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Preface 

The theory of stochastic differential equations, as a part of the general theo­
ry of stochastic processe:;, began to develop in the fifties in the discussions of U. 
Gikhman, and independently of him, K. Ita. The accepted terminology, however, 
derived from Ita. In his papers [15], [16], [17], for special classes of stochastic 
processes he introduced the notion of the stochastic integral and of the stochas­
tic differential equation with respect to a Wiener process. Following the classical 
theory of ordinary differential equations, he proved the fundamental theorem of 
the existence and uniqueness of solutions and also the Markov property of solu­
tions. From then on this theory has developed in several aspects, mostly induced 
by mathematical abstractions or by many applications in technical practice, hav­
ing in mind that a Gaussian white noise could be mathematically interpreted by a 
Wiener process. 

One of the most important moments in the development of the theory of stochas­
tic integrals and stochastic differential equations was the introduction of the notion 
of a martingale by Doob [7} and the subsequent establishment of the notion by 
Meyer [34], [35], [36]. In this way the fundamental supermartingale-decomposition 
theorem of Doob-Meyer [36] and the basic inequalities for martingales were estab­
lished. 

It is necessary to emphasize the notion of a stochastic integral with respect to 
a second-order martingale, introduced and studied by Kunita and Watanabe [27], 

. which generalizes the stochastic Ita's integral. In fact, many properties of the Ita's 
integrals remain valid for this class of stochastic processes. 

Later on, the theory of stochastic integrals and stochastic differential equations 
relative to other types of martingales and stochastic measures was developed ([6], 
[29]). Concurrently with it, the appropriate theory for a larger class of stochastic 
processes-semimartingales was introduced by DoIean-Dade and Meyer [6], and later 
essentially studied by Jacod [22] and Gildunan and Skorokhod [11]. 

The theory of stochastic differential equations had a permanent development 
with a large number of innovations, including some nonstandard constructions of 
stochastic integrals [12]. However, the ItO-calculus remains essential because several 
phenomena in technical, biological and social sciences can be modeled and described 
by stochastic differential equations of the Ita type. In fact, this theory is now 
applied in many diverse fields, which proves the flexibility of its application. 
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This paper represents an introduction to the study of the 1t00type calculus, 
as the initial information about the general theory of stochastic differential equa­
tions. Section 1 contains the basic theory of stochastic Ito's integrals, stating some 
important properties of stochastic indefinite integrals, introducing the stochastic 
differential and giving a differential formula known as the Ita's formula. In Section 
2 the basic theory of ItO-type stochastic differential equations is established. The 
basic existence and uniqueness theorem, the Markov property and the continuous 
dependence on parameters of solutions are considered. Some simple examples are 
given to illustrate the preceding theoretical considerations. 

There is a number of papers about stochastic differential equations. In the 
References some monographs and historically important papers are also given. 

We shall restrict ourselves to the one-dimensional case for notational simplicity. 
The extension to the multidimensional case is not difficult in itself and it can be 
treated analogously. 

1. Ita-type stochastic integrals 

1.1. Definition of the Ita-type stochastic integral. Throughout the paper 
we suppose that all random variables and processes considered here are defined on 
a complete probability space (n,:F, P). Let W = (Wt, t E R) be an one-dimensional 
standard Wiener process, adapted to the increasing family of sub-u-algebras (:Ft, t E 
R), Le., for alls $ t random variables w, are :Ft-measurable,:Fh C :Ft2 for tl < t2 
and Wt - w, is independent on :F, for all t ~ s. Further on, from this fact W is 
usually marked with W = «Wt, :Ft), t ER). 

Having in mind the definition of w, let us recall some of its more important 
properties: w(O) = 0 a.s.; Wt - w, : N(O, It - sI); it has independent increments; 
sample functions are continuous, but nowhere differentiable and they are of un­
bounded variation in every finite interval; it is a Markov process; Wt - w, = Wt-,; 
W = «wt,Ft),t E R) is a martingale, Le., E{wtl:F,} = W. a.s. for t ~ s. 

Moreover, because «wl - t,:Ft),t E R) is a martingale, w is a second-order 
martingale with the quadratic variation t. Indeed, for all t ~ s, 

E{w~ - tl:Fa} = E{w; + (Wt - wa)2 + 2w.(Wt - w,)IF.} - t 

= w~ + E(wt - W.)2 - t = w~ - s. 

Exactly, the martingale characteristics of the Wiener process play an important 
role in the construction of the ItO-type stochastic integrals. 

In this section we shall define the ItO-type stochastic integral 

J(cp) = 16 

cp(t) dw(t) (1) 

where cp = (cp(t), t E R) is a stochastic process, and we study its basic properties. 
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Since w is neither differentiable nor of the bounded variation, it is impossible 
to define (1) as an integral in the ordinary sense, i.e., as a Riemann-Stieltjes or a 
Lebesgue-Stieltjes integral. Recall that if t.p is a nonrandom function, then (1) can 
be treated as a second-order stochastic integral (see, for example, [27], [28], [30], 
[31], [39J, [45]). In this case only the fact that the Wiener process has orthogonal 
increments is used. The problem arises if t.p is a random function, i.e., a stochastic 
process. Then the construction of the integral (1) depends on martingale properties 
of the Wiener process. 

Furthermore, we shall suppose that the stochastic processes cp and w are inde­
pendent. 

Denote by M2 the class of stochastic processes with following properties: if 
cp E M2, then 

(i) t.p is a measurable process, i.e., the function (w, t) -+ cp(w, t) is measurable 
with respect to :F in w and Lebesgue measurable in t; 

(ii) cp is adapted to the family of sub-O'-algebras (:Ft, t ER), i.e., for each t, 
cp(w, t) is measurable with respect to :Ft; 

(iii) J: Elcp(t) 12 dt < 00. 

When (i) and (ii) hold, we say that cp is non anticipating with respect to (:Ft, t E 
R). 

Note that every deterministic function t.p is a nonanticipating function. Also, if 
cp is a nonanticipating function, every product-measurable function g(t,cp), defined 
on (R x C) into C, is nonanticipating. 

We are now in a. position to define the stochastic integral of a process <p E M2 
relative to w, following the ideas of Ito [15]. We shall do this gradually, in two 
phases. In the first phase we define the stochastic integral for step functions in M2; 
in the second phase we extend this definition to the entire set M2, approximating 
an arbitrary process from M2 with the sequence of step functions (see [1], [8], [9], 
[10], [28], [30], [45]). 

Definition 1. A stochastic process cp E M2 is called a step function if there 
exists a decomposition a = to < tl < t2 ... < tie = b, independent of w, such that 

cp{w, t) = <pew, t,,) a.s., tv $ t < tv+1, 11 = 0,1, ... ,k - 1. 

Definition 2. The stochastic integral of the step function cp E M2 with respect 
to w is the random variable 

b Ie-l i cp(w,t)dw(w,t):= :Lcp(w,tv )[w(w,tV+1) -"w(w,tll )]. 

a v=o 

The following theorem makes it possible to define the stochastic integral for 
every cp E M 2 • 

Theorem 1. Let w = «Wt,:Ft), t ER), be a standard Wiener process and 
cp E M2. Then: 
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(a) There exists a sequence of step functions {c.pn, n E N} such that 

1Ic.p - c.pn1l2 = lb Elc.p(t) - c.pn(t) 12 dt -4 0 83 n -4 00; 

(b) If a sequence of step functions {c.pn, n E N} approximates c.p in the sense 
1Ic.p - c.pn -40 as n -4 0 and if I(c.pn) is defined as in Definition 1, then the sequence 
of random variables {I(c.pn),n E N} converges in q.m. as n -4 00; 

(c) If {c.pn, n E N} and {c.p~, n E N} are two sequences of step functions such 
that 1Ic.p - c.pnll -4 0, 1Ic.p - c.p~1I -T 0 as n -4 00, then 

q.m. lim I(c.pn} = q.m. lim I(c.p~). 
n-+oo n-+oo 

Proof. (a) If c.p E M2, but not obviously bounded a.s., we form the sequence 
of stochastic processes {fn, n E N} such that 

fn(t) = {c.p(t), IRec.p1 ~ n, IImc.p1 ~ n, 
n, otherwtSe 

By the dominated convergence theorem it follows that J: Elc.p(t) - fn(t)I2 dt -4 0 
as n -400. So, further on we can always assume c.p to be bounded a.s .. 

Suppose that c.p is q.m. continuous. Then an approximating sequence of step 
functions {c.pn, n E N} can be constructed by an arbitrary decomposition of the 
segment [a, b]: a = tr) < t~l) < .,. < 4n) = b, such that for t~n) ~ t < t~l 
we have c.pn(t) = c.p(t~n» a.s. and maxll[t~~l - t~)] -4 0 as n -4 00. Since c.p is 
q.m. continuous, then Elc.p(t) - c.pn(t)12 -T 0 as n -4 00 for every t E [a, b). By the 
dominated convergence theorem it follows 

lb Elc.p(t) - c.pn(t)12 dt -4 0 as n -4 00. 

If c.p is bounded a.s., but not obviously q.m. continuous, we shall define the 
sequence of stochastic processes {9n, n EN}, where 

9n(t) = 100 

e-rc.p(t -~) dT. 

It is easy to conclude that 9n E M 2 , nE N and q.m. continuous on [a, b]. Since 

lb Elc.p(t) - 9n(t)12 dt = lb El 100 

e-r [c.p(t) - c.p(t - ~)] ~Tr dt 

~ lb 100 

e-r dT 100 

e-r Elc.p(t) - c.p (t _ ~) 12 dT dt 

and since J: Ic.p(t) - c.p (t - ~) 12 dt -T 0 as n -4 00 whenever c.p is a.s. bounded and 
Lebesgue measurable, then 

lab Elc.p(t) - 9n(t)12 dt -4 0 as n -4 00. 
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Now it is clear that we can construct indirectly a sequence of step functions ap­
proximating 'P by sampling q.m. continuous stochastic processes 9n, n E N at the 
partition points of the segment [a, b], such that the partitions go to zero as n -+ 00. 

(b) Suppose that {'Pn,n E N} is a sequence of step functions such that II'P­
'Pnll -+ 0 as n -+ 00. Using Definition 2, let us define I('Pn) by 

I('Pn) = 1" 'Pn(t) dw(t) : = L 'P(t~n)[ W(t~~l) - w(t~n»]. 
a v 

Denote by A~n)W = W(t~~l) - w(t~n». Then 

EII('PnW = L L E[ 'P(t~n)'P(t~n» A~n)wA~n)w]. 
v ,.. 

v 

Also, EII('PnW < 00. Since I('Pn+m) - I('Pn) = l('Pn+M - 'Pn) and CPn+m - 'Pn is 
again a step function, it follows 

EI1('Pn+m) - I(CPnW = EI1(CPn+m - 'Pn)1 2 = 1" EI'Pn+m(t) - CPn(t) 12 dt 

~ 21" EICPn+m(t) - 'P(t) 12 dt + 21" Elcp(t) - 'Pn(tW dt -+ 0, as n -+ 00. 

Hence, {I(CPn),n E N} converges in q.m. because every Cauchy sequence of random 
variables is also q.m. convergent. It means that there exists a random variable l(cp) 
such that EI1(cp)12 < 00 and 

EII(cp) - I('PnW -+ 0 as n -+ 00. (2) 

(c) Let {CPn, n E N} i {<p~, n E N} be two sequences of step functions approxi­
mating cP, i.e., IIcp - <Pnll-+ 0, IIcp - cp~lI-+ 0 as n -+ 00. Because 

lI'Pn - <p~1I ~ J2 (lI'Pn - cpW + IIcp - <p~1I2)! -+ 0 as n -+ 00, 

then 
b 

EII(CPn) - I('P~)12 = 1 EI'Pn(t) - <p~(tW dt -+ 0 as n -+ 00. 

Therefore, q.m. limn-too I('Pn) = q.m. limn-too I(cp~). Thus the theorem is com­
pletely proved. 0 



112 Svetlana Jankovic 

Summarizing the results of the preceding theorem, we conclude that the stochas­
tic integral I(tp) can be defined as q.m. limit of the sequence of random variables 
{I(tpn), nE N}, i.e., 

I(tp) = r" tp(t) dw(t) : = q.m. lim r" tpn(t) dw(t). la n-toola 
This limit is in q.m. sense uniquely determined and independent of the choice of 
the sequence of step functions {tpn, n E N} for which (2) holds. 

Note that if a and b are not finite, the stochastic integral is defined as q.m. limit 
as a ~ 00 or b ~ 00. 

The next theorem summarizes some of the more important properties of the 
stochastic integral. 

Theorem 2. Let tp,1/J E M2 and a, /3 be arbitrary numbers. Tben: 

(a) I(atp + /31/J) = aI(tp) + /3I('I/J)i 
(b) EI(tp) = 0i 

(c) EI(tp)I{'I/J) = J: Etp{t)1/J{t) dt. 

Proof. (a) This part follows immediately from the construction of the stochastic 
integral of step functions. 

(b) The proof is obvious if tp E M2 is a step function. If not, let {tpn} be a 
sequence of step functions approximating tp in q.m., i.e., Eltp{t) - tpn(t)12 ~ 0 as 
n ~ 00 on [a,b]. Since by Theorem lb 

O:S (EI(tp) - EI(tpn»2 :S EII(cp) - I(tpn)12 ~ 0 as n ~ oo~ 

then EI(cp) = O. 

(c) It is enough to prove that EII(tp)12 = J: Eltp(t) 12 dt because 

EI(tp)I(1/J) = ~[EII(tp + 'l/JW - EII(tp -1/JW] 

+ ~[EII(-itp + 1/JW - EII(-itp - 'l/JW]· 

If tp is a step functioIl, the proof directly follows from the proof of Theorem lb. If 
not, let {tpn, nE N} be a sequence of step functions approximating tp in q.m. Then 

EII{tp)12 = EII{tp - CPn) + I(CPn) 12 

= EII(tp - tpn)12 + 2ReEI{tp - CPn)I(CPn} + EII(CPnW, 

and therefore 

EII(tp)12 = Urn EII(tpnW = Urn 1" Eltpn{tW dt 
n-too n-too Q 

= rh lim Eltpn(tW dt = rh Elcp(t)12 dt. 0 la n-too la 
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The notion of the stochastic integral of the Ito type can be introduced under 
some weaker conditions (see, for example, [1], [8], [10], [28], [30], [39J, [45]). Thus, 
denote by P a class of stochastic processes, measurable and adapted to the family 
of sub-cr-algebras (Ft, t ER), satisfying the condition 

p{ 16 

lep(tWdt < 00 } = 1. 

Clearly, M2 CP. 

Theorem 3. Let «wt,Ft),t E R) be a standard Wiener process and let ep E P. 
Let also epn be defined by 

( ) { 
ep(t), t lep(t) 12 dt :5 n, 

epn t = a 
0, otherwise 

and let J(epn) denote the stochastic integral J(epn) = f: epn(t) dw(t). Then 
{J(epn),n E N} converges in probability as n ~ 00. 

Proof. Let epn be defined as the above. Then epn E M2 and J(epn) is well 
defined. Now for arbitrary m, n E N and for any wEn, such that 

1b lep(tW dt :5 min{m,n}, 

we obtain SUPtE(a,bjlepn(t) -epm(t)1 = O. So, f: epn(t) dt = f: epm(t) dt a.s. For every 
£ > 0 it follows that 

P{ IJ(epn) - ;(epm)1 ~ £} :5 p{ 1b lep(t)12dt > min{m,n} } ~ 0 as m, n ~ 00, 

which implies in turn that {J(epn), n E N} converges in probability since every 
Cauchy sequence of random variables also converges in probability. 0 

Therefore, under the conditions of the preceding theorem there exists a random 
variable J(ep) such that J(epn) ~ J(ep) in probability as n ~ 00. In other words, we 
can define the stochastic integral 

J(ep) : = p. lim J(epn). 
n-+oo 

The notion of the ItO-type stochastic integral can be analogously generalized 
to the (n x m)-matrix valued stochastic process ep = [epij1nxm, where epij E M2 
or epij E P, with respect to the m-dimensional standard Wiener process W = 
«wt,Ft),t ER), Wt - W.: N(O,lt - sIJ). The matrix ep has the norm 

Clearly, in this case J(ep) is the n-dimensional random variable. 
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1.2. The stochastic indefinite integral. Denote by J{8<t}, a ~ s < t < b, 
an indicator of the set [a, t] which is obviously Ft-measurable. This fact gives a 
possibility to introduce a notion of a stochastic indefinite integral. 

Definition 3. The stochastic indefinite integral of the process cp E M2 is the 
stochastic process x = (x(t), t E [a, bD, defined by 

x(t) : = lb J{.<t}CP(s) dw(s) = It cp(s) dw(s), t E [a, b]. 

Having in mind the construction of the 1t00type stochastic integral J(cp), the 
indefinite stochastic integral possesses the following important properties: 

(i) x is defined uniquely up to the stochastic equivalence with its separable and 
measurable modification (Doob's theorem - see [7J, [45]); 

(ii) x(t) is Ft-measurable for every t E [a, b]; 

(ill) x(a) = 0 a.s.; 

(iv) x(t) - x(s) = J: cp(u) dw(u), t, sE [a, bJ. 
Using the results of Theorem 2, for every t E [a, b] it follows: 

(v) Ex(t) = 0 ; 

(vi) Elx(t)12 = J: Elcp(s) 12 ds. 

Theorem 4. If cp E M2, tben «Xt, Ft), t E [a, b]), is a martingale. 

Proof. Let cp be a step function and s < tl < t2 < ... < tn < t. ThElll 

x(t) - x(s) = f.t cp(u) dw(u) 

= cp(s)[w(td - w(s)] + cp(td[W(t2) - W(tl)] + .,. + cp(tn)[w(t) - W(tn)]. 

Therefore, by successively taking conditional expectations, we obtain 

E{x(t) - x(s)IF.} = E{E{ .. . E{x(t) - x(s)IFtn }IFtn_1}1 .. · Fh}lF.} 

= ... = E{X(tl) - x(s)IFB} = Ecp(s) E(w(s) - w(s)) = o. 

In the following part of the proof we use the well-known convergence property of 
conditional expectation (see [45]): for v ~ 1 if the sequence of stochastic variables 
Xn 1I~. X as n -+ 00, then E(XnIF) 1I~. E(XIF) as n -+ 00. 

If cp is not a step function, let {CPn, n E N} be a sequence of step functions 
approximating cp. Denote by xn(t) = J: CPn(s) dw(s). Then for every t E [a, b] we 
have Elx(t) - Xn(t)\2 -+ 0 as n -+ 00, and therefore E{x(t) - xn(t) IF.} -+ 0 as 
n -+ 00. Now for all t > s 

E{x(t) - x(s)IF.} 

= E{x(t) - xn(t)IF.} + E{xn(t) - x(s)IF.} -+ 0 as n -+ 00. 0 
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Moreover, one can be show that «Xt, Ft), t E [a, bJ), is a second-order martingale 
with the quadratic variation 

In order to do this, recall an important property of second order martingales. 

Let «Zt, Ft), t E [a, b]) be a sample continuous second-order martingale. Then by 
the supermartingale-decomposition theorem of Doob and Meyer (see [36], and also 
[10], [11], [30], [31], [34], [35]), there exist both a sample continuous martingale 
«mt,Ft),t E [a,b]) and a sample continuous increasing process «ut,Ft,t E [a,b]) 
- called the quadratic variation, with u(a) = 0 a.s. and Eu(b) < 00, such that 

z2(t) - u(t) = met) a.s., t E [a,b]. 

Also, the following inequality, defined first by Doob [7], and in different variations 
by Meyer [36] and others, holds: for 1 < 0: < 00, 

E{ sup Iz(tW'}:::; (~lrElz(b)la. 
tE[a,b] 0:-

For 0: = 2 and cP E M2 we get 

sup Elx(t)12 :::; E{ sup Ix(t)12}:::; 4 rb 

Elcp(t)12 dt < 00. 
tE(a,b) tE[a,b] la 

Next, u{t) is Ft-measurable for every t E [a, b], non-negative and increasing a.s., 
u(a) = 0 a.s. and Eu(t) ::; EU(b) < 00. For all t ~ 8 we obtain 

E{x2(t) - u(t)IFs} = E{ (It cp{u) dw(u») 2 IFs } - E{ it cp2(u) du IFs} 

= E{ (l8 cp(u) dw(u») 2 IFs } - E{ lS cp2(U) du IFs} 

+E{ (It 
cp(u) dw(u») 21F8 } - E{ lt <p2(U) du IFs} = X2(S) - u(s). 

So, u(t) is the quadratic variation of the martingale «Xt, Ft), t E [a, bD. 
Recall that for cp E M2 the inequality 

E{ sup I t <p(s)dsl} ::; 41b EI<p(tW dt 
tE[a,b] la .0. 

(3) 

is also known as Doob's inequality for Ita-type integrals. 

Example: The formal application of the classical rules for the integration by 
parts yields 

1 rt 
2 lo w(s) dW(s) = w2(t). 
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Clearly, it is not correct because for t > S 

E{w2(t) IF.} = w2(s) - t + S:f: w2(s), 

and therefore w2 (t) is not a martingale. 

Also, it can be proved (see, for example, [8], [11], [25]) that if cP e M2 and T is 
a stopping time with respect to (Ft,t e [a, bD, i.e., a ~ T ~ b a.s. and {T ~ t} eFt 
for all t e [a, b), then the process 

rl\t 
10 cp(S) dw(s), a ~ t ~ b, 

is a martingale and E f;At cp(s)dw(s) = O. 

Theorem 5. If cp e M2, then x = (x(t), t e [a, b]) is a contmuous process. 

Proof. Let cp be a step function with a decomposition a < tl < t2 • " < tn < t. 
Then 

x(t) = cp(a)[w(tl) - weal] + ... + cp(tn) [w(t) - w(tn»). 
Obviously, a.s. continuity of x follows from a.s. continuity of the Wiener process. 

If cp is not a step function, let {CPn, n e N} be a sequence of step functions 
approximating cp, Le., f: Elcp(t) - CPn(t)l2dt ~ 0 as n ~ 00. By Chebyshev's 
inequality and Doob's inequality (3), it follows that 

it it 4i6 

p{ sup I cp(s) dw(s) - CPn(S) dW(s) I > E} ::; 2' Elcp(s) - CPn(SW ds. 
te[a,b] 0 0 E 0 

Next, we can choose Ek > 0 such that Ek ~ 0 as n ~ 00, and {nk' keN} in such 
a way that nk /' if le ~ 00, (for example, El: = 2-1:, nk = le-2), for which 

Since 

f p{ sup I r' cp(s) dW(s) - {t CPnlt (s) dW(s) I > Ek} ::; 00, 
1:=1 te[a,6] la la 

the Borel-Cantelli's lemma implies that 

sup ! (t cp(s) dW(s} - r' CPn. (s) dw(s) I ~ El: a.s. 
te[a,b] 10 10 

for all t e [a,h1 if le 2:: ko(w), i.e., 

sup ! (t cp(s) dw(s) _ rt CPn(s) dW(S)! ~ 0 as n ~ 00. 
te[a,b] la la 
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Therefore, the integral J: 11'( s) dw (s) is a.s. uniform limit on [a, b1 of the sequence 

of a.s. continuous stochastic processes {J: tpn(s) dw(s), t E [a, b], nE M} and, be­
cause of that, it is itself a.s. continuous. 

Moreover, x has a.s. continuous sample functions (see [1], [8], (10)). 0 

Analogously to the stochastic indefinite integral for a process 11' E M 2 , it is 
possible to define the It6-type indefinite integral for 11' E P with 

x(t):= lb tp(s)I{8<t}dw(s) = it tp(s)dw(s). 

In this case the process x = (x(t),t E [a,bD is measurable, adapted to the family of 
sub-u-algebras (.rt, t E [a, b)), a.s. continuous, but in general it is not a martingale. 
It can be shown that it is a local martingale (see, for example, [25], [30], [31J, first 
of all [27]). Remember that if we denote by Tn the stopping time 

Tn = rnjn { It Itp(sWds ~ n}, 

then since Tn / b as n -+ 00, it can be proved that {(xn(t A Tn),.rt),t E [a,b]) is a 
martingale for every n E N. By definition {(Xt, .rt), t E [a, bD is said to be a local 
martingale. 

1.3. The Ito's formula. In order to determine effectively some classes of 
stochastic indefinite integrals and to obtain explicit solutions of some types of 
stochastic differential equations, it is necessary to use the Ita's formula, so called 
the Ito's differential role. 

Let (a(t),t E [a,b]) and (b(t),t E [a,b]) be measurable processes adapted to the 
family of sub-u-algebras (:Ft, t E [a, bD, such that 

fh lh la la(t)1 dt < 00 a.s., a Ib(tW dt $ 00 a.s .. 

Then the stochastic process 

x(t) = x(a) + it a(u) du + i
U 

b(u) dw(u) 

is called the Ita's process. It is measurable, adapted to (.rt, t E [a, b]) and a.s. 
continuous. Here x(a) is a random variable, .ra-measurable and independent of 
wet) - w(a) for all t ~ a. 

Definition 4. If for every s, t such that a $ s < t $ b, 

x(t) -x(s) = It a(u)du+ It b(u)dw(u) a.s., 

then the stochastic process x has the stochastic differential dx(t) on [a,b], given by 

dx(t) = aCt) dt + bet) dw(t). 
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One can easily conclude that x(t) is measurable, adapted to (:Ft, t E [a,b)) and 
a.s. continuous. 

Theorem 6. (The loo's formula) Let dx(t) = aCt) dt + bet) dw(t) and let 
J(t, x) be a nonrandom function defined on [a, b] x R, continuous togetber witb its 
derivatives Jf, J~, J:iz· Then the process J(t, x(t» has the stochastic differential, 
given by 

1 
dJ(t, x(t» = J:Ct, x(t» dt + J~(t, x(t» dx(t) + '2 J:z(t, x(t» b2(t) dt. 

For the proof see [1], [8], [9], [11], [28], [30], for example, and first of all [17]. 

In this formula the surprise is the last term because by the standard calculus 
. formula for total derivatives the term! J:iz(t,x(t» ~(t) dt would not appear. This 

correction term arises from the nondifferentiability of the Wiener process. Since 

dJ(t, x) ~ J(t + dt, x + dx) - J(t, x} 

~ JHt,x)dt + J~(t,x)dx + ~ J:z(t,x) (dx)2, 

and Ew2(t) = t, we obtain (dW(t»2 ~ dt. So, 

(dx(t»2 = [a(t) dt + bet) dW(t)]2 ~ b2(t) dt. 

Note that the Ita's formula asserts the two proce8ieS: J(t, x(t» - J(a, x(a» and 

it [J!(s,x(s»+ J~(s,x(s» a(s)+~ J:z(s,x(s» ~(s)] ds+ it J~(s, x(s» b(s) dw(s), 

which are stochastically equivalent. 

Now we are in a position to find the integral I: w(s) dw(s). Since wet) has the 
stochastic differential for a == 0, b == 1, applying the Ita's formula to the function 
J(x) = X2, we have dw2(t) = dt + 2w(t) dw(t). Thus we obtain 

[t 1 1 
lo wet) dw(t) = '2 w2 (t) - '2 t, 

which is a martingale. 
The Ita's formula can be used to estimate some types of stochastic integrals. 

Thus, for a process «cpt, :Ft), t E [0, T)), such that \cp(t)\ ::; K a.s. for all t E [a, b], 
by applying the Ita's formula to the function J(x) = x2m, mEN, we obtain (see 
[8], [30]) 

E(1
t 
<p(s)dw(s)f

m 
::; K2m(2m -I)! !tm. 

If cp is unbounded a.s., but I: Ecp2m(t) dt < 00, then (see [8], [28], [30)) 

E(1t <pes) dw(s)f
m 

::; [m(2m _1)]mtm- 1 lot Ecp2m(s) ds. 
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The Ita's formula can be easily generalized to a function f(t,Xl,X2, ... ,xn), de­
fined on [a, b] x Rn, continuous together with its derivatives it, f~/o, I:/oz;, 1 ;5 
k,j ;5 n. H dxlc(t) = alc(t)dt + blc(t)dw(t), 1 ;5 k;5 n, then the process 
f(t, Xl (t), ... ,xn(t» has the stochastic differential 

n 

df(t, x(t» = fHt, x(t» dt + L f~. (t, x(t)) dxlc (t) 
Ie=l 

1 n n 

+ '2 LLI:/o:r:j(t,x(t»b1c(t)bj (t)dt, 
1e=1;=1 

where x(t) = (Xl (t),X2(t), ... ,Xn(t» (see earlier cited references). 

Thus, if the stochastic processes Xl (t) and X2(t) have the stochastic differen­
tials dxi(t) = ai(t)dt + bi(t)dw(t), i = 1,2, then the product Xl(t)X2(t) has the 
stochastic differential 

d(Xl(t)X2(t» = Xl(t) dx2(t) + X2(t) dxl(t) + bl(t) ~(t) dt (4) 

= [Xl(t) a2(t) + X2(t) al(t) + bl(t) ~(t)] dt + [XI(t) ~(t) + X2(t) bl(t)] dw(t). 

The most important role of the Ita's calculus is that it can be generalized to 
a stochastic integral, replacing the Wiener process by a more general one. For 
example, let «Zt,.1"t),t E [a,b]) be a sample-continuous second-order martingale. 
Then by the supermartingale-decomposition theorem of Meyer (see [36]) there ex­
ists a sample-continuous a.s. increasing process «Ut,.1"t),t E [a,b]) with u(a) = 0 
a.s., such that for a stochastic process (cp(t), t E [a, b]), measurable, adapted to 
(.1"t, t E [a, bD and 

1b cp2(t) duet) < 00 a.s., 

analogously to the procedure in Theorem 1, the loo's integral (see [27]) 

J(cp) = 16 

cp(t)dz(t) 

can be defined with the help of step functions CPn, as 

where J(CPn) 4 J(ep) as n -+ 00. 

The stochastic indefinite integral x(t) = f: ep(s) dz(s) can be defined adequately. 

H the process x(t) has the stochastic differential dx(t) = aCt) dt + bet) dz(t) , then 
the analogue Ita's formula, first proved in [27], has the form 

1 
df(t,x(t» = f:(t,x(t» dt + f~(t,x(t» dx(t) + '2 f::r:(t, x(t» b2(t) duet). 
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2. Stochastic differential equations 

2.1. Definition of the Ita-type stochastic differential equation. The sto­
chastic differential equation (shorter SDE) of an unknown n-dimensional process 
x = (x(t), t E [to, T]) with the initial value 11 is given by 

dx(t) = aCt, x(t» dt + bet, x(t» dw(t), x(to) = 11 a.s., t E [to, T], (5) 

where w = (Wt, t E R) is an m-dimensional Wiener process, 11 is an n-dimen­
sional random variable, stochastically independent of w in the sense that random 
variables Wt and 11 are stochastically independent for all t, and a : [to, T] x Rn -t Rn, 
b : [to, T] x Rn -t Rn X Rm are non-random functions, Borel-measurable on their 
domains. 

Because of simplicity, we shall confine ourselves to the one-dimensional case. So, 
x, W and 11 are one-dimensional, and a : [to, T] x R -t R, b : [to, T] x R -t R. 

Denote by :Ft the a-algebra generated by 11 and Wt, i.e. the smallest a-algebra 
with respect to which 11 and the random variables W., s ~ t, are measurable, such 
that Wt - W. is independent on :F. for all t 2: s. Thus the Wiener process W is 
adapted with respect to the increasing family of sub-a-algebras (:Ft, t E [to, T]), 
and '7 is :Fto-measurable. 

Denote by 'P the space of stochastic processes cp = (cp(t), t E [to, T]), measurable 
and adapted to (:Ft, t E [to, T]), such that 

p{ rT Icp(t)\2dt < oo} = 1. 
ito 

Definition 5. The measurable stochastic process x = (x(t), t E [to, T]) is a 
strong solution of the SDE (5) if: 

(i) x(t) is :Ft-measurable for each t E [to, T]j 
(ii) aCt) = a(t,x(t», bet) = b(t,x(t», such that 

rT \a(t) \ dt < 00, rT \b(t)\2 dt < 00 a.s.; 
ito ito 

(iii) x(to) = '7 a.s.; 
(iv) the equation (5) holds a.s. for eac.;' t E [to, T]. 

Since dx(t) = aCt) dt + bet) dW(t) cl.S. for all t E [to, T], this is, therefore, the 
stochastic differential of the process x. 

The SDE (5) has the equivalent integral form 

x(t) = '7 + rt a(s, x(s» ds + rt b(s, x(s» dw(s), t E [to, TJ. (6) 
ito ito 

Because of (i) and (il) from Definition 5, the integrals on the right-hand side 
of (6) are well defined: since b E 'P, then It: b(s) dW(s) is the It6-type stochastic 
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integral; since a is measurable and absolutely integrable random function adapted 
to (Ft, t E [to, T]), It: a( s) d( s) exists as the Lebesgue integral with the parameter w. 
Both integrals are defined ,uniquely up to the stochastic equivalence and therefore 
the solution x is also determined up to the stochastic equivalence. 

Moreover, since both integrals in (6) are a.s. continuous, then x is a.s. continuous. 
For this, by Doob's theorem [7] we shall always assume that we have ' chosen a 
measurable, separable and a.s. continuous version of the strong solution. 

Definition 6. The SDE (6) has a unique strong solution if for any two strong 
solutions Xl and X2, 

P{ w: Xl(t) = X2(t), t E [to,T]} = 1. 

This is equivalent to P{sUPtE(to.T) IXI (t) - x2(t)1 > O} = O. 
Example. Solving formally the SDE 

dx(t) = x(t) dw(t) , x(O) = fJ a.s., t ~ 0, 

as an ordinary differential equation, we obtain x(t) = fJew(t). By applying the Ito's 
formula, we get 

dx(t) = llew(t) dw(t) + ! fJew(t) dt # x(t) dw(t). 
2 

Therefore, the solution must have some other form. We shall express as x(t) = 
llew(t)+'P(t), where cp is an unknown function. Using again the Ita's formula, we 
obtain 

dx(t) = fJew(t)+'P(t) cp' (t) dt + fJew(t)+<p(t) dw(t) + ! llew(t)+<p(t) dt 
2 

=: x(t)[ cp'(t) + 1/2Jdt + x(t) dw(t). 

So, cp'(t) + 1/2 = 0, i.e., cp(t) = -1/2 + c, c = const. The initial condition easily 
gives c = O. Thus, x(t) = llew(t)-t/2, t ~ O. 

2.2. Existence and uniqueness of a solution. Following the ideas of Ita [16] 
we give the basic existence and uniqueness theorem of a solution of the SDE (6). 

Theorem 7. Let w = (wt. t E R) be a standard Wiener process and 7J be a 
random variable, independent of w. Let also a : [to, T] x R -t R and b : [to, T] x R 
-t R be Borel-measurable functions, satisfying the Lipschitz condition and the 
condition on the restriction on growth on the last argument respectively, i.e. for 
all (t,x), (t,y) E [to,T] x R there exists a constant L > 0 such that 

la(t,x) - a(t,y)1 + Ib(t,x) - b(t,y)1 :$ Llx - yl, 
la(t,x)12 + Ib(t, x)12 :$ L2( 1 + x2

): 

Then there exists a unique a.s. continuous strong solution of the SDE (6). 

(7) 

(8) 
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Proof. The theorem can be proved by Picard-Lindelof method of iterations, 
modeled after the corresponding proof for ordinary differential equations (see, for 
example, [I], [8], [9], [14], [16], [30], [45]). For the proof here we shall apply the 
Banach fixed point theorem (see [10]). 

First, let us suppose that EI7112 < 00. Denote by B a space of measurable pro­
cesses x, defined on [to, Tj, adapted to the nondecreasing family of sub-O'-algebras 
(.rt, t E [to, T]), satisfying the condition SUPto~t~T Elx(t)12 < 00. Then B is the 
Banach space with the norm 

( )

1/2 
IIxll = sup Elx(t)12 . 

to~t~T 

Let us define an operator S such that for x E S, 

Sx(t) = 71 + 1t a(s, x(s» ds + l\(s, x(s» dw(s) , t E [to, T]. (9) 
to to 

Since a and bare Borel-measurable functions and x is a measurable process, adapted 
to (.rt, t E [to, TJ), it follows that the processes aCt) = aCt, x(t» and bet) = bet, x(t» 
also have these properties. Moreover, Schwarz inequality and (8) imply 

i
T 2 

El a(s,x(s»dsl 
to 

~ (T - to) rT Ela{s,x{s»12 ds ~ a + (3 sup Elx{t)12 < 00; 
}to to~t~T 

to~~~T Ell: b{s,x(s)} dw(s) 12 

= sup t Elb(s, x(s)W ds ~ 'Y + 8 sup Elx(t)12 < 00, 
to~tS;T ito toS;tS;T 

where a, /3, l' 8 are some constants depending on L, to and T. Accordingly, since 
at, bE P, the integrals in (9) are well defined. 

Let us prove that S : B -t B. If x E 13, then Sx(t) is a measurable process, 
.rt-measurable for every t E [to, T] and a.s. continuous. Also, 

EISx(tW ~ 3EI7112 + 3(T - to) t Ela(s, x(s»12 ds + 3[t Ib(s; x(s»12 ds 
ito to 

Thus, 

~ 3EI1l12 + 3(T - to + 1)L2 t (1 + Elx(s)12) ds 
ito 

~ 3EI1l12 + 3(T - to + 1)L2(T - to)(l + IIx1l2) = M. 

( )

1/2 
IISxll = sup EISx(t)12 < 00, 

to9~T 
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and therefore S: B ~ B. 
In the next step of the proof we shall show that there exists a unique fixed point 

of the operator S. Indeed, for every Xl! X2 E B we have 

EISXl(t) - SX2(t)12 

:5 2EI rt[a(S,Xl(S» -a(s,x2(s»]dSr +2EI rt[b(S,Xl(S» -b(s'X2(s»] dws I
2 

~ ~ 
:5 2(T - to)L2 rt Elxl (s) - x2(s)12 ds + 2L21t Elxl (s) - X2(SW ds 

ho ~ 
:5 KI/Xl - x2112 (t - to), 

where K = 2(T - to + 1)L2. Now it is easy to prove by induction that 

ElsnX1(t) - snX2 (tW :5 K rt Elsn-lxl(s) - sn-IX2 (sWds 
lto 

Kn(t - to)n 2 
:5 ... :5 rI/Xl - X211, t E [to, T] n E N, 

n. 
such that 

11 n n 112 Kn(T - to)n 11 112 S Xl - S X2:5 n! Xl - X2 , n E N. 

Since Kn(T - to)n In! ~ 0 as n ~ 00, then there exists no EN such that Kno(T_ 
to) no Ino! = q < 1. Thus sno is a contraction. By one version of the Banach fixed 
point theorem it follows that the operator S has a unique fixed point X E B, i.e., 
X = Sx. On the other hand, 

x(t) = '1 + rt a(s,x(s»ds + rt b(s,x(s»dw(s) a.s., t E [to,T]. 
lto lto 

Since x(to) = '1 a.s., from Definition 5 holds that X is a unique strong solution of 
the SDE (6), moreover satisfying SUPto<t<TElx(t)j2 < 00. Also, it is easy to show 
that - -

sup Elx(t)12:5 3EI'112e3K(T-to). 
t09ST 

Let us prove now the existence of a solution of the SDE (6) without the as­
sumption EI'1I2 < 00. Denote by I;: = 1{1'1ISN} and '1N = '11;:. Obviously, '1N 
is a random variable, independent with respect to w and .rto-measurable. Since 
EI'1NI2 :5 N2 < 00, the SDE 

xN(t)='1N + rta(s,xN(s»dS+ rt b(s,xN(s»dW(s), tE[to,T] (10) 
lto lto 

has a unique solution. For N' > N it follows that 

xN' (t) - xN (t) = '1N' -'1N + lt [a(s,xN' (s» - a(s,xN(s))] ds 
to 

+ rt[b(s,xN' (s» - b(s,xN(s»] dW(s). 
lto 
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Since (1JN' - 1JN)If = 1JN'If _1JN If = 0, we obtain 

sup (xN' (t) - xN(t»)
2 
I: 

to:9:Su 

$2 sup (I: f
t
[a(s,xN'(s»_a(s,xN(S»]ds)2 

to:St:Su ito 

+2 to~~~u (I: l:[b(S,XN'(S» - b(a,xN(a»]dw(a)f 

$ 2(T - to) r I:la(s, xN' (s» - a(s, xN (s»12 ds ito 
+ 2 sup I ft I:[b(s,xN' (s» - b(a,xN (a»1 dw(s)1

2
. 

to:St:Su ita 
By applying the Lipschitz condition (7) and Doob's inequality (3), we finally get 

E sup IxN' (t) - xN (t)12 I: $ 2(T - to + 4)L2 r E sup IxN' (v) - xN (v)12da. 
to:St:Su ito to:StI:S. 

Now we need the well-known Gronwall's lemma: if u : [a, b] -t R and v : [a, b] -t 
R are non-negative integrable functions and L = const > 0, then 

u(t) $ vet) + L it u(s)ds ==> u(t) $ vet) + L it eL(t-S)v(s)ds, t E [a,b]. 

Especially, if vet) == const = u(a), then 

u(t) $ u(a) + L it u(s)ds ==> u(t) $ u(a)eL(t-c) , t E [a, b1. 

IT u(a) = 0, then u(t) = 0 for all t E [a, b1. 
By applying the preceding lemma, it follows that 

E sup IxN
' (t) - xN (tW I: = 0, 

to:St:ST 

which implies P{SUPto:ST:St IxN' (t) - xN (t)12 = O} = O. Now, 

P{ sup IXN' (t) - xN(t)12 > O} $ P{I1J1 > N} -t 0 as N',N --+ 00. 
to$t:ST 

Therefore, {xN (t)} is a Cauchy sequence converging in probability for all t E 
[to, T]. So, there exists .Tt-measurable process (x(t) , t E [to, TD, such that 

SUPto9$T IxN (t) - x(t)1 r~. 0 as N --+ 00. Since 

i
T la(s,x(s» - a(a,xN(s)W ds + iT Ib(a,x(a» - b(s;xN(a»12 da 
~ ~ 

$2L2 fT sup Ix(u)-xN(u)12ds 
ito to:Su:S' 

$ 2L2(T - to) sup Ix(t) - xN (t)12 ~ 0 as N -t 00, 
to9:ST 
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then for every fixed t E [to,T], 

rt a(s,xN(s»ds ~ it a(s,x(s» ds, 
lto to 

rt b(s,xN(s))dw(s) ~ rt b(s,x(s»dw(s). 
lto lto 

holds. The limits in probability on both sides of the equation (10) show that x(t) 
satisfies the SDE (6) a.s. and, therefore, it is its strong solution. 

It remains to prove a uniquen~ss of a solution of the SDE (6) if EI'712 < 00 does 
not hold. 

Let Xl and X2 be two solutions of this equation. Then for every t E [to,T], 

XI(t) - X2(t) = it [a(S,XI (s» - a(S'X2(S))J ds + it [b(S,XI (s» - b(S,X2(S))] dW(s) 
~ ~ . 

holds a.s. Denote 

IN(t) = {I, IXI(s)/.::; N, IX2(S)1 ::; N, sE [to,t], 
0, otherwlSe 

Since IN(t)IN(s) = IN(t) for all s ::; t, then 

IN(t)[XI(t) - X2(t)] = IN(t) rt IN(s) [a(s, Xl (s» - a(s, X2(S»] ds 
lto 

+ IN(t) it IN(S)[b(s,XI(S» - b(s, X2(S»] dw(s). 
to 

Thus 

IN(s)la(s,xI(S» -.a(S,X2(S»/::; IN(S)L/XI(S) -x2(s)l::; 2LN, a.s., 

and analogously for b. If we apply the dominated convergence theorem, we obtain 

EIN(t)/Xl(t) - X2(tW 

::; 2(t - to) rt E{IN(s)la(s, Xl (s» - a(s,x2(S)W} ds 
lto 

+ 2 rt E{IN(S)/b(s,XI(S» - b(s, X2(S)W} ds 
lto 

::; 2(T - to + I)L21t E{IN(S)lxI(S) - x2(s)12 }ds. 
to 

Applying now the Gronwall's lemma we get E{IN(t)lxI(t) - X2(t)/2} = 0 for all 
t E [to, Tj, which implies P{ IN(t)XI (t) = IN(t)x2(t) } = 1. From there we easily 
conclude 
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Since Xl i X2 are a.s. continuous on [to, Tj, they are a.s. bounded. It means that the 
right-hand side of the last inequality goes to zero by taking N -+ 00 and, therefore 
P{X1(t) t X2(t)} = 0 for all t E [to, Tj, i.e. 

P{ sup IX1(t) - x2(t)1 > O} = O. 
to$t$T 

Thus the proof is complete. 0 

Clearly, Theorem 7 gives only sufficient conditions for the existence and unique­
ness of a solution of the SDE (6). Note that if the functions a and b are defined on 
[to, 00) x R and if the assumptions of Theorem 7 hold on every finite sub interval 
[to, T] C [to, 00), then the SDE (6) has a unique solution, defined on the entire half­
line [to,oo), called a global solution. Naturally, in some cases the SDE (6) could 
have a local solution, particularly if the assumptions of Theorem 7 do not hold, as 
in the following example. 

Indeed, the coefficients od the SDE 

dx(t) = _~e-2Z(t)dt + e-z(t)dw(t), x(to) = 11 a.s, t ~ to, 

do not satisfy any Lipschitz condition or any growth condition for X < O. However, 
there exists a unique local solution x(t) = In[w(t) - w(to) + et}], defined on the 
random interval [to, T), where the random variable T is determined with T = inf {t : 
Wt - Wto + et} < O} (see [IJ, [32]). Naturally, we use the Ito's formula to prove that 
x(t) is the solution of this equation. 

The next theorem, known as the local uniqueness theorem, plays a very important 
role in the study of stochastic differential equations (see, for example, [11, [81, [9]). 

Theorem 8. Let the functions a, and b., i = 1,2, satisfy the assumptions of 
Theorem 7 and let there exist N > 0 such that a1(t,x) = a2(t,x), b1(t,X) = ~(t,x) 
for all (t,x) E [-N,N]. Let x,(t), i = 1,2, be a solution of the SDE 

dx,(t) = a,(t, x,(t)) dt + b,(t, x.(t)) dw(t) , x,(to) = 11 as., t E [to, Tj. 

Denote by T, the first time, after to, such that x,(t) intersects R \ [-N, N] if such 
time t E [to, T] exists, and T, = T otherwise. Then . 

P{ 7'1 = 7'2} = 1 and P{ sup IX1(t) - X2(t) \ = O} = 1. 
tO$t$'7'l 

Proof: Denote by 

,p1(t) = {1, SUPto$t$t IX1(t)\ ~ N, 
0, otherwise, 

Let ,p1(t) = 1. Then ,p1(S) = 1 for all to ~ s ~ t ~ 7'1 and here a1(s,x1(S)) = 
a2(S, Xl (s)) a.s., b1(s, Xl (s)) = ~(s, Xl (s)) a.s .. From integral form of the SDE-s it 
is easy to obtain 

,p1(t)[X1(t) - X2(t)]2 ~ 2{ rt ,p1(S)[~(S,X1(S)) _ ~(s,x2(s))]ds} 2 

l to 

+ 2{ rt ,p1(S)[ ~(s, X1(S)) - b2(s, X2(S»] dW(s) } 
2

• 
lto 
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By applying the Lipschitz condition (7), it follows that 

ET/Jdt) [Xl(t) - X2(t)]2 $ cl: E,pl(S)[Xl(S) - X2(S)]2 ds, 

where c is a constant depending on L, T and to. Then from Gronwall's lemma 

holds. From that, 
P{ sup IXl(t)-X2(t)I=O}=1, 

to$t$n 
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and therefore Xl(t) = X2(t) a.s. for t E [to,Tl]. Consequently, P{T2 ;?: Tl} = 1. 
Analogously we get P{Tl $ T2} = 1, which completes the proof. 0 

Theorem 8 makes it possible to express the next stronger existence and unique­
ness theorem. 

Theorem 9. Let a : [to, T] x R ~ R, b : [to, T] x R ~ R be measurable 
functions satisfying the assumptions: 

(i) there exists a constant K > 0 such that for all (t, x) E [to, T] x R, 

la(t,x)/2 + /b(t,x)/2 $ L2(1 + /x/2)j 

(ll) for any N > 0 there exists a constant LN > 0 such that for all (t, x), (t, y) E 
[to, T] x [-N, N), 

/a(t,x) - a(t,y)/ + /b(t,x) - b(t,y)/ $ LN/X - y/. 

If a standard Wiener process w and a random variable TJ are independent and 
E/TJI2 < 00, there exists a unique solution (X(t) , t E [to, T]) of the SDE (6), satisfying 
the initial value x(to) = TJ a.s. 

The proof can be found in [9]. 

Let us give some important notions. Remark that Theorem 7 can be extended 
to the SDE, similar to the SDE (6), in which the coefficients a: n x [to, T] x R ~ R 
and b : n x [to, TJ x R ~ R are random functions, Borel measurable on their 
domains, adapted to the family of sub-u-algebras (Ft, t E (to, T]) generated by w, 
such that the stochastic integrals in this SDE exist in the sense of Definition 5-(ii). 

Theorem 10. Let (TJ(t),t E [to,T)) be a stochastic process, independent ofw, 
adapted to (Ft, t E [to, T]), such that SUPtE[to,T) EITJ(t)/2 < 00. Let also the random 
functions a and b satisfy a.s. the Lipschitz condition (7) and the condition of the 
restriction ongrowtb (8). Then there exists a unique solution (x(t),t E [to,T)) of 
theSDE 

x(t) = TJ(t) + rt a(w,s,x(s» ds + rt b(w,s,x(s»dw(s), t E [to,T], ito ito 
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with SUPtE[to,T] Elx(t)12 < 00. Moreover, if the process '7(t) is a.s. continuous, then 
the solution x(t) is a.s. continuous. 

A theorem analogous to Theorem 9 can also be proved. 

Note that the approach given by Theorems 7, 8, 9 and 10 is appropriatelly 
extended to analyze the existence and uniqueness problem for special classes of 
stochastic differential equations, stochastic functional differential equations, sto­
chastic integral and integrodifferential equations containing the Ito's integrals (see 
[3], [4], [5], [9], [11], [25], [26], [30], [37], for example, and many others). 

Remember again that Theorem 7 gives only sufficient conditions for the existence 
and uniqueness of the solution of the SDE (6). In fact, there is a number of papers 
in which various sufficient conditions, essentially other than the conditions (7) and 
(8), are considered .. Note that many new theorems present a direct extension of the 
corresponding deterministic results (see, for example, [3], [4], [5], [9], [181, [22], 
[28], [45], [46]). In many papers different kinds of contractions are used instead of 
the Lipschitz condition, for example in [24], [38]. 

Naturally, the permanently current problem is the relationship between ordinary 
and stochastic differential equations, especially for applications to stochastic control 
problems and to stochastic filtering problems (see [30], [42], [43], [44], for example). 

An important fact is that the problem of the existence and uniqueness of solu­
tions of the ItO-type stochastic differential equations can be extended to stochastic 
differential equations with respect to martingales and stochastic measures (see, for 
example, [6], [10], [11], [14], [25], [27], [29], [31], [34], [41], [47]), and also to 
stochastic differential equations with semimartingales (see [22], [33], [47]). 

One of the most important problems in qualitative analysis of solutions for dif­
ferent classes of stochastic differential equations is the stability problem, including 
the asymptotic behavior of solutions when t -? 00 and the existence of singular 
solutions (see [1], [2], [3], [4], [5], [13], [14], [37], [46], for example). By using 
the concept of Lyapunov function and the theory of stochastic and deterministic 
inequalities, several comparison theorems are developed in many papers and books 
(see, for example, [9], [13], [14], [28], [46]). 

2.3. Stochastic ditTerential equations depending on parameters. Now we 
give the basic theorem which describes the stochastic differential equation of the Ito 
type depending on a parameter a E A, where A is a parameter set. This theorem 
shows that the change in the solution can be made arbitrarily small by making the 
change in the parameter sufficiently small. 

Theorem 11. Let the random functions y/Q, aQ , bQ satisfy the assumptions of 
Theorem 10 for any parameter a E A, with the same constant L in (7) and (8). Let 
also the process (Y/a(t), t E [to, T]) be a.s. continuous and SUPtE[to,T] EI'7a(t)j2 < c 
for all a E A, c =const .. Suppose that for any N > 0, ao E A, f > 0 and t E [to, T], 

lim P{ sup [laa(w, t, x) - aQo(w, t,x)1 + Iba(w, t, x) - bao(w, t,x)l] > f} = 0 
Q-H~O Ixl:SN 

" , 
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and 
lim sup Ell1a(t) -l1ao(t)12 = O. 

a-tao tE[to.T] 

H (xa(t), t E [to, TD is a solution of the SDE 

xa(t) = l1a(t) + it aa(W,S,xa(s)) ds + it ba(w, S,Xa(8» dW(8), t E [to, TJ, 0 
to to 

then limo ~ 00 SUPtE[to.T] Elxa(t) - xao(t)12 = O. 

Proof. Denote 

xa(t) - Xao (t) = {a(t)"+ it [aa(W, S,Xa(8» - aa(W, S,Xao{S»] ds 
to 

where 

+ it ba(w, S,Xa(8» - ba(w, s,Xao(S»] dw(s), 
to 

Using the Lipschitz condition (7) on the first identity and applying the usual sto­
chastic isometry, we easily obtain 

where K = 3(T - to + 1)L2. By Gronwall's lemma it follows that 

Elxa(t) - xao(tW ~ 3EI~a(tW + K rt eK(t-s) EI~a(s)12 ds. 
ito 

Therefore, it follows from the last inequality that the theorem will be proved if we 
show that SUPtE[to.T] EI{a(t)12 -t 0 as 0 -t 00. 

Since 

Ellt [aa(w, s, xao (s» - aao (w, S, Xao(8»] dsl2 
to 

~ (t-to) rt El aa(w,s, Xao (s» -aao(W,S,xao (s»12ds, 
ito 

by applying the condition (8) we obtain that the last integrand is bounded by 
2L2(1 + IXao (t)l2). Since E ft~ (1 + IXao (t)12 dt < 00, it follows from the conditions 
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of the theorem that this integrand also converges to zero in probability, as a -+ ao. 
So, by the Lebesgue bounded convergence theorem we conclude 

sup El {t[aa{W,S,Xao{s))-aao(W,S,Xao(S))]dsI2 
tE[to,Tl ito 

~(T-to) {T Elaa{w,s,xao(s»-aao(w,S,Xao(s)12ds-+0 as a-+ao. 
ito 

Similarly, using Doob's inequality (3) and the previous arguments, we have 

E sup { {t[ba{W,S,Xao{S»-bao{W,s,xao{S»]dW{s)r 
tE[to,Tl ito 

~4 (T Elba(w,s,Xao{s»-bao{w,s,xao(s»12ds--+O as a--+ao. 
ito 

This completes the proof, because SUPtE[to,Tl Ell1a(t) -l1ao{t)12 -+ 0 as a --+ ao. 0 

Note that there are suitable versions of the preceding theorem for different classes 
of stochastic differential equations. So, for the SDE (6) one can state a theorem 
which ensures the continuous dependence of the solution on the initial value (to, 11 ) 
(see [9], [24]). 

The more important application of Theorem 11 is for a discrete parameter set, 
i.e., if A = {an, n = 0,1, ... } and an -+ ao as n --+ 00. Then the following theorem 
holds: 

Theorem 12. Let the random functions l1n{t), anew, t,x), bn(w, t,x), n = 
0, 1, 2, ... , satisfy all conditions of Theorem 11 for n and 0 instead of a and ao 
respectively. H {Xn(t), t E [to, T]) is the solution of the SDE 

xn{t) = l1n(t) + (t anew, s, Xn{S» ds + (t bn(w, s, xn(s» dW{s), t E [to, T], 0 ito ito 
then 

liro sup E\xn(t) - XO(t)\2 = o. 
n--+oo tE[to,TJ 

From purely theoretical point of view, and much more from the point of view of 
various applications, this theorem gives a possibility to study the solution xo(t) of 
the SDE (12) for n = 0 by finding at least an approximate solution Xno (t) of the 
SDE (12) for n = no. 

This theorem enables the construction of some iterative methods for solving 
the SDE (6), or the SDE (12) for n = 0, and to estimate an error of the n-th 
approximation of the solution of the original equation. There is a number of papers 
in which various sufficient conditions of closeness of the random or non-random 
functions 110, ao, bo with the functions l1n, an, bn respectively, are given, such that 
xn(t) --+ x(t) as n --+ 00 in probability or in p-th mean sense or with probability 
one (see, for example, [3], [9], [11], [23], [26J, [45]). 
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2.4. The Markov property. Now we describe in short one ofthe most important 
properties of the solutions of the SOE (6), known as the Markov property. 

Having in mind that a solution x(t) ofthe SOE (6) must be Ft-measurable, it can 
be interpreted as a stochastic process determined by non-random functions a and 
b and by random elements 1] and W.,S $ t. So, x(t) depends on 1J and W.,S $ t. 
Moreover, the construction of x(t), especially the construction of a solution by 
Picard-Lindelof method of iterations, shows that it depends only on W. - Wto for 
to $ s $ t (see [IJ, [8]). Thus, x(t) can be expressed as a functional 

x(t) = 1(1]j W. - Wto, to $ s $ t). 

This fact makes possible a description of the Markov property of the solution of 
the SOE (6). 

Definition 7. The stochastic process (x(t),t E [to,TJ) is said to be a Markov 
process with respect to (:Ft, t E [to,T)) if for all to $ s ::S t ::S T and for any set 
AEB 

P{ x(t) E A/:F.} = P{ x(t) E A/x(s)} a.s. 

holds. 

Theorem 13. Let the conditions of Theorem 7 hold with E/1J/2 < 00 and let 
(:Ft, t E [to, T]) be the increasing family of the sub-u-algebras generated by 1] and 
w. Then the unique solution (x(t),t E [to,TJ) of the SDE (6) is a Markov process 
with respect to (:Ft, t E [to, T]). 

For a detailed proof see [8], for example. We give only a short survey of the 
proof. 

Together with the SOE (6) we consider the same equation, now on an interval 
[s,T] C [to,T], i.e.! for t E [s,T] we have 

x(t)=x+ lta(u,x(u»du + It b(u,x(u» dw(u) , x(s)=x a.s. 0 

For the given initial value x(s) = x a.s., let (xs.",(t),t E [s,T]) be a solution of the 
SOE (13). From the fact that the SOE (6) has a unique solution (x(t) , t E [to, Tj), 
it follows that x(t) = x •. z(t) a.s. for all t E [s,T]. Also, for t E [s,T], xs.z(t) is 
completely determined as a functional x8 .",(t) ~ I(xj Wu -Ws, u E [s, TJ). Moreover, 
since x(s) is :F.-measurable and increments Wu - W., u E [s, t], are independent on 
:F., for any set A E B it follows that P{x(t) E A/:F.} = P{x(t) E A/x(s)} a.s .. 
Therefore, the solution of the SOE (6) is a Markov process. 

For to $ s :$ t $ T and for any set A E B, the function 

p(s,xjt,A) = P{x(t) E A/x(s) = x} 

is called the transition probability function. Clearly, considering s and x fixed, 
pes, Xj t, A) is precisely the distribution of the solution x •. ",(t) of the equation (13). 
Also, pes, Xj t, A) has the following properties: it is Borel measurable in x for fixed 
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s, t, Aj it is a probability measure in A for fixed s, x, tj the function p satisfies the 
Chapman-Kolmogorov equation: for all x E R and s < u < t, 

p(s,xjt,A) = I: p(s,Xju,dy)p(u,Yjt,A) 

holds. 

Recall that a Markov process is said to be homogeneous if the transition proba­
bility functions are stationary, i.e., pes, Xj t, A) = <p(t - s, x, A). 

It is easy to see that if the SDE (6) is autonomous, that is a(t,x) = a(x), 
bet, x) = b(x), then its solution will be a homogeneous Markov process. 

Moreover, in addition to the conditions of Theorem 7, if the functions a(t,x) and 
b(t, x) are supposed to be continuous, then a solution of the SDE (6) is a diffusion 

. process, i.e., a stochastic process with continuous sample functions whose transition 
probability functions pes, Xj t, A) have certain infinitesimal properties as t --+ S (see, 
for example, [1], [8], [9], [10], [45]). 

The density function of the transition probability function is called the transi­
tion density function. Under some very strict conditions of differentiability of the 
functions a and b, beginning from the Chapman-Kolmogorov equations one comes 
to the well-known backward and forward parabolic equations, alternatively called 
diffusion equations, whose solutions are transition density functions. Note that the 
forward equation is also known as the Fokker-Planck equation. Naturally, the solu­
tion of the SDE (6) is completely described if the transition probability functions, 
i.e., the transition density functions, are known. 

Emphasize an important fact that the theory of diffusion processes is applied to 
study several phenomena in physics, astronomy, biology, etc. The modern theory of 
the Markov processes, primarily a semigroup theory, is engaged in the studies of the 
solutions of diverse classes of stochastic differential equations, which are diffusion 
processes. 

2.5. Solvable stochastic differential equations. We say that the SDE (6) is 
explicitly solvable if its solution can be represented by quadratures, i.e., in terms of 
ordinary (Lebesgue) and Ito's stochastic integrals. 

I. Just as with ordinary differential equations, a lot of theory is developed to 
describe solutions of linear 1t00type stochastic differential equations, first of all an­
alytic properties of the solutions, including the overall behavior of sample functions 
on the interval [to, (0). Now we give the procedure to obtain explicit solutions of 
homogeneous and non-homogeneous linear stochastic differential equations. 

Let a: [to,oo) --+ R and b: [to,oo) --+ R be Borel-measurable bounded 
functions. Then the equation 

dx(t) = a(t)x(t) dt + b(t)x(t) dw(t), x(to) = '1 = const. a.s., t ~ to. 

is said to be the homogeneous linear SDE. If '1 = 0 a.s., this equation has a trivial 
solution x(t) = 0 a.s. Since the conditions of Theorem 7 hold, then there exists a 
unique solution such that x(t) > 0 a.s. for '1 > 0 a.s.j x(t) < 0 a.s. for 11 < 0 a.s. 
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H we put yet) = Inx(t) for 1J > 0 a.s., or yet) = In( -x(t» for 1J < 0 a.s., by Ito's 
formula we have 

1 1 ( 1) dy(t) = x(t) dx(t) + 2 - x(t) b
2
(t)x(t) dt 

i.e., 

dy(t) = [a(t) - ~b2(t) ] dt + bet) dw(t) , y(to) = In 1J a.s. 

Thus we obtain the stochastic differential of the process yet) and, therefore 

yet) = In 1J + [t [ a(s) _ ~b2(s) ] ds + [t b(s) dw(s) , 
ito ita t;::: to. 

From that the homogeneous linear SDE has the solution 

t;::: to. 

Especially, the Langevin SDE 

dx(t) = -ax(t) dt + f3 dw(t) , x(O) = 1J a.s., t ;::: 0, 

where a > 0 and f3 are constants, has the solution 

x(t)=e-at [1J+ Lt

ea8f3 dw(s)] , t;:::O. 

For normally distributed or constant 1J, the solution x(t) is a Gaussian process, the 
so-called Ornstein-Uhlenbech velocity process (see [1], [8]). 

The non-homogeneous linear SDE 

dx(t) = [a(t) + a(t)x(t)] dt + [f3(t) + b(t)x(t)] dw(t) , (14) 

x(to) = 1J a.s., t ;::: to, 

can be solved analogously, putting yet) = <J1-1(t) x(t), where <J1-1(t) is a particular 
solution of the corresponding homogeneous linear SDE with the initial value <J1(to) = 
1. So, 

<J1-1(t) = exp { _ [t [a(s) _ ~b2(S)] ds _ [t b(s) dW(s) }. 
ito ito 

Applying the Ita's formula we have 

d<J1-1 (t) = <J1-1 (t){ [a(s) - ~b2(s)] ds - b(s) dW(s) }. 

Applying again the Ita's formula on the product <J1-1 (t)x(t), from (4) we obtain 

dy(t) = d ( ~-I(t) x(t) ) 

= <J1-1(t) dx(t) + x(t)d~-l(t) - [f3(t) + b(t)x(t)] <J1-1(t)b(t) dt. 
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By replacing dx(t) and d<b-1(t) with the corresponding differentials, we obtain 
finally 

dy(t) = <b-1(t){[ aCt) - f3(t)b(t) J + (J(t) dw(t)} 

and, therefore 

yet) = 11 + it <b-1(s) [a(s) - (J(s)b(s)] ds + it <b-1(s)(J(s) dw(s). 
~ ~ 

Thus the explicit solution of the non-homogeneous linear SDE (14) is given as 

x(t) = ~(t) [11 + it <b-1 (s) [a(s) - (J(s)b(s)] ds + it <b-1(s)(J(s) dw(s)]. 
~ ~ 

ll. In general, in order to transform the SDE (6) on a solvable form, we introduce 
a change of variables y = h(t,x), where a smooth function h(t,x) has an inverse 
k(t, y), such that het, k(t, y» == y, k(t, h(t,x» == x. 

According to the Ito's formula, the process yet) = het, x(t» satisfies the SDE 

where 

dy(t) = J(t, yet»~ dt + get, !;I (t» dw(t), y(to) = h(to,11) a.s., 

J(t, y) = [h~ + a h~ + ~ b2 h~1I: ] (t, k(t, y», 

get, y) = [b h~ ](t, k(t, y». 

(15) 

(16) 

The SDE (6) is said to be reducible if such a function h can be found so that 
the functions J and g, given by (15) and (16) respectively, are independent of y. 
Thus, the change of variables y = het, x) permits the explicit representation of the 
solution x(t) of the SDE (6) as 

x(t) = k(t, yet»~, 

where 

yet) = h(to,11) + lt J(s) ds + rt g(s) dW(s). 
to lto 

In other words, the SDE (6) is reducible if a sufficiently smooth invertible function 
h(t,x) and functions J(t) and get), exist, such that 

[
8h 8h 1 2 82h] _ 
8t + a 8x + '2 b 8x2 (t,x) = J(t), (17) 

[b =:] (t,x) == get). (18) 

Under the assumptions that b :F 0 and a and b possess the indicated derivatives, one 
can obtain the necessary and sufficient conditions so that the SDE (6) be reducible. 
Indeed, differentiating (17) with respect to x gives 

82h 8 {8h 1 82h} . 
8x8t + 8x a 8x + '2 b

2 
8x2 == O. (19) 
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Since from (18) we get 
8h(t,x) _ get) 

8x = b(t,x)' 

then the following derivatives hold 

82h _ bet, x)g'(t) - get) 8b(t, xl/at 
8t8x = b2(t,x) 

get) 8b(t, x)/8x 
b2 (t,x) 

By substituting the appropriate derivatives into (19), we obtain finally 
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(20) 

g' = g b [::. 8b _ !.. (~) + ! 8
2
b] = ° (21) 

b2 8t 8x b 2 8x2 - • 

Since the left side of this identity is independent of x, then 

(22) 

H (22) holds, the function g, 9 =/: 0, can be found as a solution to the ordinary 
differential equation (21). The function h, which is at least locally invertible since 
8h/8x =/: 0, can be determined from (20), and the function f from (17). Then 
(21) is equivalent with (19) and thus the functions f and 9 are independent of x. 
Therefore, the SDE (6) is reducible if and only if f and 9 satisfy (22). 

Let us suppose that (22) holds. Then: 

(i) H 9 == 1, then h(t,x) = f;' b(~::')' Xo =const.; 

(ii) H f == 0, then h must be a solution of the partial differential equation 
h' + ah' + !b2h" = 0· t Z 2 zz , 

(iii) H the SDE (6) is autonomous, Le., a(t, x) = a(x), b(t, x) = b(x), then it is 
reducible if and only if 

[ 1" (a)'] b "2 b - b = C, C = const. 

From (21) and (18) we obtain get) = ect , het, x) = ect J:
o 
~ respectively. 

Note that, in general, linear SDE-s are not reducible. For the SDE (14) the 
reducibility condition becomes 

f3(t)b'(t) - [a(t)b(t) - a(t)j3(t) + j3'(t)] bet) == 0, 

until the homogeneous linear SDE is always reducible. 

Ill. Let us present now a very strict type of reducibility, illustrated by the 
autonomous SDE. The fact that the linear SDE (14) is solvable motivates us to 
find an invertible transformation y = hex), such that the transformed equation be 
linear with constant coefficients. In other words, we require the existence of the 
const~ts a,j3,'Y,6, 6 =I 0, such that the conditions (15) and (16) become 

1 
a(x)h'(x) + 2" b2 (x)h"(x) == a + j3h(x) , b(x)h'(x) == 'Y + 6h(x). (23) 
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If we assume b t: 0, then hex) is a solution of the linear ordinary differential equation 
b(x)h' - oh = 'Y. Thus, 

hex) = ce6B(z) - 'Y/o, 
where B(x) = J:o ~ and Xo and c are some constants. The substitution of hex) 
into (23) gives finally 

{ [ 
a(x) _! b'(X)] 0 +! 02 -,8} e6B(z) == Ot'Y - ,80. 
b(x)· 2 2 C'Y 

Replacing A(x) = :f:l- ! lI(x) in the last identity and differentiating results, we 
have 

{ [ A(x)o + ~ 02 -,8] b(~) + A' (x) } 0 e6B
(z) == o. 

Differentiating again we finally obtain 

o A' (x) + (b(x) A'(x»' == o. 
From that 

A'(x) == 0 or (
b(X)A'(X»')' =0 

.A'(x) -
(24) 

follows. Conversely, if the last condition in (24) is satisfied, then the transformation 

hex) = ce6B(z) where 0 = _ (b(x) A'(x»' 
, A' (x) , 

reduces the autonomous SDE to the linear form. Also, for 0 = 0 the simple choice 
hex) = 'YB(x) + c leads to the reducibility condition 

(b(x) A' (x»' == o. 

At the end, let us indicate briefly how to apply the foregoing results to find the 
explicit solution of the autonomous nonlinear SDE 

dx(t) = >.x(t) (1- Xit») dt + p.x(t) dw(t), x(O) = 11 a.s., t ~ 0, 

where >., k,p. are constants. This equation is reducible in the previous sense, 
because the condition (24) is valid. It is easy to conclude that 0 = -1.£, hex) = l/x, 
and from (23) that Ot = >./k, ,8 = ->. + 1.£2, 'Y = O. So, the original SDE is 
transformed to the linear form 

dy(t) = [~ + (->. + p.2)y(t)] dt - p.y(t) dw(t), y(O) = 1]-1 a.s., t ~ o. 

Now it is easy to obtain the explicit solution of the original equation, 

x(t) = _1_ = ~ (C>. - p2/2)t + pw(t)} ,t ~ O. 
yet) 11-1 + i 10 exp {(>' - p2/2)8 + pW(8)}ds 
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