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Summary 

This monograph paper introduces the vector J~N) of the body mass inertia mo­
ment at the point N for tb:e axis oriented by the unit vector n. The vector is used 
for interpretation of the rigid body kinetic characteristics. The change of the vector 
of the rigid body mass inertia moment is determined in the transition from one 
space point to another when the axis retains its orientation which represents the 
Huygens-Steiner theorem translated for the defined body mass inertia moment vec­
tor. Then the change of the vector of the body mass inertia moment is defined at 
the given point in the case of the axis changing its orientation in the way analogous 
to the Cauchy equations in the Elasticity theory. Then the interpretation of the 
main mass inertia moments asymmetry are defined. The relation between the axis 
deviation load vector by the body mass inertia moment for the octahedron axis and 
the inertia mass asymmetry moments axis is analyzed. 

This paper defines three dynamic vectors fixed to a certain point and axis passing 
through the given rigid body point. These are: the vector .M~N) of the body mass 

at the point N for the axis oriented by the unit vector nj the vector 6~) of the 
body mass static (linear) moment at the point N for the axis oriented by the unit 
vector nj and the vector j~) of the body mass inertia moment at the point N for 

the axis oriented by the unit vector n. Also, the paper introduces the vectors: j~O) 
of the material particle mass inertia moment for the pole 0 and the axis oriented 
by the unit vector n, and j~O) of the rigid body mass inertia moment for the pole 0 
and the axis oriented by the unit vector n at the dimensional curoilinear coordinate 
system N. 

The rigid body kinetic parameters are interpreted by these vectors. 

Future interpretation of the rigid body kinetic characteristics by means of the 
body mass inertia moment vector and by means of the body mass linear moment 
vector for the axis and the point refers to the description of the linear momentum, 
as well as angular momentum and kinetic energy as the functions of the body mass 
moment vectors and the angular velocity and the referential point velocity. The 
special cases of the rigid heavy body rotation are specially analyzed. The deviation 
part of the body mass inertia moment vector for the fixed point and for the rotation 
axis in view of the appearance of the dynamic pressure upon the bearings. The 
kinematic vector rotator is introduced as well as analyzed. 

The spherical and the deviational parts of the mass inertia moment vector and 
of the mass inertia moment tensor are analyzed. 



The conditions for dynamic balancing by means of the static mass moment vector 
and of the deviation load vector of the rotation axis by the rigid body mass inertia 
moment are shown. 

The kinetic equations of a variable mass object motion rotating around a sta­
tionary axis are derived by means of the mass moment vectors for the pole and 
for the rotation axis: vector 6~) of the body mass linear moment, vector ~A) of 
the body mass inertia moment for the pole A and for the axis oriented by the unit 
vector n and its deviational part of the vector i)~A) of the deviational load by the 
body mass inertia moment of the rotation axis through the pole A. The vectors of 
the reactive forces and resulting moments of the reactive forces due to the drop of 
the body particles are determined which are involved in the body mass change as the 
function of the body mass moments vector change: vector 6~) of the body mass 
linear moment and vector~) of the body mass inertia moment for the pole A and 
for the axis oriented by the unit vector n. 
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CHAPTER I 

1.1. Vectors of the body mass moments 

1.1.1. Introduction. The idea for this monograph paper appeared during my 
considerations of some analogies between the models in the stress theory and the 
strain theory of the stressed and strained deformable bodies as they are studied 
or as they can be studied in Elasticity Theory (see [15], [14], [28], [25], [34] and 
[23]). While considering this analogy as well as the analogy between the stress 
tensor matrix, the relative deformation tensor-strain tensor matrix and the body 
mass inertia tensor matrix it occurred to me to introduce the concept of the vector 
~N) of the total relative deformation - total strain, at the point N and for the 
line element drawn from that point and oriented by unit vector n, as well as the 
concept of the vector j~:{) of the body mass inertia moment at the point N, and 
for the axis oriented by the unit vector n (see [AI], [A2], [A6]. For more details 
see [24], [30], [31], [AS], [35], [37], [38], [34] and [23]. 

In further consideration of the dynamic parameters of the rigid and deformable 
bodies as well as of the possibility of their interpretation by means of the vector 
j~N) of the body mass inertia moment at the point N for the axis oriented by the 
unit vector n,· I came to the ideas and conclusions as well as interpretations given 
in my papers [22], [A2] [A4], [24], [34] and [23]. The question always asked was if 
something like that already existed in some classic literature or not? The literature 
available to me which is quoted in the appendix of this paper cont"ains no such 
interpretation of the rigid deformable bodies dynamic parameters by means of the 
mass inertia moment vector fixed to the point and to the axis. 

This paper defines three dynamic vectors fixed to a certain point and axis passing 
through the given rigid body point. These are: the vector M~N) of the body mass 

at the point N for the axis oriented by the unit vector nj the vector 6~N) of the 
body mass static (linear) moment at the point N for the axis oriented by the unit 
vector nj and the vector j~N) of the body mass inertia. moment at the point N for 
the axis oriented by the unit vector n (see [AI], [A21, [A6], and [A7]. 

The rigid body kinetic parameters are interpreted by these vectors (see [25], 
[26],[27] and [41]). 

The change of the mass inertia moment vector in the transition from one rigid 
body point to another is determined when the axis retains its orientation which 
represents the modification of the Huygens-Steiner theorem expressed by means 
of the defined mass inertia moment vector. Then the change of the mass inertia 
moment vector is determined in th ~..Q~~.J:.b.a.ngW.g..ti.s."Ofientation in the 
way analogous to the Ca y etiP.ctUo& flr i'beoJiotBl Str~s ~t0!iin the elasticity 
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theory. Then the interpretation of the main inertia directions are derived as well 
as of the main mass inertia moment asymmetry are derived. The relation between 
the axis deviation load vector by the material body mass inertia moment for the 
octahedron axis and the mass inertia moments asymmetry axis is analyzed. 

Further interpretation of the kinetic parameters of the of the body by means 
of the body mass inertia moment vector and by means of the body mass linear 
(static) moment vector for the axis and the point refers to the description of the 
motion quantity (linear momentum) as well as motion quantity moment (angular 
momentum) and kinetic energy as the function of the mass moment vectors for 
the axis and the point and the momentary angular velocity and referential point 
velocity (see [A3], [32], [33], [36], [A6], [39], [A7], [42], [43] and [AS]). 

1.1.2. Body mass moments vectors at point for the axis. In studying the 
dynamics of a rigid and solid body, geometry of mass plays an important part. In 
[3] and (4) there is a conclusion that it is not necessary to know all the details about 
the mass distribution and the masses internal structures in order to study the rigid 
body translatory motion under the action of the force. The properties necessary 
for the study of the rigid body motion as a material system are the rigid body 
dynamic properties. The values determining the dynamic properties are called the 
rigid body dynamic parameters (see [3]). 

According to the given reference these parameters are taken to be: mass M of 
the rigid bodYi position vector PO of the body mass center, the point C with respect 
to a certain point 0 and J(O) the body mass inertia moment tensor matrix for the 
point C which is determined with six scalar dynamic parameters. In this way in the 
general case the dynamic rigid body characteristic ten independent scalar dynamic 
parameters are required. By means of these ten dynamic parameters of the rigid 
body the sixth order matrix of the following shape is formed: 

M 0 0 0 Mzo -Myo 
0 M 0 -Mzo 0 Mxo 

J(O) = 0 0 M Myo -Mxo 0 
(1) ex 0 -Mzo Myo Jz Dyz Du 

Mzo 0 -Mxo Dzy Jy Dzy 
-Myc Mxo 0 Dzz Dyz Jz 

and this matrix is given in [3] and (4) as the rigid body mass inertia matrix for the 
given point 0 and the given trihedron. This is the matrix of the tensor expanded 
in an appropriate way. The mass inertia moment matrix changes its coordinates 
according to the change of the reference trihedron. 

In [1] the mass linear polar moment M(O) of the material system or the vector 
static system mass moment is defined with respect to the pole 0 in the form: 

1\1(0) = 11 J pdm = poM, 
v 

dm= adV (2) 
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where p is the vector of the rigid body points position with respect to the common 
pole 0, V is the space region that the observed body occupies and q is the mass 
density at all the body points. 

There are two important properties of a certain body mass: the mass center 
position of a material body does not depend on the pole choice but only on the 
body mass distribution and the mass linear polar moment U(C) with respect to 
the body mass center is equal to zero. 

Since our aim is to consider a possibility of the interpretation of the rigid body 
dynamic parameters in a modified shape we are going to set, as a reference, the pole 
o as well as the axis oriented by the unit vector n. Considering that the general 
case the rigid body motion can be represented by one rotation around momentary 
axis, that is, by the translation of the mass center velocity and the rotation around 
the axis through the given center we are led to the idea to define the rigid body 
dynamic parameters by means of the pole 0 as the referential point through we 
position an axis parallel to the momentary rotation axis (see [411. 

Therefore we define the following (see Fig. la): 

1* Vector M~O) of the body mass at the point 0 for the axis oriented by the 
unit vector n in the form: 

M--(O) <kfjr [[ --d - M-­
it - 11 n m- n, 

v 
dm=qdV (3) 

which does not depend on the mass distribution iU the body, that is, on the density. 
For all the space points and parallel axes it has the same values and it changes only 
with the axis orientation change. It is determined only with the mass quantity and 
the axis orientation. 

2* Vector 6~O) of the body mass static (linear) moment at the point 0 for the 
axis oriented by the unit vector n in the form: 

6~O) ~( / / / [n, P1 dm, dm = q dV (4) 

v 

where p is the vector of the rigid body points position of the elementary body mass 
dm with respect to the common pole O. For the vector 6~O) of the body mass 
static (linear) moment at the point 0 for the axis oriented by the unit vector it we 
can write: 

(5) 

The illustration is given in the Figure la. 

3* Vector 5~O) of he body mass inertia moment at the point 0 for the axis 
oriented by the unit vector it in the form (see [AI], [A2], [A6] and [A7J: 

5~O) ~f / / / [p, [n, P11 dm (6) 

v 
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It can also be considered the body mass square moment vector at the point 0 for 
the axis, through the pole, oriented by the unit vector n. The vector j~O) at the 
body mass inertia moment at the point 0 for the axis oriented by the unit vector n 
can be decomposed into three components: the collinear with the axis J~O) and the 

two other ones D~~) and D~~) in the directions, il and V, normal to the orientation 
axis n. The collinear component represents the axial moment of the body mass 
inertia for the axis oriented by the unit vector n through the pole O. The other 
two components represent the deviational moments of the body mass for a couple 
of normal axes oriented by unit vectors n and il, that is, n and v: 

(7) 

The definition-expression for the body mass inertia moment vector j~O) at the 
point 0 for the axis oriented by the unit vector fi can be obtained starting from 
the expression for the axial body mass inertia moment J~O) for the axis oriented 
by unit vector fi drawn through the point 0 and for the deviational body mass 
moments for the couples of the orthogonal axes oriented by unit vectors (fi, it) and 
(fi, V), D~~) and D~~), according to [25], [38]. By means of them we form the 
vector ~O) of the body mass inertia moment at the point 0 for the axis oriented 
by the unit vector fi in the form: 

j~O) = filII [fi,i1J2 dm + a/ // ([fi, i1J, [il,i1J) dm + vIII ([n,ifJ, [v,i1J) dm (8) 
v v v 

The rigid body axial mass inertia moment is: 

J~O) = 111[fi,i1J2dm 
v 

The rigid body mass deviation moment vector i5~O) at the point 0 for the axis 
oriented by the unit vector fi is in the following form: 

15~O) = all 1([n,i1J, [a,p]) dm + vI j j([n,P], [fl,P]) dm = T j j j([T,P], [n,P]) dm 
v v v 

15~O) = I I I [v, [[P, [n, ifj]n]] dm = [n, [J~O), fil] (9) 
v 

By means of the previous expressions (8) for the vector j~O) of the body mass 
inertia moment at the point 0 for the axis oriented by the unit vector n we can write 
the expression identical to the expression (6) which has been set as a definition. 

Figure la shows the vector J~O) of the body mass inertia moment at the point 
o for the axis oriented by the unit vector n, the rigid body mass deviation moment 
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vector !5~O) at the point 0 for the axis oriented by the unit vector it, the axial 

moment of the body mass inertia J~O) for the axis oriented by the unit vector it 
through the pole 0, and the other two components, D~~) and D~~), the deviational 
moments of the body mass for a couple of normal axes oriented by unit vectors it 
and il, that is, it and V, through the pole o. 

Fig. la Fig.lb 

Fig.lc 

Fig. Ib shows the vector J~O) of the material particle mass inertia moment at 
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the point 0 for the axis oriented by the unit vector n, the material particle mass 
deviation moment vector i)~O) at the point 0 for the axis oriented by the unit 

vector n, the axial moment of the material particle mass inertia J~O) for the axis 
oriented by the unit vector n through the pole O. 

Fig. lc shows an eccentrically skewly positioned discus respect to the axis of the 
shaft, as well as the vector ~O) of the discus mass inertia moment at the point 0 
for the axis oriented by the unit vector n, the discus mass deviation moment vector 
i)~O) at the point 0 for the axis oriented by the unit vector n, the axial moment 

of the discus mass inertia J~O) for the axis oriented by the unit vector n through 
the pole O. 

1.1.3. The material body mass inertia moment vectors for the two parallel 
axes through two referential points theorem. The Figure 2a shows the material 
body and two referential points - poles 0 and 0 1 and two parallel axes through 
them oriented by unit vector n. The same Figure also shows the denoted elementary 
mass dm at the point N of the rigid body and P and r, the position vector of that 
point with respect to the pole 0, that is, pole Ot. as well as the position vectors 
Po of the pole 0 1 with respect to pole O. 

Fig.2a 

Now it is necessary to determine the change of the vector ~O) of the body mass 
inertia moment at the point 0 for the axis oriented by the unit vector n and its 
relation to the vector J~O) of the body mass inertia moment at the point 01 for 
the axis oriented by the same unit vector n. 

This means we are interested in the change of the body mass inertia moment 
vector a certain axis which moves from one point to another retaining its orientation. 
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By using the expression (6) defining the mass inertia moment vector for a certain 
point and axis as well as the expression P = PO + r, we can write the following: 

~O) = !!! [Po + r, [n, Po + f1] dm = , 
v = ~Ol) + (PO,S~Ol)] + [MJ01>, [n,pol] + (Po, [n,po]] M (10) 

We see that all the members in the last expression have the same structures. 
These structures are: (po, [n, ro]] M, [rc, [n,pol] M and (Po, [n,pol] M. 

Fig.2b 

The expression (10) is the mathematical form of the theorem for the relation of 
the material body mass inertia moment vectors, j~O) and ~01) , for the two parallel 
axes through two corresponding points, pole 0 and pole 0 1 • 

In the case when the pole 0 1 is the center C of the body mass the vector re 
(the position vector of t~e masses center with respect to the pole 01) is equal to 
zero, whereas the vector Po turns into Pc so that the last expression (10) can be 
written in the following form (see Figure 2b): 

~(O) _ ~(e> + r;;- [ ...... ]]M 
Vii - Vii IYO, n,pc (11) 

This expression (11) represents the mathematical form of the theorem of the 
change of the mass moment vector for the pole and the axis when the axis is trans­
lated from the pole in the mass center C to the arbitrary point, pole o. 

The Huygens-Steiner theorems (see [lll, [1], [3] and [4]) for the axial mass inertia 
moment as well as for the mass deviational moments came from this theorem (11) 
about the change of the vector j~o> of the body mass inertia moment at the point 
o for the axis oriented by the unit vector n passing trough the mass center C and 
when the axis translate to the other point O. 
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The vector j~C) of the body mass inertia moment for the body mass center C 
as well as for the axis oriented by unit vector n passing trough the mass center C 
we are going to call the central or proper (eigen, personal) vector of the body mass 
inertia moment for the axis oriented by unit vector n. 

The part j~~~osition = [Pc, [n,pc]] M from the expression (11) represents the 
position part of the body mass inertia moment vector and we going to call it the 
body mass inertia position moment vector for the point 0 and the axis oriented by 
unit vector n in relation to the body mass center C. We can see that the body mass 
inertia moment vector for the axis trough the mass center C is the smallest vector 
since for all the other parallel axes the position part j~~;osition = [Pc, rn, pc J] M 
has to be taken into consideration. This can be expressed by means of the vector 
6~0) of the body mass linear moment for the point 0 and the axis oriented by unit 

vector n in the form [Pc, 6~0)]. 

The vector j~~~osition = [Pc, rn, pc]] M is the free vector as the moment of the 
couple: 

~(O) _ r;t [- - ]] M _ ~(o-+C) _ r;t 6(0)] _ -(C-+O) 
"n,position - IPC, n, Pc - "n,position - IPC, n - In,position 

= [-pc, _6~0)] = [-pc, [ri, -pc]] M (11 *) 

This vector j~~~osition can be moved from mass center C to arbitrary point 0, as 

well as opposite from 0 to C, without change. This vector ~~2osition is the moment 

of a couple of the mass linear position moment vectors: _6~0) in the pole 0 and 

6~0) in the pole mass center C. 

Two vectors _6~0) = [ri, -pc] M and 6~0) = rn, pc] M having the same mag­
I\itude, parallel lines of the orientation, and opposite sense form a couple. Clearly, 
the sum of the moments of the two vectors about a given points, however, is not 
zero. 

1.1.4. The change of the body mass inertia moment vector for the point 
and axis orientation change through the referential point. Let us now define 
the vectors j~O), j~O) and j~O) of the body mass inertia moments at the point 0 
and for the coordinate axes Ox, Oy and Oz. These vectors can be expressed in the 
form: 

j~O)=111 [p, [i,p]]dm, j~O)= III [P, [J,P]] dm, j~O)=111 [P, [k,Pl]dm (12) 
v v v 

If we denote the senses cosine of the unit vector ri with cosa, cos/3 and cos'y 
when the unit vector defines the orientation of the axis passing though the point 0, 
then we can successively multiply the expressions (12) and we obtain them added: 
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31°) cos a +3~0) cos/3 +3~0) cos-y = II I fP, [i cos a +; cos/3 + kcos-y,Pll dm 
V 

= III [p,[n,P1]dm 
V 
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From the previous expression we conclude that the body mass inertia moment 
vector 3~0) at the point 0 for the axis oriented by the unit vector n is equal to: 

3~0) = 31°) cos a +j~O) cos/3 + 3~0) cos-y (13) 

The last expression is analogous to the equation for determining the total stress 
vector tli,,0) at the point 0 of the stressed body for the plane with normal unit 
vector it which is known as the Cauchy equation in the elasticity theory. There 
fore we are going to call it the Cauchy equation giving the relation of the body 
mass inertia moment vector 3~0) at the point 0 for the axis oriented by the unit 
vector n and the vectors 31°), ~O) and 3~0) of the body mass inertia moments at 
the point 0 and for the coordinate axes Ox, Oy and Oz. 

1.1.5. Cauchy equations in the matrix form. Now by means of the mass 
inertia moment tensor matrix J(O) the Cauchy vector equation (13) can be written 
in the matrix form: 

(14) 

Now for the body mass axial inertia moment J~O) for the axis oriented by the unit 
vector n, as well as for the body mass deviation moment D~~) for the orthogonal 
axes n and v we can write the following expressions: 

J~O) = (n){J~O)} = (n)J(O){n}, D~~) = (v){J~O)} = (v)J(O){n} (15) 

The invariants of the body mass inertia moment state at a certain point can be 
determined as the first Jl°), second JJ 0) and third J~ 0) scalar of the body mass 
inertia moment tensor matrix. 

The rigid body mass inertia moment tensor matrix J(O) for a certain pole can 
be separated into two matrices corresponding to the spherical J(O)sph and devia­
tional J(O)dev = n(O)dev part of the rigid body mass inertia moment tensor (which 
is analogous to the stress tensor matrix and strain (relative deformation) tensor 
matrix in the elasticity theory): . 

o 
1;<°) 
3 1 

o 
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1.1.6. Axial and deviational part of the rigid body mass inertia moment 
vector. The body mass inertia moment vector ~O) at the point 0 for the axis 
oriented by the unit vector it can be written in the transformed form in which we 
separate the part J~O)aks collinear with axis oriented by unit vector it and the part 
15~0) = J~O)dev normal to the axis oriented by unit vector it as it is shown in the 
Figures la and 3. 

Figure 3 

Now the vector J~O) of the rigid body mass inertia moment at the point 0 for 
the axis oriented by the unit vector n can be transformed to the following form: 

;;(O) _ ;;(O)aks + ;;(O)dev _ ... (;;(0) ... ) + [ ... [;;(0) ;;'1] _ ;;(O)aks + ,n(0) 
"it - "it "it - n "it ,n n, "it ,nJ - "n "-lil 

with components: 

;;(O)aks _ ... (;;(0) ... ) _ "'J(O) 
"ii - n "il ,n - n it 

~~O) = J~O)dev = rn, [J~O) ,it]] 

(18) 

(19) 

(20) 

The first part J~O)aks collinear with axis oriented by unit vector n given by 
formula (19) represents body mass axial inertia moment vector at the point and 
for the axis oriented by unit vector n, and it does not depend on the pole position 
on the axis. 

'I; '/ 
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The second part i>~0) = j~O)dev normal to the axis oriented by unit vector n 
given by formula (20) lies in the plane formed by the axis oriented by unit vector n 
and the vector j~O) of the body mass inertia moment. This plane is determined by 
the axis selection and by the body mass distribution with respect to the axis and 
the pole. 

The vector i>~0) is the deviation load by the rigid body mass inertia moment 
at the point 0 of the axis oriented by the unit vector n· and it can be defined as 
the rigid body mass inertia moment vector component normal to the axis and in 
the plane which is formed by the axis oriented by the unit vector n and the vector 
~O) of the body mass inertia moment. This can be seen in the Figure la and 3. 
We conclude that the vector ma.gnitude is equal to the deviation moment of the 
body mass for the axis oriented by the unit vector n and the axis oriented by the 
unit vector T normal to the axis oriented by the unit vector n, in the direction 
of the cutting line of the plane normal to the axis trough the pole 0 and of the 
plane formed by the axis oriented by the unit vector n and the vector ~O) of the 
body mass inertia moment at the pole and for axis oriented by the unit vector n. 
The unit vector of this cutting line is denoted with T. The unit vector normal to 
the unit vectors it and T is denoted with Tl • We conclude that the body mass 
deviation moment for the axes it and Tl passing through the pole 0 is equal to 
zero. This means that for an arbitrary axis at the observed point 0 there can 
always be found at least one axis normal to it oriented by Tl for which, together 
with the axis oriented by the unit vector it, the body mass deviation moment is 
equal to zero. This axis is normal to the axis oriented by the unit vector n and to 
the deviation plane formed by the unite vector it and the vector j~O) of the body 
mass inertia moment at the pole 0 and for axis oriented by the unit vector n. The 
deviation plane we denote by RtJ. Only for the mass inertia moment main axis 
through a retain point-pole the deviation plane is not defined nor it can be said it 
exists since if the axis oriented by the unit vector it through a. certain point is the 
main axis of the body mass inertia moment then for this axis the deviation load 
to the axis is equal to zero. In this case the body mass inertia moment vector has 
only one component collinear with the axis. That is, if a certain axis through a 
certain point-pole is the main mass inertia moment than the vector of its deviation 
load by the body mass inertia moment is equal to zero. 

1.1. 7. Spherical and deviatorial part of the rigid body mass moment vector. 
If we now follow the idea of the formation of matrices of the spherical and deviatorial 
part of the mass inertia moment tensor according to the analogy (see [24], [23] and 
[34]) with the spherical and deviatorial part of the stress tensor, that is, of the 
relative deformation (strain) tensor we can define two vectors (see Figure 3): 

j~O)SPh the vector spherical part of the vectOr ~O) of the rigid body mass inertia 
moment at the pole 0 and for axis oriented by the unit vector n: 

;;(O)sph _ 1 J(O) .. _ 1 ].(0) .. 
Vii - - 1 n - - 0 n 3 3 

(21) 
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J~O)D the vector deviatorial part of the vector J~O) of the rigid body mass inertia 
moment at the pole 0 and for axis oriented by the unit vector ii: 

J~O)D = ii(ii, J~O» - ~JtO) ii + [ii, [J~O), iiJ] = ii«i£, j~O» - ~JtO)ii} + i5~O) (22) 

Let us now consider the modification of the Huygens-Steiner theorem in its 
application to the vector ~O)dev = i5~O) the deviation Part of the vector J~O) of 
the rigid body mass inertia moment at the pole 0 and for axis oriented by the unit 
vector n, as well as the vector of the deviation load by the rigid body mass inertia 
moment on the axis oriented by the unit vector ii in the transition from the mass 
center C to the pole 0 (see Figure 2b). We use the definition of the vector :5~O) of 
the deviation load by the mass inertia moment (18) and the formula (11) derived 
in the paragraph 1.1.3. for the Huygens-Steiner formula modified of the vector J~O) 
of the rigid body mass inertia moment at the pole 0 and for axis oriented by the 
unit vector ii so that: 

~O)dev = i5~O) = [ii, [j~O) ,ii]] = i5~C) - (ii, PC )[ii, [Pc, ii)] M (23) 

The expression (23) represents the Huygens-Steiner Theorem modified to the 
vector i5~O) of the deviation load by the mass inertia moment of the axis oriented 
by the vector n connected to the pole O. From this expression we conclude that 
the vector :5~O) of the axis deviational load through an arbitrary point 0 oriented 

by the unit vector ii equal to the sum of the vector i5~C) of the axis deviation 
load through the center C of the body mass for the parallel axis and the position 
deviation load in the transition of the axis from the pole C-mass center to the pole 
- arbitrary point 0 determined from the expression: 

i5~c-+O) = [ii, [[pc, rn, pc}]iiJ] M = -(n,pc)[n, [Pc, n]] M (24) 

If the pole 0 and the center C of the body mass are located on the same normal 
to the axis oriented by the unit vector ii then the position part of the deviation 
load in the transition from the axis through the mass center C to the parallel axis 
through the pole 0 is equal to zero. This means that the deviation load vectors of 
the axis by the body mass inertia moment for the central plane points corresponding 
to the given axis are equal to the deviation load belonging to the central axis :5~C) • 

1.1.8. Main mass inertia moment directions. main mass inertia moment 
vectors. By means of the vector j~O) of the rigid body mass inertia moment at 
the pole 0 and for axis oriented by the unit vector 1£ we can introduce a new 
definition of the main mass inertia momemt axes. Through one pole 0 we can 
draw an infinite number of axes of orientations. Among them we are looking for 
the axis for which the vector j~O) of the rigid body mass inertia moment had only 

one component, collinear with the axis, that is, the one for which the vector i5~O) 
of the deviation load of the axis by the body mass inertia moment is equal to zero. 
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Using the analogy given in the papers [245] and [34] as well as the analogy with 
the matrix interpretation from books [14], [15]' [28] and [23] as more appropriate 
for this case and by denoting the unit vector of the main masss inertia moment 
axis orientation with ri, which is in accordance with the Fig. 3a, we can write: 

so that the Hamilton equation for determining the main mass inertia moments is: 

(26) 

Fig.3a 

while for the senses cosines of the main mass inertia moment axes the following 
relations are obtained: ' 

cOSO!S _ cos{3s _ coslS -c 2 2 2 
(S') - (S') - -W,.... s, cos O!, + cos (3, + cos 18 = 1 
1(31 1(32 1(33 

(27) 

where I(~~), k = 1,2,3 are co-factors of the third kind elements and the corre­
sponding matrix column, successively for the roots J~O), s = 1,2,3 of the Hamil­
ton equation (26), which are the main mass inertia moments and which represent 
the axial mass inertia moments for the main mass inertia moments axes. There are 
three roots and three orthogonal main axes at every point with respect to which the 
rigid body mass inertia moment vectors are determined. The Hamilton equation· 
coefficients are the first, second and third invariants of the mass inertia moment 
state at referent point, and they are the first, second and third scalar of the body 
mass inertia moment tensor matrix at referent point (see [24] or [23]). 

1.1.9. Extreme values of the mass deviation moments. In [24] is given 
an analogy between the stress state modeL, the strain state model and the mass 
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inertia moment state of the body at the observed body point. For determining 
the mass deviation moments extreme values we shall use this analogy which exists 
between the stress tensor, the strain tensor and the body mass inertia tensor, as 
well as betw~ the vector tftt°) of the total stress at a certain body point for the 
plane with the normal oriented by unit vector n, the vector S!t0) of the total strain 
(relative deformation) of the line element drawn from the observed point in the 
direction of the unit vector n and the vector ~~) of the body mass inertia moment 
at the observed pole for the axis oriented by uni~ vector n. 

Figure 4a 

On the basis of the given analogy in [24] and [23], the following conclusions 
are drawn, though without proofs: on the basis of the analogy between the mass 
deviation moments extreme values for a couple of orthogonal axes (that is, of the 
mass centrifugal moments) and yield stress extreme values in the orthogonal planes 
that pass in pair through one main stress direction and form an angle of 45° with 
the other two main stress direction, we conclude that the mass deviation moments 
extreme values appear for the axes pairs 10. and h, 110. and 116,1110. and 1116 that 
pass in pairs through the main body mass inertia moment axis trough the given 
point and form angles of 45° with the other two main mass inertia moment axes (see 
Figures 4a and 4b). For these pairs of the defined axes the mass deviation moments 
(the mass centrifugal moments) are equal to the semi-difference between the two 
main (axial) body mass inertia moment and for each axis fu the correspondfug pair 
the axial inertia moments are equal to the semi-sum of the two corresponding main 
moments of the body mass inertia for the given point. 

The pairs of these coupled axes are the body mass inertia moments asymmetry 
axes since for them the mass centrifugal momen~s are extreme values and the axial 
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mass inertia moments for both the axes in pair are mutually equal. The concept of 
"asymmetry" can be accepted since for symmetry axes the body mass centrifugal 
moment is equal to zero and for these axes the body mass ceritrifugal moment is 
of extreme value so that this leads to the conclusion about the asymmetry of the 
material body mass inertia moment properties. On the basis of the given analogy 
we cam write the values of the mass deviation moments. and the body mass axial 
inertia moments of these axes (see Figures 4a and 4b): 

Figure 4b 

J(D) = J(D) = !(iD) + iD» 
I,. 16 2 2 3' 

J(D) = J(D) = !(J(D) + ;(D» 
11,. 116 2 1 3' (28) 

iD) - J(D) - !(J(D) + ;(D» 
Ill,. - 1116 - 2 1 2' 

In the coordinate system of the main body mass inertia directions ns , 8 = 1,2,3 
the vectors J~~), 8 = 1,2,3 for the referential point as the pole are the body mass 
inertia moment vectors for the main mass inertia moment axes and we see that 
they have only the components collinear with the corresponding main mass inertia 

;;(D) (D)-o moment axes I n• = Js ns , 8 = 1,2,3. 
-o{D) ;;(D) -o{D) • • 

Let's now define the vectors J/,. ,311,. and l£/I1,. of the body mass mertla mo-
ment at the observed point for the axis oriented by the unit vector nl,., or nIl,. or 
nl1l,. of the mass inertia moment asymmetry axis la or Ila or IlIa by using the 
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definition of this vector so that we have (see Figure 4b): 

5(0) = ../2{j(O) + j(O». 
I.. 2 fl2 Ra' 

j(O) = ../2(5(0) + j(O». 
11.. 2 Rl Ra' 

j(O) = ../2{j(O) + 5(0)}. 
111.. 2 Ri R2' 

(29) 

Let's now define the vectors5}~), 5}~! and~~l, of the body mass inertia moment 
at the observed point for the axis oriented by the unit vector nI, or nll, or nlllb of 
the mass inertia moment asymmetry axis Ib or lIb or 11 Ib by using the definition 
of this vector so that we have: 

j(O) = ../2(_j(O) + j(O)}. 
Ib 2 R2 Ra' 

j(O) = ../2<_j(O) + j(O)}. 
lIb 2 Ri Ra' 

(30) 

j<0) = ../2<_j(O) + j(O». 
IlIb 2 Ri R2' 

Now we define the components of the vector j~~). The collinear one with the 
body mass inertia moments symmetry axis la: 

],(0) ],(0) 

(~(O) ... ) _ 2 + 3 _ J(O) _ J(O) 
"I .. ,nI .. - 2 - I.. - Ib (31) 

The component normal to the body mass inertia moment asymmetry axis lying 
in the deviation plane representing the vector !D~~) of the deviation load by the 
body mass inertia moment of the mass inertia moment asymmetry axis according 
to the previously given definition in the form: 

-(0) [... ["'(0)...]] J~O) - J~O) .... (0) ... 
1)1 .. = nI ... 31 .. ,nI .. = 2 nIb = DI .. lbnlb 

Analysis the expressions from (28) to (32) we conclude the following: 

1* The expressions given in (28) on the analogy basis are correct; 

(32) 

2* Both the vectors j~~) and ~~) of the rigid body mass inertia moments for 
the pole 0 and the axis of the pair I of the mass inertia moment asymmetry, la 
and Ib are normal to the main mass inertia moment a.x1s (1) and they lie in the 
plane RI .. I, which is their mutual deviation plane. This plane is normal to the 
main mass inertia moment axis (1) and contains the other two main mass inertia 
moment directions (2) and (3); 

3* The vector !D~~) of the deviation load by the body mass inertia moment of 
the mass inertia moment asymmetry axis oriented by unit vector fiI .. at given point 

iT ; 
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lie in the direction of the second mass inertia moment asymmetry axis oriented 
by unit vector nIb of the pair I which is normal to the main mass inertia moment 
direction (1) and to the axis the mass inertia moment asymmetry le and vice versa. 
These two vectors, that is, i)~~) and Xj~?) , are the same magnitude and of the same 
components, of axial and deviational, and they have the same axial mass inertia 
moments. In a similar way the calculation can be applied to the other two pairs of 
the mass inertia moment asymmetry axes and the corresponding conclusions can 
be drawn in accordance with the expressions (28) and the previous conclusions. 

1.1.10. Mass inertia moment vectors for the octahedron directions in the 
referential point. In analogy with defining the octahedron directions a certain 
point of the stressed and strained body as it is done in the elasticity or plasticity 
theory we shall define the octahedron directions at a certain point of the rigid body 
form the viewpoint of the body mass inertia moment state with respect to this pole 
as the direction that forms the same angles with the main inertia axes, that is, with 
the main inertia directions. There are eight such octahedron directions. 

The vector ~~ of the mass inertia moment at the point 0 for the octahedron 
direction by using the basic definition is calculated as: 

~~ = III [p,[noct,pc]]dm = ~(j~~) +j~) +~» (33) 
v 

and we can decompose it into two components. 

1 * The axial component in the octahedron direction in the form: 

J(O) = (n ~(O» = !lO) = ~J(O) 
floet oct, "'oct 3 1 3 ° (34) 

which represents the axial moment of the rigid body mass inertia moment for the 
octahedron direction axis for the given pole and it is equal to one third of the first 
mass inertia moment invariant or one third of the first scalar of the mass inertia 
polar moment for the pole O. 

2* Normal component to the octahedron direction which is equal to the vector 
Xji~2 of the octahedron axis deviation load, by the body mass inertia moment and' 
has the form: 

ij(O) = _ 2V6 (ij (0) + ij(O) + ij(O) ) 
oct 9 I.. 11.. Ill .. (35) 

The vector i)~~2 of the deviation load by the body mass inertia moment of the 
octahedron axis can be expressed as the linear combination of the vectors ij~~), 
Xj~~!, Xj~~1.. of the deviation load of the mass inertia moments asymmetry axes 
when it is related to one of the pair. 

The intensity square of the vector i)~C;: of the deviation load by the body mass 
inertia moment of the octahedron axis can be defined by the following expression: 

IXj(O) 12 = ~(IXj(0)12 + 1~(O)12 + 1i)(0) 12) (36) 
oct 9 I.. II.. Ill .. 
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It should be noted that there are eight axes (or four axes) at each point of the 
rigid body for which the mass inertia axial moments are equal to a third of the first 
mass inertia moment invariant and they are the octahedron directions determined 
with respect to the main mass inertia moment axes. The question should be asked 
about what sort of motion the body performs while rotating around the octahedron 
axis and if the conclusions can be generalized to hold for the bodies with different 
mass inertia moment characteristics. 

If this conclusion is related to the previous section we can conclude that is: one 
set of eight (or four) axes for which the inertia axial moments of the body mass 
are mutually equal and equal to a third of the first mass inertia moment invariant: 
Three sets of two pairs of orthogonal axes of the inertia asymmetry for the axial 
inertia moments are also equal to the semi-sum of two main inertia moments each. 
The same stand for each body and for each pole chosen within the space or outside 
the space of the rigid body. Only the spherical body as the pole of all fourteen axes 
the axial mass inertia moment is the same and the deviation load is equal to zero. 

1.2. The mass. moment vectors at the dimensional· ~oordinate system N 

1.2.1. Introduction. This part introduces the vectors: j~O) of the material par­
ticle mass inertia moment for the pole 0 and the axis oriented by the unit vector 
ii, and j~O) of the rigid body mass inertia moment for the pole 0 and the axis 
oriented by the unit vector ii at the dimensional curvilinear coordinate system N. 
The vectors can be used for the interpretation of the rigid body kinetic character­
istics for the interpretation of the body dynamics at the dimensional curvilinear 
coordinate system N. 

The change of the vector j~O) of the body or particle mass inertia moment 
for the pole 0 and the axis oriented by the unit vector ii, is determined in the 
transition from one space point to another when the axis retains its orientation 
which represents Huygens-Steiner theorem generalized for the defined mass inertia 
moment vector at the dimensional curvilinear coordinate system N. 

This part gives the interpretation of the vector i)~O) of the deviation load by the 
material particles mass inertia moment at the point 0 of the axis oriented by the 
unit vector ii at dimensional curvilinear coordinate system N as well as by body 
mass inertia moment at the point 0 of the axis oriented by the unit vector ii at 
dimensional curvilinear coordinate system N. 

1.2.2. The dimensional curvilinear coordinate system N. According to the 
notation in the Fig. 5 the material point position vector p, at the dimensional 
coordinate system n, can be written in the form: 

p= xk 91e (37) 

while unit vector ii of the axis orientation can be written in the form: 

(38) 



Vectors of the body mass moments 69 

In the previous expression ih~ the basic vectors of the dimensional N of the curvi-

I' d' ~ op t' th 'd . mear coor mates g10 = ox 1o lor ese vectors It stan s that: 

(39) 

their product represents the metric tensor coordinates of the defined curvilinear 
coordinates system space. The position vector p magnitude squared is: 

(p,pj = (010,91) xlx10 = g10lxkxl (40) 

while for the axis orientation unit vector ri: 

(41) 

Figure 5 

1.2.3. The material particle mass inertia moment vector for the pole and 
the axis. By introducing the expression (37) and (38) into expression (6) for the 
vector S~O) definition of the material particle mass inertia moment for the pole 0 
and the axis oriented by the unit vector ri, we obtain that: 

J~(O) r~ r~ ~]] 10 p\1 n = Wk, WI,gp x X A m (42) 

If we have in mind that the double vector product can be written in the transformed 
shape, the previous expression (42) can be write in the following form: 

J~O) = (gkpiit - gklgp)XkXp .AIm (43) 
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If we multiply scalarly the previous expression (43) with the unit vector n, we 
obtain: 

(44) 

which represent the material particle mass axial inertia moment at the point 0 for 
the axis oriented by the unit vector n. This formula is same as the formula (2.3) 
in [6] written by VujiCic. 

If we now multiply the expression (43) twice vectorly with the unit vector n, 
that is, according to [40], we separate the material particle mass inertia moment 
vector deviational part for the pole 0 and the axis oriented by the unit vector Tt 
we obtain: 

~~O) = [[n, [j~O), ii]] = {9"p9Ij9i - 9"i9lj9p + (9"i9Ip - 91cp9li)9j }x"xP A' Ai Ajm (45) 

The last expression represents the vector i5~O) of the deviation load by the material 
particles mass inertia moment at the point 0 of the axis oriented by the unit vector 
n at dimensional coordinate system N. 

By introducing the expressions (37) and (38) into the expression (4) for the 
vector 6~O) definition of the material particle mass linear moment for the pole 0 
and the axis oriented by the unit vector n we obtain that: 

(46) 

1.2.4. The rigid body mass inertia moment vector for the pole and the 
axis. By introducing the expression (37) and (38) into expression (6) for the vector 
~O) definition of the rigid body mass inertia moment for the pole 0 and the axis 
oriented by the unit vector n, we obtain that: 

J~O) = !!! [9", [YI,Yp11x"xPA'dm 
v 

(47) 

IT we have in mind that the double vector product can be written in the transformed 
shape, the previous expression (47) can be written in the following form: 

J~O) = / / / (9"p9z - 91c19p)X"xPA'dm 
v 

(47*) 

IT we multiply scalarly the previous expression (48) with the unit vector n, we 
obtain: 

Jf) = (~O) ,n) = / / /(9"P9li - 91c19pi)xIc
XPA' A

i dm (48) 
v 

which represent the body mass axial inertia moment at the point 0 for the axis 
oriented by the unit vector n. 
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H now we multiply the expression (48) twice vectorly with the unit vector it, that 
is, according to [40], we separate the body mass inertia moment vector deviational 
part for the pole 0 and the axis oriented by the unit vector it we obtain: 

i)~0) = [it, [~O), it]] = I I I {gkpg'j9i - gkig'j9p + (gkig,p - gkpgu)9j }xkxp >..' >..i >..i dm 
v 

(49) 
The last expression represents the vector i)~0) of the deviation load by the body 
mass inertia moment at the point 0 of the axis oriented by the unit vector it at 
dimensional coordinate system N. 

By introducing the expressions (37) and (38) into the expression (4) for the 
vector 6~0) definition of the body mass linear moment for the pole 0 and the axis 
oriented by the unit vector it we obtain that: 

6~0) = II I [9.,9k]xk>..idm 
v 

(46*) 

1.2.5. The Huygens-Steiner theorem. Following previous expression (11) for 
the vector j~O) of the rigid body mass inertia moment for the pole 0 and the axis 
oriented by the unit vector it, the Huygens-Steiner theorem is derived which can 
be written in the following form for the curvilinear coordinate system (see Fig. 2a): 

~O) ~O) r;t [- - ]]M ;;(0) r;t [- -]] le _" "M "ii = "ii + LYC, n,po = "ii + Wk, 91,9p xC;J;"cl\ 
;;(0) ;;(0) (- -) k _" \IM "ii = "ii + 9kp91 - 9lel9p xc;J;"ol\ 

(47*) 

(47**) 

Following previous expression (23) for the vector i)~0) of the deviation load by the 
rigid body mass inertia moment for the pole 0 and the axis oriented by the unit 
vector it, the Huygens-Steiner theorem can be written in the following form in the 
curvilinear coordinate system: 

j~O)dev =:i5~0) =i)~C) -gii[9k,(g,,9p]Ja{X~>..i>..k>"PM (49*) 
-(O)dev -(0) -(C) . I . k Jii =:Oii =:Vii - 9ij(9/cp9! - gkI9p)x'oxo>"').. )"PM (49**) 

which represents the expression of the Huygens-Steiner generalized to the vector 
--(0) 

:Vii . 
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CHAPTER 11 

11.1. Vector interpretations of the rigid bodies kinetic parameters 

11.1.1. Rigid body kinetic energy. We shall consider the kinetic energy (see 
[13], [7], [10], and [2l])a little with a slight modification due to the interpretation 
of the rigid body dynamic parameters by means of the introduced vectors 6~) 
of the body mass linear moment at the pole A for the axis oriented by the unit 
vector n and the vector ~A) of the body mass inertia moment at the pole A for 
the axis oriented by the unit vector n. Since the velocity of each body point (see 
[12])can be defined by the two kinematic parameters of the translation velocity VA 
of the referential point A and the angular velocity w and the unit vector n of the 
momentary rotation axis orientation we shall define the kinetic energy in relation 
to the body mass state properties with respect to the referential point translation 
velocity and the body mass moments state for the pole at the referential point A 
and for the axis oriented by the momentary rotation axis unit vector. 

Figure 6 
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Using the notation in the Figures 2b and 6, for the rigid body kinetic energy we 
can write: 

2EIc = III ~dm IIIWA + [w,i/j)2dm (50) 

v v 
that is, according to our idea the double kinetic energy is only expressed by means of 
the masses center velocity, body mass, momentary angular velocity and the vector 
j~C) of the body mass inertia moment for the axis through the body mass center 
at the pole C and oriented by the momentary angular velocity unit vector ii: 

2EIc = M (vc , vc) +w(w,~c» (51) 

In the case when the referential point A is not the mass center the kinetic energy 
can be expressed in the form: 

(52) 

which is expressed by means of the velocity VA of the arbitrary referential point A, 
angular velocity w of the rotation around the axis through the point A and mass 
moment vectors as the mass inertia moment properties of the rigid body mass 
distribution with respect to the pole at the referential point A and for axis oriented 
by the momentary angular velocity w. 

We can see that the kinetic energy has a part which corresponds to the body 
translation ofthe velocity VA of the referential point A, that is, the part correspond­
ing to the pure rotation around the relative rotation axis that passes through the 
referential point A and is oriented by the vector w of the momentary angular veloc­
ity, as well as the mixed member which represents the coupling of the translation 
and rotation and can be called "Coriolis member" representing the double scalar 
products of the velocity VA of the referential point translation and the vector 6~A) 
of the body mass linear moment at the referential point A for the axis oriented by 
the unit vector ii multiplied by the angular velocity vector magnitude. This third 
member represents the kinetic energy of the coupling of the translation motion of 
the referential pole velocity and the rotation motion around the axis through this 
referential point. 

This "Coriolis member" which represents the kinetic energy of the rotatory and 
translatory motion coupling with respect to the referential pole is equal zero in the 
following cases: 

1 * when the translatory velocity of the referential point A is orthogonal to the 
vector 6~A) of the body mass linear moment at the referential point A for the axis 
oriented by the unit vector ii, that is when the velocity VA of the referential point 
A is parallel to the plane formed by the rotation axis through referential pole A 
and the body mass centerj 

2* when the referential point A is on the momentary rotation axis or at the 
momentary rotation polej and 

3* when the referential point A is at the body mass center C. 
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The expression (51) represents the modified expression of the Samuel Koning 
theorem for the kinetic energy, that is, the Samuel Koning theorem in new inter­
pretation, which states that the rigid body kinetic energy is equal to the sum of 
the kinetic energy of its translator motion with mass center velocity and the kinetic 
energy of its rotation motion around the axis oriented by the momentary angular 
velocity through the body mass center. 

If the referential point is at the momentary pole all the time, or the momentary 
rotation axis then the kinetic energy can be expressed as: 

(53) 

and it has only the member corresponding to the rotation around the momentary 
rotation axis and is equal to the half of the product of the momentary angular 
velocity squared and the axial inertia moment for the momentary rotation axis as 
it is known. 

11.1.2. Linear momentum and angular momentum of the body motion. 
The classic literature (see [10], [7], [11]) gives a very well known definition of the 
rigid body linear momentum (motion quantity) and angular momentum (motion 
quantity moment). We shall consider it a little with a slight modification due to the 
interpretation of the rigid body dynamic parameters by means of the introduced 
body mass moment vectors. We are following the classic definition by using the 
prepositions from previous paragraph, as well as Fig. 6, so that we write for the 
linear momentum following expression: 

~ = III vNdm = III (VA + [w, ifj)dm = MVA + we':> (54) 
v v 

The expression (54) of the linear momentum ~ of the rigid body whose points have 
the translation velocity VA of the referential point A and the relative velocity [w, ifj 
due to the rotation around the axis oriented by the vector w = wn through the point 
A has two parts: 1* the translatory one equal to the product of the referential point 
velocity and the body mass-the linear momentum due to the translation motion 
with the velocity of the referential point Aj and 2* the rotatory one equal to the 
product of the magnitude w of the angular velocity w = wn and the vector 6':> 
of the body mass linear moment at the referential point A for the axis oriented by 
the unit vector n. 

If the pole A is the body mass center G then the linear momentum is equal only 
in the translatory part since the vector 6~A> of the body mass linear moment for 
the pole in the body mass center is equal to zero regardless of its orientation so 
that the linear momentum is equal to the product of this velocity VC of the body 
mass center and the rigid body mass: ~ = Mvc. The same stands for if the pole 
A is not the body mass center but if the axis oriented with w = wn trough pole A 
passes trough the mass center. 
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The second kinetic vector connected to the referential point which plays an im­
portant part (role) in the rigid body dynamics is the rigid body angular momentum 
(motion quantity moment) for the given pole, .co. Following the classic definition 
according to [1], [3] and [11] and according to the notation given in the Fig. 6 the 
rigid body angular momentum is calculated by means of the following expression: 

.co = J J J [T, vN]dm = J J J [TA + p, VA + lw, P1] dm (55) 
v v 

Following the idea of this paper that at the basis of the rigid body motion inter­
pretation there are rigid body dynamic parameters which express the mass inertia 
moment properties and the kinematic parameters, translation velocity VA of the 
rigid body referential point and the angular velocity w of the relative momentary 
rotation around the axis oriented with w and through the referential point A then 
the angular momentum for the point A, .cA is connected not only to the pole but 
to the axis oriented by the momentary angular velocity vector to which we connect 
the vectors ,M(A) and j~A) of the rigid body mass linear and inertia moments by 
connecting the body mass to the translation velocity of the referential point A. 
Therefore we write that it is: 

(56) 

that is, 
(57) 

If the referential point A is in the body mass center than the angular momentum 
for the pole 0 is equal to: 

(58) 

while the angular momentum for the pole in the mass center C is: 

-< -«C) .cc =wJ;t (59) 

and it is equal to the product of the magnitude of the momentary angular velocity 
w and the vector J~C) of the rigid body mass inertia moment for the central axis 
oriented by the vector of the momentary angular velocity w. 

The Ref. [3] has the deviation center of the body for the given direction for the 
material particles system and the deviation load by the linear momentum analysis. 
Considering that we have introduced the deviation load vector by the analysis of 
the vector JkA

) of the body mass inertia moment as its component normal to the 
axis for which it is determined we can see that the deviational part of the angular 
momentum vector proportional to the vectot i>kA ) of the deviational load the body 
mass inertia moment of the axis around which the rigid body rotates since it is: 
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IT the point A is the mass center then it stands for: 

~ __ .. ( .. J"(O» + ,f\(0) 
""U - W n, n w4ln (61) 

IT the rotation axis is the main mass inertia moment axis then the angular momen­
tum does not have any deviational part since the rotation axis is not subjected to 
the deviation load by the rigid body mass inertia moment and the angular momen­
tum vector for the mass center is collinear with the rotation axis. 

11.1.3. Some interpretations for the case of the rigid body rotation around 
the fixed axis. Figure 7 shows the rigid body with the rotation axis around.which 
it rotates with the angular velocity w which changes in time so that there appears 
the angular acceleration di (see [A3], [32]). The kinetic energy is expressed as 
2Ek = w(w, J~A») == w2 J~A). The linear momentum and angular momentum are: 

.. "(A) 
J\ = [w, PoIM = wein (62) 

.cA = w(n, ~») + w[ii[~), nU = w(n, ~») + wiSt) (63) 

-I\. 

Figure 7a 

Since the velocity v and the acceleration it of the body elementary mass at the 
point N are (see [31]' [12]): 

v = [w, p], it = [di, p] + [w, [w, P]l (64) 

then for the main vector Fr; of the inertia force of the overall rigid body rotating 
around the axis with the angular velocity w we obtain: 

Fr; = - II I itdm = -w6~A) - w[w, 6~A)1 (65) 
v 
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For the main moment of the inertia forces of the overall rigid body rotating around 
the axis and for the point A we calculate the following: 

vJtA; = !!! [p, dFrj ] = _w~A) - w[w,J~A)] (66) 
V 

as well as: 

vJtA; = !!! [pdFrj ] = -~i5A - [w,i5A] (66*) 
V 

Figure 7b 

The dynamic equations of the body rotation around fixed axis can be obtained by 
differentiating in time the expression (62) for the linear momentum and expression 
(54) for angular momentum on the basis of which we obtain: 

lOO cm _ . -(a) _ -(A) __ - . _ -
dt -w6n +w[w,6n ] - Fr) - Fr 

: = 16~A)I(witl +w2rrd = ~16~A)1 = VtI6~A)lfi 

(67) 

(68) 

(69) 

The rotator ~ = j)trl is normal to the rotation axis and the deviation plane through 
the axis. 

The equation (67) for the linear momentum change which is equal to the main 
vector (resultant) of the active and reactive forces shows that the motion linear 
momentum changes the vector normal to the rotation axis and has two components: 
one due to the angular velocity change which is normal to the rotation axis and 
the plane which contains the body mass center and the rotation axis, and the other 
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component which depends on the angular velocity square which is normal to the 
rotation axis and lie in the plane formed by rotation axis and the rigid body mass 
center doing rotation. 

2* 
dC A "(A) "'(A) ... ... 
- = wJii + w[w, Jii ] = -rotA; = rotA 
dt 

(70) 

d;: = diJ~A) + w:.6~) + w[w,15~A)] = diJ~A) + 1:.6~A) 19\ (71) 

911 = vtrll vt = v' w2 + w" (72) 

The rotator 91 = vtr1 which is rotating and increasing by the angular velocity and 
by the angular acceleration at the same causes the inertia forces deviation moment 
to increase. 

The equation (70) which is written on the basis of the law of the body angular 
momentum change which is says that the derivative in time of the body angular 
momentum for a certain pole in stationary bearing, equal to the moment of the 
active and reactive forces acting on the body for the same pole. 

This form (71) immediately shows that the first component depending on the 
angular acceleration is collinear with the rotation axis; the second component which 
also depends on the angular acceleration is normal to the rotation axis and the 
vector 5~A) of the rigid body mass inertia moment for the pole in the fixed bearing 
A and for the rotation axis, that is, it is proportional to the magnitude of the 
angular acceleration di and the vector :.6}f) of the rotation rigid body mass deviation 
moment of the rotation axis in the stationary bearing A and for the rotation axis; 
the third component is proportional to the square of the angular velocity w2 and to 
the magnitude of the vector i)~) of the rotation rigid body mass deviation moment 
of the rotation axis in the stationary bearing A and for the rotation axis, whereas it 
is like a vector normal to the rotation axis and the vector :.6~) of the deviation load 
to the rotation axis which means it is normal to the deviation plane. In the case it 
is the rotation with a constant angular velocity the stroke derivative components 
in time do not appear in the deviation plane; there is only a component normal to 
the deviation plane w[w, :.6~A)]. 

Figure 7 shows the characteristic vectors, the rigid body mass moment vectors 
and the rigid body dynamics kinetic vectors in the rotation around fixed axis. 

IT we now return to the expressions (65) and (66) for the inertia force main 
vector and the inertia force main moment for the pole at the stationary bearing 
A we come to the following conclusion: 1* the expression (65) is equal to the one 
for the rigid body linear momentum derivative in time a changed sigh, while the 
expression (66) is equal to the angular momentum for the pole at the stationary 
bearing A, derivative in time, with a changed sigh so that the conclusions drawn 
to the expressions (67) and (53) also stand for the expression (65) and (66). These 
conclusions can also be defined in another way: we conclude from expression (66) 
that the inertia forces main moment for the rigid body rotation around the fixed 
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axis has three components: the first one is purely rotatory around the rotation 
axis collinear with it if the angular acceleration is different from zero and it is 
proportional to the angular acceleration w and the body mass axial inertia moment 
for the rotation axis, J~A); and the second deviational component is normal to the 

rotation axis which also depends on the angular acceleration and the vector :i5~A) 
of the deviation load of the rotation axis; and third component depending on the 
angular velocity squared of the rigid body rotation around the fixed axis and on 
the magnitude of the mass deviation moment vector of the rotation axis at the pole 
in the stationary bearing. 

The derivative in time of the body angular momentum for a certain pole in 
stationary bearing normal to the rotation axis is: 

--d 

d.cA = wi5~A) + w[w,:i5~A)J = 1i5~A)I9i (73) 
dt TO 

By expressions (66), (68) aIid (73) we can write following relations: 

I!'JI = I ~I = 1~i.A)1 = constant (74) 
I rotA; I Id~t~ I 1l)~A)1 

11.1.4. Conditions for the dynamic balance of the rotor rotating around 
the fixed axis. Figure 7 shows the rotor with the main forces vector components 
denoted, that is, the motion linear momentum derivative in time and the inertia 
forces resulting moment components, that is, motion angular momentum derivative 
in time. In order that the effects of the dynamic balancing can appear it is necessary 
that bearings do not bear dynamic pressure which means that the deviational 
components should be equal to zero, that is, the components of the main force vector 
and the inertia forces resulting moment. Hence we draw the following conclusions: 

1 * Condition for the dynamic balancing exclusively and primarly depends on 
the dynamic, that is, kinetic properties of the rigid body with respect to the pole 
in the stationary bearing and to the rotation axis, but they do not depend on the 
angular velocity and the character of the acceleration; 

2* Rotation axis should be the gravitational axis which is expressed by the 
condition that the vector 6~A) of the rigid body mass linear moment for the rotation 
axis and the stationary bearing should be equal to zero; 

16~A)1 = 0 (75) 

3* Deviational part magnitude of the motion angular momentum derivative in 
time is equal to zero, that is, that the magnitude of the vector :i5~A) of the deviation 
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load by the body mass inertia moment for the rotation axis is equal to zero: 

(76) 

which can be reduced to the condition that the rotation axis is the main central 
mass inertia moment axis or that it is the symmetry axis or that it is the axis which 
for the point at stationary bearing represents one main direction of the rotor mass 
inertia moment. 

11.1.5. Interpretation of the kinetic pressures on bearing by means of the 
mass moment vectors for the pole and the axis. In this part the kinetic pressures 
of shaft bearings are expressed by means of the mass moment vectors: 6~A) of the 

body mass linear moment and ~~) of the deviation load by the body mass inertia 
moment of the rotation axis for the pole in the stationary bearing. 

...... 
~~~~~~~~----.t 

Figure 8 

Figure 8 shows a rigid body that can rotate around a stationary axis is like a rigid 
shaft without mass supported on the stationary bearing A and on the moveable 

. sliding one along the rotation axis. In the general case let a rigid body be subjected 
to a system of forces FIc whose points application N Ico are determined by the position 
vectors Plc with respect to the pole in the stationary bearing A. " 

Let's denote the rotation angle of the body around the stationary axis oriented 
by unit vector it with cp = tpii. 

Following the expressions (67) and (70), as well as expression (68) and (71) we 
can write the following two vector equations: 
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~ "'CA) 2 ... "'CA) 
dt = 16n I(WU1 + w vt} = 9l16n I = 

Ie=N 
= 9l16~A)1T1 = L Fie + FA + FB (77) 

1e=1 

d.cA = QJ.CA) + w~CA) + wrw ~CA)] = 
dt n n t , n 

Ie=N 
= QJ~A) + 1!i5~A) 19t = L [Pie, Fie] + [PB, FB] (78) 

1e=1 

These two vectorial equations are kinetic equations of dynamic equilibrium in 
motion-rotation of the body around the stationary axis under the action of the 
active force system Fie. 

IT we now multiply sca1arly and vectorly these equations (77) and (78) by the 
unit vector n and having in mind that the PB = PBn, we obtain: 

1 * the rotation equation around the axes oriented by unit vector n in the form: 

Ie=N 
(j~A),Q) = L([PIe,FIe],n) (79) 

2* the equations for determining the bearings kinetic pressures, that is pressures 
upon the bearings, FA and FB, that is, their components in the axis direction n 
and normal to the rotation axis: 

Ie=N 
FAn = (FA,ii)n = -n L (FIe,n) 

1e=1 
Ie=N 

FAT = -FB + 9t116~A)I- L [n, [A, nn 
1e=1 

1 1 k=N -
FB = -9tIi5~A)I- - L[n, [(PIe,FIe],ii]l 

PB· PB 1e=1 

(80) 

(82) 

(83) 

From the expression for the bearings pressures (resistance) we select a part which 
is the result of the action of an external active forces and the influence of which 
upon the bearings resistances in possible variable in time is only due to the change 
of their line of application as well as the point of application with respect to the 
configuration of the body which is rotating such as in the case when the force of 
the body's own weight which retains the application line direction in relation to 
the rotation axis, and thus its position with respect to the body configuration, 
although in doing this it retains the application point constantly in the body mass 
cent er which rotates around the rotation axis together with body. The body mass 
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center describes a circle or an arc in the plane through the mass center normal to 
the rotation axis. 

Other part of the bearing kinetic resistance (pressures) in the body rotation 
around the stationary axis is the result exclusively of the kinetic-inertial body prop­
erties with respect to the rotation axis and the rotation kinematics and rigid body 
rotation kinematics around the stationary axis. These parts appear as parameters 
depending on the rotator vector !)\ which in itself contains the angular velocity and 
the angular acceleration of the body rotation around the rotation axis and the rigid 
body mass moment properties with respect to the pole A at stationary bearing and 
the rotation axis expressed by the mass moment vectors: 6~A) of the body mass 

linear moment and n~) of the deviation load by the body mass inertia moment of 
the rotation axis for the pole A in the stationary bearing. 

In order to discuss the rotor effect on the kinetic pressure upon the bearings 
in which the rigid body shaft axis is rotating it is necessary to know the angular 
acceleration di and the angular velocity w and in order to do this it is necessary 
to solve the body rotation/oscillation equation around the axis (79), namely, to 
determine cp(t) and wet) as well as w(tp). 

IT the rotation axis is the central and main mass inertia moment axis and for 
the pole in the stationary bearing then it is a rigid body which is dynamically 
balanced and the member in the kinetic pressures depending on the vectors 6~) 
of the body mass linear moment and n~) of the deviation load by the body mass 
inertia moment of the rotation axis for the pole A in the stationary bearing are 
equal to zero and are not influenced by the rotator change. Then there are only 
the components of the bearing resistance arising from the bearings "kvazi-static" 
resistances in the definite position of the active forces system and the reactive forces 
system during the body rotation. 

If the rotation axis is the axis of the mass inertia moment asymmetry for the 
referential point in the stationary bearing then the kinetic pressures are the great­
est both on moveable and stationary bearing. Since at each point on the rigid 
body there are three pairs of such mutually perpendicular axes which are in pair 
perpendicular to one main mass inertia moment direction and they form with the 
others an angle of ~ each so that the mass inertia moment asymmetry axes which 
are perpendicular to the second main mass inertia moment direction forming angle 
of ~ each with the first and third main mass inertia moment directions as the ro­
tation axes will be the greatest vector of the deviation load and at the same time 
the greatest kinetic pressures on both the bearings. 

The kinetic pressure on the stationary bearing depends on the body mass center 
position with respect to the rotation axis and this can be adjusted by the choice of 
the inertia asymmetry axes in pair as well as by the choice of the moveable bearing 
position with respect to the stationary one on the definite axis of mass inertia 
moment asymmetry. The body mass inertia moment asymmetry axes should be 
avoided as the rotation axis in order to reduce the dynamic pressures upon the 
bearings. 
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For a pair of the mass inertia moment asymmetry axes as the rotation axes the 
axial mass inertia moment of the rotatory body is identical so that depending on 
the body mass center position with respect to one axis or another and on the choice 
of the moveable bearing an increase, that is, decrease of the kinetic pressure at a 
given constant value of the initial energy communicated to the rotating body. 

There are four (that is, eight) axes through each point of the body which we 
have chosen as a stationary bearing for which the axial mass inertia moments 
are the same value and the vectors i)~A) of the deviation load by the body mass 
inertia moment of the rotation axis for the pole A in the stationary bearing are 
proportional to the sum of the three mass deviation load vectors by the body mass 
inertia moment of the mass inertia moment asymmetry axes. For these octahedral 
axes the dynamic pressures on both the stationary and moveable bearings are the 
same while the pressures on the stationary bearing are different and by choosing 
one of the octahedral axes minimization of maximization of their value can be 
performed. By displacing the moveable bearing from one to another octahedral 
axis through the stationary bearing the kinetic pressure on the stationary bearing 
can be adjusted while retaining the share in the pressure on both the bearing of 
the part that corresponds to the deviation load vector although the rotator is going 
to change as well (but this can also be adjusted). The smallest pressures would 
appear an octahedral axis is chosen so that the body mass center is closest to the 
rotation axis, that is, the most favorable of all the octahedral axes for the rotation 
axes is the one which body mass center is closest to. 

A general conclusion would be that if we cannot select in the design way the 
rotation axis as the rigid body main central mass inertia moment axis when the 
system is dynamically balanced and analysis of the mass inertia moment state 
should be performed at each of the possible points of the stationary bearing posi­
tioning and according to the design requirements the selection should be done of 
both the stationary bearing and of the rotation axis according to the analysis. 

These conclusions are very important if the designer cannot change the station­
ary bearing but if we can change the moveable one and chose it freely in the rigid 
body then his choose is important since the dynamic pressures should be as small 
as possible (see [33], [32]). 

11.2. Interpretation of the motion equations of a variable 
mass object rotating around a stationary axis by means 
of the mass moment vector for the pole and the axis. 

In this part the kinetic equations of a variable mass object motion rotating 
around a stationary axis are derived by means of the mass moment vectors for the 
pole and for the rotation axis: vector 6~A) of the body mass linear moment, vector 
j~A) of the body mass inertia moment for the pole A and for the axis oriented by 
the unit vector n and its deviational part of the vector i)~A) of the deviational load 
by the body mass inertia moment of the rotation axis through the pole A. The 
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vectors of the reactive forces and resulting moments of the reactive forces due to 
the drop of the body particles are determined which are involved in the body mass 
change as the function of the body mass moments vector change: vector 6~A) of 
the body mass linear moment and vector ~) of the body mass inertia moment for 
the pole A and for the axis oriented by the unit vector n (see [49], [45], [27]). 

The bearings resistances of the shaft on which an object of the variable mass is 
rotation and the analysis of the kinetic pressures is performed. 

11.2.1. Introduction. In the last fifty years the equations of Meschersky given 
in his M.Sc. theses in 1897 [9] have obtained a wide theoretical consideration and 
the practical application in scientific centers of many countries. Meschersky has 
introduced the notion of the reactive force whereas Newton has defined the dynamic 
object properties by means of the kinetic properties of the matter quantity as the 
inertia measure. In the context of the Meschersky theory [9] the object are discussed 
as the dynamic variable objects. IT the object is subjected to the dynamic change 
(see [17], [18]) (change ofits own mass inertia moments) then it is the dynamic 
variable object whose rotation around the stationary axis is discussed in this paper. 

The reactive force acts on a body in motion whose mass changes in time (due to 
the mechanical wasting - rejection or adhesion) in the sense of action and reaction. 
This motion is described by the Meschersky equation and gives an expression for 
the reactive force while the Ciolkovsky formula (see [5], [2], [11]) determines the 
motion velocity due to such a force and the dependence of the mass separation 
velocity in the case of the mass rejection. 

Beside the papers quoted above relating to the mechanics of the variable mass 
body and rocket-dynamics which began to develop between the two World Wars 
there are other publications of a famous Italian scientist 'fullio Levy-Civita (1873-
1941) (see [8]) who discovered these laws 31 years after Meschersky and indepen­
dently of him. 

In engineering practice, especially in Mechanical Engineering, an important role 
is played by the rotor of the variable mass so that·it is of greatest to consider the 
dynamic equations of the motion of the variable mass rotor as well as the dynamic 
resistances of the shaft bearings which these rotors are rotating upon. 

11.2.2.' Main vector of the reactive forces and the reactive forces resulting 
moment. By means of the previous introduced mass moment vectors here we are 
going to the interpret the kinetic equations of the variable mass body rotation. 

Figure 9 shows a rigid body of a variable mass rotating around the axis oriented 
by the unit vector n by the angular velocity w. 

We introduce the hypothesis about the knowledge of the of the law on the mass 
separation from the body as the absolute velocity WN of the particles falling off 
which create the reactive force. Let's assume that the absolute velocity WN of the 
body particles falling of is equal to the velocity of the body point which rotates 
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around the axis by the angular velocity w, that is, that it is: WN = >"VN = >..[w,P1, 
where>.. is a scalar, the proportionality coefficient (see (19], [27]). The reactive 
force 4r, due to the elementary particle falling off is: 4r = wNdrh. = >..[w,P1drh.. 

Due to the falling off of all the particles which are involved in the body mass 
change the main vector of the reactive forces is: 

.. .. "'(A) 

~r = /// wNdrh. = >.. ///[w, P1 drh. = >..w! ///[n,PJdm = >..wd~: (84) 
v v v 

we see that it is proportional to the body rotation angular velocity and to the 
derivative in time of the body mass static moment vector in the case when the 
body changes its mass in rotation. In the formula (84) the differential operator . 
:" is a derivative in the time of the body mass linear moment vector for the body 
mass change: 

(84*) 

- -+-n. (0 

Figure 9 

Due to the falling off of all the body particles which are involved in the body 
mass change the resulting moment of the reactive forces: 

..... (A) 

9M = III [P,dr] = >.. III [p, [w,PJ]drh. = >..w ~~ (85) 
v v 

We see that the resulting moment of the reactive forces due to the body particles 
falling off, that is, of the particles involved in the body mass change for the case 
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of the rotation is proportional to the body rotation angular velocity and to the 
derivative in the time of the vector J~A) of the vector of the body mass inertia 
moment for the pole at A and for the rotation axis. 

In (85) the differential operator ~ is a derivative in the time of the body mass 
inertia moment vector for the body mass change: 

• ... (A) • 

~~ = !///r;,[w,i1j]dm= ///r;,[W,Pl]dm (85*) 
v v 

11.2.3. Linear momentum and angular momentum of the body rotation 
around the stationary axis. Following the idea of this part the linear momentum 
i and the angular momentum .cA for the pole in the stationary A bearing for the 
case of the body rotation around the stationary axis can be written by means of the 
previously defined vectors of the body mass moments by the expressions (4) and 
(6), as well as by the expressions (62) and (63), in the following form: i = w6~A), 
.cA = wJ~). Since for the formation of the dynamic equations is necessary to 
determine the derivatives in the time of the linear momentum and of the angular 
momentum of the body rotation, we write that it is: 

... • "(A) 
dit = w6(A) + w[w SeA)] + w d6;t 
dt ;t ,;t dt (86) 

(87) 
... .~~ 

d£A = I!JJ'A) + w~(A) + wrw ~(A)] + w dJ;t 
dt ;t ;t r,;t dt 

11.2.4. Kinetic equations of a variable mass body rotation around a sta­
tionary axis. By using the basic laws of the dynamics that the linear momentum 
derivative in time is equal to the sum of all the active and reactive forces and that 
the angular momentum derivative in time for the pole in the stationary bearing is 
equal to the sum of all the active and reactive moments for the same pole, we can 
write the following two vector equations by means of the expressions (86) and (87) 
as well as of the expressions (84) and (85): 

.. • "'(A) • "'(A) dit . "'(A) "'(A) d6;t .. ... d6;t 
dt = w6;t + w[iJ, 6;t ] + W---;u- = -Fri = Fr + Aw---;u- (88) 

... • "'(A) • "(A) 
d£A .. (A) .. "(A) dJ;t .. .. . dJ;t Tt = wJ;t + w[w, 1);t ] + W--;u- = -!11lAi = !11lAr + Aw--;u- (89) 

These two vector-equations are the motion kinetic ones-of the rotation of a variable 
mass body around the stationary axis. In these equations Fr and mAr are the main 
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vector of the active and passive forces acting on the body as well as these forces' 
resulting moments for the pole at A. 

H we multiply these equations (88) and (89) first scalarly and then from different 
sides by the vector n of the rotation having in view that we obtain: 

a) Rotation equation around the axis oriented by the unit vector n: 

b) Equations for the bearings kinetic resistances: 

_ _ (dS(A) ) k=N_ 
(FA,n)+(G,n)+(A-l) d:,n + I: (Fk,n) =0 

k=! 
k=N 

9l1IS~A)1 = [n, [FA,n]) + [n, [FB,n]] + I)n, [Fk,n]]+ 
k=! 

* 

(91) 

-(A) 

+[n,[G,ii]]+(A-l)[n,[d~: ,w]] (92) 

9l1i5~A)1 = [n, [[,OB,FB], n]] + [n, [[,OB, G]ii]]+ 
* -(A) k=N 

+ (A - 1)[n, [J~t ' w]] + L [n, [[,Ok, Fk]' n]] 
k=! (93) 

11.2.5. Shaft bearings resistances carried by the variable mass body. From 
the equations (91), (92) and (93) we determine the bearings resistances components 
in the form: 

The stationary bearing resistance components A are: 

1 * The axial components in the rotation axis direction is: 

2* The deviational components perpendicular to the rotation axis are: 

2.1 * The component coming from the body mass center eccentricity is: 

* 

(94) 

k=N· -(A) 
FAN = F1~ev) = 9l!IS~A)I- {; [n, [Fk, n]] - [n, [a, n]] - (A -1) [n, [d~: ,w]] 

(95) 
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2.2* The component coming from the deviational couple: 

FAN = Fi~~v) = -FB = -.!..v1I~~)1 + .!..[ri, [[Pc,G],n]]+ 
PB PB 

* 
(A - 1) [ [d3~A) ]] 1 Ie=N.. .. .. + ri, --;tt, W + - L [n, [[Pie, Fie], ii]] 

PB PB 1e=1 
(96) 

3* The moveable bearing resistance - sliding in the axis direction is of the devi­
ational character: 

FB = ]...v1Il5~)I- ..!...[ri, [[Pc,G],ii]] 
PB PB 

* 
(A-I) [ [ciJ(A) ]] 1 Ie=N .. - ri, d~' W - - 'E [ri, [[Pie, Fie], ii]] 

PB PB 1e=1 
(97) 

in which the rotator v1 is determined by the formula: 
.. 

n; coo: ... 2 .. ()a :n=:nI" = WU+W 11 = _. 
r' 

iP = if = 1; 

From the expressions for the bearings resistances we select the part which is the 
result of the direct "static-dynamic" action of the active forces and a part which is 
the result of the rotating variable mass body kinetic properties. 

We see that as the result of the rotor kinetic properties the deviational couple 
appears which is equal to the product of the rotator vector v1 and of the vector 
intensity l5~A) of the deviation load by the body mass inertia moment of the rotation 
axis and it directly depends on the axis selection in the variable mass rotating body. 
This deviational couple causes a part of the kinetic pressures of the same intensity 
and perpendicular to the rotation axis in both the bearings, the stationary and the 
moveable one. 

In the case that the rotation axis is always the main inertia axis for the pole in 
the stationary axis this deviational couple is equal to zero and it does not cause 
any pressure upon the bearings. 

An additional pressure only upon the stationary bearing is formed when the 
masses center is outside the rotation axis and this part is proportional to the rotator 
vector v1 and to the vector intensity 6~) of the mass linear moment for the pole 
in the stationary bearing and for the rotation axis ri. 

Due to the mass changeability the kinetic pressures are formed in both the 
stationary and moveable bearings and they depend on the character of the body 
mass inertia vector change for the pole at A and for the rotation axis and they also 
make another deviational couple. 

An additional pressures on the stationary bearing is formed due to the change of 
the vector 6~) of the mass linear moment and the angular velocity. A part of the 
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kinetic pressures due to the reactive effect of the mass falling off from the rotator 
in the fact depends on the falling-off masses kinetic properties. 

11.2.6. Special case of self-rotation. To illustrate let's observe a special case 
when there are no active forces but the rotor is only under the action of the reactive 
forces due to the masses separation (for instances, rotor with nozzles through which 
the particles are falling). Then the self- rotation equation is: 

* "'(A») (j~),d;) = p. -l)(W, ~~ (99) 

whose one first integral is: (j~A), w) = const. 

If the rotation axis is the central rotation axis and the main inertia axis for 
the pole in the stationary bearing then the dynamic pressures do not effect the 
bearings. Then we can conclude that due to the reactive forces the body rotates 
around a free axis which retains its orientation. This would be a case of the body 
self-rotation around the central axis. In [20] the motion integral of the form is given 
which according to the Savic-KaAanin theory [16] represents the motion integral, 
that is, the self-rotation equations of celestial bodies (of the Earth, of the Sun). 

11.3. Vectorial equations for the self induced rotations 

Starting from the idea of Savic and KaAanin [16] and from idea of Vujicic [181, 
as well as from an analogy with paper of Vujicic [20] and idea of [23], a new form 
of the vectorial equation for the self-induced rotations of a rigid body is derived. 
That equation is: 

(100) 

where j~C) is the vector of body mass inertia moment at the point C center of 
mass, for the instantaneous rotation axis oriented by the unit vector n and w is the 
instantaneous angular velocity vector of the self-~nduced rotation, where w = Iwl. 

11.3.1. Introduction. In the monograph [16] it is supposed that the rotation of 
a celestial body result from the expulsion of electrons from atoms: "The expulsion 
of electrons from an atom has as its consequence the rotation of a celestial body, 
this rotation occuring at the instant in which the magnetic moment occurs-both 
phenomena occur concurrently with one another; both of them are the consequences 
of the expulsion of electrons from atoms, without which there would be neither a 
magnetic moment nor a rotation". The authors of this theory in their monograph, 
starting from the relation of the rotation of the plane rigid body derive a formula 
for calculating the angular velocity of a celestial body (see [16, p. 75]). 
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In [20] a new form of the tensorial equations for the self-rotation of a celestial 
body is derived by Vujicic. In [20] author have the following view: "The classical 
mechanics have never succeeded neither could to explain the origin of rotation of 
celestial bodies by material point model and rigid body. The sum of interior force 
moments have disappeared during any analysis, and therefore the dynamics have to 
account the exterior forces as the cause of rotation. However the celestial mechanics 
have not accounted for electromagnetic forces although they are predominant in 
comparison with gravitational in microstructure. The gravitational forces became 
predominant within the large mass bodies. But the evolutional processes are much 
more complex the later: mechanical model. So far the scientific opinion as that the 
formulation of stars-starts with gravitational condensation of low density hydrogen n. 

11.3.2. Vectorial equations for the self-induced-rotations of bodies. Ac­
cording to [25] we shall introduce the notation of the mass inertia moment vector 

J~C) for the pole in the mass center C and for the axis oriented by the unit vector 
n, defined by: 

I/=N 

J~C) = l)ml/[fv,[n,fv]] (101) 
1/=1 

where TI/ is a position vector of mass particle ml/, v = 1,2, ... N, relative to a fixed 
pole (in the mass center C. This vector is connected for the pole in the mass enter 
and for the self-rotation axis. 

The vector 6~C) for the pole in the mass center C and for the axis of the self­
induced rotation, oriented by the unit vector n, defined by: 

(102) 

is equal to zero. In [20] author wrote: "If we have in mind very complicated struc­
ture of celestial bodies, these results, as the one concerning the magnetic moment 
(see [16J), very sufficient stimulus for further work on this theory. For the purpose 
of mathematical generalization, it is always possible to consider any part of the 
body as the material points with the mass m., i = 1,2, ... N, if its own rotation is 
considered. If we separate any part of the body, even one single electron, from the 
original body, the maSs of the body mi changes for the mass l!:.mi of the separated 
particles. If the mass l!:.m. is separated, with the velocity it., from the body with 
mass mi, there appears a reactive impulse: 

A ... l!:.m .... A 
um.u. = l!:.t u.ut (103) 

and it provokes the change of impulse miv. in the original with mass mi. Naturally 
if the separated particle, for example an electron, takes with itself an electrical 
charge it induced also the electromagnetic field, and the occurrence of a magnetic 
moment". 
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In [20] it was assumed that the observed object was composed of the set of N 
parts of masses mv , v = 1,2, .. . N. Starting from the theory of separation under 
the pressure, we can accept the assumption that the mass mv of the body changes 
for a differentially small amount of mass ~mv. At the moment of expulsion of 
masses dmv, v = 1,2, ... M, with the corresponding absolute velocities uv, there 
appear the reactive forces Uv d~v which perform the work: 

.rA dmv (... r ... ) U v = Tt Uv,UTv (104) 

on virtual displacements 8rv • 

The perturbation in the state of the j-th particle provokes (causes) a change in 
the impulse of the motion of all other particles. For such a dynamical system, the 
general classical principle of ttlechanics should be valid, and according to it, we can 
write: 

1 v=N 1 v=M 
8 f ~ L mll(vv,drv) = - / L mll(uv,8rv) 

o v=l 0 v=l 
(105) 

where M < N and Tv are the radius vectors of observed material points with the 
assumption that the eventual displacements 8Tvo and 8r1l1 are equal to zero, and 
with the validity of the relations 8drv = d8rv. Now, for left-hand side of (105) we 
can write: 

v=N 1 v=N 1 

~ L / ((8(mv,vv),dr,,) + mv(Vv,8drv)} = L / mv(vv,d6r,,) = 
v=l 0 v=l 0 

v=N 1 

= - L /(d(mvVv),6rv) 
v=l 0 (106) 

because 
v=N 
L mv(vv,8rv)l~ = 0 (107) 
v=l 

Introducing the time t, the last integral (106) transforms in the form: 

(108) 

IT we introduced the time also in the right-hand side of the relation (105), by means 
of dmv = mv dt, where obviously mv = d~v is the mass velocity (secondary change 
of mass) if will be 

(109) 
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Due to the arbitrariness in the choice of the pole of the position vector rv, the mass 
center C can be taken as the pole. 

Setting the origin of an inertial reference system at the center of mass, which 
is always possible due to the arbitrariness of the choice of the reference point, the 
velocity of v-th point can be determined approximately by the relation Vv = [W, rvl. 
In the model of the body, the angular velocities wv , are equal to the instantaneous 
angular velocity vectors of a body-fixed, non inertial reference system with vector 
base e", that is Wv ~ w. For the particles of a fluid medium, its velocity can be 
considered as an average angular velocity, for which W" = w so that the angular 
displacement 6,:p ~ welt, within the limits of such an approximations, can connect 
the velocity V" of the point of mass mv with the velocity it" of an expulsive particle 
of mass dmv, that is v = AU, where A is an unknown scalar multiplier. Consequently, 
from the equation (105) [20] we can write: 

Integration of the left-hand side of relation (110) can be transformed to (see [20]): 

,,-N ! t m"([r,,, [w, r"ll,6CP) = ! (w~C) ,6cp) = 
,,=1 

where 

. -(C);f\ ([- ;;(C)] s: (d3~C) s: ) = w(Jn ,6cp, + w w, I n ,o,:p} + w dt'ocp (111) 

*-(C) * ,,=N dJn ;:;(C) ",. [_ [ __ ]] 
dt = "n = L..J m" Tv, n, T" 

,,=1 
(112) 

The left-hand side of relation (110) can be transformed into the following form: 

h ~C) f {w(~C),8CP) + w([w,~C)],6cp) + w( dt,8CP) } dt (113) 

to 

Similarly, the right-hand side of the relation (110) can be transformed and it will 
have following form: 

h ,,=N tl * -(C) 

fA 2: m")[r,,,[w,f'v]],6cp)dt = f >.w(~ ,dCP) dt (114) 
to ,,=1 to 

Due to the transformed expressions (113) and (114), the relation (110) can be 
written in the form: 

tl *-(C) f { (wj~C) + w[w, j~C)] + w(1 - A) ~~ , 8,:p) } elt = 0 (115) 
~ . 
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Hence, from here, the vectorial equation of the self-induced rotation of the body 
has the following form: 

i.e., 

- ;;(0) 
w3~0) + w[w, 3~0)] + w(1 - ,\) ~ = 0 (116) 

*"(0) 

~(Jf), n) + ~~O) + w[w, j)~0)] = w(,\ - 1) ~~ (117) 

On the right-hand side of this vectorial equation there is the vector ootO(R) of the 
reactive moment: 

.... (0) .. dJ ii 
!JJtQ(R) = w(,\ -1)-­dt (118) 

on which the change in the body motions-rotation begins. In the case of appearing 
of a total (complete) central symmetry of expulsion of parts of mass, the sum of all 
components of moments of all reactive forces is equal to zero, because the moment 
vectors (torques) in pairs probably act in opposite directions. 

From the vectorial equation (117) it follows that: 

-"(0) 

(J~O) ,~) = (,\ - 1) (w, ~~ ) 
*;(0) 

~~O) + w[w, i5~0)] = (,\ - 1) [n, [dJcFt ,W)]] 

Now, Equation (119) can be written in the following form: 

( * "(0») 
dw = (,\ _ 1) n, dJii 

w (n.J~O») 

(119) 

(120) 

(121) 

This last equation is equivalent to the relation (2.1), which appears in [16, p. 75], 
or to the relation (2.14) which appears in [20, p. 99]. Thus, with the integration 
we will have: 

(122) 

i.e. 
(123) 

where the constant of integration is to be determined from chosen initial conditions. 
This formula (123) is analogous with corresponding result of Savic-KaSanin from 
(161· 

According to the theory applied here, at the initial time to. the vector of the 
body mass inertia moment, for the pole C and for the axis oriented by the unit 
vector n, is J~~) and the instantaneous angular velocity of particles is Wo, so we 
can write: 

( .. ~(O»( .. ~(0»~-2 _ ( .... ~O»( .... ~(0»>.-2 
w,'1.Iii n,'1.Iii - WO,'1.Iiio nO,'1.Iiio (124) 
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Therefore 
(124*) 

For the classical case when the mass of the body is constant, the right-hand side 
of the equation (121) is equal to zero, so that the vectorial equation is reduced to 
the equation of the rotation of a body by inertia W = Wo = oonst. 

11.3.3. Concluding remarks. The exposed analysis of the bodies self-rotation 
does not aim to explain finally and describe fully the appearance of its induced 
self-rotation. This is only a contribution to the attempt for the mathematical 
vectorial descriptions of the law of motion - self-rotation by a new form of the 
vectorial differential equation, which are typical to the motion of rotor under the 
action of the reactive forces due to the masses separation (for instances, rotor with 
nozzles through which the particles are falling). If the rotation axis is the central 
rotation axis and the main inertia axis for the pole in the stationary bearing then 
the dynamic pressures do not effect the bearings. Then we can conclude that due to 
the reactive forces the body rotates around a free axis which retains its orientation. 
This would be a case of self-rotation of a body around the central axis. 

8 * * 

Main results of this monograph paper were presented on various seminars, con­
gresses and other scientific meetings, as follows: 

Al. Hedrih (Stevanovic), K., On Some interpretations of the rigid bodies kinetic 
parameters, xvrn ICTAM Haifa, 1992, Abstracts. 

A2. Hedrih (Stevanovic), K., New interpretation of the rigid bodies kinetic parame­
ters, Abstracts of 2-nd International Symposium of Ukrainian Mechanical En­
gineers in Lviv, State University "Lvivska Politechnika", Ukainian engineerr's 
Society in Lviv and Ukainian engineer's SOciety of America, 1995, p. 51 

A3. Hedrih (Stevanovic), K., On rotation of a heavy body around a stationary axis in 
the fields with turbulent damping and dynamic pressures on bearings, Abstract 
of lectures YUCNP Nis, 1991, pp. 38-39. 

A4. Hedrih (Stevanovic), K., Vektori vezani za po love i pravu i pojmovi vektora sek­
torskih momenata masa i povrS'ina za pol i osu i sektorski pol, Apstrakt, SaZeci, 
PRlM 94, Primenjena analiza, IX Seminar primenjene matematike, Budva, 30. 
maj - 1. jun 1994, Novi Sad, p. 44. 

A5. Hedrih (Stevanovic), K., Energijska analiza kinetike konstrv.kcija za razlicite 
modele materijala, Kratki prikazi radova nauCnog skupa "Mehanika, materijali i 
konstrukcije", Srpska Akademija Nauka i Umetnosti, Odelenje tehnickih nauka, 
1995, 106-107. 

A6. Hedrih (Stevanovic), K., On New Interpretations of the rigid Bodies Kinetic Pa­
rameters and on Rotation of a Heavy body around a Stationary Axis in the Foeld 
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with Turbulent Damping and Dynamic Pressures on Bearings, Conference on Dif­
ferential Geometry and Applications, Masaryk University, Bmo 1995, Zbornik 
Apstrakata. 

A7. Hedrih (Stevanovic), K., Interpretation of the Rigid Bodies Kinetics by Vectors of 
the Bodies Mass Moments, Invited Lecture, Book of Abstracts, The International 
Conference: Stability, Control and lligid Bodies Dynamics - ICSCD 96, Institute 
of Applied Mathematics and Mechanics of NAS of Ukraine, Donetsk - Mariupol, 
2-6 September, 1996, pp. 35-36. 

A8. Hedrih (Stevanovic), K., Nonlinear Dynamics of Rotor with a vibratin axis 
and sensitive dependence on initial conditions of forced vibration/rotation/stoch­
asticlike-chaoticlike motion of a hevy rotor, Third Bogoliubov Readings: As­
ymptotic and QUalitative Methods of Nonlinear Mechanics, ASYM 97, Tezi 
dopovidey, Institut Math. NANU, Kiev, 1997, pp. 73-74. 
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Index of symbols 

it acceleration 76 

n, it, v unit vectors 54, 55, 

cosa,cosj3,cos"{ coordinates of unit vectorn 47 

n unit vector 47 

N point 47 
P vector of the rigid body points position 52, 53, 54, 

dm elementary body mass 52,53,54, 

V space region that the observed body ol;:cupies 52, 53, 54, 

C mass cent er 57 

PC position vector of the body mass cent er 57,58, 

o row matrix 59,87, 
{} column matrix 59 

[n,P1 
(n,j{) 

vector product 53, 54, 

scalar product 54, 

u mass density 52, 53, 
EA: kinetic energy 72,73,74 

FA: active force 80, 81, 87, 88, 

FA, FB reactive force 80, 81, 87, 88, 

G gravitational force 87,88, 
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9 acceleration of gravity 87, 88, 
-(N) I n vector of the body mass inerta moment 47, 48, 51, 53, 54, 56, 57, 58, 59, 

69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94. 

j}~) ,j}~! and j}~l.. vectors of the body mass inertia moment at the observed 
point for the axis oriented by the unit vector nl", or nn" or nlll" of the 
mass inertia moment asymmetry axis la or lIa or IlIa 65,66 

-(0) Joct vector of the mass inertia moment at the point 0 for the octahedron direction 
67 

-(0) 
1) oct vector of the octahedron axis deviation load by the body mass inertia 

moment 67 

UIe the basic vectors of the dimensional N of the curvilinear coordinates 68, 69 

(UIe, 91) = 91e1 matric tensor coordinates of the defined curvilinear coordinates 
system space 69 
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Xi curvilinear coordinate 68,69, 70, 71 

w angular velocity of the rotation around the axis 72, 73, 74, 75, 76, 77, 78, 79, 
81,82,84,85,86,87,88,89,92,93,94 

ii vector of the linear momentum of the rigid body dynamic 74, 76, 77 
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axis with the angular velocity w 76,77, 79 

rotAj the main moment of the inertia forces of the rigid body rotating around the 
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9t = 9tf't rotator is normal to the rotation axis 77, 78, 79, 81,87,88 

WN absolute velocity of the body particles falling of 85 

..\ a scalar, the proportionality coefficient 85, 88 

c@r reactive force due to the elementary particle falling off 85 

~r main vector of the reactive forces 84,85,86 

rot~ resulting moment of the reactive forces due the body particles falling off 85, 
86 

Tv a position vector of mass particle mv , v-I, 2, ... N 90, 91, 92 

mv , v = 1,2, ... N mass particles 90,91,92 

:D~O) body mass deviation moment vector at the point 0 for the axis oriented by 
the unit vector it 48, 54, 56, 69, 71, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88 

er) vector of the body mass linear moment 47,48,51,53,58,69, 71, 73, 74, 
76,77,81,84,85,86,87,90 

M~N) vector of the body mass at the point N for the axis oriented by the unit 
vector it 47, 51, 53 

pt) vector of the total relative deformation - total relative strain, at the point 
N and for the line element drawn from point N and oriented by unit vecto it 
51 

I-n0) vector of the total stress at a certain body point for the plane with the 
normal oriented by unit vector it 59 

J(O) body mass inertia moment matrix 525969 

M-(O) the mass linear polar moment of the material system 52 

J~O) axial mass inertia moment 54,59 

D~~) , D~~) the deviational moments of the body mass for a coulpe of normal 
axes orianted by unit vectors it and it, thet is, it and v 54, 55 

J1°) , J1°) , J1°) first, second and third scalar of the body mass inertia moment 
tensor matrix 59 

J(O)sph,J(O)dev = n(O)dev two matrices corresponding to the spherical and de­
viational part of the rigid body mass inertia moment tensor 59, 71 



Vectors of the body mass moments 

j~O)akS body mass axial inertia moment vector at the point on for the axis ori­
anted by unit vector it 60 

i5~O) = j~O)dev body mass deviation moment vector at the point and for the axis 
oriented by unit vector it; vector of the axis deviation load 60, 61, 62, 71 

its unit vector of the main mass inertia moment axis orientation 62, 63 

K~~), k = 1,2,3 are co-factors of the third kind elements and the corresponding 
matrix column, successively for the roots J~O), s = 1,2,3; 63 

la and lb, lIa and lIb, IlIa and IIlb the axes pairs of the mass deviation 
moments extreme values 63, 64, 65, 66 

j<J.), s = 1,2,3 the body mass inertia moment vectors for the main mass inertia 
moment axis for the referential point 65, 66 
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102 Katica (Stevanovic) Hedrih 

BEKTOPH MOMEHATA MACA TEJIA 

OBaj MOHOrpa$CKH '{JlaaaK YBOAH BeKTOp J!:I> MOMeHTa IDIepqHje Mace TeJIa 
3a Ta'tIKy N H ocy opjeHTHCaay je~ BeKTOpOM n. BeKTOp MOMeHTa HH­
epqHje Mace KpYTor TeJIa je KopHmlieH 3a aaaJIH3Y CT8lLa MOMeHaTa IDIepqHje 
Mace TeJIa 3a O)ij>eljeHY KOH$HryPaqHjy Mace TeJIa, Kao H 3a IDITepnpeTaqHjy 
KHHeTH'tIKHX napaMeTepa MaTepHjaJIHOr CHCTeMa y KpeT8lLy. ITpoMeHa BeKTQ­
pa MOMeHTa IDIepqHje Mace TeJIa npH npOMeHH nOJIa Ka.zta oca 3a,lij))KaBa CBOjy 
OpjeHTaqHjy je O,lij)eljeHa H npe~CTaBn.a yonmTeu,e Huygens-Steiner-OBe Teo­
peMe Ha YBe~eHe BeKTOpe MOMeHaTa IDIepqHje Mace TeJIa. M3Be~eH je H3Pa3 
3a O,lij)eljHB8lLe npOMeHe BeKTOpa MOMeHaTa IDIep~je Mace TeJIa Ka.zta oca 
Meu,a opjeHTaqHjy, mTO je je~at.mHa aaaJIOrHa Cauchy-jeBHM je~at.mHaMa H3 
TeopHje eJIaCTHqHOCTH. IToKa3aaO je KaKO ce nOMoliy BeKTOpa MOMeHaTa Maca 
o~peljyjy rJIaBHH npaB~ MOMeHaTa HHepqHje Maca Kao H npaB~ HHep~OHe 
aCHMeTpHje. O,lij)eljeHH cy BeKTopH MOMeHaTa HHepqHje Maca 3a OKTae~apcKe 
npaBqe. YKa3aaO je Ha aaaJIOrHje MO~eJIa CTaH>a MOMeHaTa HHepqHje Maca 
TeJIa, CTaH>a HanOHa H CTaH>a ~e$opMaqHje nOMoliy BeKTOpa Be3aHHX 3a Ta'tIKy 
H ocy, O~OCHO paBaa. AHaJIH3HPaHH cy c$epHa H ~eBHjaqHOHa CBojcTBa BeK­
Topa MOMeHaTa Maca. 

OBHM qJIaHKOM cy YBe~eHH CJIe~eliH BeKTOpH Be3aHH 3a Ta'tIKy H ocy: BeK­
TOP M~N) Mace TeJIa y Ta'I'.IKH N 3a ocy opjeHTHcaay jeAHHH'lHHM BeKTopOM 

n; BeKTOp Sr) JIHHeapHOr (CTaTH'tIKOr) MOMeHTa Mace TeJIa y Ta'tIKH N 3a 

ocy opjeHTHcaHY jeAHHHqaHM BeKTopOM n; H BeKTOp 3r) MOMeHTa HHep~je 
Mace TeJIa y Taq1(H N 3a ocy opjeHTHcaay je~HJilqHHM BeKTopOM n. M3Be~eHH 
cy H3pa3H 3a BeKTope MOMeHaTa Maca y n-~MeHCHOHaJIHOM KPHBOJIHHHjCKOM 
CHcTeMY Koop~HaTa. 

3aTHM cy nOMoliy yBe~eHHx Bel<TOpa MOMeHaTa Maca H3pameHH KHHeTHq­
KH napaMeTpH KpeTaH>a KpYTor TeJIa. llaJbe HHTepnpeTaqHje cy o~pe,ll.HJIe 
H3pa3e 3a KHHeTH'tIKy eHeprHjy, l<OJIHqJilHY l<peTaH>a H MOMeHT l<OJIHqHHe Kpe­
TaH>a KpYTor TeJIa nOMoliy yBe~eHHX Bel<TOpa MOMeHaTa Maca TeJIa. CneqH­
jaJIHO, 3a CJIyqaj 06pTaH>a TeJIa 0l<0 HenOMHque oce, o~peljeHH cy H3BO,ll.H 
KOJIHt.mHe KpeTau,a H MOMeHTa KOJIuqJilHe l<peTaH>a y $y~jH THX BeKTOpa 
MOMeHaTa Maca H HanHCaae KHHeTH'tIKe je~aqJilHe pOTaqHje y BeKTOpCl<OM 06-
JIHl<y. O~peljeHH cy H3pa3H 3a l<HHeTH'me npHTHCl<e H yBe~eH KHHeMaTHtUW 
Bel<TOp pOTaTOp. ITol<a3yje ce ~a l<opHmneu,e BeKTopa MOMeHaTa Maca H Bel<­
Topa pOTaropa ~aje CaCBHM je~OCTaBHe H3pa3e 3a !CHHeTH'me npHTHCl<e l<OjH 
3aBHce o~ ~eBHja~oHHx ~eJIOBa Bel<TOpa MOMeHaTa Maca y o~ocy Ha ocy 
pOTaqHje H O~ KHHeMaTH'tIKOr Bel<TOpa pOTaTopa. Y CJIOBH ~HaMH'tIKOr 6a-



JlaHCHpa.H>a ce TaKolje je,I\HOCTaBHO ropa.maBajy y YCJlOBY ~a Cy ~eBHj~oHH 
~eJIOBH BeKTOpa MOMeBaTa MaCa je,I\HaKH ayms:. 

Y 'IJlaBl(Y Cy H3Be~eBH H3Pa3H 3a npOMeHe BeKTOpa MOMeHaTa MaCa npH 
POT~jH TeJIa H 3a CJIY'Iaj KpYTOr TeJIa npOMeBJLHBe MaCe. ~bBe~eHa je BeK­
TOpCKa je,I\Ha'IHHa caMopOTa.qHje KPYTOI' TeJIa npOMeHAHBe Mace. 

OBaj MOHorpatPcKH 'IJlaHaK npe~CTaBJLa nperJle~ Hay'IHHX pe3YJlTaTa Koje 
je ayTOp ny6JIHKOBaHO y HayqHHM 'IaCOnHCHMa H/HJIH CaOnnITHO Ha BaY'IBHM 
KorpecHMa H KOHtPepe~HjaMa MeljYHapO,I\HOr HJIH Ha.qHOHaJIBOr 3Ha'laja mTO 
ce BH,ll,H H3 cURCKa JIHTepaType Koja ca~JfOI ayTopoBHX 30 6H6JIHOrpaq,cKHX 
je~a. 

OBaj MOHorpatPcKo nperJIe~ 'IJIaBaK npe~CTaBJLa ~eJIHBy no BeKTopcKoj 
MeTO,ll,H KOjy je ayTop 3aCBOBao Ba BeKTOpHMa Be3aBHM 3a nOJI H ocy yBO­
ljea.eM BeKTopa MOMeHaTa Maca TeJIa 3a nOJI H ocy KojHMa ce H3pa.maBajy 
reoMeTpHjcKO KOBtPHrYPa.qHOBa cBojCTBa Maca TeJIa H KHHeMaTH'lKHX BeKTOpa 
pOTaTOpa KOjH cy Be3aBH 3a nOJl H ocy H pOTHpajy OKO a.e o,zr.roBapajylioM 
yraoBOM 6P3HBOM H y6p3a.H>eM. TaKolje, 'IJIaBaK npe~CTaBJLa ~eJlHHy H no 
ca~~ajHMa: KOMnJIeTBOM HHTepnpeT~joM aBaJIH3e CTa.H>a MOMeHaTa Maca 
TeJla y O,I\HOcy Ha nOJl yBe~eBHM BeKTOpHMa MOMeHaTa Maca H KOMnJIeTHOM 
HBTepnpeTa.qHjoM KHHeTH'IKHX napaMeTapa KpeTa.H>a poTOpa. 
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