x, y).

R is called a curvature tensor over V if it has the following properties for all
x, y, z, w ∈ V :

(i) R(x, y) = −R(y, x),
(ii) σR(x, y)z = 0 (the first Bianchi identity)
(iii) JR(x, y) = R(x, y)J (the Kähler identity).

We use also the notation R(x, y, z, w) = g(R(x, y)z, w).
Let R(V ) denotes the vector space of all curvature tensors over V . This space

has a natural inner product defined with that on V :

〈R, R̃〉 =
2m∑

i,j,k=1

g(R(ei, ej)ek, R̃(ei.ej)ek),

where R, R̃ ∈ R(V ) and {ei} is an orthonormal basis of V . A natural induced
representation of U(m) in R(V ) is the same as of O(m) in the previous sections.

To describe a complete decomposition of R(V ) under the action of U(m) we
need some basic notations. There are independent traces as follows:

ρ(R)(x, y) =
2m∑

i=1

R(ei, x, y, ei), τ(R) =
2m∑

i,j=1

R(ei, ej , ej , ei),

ρ̃(R)(x, y) =
2m∑

i=1

R(ei, x, ei, y), τ∗(R) =
2m∑

i,j=1

R(ei, ej , Jej , ei),

where {e1, . . . , em, Je1, . . . , Jem} is an arbitrary basis of V . The trace ρ = ρ(R), as
we have seen in the Section I, is called the Ricci tensor, and τ = τ(R) is the scalar
curvature of R.

In general, the traces ρ and ρ̂ are neither symmetric nor skew-symmetric and
always we have ρ̂(Jx, Jy) = ρ̂(x, y); ρ and ρ̂ belong to V2 = V ∗ ⊗ V ∗, where V ∗ is
the dual space of V . Let 〈·, ·〉 be the inner product on V2(V ) given by:

〈α, β〉 =
2n∑

i,j=1

α(ei, ej)β(ei, ej), forα, β ∈ V2(V ).

Now we introduce some tensors, and operators that we need to define components
in the complete decomposition of R(V ).

π1(x, y)z : = g(x, z)y − g(y, z)x + g(Jx, z)Jy − g(Jy, z)Jx + 2g(Jx, y)Jz,

π2(x, y)z : = g(Jx, z)y − g(Jy, z)x + 2g(Jx, y)z − g(x, z)Jy + g(y, z)Jx.
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Let φ be the operator defined by

φ(R)(x, y, z, w) := R(Jx, Jy, z, w), R ∈ R(V ),

and R+ and R− be the vector subspaces of R(V ) given by

R+ : {R ∈ R(V ) | φ(R) = R}, R− := {R ∈ R(V ) | φ(R) = −R}.

The vector space R(V ) consists some subspaces which one can define in terms
of traces symmetry properties. So we have

W0 : = {R ∈ R(V ) | τ(R) = τ∗(R) = 0},
RH : = {R ∈ R(V ) | ρ(R) = 0},
R0 : = {R ∈ R(V ) | ρ(R) = ρ̂(R) = 0},
Rs

ρ : = {R ∈ R(V ) | ρ(R) 6= 0 and ρ(R)(x, y) = ρ(R)(y, x)},
Ra

ρ : = {R ∈ R(V ) | ρ(R) 6= 0 and ρ(R)(x, y) = −ρ(R)(y, x)},
Rs

ρ̂ : = {R ∈ R(V ) | ρ̂(R)(x, y) = ρ̂(R)(y, x)},
Ra

ρ̂ : = {R ∈ R(V ) | ρ̂(R)(x, y) = −ρ̂(y, x)}.

Now we can define all components in the compete decomposition of R(V ).

Definition 4.1. We put

W9 : = {R ∈ R+ ∩R0 | R(x, y, z, w) = −R(x, y, w, z)},
W10 : = {R ∈ R+ ∩R0 | R(x, y, z, w) = R(x, y, w, z)},
W11 : = orthogonal complement of W9 ⊕W10 in R+ ∩R0,

W1 : = R+ ∩Rs
ρ, W5 := L(π1);

W3 : = R+ ∩Ra
ρ, W6 := L(π2) :

W7 : = orthogonal complement of R0 in RH ∩Rs
ρ̂,

W8 : = orthogonal complement of R0 in RH ∩Ra
ρ̂,

W12 : = R− ∩RH ,

W2 : = R− ∩Rs
ρ = orthogonal complement of W1 in Rs

ρ,

W4 : = R− ∩Ra
ρ = orthogonal complement of W3 in Ra

ρ.

Thus we obtain

Theorem 4.2. If dim V = 2m, m ≥ 3, then R(V ) = W1 ⊕ · · · ⊕ W12; if
m = 2,W11 = W12 = {0} and R(V ) = W1 ⊕ · · · ⊕ W10. These subspaces are
mutually orthogonal and invariant under the action of U(m). ¤

Recalling that an invariant subspace is irreducible if it does not contain a
nontrivial invariant subspace, we have also
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Theorem 4.3. The decomposition of R(V ) given above is irreducible under
the action of U(m). ¤

The projections of R ∈ R(V ) on Wi (i = 1, 2, . . . , 12) and the dimensions of
Wi have been done also in [81].

Let M be a 2m-dimensional C∞ manifold with an almost complex structure
J and a Hermitian inner product g. Then, for all u, v ∈ X(M), the Lie algebra of
C∞ vector fields on M , we have J2u = −u, g(Ju, Jv) = g(u, v). It is known (see
[90], [139]) that the existence on M of an arbitrary torsion free connection ∇ s.t.
∇J = 0 is equivalent, to the vanishing of the Nijenhuis tensor defined by

NJ(u, v) = [Ju, Jv]− J [Ju, v]− J [u, Jv]− [u, v], u; v ∈ X(M).

For every p ∈ M , the tangent space TpM has a Hermitian structure given by (J|p,
g|p). Now let R(V ) be the vector bundle on M with fibre R(TpM); the decomposi-
tion of R(TpM) gives rise to a decomposition of R(M) into orthogonal subbundles
with respect to the fibre metric introduced by g on R(M). We shall still denote the
components of this decomposition by Wi, i = 1, 2, . . . , 12. If ∇ is an arbitrary linear
torsion free connection, the corresponding curvature tensor is a section of the vector
bundle R(M) and it is not difficult to check that its HP (R)-component in each
point p ∈ M gives the well-known holomorphical projective curvature tensor associ-
ated with ∇ (see [27], [139]); as a consequence, every subspace Wi, i = 7, 8, . . . , 12
of the decomposition is holomorphically projective invariant.

If some of the Wi vanish then the corresponding manifold has special groups
of transformations and we have the following theorems (we refer [92]) for more
details).

Theorem 4.4. Let (M, g) be a Hermitian manifold with a torsion free con-
nection. If the homogeneous holonomy group of M has no invariant hyperplane,
or if the restricted homogeneous holonomy group has no invariant covariant vector
and W1 = · · · = W6 = 0 then HP(M) = A(M). ¤

We denote here by HP(M) the group of all holomorphically projective trans-
formations of M and denote by A(M) the group of all affine transformations of
M .

Theorem 4.5. If a Hermitian manifold (M, g) endowed with a torsion free
connection∇ is complete with respect to∇ and W1 = · · · = W6 = 0 thenHP(M) =
A(M). ¤

III.5. The action of the group U(m)× 1

In Section II.3 we have introduced C-projective transformations on a normal
almost contact manifold and have found C-projective curvature tensor - invariant
with respect to these transformations. The key point was the existence of a tor-
sion free adopted connection ∇. The main purpose of this section is to study the
curvature tensor R of ∇, especially its C-projective curvature tensor W (R) from
algebraic point of view.
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We use (3.2) of Section II to check

(5.1) W (R)(u, v)ϕ = ϕW (R)(u, v), W (R)(u, v)ξ = 0.

Now starting from (5.1) we shall define certain special curvature tensor fields on
M2m+1, which will become useful for our discussion.

Definition 5.1. Let (M2m+1, ϕ, ξ, η) be a normal almost contact manifold.
We define the difference curvature tensor field of the torsion free adopted connection
∇ as K(R) = hR− hR̃, where R is the curvature tensor field of ∇ and hR̃ is given
by
(5.2)

hR̃(u, v)z = {−η(u)hv + η(v)hu}η(z) + dη(u, v)ϕz +
1
2
dη(u, z)ϕv − 1

2
dη(v, z)ϕu.¤

Notice that hR̃ can be considered as the component on the vector subbundle
H = Kerη of TM2m+1 of the curvature tensor field R̃ of a torsion free adopted
connection ∇̃ on M2m+1. Taking into account the properties of R and ρ(R) we find

K(R)(u, v)z = −K(R)(v, u)z,(5.3)

σ
uvz

K(R)(u, v)z = 0 (the first Bianchi identity),(5.4)

K(R)(u, v)ϕz = ϕK(R)(u, v)z, K(R)(u, v)ξ = 0,(5.5)

ρ(K(R))(u, v) = tr(z → K(R)(z, u)v) = ρ(R)(u, v)− ρ(R̃)(u, v),

ρ(K(R))(u, ξ) = 0.
(5.6)

III.5.1. The vector space K(V ). Let V be an (2m + 1)-dimensional real
vector space endowed with an almost contact structure (ϕ, ξ, η) and a compatible
inner product g and let V ∗ be the dual of V . Then, the (1,1) tensor ϕ, the vector
ξ ∈ V and the one-form η ∈ V ∗ satisfy the relations:

ϕ2 = −IV + ξ ⊗ η, η(ξ) = 1,

ϕξ = 0, η ◦ ϕ = 0

g(ϕx, ϕy) = g(x, y)− η(x)η(y), x, y ∈ V.

A tensor R of type (1,3) over V is a bilinear mapping R : V ×V → Hom(V, V ),
(x, y) 7→ R(x, y). We say that R is a curvature tensor over V if

R(x, y) = −R(y, x), and σ
x,y,z

R(x, y)z = 0

We denote by R(V ) the vector space of all curvature tensors over V . One can
consider the following inner product, induced by g:

〈R, R̄〉 =
2m+1∑

1

g(R(ei, ej)ek, R̄(ei, ej)ek), R, R̄ ∈ R(V ),
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where {ei}, i = 1, . . . , 2m+1 is an arbitrary orthonormal basis of V . Furthermore,
the representation α of U(m) × 1 in V induces a representation α̃ of U(m) × 1 in
R(V ) in the following way

α̃ : U(m)× 1 → gl(R(V )), r 7→ α̃(r), r ∈ U(m)× 1,

where α̃(r)(R)(x, y, z, w) = R(α(r−1)x, α(r−1)y, α(r−1)z, α(r−1)w), for all x, y, z,
w ∈ V . It follows that the mapping R 7→ α̃(r)R is an isometry for R(V ); therefore
〈α̃(r)R, α̃(r)R̄〉 = 〈R, R̄〉, which implies that the orthogonal complement of an
invariant subspace of R(V ) is also invariant and the representation α̃ is completely
reducible.

Taking into account the properties (5.3)–(5.6) of a “difference curvature tensor
field” we shall denote by K the curvature tensors over V such that

(5.7) K(x, y)ϕz = ϕK(x, y)z and K(x, y)ξ = 0,

for all x, y, z ∈ V , or equivalently, if K(x, y, z, w) = g(K(x, y)z, w), we have

(5.8)
K(x, y, z, w) = K(x, y, ϕz, ϕw),

K(x, y, ξ, w) = 0, K(x, y, z, ξ) = η(K(x, y)z) = 0.

Let K(V ) be the vector subspace of R(V ), whose elements are all K, satisfying
(5.7). This subspace of R(V ) is invariant for α̃.

K(V ) may be splited into direct sum of two subspaces K1 and K2, defined as
follows

K1 = {K ∈ K(V ) | K(x, ξ, z, w) = 0},
K2 = {K ∈ K(V ) | K(x, y, z, w) = η(x)K(ξ, y, z, w) + η(y)K(x, ξ, z, w)}.

It means

(5.9) K(V ) = K1 ⊕K2,

and moreover K1 and K2 are mutually orthogonal and invariant with respect to the
action of U(m)× 1.

Now let H = Ker η; H is a 2m-dimensional Hermitian vector space with
(ϕ|H , g|H) as Hermitian structure and U(m) × 1|H ' U(m); further, the vector
space K1 is naturally isomorphic to the vector space K(H) given by the curvature
tensors over H which satisfy the Kähler identity. This isomorphism allows us to
use the results of Section III.4. concerning the decomposition of K(H) with respect
to the action of U(m) to obtain the decomposition of K1.

To simplify our notation, in the following, we shall denote for every x ∈ V the
component on H by ẋ; that is, ẋ = hx, where h = IV − η ⊗ ξ is the projection on
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H. First, we notice that for any K ∈ K(V ) there are only two possible independent
traces associated with K, analogously to these ones in III.4. i.e.

ρ(K)(y, z) =
2m+1∑

i=1

K(ei, y, z, ei),

ρ̂(K)(y, z) =
∑

i

K(ei, y, ei, z), y, z ∈ V,

where {ei}, i = 1, 2, . . . , 2m + 1 is an arbitrary orthonormal basis of V . Further,
we have two scalar curvatures

τ(K) =
∑

i,j

K(ei, ej , ej , ei),

τ̄(K) =
∑

i,j

K(ei, ej , ϕej , ei).

One can check easily

ρ(K)(y, z) = ρ(K)(ẏ, ż) + η(y)ρ(K)(ξ, ż),

ρ̂(K)(ϕy, ϕz) = ρ̂(K)(y, z).

In general, ρ(K) and ρ̂(K) are neither symmetric nor antisymmetric; moreover
ρ(K)(ξ, z) = 0 for every K ∈ K1, while for K ∈ K2, ρ(K) reduces to η(y)ρ(K)(ξ, ż)
and ρ̂(K) = 0.

We omit all details related to the decomposition of K1, because of the previous
comments, and pay the attention only on the decomposition of K2 ⊂ K. First of
all, we note that K(ξ, y, z, w) = K(ξ, z, y, w), for every K ∈ K2 Next, we introduce
the endomorphism δ on K2 defined by

δ(K)(x, y, z, w) = − 1
2m + 2

{η(x)[g(ϕy, ϕw)ρ(K)(ξ, ż) + g(ϕz, ϕw)ρ(K)(ξ, ẏ)

− g(ϕy, w)ρ(K)(ξ, ϕz)− g(ϕz, w)ρ(K)(ξ, ϕy)]

− η(y)[g(ϕx, ϕw)ρ(K)(ξ, ż) + g(ϕz, ϕw)ρ(K)(ξ, ẋ)

− g(ϕx,w)ρ(K)(ξ, ϕz)− g(ϕz, w)ρ(K)(ξ, ϕx)]},

for any x, y, z, w ∈ V . If we take into account ρ(δ(K)) = ρ(K) we can check easily
δ(K) ∈ K2, δ2 = δ and δ commutes with the action of U(m)× 1.

Now we define the following subspaces of K2

W13 = Ker δ = {K ∈ K2 | ρ(K) = 0}, W14 = Im δ,

and state the following theorem.
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Theorem 5.2. If dim V = 2m + 1, m ≥ 2, then K2 = W13 ⊕ W14. The
subspaces W13 and W14 are mutually orthogonal and invariant under the action of
U(m)× 1. In particular, for m = 1, W13 = {0} and K2 = W14. ¤

We use now (5.8), the isomorphism of K1 and R(H), Theorem 4.2. and The-
orem 5.2. to obtain the following decomposition theorem for K(V ):

Theorem 5.3. If dim V = 2m + 1, m ≥ 3, then

(5.10) K(V ) = W1 ⊕ · · · ⊕W14

and the subspaces Wi are U(m) × 1 - invariant and mutually orthogonal. For
m = 2, W11 = W12 = {0} and when m = 1, the decomposition reduces to K(V ) =
W5 ⊕W6 ⊕W14. ¤

III.5.2. Some geometric results. Let (M2m+1, ϕ, ξ, η, g) be a normal almost
contact metric manifold. For every p ∈ M2m+1, the vector space TpM

2m+1 has an
induced almost contact structure (ϕp, ηp, ξp) with compatible inner product gp. If
we denote by K(M2m+1) the vector bundle on M2m+1 with fibre K(TpM

2m+1), the
decomposition (5.10) gives rise to a decomposition of K(M2m+1) into orthogonal
subbundles with respect to the fibre metric induced by g on K(M2m+1). We use
the same notation Wi, i = 1, . . . , 14 for the components of this decomposition.

Let ∇ be a torsion free adapted connection on M2m+1 with curvature tensor
R. Then, the difference tensor field K(R) is a section of K(M2m+1). Let Qi

be the projections of K on the subspaces Wi (i = 1, . . . , 14). Recalling that
K(R) = hR− hR̃, where hR̃ is given by (5.2) with W (R̃) = 0, we can state

Proposition 5.4. Let (M2m+1, ϕ, ξ, η, g) be a normal almost contact metric
manifold. If ∇ is an adapted torsion free connection on M2m+1 with curvature
tensor R, we have

W (R) =
13∑

i=7

Qi(K(R)), K(R) = hR− hR̃

and the spaces Wi, i = 7, 8, . . . , 13 of the decomposition (5.9) are C-projectively
invariant. ¤

If (M2m+1, ϕ, ξ, η, g) is a Sasakian manifold, then dη(u, v) = 2g(ϕu, v), where
u, v, z, · · · ∈ X(M2m+1).

As we know, the Levi-Civita connection ∇ on M2m+1 is one of adapted con-
nections, and the system (3.1) in Section II is reduced to the simpler one

(∇uϕ)v = η(v)u− g(u, v)ξ, (∇uxη)(v) = g(ϕu, v),
∇uξ = ϕu, ∇ug = 0

(∇udη)(v, z) = 2η(v)g(u, z)− 2η(z)g(u, v) = 2η(R(v, z)u).

Among Sasakian manifolds one can characterizes these ones of constant ϕ-sectional
curvature using the previous results. More precisely, we have
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Proposition 5.5. Let (M2m+1, ϕ, ξ, η, g), m ≥ 3 be a Sasakian manifold.
Then K(R) = Q5(K(R)) ∈ W5 if and only if it has constant ϕ-sectional curvature
c 6= −3 (M2m+1 6= R2m+1(−3)). ¤

Corollary 5.6. Let (M2m+1, ϕ, ξ, η, g), m ≥ 3 be a Sasakian manifold 6=
R2m+1(−3). Then K(R) = Q5(K(R)) ∈ W5, if and only if it is C-projectively flat.

¤
We refer to [78] for characterization of other classes of Sasakian manifolds

using the decomposition of curvature tensors and the corresponding examples (see
also [8], [9], [66] etc.).

A normal almost contact metric manifold (M2m+1, ϕ, ξ, η, g) has a cosymplectic
structure if the fundamental 2-form Ω defined by Ω(u, v) = 2g(ϕu, v) and the 1-form
η are closed on M2m+1. Examples of cosymplectic manifolds are provided by the
products M̄ × S1, where M̄ is any Kähler manifold. For a cosymplectic manifold
Matzeu [78] has proved
(i) K(R) = R = Q5(K(R)) ∈ W5 if and only if it has constant ϕ-sectional curva-

ture c = τ(K)
m(m+1) ,

(ii) K(R) = R = Q5(K(R))+Q9(K(R)) if and only if it is η-Einstein, i.e. ρ(K) =
a(g − η ⊗ η), where a = τ(K)

2m is constant.
We refer also to [78] for the studying of real hypersurfaces on complex space

forms in this spirit.

IV. THE CHARACTERISTIC CLASSES

IV.1. Some basis notions and definitions

Let GL(m,R) be the full general linear group and gl(m,R) be the Lie algebra of
GL(m,R); this is the Lie algebra of real m×m matrices. A map Q : gl(m,R) → C
is invariant if Q(gAg−1) = Q(A) for all A ∈ gl(m,R) and for all g ∈ GL(m,R). Let
Q be the ring of invariant polynomials. One can decompose Q = ⊕Qν as a graded
ring, where Qν is the subspace of invariant polynomials which are homogeneous of
degree ν. Let

Ch(A) :=
∑

ν

Chν for Chν(A) := Tr
{(√−1

2π
A

)ν}
,

C(A) := det
(
I +

√−1
2π

A
)

= 1 + C1(A) + · · ·+ Cm(A)

define the Chern character and total Chern polynomial; Chν ∈ Qν and Cν ∈ Qν .
The Chern characters and the Chern polynomials generate the characteristic ring:
Q = C[C1, . . . , Cm] and Q = C[Ch1, . . . ,Chm]. If Q ∈ Qν we polarize Q to define a
multilinear form Q(A1, . . . , Aν) so that Q(A) = Q(A, . . . , A) and Q(A1, . . . , Aν) =
Q(gA1g

−1, . . . , gAνg−1).
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We shall restrict our attention to the tangent bundle TM henceforth; let ∇ be
an arbitrary connection on TM and R the corresponding curvature tensor. If {ei}
is a local frame for TM , then R(ei, ej)ek = Rijk

lel. We shall let

R = Rl
k :=

1
2
Rijk

lei ∧ ej

be the associated 2-form valued endomorphism. As we are not assuming that a
metric is given, we do not restrict to orthonormal frames. Thus the structure group
is the full general linear group GL(m,R) and not the orthogonal group O(m).

If Q ∈ Qν , we define

Q(∇) := Q(R, . . . ,R) ∈ C∞(Λ2νM)

by substitution; the value is independent of the frame chosen and associates a closed
differential form of degree 2ν to any connection ∇ on TM . The corresponding
cohomology class [Q(∇)] ∈ H2ν(M ;C) is independent of the connection ∇ chosen;
as we shall see later. These are the characteristic forms and classes. For more
details one can use also [35], [40], [61].

From now on we deal with complex manifolds.
We express now C1, C2

1 and C2 by using a suitable chosen frame of TM . Let
E1, JE1, . . . , Em, JEm, be a real base for tangent space TpM and w1, w̄1, . . . , wm,
w̄m the corresponding dual base for T ∗p M . Then we will write Em+s = JEs = Es̄

and similarly wm+r = w̄r, 1 ≤ s, r ≤ m. We suppose summation for every pair of
repeated indexes. We use also the following ranges for indexes i, j, s, r = 1, 2, . . . ,m,
and I, J, S, R = 1, 2, . . . , 2m. We denote JES = ES̄ and R(u, v)ES = RuvS

RER.
For u = EI ; v = EJ we simplify notation and write REIEJS

R = RIJS
R.

It will be useful for our consideration of Chern classes to introduce the following
traces:

µ(u, v) =
1
2

tr{w 7→ R(u, v)w} = Ruvi
i,(1.1)

µ̄(u, v) =
1
2
{w 7→ J ◦R(u, Jv)w} = RuJvī

i,(1.2)

for u, v ∈ TpM ⊗C and w ∈ TpM . After some computations one can express these
traces in terms of the Ricci tensor as follows

2µ̄(u, v) = ρ(u, v) + ρ(Jv, Ju),

2µ(u, v) = ρ(v, u)− ρ(u, v).

We put RJ
I (u, v) = RuvI

J , i.e., RI
J = RRSI

JωR ∧ ωS and

Θj
i (u, v) = −(Rj

i (u, v)−√−1Rj
ī
(u, v)),

for u, v ∈ TpM ⊗ C. Then (Θj
i ) is a matrix of complex 2-forms and

det
(
δj
i −

1
2π
√−1

Θj
i

)
= 1 + C1 + · · ·+ Cm
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is a globally defined closed form which represents the total Chern class of M via de
Rham’s theorem (see [61, vol. II, p. 307]). Chern classes determined by C1, C2 are
denoted by c1, c2 respectively. In particular, the Chern forms C1, C2, and C2

1 are
given by

C1 =
√−1
2π

∑
Θi

i =
√−1
2π

(Ri
i −

√−1Ri
ī),

C2
1 = − 1

4π2

∑

1≤i<j≤m

Θi
i ∧Θj

j

= − 1
4π2

∑

1≤i<j≤m

{(Ri
i ∧Rj

j −Ri
ī ∧Rj

j̄
)−√−1(Ri

i ∧Rj
j̄
+Ri

ī ∧Rj
j)},

C2 = − 1
4π2

∑

1≤i<j≤m

{Θi
i ∧Θj

j −Θj
i ∧Θi

j}

= − 1
4π2

∑

1≤i<j≤m

{(Ri
i ∧Rj

j −Ri
ī ∧Rj

j̄
−Rj

i ∧Ri
j +Rj

ī
∧Ri

j̄)

−√−1(Ri
i ∧Rj

j̄
+Ri

ī ∧Rj
j −Rj

i ∧Ri
j̄ −Ri

ī ∧Ri
j)}.

We consider Chern numbers γ2(M) =
∫

M
C2 and γ2

1(M) =
∫

M
C2

1 for a com-
pact complex surface M and similarly γm

1 =
∫

M
Cm

1 for an arbitrary complex
compact m-dimensional manifold.

Let A ∈ σ(m) be a skew-symmetric matrix. Then C2ν+1(A) = 0 and we de-
fine Pν(A) = (−1)νC2ν(A); P =

∑
ν Pν(A) is the total Pontrjagin polynomial. The

{Pν} for 2ν ≤ m generate the characteristic ring of the orthogonal group O(m). We
can always choose a Riemannian metric g for M and use the associated Levi-Civita
connection ∇(g) to compute the characteristic classes of the tangent bundle. This
reduces the structure group to O(m) and shows that only the Pontrjagin classes are
relevant in the study of the primary characteristic classes of TM . From the point of
view of cohomology, the connection plays an unessential role; however, in many geo-
metrical applications one must work with differential forms not cohomology classes.
We illustrate it by the following facts. Let dx be the volume element of compact
4-dimensional orientable M , where M is without boundary. The Chern-Gauss-
Bonnet formula [36] and the Atiyah-Patodi-Singer formula [1] yields formulas for
the Euler-Poincaré characteristic χ(M) and the signature Sign(M):

χ(M) =
∫

M

E4(∇(g))dx, Sign(M) =
1
3

∫

M

P1(∇(g)),

where
E4(∇(g)) =

1
32π2

(RijjiRkllk − 4RijjkRillk + RijklRijkl),

P1(∇(g)) = − 1
32π2

Rijk1k2Rjik3k4e
k1 ∧ ek2 ∧ ek3 ∧ ek4 .

The interior integrands E4 and P1 are primary characteristic forms, not characteris-
tic classes. But to express χ(M) and Sign(M) of compact 4-dimensional orientable
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manifold M with smooth boundary ∂M 6= φ we need also secondary characteristic
forms.

We introduce firstly relative secondary characteristic forms and later absolute
ones.

The space of all connections is an affine space; the space of torsion free connec-
tions is an affine subspace. If ∇i are connections on TM , let ∇t := t∇1 +(1− t)∇0.
Let Ψ = ∇1 − ∇0; Ψ is an invariantly defined 1-form valued endomorphism. Let
R(t) be the associated curvature. Let Q ∈ Qν . Let

(1.3)
TQ(∇1,∇0) : = ν

∫ 1

0

Q(Ψ, R(t), . . . , R(t))dt;

dTQ(∇1,∇0) = Q(∇1)−Q(∇0).

This shows that [Q(∇1)] = [Q(∇0)] in de Rham cohomology. Note that we have:

TQ(∇0,∇1) + TQ(∇1,∇2) = TQ(∇0,∇2) + exact form.

Suppose now that M is a 4-dimensional Riemannian manifold with smooth non-
empty boundary ∂M . Let g be a Riemannian metric on M . Let indices i, j, k
and l range from 1 to 4 and index a local orthonormal frame {ei} for the tangent
bundle. At a point of the boundary of M , we assume e4 is the inward unit normal
and let indices a, b, c range from 1 to 3. Let Lab := (∇(g)e2eb, e4) be the second
fundamental form on ∂M . We choose x = (y, t) to be local coordinates for M near
∂M so the curves t 7→ (y, t) are unit speed geodesics perpendicular to ∂M . This
identifies a neighborhood of ∂M in M with a collared neighborhood K = ∂M×(0, ε)
for some ε > 0. Let h0 be the associated product metric. We denote by ∇1,∇0 the
Levi-Civita connections of h, h0 respectively. The TP1(∇1,∇0) is given by

TP1(∇1,∇0) = TP1(L,∇t) := − 1
16π2

LabR4acde
b ∧ ec ∧ ed,

and consequently

Sign(M) =
1
3

∫

M

P1(∇(h))− 1
3

∫

∂M

TP1(L,∇(h))− η(∂M),

where the invariant η(∂M) is intrinsic to ∂M and we will not be concerned with
this invariant here; see [40] for details.

To define absolute secondary characteristic forms we need the principal frame
bundle π : P → M for TM . A local section e to P is a frame e = {ei} for TM . Let
g be the natural inclusion of GL(m,R) in the Lie algebra gl(m,R) of m ×m real
matrices. The Maurer-Cartan form dgg−1 on GL(m,R) is a gl(m,R) valued 1-form
on GL(m,R) which is invariant under right multiplication. Let ∇ be a connection
on TM . Fix a local frame field e for TM ; this is often called a choice of gauge. We
denote by w the associated connection 1-form, ∇ei = wj

i ej . Let

Θ : = Θ(∇) := dgg−1 + gωg−1,

Ω : = Ω(∇) := g(dω − ω ∧ ω)g−1 = g(π∗R)g−1.
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These are Lie algebra valued forms on the principal bundle P which do not depend
on the local frame field chosen. If Q ∈ Qν , then we have Q(Ω) = π∗Q(∇). We set
Ω(t) = tdΘ− t2Θ ∧Θ = tΩ + (t− t2)Θ ∧Θ and define

(1.4) T Q(∇) := ν

∫ 1

0

Q(Θ, Ω(t), . . . , Ω(t))dt.

We refer to Chern and Simons [37, Propositions 3.2, 3.7 and 3.8] for the proof of:

Theorem 1.1. Let Q ∈ Q3 and Q̃ ∈ Qµ. (1) We have dT Q(∇) = π∗Q(∇).
(2) We have T (QQ̃)(∇) = T Q(∇)∧π∗Q̃(∇)+ exact = π∗Q(∇)∧T Q̃(∇)+ exact.
(3) Let ∇ρ be a smooth 1 parameter family of connections. Let A := ∂ρ∇ρ|ρ=0.

Then ∂ρT Q(∇ρ)|ρ=0 = νQ(A, Ω0, . . . ,Ω0) + exact. ¤

Suppose M is parallelizable. Let e be a global frame for the principal frame
bundle P. Let e∇e = 0 define the connection e∇. We use equations (1.3) and (1.4)
to see that

e∗T Q(∇) =
∫ 1

0

Q(we,Rt, . . . ,Rt) = TQ[∇,e∇),

where we = ∇e and Rt = tdwe − t2we ∧ we = tR+ (t− t2)we ∧ we.
We note that Rt is the curvature of the connection te∇ + (1 − t)∇. Fix

g ∈ GL(m,R). Since Q is GL invariant, we have e∗T Q(∇) = (ge)∗T Q(∇).
Let Q ∈ Qν . Suppose that Q(∇) = 0. Then e∗T Q(∇) is a closed form on M

of degree 2ν − 1 and [e∗T Q(∇)] in H2ν−1(M ; C) is independent of the homotopy
class of e. We say that Q is integral if Q is the image of an integral class in the
classifying space; see [37, §3] for details; the Pontrjagin polynomials are integral.

Theorem 1.2. Let Q ∈ Qν . Assume that M is parallelizable and Q(∇) = 0.
(1) If Q is integral, then [e∗T Q(∇)] is independent of e in H2ν−1(M ;C/Z).
(2) If ν is odd, then [e∗T Q(∇)] is independent of e in H2ν−1(M ;C). ¤

IV.2. Characteristic classes and symmetries of a curvature tensor

The main purpose of this section is to study topology of a manifold endowed
with a torsion free connection which curvature tensor has symmetries, invariant
under the action of some classical groups in the spirit of Section II.

The relations between topology and the existence of some flat connection have
been studied by Milnor [87], Auslander [2], Benzécri [5] etc.

The topological obstruction of the existence of a complex torsion free connec-
tion with skew-symmetric Ricci tensor has been studied in [12]. More precisely, we
proved if ∇ is a complex torsion free connection on a Riemann surface M and the
Ricci tensor ρ for ∇ is skew-symmetric then γ1(M) =

∫
M

C1 = 0.
Let us remark if M is a sphere S2 we have γ1(M) 6= 0. Therefore there

is no a complex torsion free connection ∇̃ with the skew-symmetric Ricci tensor
globally defined on S2. The local existence of this connection is proved by its
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construction. Namely, (S2, g) is the standard sphere with the standard embedding
into the Euclidean space R3 determined by

x = cos α sinβ, y = sin α sin β, z = cos β, 0 < α < 2π, 0 < β < π.

The Christoffel symbols for our complex connection are given by the following
formulas

Γ̃2
22 =

1− cos β

sin β
, Γ̃1

22 =
−1 + cos β

sin2 β
,

Γ̃1
12 = Γ̃1

21 =
1

sin β
, Γ̃2

11 = − sin β,

Γ̃2
12 = Γ̃2

21 = Γ̃1
11 = 1− cos β;

(see [12] for more details).
Having in mind the previously mentioned facts, torus T 2 is a good candidate to

permite a globally defined torsion free connection ∇̃ with the skew-symmetric Ricci
tensor. Really, let x1 = cos α, x2 = sin α, x3 = cos β, x4 = sin β, 0 ≤ α ≤ 2π,
0 ≤ β ≤ 2π, be the standard embedding of the torus into the Euclidean space
R4. Let Γ̃k

ij (i, j, k = 1, 2) be the Christoffel symbols for a complex torsion free
connection ∇̃. Then

Γ̃1
11 = Γ̃2

12 = Γ̃2
21 = −Γ̃1

22 = − cos α sin β,

Γ̃1
12 = Γ̃1

21 = Γ̃2
22 = −Γ̃2

11 = sin α cos β.

We point out these connections belong to the class of affine conformal invari-
ants, studied by Simon in [123].

The Chern characteristic classes of complex surfaces endowed with a holomor-
phic affine connection∇ have been studied in [14]. The following theorem considers
complex surfaces with all vanishing characteristic classes.

Theorem 2.1. Let M be a complex surface (dimM = 2) endowed with a
holomorphic affine connection ∇. Then its Chern characteristic classes C2 and
C2

1 vanish. Moreover, if M is a complex equiaffine surface (∇ permits a parallel
complex 2-form cw) then C1 also vanishes. ¤

One can find in [14] the examples of nonflat holomorphic affine connections
on the torus T 4 and the Euclidean space R4.

Let us assume for our complex torsion free connection ∇ to have a symmetric
curvature operator, i.e. R(x, y) satisfies the relation g(R(x, y)z, v) = g(R(x, y)v, z).
Then R satisfies also the following relations

R(Jx, Jy) = R(x, y), ρ(x, y) = −ρ(y, x), ρ(Jx, Jy) = ρ(x, y),

(see [93] for the proof). Now one can use the results from the section IV.1 to study
the Chern characteristic classes of a Hermite surface M endowed with a complex
torsion free connection ∇ with the symmetric curvature operator and conclude

[C1(M)] = 0, [C2
1 (M)] = 0, [C2(M)] = [γδ̃2] = [δ̂2],
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where
δ̃2 =

1
16π2

(2‖ρ‖2 − ‖R‖2)Φ2, δ̂2 =
1

16π2
(τ∗2 − ‖R‖2)Φ2,

‖R‖, ‖ρ‖ are the norms of the curvature and the Ricci tensor, i.e.

‖R‖2 =
∑

RPQIKRPQIK , ‖ρ‖2 =
∑

ρPQρPQ

and Φ =
∑

wi ∧ w̄i is the fundamental 2-form; assuming that (wi, w̄i) is the corre-
sponding dual base for (Ei, JEi). Moreover, we have also some geometrical conse-
quences. More precisely we have

Theorem 2.2. Suppose that a torsion free complex connection ∇ exists on a
compact Hermite surface M with τ∗ = 0. Then γ2(M) ≤ 0. The equality holds if
and only if ∇ is a flat connection. ¤

Corollary 2.3. Let (M, J) be a compact Hermite surface which admits a
Kähler-Einstein metric. Then every complex torsion free connection with τ∗ = 0
on M is flat. ¤

We refer to [16] for more details related to the symmetric curvature operators
and topology. One can find also some examples of complex torsion free connections
on reducible Hermite surface M with the generic R ∈ R(TpM) or with R belonging
to some vector subspaces of R(TpM), which are invariant or, irreducible under the
action of the unitary group U(m). Some of examples show that the compactness
of M is an essential assumption in Theorem 2.2 and Corollary 2.3.

IV.3. The relations between characteristic classes
and projective geometry

If we are interested in relations between topology and geometry of a smooth
manifold we must work with differential forms. The main purpose of this section is
to study invariance of characteristic forms with respect to some group of transfor-
mations. We are interested in also does the topology of a manifold M determine
the relations between the group of holomorphically projective transformations, the
group of projective transformations and the group of affine transformations on M .

First, we are interested in the invariance of characteristic forms. Conformally
equivalent metrics and projectively equivalent torsion free connections have the
same characteristic forms. More precisely, it yields

Theorem 3.1. Let Q ∈ Qν and let β ∈ C∞+ (M).
(1) Let ∇(h) be the Levi-Civita connection of a semi-Riemannian metric.
Then Q(∇(h)) = Q(∇β(h)), where β(h) = βh.

(2) Let ∇ and ∇̃ be two projectively equivalent torsion free connections.

Then Q(∇) = Q(∇̃). ¤
We refer [3], [15] for the proof of this theorem.
Matzeu [77] has studied the Chern algebra of the complex vector subbundle

H of TM defined as H = Kerη, where M is normal almost contact manifold.
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The corresponding conditions to have invariant Chern forms under C-projective
transformations have been found. We refer to Section III.5. for basic notations.
Suppose that ∇ is an adapted symmetric connection with symmetric Ricci tensor
field and D is its restriction to the vector subbundle H of TM defined as H = Kerη.
The D is the complex connection with the Ricci tensor ρ(K) symmetric too. We
refer to [77] for the proofs of the following theorems.

Theorem 3.2. If the connection D with symmetric Ricci tensor field has the
first Chern form proportional to dη, then all its Chern forms are C-projectively
invariant. ¤

Theorem 3.3. All the Chern forms of a C-projectively flat adopted connection
are C-projectively invariant. ¤

Theorem 3.4. The Chern classes of a C-projectively flat manifold are trivial.¤

One can use the traces µ, µ̄ given by (1.1), (1.2) and Chern numbers to prove
the following theorems related to the influence of topology of M in the group of
projective transformations and its subgroup of affine transformations. We refer to
[13] for details.

Theorem 3.5. Let M , dimCM = m, be a compact complex manifold with a
complex symmetric connection ∇. If
(i) ρ(u, v) = ρ(v, u), and ρ(Ju, Jv) = ρ(u, v),
(ii) µ̄ is a semi-definite bilinear form, of rank 0 or m, nonnegative if m is odd,
(iii) γm

1 (M) ≤ 0 then the group of all projective diffeomorphisms of the connection
∇ coincides with the group of all affine diffeomorphisms of the same connection. ¤

Theorem 3.6. Let M be a surface of general type with a complex symmetric
connection ∇. If
(i) ρ(v, u) = ρ(u, v), and ρ(Ju, Jv) = ρ(u, v),
(ii) µ̄ is a semi-definite bilinear form of rank 0 or m, nonnegative if m is odd,
(iii) γ2(M) ≤ 0, then the group of all projective diffeomorphisms of the connection
∇ coincides with the group of all affine diffeomorphisms of the same connection. ¤

Under the assumptions of Theorems 3.5. or 3.6. one can prove the group of
holomorphically projective transformations coincides with the group of affine trans-
formations of ∇.

In the general case the group of projective diffeomorphisms, the group of affine
diffeomorphisms and the isometry group do not coincide for a Riemannian manifold
(M, g). Nagano [89] has proved that if M is a complete Riemannian manifold with
parallel Ricci tensor then the largest connected group of projective transformations
of M coincides with the largest connected group of affine transformations of M
unless M is a space of positive constant sectional curvature. For Kähler manifolds
problems of this type have been studied in [13]. So we have

Theorem 3.7. Let M be a compact Kähler manifold of complex dimension
m > 1. If: (i) τ = constant, (ii) c1 = 0, then
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(a) the group of all projective diffeomorphisms of the Levi-Civita connection
coincides with the group of all affine diffeomorphisms of the same connection;

(b) the identity component of the group of all holomorphically projective dif-
feomorphisms of the Levi-Civita connection coincides with the identity component
of its group of isometries. ¤

Kobayashi and Ochiai have studied in [62] holomorphic normal projective con-
nections on complex manifolds and classified all compact complex analytic surfaces
which admit flat holomorphic projective connections. They have proved in [63]
a complex analytic surface of general type, which admits a holomorphic (normal)
projective connection, is covered by a unit ball B2 ⊂ C2 without ramification.

IV.4. Characteristic classes and affine differential geometry

Let us recall, if x is a nondegenerate embedding of a manifold M as a hyper-
surface in affine space, we let (x,X, y) be a relative normalization. This defines a
triple (∇, h,∇∗) on M , where h is a semi-Riemannian metric, and where ∇ and ∇∗
are torsion free connections on the tangent bundle TM . If Q is an invariant poly-
nomial, then Q(∇) = 0, Q(∇(h)) = 0 and Q(∇∗) = 0. Moreover, the secondary
characteristic forms of the connections ∇,∇∗,∇(h) vanish. To be more precise we
introduce a decomposable invariant polynomial Q by the relation Q =

∑
i Qi,1Qi,2,

where 0 6= Qi,j ∈ Qν(i,j) and ν(i, j) > 0. For the proofs of following lemma and
theorems we refer [15].

Lemma 4.1. Let (∇, h,∇∗) be the conjugate triple defined by a relative
normalization (x,X, y) of an affine embedding of an orientable manifold M . Let
Q ∈ Qν .
(1) If Q is decomposable, then [TxQ(∇)] = 0, [TxQ(∇(h))] = 0, and [TxQ(∇∗)] = 0

in H2ν−1(M,C).
(2) The classes [T Q(∇)], [TxQ(∇∗)], and [T Q(∇(h))] in H2ν−1(M,C) are affine

invariants; these cohomology classes are independent of the relative normal-
ization chosen. ¤
Theorem 4.2. Let (∇, h,∇∗) be the conjugate triple defined by a relative

normalization (x,X, y) of an affine embedding of an orientable manifold M . Let
Q ∈ Qν .

(1) We have [TxQ(∇)] = 0 in H2ν−1(M ;C).
(2) If Q is integral and if ν is even, then [T Q(∇∗)] = 0 in H2ν−1(M ;C/Z).
(3) If ν is odd, then [TxQ(∇∗)] = 0 in H2ν−1(M ;C).
(4) If ν is even, then [TxQ(∇(h))] = 0 in H2ν−1(M ;C).
(5) If ν is odd and if h is definite, then [TxQ(∇(h))] = 0 in H2ν−1(M,C). ¤
One can apply these results to 3-dimensional affine differential geometry to

construct obstructions to realizing the conformal class of a Riemannian metric as
the second fundamental form of an embedding; this generalizes work of Chern and
Simons [37].

To state the corresponding theorem we have in mind that if M is a compact
orientable 3-dimensional manifold, then M is parallelizable. Hence we can choose a
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global frame f for TM . If Q ∈ Q2, then Q = cP1 + decomposable, so we need only
to study [TxP1], where P1 is the first Pontrjagin form. Since P1 is a real integral
differential form, we define

Φ(∇) =
∫

M

f∗T P1(∇) ∈ R/Z.

One can prove that Φ(∇) is independent of the particular parallelization f
which is chosen. Consequently, Theorem 4.2 implies

Theorem 4.3. Let (M, go) be a 3-dimensional Riemannian manifold.
(1) If there exists an immersion x : M → R4 so that g0 is conformally equivalent

to the first fundamental form of x, then Φ(∇(g)) = 0 in R/Z.
(2) If there exists an immersion x : M → R4 so that g0 is conformally equivalent

to the second fundamental form of x, then Φ(∇(g)) = 0 in R/Z. ¤
We refer to [15] for details of the proof of this theorem and also for other

references related to other applications of the secondary characteristic forms in
3-dimensional geometry and in mathematical physics.

V. DIFFERENTIAL OPERATORS OF LAPLACE TYPE

The main purpose of this Section is to study the second order differential
operators of Laplace type which are naturally appeared in differential geometry. Of
course, the most interesting for us are these operators which depend on a torsion
free connection, and relations between the spectrum of operators from one side and
geometry and topology of a manifold from other side. To study these problems
we explore the heat equation method. We refer to monographs [6], [34], [44], and
expository papers [30], [39], [58] [84] etc. for more details.

V.1. Definitions and basic notations

Let M be a compact Riemannian manifold of dimension m. The Laplace-
Beltrami operator (shorter the Laplacian) is an operator

(1.1) ∆(f) = −÷ (grad f),

where f ∈ C∞(M), i.e. in coordinates ∆ = −∑
i,j g−1∂i(ggij∂j), for g =

√
det(gij).

For example if the metric is given by ds2 = h(dx2 + dy2), then ∆ = g−1(∂2
x + ∂2

y).
Let ft(x) denote the temperature in a time t and a point x ∈ M . If we assume

the heat trasfers into the coolest direction, then ft(x) satisfies the equation

(1.2)
∂

∂t
f + ∆f = 0.
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We say f0(x) is an eigenfunction of ∆ with the eigenvalue λ ∈ R if it yields ∆(f0) =
λ · f0. One can check then ft(x) = e−λtf0(x) satisfies the heat equation (1.2).
Therefore, ft may be interpreted as “a heat wave” with “the frequency” e−λt.

The theory of partial differential operators implies that there exist countable
set of eigenvalues λi and for every λi the finite-dimensional family of eigenfunctions
fi, such that we have ∆(fi) = λifi. Furthermore, λi are positive, and λi → ∞
when i →∞. The collection {λi}, together with the multiplicities of each λi, is the
spectrum of a manifold M .

If one struck M with a mallet than λi may be interpreted as the sounds emitted
by M , assuming that sound satisfies a similar equation to that of heat.

Weyl [137] has proved that the spectrum of M determine one of significant
geometrical invariant - volume of M . This was a reason to believe that the spectrum
determines completely the geometry of Kac [58] formulated this problem in a lovely
question: “Can one hear a shape of a drum”. The example of two 16th dimensional
non-isometric torus [86] with the same spectrum have shown that expectations
were excessively strong. Many examples have been constructed later on (see [30],
[84] etc.) using different methods to show the same things.

We say manifolds M1 and M2 are isospectral if they have the same spectrum.
A function Ht(x, y) is a fundamental solution of the heat equation (or a heat

kernel) if

( ∂

∂t
+ ∆x

)
H = 0,(1.3)

lim
t→0

∫

M

Ht(x, y)f(y)dy = f(x),(1.4)

for any f ∈ C∞(M). One can use (1.3) and (1.4) to check that the general solution
ft(x) of the heat equation with initial equation f0(x) = f is given by the formula

ft(x) =
∫

M

Ht(x, y)f(y)dy.

We look for Ht to fulfill the following conditions
(i) Ht(x, y) is uniquely determined by (1.3) and (1.4).
(ii) If M is a compact manifold and {fi} is an orthonormal base of eigenfunc-

tions with corresponding eigenvalues {λi}, then

Ht(x, y) =
∑

i

e−λitfi(x)fi(y).

Now we use (ii) to eliminate f ,
is and describe λ,

is. Therefore, we put

tr(Ht) =
∫

M

Ht(x, x)dx.
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Consequently

tr(Ht) = trL2 e−t∆ =
∫

M

∑
e−λitf2

i (x)dx

=
∑

e−λit

∫

M

f2
i dx =

∑
e−λit.

If t → 0+ then there is a power serious expansion, asymptoticaly equivalent to∑
e−λit, i.e.

∑

i

e−tλi ∼
∞∑

n=0

an(∆)t(n−m)/2,

where an(∆) are spectral invariants determined by local geometry of M . If M is a
manifold with boundary, i.e. ∂M 6= φ, then a2k+1(∆) 6= 0 and they depend on the
boundary conditions

BDf = f |∂M = 0 (Dirichlet boundary condition) or

BS
Nf = (∂ν + S)|∂M (modified Neumann boundary condition).

These results may be generalized for a partial differential operator D of order
d > 0 on a smooth vector bundle. We assume the leading symbol of D is self-adjoint
and positive definite. If the boundary of M is non-empty, we impose boundary
conditions B and let Domain (DB) = {w ∈ C∞(V ) : Bw = 0}. We assume the
boundary conditions B are strongly elliptic; see Gilkey [44, §1.11].

Let f ∈ C∞(M) be an auxiliary test function. Then there is an asymptotic
series at t ↓ 0+ of the form

trL2(fe−tDB) ∼
∞∑

n=0

an(f, D,B)t(n−m)/d;

see Gilkey [44, Theorem 1.11.4] for details. The global invariants an(f,D,B) are lo-
cally computable. Let ∂ν

mf be the νth normal covariant derivative of f . Then there
exists local measure valued invariants An(x,D) defined for x ∈ M andAbd

n,ν(y, D,B)
defined for y ∈ ∂M such that

(1.5) an(f, D,B) =
∫

M

fAn(x,D) +
∑

0≤ν≤n−1

∫

∂M

(∂ν
mf)Abd

n,ν(y, D,B).

From now on we study the local geometry of operators of Laplace type. Let
D = −(gνµ∂ν∂µ + Aσ∂σ + B) be an operator of Laplace type on C∞(M), for Aσ ∈
End(M) and B ∈ End(M). One can note that Dirichlet and modified Neumann
boundary conditions are strongly elliptic for second order operators of Laplace type.
We refer to [43] for the proof of
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Lemma 1.1. There exists a unique connection ∇D on C∞(M) and a unique
function ED ∈ C∞(M) so that D = −(tr(∇2

D) + ED). If wD is the connection
1-form of ∇D, then

wD,δ =
1
2
gνδ(Aν + gµσΓg,µσ

ν), and

ED = B − gνµ(∂µwD,ν + wD,νwD,µ − wD,σΓg,νµ
σ). ¤

We set f = 1 in (1.5) to recover the invariants an(D,B) for an operator of
Laplace type. We use now these invariants to express An(x,D). Let ΩD,ij be
the curvature of the connection ∇D on C∞(M) and let ’;’ be multiple covariant
differentiation with respect to the Levi-Civita connection. We refer to Gilkey [43],
[44] for the proof of the following theorem:

Theorem 1.2. Let D = D(∇D, ED) on C∞(M).
(a) A0(x, D) = (4π)−m/2.

(b) A2(x, D) = 6−1(4π)−m/2(τg + 6ED).
(c) A4(x, D) = 360−1(4π)−m/2{60(ED); kk + 60τgED + 180(ED)2 +

30ΩD,ijΩD,ij + 12(τg);kk + 5(τg)2 − 2|ρg|2 + 2|Rg|2}.
We suppose given some auxiliary geometric structure J on which C∞+ (M) also

acts. For g ∈ C and s ∈ J we assume given a natural operator D = D{g, s} on
M which is of Laplace type. Let D 7→ βD := D(βg, βs), where g 7→ βg = βg,
β ∈ C∞+ (M), g ∈ C, and let M(β) be function multiplication. An operator D is
said to transform conformally if βD = M(βa) ◦D ◦M(βb) for a + b = −1. If D
transforms conformally, the conformal index theorem of Branson and Orsted [29]
and Parker and Rosenberg [104] shows that am(D) = am(βD).

V.2. Asymptotics of Laplacians
defined by torsion free connections

In this section we present the heat equation asymptotics of the Laplacians
defined by torsion free connections.

V.2.1. Laplacians on the tangent bundle of a manifold without
boundary. We assume that (Mm, g) is a compact Riemannian manifold without
boundary of dimension m > 1. We choose a local coordinates to have ∂i and dxi

as local coordinate frames for the tangent TMm and cotangent T ∗Mm bundles re-
spectively. If ∇ is a torsion free connection on TMm we denote by wi ∈ End(TMm)
the connection 1-form of ∇

∇∂j = dxi ⊗ wi(∂j) = wij
kdxi ⊗ ∂k.

Since ∇ is torsion free it follows wij
k = wji

k. Let ∇R be the curvature of ∇. Let
g∇ = ∇(g) be the Levi-Civita connection corresponding to the metric g. Then
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g∇(∂j) = Γij
kdxi ⊗ ∂k and θ = ∇ − g∇ is tensorial and θij

k = wij
k − Γij

k. We
introduce also the tensor F ∈ TMm by contracting the first two indices of θ:

F i = gjkθjk
i = gjk(wjk

i − Γjk
i).

The dual connection ∇∗ on T ∗Mm is defined by d(u, α) = (∇u, α) + (u,∇∗α), for
any smooth vector field u and smooth covector field α. Consequently

∇∗(dxj) = −dxi ⊗ w∗i (∂j) = −wik
jdxi ⊗ dxk.

If ∇∗ ⊗ 1 + 1⊗∇ is the tensor product connection on T ∗Mm ⊗ TMm, then

(2.1) P = P(∇) = −gij{∇∗ ⊗ 1 + 1⊗∇}i∇j on C∞(TMm)

is a second order PDO of Laplace type.
We shall use Roman indices for a coordinate frame and Greek indices for an

orthonormal frame. We refer to [26] for the proof of:

Theorem 2.1. Let P = P(∇) be a PDO of Laplace type given by (2.1).
Then
(a) a0(P) = m · vol(M),
(b) a2(P) = m

12

∫
M

(2τ − 3FνFν),
(c) a4(P) = 1

360

∫
M
{m{5τ2 − 2ρ2 − 2ρ2 + 2R2 + 15τ(2Fν;ν −FνFν)

+ 45
4 (2Fν;ν −FνFν)2 + 15

2 (Fµ;ν −Fν;µ)2}+ Tr(30Ω2)}. ¤
We define the Hessian H∇ for a torsion free connection ∇ on TM by

(H∇f)(u, v) = u(v(f))−∇uv(f).

One can check easily that (H∇f)(u, v) = (H∇f)(v, u) and H∇ is tensorial in X and
Y . The normalized Hessian H(f) := H∇(f) + (m − 1)−1fρ∇ arises naturally in
the study of Codazzi equations; see [108] for details. We contract the normalized
Hessian for a torsion free connection with symmetric Ricci tensor ρ∇ to define an
operator of Laplace type

(2.2) Df = D(g,∇)f := − trg{H∇(f) + (m− 1)−1fρ∇}.

In general case, D need not be self-adjoint.
If ∇̃ and ∇ are projectively equivalent, as in (1.1) Section II, then we may

choose a local primitive φ so dφ = π. Then

(2.3) H∇̃ = eφH∇e−φ;

i.e. the operators H∇̃ and H∇ are locally conjugate. Furthermore, if g̃ = e2ψg,
then (2.3) implies

(2.4) D(g̃, ∇̃) = e−2ψ+φD(g,∇)e−φ.
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If [π] = 0 in the first cohomology group H1(M), then φ is globally defined and
D(g, ∇̃) and D(g,∇) are conjugate and hence isospectral. We refer to [17]–[19],
[21] for more details related to this operator.

Let K be a Codazzi structure, let (g,∗∇) ∈ K and w∇ be the Weyl connection
defined by K. Then we use (2.2) and define
(i) Let ∗D := D{g,∗∇} be the trace of the normalized Hessian of ∗∇.
(ii) Let wD := D{g,w ∇} be the trace of the normalized Hessian of w∇.
(iii) Let w∆ := − trg

w∇d be the scalar Laplacian of w∇.
(iv) Let g¤ := − trg δgd + (m− 2)τ(g)/4(m− 1) be the conformal Laplacian.

V.3. Geometry reflected by the spectrum

As we already know torsion free connections arise naturally in affine differential
geometry and Weyl geometry. The main purpose of this section is to study geometry
of a manifold in the framework previously mentioned, reflected by the spectrum of
an differential operator of Laplace type. One can find more details in [17]–[21] and
[26].

V.3.1. Affine differential geometry reflected by the spectrum. In this
subsection we deal with smooth hypersurfaces Mm immersed into an affine space
Am+1. Because of the convinience reason througout this subsection we denote
by 1∇, 2∇ the induced connection and the conormal connection. We suppose
the Blaschke metric G positive definite henceforth; this means that the immersed
hypersurface x(Mm) is locally strongly convex. Let P = P(1∇, G) = P(x,X, y)
on C∞(TMm) be defined by (2.1). The spectral geometry of P should play an
important role in affine geometry. Since the Blaschke metric G and first affine
connection 1∇ are defined by expressions which are invariant under the group of
affine transformations, the operator P and its spectrum are affinely invariant.

One can compute the heat equation invariants.

Lemma 3.1. (a) Cij
k = θij

k, (b) wij
k = 1Γij

k. (c) Fν = mT̃ν ,
(d) tr(Ω2) = 1Rijk

l 1Rijl
k = −2{m(m− 1)H2 − 1

m

∑
i<j

(λi − λj)2}. ¤

We combine now Lemma 3.1 and Theorem 2.1 with results from Section I.2.
to prove the following theorems.

Theorem 3.2. Let x and x̄ : Mm → Am+1 define hyperovaloids with the
same regular relative spherical indicatrix y = ȳ which are P isospectral. Then x
and x̄ are translation equivalent. ¤

Theorem 3.3. Let x and x̄ : M2 → A3 be ovaloids with centroaffine normal-
ization which are P isospectral. If x(M2) is an ellipsoid, then x̄(M2) is an ellipsoid.

¤

Theorem 3.4. Let Mi be ovaloids with equiaffine normalization and M1 an
ellipsoid. If for M1 := M, M2 := M̄
(i)

∫
M

H =
∫

M̄
H̄,

∫
M

tr(1) =
∫

M̄
tr(1) or
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(ii)
∫

M
H2 =

∫
M̄

H̄2,
∫

M
tr(1) =

∫
M̄

tr(1), H2 > 0
(H2 is the second elementary curvature function)

then M̄ = M2 is an ellipsoid. ¤
We study now affine geometry reflected by the spectrum of the operator D

given by (2.2). Since the i∇ are torsion free, Ricci symmetric connections, we can
apply the results of Section V.2. to this setting. Let

1D := D(G, 1∇), 2D := D(G, 2∇) and GD := D(G, G∇)

be the associated operators of Laplace type on C∞(M); these operators and their
spectra are affine invariants of (x,X, y).

We now compute the expressions of Lemma 1.1, which we need to obtain the
coefficients in the corresponding heat equation asymptotics.

Lemma 3.5. Let D = 1D and let ε = 1 or let D = 2D and let ε = −1. Then:

Dθ = εC, wD = −1
2
εmT̃ , ΩD = 0,

ED = mH − 1
4
m2|T̃ |2 +

1
2
εmT̃ i; i. ¤

Theorem 3.6. Let x : M → A be a hyperovaloid. Let D = 1D and let ε = 1
or let D = 2D and let ε = −1. Then:
(a) A0(x, D) = (4π)−m/2. a0(D) = (4π)−m/2

∫
M

1.

(b) A2(x, D) = (4π)−m/2{ 1
6τg + mH − 1

4m2|T̃ |2 + 1
2εmT̃i;i}

a2(D) = (4π)−m/2
∫

M
{1

6τg + mH − 1
4m2|T̃ |2}.

(c) A4(x, D) = (4π)−m/2360−1{60τG(mH − 1
4m2|T̃ |2 + 1

2εmT̃i;i) +
180(mH − 1

4m2|T̃ |2 + 1
2εmTi;i)2 + 60(mH − 1

4m2|T̃ |2 + 1
2εmT̂i;i);jj +

12τG;kk + 5τ2
G − 2|ρG|2 + 2|RG|2}. ¤

One can combine Lemma 3.5 and Theorem 3.6 with results from Section I.2.
to prove the following theorems, which consider affine geometry reflected by the
spectrums of iD.

Theorem 3.7. Let D = 1D or D = 2D.
(a) Let (x, X, y) be a relative normalization. Then

(4π)m/2
{

a2(D)− m− 1
m + 5

a2(GD)
}
≤ m

∫

M

H.

Equality holds if and only if the normalization is equiaffine.
(b) If the normalization is equiaffine, then

m(m + 5)
∫

M

H ≤ 6(4π)m/2a2(D) ≤ m(m + 5)
∫

m

(H + J).

Equality holds on the left or on the right hand side if and only if the hyperovaloid
is an ellipsoid. ¤
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Theorem 3.8. Let D = 1D or D = 2D. With the centroaffine normalization:
(a) a0(D) = (4π)−m/2

∫
M

1. a2(D) = (4π)−m/2
∫

M
( 1
6τG + m− 1

4m2|T̃ |2).
(b) 6(4π)m/2{a2(D) − ma0(D)} ≤ ∫

m
τG with equality if and only if the hyper-

ovaloid is an ellipsoid.
(c) Let x(M2) and x̃(M2) be ovaloids in 3 space with centroaffine normalization
which are D isospectral. Then x is an ellipsoid if and only if x̃ is an ellipsoid. ¤

As we have mentioned already the operators iD are not self-adjoint in general
case. The following theorem deals with the conditions to have self-adjoint operators
iD.

Theorem 3.9. (1) Let {x,X, y} be the Euclidean normalization. Then the
following assertions are equivalent

1-a) The Gauss-Kronecker curvature K = Kn is constant.
1-b) We have 1D = 2D.
1-c) The operator 1D or the operator 2D is self-adjoint.

(2) Let x be a compact centroaffine hypersurface with non-empty boundary. The
following assertions are equivalent:
2-a) We have 1D = 2D.
2-b) We have that 1D or 2D is self-adjoint.
2-c) We have that x is a proper affine sphere.

(3) Let x be a compact centroaffine hypersurface without boundary. Then the
following assertions are equivalent:
3-a) We have 1D =2 D.
3-b) We have that 1D or 2D is self-adjoint.
3-c) We have that x is a hyperovalloid. ¤

Dirichlet boundary conditions on affine hypersurface with boundary were con-
sidered by Schwenk [113], [128] and Simon [116]. Their methods are different from
this one.

V.3.2. Projective geometry reflected by the spectrum. In general, con-
structing projective invariants is quite difficult. One such example is the projective
curvature tensor of H. Weyl (see Section II.1., especialy the formula (1.2)). This
subsection deals with spectral invariants which are also projectively invariant. More
precisely we have

Theorem 3.10. Let ∇, ∇̃ be torsion free projectively equivalent connections
on a Riemannian manifold (M, g). Let D = D(g,∇) and D̃ = D(g, ∇̃).

(a) An(x, D̃) = An(x,D) and Abd
n (y, D̃,B) = Abd

n (y, D,B).
(b) an(D̃,B) = an(D,B). ¤

If m is odd, and if the boundary of M is empty, there is a global spectral
invariant called the functional determinant which can be defined in this context.

For Re(s) À 0, let ζ(s,D) := trL2(D−s), where we project on the complement
of the kernel of D to avoid the 0-spectrum. This has a meromorphic extension to
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C with isolated simple poles on the real axis. The origin is a regular value and
ζ ′(0) := − log(det(D)) is a global invariant of D.

Theorem 3.11. Let ∇, ∇̃ be torsion free projectively equivalent connections
on a Riemannian manifold (M, g) and g̃ ∈ C(g). If the boundary of M is empty

and if m = dim M is odd, then ζ ′(0, D) = ζ ′(0, D̃). ¤

V.3.3. Invariants of Codazzi and Weyl structures. The relation (2.4)
informs us that the operator D, given by (2.2) transforms conformally. This implies
one can apply the conformal index theorem of Branson and Orsted [29] and Parker
and Rosenberg [104] to prove the following lemma.

Lema 3.12. (i) Let D be an operator of Laplace type given by (2.2). Then

am(D(g̃, ∇̃)) = am(D(g,∇)).
(ii) We have that am(∗D), am(wD), am(w∆), and am(g¤) are gauge invariants

of a Codazzi structure K. ¤
One can compute the endomorphism E and the curvature Ω for four natural

operators defined in Section V.2.

Lemma 3.13. We have
(i) E{∗D} = {(m + 2)τ(g,w ∇)− (m− 2)τ(g)}/4(m− 1).
(ii) Ω{∗D} = −(m + 2)wF/2.

(iii) E{wD} = −(m− 2)δg θ̂/2− (m− 2)‖θ̂‖2g/4 + (m− 1)−1τ(g,w ∇).
(iv) Ω{wD} = −(m− 2)wF/2
(v) E{w∆} = −(m− 2)δg θ̂/2− (m− 2)2‖θ̂‖2g/4.
(vi) Ω(w∆) = −(m− 2)wF/2.
(vii) E{g¤} = −(m− 2)τ(g)/4(m− 1) and Ω{g¤} = 0. ¤
We refer to [20] for the proof of this Lemma and more details related to the

operators ∗D, wD, w∇ and g¤.
We use now Lemma 3.13 and Theorem 1.2 in dimensions m = 2 and m = 4.

Let χ(M) be the Euler-Poincare characteristic of M . The Chern Gauss Bonnet
theorem yields

χ(M2) = (4π)−1

∫

M

τ(g)(x)dνg(x),

χ(M4) = (32π2)−1

∫

M

{‖gR‖2g − 4‖gρ‖2g + τ(g)2}(x)dνg(x).

Theorem 3.14. Let dim(M) = 2. Then
(i) a2(∗D) = χ(M)/6 + (4π)−1

∫
M

τ(g,w ∇)dνg(x).
(ii) a2(wD) = χ(M)/6 + (4π)−1

∫
M

τ(g,w ∇)(x)dνg(x).
(iii) a2(w∆) = χ(M)/6.
(iv) a2(g¤) = χ(M)/6. ¤

Theorem 3.15. Let dim(M) = 4. Let gW be the Weyl conformal curvature.
Then
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(i) a4(∗D) = −χ(M)
180 + 1

(4π)2360

∫
M
{3‖gW‖2g + 270‖wF‖2g + 45τ(g,w ∇)2}dνg(x).

(ii) a4(wD) = −χ(M)
180 + 1

(4π)2360

∫
M
{3‖gW‖2g + 30‖wF‖2g + 45τ(g,w ∇)2}dνg(x).

(iii) a4(w∆) = −χ(M)
180 + 1

(4π)2360

∫
M
{3‖gW‖2g + 30‖wF‖2g + 5τ(h,w ∇2}dνg(x).

(iv) a4(g¤) = −χ(M)
180 + 1

(4π)2360

∫
M
{3‖gW‖2g}dνg(x). ¤

If f is a scalar invariant, let f [M ] :=
∫

M
f(x)dνg(x). The Euler characteristic

is a topological invariant of M which does not depend on the Codazzi structure.
Then we use Theorem 3.15 to prove the following Corollary:

Corollary 3.16. (i) The invariants τ(g,w ∇)2[M ], ‖wF‖2g[M ] and ‖gW‖2g[M ]
of a Weyl structure on M are determined by χ(M) and by the spectrum of the
operators ∗D, wD, and w∆.

(ii) We have 32π2χ(M4) ≥ 45τ(g,w ∇)2[M ] + 270‖wF‖2g[M ]− (4π)2360a4(∗D)
with equality if, and only if, the class C is conformally flat.

(iii) We have 32π2χ(M4) ≥ 45τ(g,w ∇)2[M ] + 3‖gW‖2g[M ] − (4π)2360a4(∗D)
with equality if, and only if, the length curvature wF = 0. ¤
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(1987), 137–139.

[69] M. Kozlowski, Surfaces defined by solutions of the Euler-Lagrange-Equation. Anz. Österreich.
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[93] S. Nikčević, Induced representation of unitary group in tensor spaces of Hermite manifolds,
(preprint).
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[116] U. Simon, Dirichlet problems and the Laplacian in affine hypersurface theory, Lecture Notes
Math. 1369, Springer-Verlag, Berlin, 1989, pp. 243–260.

[117] U. Simon, Zur Entwicklung der affinen Differentialgeometrie. In W. Blaschke, Gesammelte
Werke, Vol. 4, Affine Differentialgeometrie. Differentialgeometrie der Kreis- und Kugelgru-
pen. Thales Verlag, Essen 1985.

[118] U. Simon, Connections and conformal structure in affine differential geometry. In: D. Krup-
ka, A. Svec (Eds); Differential Geometry and its Applications, J.E. Pyrkine Univ., CSSR,
1987, 315–327.

[119] U. Simon, Dirichlet problems and the Laplacian in affine hypersurface theory. Lecture Notes
Math. 1369, Springer Verlag, Berlin, 1989, 243–260.

[120] U. Simon, Local classification of two-dimensional affine spheres with constant curvature
metric, Diff. Geom. Appl. 1, (1991), 123–132.

[121] U. Simon, Hypersurfaces in equiaffine differential geometry, Geom. Dedicata 17 (1984),
157–168.

[122] U. Simon, C.P. Wang, Local Theory of Affine 2-Spheres, Proc. 1990 Summer Inst. Diff. Geom
(R.E. Greene, S.T. Yau; eds). Proc. Symp. Pure Math., 54, part 3, (1993), 585–598.

[123] U. Simon, Connections and conformal structure in affine differential geometry, in Differen-
tial geometry and its applications, Proc. of the Conference, Brno, August 24-30, (D. Reidel,
Dordrecht, 1986, pp. 315–328.



Torsion free connections, Topology, Geometry and. . . 141

[124] U. Simon, A. Schwenk-Schellschmidt and H. Viesel, Introduction to the Affine Differential
Geometry of Hypersurfaces, Lecture Notes, Science University Tokyo, 1991.

[125] I.M. Singer and J.A. Thorpe, The curvature of 4-dimensional Einstein space, Global Analysis
(paper in honour of K. Kodaira), Univ. of Tokyo Press, Tokyo (1969), 355–365.

[126] M. Sitaramayya, Curvature tensors in Kähler manifolds, Tran. Amer. Math. Soc. 183 (1973),
341–351.

[127] R.S. Strichartz, Linear algebra of curvature tensors and their covariant derivatives, Canad.
J. Math. 40 (1988), 1105–1143.
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