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(with the subscripts of~, r and 1 omitted). 

We could replace (~~"') by 

(rr"') r(h 0 It) = r(h 0 ~1) 0 r It. 

To verify that this notion of adjunction is equivalent to the usual ones it suffices 
to show that it is equivalent to the notion with the rectangular \ \ choice of primi­
tives of 3.4. For that we have first to check that Fa and GO defined by (Fa') and 
(Go') satisfy (fun1) and (fun2). Next, the equalities (~~"') and (rr"') amount 
to the equalities (~~') and (rr') of 3.4 in the presence of (Fa') and (Go'), while 
equalities corresponding to (~~") and (rr") are now derivable. Here is a derivation 
of (~~"): ' 

~(Gf 0 g) = ~r(f 0 ~1) 0 ~(rl 0 g), by (Go') and (~~"') 

= f 0 ~g, by (~r'), (~~III), (catlleft) and (cat2) 

(cf. [D. 1996, section 3.1]). 

This economical definition of adjunction is at the opposite end of the hexagonal 
definition of 3.2, in which we did not economize on primitives. 

To prove strictly the equivalences of various notions of adjunction considered 
here, we would have to introduce the appropriate morphisms between adjunctions 
and demonstrate equivalences of categories, which would actually be isomorphisms 
of categories. We shall not do that, however, since this rather straightforward 
matter would take too much space. We define morphisms between adjunctions in 
5.1 below. 

4. Definitions of comonad 

We shall now survey definitions of comonad. Besides the standard definition of 
this notion, we shall present several alternative definitions, of equivalent notions. 

The principle guiding this survey will be the adjunction between the category 
of our comonad and a subcategory of it, equivalent to the Kleisli category, which 
we will call the delta category. This adjunction defines the comonad, and since 
adjunction can be formulated in various ways, as we saw in the preceding part, we 
may envisage various definitions of comonad. After extracting as many interesting 
definitions as we could find, we compare the delta category of a comonad to its 
Kleisli and Eilenberg-Moore categories. These last categories play an essential 
role in the adjunctions involving the category of adjunctions and the category of 
comonads, which we shall consider in 5.3. 

Of course, we could as well deal throughout with monads. Our only reason 
for preferring comonads is that, from a logical point of view, they seem to bear a 
certain primacy over monads, as the universal quantifier bears a primacy over the 
existential quantifier. On the other hand, from an algebraic point of view, monads 
bear a primacy over comonads (see [Mac Lane 1971, VI] and [Manes 1976]). 
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4.1. Standard definition of comonad. Suppose we are given the following: 

a deductive system (A, 1, 0), 

a graph-morphism D from A to A, 
a transformation E from D to the identity graph-morphism lA, 

a transformation ° from D to the composite graph-morphism DD. 
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So in E we have the arrows EA : DA -+ A, and in ° the arrows OA : DA -+ 
DDA. Then we say that (A,D,E,o) is a comonogroph. We may say that this 
is a comonograph in A, and we use sometimes the same form of speaking with 
comonads, later. To simplify the notation, we don't mention the identity and 
composition of (A, 1, 0), taking them for granted. 

A monograph would be a comonograph with arrows reversed-sources become 
targets and targets sources. Note that the function D on objects in a comonograph 
resembles a topological interior operation, while in a monograph it would resemble 
a closure operation. 

The appropriate morphisms between comonographs will be called comono­
functors. A comonofunctor from a comonograph (A,D,E,o) to a comonograph 
(A', D', E', 0/) is a functor N from the deductive system A to the deductive system 
A' such that the following naturalness equalities hold: 

ND=D'N, 

NEA = ENA, 

NOA =ONA-

A comonad is a comonograph (A,D,E,o) such that 

(A, 1,0) is a category, 

D is a functor, 

E and ° are natural transformations, 
the following equalities hold: 

(EO) 

(EoD) 

(00) 

EDA ° OA = 1DA, 

DEA ° OA = 1DA, 
DOAOOA=ODAoOA. 

A monad (also called a triple) is a comonad with arrows reversed. 

4.2. The delta category. Let (A,D,E,o) be a comonad, and for an arrow 
J : DA -+ A' of A let the arrow ll.J : DA -+ DA' be defined by 

A def r uJ = DJ OUA· 

The operation ~ should be taken as indexed by A, and the same index is inherited 
by @ in 4.5, but we take these indices for granted and omit them. 
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Then consider the subgraph Aa of A whose objects are the objects of A of the 
form DA and whose arrows are the arrows of A of the form 6./. In Aa, there is an 
identity made of the arrows IDA of A and the composition of 6./t : DAl -t DA2 
and 6.12 : DA2 -t DA3 is defined as the arrow 6.12 06./t of A. To ensure that 
IDA and 6.12 0 A/t are indeed arrows of Aa we check that the following equalities 
hold in A: 

(6.C) 6.CA = IDA, 

(6.0 ) 6.(12 0 6./t) = 6.12 06./t. 

It is clear that Aa is a category with this identity and this composition; namely, 
it is a sub category of A. We call Aa the delta category of the comonad (A, D, c, 8). 

Between A and Aa there is an adjunction, where the left-adjoint functor F from 
Aa to A is inclusion I and the right-adjoint functor G from A to Aa is D. To 
show that D / is of the form 6./, we check that in A for every J : A -t A' we have 

The counit IP of this adjunction is just c, where IPA is CA, and the unit 'Y is 8, but 
with 'YDA being OA. That this adjunction obtains indeed will be shown in the next 
three sections. 

Later, in 4.6 and 4.7, we shall compare the delta category to the Kleisli category 
and to the category of free coalgebras of a comonad. Before that, in the next three 
sections, we find the delta category handy to survey various possibilities of defining 
a comonad. 

4.3. Primitive notions in comonad. Let us now consider how one could express 
the adjunction between A and Aa in various ways according to the definitions 
of adjunction in 3. First, the primitive notions we might have to express this 
adjunction are displayed in square brackets in our hexagonal figure. 

Besides the notions we have already encountered, we find in square brackets 
the seesaw functions E, corresponding to ~, which will· be defined below. The six 
definitional equalities of 3.1 connecting these notions would now read: 
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for 6./ : DA' ~ DA for /: A ~ A' 

(Ft) 6./ = EDA(dA o6.f), (G1» D/ = 6.(f oCA), 

(<Pe) cA = EADIA, (-Y6) dA = 6.1DA, 

for 6./ : DA' ~ DA for /:DA' ~A 

(~E) EA6./ = cA 06./, (r.!1) 6./ = D/ 0 dA'. 

The subscripts in 6. are unimportant now, because FA is A, but the second 
subscript of E, understood as ~, matters, and this is the one we note above. 

We must first settle what E stands for. The equality (~E) would permit us to 
.get rid of E in (Ft) and (<Pe) if dA 06./ and DIA were equal to arrows of the form 
6./'. Now, for DIA this follows immediately from (GfJ), while for 6A 06./ we have 

6A 06./ = (6A oD/) odA', by (ra) and (cat2) 

= DD/ 0 (dDA' 0 dA'), by (nat) for 6 and (cat2) 

= (DD f 0 D6A') 0 6A', by (66) and (cat2) 

= 6.6./, by (fun2) and (r a). 

So we may take that E is defined by (~E). 
The possible choices of primitives for our adjunction would now be the following, 

taking into account that F is now inclusion and doesn't figure anywhere: 

hexagonal: (D, c, 6, E, 6.) 

rectangular //: (D,c,6) 

rectangular \ \: (D,E,6.) 

rectangular / /: (c, 6, E, 6.) 

triangular 1>: (c,6.) 

triangular <J: (D, 6, E) 

The rectangular // choice is the choice of the standard definition. The rectangular 
\ \ choice boils down to (c,6.), since c can be defined in terms of D and E, while D 
can be defined in terms of c and 6., and E can be defined in terms of c alone. The 
rectangular / / choice boils down to (c, 6.), too, since 6 can be defined in terms of 
6. alone, and E can be defined in terms of c alone. Finally, the triangular <I choice 
boils down to (D,c,d), since c can be defined in terms of D and E, while E can be 
defined in terms of c alone. 

We should mention also the seesaw choice (E,6.). This boils down to (c,6.), 
since cA can be defined as EAIDA, and E is definable in terms of c alone. 

The hexagonal choice is of course full of redundances, but we shall nevertheless 
consider this choice in the next section. Besides that, we are left with only two 
in.teresting choices: the standard choice (D, c, 6) and (c,6.). 
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4.4. Hexagonal comonads. With the hexagonal choice of primitives, we as-
sume for a comonad (A,D,c,d,E,A) that 

(A, 1, 0) is a category, 

D is a functor, 

c and 6 are natural transformations, 

the equalities (Fj), (GD), (<Pe), hs), (c)E) and (rA) hold, 

and, moreover, the equality (66) holds. 

The equality (dd) is assumed not because of the adjunction, but in order to 
insure that AA is closed under composition. It is also used in order to guarantee 
that E can be defined by (c)E) in (Fj), as we have shown above. 

Let us show now that this hexagonal notion of comonad is equivalent to the 
standard (A,D,c,d) notion. With (c)E), the equality (Fj) reads 

Al = CDA 0 (dA 0 Al). 

This equality clearly. follows from (cd), (catlleft) and (cat2). Conversely, (cd) 
follows from this equality as follows. Since from (GD) with (fun1) and (catlleft) 
we have aeA = IDA (i.e., the equality (Ac) mentioned above), our equality with 
(catlright) will give (cd). Therefore, (Ff) amounts to (cd). 

With (r A), the equality (GD) reads 

D I = D(J 0 cA) 0 dA. 

This equality follows from (cdD), (fun2), (cat2) and (catlright). Conversely, (cdD) 
immediately follows from this equality with (catUeft) and (funl). Therefore, (GD) 
amounts to (cJD). The equalities (Ff) and (GD) are more important than the 
remaining four equalities (<Pe), (-y.s), (c)E) and (rA), which boil down to definitions. 

So, our hexagonal notion of comonad is equivalent to the standard (A, D, c, 15) 
notion. To prove quite strictly the equivalence of these two notions, we would have 
to demonstrate an equivalence of categories, which would actually be an isomor­
phism of categories. 

Note that in the hexagonal definition a comonad is defined by assuming that 
A and AA are categories and that the functors I and D are adjoints, I being 
left-adjoint and D right-adjoint. An adjunction between A and B where the left 
adjoint F is the inclusion functor from B into A is called a coreftection of A in 
its· sub category B. So a comonad in A is defined by assuming that there is a 
coreflection of a category A in its subcategory AA. 

The standard (A, D, c, 15) notion of comonad of 4.1 corresponds to the rectangular 
11 notion of adjunction of 3.3. The equality (cd) corresponds to (IjY'fF) and (cJD) 
to (IjY'fG), while (615) is related to (nat) for "'t. 

4.5. Triangular comonads. With the (c, A) choice of primitives, we can imitate 
the definition of triangular adjunction of 3.6 to define comonads. We define a 
triangular comonad (A, c, A) by assuming that 
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A is a category, 
D is a function from the objects of A to the objects of A, 
E is an objectual transformation from D to the identity function 

on the objects of A, 
~ is a function mapping the arrows /: DA -+ A' of A to 

the arrows ~/: DA -+ DA' of A, 
the following equalities hold: 

(E~) EA 0 ~/ = /, i.e., EA~/ = /, 
(~o) ~(h 0 ~iI) = ~h 0 ~iI, 

(~c) ~cA = IDA. 
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These three equalities correspond to the equalities that were mentioned in 3.6 
as a possible choice for defining triangular adjunction: (E~) corresponds to ({3'), 
while (~o) corresponds to (rr") and (~c) to (rIP). The new notion of comonad 
is equivalent to the standard (A,D,E,c5) notion, via the definitions (G'b), (-r6) and 
(r a). (A definition of monad analogous to this triangular notion of comonad may 
be found in [Manes 1976, 1.3, Exercise 12, p. 32].) 

The triangular notion of comonad becomes more transparent if for iI : DAl -+ 
A2 and h : DA2 -+ A3 we introduce the definition given by the equality 

(@) h@h =ho~h· 

We call @ delta composition. With delta composition, (~o) reads 

(~@) ~(h@h) = ~h 0 ~h· 

Conversely, we may define ~ in terms of delta composition by the equality 

(~) ~/ = IDA@/. 

With delta composition primitive, a comonad could be defined as being (A, e, @), 
where A, D and E are as for the triangular (A,e,~) notion above, @ is a function 
that assigns to a pair (h : DAl -+ A2,h : DA2 -+ A3) of arrows of A the arrow 
h@h : DAl -+ A3 of A, and the following equalities hold: 

( catlright@) 

(catlleft@) 

(cat2@) 

(shift) 

/@CA=/, 

EA@/=/' 
(f3@h)@h = h@(h@h), 

(f3 0 h)@h = fa 0 (h@/d· 

The first three equalities are clearly analogous to the corresponding categorial 
equalities, E behaving as identity. The fourth equality can be replaced by either of 
the following two equalities: 

(shift 1) 

(shiftc) 

fa 0 (lDA@h) = h@h, 

(f3 oCA)@h = h@h. 
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(With (shifte), the equality (catlleft@) becomes superfluous.) The (A,e,@) notion 
of comonad and the triangular (A, e,.6.) notion are equivalent, via the definitions 
(.6.) and (@). (A definition of monad analogous to the (shifte) variant of our 
(A, e, @) notion may be found in [Manes 1976, 1.3, Definition 3.2, p. 24]; the other 
variants are from [D. 1996, section 4.1].) 

If we don't economize on primitives, and take both .6. and delta composition 
as primitives, then an equivalent notion of comonad is obtained by defining it as 
(A,e,.6.,@), where A, D, e, .6. and @ are as before and the equalities (e.6.), (.6.@) 
and (.6.e) hold. Now the defining equalities (.6.) and (@) become derivable (this 
definition is in [D. 1996, section 4.1]). 

Note that we are certainly not allowed to suppose that we have now exhausted 
all possible ways of defining comonads. But the definitions through the adjunction 
between A and Aa are well covered, and among these definitions we find the 
standard definition and other definitions mentioned in the literature. 

4.6. The Kleisli category. Let (A, D, e, 6) be a comonad. Then consider the 
graph AD whose objects are all the objects of A, while its arrows are obtained by 
taking that for every object A of A and every arrow I : DA -+ A' of A, the pair 
(A, f), which we abbreviate by lA, is an arrow of AD of type A -+ A'. (Formally, 
we need a bijection K. that assigns to the pairs (A, j) the arrows K.(A, f) : A -+ A' of 
AD. So, K.(A, f) may be identified with the ordered pair (A, f). We cannot identify 
K.(A, f) just with I instead of (A, j), because, if D is not one-one on objects, then 
I could have more than one source in AD. Definitions of Kleisli category in the 
literature, including Kleisli's own definition of [1965], usually don't make this clear.) 

The graph AD has an identity whose arrows lA : A -+ A are defined as e~ and 
composition in AD is defined as follows in terms of the delta composition of A: 

It2 0 Itl ~f (/2@h)A 1 • 

Let us call the graph AD with this identity and this composition the Kleisli de­
ductive system of the comonad (A,D,e,6). It is clear that due to (catlright@), 
(catlleft@) and (cat2@) of the preceding section, this deductive system is a cate­
gory. This category is called the Kleisli category of the comonad (A, D, e, 6). 

A category isomorphic to AD is a category A~ related to the delta category Aa, 
which is defined as follows. Its objects are again the objects of A, while its arrows 
are obtained by taking that for every pair (Al' A2 ) of objects of A and every arrow 
h: DAl -+ DA2 of A such that 

(homo 6) 

the triple (At,A2,h), which we abbreviate by hA1 ,A2, is an arrow of A~ of type 
Al -+ A2. The identity arrows lA : A -+ A of A~ are defined as 1 ~': and 
composition is defined by 

ht2•As 0 ht1 ,A2 ~ (h2 0 hl)Al.As. 
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The equality (homo &), which is a kind of naturalness condition, could alternatively 
be written as 

t1h = t1IDA2 0 h. 

Other conditions equivalent to (homo &) are 

t1{EA2 0 h) = h, i.e., t1EA2h = h, 

3f(t1f = h). 

The isomorphism between the categories AD and A~ is obtained by the functor 
K from AD to A~ such that KA = A and for f: DAl -+ A2 

KfAl = (Llf) A loA2. 

The inverse K-l of K is defined by K-l A = A and for h : DAl -+ DA2 
\ 

IT D is one-one on objects, then it is clear that the category A~ is isomorphic to 
the delta category Ad, which we have considered in 4.2. Without supposing that 
D is one-one on objects, we can ascertain only that A~ and Ad are equivalent 
categories (see 1.5). 

The (A, E, @) definition of comonad from the preceding section shows that we 
could define a comonad by assuming that its Kleisli deductive system is a category 
and by the the (shift) equality. This equality expresses the adjunction between A 
and AD, which we shall examine in 5. 

4.7. The Eilenberg-Moore category. Let (A,D,E,&) be a comonad. Then 
consider the graph AD whose objects are arrows d: A -+ DA of A such that 

(obl) eA 0 d = lA, 

(ob2) &Aod=Ddod. 

An arrow of AD with source dl : Al -+ DAI and target d2 : A2 -+ DA2 is made of 
an arrow h : Al -+ A2 of A such that 

(homo) 

To prevent the same arrow from having more then one source or more than one 
target, the arrow h in AD should be indexed by dl and d2 • Formally, the arrows 
of AD will be triples (dl ,d2,h), but we shall take the indices dl and d2 for granted 
and omit them (usually, they are not even mentioned). 

The identity arrows of AD are just lA : A -+ A and composition is defined as 
composition in A. We can check that the equality (homo) holds when d l and d2 

are equal and for h we put an identity arrow; it holds also for h2 0 hi !f it holds 
for hi and h2 • So AD is a category, which is called the Eilenberg-Moore category of 
the comonad (A,D,e,&). 
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For d : A -t D A and I : A -t A' let 

def 
Adl = Dlod. 

It is clear that for I : DA -t A' the arrow A6AI is AI. To define the Eilenberg­
Moore category of a comonad we can assume 

(obI') eA 0 Adl = I, 
(ob2') dA 0 Adl = AdAdl, 

(homo') Adl h = Ad:l1A2 0 h 

instead of (obI), (ob2) and (homo). 

The full subcategory Afree of AD whose objects are all the arrows dA : DA -t 
DD A of A is called the category of free coalgebras of the comonad. This category is 
isomorphic to the delta category Aa when there is a bijection between the objects 
of A of the form DA and the arrows dA of A. This bijection exists when D is 
one-one on objects. When D is not such, we may still have this bijection, provided 
that if DAl is the same object as DA2, then dAl = cSA:I (the converse implication 
obtains anyway). But the bijection may also fail. (In [D. 1996, section 4.2] it is 
stated that it can be shown without the supposition that D is one-one on objects 
that Aa and ACee are isomorphic. What should have been said is that this can be 
shown sometimes even without making this supposition.) 

We obtain a category isomorphic to the Kleisli category AD (and to A~) by 
replacing the objects dA of ACee with pairs (A, dA), and the arrows h : DAl -t DA2 
of Afree with triples {Al' A2, h}. (In the usual presentation of Eilenberg-Moore 
categories, objects are said to be pairs (A, d) where A is the source of d: A -t DA 
and d satisfies (ob!) and (ob2). These pairs are in one-to-one correspondence with 
the arrows d. Mentioning the source of d in the pair is not essential: it seems 
to be there for heuristical reasons. However, introdUCing A into (A, dA) makes a 
difference. Note that A is not the source DA of dA.) 

In general, we can assert only that Afree is equivalent to Aa and AD, without 
necessarily being isomorphic. 

5. Adjunction between adjunctions and comonads 

We shall now try to clarify the relationship between the notions of comonad and 
adjunction. It will appear that comonads may be understood as a special kind 
of adjunction, since the category of comonads (with comonofunctors as arrows) is 
isomorphic to a full subcategory of the category of adjunctions (with appropriate 
morphisms, which we shall call junctors, as arrows). Moreover, there are two 
adjunctions involving these two categories. 

First, we have a functor that associates in a standard manner a comonad to 
an adjunction. After investigating some aspects of this functor, we show that it 
has a left adjoint, which associates to a comonad the adjunction with the Kleisli 
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category, and a right adjoint, which associates to a comonad the adjunction with 
the Eilenberg-Moore category. At the end (5.4), we show how the usual presen­
tation of these matters, via the category of resolutions of a comonad, where the 
Kleisli category is tied to the initial object and the Eilenberg-Moore category to 
the terminal object, is a simple corollary of our presentation. 

5.1. The comonad of an adjunction. We shall first introduce the notions of 
junction and junctor in the rectangular 11 style of 3.3. A junction is a structure 
like an adjunction, but without the corresponding equalities between arrows. So a 
junction is to an adjunction what a deductive system is to a category and what a 
comonograph is to a comonad. A junctor is a morphism of junctions, and also a 
morphism of adjunctions. 

Suppose we are given the following: 

two deductive systems, (A, 1, 0) and (B, 1, 0), 

a graph-morphism F from B to A and a graph-morphism G from A to B, 
a transformation cp from FG to 1,A and a transformation 'Y from IB to GF. 

Then (A, B, F, G, cp, 'Y) is a junction. 

A junctor from a junction (A,B,F,G,cp,'Y) to a junction (A',B',F',G',cp','Y') 
is a pair (N,A,NB) such that N,A is a functor from the deductive system A to 
the deductive system A', and NB a functor from the deductive system B to the 
deductive system B'j moreover, the following naturalness equalities hold: 

N,AF = F'NB, 

N,ACPA = CP'pyAA, 

NBG = G'N,A, 

NB'YB = 7NsB· 

An ad junction is a junction (A, B, F, G, cp, 'Y) such that 

(A, 1,0) and (B, 1, 0) are categories, 

F and G are functors, 

cp and 'Y are natural transformations, 

the equalities (cp-yF) and (cp-yG) hold (see 3.3). 

To every adjunction (A,B,F,G,cp,'Y) we may associate the comonad (A,FG,cp, 
F'YG), where the composite functor FG is the functor D of the comonad, CPA is eA 

and F'YGA is dA. (We may analogously associate to the adjunction a monad in B.) 
It is routine to check that (A, FG, cp, F'YG) is indeed a comonad. It is called the 
comonad 0/ the adjunction (A, B, F, G, cp, 'Y). 

5.2. Reflections and coreflections in comonads. An adjunction between A 
and B where the right adjoint G is the inclusion functor. from A into B is called 
a reflection of B in its sub category A. We have seen in 4.4 that a comonad in 
a category A is defined by a coreflection of A in its subcategory Aa, the delta 
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category of the comonad. However, with comonads of adjunctions we may have in 
some interesting (and in logic rather common) cases also a reflection of a category 
isomorphic to A~ in its subcategory A. We shall now consider this matter. 

Let us first prove the following proposition. 

Proposition 1. Let (A,13,F,G,cp,'Y) be an adjunction wbere G is one-one on 
objects. Tben tbe Kleisli category ApG of tbe comonad (A,FG,cp,F'YG) of tbe 
adjunction is isomorphic to tbe full subcategory G(A) of 13 wbose objects are all 
tbe objects of 13 of tbe form G A. 

Proof: First we show that for It : FGAl ~ A2 and h : FGA2 ~ A3 in the 
comonad (A, FG, cp, F'YG) we have 

Indeed, 

12@h = 12 0 (FGh o F'YGA1) , by definition 

= 12 0 FrGA1,A2h, by (fun2) and (r) of3.1, 

and we obtain (@~r) by applying (~I") and (rr") from 3.4. 

We now define a functor N from ApG to G(A) in the following way. For every 
object A of ApG, which is by definition an object of A, let N A be GA. For 
every arrow jAl : Al ~ A2 of ApG, for which, by definition, we have an arrow 
j : FGAl ~ A2 of A, let NjAl be rGA1,A2j: GAl ~ GA2. To check that N is a 
functor we have 

Ncp1 = rGA,ACPA = IGA, by (cp) of 3.1, (fun1) and (r~/) of 3.4, 

N(h@jt}Al = rGA1,As(12@h) 

= rGA2,Ash 0 rGAltA2h, by (@~r) and (~r/) of 3.4 

. = NjA2 0 NjA1. 

Relying on the fact that G is one-one on objects, we define the functor N-I from 
G(A) to ApG by taking that N-IGA is A and that for g: GAl ~ GA2 the arrow 
N-Ig is (~GA1,A2g)AI. It remains to use the equalities (~r/) and (r~/) to verify 
that N-INjAl = jAl and NN-Ig = g. 

This is an immediate corollary of Proposition 1: 

Proposition 2. Let (A,13,F,G,cp,'Y) be an adjunction wbere G is a bijection 
on objects. Tben tbe categories ApG and 13 are isomorphic. 

We know from 4.6 that if in a comonad (A,D,E,cS) we have that D is one­
one on objects, then the Kleisli category AD of the comonad is isomorphic to the 
sub category A~ of A, the delta category of the comonad. With the comonad 
(A,FG,cp,F'YG) of an adjunction, for j: FGAl ~ A2 we have 

t:::..j = FrGAltA2j. 
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So AA will be denoted in this case by An. We can then state the following as a 
corollary of Proposition 1: 

Proposition 3. Let (A, B, F, G, tp, "Y) be an adjunction where both F are G are 
one-one on objects. Then the categories AFr and G(A) are isomorphic. 

The point of this proposition is that An is a subcategory of A. So in all 
adjunctions (A, B, F, G, tp, "Y) where F is one-one on objects and G is a bijection on 
objects, B is isomorphic to a subcategory of A. Note that in such an adjunction A 
may actually be a sub category of B, so that the adjunction is a reflection of Bin 
its sub category A. But we can assert that B is also isomorphic to a sub category of 
A, namely AFr, and that there is a coreflection of A in thil3 subcategory. 

(The situation we have just described obtains sometimes in the adjunction of 
deductive completeness, a strengthening of the deduction theorem, originally called 
functional completeness in [Lambek 1974] j see also [Lambek & Scott 1986, 1.6-7] and 
[D. 1996]. Then B is the polynomial category generated by A and an indeterminate 
arrow.) , 

It is instructive to see that the isomorphism from B to An above is the functor 
F, the left adjoint in the adjunction. 

5.3. The adjunctions involving the categories of adjunctions and comon­
ads. Let Adj be the category whose objects are adjunctions, with arrows being 
junctors (this category should not be confused with the category bearing the same 
name in [Mac Lane 1971, IV.8], where arrows are adjunctions), and let Com be 
the category whose objects are comonads, with arrows being comonofunctors. 

Consider now the functor C from Adj to Com that assigns to an adjunction 
(A,B,F,G,tp,"Y) the comonad (A,FG,cp,F"YG) of the adjunction, and to a junc­
tor (NA' NB) the comonofunctor NA (we may readily check that NA is indeed a 
comonofunctor) . 

The functor C has a left adjoint F that assigns to a comonad (A, D, e, 6) the 
adjunction between A and the Kleisli category AD of this comonad, namely the 
adjunction (A,AD,FD,GD,tpD,"YD)' which is defined as follows: 

FDA ~f DA, 

FDfA ~f !:if, 

GDA ~f A, 

GDf ~f (f oeA)A, 

"YDA ~f (lDA)A. 

IT N A is a comonofunctor from a comonad (A, D, e, 6) to a comonad (A', D', e', 6'), 
then F N A is the junctor (N A, N AD) from the adjunction between A and AD to the 
adjunction between A' and ADI, where N AD is defined as follows: 

A def A NAD = NA , 
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For an adjunction J = (A,B,P,G,cp,'Y) let CPJ be the junctor (NA,NB) from 
FCJ to J where NA is the identity functor lA and the functor NB is defined by 

A def G/ NB/ = o'YGA = rGA,A'/. 

The arrows CPJ of Adj make a natural transformation cP from FC to lAdj. It is 
easy to check that for every comonad S = {A, D, e, 6} the comonad CF S is identical 
to Si so the identity comonofunctor lA is an arrow from S to CF S in Com. It is 
trivial that the arrows lA make a natural transformation I from lcom to CF. 

That F is left adjoint to C means that (Adj, Com, F, C, cP, I) is an adjunction. 
In this adjunction, the unit is the identity of the category Com. We can infer that 
Com is isomorphic by F to a full subcategory of Adj (cf. [Mac Lane 1971, IV.4, 
pp. 92-93]). 

The functor C has also a right adjoint G that assigns to a comonad (A, D, e, tS} 
the adjunction between A and the Eilenberg-Moore category AD of this comonad, 
namely the adjunction {A, AD, pD, GD, cpD, 'YD}, which is defined as follows: 

pDd ~f source(d), 

pDh ~f h, 

D def 
CPA = eA, 

GD A ~f tS~, 

GD/~f D/, 
D defd 

'Yd = . 

If N A is a comonofunctor from a comonad (A, D, e, tS} to a comonad (A', D' , e', 15/), 
then GNA is the junctor (NA,NAD) from the adjunction between A and AD to 
the adjunction between A' and A,D', where NAD is defined as follows: 

N h def 
AD = NAh. 

For an adjunction J = (A,B,P,G,cp,'Y) let now"YJ be the junctor (NA,NB) 
from J to GC J where N A is the identity functor lA and the functor NB is defined 
by 

N def 
8g = Pg. 

The arrows "YJ of Adj make a natural transformation "Y from hdj to GC. It is easy 
to check that for every comonad S = (A, D, e, 15) the comonad CGS is identical to 
Si so the identity comonofunctor lA is an arrow from CGS to S in Com. It is 
trivial that the arrows lA make a natural transformation I from CG to ICom. 

That G is right adjoint to C means that (Com, Adj, C,G,!, "Y) is an adjunction. 
In this adjunction, the counit is the identity of the category Com. We can infer that 
Com is isomorphic by G to a full subcategory of Adj (following the terminology 
of [Mac Lane 1971, IV.4, pp. 92-93], the functor C is a left-adjoint-Ieft-inverse of 
Gi the category Com is isomorphic to a full reflective sub category of Adj). 

One could expect that adjunctions similar to those with C, F and G treated in 
this section may be obtained by taking instead of Adj the category of junctions 
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(with junctors as arrows) and instead of Com the category of comonographs (with 
comonofunctors as arrows). 

5.4. The category of resolutions. Take a functor C from a category A to a 
category S, and for a given object B of S consider the set of objects A of A such 
that CA = B and the set of arrows I of A such that Cl = lB. These two sets 
make the graph of a subcategory AB of A. 

An object A is initial in a graph i1f from A to every object in the graph there 
is exactly one arrow; A is terminal iff from every object to A there is exactly one 
arrow. 

If C has a left adjoint F such that the unit of the adjunction is the identity of 
S, then AB has an initial object F B, and if C has a right adjoint G such that the 
counit of the adjunction is the identity of S, then AB has a terminal object GB. 

To show that FB is initial, take an object A of AB; then it can be shown that 
/{J A : FCA --+ A is the unique arrow of AB from F B to A. For suppose there is 
another arrow I : FCA --+ A in AB; since 

Cl 0""fB = Cl = 1B, 

because 'YB is an identity arrow and I is in AB, and since 

C/{JA 0 ""fB = 1B, by the equality (I{J'YG) of 3.3, 

we obtain 
/{JFB 0 F(CI 0 ""fB) = /{JFB 0 F(C/{JA 0 ""fB), 

from which with (fun2), (nat) and the equality (I{J'YF) of 3.3, the equality I = IPA 
follows. Analogously, in the other adjunction, the one with G, the arrow ""fA : A--+ 
GCA is the unique arrow of AB from A to GB. 

So by taking the functor C from Adj to Com and by fixing a comonad S in 
Com we obtain a subcategory Adjs of Adj. We may call the category Adjs the 
category of resolutions of S, by analogy with the terminology usual when one deals 
with monads instead of comonads. For a comonad S = (A, D, e, &), the adjunctions 
in Adjs are all between the category A and a category S, and the junctors (N A, NB) 
in Adjs all have for N A the identity functor on A. 

The category Adjs has an initial object F S and a terminal object GS, according 
to what we have said above. The arrow IPJ : FC] --+ ] is the unique arrow of Adjs 
from FS to an adjunction ] of Adjs, and ""fJ : ] --+ GC] is the unique arrow of 
Adjs from] to GS. These arrows correspond to what in the case of monads is 
called comparison functors. 

Suppose a functor C from a category A to a category S has both a left adjoint 
F and a right adjoint G. Then the functors FC and GC from A to A are adjoint, 
FC being left adjoint and GC right adjoint. (Analogously, CF and CG from S to 
S are adjoint, CF being·left adjoint and CG right adjoint.) This is a consequence 
of the fact that two successive adjunctions compose to give a single adjunction (see 
[Mac Lane 1971, IV.B, p. 101]). 
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By taking that A is Adj and B is Com, we obtain that the functors FC and 
GC from Adj to Adj are adjoint. (The functors CF and CG are uninteresting, 
since they are the identity functor from Com to Com.) 
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