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Summary

This monograph paper introduces the vector 5511\/) of the body mass inertia mo-
ment at the point N for the azis oriented by the unit vector ii. The vector is used
for interpretation of the rigid body kinetic characteristics. The change of the vector
of the rigid body mass inertia moment is determined in the transition from one
space point to another when the axis retains sts orientation which represents the
Huygens-Steiner theorem translated for the defined body mass inertia moment vec-
tor. Then the change of the vector of the body mass inertia moment is defined at
the given point in the case of the axis changing its orientation in the way analogous
to the Cauchy equations in the Elasticity theory. Then the interpretation of the
main mass inertia moments asymmelry are defined. The relation between the axis
deviation load vector by the body mass inertia moment for the octahedron aris and
the inertia mass asymmelry moments azis is analyzed.

This paper defines three dynamic vectors fized to a certain point and azis passing
through the given rigid body point. These are: the vector Mf..‘N) of the body mass

at the point N for the azis oriented by the unit vector ii; the vector é(ﬁN) of the
body mass static (linear) moment at the point N for the aris oriented by the unit
vector i; and the vector f]‘f.iN) of the body mass inertia moment at the point N for
the azis oriented by the unit vector fi. Also, the paper introduces the vectors: j(ﬁo)
of the material particle mass inertia moment for the pole O and the azis oriented
by the unit vector ii, and 5510) of the rigid body mass inertia moment for the pole O
and the azis oriented by the unit vector i at the dimensional curvilinear coordinate

system N.
" The rigid body kinetic parameters are interpreted by these vectors.

Future interpretation of the rigid body kinetic characteristics by means of the
body mass inertia moment vector and by means of the body mass linear moment
vector for the azis and the point refers to the description of the linear momentum,
as well as angular momentum and kinetic energy as the functions of the body mass
moment vectors and the anguler velocity and the referential point velocity. The
special cases of the rigid heavy body rotation are specially analyzed. The deviation
part of the body mass inertia moment vector for the fizred point and for the rotation
azis in view of the appearance of the dynamic pressure upon the bearings. The
kinematic vector rotator is introduced as well as analyzed.

The spherical and the deviational parts of the mass inertia moment vector and
of the mass inertia moment tensor are analyzed.



The conditions for dynamic balancing by means of the static mass moment vector
and of the deviation load vector of the rotation aris by the rigid body mass inertia
moment are shoun.

The kinetic equations of a variable mass object motion rotating around a sta-
tionary aris are derived by means of the mass moment vectors for the pole and
for the rotation azis: vector és,A) of the body mass linear moment, vector 3‘5:4) of
the body mass inertia moment for the pole A and for the axis oriented by the unit
vector i and its deviational part of the vector 555;4) of the deviational load by the
body mass inertia moment of the rotation azis through the pole A. The vectors of
the reactive forces and resulting moments of the reactive forces due to the drop of
the body particles are determined which are involved in the body mass change as the
function of the body mass moments vector change: vector és.A) of the body mass
linear moment and vector f].s.A) of the body mass inertia moment for the pole A and
for the azis oriented by the unit vector fi.
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CHAPTER |

I.1. Vectors of the body mass moments

I.1.1. Introduction. The idea for this monograph paper appeared during my
considerations of some analogies between the models in the stress theory and the
strain theory of the stressed and strained deformable bodies as they are studied
or as they can be studied in Elasticity Theory (see [15], [14], [28], [25], [34] and
(23]). While considering this analogy as well as the analogy between the stress
tensor matrix, the relative deformation tensor-strain tensor matrix and the body
mass inertia tensor matrix it occurred to me to introduce the concept of the vector
SE‘N) of the total relative deformation — total strain, at the point N and for the
line element drawn from that point and oriented by unit vector i, as well as the
concept of the vector fff-‘m of the body mass inertia moment at the point NV, and
for the axis oriented by the unit vector 7i (see [A1], [A2], [A6]. For more details
see [24], [30], [31], [A5], [35], [37], [38], [34] and [23].

In further consideration of the dynamic parameters of the rigid and deformable
bodies as well as of the possibility of their interpretation by means of the vector
j'f.‘N) of the body mass inertia moment at the point IV for the axis oriented by the
unit vector 7, I came to the ideas and conclusions as well as interpretations given
in my papers [22], [A2] [A4], [24], [34] and [23]. The question always asked was if
something like that already existed in some classic literature or not? The literature
available to me which is quoted in the appendix of this paper contains no such
interpretation of the rigid deformable bodies dynamic parameters by means of the
mass inertia moment vector fixed to the point and to the axis.

This paper defines three dynamic vectors fixed to a certain point and axis passing
through the given rigid body point. These are: the vector /\715.‘”) of the body mass
at the point IV for the axis oriented by the unit vector #; the vector é(ﬁN) of the
body mass static (linear) moment at the point N for the axis oriented by the unit
vector 7i; and the vector igN) of the body mass inertia moment at the point N for
the axis oriented by the unit vector 7@ (see [A1], [A2], [A6], and [A7].

The rigid body kinetic parameters are interpreted by these vectors (see [25],
[26], [27] and {41]).

The change of the mass inertia moment vector in the transition from one rigid
body point to another is determined when the axis retains its orientation which
represents the modification of the Huygens-Steiner theorem expressed by means
of the defined mass inertia moment vector. Then the change of the mass inertia
moment vector is determined in the case of the axis changing.its.orientation in the
way analogous to the Caufhy efudtiofis fir ¥he(botal Kirigs Aectorlin the elasticity
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theory. Then the interpretation of the main inertia directions are derived as well
as of the main mass inertia moment asymmetry are derived. The relation between
the axis deviation load vector by the material body mass inertia moment for the
octahedron axis and the mass inertia moments asymmetry axis is analyzed.

Further interpretation of the kinetic parameters of the of the body by means
of the body mass inertia moment vector and by means of the body mass linear
(static) moment vector for the axis and the point refers to the description of the
motion quantity (linear momentum) as well as motion quantity moment (angular
momentum) and kinetic energy as the function of the mass moment vectors for
the axis and the point and the momentary angular velocity and referential point
velocity (see [A3], [32], [33], [36], [A6], [39], [A7], [42], [43] and [AS8]).

1.1.2. Body mass moments vectors at point for the axis. In studying the
dynamics of a rigid and solid body, geometry of mass plays an important part. In
[3] and [4] there is a conclusion that it is not necessary to know all the details about
the mass distribution and the masses internal structures in order to study the rigid
body translatory motion under the action of the force. The properties necessary
for the study of the rigid body motion as a material system are the rigid body
dynamic properties. The values determining the dynamlc properties are called the
rigid body dynamic parameters (see [3]).

According to the given reference these parameters are taken to be: mass M of
the rigid body; position vector g¢ of the body mass center, the point C with respect
to a certain point O and J(©) the body mass inertia moment tensor matrix for the
point C which is determined with six scalar dynamic parameters. In this way in the
general case the dynamic rigid body characteristic ten independent scalar dynamic
parameters are required. By means of these ten dynamic parameters of the rigid
body the sixth order matrix of the following shape is formed:

M 0 0 0 Mz —Myc
0 M 0 -Mzc 0 Mzc
3O = 0 0 M My -Mzc O W
e 0 -Mzc Myc Jz Dyz Dz
MZC 0 —ch Dzy Jy D,y

-My. Mzc 0 D, Dyz Jz

and this matrix is given in [3] and [4] as the rigid body mass inertia matrix for the
given point O and the given trihedron. This is the matriz of the tensor ezpanded
in an appropriate way. The mass inertia moment matrix changes its coordinates
according to the change of the reference trihedron.

In {1] the mass linear polar moment M(©) of the material system or the vector
static system mass moment is defined with respect to the pole O in the form:

MO = / / / pdm = pcM, dm=odV (2)
\4 .
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where 7' is the vector of the rigid body points position with respect to the common
pole O, V is the space region that the observed body occupies and o is the mass
deunsity at all the body points.

There are two important properties of a certain body mass: the mass center
position of a material body does not depend on the pole choice but only on the
body mass distribution and the mass linear polar moment M(C) with respect to
the body mass center is equal to zero.

Since our aim is to consider a possibility of the interpretation of the rigid body
dynamic parameters in a modified shape we are going to set, as a reference, the pole
O as well as the axis oriented by the unit vector 7i. Considering that the general
case the rigid body motion can be represented by one rotation around momentary
axis, that is, by the translation of the mass center velocity and the rotation around
the axis through the given center we are led to the idea to define the rigid body
dynamic parameters by means of the pole O as the referential point through we
position an axis parallel to the momentary rotation axis (see [41].

Therefore we define the following (see Fig. 1a):

1* Vector J\;’if.io) of the body mass at the point O for the axis oriented by the
unit vector 7 in the form:

MQQAUMM=mamme )
v

which does not depend on the mass distribution in the body, that is, on the density.
For all the space points and parallel axes it has the same values and it changes only
with the axis orientation change. It is determined only with the mass quantity and
the axis orientation.

2* Vector é(ﬁo) of the body mass static (linear) moment at the point O for the
axis oriented by the unit vector 7 in the form:

e« / / 7, fldm, dm=odV (4)
v

where 7' is the vector of the rigid body points position of the elementary body mass

dm with respect to the common pole 0. For the vector éf.io) of the body mass
static (linear) moment at the point O for the axis oriented by the unit vector 7 we
can write: . -

8P =[5, folM = [fl, ) %)

The illustration is given in the Figure la.

3* Vector 5%0) of he body mass inertia moment at the point O for the axis
oriented by the unit vector 7i in the form (see [A 1], [A2], [A6] and [A7]:

3¢ [[[ 5.5 mdn | ©
v
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It can also be considered the body mass square moment vector at the point O for
the axis, through the pole, oriented by the unit vector 7i. The vector 3,(10) at the
body mass inertia moment at the point O for the axis oriented by the unit vector 7
can be decomposed into three components: the collinear with the axis J,go) and the
two other ones D,g) and DSS) in the directions, & and ¥, normal to the orientation
axis fi. The collinear component represents the axial moment of the body mass
inertia for the axis oriented by the unit vector 7 through the pole O. The other
two components represent the deviational moments of the body mass for a couple
of normal axes oriented by unit vectors 7i and 4, that is, # and #:

39 = jO) + DQa + DQy @

The definition-expression for the body mass inertia moment vector 52‘0) at the
point O for the axis oriented by the unit vector 7i can be obtained starting from
the expression for the axial body mass inertia moment J,(.io) for the axis oriented
by unit vector 7 drawn through the point O and for the deviational body mass
moments for the couples of the orthogonal axes oriented by unit vectors (#, @) and
(%, 7), DD and DL, according to [25], (38]. By means of them we form the
vector 5(7.{0) of the body mass inertia moment at the point O for the axis oriented
by the unit vector 71 in the form:

50 =af[[ wot am+ af [[ @A m M m+ 5[ [[GAGM I ©
\ 4 \ 4 \ 4

The rigid body axial mass inertia moment is:
50 = [[[ 2 am (8)
4

The rigid body mass deviation moment vector 33%0) at the point O for the axis
oriented by the unit vector 7 is in the following form:

59 =af[[ (a0 M am+ 5[ [[ @10, am = 7[ [ [ (8, 2,15, de
v v 14

39 = [[[ w15 M dm = 5,59, 7) ©
14

By means of the previous expressions (8) for the vector 5%0) of the body mass
inertia moment at the point O for the axis oriented by the unit vector 7 we can write
the expression identical to the expression (6) which has been set as a definition.

Figure 1a shows the vector 5;0) of the body mass inertia moment at the point

O for the axis oriented by the unit vector i, the rigid body mass deviation moment
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vector ﬁs.‘o) at the point O for the axis oriented by the unit vector i, the axial

moment of the body mass inertia J,S.‘o) for the axis oriented by the unit vector 7
through the pole O, and the other two components, D,.?,) and Dﬁg), the deviational
moments of the body mass for a couple of normal axes oriented by unit vectors 7

and 1, that is, 7 and ¥, through the pole O.

g Fig. 1c

Fig. 1b shows the vector ﬁ(ﬁo) of the material particle mass inertia moment at
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the point O for the axis oriented by the unit vector 7, the material particle mass

deviation moment vector 5530) at the point O for the axis oriented by the unit

vector 71, the axial moment of the material particle mass inertia J,fio) for the axis
oriented by the unit vector 7 through the pole O.

Fig. 1c shows an eccentrically skewly positioned discus respect to the axis of the
shaft, as well as the vector 5510) of the discus mass inertia moment at the point O
for the axis oriented by the unit vector 7, the discus mass deviation moment vector
5;0) at the point O for the axis oriented by the unit vector 7i, the axial moment

of the discus mass inertia Jéo) for the axis oriented by the unit vector 7i through
the pole O.

1.1.3. The material body mass inertia moment vectors for the two parallel
axes through two referential points theorem. The Figure 2a shows the material
body and two referential points — poles O and O; and two parallel axes through
them oriented by unit vector 7i. The same Figure also shows the denoted elementary
mass dm at the point N of the rigid body and 7 and #, the position vector of that
point with respect to the pole O, that is, pole Oy, as well as the position vectors
Po of the pole O; with respect to pole O.

Fig. 2a

Now it is necessary to determine the change of the vector ﬁ(iio) of the body mass
inertia moment at the point O for the axis oriented by the unit vector 7 and its
relation to the vector 5%0) of the body mass inertia moment at the point O; for
the axis oriented by the same unit vector 7.

This means we are interested in the change of the body mass inertia moment
vector a certain axis which moves from one point to another retaining its orientation.
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By using the expression (6) defining the mass inertia moment vector for a certain
point and axis as well as the expression g'= pp 4 7, we can write the following:

///[po+r,[n,po+f]]dm—

_ 5 + [0, 809) + O, o] + oo ol M (10

We see that all the members in the last expression have the same structures.
These structures are: [fo, [ii, Fc]] M, [fc, [/i, fo]] M and {Fo, [7i, Fo)] M.

Fig. 2b

The expression (10) is the mathematical form of the theorem for the relation of
the material body mass inertia moment vectors, 3(0) and ﬁ(ﬁo‘), for the two parallel
azes through two corresponding points, pole O and pole O. .

In the case when the pole O; is the center C of the body mass the vector 7o
(the position vector of the masses center with respect to the pole O;) is equal to
zero, whereas the vector go turns into pc so that the last expression (10) can be
written in the following form (see Figure 2b):

3O =59 4 g, 7, Pl M (11)

This expression (11) represents the mathematical form of the theorem of the
change of the mass moment vector for the pole and the azis when the axis is trans-
lated from the pole in the mass center C to the arbitrary point, pole O.

The Huygens-Steiner theorems (see [11], [1], [3] and [4]) for the axial mass inertia
moment as well as for the mass deviational moments came from this theorem (11)
about the change of the vector 3(0) of the body mass inertia moment at the point
O for the axis oriented by the unit vector i passing trough the mass center C' and
when the axis translate to the other point O.
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The vector 5,(10) of the body mass inertia moment for the body mass center C
as well as for the axis oriented by unit vector 7i passing trough the mass center C
we are going to call the central or proper (eigen, personal) vector of the body mass
tnertia moment for the azis oriented by unit vector fi.

The part ffgfgosmon = [pe, [, fc]] M from the expression (11) represents the

position part of the body mass inertia moment vector and we going to call it the
body mass inertia position moment vector for the point O and the azis oriented by
unit vector il in relation to the body mass center C. We can see that the body mass
inertia moment vector for the axis trough the mass center C is the smallest vector
since for all the other parallel axes the position part ﬁ(ﬁ?gosiﬁon = {gc, IR, pc| M
has to be taken into consideration. This can be expressed by means of the vector

6—'55.,0) of the body mass linear moment for the point O and the axis oriented by unit
vector 7 in the form [fc, é(ﬁo)].

The vector ﬁ(ﬁ?gosmon = [pc, [fi, pc]] M is the free vector as the moment of the
couple:

T hstion = 70 [, el M = T raihon = [0, 8] = 3o

,position fi,position fi,position
- = 0 - -5 - *
= [, ~6) = [~o, I, - Fecl| M (11%)
. 2(0
This vector 31(?l,gosition
well as opposite from O to C, without change. This vector 5(0) is the moment

fi,position

can be moved from mass center C to arbitrary point O, as

of a couple of the mass linear position moment vectors: —6510) in the pole O and
éf.{o) in the pole mass center C.

Two vectors —éf.‘q) = [, ~pc] M and éfio) = [fi, fc] M having the same mag-
nitude, parallel lines of the orientation, and opposite sense form a couple. Clearly,
the sum of the moments of the two vectors about a given points, however, is not
zero.

I.1.4. The change of the body mass inertia moment vector for the point
and axis orientation change through the referential point. Let us now define
the vectors 3&0’, §§0) and 5&0) of the body mass inertia moments at the point O
and for the coordinate axes Oz, Oy and Oz. These vectors can be expressed in the
form:

io=[[[ 6 man, §§°>=///tﬁ,ﬁ,mém, 3= ([[wEmam a2
\4 \ 4 v

If we denote the senses cosine of the unit vector i with cosa, cos 8 and cosy
when the unit vector defines the orientation of the axis passing though the point O,
then we can successively multiply the expressions (12) and we obtain them added:
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i(zo)cosa+§,(,o)cosﬂ+§§°)cos'y=// (7, [Fcosa+ j cos B + kcosy, fl}dm
v

= [[[ w5 mam
vV

From the previous expression we conclude that the body mass inertia moment
vector 3(0) at the point O for the axis oriented by the unit vector 7 is equal to:

3(,-.-0) =3 cosa + 5;,0) cos B+ 2 cosy | (13)

The last expression is analogous to the equation for determining the total stress
vector ;3‘5.‘0) at the point O of the stressed body for the plane with normal unit
vector 7 which is known as the Cauchy equation in the elasticity theory. There
fore we are going to call it the Cauchy equation giving the relation of the body
mass inertia moment vector 3 ) at the point O for the axis oriented by the unit
vector 71 and the vectors 3(0) 3(0) and 3(0) of the body mass inertia moments at
the point O and for the coordinate axes Oz, Oy and Oz.

1.1.5. Cauchy equations in the matrix form. Now by means of the mass
inertia moment tensor matrix J(9) the Cauchy vector equation (13) can be written
in the matrix form:

{3 = (3OO HION {n} = IO n) (14)

Now for the body mass axial inertia moment J; () for the axis oriented by the unit

vector i, as well as for the body mass deviation moment D( ) for the orthogonal
axes 7i and ¥ we can write the following expressions:

I =@ = @IV}, DY = P} =@I@0 @)

The invariants of the body mass inertia moment state at a certain point can be

determined as the first Jl(o), second Jéo) and third J3(O) scalar of the body mass
inertia moment tensor matrix.

The rigid body mass inertia moment tensor matrix J(© for a certain pole can
be separated into two matrices corresponding to the spherical J(O)%Ph and devia-
tional J(O)ev = D(O)dev part of the rigid body mass inertia moment tensor (which
is analogous to the stress tensor matrix and strain (relative deformation) tensor
matrix in the elasticity theory):

. 100 e o 0
J(O)sph =2 JI(O) 010 1(
3
0 01
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1
JOHer =3O — 3Ot = (IHIPHID - 3A7 T )

1.1.6. Axial and deviational part of the rigid body mass inertia moment
vector. The body mass inertia moment vector ﬁ(ﬁo) at the point O for the axis
oriented by the unit vector 7 can be written in the transformed form in which we
separate the part f('(ﬁo)m collinear with axis oriented by unit vector f# and the part
ﬁ(ﬁo) = jgo)de" normal to the axis oriented by unit vector i as it is shown in the
Figures la and 3.

Figure 3

Now the vector ﬁ(ﬁo) of the rigid body mass inertia moment at the point O for
the axis oriented by the unit vector 7i can be transformed to the following form:

with components:

FOrle = 55O, 7) = 77O (19)
DY) = = [, (3, ) (20)

The first part 55.50)“’ collinear with axis oriented by unit vector # given by
formula (19) represents body mass axial inertia moment vector at the point and
for the axis oriented by unit vector 7, and it does not depend on the pole position
on the axis. :
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The second part D) = F normal to the axis oriented by unit vector 7
given by formula (20) lies in the plane formed by the axis oriented by unit vector 7
and the vector 35_‘0) of the body mass inertia moment. This plane is determined by
the axis selection and by the body mass distribution with respect to the axis and

the pole. .

The vector 53%0) is the deviation load by the rigid body mass inertia moment
at the point O of the axis oriented by the unit vector 7i-and it can be defined as
the rigid body mass inertia moment vector component normal to the axis and in
the plane which is formed by the axis oriented by the unit vector 7@ and the vector
-'S.io) of the body mass inertia moment. This can be seen in the Figure la and 3.
We conclude that the vector magnitude is equal to the deviation moment of the
body mass for the axis oriented by the unit vector i and the axis oriented by the
unit vector T' normal to the axis oriented by the unit vector fi, in the direction
of the cutting line of the plane normal to the axis trough the pole O and of the
plane formed by the axis oriented by the unit vector i and the vector 5(’_‘0) of the
body mass inertia moment at the pole and for axis oriented by the unit vector 7.
The unit vector of this cutting line is denoted with T. The unit vector normal to
the unit vectors 7 and T is denoted with Ti. We conclude that the body mass
deviation moment for the axes 7@ and T} passing through the pole O is equal to
zero. This means that for an arbitrary axis at the observed point O there can
always be found at least one axis normal to it oriented by T, for which, together
with the axis oriented by the unit vector 7i, the body mass deviation moment is
equal to zero. This axis is normal to the axis oriented by the unit vector 7 and to
the deviation plane formed by the unite vector i and the vector 55.‘0) of the body
mass inertia moment at the pole O and for axis oriented by the unit vector 7. The
deviation plane we denote by R;. Only for the mass inertia moment main axis
through a retain point-pole the deviation plane is not defined nor it can be said it
exists since if the axis oriented by the unit vector i through a certain point is the
main axis of the body mass inertia moment then for this axis the deviation load
to the axis is equal to zero. In this case the body mass inertia moment vector has
only one component collinear with the axis. That is, if a certain axis through a
certain point-pole is the main mass inertia moment than the vector of its deviation
load by the body mass inertia moment is equal to zero.

1.1.7. Spherical and deviatorial part of the rigid body mass moment vector.
If we now follow the idea of the formation of matrices of the spherical and deviatorial
part of the mass inertia moment tensor according to the analogy (see [24], [23] and
[34]) with the spherical and deviatorial part of the stress tensor, that is, of the
relative deformation (strain) tensor we can define two vectors (see Figure 3):

ﬁ(ﬁo)’ph the vector spherical part of the vector 55_‘0) of the rigid body mass inertia
moment at the pole O and for axis oriented by the unit vector #:

1 0)-_1 .0
3 = 2O = 1 (21)
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J(O)D the vector deviatorial part of the vector (-}.S.‘O) of the rigid body mass inertia
moment at the pole O and for axis oriented by the unit vector i:

JOP = 7,39 - —J<°) i+ [, 39, /) = a7, 3 ~ J(O)ﬁ) +59) (22)

Let us now consider the modification of the Huygens-Steiner theorem in its
application to the vector j(o)de" D(O) the deviation part of the vector 3(0) of
the rigid body mass inertia moment at the pole O and for axis oriented by the unit
vector i, as well as the vector of the deviation load by the rigid body mass inertia
moment on the axis oriented by the unit vector i in the transition from the mass
center C to the pole O (see Figure 2b). We use the definition of the vector 5(50) of
the deviation load by the mass inertia moment (18) and the formula (11) derived
in the paragraph 1.1.3. for the Huygens-Steiner formula modified of the vector 3(0)
of the rigid body mass inertia moment at the pole O and for axis oriented by the
unit vector 7 so that:

jOrer - 5O = 17, 5O, 4 = DL - @, 5ol e, M (29)

The expression (23) represents the Huygens-Steiner Theorem modified to the
vector 5%0) of the deviation load by the mass inertia moment of the axis oriented
by the vector 72 connected to the pole O. From this expression we conclude that
the vector 53(50) of the axis deviational load through an arbitrary point O oriented
by the unit vector 7 equal to the sum of the vector 55{0) of the axis deviation
load through the center C of the body mass for the parallel axis and the position
deviation load in the transition of the axis from the pole C-mass center to the pole
— arbitrary point O determined from the expression:

- BE = [#,[[po, [, Bl M = —(#, Go)l, oo, 7l M @9

If the pole O and the center C of the body mass are located on the same normal
to the axis oriented by the unit vector @i then the position part of the deviation
load in the transition from the axis through the mass center C to the parallel axis
through the pole O is equal to zero. This means that the deviation load vectors of
the axis by the body mass inertia moment for the central plane points corresponding
to the given axis are equal to the deviation load belonging to the central axis 53(50).

1.1.8. Main mass inertia moment directions, main mass inertia moment
vectors. By means of the vector ’35..0) of the rigid body mass inertia moment at
the pole O and for axis oriented by the unit vector i we can introduce a new
definition of the main mass inertia momemt axes. Through one pole O we can
draw an infinite number of axes of orientations. Among them we are looking for
the axis for which the vector 55_{0) of the rigid body mass inertia moment had only

one component, collinear with the axis, that is, the one for which the vector 555.‘0)
of the deviation load of the axis by the body mass inertia moment is equal to zero.
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Using the analogy given in the papers [245) and [34] as well as the analogy with
the matrix interpretation from books [14], [15], [28] and [23] as more appropriate
for this case and by denoting the unit vector of the main masss inertia moment
axis orientation with i, which is in accordance with the Fig. 3a, we can write:

(301 =30n} = JONn} = (3@~ JODin} = {0}  (25)
so that the Hamilton equation for determining the main mass inertia moments is:
fUO) =39 -5 11=0 (26)

Fig. 3a

while for the senses cosines of the main mass inertia moment axes the following
relations are obtained:
cosag cosfs __ COSvs

= = =Cs, cos’a,+cos’f, +cos’y, =1 (27)
3 5 5 ’
K K kP

where Kgi), k = 1,2,3 are co-factors of the third kind elements and the corre-

sponding matrix column, successively for the roots J,(o), s = 1,2,3 of the Hamil-
ton equation (26), which are the main mass inertia moments and which represent
the axial mass inertia moments for the main mass inertia moments axes. There are
three roots and three orthogonal main axes at every point with respect to which the
rigid body mass inertia moment vectors are determined. The Hamilton equation-
coefficients are the first, second and third invariants of the mass inertia moment
state at referent point, and they are the first, second and third scalar of the body
mass inertia moment tensor matrix at referent point (see [24] or [23]).

1.1.9. Extreme values of the mass deviation moments. In [24] is given
an analogy between the stress state model, the strain state model and the mass
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inertia moment state of the body at the observed body point. For determining
the mass deviation moments extreme values we shall use this analogy which exists
between the stress tensor, the strain tensor and the body mass inertia tensor, as
well as between the vector ;')‘f.‘o) of the total stress at a certain body point for the
plane with the normal oriented by unit vector 7i, the vector 3310) of the total strain
(relative deformation) of the line element drawn from the observed point in the
direction of the unit vector 7 and the vector 35.‘0.) of the body mass inertia moment
at the observed pole for the axis oriented by unit vector 7.

Figure 4a

On the basis of the given analogy in [24] and [23], the following conclusions
are drawn, though without proofs: on the basis of the analogy between the mass
deviation moments extreme values for a couple of orthogonal axes (that is, of the
mass centrifugal moments) and yield stress extreme values in the orthogonal planes
that pass in pair through one main stress direction and form an angle of 45° with
the other two main stress direction, we conclude that the mass deviation moments
extreme values appear for the axes pairs I, and I, II, and II, I1], and 111, that
pass in pairs through the main body mass inertia moment axis trough the given
point and form angles of 45° with the other two main mass inertia moment axes (see
Figures 4a and 4b). For these pairs of the defined axes the mass deviation moments
(the mass centrifugal moments) are equal to the semi-difference between the two
main {axial) body mass inertia moment and for each axis in the corresponding pair
the axial inertia moments are equal to the semi-sum of the two corresponding main
moments of the body mass inertia for the given point.

The pairs of these coupled axes are the body mass inertia moments asymmetry
axes since for them the mass centrifugal moments are extreme values and the axial
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mass inertia moments for both the axes in pair are mutually equal. The concept of
“asymmetry” can be accepted since for symmetry axes the body mass centrifugal
moment is equal to zero and for these axes the body mass centrifugal moment is
of extreme value so that this leads to the conclusion about the asymmetry of the
material body mass inertia moment properties. On the basis of the given analogy
we cam write the values of the mass deviation moments. and the body mass axial
inertia moments of these axes (see Figures 4a and 4b):

Figure 4b

1 1
DY) = #3157 - 57), 1D =00 = 357 + 57,
1 o 19) 1 (
DD, =457 = X), IR =T7 =5 + 57, (@)

0 1 o ) o o) _1 0 o
D§II),.III¢. = ig(Jl( ) - I, J§u). = Jﬁu),, = §(J1( Y+ I

In the coordinate system of the main body mass inertia directions 7i,, s = 1,2,3
the vectors 3(,.2), s = 1,2, 3 for the referential point as the pole are the body mass
inertia moment vectors for the main mass inertia moment axes and we see that
they have only the components collinear with the corresponding main mass inertia
moment axes f}'g?) = Jso)ﬁ’,, s=1,2,3.

Let’s now define the vectors 3(,?) , 3(,?3 and fﬁ‘,),)a of the body mass inertia mo-
ment at the observed point for the axis oriented by the unit vector 7y, , or #iyy, or
fiyrz, of the mass inertia moment asymmetry axis I, or II, or IIl, by using the
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definition of this vector so that we have (see Figure 4b):

' 3‘;0) = ..‘[g(j‘(o) + 3‘510));
59 = f(:f“” + 30, (29)
#0) _ f

31, = ‘—(3(0) 3o,

Let’s now define the vectors 55?), 5%) ;ﬁ?}b of the body mass inertia moment
at the observed point for the axis oriented by the unit vector iy, or 7iyy, or fifry, of
the mass inertia moment asymmetry axis I or Il or II I,, by using the definition
of this vector so that we have:

3O = 250 430
39 = 7 V239 +39; (30)

3 __‘/_—( 30 4 50,

IIn,

Now we define the components of the vector §§f’). The collinear one with the
body mass inertia moments symmetry axis I;:

KO+ 20

20) = o (e)
@2, 7) = 2= =g = 1 (31)
The component normal to the body mass inertia moment asymmetry axis lying
in the deviation plane representing the vector £D () of the deviation load by the
body mass inertia moment of the mass inertia moment asymmetry axis according

to the previously given definition in the form:
50 =, 510, il = 2=, = DO, (32)

Analysis the expressions from (28) to (32) we conclude the following:
1* The expressions given in (28) on the analogy basis are correct;

2* Both the vectors 5{)) and :ﬁ?’ of the rigid body mass inertia moments for
the pole O and the axis of the pair I of the mass inertia moment asymmetry, I,
and Iy are normal to the main mass inertia moment axis (1) and they lie in the
plane Ry j, which is their mutual deviation plane. This plane is normal to the
main mass inertia moment axis (1) and contains the other two main mass inertia
morment directions (2) and (3);

3* The vector 5&?) of the deviation load by the body mass inertia moment of
the mass inertia moment asymmetry axis oriented by unit vector 7i;, at given point
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lie in the direction of the second mass inertia moment asymmetry axis oriented
by unit vector 7y, of the pair I which is normal to the main mass inertia moment
direction (1) and to the axis the mass inertia moment asymmetry I, and vice versa.
These two vectors, that is, 533‘0) and ﬁﬁ’), are the same magnitude and of the same
components, of axial and deviational, and they have the same axial mass inertia
moments. In a similar way the calculation can be applied to the other two pairs of
the mass inertia moment asymmetry axes and the corresponding conclusions can
be drawn in accordance with the expressions (28) and the previous conclusions.

1.1.10. Mass inertia moment vectors for the octahedron directions in the
referential point. In analogy with defining the octahedron directions a certain
point of the stressed and strained body as it is done in the elasticity or plasticity
theory we shall define the octahedron directions at a certain point of the rigid body
form the viewpoint of the body mass inertia moment state with respect to this pole
as the direction that forms the same angles with the main inertia axes, that is, with
the main inertia directions. There are eight such octahedron directions.

The vector 5(0) of the mass inertia moment at the point O for the octahedron
direction by using the basic definition is calculated as:

59 = / [ 5o, ol m = ‘f(a“” 3O +39) (33)

and we can decompose it into two components.
1* The axial component in the octa.hedron direction in the form:
o o (e}

Jf(l?c)t = (noct, Joc)) = ( ) 3J( ) (34)
which represents the axial moment of the ngd body mass inertia moment for the
octahedron direction axis for the given pole and it is equal to one third of the first
mass inertia moment invariant or one third of the first scalar of the mass inertia
polar moment for the pole O.

2* Normal component to the octahedron direction which is equal to the vector

20(‘,t of the octahedron axis deviation load, by the body mass inertia moment and
has the form:
2f

59 = 250 + 59 + 59 (35)

The vector i)(ct of the deviation load by the body mass inertia moment of the
octahedron axis can be expressed as the linear combination of the vectors 5)3?),

9&?), S?,)‘ of the deviation load of the mass inertia moments asymmetry axes

when it is related to oe of the pair.

The intensity square of the vector fD( ) of the deviation load by the body mass
inertia moment of the octahedron axis can be defined by the following expression:

3 S0 30
PP = (IDS‘,”P + DL + 152 1) (36)
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It should be noted that there are eight axes (or four axes) at each point of the
rigid body for which the mass inertia axial moments are equal to a third of the first
mass inertia moment invariant and they are the octahedron directions determined
with respect to the main mass inertia moment axes. The question should be asked
about what sort of motion the body performs while rotating around the octahedron
axis and if the conclusions can be generalized to hold for the bodies with different
mass inertia moment characteristics.

If this conclusion is related to the previous section we can conclude that is: one
set of eight (or four) axes for which the inertia axial moments of the body mass
are mutually equal and equal to a third of the first mass inertia moment invariant:
Three sets of two pairs of orthogonal axes of the inertia asymmetry for the axial
inertia moments are also equal to the semi-sum of two main inertia moments each.
The same stand for each body and for each pole chosen within the space or outside
the space of the rigid body. Only the spherical body as the pole of all fourteen axes
the axial mass inertia moment is the same and the deviation load is equal to zero.

I.2. The mass moment vectors at the dimensional coordinate system N

1.2.1. Introduction. This part introduces the vectors: 5(50) of the material par-
ticle mass inertia moment for the pole O and the axis oriented by the unit vector
7, and 5(60) of the rigid body mass inertia moment for the pole O and the axis
oriented by the unit vector 7 at the dimensional curvilinear coordinate system N.
The vectors can be used for the interpretation of the rigid body kinetic character-
istics for the interpretation of the body dynamics at the dimensional curvilinear
coordinate system N.

The change of the vector ffs.‘o) of the body or particle mass inertia moment
for the pole O and the axis oriented by the unit vector 7, is determined in the
transition from one space point to another when the axis retains its orientation
which represents Huygens-Steiner theorem generalized for the defined mass inertia
moment vector at the dimensional curvilinear coordinate system N.

This part gives the interpretation of the vector 25(,.,.0) of the deviation load by the
material particles mass inertia moment at the point O of the axis oriented by the
unit vector 7i at dimensional curvilinear coordinate system N as well as by body
mass inertia moment at the point O of the axis oriented by the unit vector 7 at
dimensional curvilinear coordinate system N.

1.2.2. The dimensional curvilinear coordinate system N. According to the
notation in the Fig. 5 the material point position vector j, at the dimensional
coordinate system n, can be written in the form:

7=z g - (37)
while unit vector 7 of the axis orientation can be written in the form:
7= 2k g (38)
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In the previous expression § the basic vectors of the dimensional N of the curvi-
ap . )
_pk for these vectors it stands that:
Oz

(3, §1) = 9wt (39)
their product represents the metric tensor coordinates of the defined curvilinear
coordinates system space. The position vector 7 magnitude squared is:

(#,P) = (3« Gt) g'e* = gklmkxl (40)

while for the axis orientation unit vector f:

linear coordinates gy =

(7, ) = (Gx, §1) M X = g A% =1 (41)

Figure 5

i.2.3. The material particle mass inertia moment vector for the pole and
the axis. By introducing the expression (37) and (38) into expression (6) for the

vector 5&0) definition of the material particle mass inertia moment for the pole O
and the axis oriented by the unit vector i, we obtain that:

3O = (G, [0, Folle*? M m )
If we have in mind that the double vector product can be written in the transformed
shape, the previous expression (42) can be write in the following form:

§(ﬁo) = (ghpdt — grigp)z* 2P Nm (43)
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If we multiply scalarly the previous expression (43) with the unit vector 7, we
obtain: o o

I = = (32, 7) = (grpgti — grigpi)z* 2P N Xim (44)
which represent the material particle mass axial inertia moment at the point O for
the axis oriented by the unit vector 7i. This formula is same as the formula (2.3)
in [6] written by Vujicié.

If we now multiply the expression (43) twice vectorly with the unit vector 7,
that is, according to [40], we separate the material particle mass inertia moment
vector deviational part-for the pole O and the axis oriented by the unit vector 7
we obtain

DY) =I5, [3(0) ) = {9kp 9133 — Gri91; Tp + (riGip — rpts)Fi J2 TP XA N m (45)

The last expression represents the vector 335.‘0) of the deviation load by the material
particles mass inertia moment at the point O of the axis oriented by the unit vector
i at dimensional coordinate system N.

By introducing the expressions (37) and (38) into the expression (4) for the
vector 6510) definition of the material particle mass linear moment for the pole O
and the axis oriented by the unit vector 7i we obtain that:

89 = [7;, Gilz* N'm : (46)

1.2.4. The rigid body mass inertia moment vector for the pole and the
axis. By introducing the expression (37) and (38) into expression (6) for the vector

5%0) definition of the rigid body mass inertia moment for the pole O and the axis
oriented by the unit vector 7, we obtain that:

50) _ / / / [Ge, [ds Gy ])=* 2P Ndm | (47)

If we have in mind that the double vector product can be written in the transformed
shape, the previous expression (47) can be written in the following form:

50 - / / (Gkpdi — giidp)z*2? Ndm (47°)
Vv

If we multiply scalarly the previous expression (48) with the unit vector 7, we
obtain:

IO = 39 ) = / / (gkpGti — r1gpi) 2P A Nidm (48)

which represent the body mass axial inertia moment at the point O for the axis
oriented by the unit vector .
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If now we multiply the expression (48) twice vectorly with the unit vector 7, that
is, according to [40}, we separate the body mass inertia moment vector deviational
part for the pole O and the axis oriented by the unit vector @ we obtain:

53510) = [#, [5(50)’ 7l = / / {9k091i5: — 91915 Fp + (GhiGtp — Gp91i) Gy Yo 2P XX N dm
4

(49)

The last expression represents the vector 55.10) of the deviation load by the body

mass inertia moment at the point O of the axis oriented by the unit vector fi at
dimensional coordinate system N.

By introducing the expressions (37) and (38) into the expression (4) for the

vector éf.io) definition of the body mass linear moment for the pole O and the axis
oriented by the unit vector fi we obtain that:

89 = / / (3, Gx]z* Nidm (46*)
\ 4

1.2.5. The Huygens-Steiner theorem. Following previous expression (11) for
the vector ﬁ(ﬁo) of the rigid body mass inertia moment for the pole O and the axis
oriented by the unit vector 7i, the Huygens-Steiner theorem is derived which can

be written in the following form for the curvilinear coordinate system (see Fig. 2a):

30 =50 + (o, [, el = 30 + (G [0, GollsbabN M (47%)

I =30 + (ko — gude)zlzi N M (47)

Following previous expression (23) for the vector 55_"0) of the deviation load by the
rigid body mass inertia moment for the pole O and the axis oriented by the unit

vector i, the Huygens-Steiner theorem can be written in the following form in the
curvilinear coordinate system:

FO1 =B =BE) — g4slg, g1, Follrb b A NN M (49%)
JOre = 5O = BE) — gij(orodi — IuT)THTLNANM (49%)

which represents the expression of the Huygens-Steiner generalized to the vector
50
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CHAPTER Il

I.1. Vector interpretations of the rigid bodies kinetic parameters

I1.1.1. Rigid body kinetic energy. We shall consider the kinetic energy (see
[13], [7], [10], and [21])a little with a slight modification due to the interpretation

of the rigid body dynamic parameters by means of the introduced vectors éf{‘)
of the body mass linear moment at the pole A for the axis oriented by the unit
vector 71 and the vector j‘(ﬁ") of the body mass inertia moment at the pole A for
the axis oriented by the unit vector 7. Since the velocity of each body point (see
[12])can be defined by the two kinematic parameters of the translation velocity 74
of the referential point A and the angular velocity & and the unit vector fi of the
momentary rotation axis orientation we shall define the kinetic energy in relation
to the body mass state properties with respect to the referential point translation
velocity and the body mass moments state for the pole at the referential point A
and for the axis oriented by the momentary rotation axis unit vector.

Figure 6
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Using the notation in the Figures 2b and 6, for the rigid body kinetic energy we

can write:
28, = / / / #.dm / / / (Ta+ [, )2 dm (50)
v \ 4

that is, according to our idea the double kinetic energy is only expressed by means of
the masses center velocity, body mass, momentary angular velocity and the vector
(ﬁc) of the body mass inertia moment for the axis through the body mass center

at the pole C and oriented by the momentary angular velocity unit vector 7:
2B}, = M(ic, o) +w(@,3°) (51)

In the case when the referential point A is not the mass center the kinetic energy
can be expressed in the form:

28, = M(34,7a) + 20(74,6F") + w(@,T5) (52)

which is expressed by means of the velocity ¥4 of the arbitrary referential point A,
angular velocity & of the rotation around the axis through the point A and mass
moment vectors as the mass inertia moment properties of the rigid body mass
distribution with respect to the pole at the referential point A and for axis oriented
by the momentary angular velocity @.

We can see that the kinetic energy has a part which corresponds to the body
translation of the velocity 74 of the referential point A, that is, the part correspond-
ing to the pure rotation around the relative rotation axis that passes through the
referential point A and is oriented by the vector & of the momentary angular veloc-
ity, as well as the mixed member which represents the coupling of the translation
and rotation and can be called “Coriolis member” representing the double scalar
products of the velocity ¥4 of the referential point translation and the vector éf{‘)
of the body mass linear moment at the referential point A for the axis oriented by
the unit vector 7 multiplied by the angular velocity vector magnitude. This third
member represents the kinetic energy of the coupling of the translation motion of
the referential pole velocity and the rotation motion around the axis through this
referential point.

This “Coriolis member” which represents the kinetic energy of the rotatory and
translatory motion coupling with respect to the referential pole is equal zero in the
following cases:

1* when the translatory velocity of the referential point A is orthogonal to the
vector é(ﬁA) of the body mass linear moment at the referential point A for the axis
oriented by the unit vector i, that is when the velocity 74 of the referential point
A is parallel to the plane formed by the rotation axis through referential pole A
and the body mass center;

2* when the referential point A is on the momentary rotation axis or at the
momentary rotation pole; and

3* when the referential point A is at the body mass center C.



74 Katica (Stevanovi€) Hedrih

The expression (51) represents the modified expression of the Samuel Kéning
theorem for the kinetic energy, that is, the Samuel Koning theorem in new inter-
pretation, which states that the rigid body kinetic energy is equal to the sum of
the kinetic energy of its translator motion with mass center velocity and the kinetic
energy of its rotation motion around the axis oriented by the momentary angular
velocity through the body mass center.

If the referential point is at the momentary pole all the time, or the momentary
rotation axis then the kinetic energy can be expressed as:

2E, = w(@,3) (53)

and it has only the member corresponding to the rotation around the momentary
rotation axis and is equal to the half of the product of the momentary angular
velocity squared and the axial inertia moment for the momentary rotation axis as
it is known.

11.1.2. Linear momentum and angular momentum of the body motion.
The classic literature (see [10], [7], [11]) gives a very well known definition of the
rigid body linear momentum (motion quantity) and angular momentum (motion
quantity moment). We shall consider it a little with a slight modification due to the
interpretation of the rigid body dynamic parameters by means of the introduced
body mass moment vectors. We are following the classic definition by using the
prepositions from previous paragraph, as well as Fig. 6, so that we write for the
linear momentum following expression:

F= / / / Gndm = / / / @4 + [0, A)dm = Miy + w8 (54)
v \’4

The expression (54) of the linear momentum R of the rigid body whose points have
the translation velocity ¥4 of the referential point A and the relative velocity {dJ, 5]
due to the rotation around the axis oriented by the vector & = wii through the point
A has two parts: 1* the translatory one equal to the product of the referential point
velocity and the body mass—the linear momentum due to the translation motion
with the velocity of the referential point A; and 2* the rotatory one equal to the
product of the magnitude w of the angular velocity & = wit and the vector és.f)
of the body mass linear moment at the referential point A for the axis oriented by
the unit vector 7.

If the pole A is the body mass center C then the linear momentum is equal only
in the translatory part since the vector éf{‘) of the body mass linear moment for
the pole in the body mass center is equal to zero regardless of its orientation so
that the linear momentum is equal to the product of this velocity ¢ of the body
mass center and the rigid body mass: A=M vc. The same stands for if the pole
A is not the body mass center but if the axis oriented with & = wil trough pole A
passes trough the mass center. .
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The second kinetic vector connected to the referential point which plays an im-
portant part (role) in the rigid body dynamics is the rigid body angular momentum
(motion quantity moment) for the given pole, £o. Following the classic definition
according to [1}, [3] and [11] and according to the notation given in the Fig. 6 the
rigid body angular momentum is calculated by means of the following expression:

fo= [[[womim= [[[Fa+ron+@.aam 9
v |4

Following the idea of this paper that at the basis of the rigid body motion inter-
pretation there are rigid body dynamic parameters which express the mass inertia
moment properties and the kinematic parameters, translation velocity ¥4 of the
rigid body referential point and the angular velocity & of the relative momentary
rotation around the axis oriented with & and through the referential point A then
the angular momentum for the point A, £4 is connected not only to the pole but
to the axis oriented by the momentary angular velocity vector to which we connect
the vectors M(4) and J of the rigid body mass linear and inertia moments by
connecting the body mass to the translation velocity of the referential point A.
Therefore we write that it is:

EA = [M(A),ITA] + wj.(ﬁA), MA) = pcM - (56)
that is,
£o = M, 74 + W + [Fa, M4 +wEM)] (57)

If the referential point A is in the body mass center than the angular momentum
for the pole O is equal to:

£o =M@, 7] +wiy), MO =ioM (58)

while the angular momentum for the pole in the mass center C is:

8o = wj(ﬁc) (59)
and it is equal to the product of the magnitude of the momentary angular velocity
w and the vector .'_fg.lc) of the rigid body mass inertia moment for the central axis
oriented by the vector of the momentary angular velocity &.

The Ref. [3] has the deviation center of the body for the given direction for the
material particles system and the deviation load by the linear momentum analysis.
Considering that we have introduced the deviation load vector by the analysis of
the vector j(ﬁA) of the body mass inertia moment as its component normal to the
axis for which it is determined we can see that the deviational part of the angular
momentum vector proportional to the vector 5(,.1.‘4) of the deviational load the body
mass inertia moment of the axis around which the rigid body rotates since it is:

£4 = (M@, 5,437, T +w@BEY ) = (M, 74]+3(7,TP) +0DE (60)
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If the point A is the mass center then it stands for:

e -y - - C -

£ =0, 39) + wdP (61)
If the rotation axis is the main mass inertia moment axis then the angular momen-
tum does not have any deviational part since the rotation axis is not subjected to

the deviation load by the rigid body mass inertia moment and the angular momen-
tum vector for the mass center is collinear with the rotation axis.

11.1.3. Some interpretations for the case of the rigid body rotation around
the fixed axis. Figure 7 shows the rigid body with the rotation axis around which
it rotates with the angular velocity & which changes in time so that there appears
the angular acceleration & (see [{A3], [32]). The kinetic energy is expressed as

2E; = w(d, f}'f.f)) == w? J,S,A). The linear momentum and angular momentum are:

R=[3,pc]M = wBY (62)
£4 =0, TP) + wfdP, 7)) = 31, 3P) + wdY (63)

afgre 7 FA

Figure 7a

Since the velocity ¥ and the acceleration & of the body elementary mass at the
point N are (see [31], [12]):

v=@4 @=[54+5 @ (64)

then for the main vector 1-7",_.,- of the inertia force of the overall rigid body rotating
around the axis with the angular velocity & we obtain:

Foj=- / / f ddm = -8 - wl@, 6] (65)
\'4
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For the main moment of the inertia forces of the overall rigid body rotating around
the axis and for the point A we calculate the following:

s = [[[ 151 = oGP - lo, 5 (66)
|4

as well as:
(66*)

Figure 7b

The dynamic equations of the body rotation around fixed axis can be obtained by
differentiating in time the expression (62) for the linear momentum and expression
(54) for angular momentum on the basis of which we obtain:

., dR_ .o . (4 5 _ &

= = 08D + w3, 8M) = ~F,; = F. (67)
AR )y L2y RUA) 2(4))
i 1657 (Wit + w?d1) = RIS | = R|G IR (68)

R, =RF, R=Vo?+ ol (69)

The rotator R =R is normal to the rotation axis and the deviation plane through
the axis.

The equation (67) for the linear momentum change which is equal to the main
vector (resultant) of the active and reactive forces shows that the motion linear
momentum changes the vector normal to the rotation axis and has two components:
one due to the angular velocity change which is normal to the rotation axis and
the plane which contains the body mass center and the rotation axis, and the other
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component which depends on the angular velocity square which is normal to the
rotation axis and lie in the plane formed by rotation axis and the rigid body mass
center doing rotation.

dﬁ . - -pi —p -y
2 LA 0T 4o, TP = it = s (70
dg

4 = 5JP + 0P 4wz, P = IP + BPIR ()
R =R, R= Vol +wt (72)

The rotator /& = W7} which is rotating and increasing by the angular velocity and
by the angular acceleration at the same causes the inertia forces deviation moment
to increase.

The equation (70) which is written on the basis of the law of the body angular
momentum change which is says that the derivative in time of the body angular
momentum for a certain pole in stationary bearing, equal to the moment of the
active and reactive forces acting on the body for the same pole.

This form (71) immediately shows that the first component depending on the
angular acceleration is collinear with the rotation axis; the second component which
also depends on the angular acceleration is normal to the rotation axis and the
vector f('g{‘) of the rigid body mass inertia moment for the pole in the fixed bearing
A and for the rotation axis, that is, it is proportional to the magnitude of the
angular acceleration & and the vector 55,%‘4) of the rotation rigid body mass deviation
moment of the rotation axis in the stationary bearing A and for the rotation axis;
the third component is proportional to the square of the angular velocity w? and to
the magnitude of the vector ﬁg{‘) of the rotation rigid body mass deviation moment
of the rotation axis in the stationary bearing A and for the rotation axis, whereas it
is like a vector normal to the rotation axis and the vector 5351‘4) of the deviation load
to the rotation axis which means it is normal to the deviation plane. In the case it
is the rotation with a constant angular velocity the stroke derivative components
in time do not appear in the deviation plane; there is only a component normal to

. + R(A)
the deviation plane w(d, D:™].

Figure 7 shows the characteristic vectors, the rigid body mass moment vectors
and the rigid body dynamics kinetic vectors in the rotation around fixed axis.

&

If we now return to the expressions (65) and (66) for the inertia force main
vector and the inertia force main moment for the pole at the stationary bearing
A we come to the following conclusion: 1* the expression (65) is equal to the one
for the rigid body linear momentum derivative in time a changed sigh, while the
expression (66) is equal to the angular momentum for the pole at the stationary
bearing A, derivative in time, with a changed sigh so that the conclusions drawn
to the expressions (67) and (53) also stand for the expression (65) and (66). These
conclusions can also be defined in another way: we conclude from expression (66)
that the inertia forces main moment for the rigid body rotation around the fixed
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axis has three components: the first one is purely rotatory around the rotation
axis collinear with it if the angular acceleration is different from zero and it is
proportional to the angular acceleration w and the body mass axial inertia moment
for the rotation axis, JéA); and the second deviational component is normal to the

rotation axis which also depends on the angular acceleration and the vector 55(5‘4)
of the deviation load of the rotation axis; and third component depending on the
angular velocity squared of the rigid body rotation around the fixed axis and on
the magnitude of the mass deviation moment vector of the rotation axis at the pole
in the stationary bearing.

The derivative in time of the body angular momentum for a certain pole in
stationary bearing normal to the rotation axis is:

5’% = oD + o, D] = 1DV IR (73)
By expressions (66), (68) and (73) we can write following relations:
df
—L.Fj'—’i = ———({.-7— = E:;(i-A)—l = constant (74)
M4t |dE4| BT |
dt

11.1.4. Conditions for the dynamic balance of the rotor rotating around
the fixed axis. Figure 7 shows the rotor with the main forces vector components
denoted, that is, the motion linear momentum derivative in time and the inertia
forces resulting moment components, that is, motion angular momentum derivative
in time. In order that the effects of the dynamic balancing can appear it is necessary
that bearings do not bear dynamic pressure which means that the deviational
components should be equal to zero, that is, the components of the main force vector
and the inertia forces resulting moment. Hence we draw the following conclusions:

1* Condition for the dynamic balancing exclusively and primarly depends on
the dynamic, that is, kinetic properties of the rigid body with respect to the pole
in the stationary bearing and to the rotation axis, but they do not depend on the
angular velocity and the character of the acceleration;

2* Rotation axis should be the gravitational axis which is expressed by the
condition that the vector 6(,{4) of the rigid body mass linear moment for the rotation
axis and the stationary bearing should be equal to zero;

18 =0 (75)

3* Deviational part magnitude of the motion angular momentum derivative in
time is equal to zero, that is, that the magnitude of the vector D(ﬁA) of the deviation
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load by the body mass inertia moment for the rotation axis is equal to zero:
55V =0 (76)

which can be reduced to the condition that the rotation axis is the main central
mass inertia moment axis or that it is the symmetry axis or that it is the axis which
for the point at stationary bearing represents one main direction of the rotor mass
inertia moment.

11.1.5. Interpretation of the kinetic pressures on bearing by means of the
mass moment vectors for the pole and the axis. In this part the kinetic pressures

of shaft bearings are expressed by means of the mass moment vectors: éS‘.A) of the

body mass linear moment and 335{4) of the deviation load by the body mass inertia
moment of the rotation axis for the pole in the stationary bearing.

>}

G=63L

Figure 8

Figure 8 shows arigid body that can rotate around a stationary axis is like a rigid
shaft without mass supported on the stationary bearing A and on the moveable
_ sliding one along the rotation axis. In the general case let a rigid body be subjected
to a system of forces Fi, whose points application N, are determined by the position
vectors Py with respect to the pole in the stationary bearing A. |

Let’s denote the rotation angle of the body around the stationary axis oriented
by unit vector 7 with @ = fi.

Following the expressions (67) and (70), as well as expression (68) and (71) we
can write the following two vector equations:
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‘flf IED (i, +w?5) = RIEP| =
k=N
—mIG(A)Irl ZF), +I3A +FB (77)
k=1
%’1 =35I + 6B + vz, D) =
k=N
=3I + PP R = 3 (3, Fil + (75, Fi) (78)
k=1

These two vectorial equations are kinetic equations of dynamic equilibrium in
motion-rotation of the body around the stationary axis under the action of the
active force system fk

If we now multiply scalarly and vectorly these equatlons (77) and (78) by the
unit vector i and having in mind that the gp = ppit, we obtain:

1* the rotation equation around the axes oriented by unit vector 7 in the form:

k=N

@,8) = 3 (Be. Fil, 7) (79)

k=1

2* the equations for determining the bearings kinetic pressures, that is pressures
upon the bearings, F4 and Fp, that is, their components in the axis direction i
and normal to the rotation axis:

k=N
Fun = (Fa,M)it = -7 y_ (F, ) (80)
e
Far = —Fp + 2|85 - 3[4, [Fi, 1)) o (®
k=N k_.l
Fg= lﬁJ(A)I - — Z[n, [[Be, Fi), ) (83)

From the expression for the bearings pressures (resistance) we select a part which
is the result of the action of an external active forces and the influence of which
upon the bearings resistances in possible variable in time is only due to the change
of their line of application as well as the point of application with respect to the
configuration of the body which is rotating such as in the case when the force of
the body’s own weight which retains the application line direction in relation to
the rotation axis, and thus its position with respect to the body configuration,
although in doing this it retains the application point constantly in the body mass
center which rotates around the rotation axis together with body. The body mass
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center describes a circle or an arc in the plane through the mass center normal to
the rotation axis.

Other part of the bearing kinetic resistance (pressures) in the body rotation
around the stationary axis is the result exclusively of the kinetic-inertial body prop-
erties with respect to the rotation axis and the rotation kinematics and rigid body
rotation kinematics around the stationary axis. These parts appear as parameters
depending on the rotator vector 9 which in itself contains the angular velocity and
the angular acceleration of the body rotation around the rotation axis and the rigid
body mass moment properties with respect to the pole A at stationary bearing and
the rotation axis expressed by the mass moment vectors: é(ﬁA) of the body mass

linear moment and 555{4) of the deviation load by the body mass inertia moment of
the rotation axis for the pole A in the stationary bearing.

In order to discuss the rotor effect on the kinetic pressure upon the bearings
in which the rigid body shaft axis is rotating it is necessary to know the angular
acceleration & and the angular velocity & and in order to do this it is necessary
to solve the body rotation/oscillation equation around the axis (79), namely, to
determine @(t) and &(t) as well as w(yp).

If the rotation axis is the central and main mass inertia moment axis and for
the pole in the stationary bearing then it is a rigid body which is dynamically
balanced and the member in the kinetic pressures depending on the vectors GS.iA)

of the body mass linear moment and 53%‘4) of the deviation load by the body mass
inertia moment of the rotation axis for the pole A in the stationary bearing are
equal to zero and are not influenced by the rotator change. Then there are only
the components of the bearing resistance arising from the bearings “kvazi-static”
resistances in the definite position of the active forces system and the reactive forces
system during the body rotation. '

If the rotation axis is the axis of the mass inertia moment asymmetry for the
referential point in the stationary bearing then the kinetic pressures are the great-
est both on moveable and stationary bearing. Since at each point on the rigid
body there are three pairs of such mutually perpendicular axes which are in pair
perpendicular to one main mass inertia moment direction and they form with the
others an angle of 7 each so that the mass inertia moment asymmetry axes which
are perpendicular to the second main mass inertia moment direction forming angle
of £ each with the first and third main mass inertia moment directions as the ro-
tation axes will be the greatest vector of the deviation load and at the same time
the greatest kinetic pressures on both the bearings.

The kinetic pressure on the stationary bearing depends on the body mass center
position with respect to the rotation axis and this can be adjusted by the choice of
the inertia asymmetry axes in pair as well as by the choice of the moveable bearing
position with respect to the stationary one on the definite axis of mass inertia
moment asymmetry. The body mass inertia moment asymmetry axes should be
avoided as the rotation axis in order to reduce the dynamic pressures upon the
bearings.
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For a pair of the mass inertia moment asymmetry axes as the rotation axes the
axial mass inertia moment of the rotatory body is identical so that depending on
the body mass center position with respect to one axis or another and on the choice
of the moveable bearing an increase, that is, decrease of the kinetic pressure at a
given constant value of the initial energy communicated to the rotating body.

There are four (that is, eight) axes through each point of the body which we
have chosen as a stationary bearing for which the axial mass inertia moments
are the same value and the vectors 55%‘4) of the deviation load by the body mass
inertia moment of the rotation axis for the pole A in the stationary bearing are
proportional to the sum of the three mass deviation load vectors by the body mass
inertia moment of the mass inertia moment asymmetry axes. For these octahedral
axes the dynamic pressures on both the stationary and moveable bearings are the
same while the pressures on the stationary bearing are different and by choosing
one of the octahedral axes minimization of maximization of their value can be
performed. By displacing the moveable bearing from one to another octahedral
axis through the stationary bearing the kinetic pressure on the stationary bearing
can be adjusted while retaining the share in the pressure on both the bearing of
the part that corresponds to the deviation load vector although the rotator is going
to change as well (but this can also be adjusted). The smallest pressures would
appear an octahedral axis is chosen so that the body mass center is closest to the
rotation axis, that is, the most favorable of all the octahedral axes for the rotation
axes is the one which body mass center is closest to.

A general conclusion would be that if we cannot select in the design way the
rotation axis as the rigid body main central mass inertia moment axis when the
system is dynamically balanced and analysis of the mass inertia moment state
should be performed at each of the possible points of the stationary bearing posi-
tioning and according to the design requirements the selection should be done of
both the stationary bearing and of the rotation axis according to the analysis.

These conclusions are very important if the designer cannot change the station-
ary bearing but if we can change the moveable one and chose it freely in the rigid
body then his choose is important since the dynamic pressures should be as small
as possible (see [33], [32]).

11.2. Interpretation of the motion equations of a variable
mass object rotating around a stationary axis by means
of the mass moment vector for the pole and the axis.

In this part the kinetic equations of a variable mass object motion rotating

around a stationary axis are derived by means of the mass moment vectors for the
pole and for the rotation axis: vector & of the body mass linear moment, vector
-‘S.A) of the body mass inertia moment for the pole A and for the axis oriented by
the unit vector 7 and its deviational part of the vector 535,‘0 of the deviational load

by the body mass inertia moment of the rotation axis through the pole A. The
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vectors of the reactive forces and resulting moments of the reactive forces due to
the drop of the body particles are determined which are involved in the body mass

change as the function of the body mass moments vector change: vector &M of
the body mass linear moment and vector 55,“ ) of the body mass inertia moment for
the pole A and for the axis oriented by the unit vector 7 (see [49], [45], [27]).

The bearings resistances of the shaft on which an object of the variable mass is
rotation and the analysis of the kinetic pressures is performed.

11.2.1. Introduction. In the last fifty years the equations of Meschersky given
in his M.Sc. theses in 1897 [9] have obtained a wide theoretical consideration and
the practical application in scientific centers of many countries. Meschersky has
introduced the notion of the reactive force whereas Newton has defined the dynamic
object properties by means of the kinetic properties of the matter quantity as the
inertia measure. In the context of the Meschersky theory [9] the object are discussed
as the dynamic variable objects. If the object is subjected to the dynamic change
(see [17], [18]) (change of its own mass inertia moments) then it is the dynamic
variable object whose rotation around the stationary axis is discussed in this paper.

The reactive force acts on a body in motion whose mass changes in time (due to
the mechanical wasting - rejection or adhesion) in the sense of action and reaction.
This motion is described by the Meschersky equation and gives an expression for
the reactive force while the Ciolkovsky formula (see {5], [2], [11]) determines the
motion velocity due to such a force and the dependence of the mass separation
velocity in the case of the mass rejection.

Beside the papers quoted above relating to the mechanics of the variable mass
body and rocket-dynamics which began to develop between the two World Wars
there are other publications of a famous Italian scientist Tullio Levy-Civita (1873-
1941) (see [8]) who discovered these laws 31 years after Meschersky and indepen-
dently of him.

In engineering practice, especially in Mechanical Engineering, an important role
is played by the rotor of the variable mass so that it is of greatest to consider the
dynamic equations of the motion of the variable mass rotor as well as the dynamic
resistances of the shaft bearings which these rotors are rotating upon.

11.2.2." Main vector of the reactive forces and the reactive forces resulting
moment. By means of the previous introduced mass moment vectors here we are
going to the interpret the kinetic equations of the variable mass body rotation.

Figure 9 shows a rigid body of a variable mass rotating around the axis oriented
by the unit vector #i by the angular velocity &@.

We introduce the hypothesis about the knowledge of the of the law on the mass
separation from the body as the absolute velocity Wy of the particles falling off
which create the reactive force. Let’s assume that the absolute velocity wy of the
body particles falling of is equal to the velocity of the body point which rotates
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around the axis by the angular velocity @, that is, that it is: Wn = AUy = A&, 7],
where A is a scalar, the proportionality coefficient (see (19], [27]). The reactive
force dg.,, due to the elementary particle falling off is: d§, = wWndm = A[@, pldm.

Due to the falling off of all the particles which are involved in the body mass
change the main vector of the reactive forces is:

3 =///11)‘Ndm=,\///[ﬁ,p]dﬁz=/\w%///[ﬁ,p‘jdm=/\u26;? (84)
\’4 Vv v

we see that it is proportional to the body rotation angular velocity and to the
derivative in time of the body mass static moment vector in the case when the
body changes its mass in rotation. In the formula (84) the differential operator

4 is a derivative in the time of the body mass linear moment vector for the body

dt
= =%/V// rin = 45 o)

mass change:
/48,

el
W

Figure 9

Due to the falling off of all the body particles which are involved in the body
mass change the resulting moment of the reactive forces:

58 = [[[asi=s [[[rmman=-nTe @
| 4 1 4

‘We see that the resulting moment of the reactive forces due to the body particles
falling off, that is, of the particles involved in the body mass change for the case
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of the rotation is proportional to the body rotation angular velocity and to the

derivative in the time of the vector 3(5‘4) of the vector of the body mass inertia
moment for the pole at A and for the rotation axis.

In (85) the differential operator % is a derivative in the time of the body mass
inertia moment vector for the body mass change:

d(tA) ///[P’[w’f’]]dm ///(p (5, 1] drn (85*%)

11.2.3. Linear momentum and angular momentum of the body rotation
around the stationary axis. Following the idea of this part the linear momentum
& and the angular momentum £ 4 for the pole in the stationary A bearing for the
case of the body rotation around the stationary axis can be written by means of the
previously defined vectors of the body mass moments by the expressions (4) and
(6), as well as by the expressions (62) and (63), in the following form: & = wéf{‘),
£4 = w;](A ). Since for the formation of the dynamic equations is necessary to
detetmme the derivatives in the time of the linear momentum and of the angular
momentum of the body rotation, we write that it is:

* .,

dR _ sy, s gy, 985
= w6 +wlw, 6] +w dt (86)
% J(A) +w50(‘4) + wld, CD(A)] +wd3 (87)

11.2.4. Kinetic equations of a variable mass body rotation around a sta-
tionary axis. By using the basic laws of the dynamics that the linear momentum
derivative in time is equal to the sum of all the active and reactive forces and that
the angular momentum derivative in time for the pole in the stationary bearing is
equal to the sum of all the active and reactive moments for the same pole, we can
write the following two vector equations by means of the expressions (86) and (87)
as well as of the expressions (84) and (85):

g gw . L ggWw
‘fi—-? =w8M + vz, W] + wd d;‘ = —Fpj = Fo 4 Jo—2 (88)
g "3(4) R4
dﬁ -4 -
=2 =G +wla, B + wd:c‘if“; = St p; = T, + ,\wd:fif‘; (89)

These two vector-equations are the motion kinetic ones-of the rotation of a variable
mass body around the stationary axis. In these equations F, and 94, are the main
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vector of the active and passive forces acting on the body as well as these forces’
resulting moments for the pole at A.

If we multiply these equations (88) and (89) first scalarly and then from different
sides by the vector 7 of the rotation having in view that we obtain:

a) Rotation equation around the axis oriented by the unit vector 7:

k=N *2(4)
(D, 5) = (7, ) *)+Z<[pk,Fk1,n>+<A—1>(,d3 ) (90)

k=1

b) Equations for the bearings kinetic resistances:

d (A) k=N
(Fa, @) + (G, @) + (A - 1)( ,n) + Z(F,,,ﬁ) =0 (91)

k=1
k=N
#1160 = 1A, [Fa, @l + 7, [Fo, @) + Y 17, [Fi, A1+
k=1
3 z(4)
+ 3,16, 7]+ (A - 1) [ﬁ, [i?—i;'—w]] (92)
RID| = [, [7e, Fal, 7)) + [7, 155, Clitl}+ |
J(A) =N .
+ (’\ 1)[""[ ’w]] + Z [ﬁ, [[ﬁkrFk]’ﬁ]]
k=1 (93)

11.2.5. Shaft bearings resistances carried by the variable mass body. From
the equations (91), (92) and (93) we determine the bearings resistances components
in the form:

The stationary bearing resistance components A are:
1* The axial components in the rotation axis direction is:

Fan={(G1) - A= DI (‘}i(f),ﬁ) kf}:v(ﬁk,ﬁ)} (54

k=1

2* The deviational components perpendicular to the rotation axis are:
2.1* The component coming from the body mass center eccentricity is:

O~ R &
Fin =P = S8 - Y15 (R ) - 5,16, - 0~ 1|, [ S,
k=1
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2.2* The component coming from the deviational couple:

- L 1 o = 1 -
Pyt = FE) = —Fg = - — R 19P)| + — [, [[5
AN A B PB l F |+ PEB [n [[pC:G]’ﬁ]]+
(,\-1)[ [dﬁ"ﬁ") ” ey
+ i, B+ — YA 5w, Bl Al (@
o 5 > k§=1: (7, [[%, Fil, 7]} (96)

3* The moveable bearing resistance - sliding in the axis direction is of the devi-
ational character:

- l-o-o(A) 1 . rem N
Fpg = —R|9DS"| - —[#,[[Fc, G],
s = ——RIB| - -, 170, 7]

-Q=Df [di%'”,a” LN (5 AL (90

PB P =
in which the rotator R is determined by the formula:
R = Rii = v + W27 (=) g; P=P=1 GLTLA R=V/iZ+twt (98)

From the expressions for the bearings resistances we select the part which is the
result of the direct “static-dynamic” action of the active forces and a part which is
the result of the rotating variable mass body kinetic properties.

We see that as the result of the rotor kinetic properties the deviational couple
appears which is equal to the product of the rotator vector %R and of the vector
intensity 535.1‘4) of the deviation load by the body mass inertia moment of the rotation
axis and it directly depends on the axis selection in the variable mass rotating body.
This deviational couple causes a part of the kinetic pressures of the same intensity
and perpendicular to the rotation axis in both the bearings, the stationary and the
moveable one,

In the case that the rotation axis is always the main inertia axis for the pole in
the stationary axis this deviational couple is equal to zero and it does not cause
any pressure upon the bearings.

An additional pressure only upon the stationary bearing is formed when the
masses center is outside the rotation axis and this part is proportional to the rotator
vector R and to the vector intensity éf_"‘ ) of the mass linear moment for the pole
in the stationary bearing and for the rotation axis 7.

Due to the mass changeability the kinetic pressures are formed in both the
stationary and moveable bearings and they depend on the character of the body
mass inertia vector change for the pole at A and for the rotation axis and they also
make another deviational couple.

An additional pressures on the stationary bearing is formed due to the change of
the vector ég‘ ) of the mass linear moment and the angular velocity. A part of the
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kinetic pressures due to the reactive effect of the mass falling off from the rotator
in the fact depends on the falling-off masses kinetic properties.

11.2.6. Special case of self-rotation. To illustrate let’s observe a special case
when there are no active forces but the rotor is only under the action of the reactive
forces due to the masses separation (for instances, rotor with nozzles through which
the particles are falling). Then the self- rotation equation is:

S(A)
(GD 5y = (A - 1)( ,‘” ) (99)

whose one first integral is: (J(A) &) = const.

If the rotation axis is the central rotation axis and the main inertia axis for
the pole in the stationary bearing then the dynamic pressures do not effect the
bearings. Then we can conclude that due to the reactive forces the body rotates
around a free axis which retains its orientation. This would be a case of the body
self-rotation around the central axis. In [20] the motion integral of the form is given
which according to the Savié-Kasanin theory [16] represents the motion integral,
that is, the self-rotation equations of celestial bodies (of the Earth, of the Sun).

11.3. Vectorial equations for the self induced rotations

Starting from the idea of Savi¢ and Ka3anin [16] and from idea of Vuji¢ié [18],
as well as from an analogy with paper of Vujiti¢ {20] and idea of [23], a new form
of the vectorial equation for the self-induced rotations of a rigid body is derived.
That equation is:

JR(©)

W3O 4@, 3 + w1 - A) =0 (100)
where j’f.ic) is the vector of body mass inertia moment at the point C' center of
mass, for the instantaneous rotation axis oriented by the unit vector 7 and & is the
instantaneous angular velocity vector of the self-induced rotation, where w = 3]

11.3.1. Introduction. In the monograph [16] it is supposed that the rotation of
a celestial body result from the expulsion of electrons from ators: “The ezpulsion
of electrons from an atom has as its consequence the rotation of a celestial body,
this rotation occuring at the instant in which the magnetic moment occurs-both
phenomena occur concurrently with one another; both of them are the consequences
of the ezpulsion of electrons from atoms, without which there would be neither a
magnetic moment nor a rotation”. The authors of this theory in their monograph,
starting from the relation of the rotation of the plane rigid body derive a formula
for calculating the angular velocity of a celestial body (see [16, p. 75]).
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In [20] a new form of the tensorial equations for the self-rotation of a celestial
body is derived by Vujigié¢. In [20] author have the following view: “The classical
mechanics have never succeeded neither could to ezplain the origin of rotation of
celestial bodies by material point model and rigid body. The sum of interior force
moments have disappeared during any analysis, and therefore the dynamics have to
account the exterior forces as the cause of rotation. However the celestial mechanics
have not accounted for electromagnetic forces although they are predominant in
comperison with gravitational in microstructure. The gravitational forces became
predominant within the large mass bodies. But the evolutional processes are much
more complex the later mechanical model. So far the scientific opinion as that the
formulation of stars-starts with gravitational condensation of low density hydrogen”.

11.3.2. Vectorial equations for the self-induced-rotations of bodies. Ac-
cording to [25] we shall introduce the notation of the mass inertia moment vector
35_10) for the pole in the mass center C and for the axis oriented by the unit vector
7i, defined by:

~C v=N
D = Y mls, Al (101)
v=1
where 7, is a position vector of mass particle m,, v =1,2,... N, relative to a fixed
pole (in the mass center C. This vector is connected for the pole in the mass enter
and for the self-rotation axis.

The vector éf.ic) for the pole in the mass center C and for the axis of the self-
induced rotation, oriented by the unit vector 7, defined by:

v=N
6P =Y myli,7l=0 (102)
v=1

is equal to zero. In [20] author wrote: “If we have in mind very complicated struc-
ture of celestial bodies, these results, as the one concerning the magnetic moment
(see [16]), very sufficient stimulus for further work on this theory. For the purpose
of mathematical generalization, it is always possible to consider any part of the
body as the material points with the mass m;, i = 1,2,... N, if its own rotation is
considered. If we separate any part of the body, even one single electron, from the
original body, the mass of the body m; changes for the mass Am; of the separated
particles. If the mass Am; is separated, with the velocity i;, from the body with
mass m;, there appears a reactive impulse:

Am;ii; = AAH: : #; At (103)
and it provokes the change of impulse m;#; in the original with mass m;. Naturally
if the separated particle, for ezample an electron, takes with itself an electrical
charge it induced also the electromagnetic field, and the occurrence of a magnetic
moment”.
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In {20] it was assumed that the observed object was composed of the set of N
parts of masses m,,, v = 1,2,...N. Starting from the theory of separation under
the pressure, we can accept the assumption that the mass m, of the body changes
for a differentially small amount of mass Am,. At the moment of expulsion of
masses dm,, v = 1,2,... M, with the corresponding absolute velocities @, there
appear the reactive forces ﬁ,,i'ﬂ" which perform the work:

A, d"‘”

7 (1, 07) (104)

on virtual displacements 47,,.

The perturbation in the state of the j-th particle provokes (causes) a change in
the impulse of the motion of all other particles. For such a dynamical system, the
general classical principle of mechanics should be valid, and according to it, we can
write:

1 =N 1M
5 / ; g m? (@, d7,) = / ,};1 (@, 67,) (105)

where M < N and 7, are the radius vectors of observed material points with the
assumption that the eventual displacements d7,, and &7, are equal to zero, and
with the validity of the relations 6d7, = dé7,. Now, for left-hand side of (105) we
can write:

v=N v=N 1

] v,'Uu dry) +m, v;‘sdu = u( v,ddru =
2;1/{((", D) 4807} = 3 [ 067 =
v=N 1
== (d( v V) g V)
x;-o/ e 7‘ (106)
because
v=N
> my(@,07)1§ =0 ' (107)
v=1

Introducing the time t, the last integral (106) transforms in the form:

Ly=N

/ Z d(’"”""), )dt (108)

If we introduced the time also in the right-hand side of the relation (105), by means
of dm, = r, dt, where obv1ously m, = "—”—"‘ is the mass velocity (secondary change
of mass) if will be

lv=N Yy=M

/ S (4% s )= [ Y (o) et (109)

v=1 to v=1
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Due to the arbitrariness in the choice of the pole of the position vector 7, the mass
center C can be taken as the pole.

Setting the origin of an inertial reference system at the center of mass, which
is always possible due to the arbitrariness of the choice of the reference point, the
velocity of v-th point can be determined approximately by the relation 7, = [, 7).
In the model of the body, the angular velocities &, , are equal to the instantaneous
angular velocity vectors of a body-fixed, non inertial reference system with vector
base &,, that is &, & &. For the particles of a fluid medium, its velocity can be
considered as an average angular velocity, for which &, = & so that the angular
displacement 6@ = & dt, within the limits of such an approximations, can connect
the velocity 7, of the point of mass m,, with the velocity @, of an expulsive particle
of mass dm,,, that is ¥ = A, where A is an unknown scalar multiplier. Consequently,
from the equation (105) [20] we can write:

u—-N 4 =N

/ Z "(mu[&',f'u] [0, 7]) dt = / Au};{

Integration of the left-hand side of relation (110) can be transformed to (see [20]):

i @7L6EFR)d  (110)

v—N

= _ 4 R0 s _
% 2_2 my ([, 3,701, 60) = (w35, 60) =
~C «(C 30
=w(3( ) +w([w, N,65) +w( d"; ,&p’) (111)
where
“2(C) = v=N
dsdﬁt 3(0) ,,Z_l m,,[r,,, [n Tv]] (112)

The left-hand side of relation (110) can be transformed into the following form:

?{w(ﬁc), 57) + w((@, 35, 60) +w (23';0) ,6@) } dt (113)

to

Similarly, the right-hand side of the relation (110) can be transformed and it will
have following form:

f ,\Vf:vmy)[ru,[a 7,11, 69) dt = / Aw( (C),&p’) dt (114)

Due to the transformed expressions (113) and (114), the relation (110) can be
written in the form:

b, . 5©
/ { (wss,@ +w[@, 3 +w@ - ,\)—df‘;—-, &ﬁ) } dt=0 (115)

to
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Hence, from here, the vectorial equation of the self-induced rotation of the body
has the following form:

*

@30 +wl@, FO1+ w1 - A)

=0 (116)

ie.,
J5©)
w(;}(c) i) + wi)(o) +w[@, D =w(A-1) dJ

(117)

On the right-ha.nd side of this vectorial equation there is the vector iﬁa( R) of the

reactive moment: .
3(C)

(118)

on which the change in the body motions-rotation begins. In the case of appearing
of a total (complete) central symmetry of expulsion of parts of mass, the sum of all
components of moments of all reactive forces is equal to zero, because the moment
vectors (torques) in pairs probably act in opposite directions.

From the vectorial equation (117) it follows that:

‘ch'(R) =

75(C)
GOe=0-1) (w, By ) (119)
dt
. - 73(C)
AP +um S0 =000 S0 e
Now, Equation (119) can be written in the following form:
435
=0-DESE (121)

This last equation is equivalent to the relation (2.1), which appears in {16, p. 75],
or to the relation (2.14) which appears in [20, p. 99]. Thus, with the integration
we will have:

@,3) 7,302 = const (122)
ie. '
(@, S(C)) = const (123)

where the constant of integration is to be determined from chosen initial conditions.
This formula (123) is analogous with corresponding result of Savié-KasSanin from
[16].

According to the theory applied here, at the initial time #g, the vector of the
body mass inertia moment, for the pole C and for the axis oriented by the unit
vector i, is jf.::) and the instantaneous angular velocity of particles is &g, s0 we

can write:
(@33N = @0, 320, T (124)
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Therefore c c
(‘Difﬁ‘; )) = (‘-‘50, j(ﬁo)) (124*)
For the classical case when the mass of the body is constant, the right-hand side

of the equation (121) is equal to zero, so that the vectorial equation is reduced to
the equation of the rotation of a body by inertia & = &y = Const.

11.3.3. Concluding remarks. The exposed analysis of the bodies self-rotation
does not aim to explain finally and describe fully the appearance of its induced
self-rotation. This is only a contribution to the attempt for the mathematical
vectorial descriptions of the law of motion - self-rotation by a new form of the
vectorial differential equation, which are typical to the motion of rotor under the
action of the reactive forces due to the masses separation (for instances, rotor with
nozzles through which the particles are falling). If the rotation axis is the central
rotation axis and the main inertia axis for the pole in the stationary bearing then
the dynamic pressures do not effect the bearings. Then we can conclude that due to
the reactive forces the body rotates around a free axis which retains its orientation.
This would be a case of self-rotation of a body around the central axis.

8**
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Index of symbols

-

@ acceleration 76

ii,%,¥ unit vectors 54, 55,

cosa,cosB,cosy coordinates of unit vector i 47

fi  unit vector 47

N point 47

7 vector of the rigid body points position 52, 53, 54,

dm elementary body mass 52, 53, 54,

V  space region that the observed body occupies 52, 53, 54,

C  mass center 57

Pc  position vector of the body mass center 57, 58,

() row matrix 59, 87,

{} column matrix 59

[, 5] vector product 53, 54,

(7, p) scalar product 54,

o mass density 52, 53,

E; kinetic energy 72,73, 74

Fy  active force 80, 81, 87, 88,

Fy,Fg reactive force 80, 81, 87, 88,

G gravitational force 87, 88,

g acceleration of gravity 87, 88,

FO) vector of the body mass inerta moment 47, 48, 51, 53, 54, 56, 57, 58, 59,

69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94.

‘(,?),ffﬁ) and {-ﬁ?}a vectors of the body mass inertia moment at the observed

point for the axis oriented by the unit vector 7y, or #ys,, or fifry, of the

mass inertia moment asymmetry axis I, or I, or III, 65,66

-‘f,?t) vector of the mass inertia moment at the point O for the octahedron direction

67

vector of the octahedron axis deviation load by the body mass inertia
moment 67

gr the basic vectors of the dimensional N of the curvilinear coordinates 68, 69

$(0)

oct

(ks @) = g matric tensor coordinates of the defined curvilinear coordinates
system space 69
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z*  curvilinear coordinate 68, 69, 70, 71

&  angular velocity of the rotation around the axis 72, 73, 74, 75, 76, 77, 78, 79,
81, 82, 84, 85, 86, 87, 88, 89, 92, 93, 94

£ vector of the linear momentum of the rigid body dynamic 74, 76, 77

L4 vector of the angular momentum for the point A 75, 76, 78

F‘,,- the main vector of the inertia force of the rigid body rotating around the
axis with the angular velocity & 76, 77, 79 '

M j the main moment of the inertia forces of the rigid body rotating around the
axis and for the point A 76, 77, 79

R = R rotator is normal to the rotation axis 77, 78, 79, 81, 87, 88
Wy  absolute velocity of the body particles falling of 85

A a scalar, the proportionality coefficient 85, 88

d¥, reactive force due to the elementary particle falling off 85

ﬁ,. main vector of the reactive forces 84, 85, 86

iﬁt? resulting moment of the reactive forces due the body particles falling off 85,
86

fy  a position vector of mass particle m,,v—1,2,...N 90, 91, 92

my,v=1,2...N mass particles 90, 91, 92

5510) body mass deviation moment vector at the point O for the axis oriented by
the unit vector 7 48, 54, 56, 69, 71, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88

éfo ) vector of the body mass linear moment 47, 48, 51, 53, 58, 69, 71, 73, 74,
76, 77, 81, 84, 85, 86, 87, 90

M%N) vector of the body mass at the point NV for the axis oriented by the unit
vector 7 47, 51, 53

3(5”) vector of the total relative deformation - total relative strain, at the point
N and for the line element drawn from point N and oriented by unit vecto 7
51

15510) vector of the total stress at a certain body point for the plane with the
normal oriented by unit vector i 59

J©)  body mass inertia moment matrix 52 59 69

M) the mass linear polar moment of the material system 52

Jéo) axial mass inertia moment 54, 59

D&?‘),D,g) the deviational moments of the body mass for a coulpe of normal
axes orianted by unit vectors @i and i, thet is, 7 and ¥ 54, 55

Jl(o), Jfo), Jfo) first, second and third scalar of the body mass inertia moment
tensor matrix 59

J(©O)spk 3(O)dev — D(O)dev o matrices corresponding to the spherical and de-
viational part of the rigid body mass inertia moment tensor 59, 71
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*f.io)aks body mass axial inertia moment vector at the point on for the axis ori-

anted by unit vector 7 60

55%0) = 5510)‘“" body mass deviation moment vector at the point and for the axis
oriented by unit vector 7i; vector of the axis deviation load 60, 61, 62, 71

flg  unit vector of the main mass inertia moment axis orientation 62, 63

Kgi) ,k=1,2,3 are co-factors of the third kind elements and the corresponding
matrix column, successively for the roots J,(O), §=1,2,3; 63

I, and Iy, Il, and II;, III, and JII, the axes pairs of the mass deviation
moments extreme values 63, 64, 65, 66

“fvo) ,8=1,2,3 the body mass inertia moment vectors for the main mass inertia
moment axis for the referential point 65, 66
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BEKTOPU MOMEHATA MACA TEJIA

Ogaj MoROrpadCKM YIaHAK YBOAM BEKTOD i(,.N) MOMEHT3 NHePUKje Mace Tena
3a Tadky N ¥ OCy OpjeHTHCaHY jeAMHWJHUM BEKTOpPOM fi. BekTop MOMenTa BH-
epuyje Mace KPyTor Tekxa je Kopumlied 3a aHaNU3y CTalba MOMEHATA MHEpLMje
Mace Tesa 3a ofgpeljeny xondpurypaiyjy Mace Tesa, Ka0 ¥ 3a MHTEpPHpPETaLMjy
KMHETWYKHMX NapaMeTepa MaTepHjaJHOr CUCTeMa y KpeTamy. IIpoMeHa BexTO-
pa MOMEHTa MHepIUje Mace TeJa UPU IPOMEHN mOJa Kala 0Ca 3a4PKaBa CBOjY
opjenrammjy je oxpebena 1 npencrasiba yonmmrewe Huygens-Steiner-ose Teo-
peMe Ha YBeAEHE BEKTOpE MOMEHaTa MHepuuje Mace Tena. Vi3pener je m3pas
3a oxpebuBame mpoMeHe BEKTOpa MOMEHATA MHepIMje Mace Teda Kala OCa
Mema OpjeHTaLH]y, IMTo je jennaunna anaaorna Cauchy-jesum jeanaunnama U3
Teopuje enacTuunocTh. IToka3ano je kako ce nomMohy BekTOpa MOMEHATA Maca
oapebyjy riaBHK npaBnyd MOMEHATa MHEPIMje MAca KaO M IpaBLy WHEPIVOHE
acumerpuje. Oxpehenn cy BeKTOPH MOMEHATA MHEPLUMjE MACa 32 OKTaeAapCKe
npaBie. YKa3aHO je HAa aHAJOTMjé MOXena CTama MOMEHATA MHEepuHje Maca
Tejla, CTakha HAIIOHA K CTamka JedopMamuje noMoliy BEKTOpa BE3aHMX 33 TAUKy
# OCY, OZHOCHO DaBaH. Auaiu3upanu cy chepHa M AeBHjalMOHa CBOjCTBA Bek-
TOpa MOMEHATa Maca.

OBuM una#KoOM Cy yBeAenu ciefeliv BEKTODH BE3aHU 33 TAUKY M OCY: BEK-

~ (N . .
TOD Mf., ) mace Tena y Tauku N 3a OCY ODjeHTMCaHY jeAMHUYHUM BEKTOPOM
1; BEKTOD GSTN) muneapHor (CTATHYKOr) MOMEHTa Mace Tena y Ttauku N 3a

OCY OpPJEHTHCaHY jeIUHUYHUM BEKTODOM fi; U BEKTOP 357") MOMEHTa MHepnuje
Mace Tena y Taukm N 3a OCy OpjEHTUCAHY jeUHUUYHUM BeKTOpoM fi. Hl3Benenu
Cy ¥3pa3y 33 BEKTOPE MOMEHATA Maca ¥ f-IUMEHCUOHAIHOM KPUBOIUHIjCKOM
CHCTEMY KOODIMHATA.

3atuMm cy nmomolly yBeJeHMX BEKTODa MOMEHAT2 MACA M3Pa*KeHW KUHETUY-
KM IapaMeTpH KpeTama kpyror Texna. lame uHTepnperanuje cy oApenyie
u3pase 3a KMHETUYKY €HEprujy, KOJIMYMHY KDETalkha M MOMEHT KOJUYMEE Kpe-
Tawa KpyTor Tena noMohy ysejeuux BeKTOpa MOMeHaTa Maca Tena. Cmemm-
jasiHo, 3a cayuaj oOprama TeJa OKO HENOMHYHE Oce, oapebeHu cy m3Boau
KOJIMYMHE KPETAaBma ¥ MOMEHTA KOAMUYMEE KPeTalha y (QYHKIMjM THUX BEKTODPA
MOMEHATA MaCa M HalucaHe KWHeTMYKe jeHa4YMHe POTalMje y BEKTOPCKOM 06-
mky. Ogpebenu cy M3pasy 33 KMHETHYKE IPUTHCKE ¥ yYBeAEH KMHEMATUUKM
sexTop porarop. Ilokasyje ce ga xopumlieme BEKTOpa MOMEHATa Maca M BeK-
TOpa POTATOPA Jaje CACBUM jeHHOCTABHE M3Pa3e 33 XKMHETUYKE IPUTUCKE KOjU
3aBHCe OX MAEBMJaIlMOHMX JEJOBA BEKTOPa MOMEHATa Maca y OJHOCY Ha ocy
poTanuje ¥ O KMHEMATUYKOr BEKTOPa POTATOPa. ¥ CJIOBM JAUHAMHYKOr Da-




JNaHCUpama ce Takohe jeHOCTABHO M3paXKaBajy y YCAOBY Ja Cy AEBUjAIMOHN
HEJIOBH BEKTOPA MOMEHATa MACa jeOHAKW HYIU.

Y unaEky Cy u3BeReHM W3Pa3y 3a MPOMEHE BEKTOPa MOMEHATa Maca OpH
POTALMjH TeNa U 3a CAy4aj KPYyTOr Tejaa npoMeHmuse Mace. Vapenena je nex-
TOPCKA jeAHAUMEHA CaMOPOTANMje KPYyTOr TeNa NPOMEHLUBE Mace.

Osaj MoHOrpagCKN wiaHaK ONPeACTaBha NPEriel HAYYHUX PE3yJTaTa Koje
je ayTop nyGaMKOBaHO y HAYUHUM YACOMMCHMA M /VIM CAONMTHO HA HAYUHUM
KorpecuMa u xoudeperuujamMa MelyHaApPOAHOr MM HAUUOHAMHOr 3HAYAja MITO
ce BUOY U3 CIHCKA JUTEePAType Koja cajapxm ayroposux 30 6ubmnorpadckux
jemmEnna.

OBaj MonorpadgCcko nperyieffHy YiIaHaK OpPeiCTaBba UEAMHY NO BEKTOPCKO]
MEeTOAM KOjy je ayTOp 3aCHOBaO Ha BEKTOPMMAa BE3aHMM 3a IOJ ¥ OCy YBO-
PememM BEKTOpa MOMEHAT2 MacCa TeNa 3a IOJ M OCY KOjUMa Ce M3paXasajy
reoMeTPHjCKO KOHOUTypanuoHa CBOjCTBA MACA TEJNA M KUHEMATHUYKKX BEKTOPa
pOTATOPa KOjU Cy BE3aHM 33 NOJ M OCY M POTHUPAjy OKO me omroeapajyliom
yraoHoM OpsumoMm m yOpsamem. TaxoBe, unamak npeacrapimba HEJHHY U IO
caIp:KajUMa: KOMILIeTHOM MHTEPIPEeTAanHjoM aHaJM3e CTalkha MOMEHATa Maca.
Tena y OAHOCY Ha MNOJ YBEAEHUM BEKTOPUMA MOMEHATa Maca M KOMIIETHOM
MHTEPHPETAIMjOM KMHETUYKMX HapaMeTapa Kperawma poTopa.
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