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Part I. CLASSICAL THEORY 

The aim of lecture notes is to present the basic facts of the theory of pseudo­
differential operators and to give sufficiently enough motivations for further study 
of this very important theory. Also, in the notes authors develop the theory of 
pseudodifferential operators within Colombeau's new generalized functions. 

Pseudo differential operators are generalization of differential operators. They 
form the minimal algebra of operators in which each elliptic operator has the inverse 
up to a smoothing operator. Thus, the roots of the theory of pseudodifferential 
operators are in the theory of elliptic operators. This theory is used for microlocal 
analysis of equations, the hypoellipticity for example. In the second part we show 
this for the (hypo )elliptic pseudodifferential equations with coefficients in the space 
of Colombeau's generalized functions. 

Part I of the notes was written when the first two authors had studied the 
classical theory of pseudodifferential operators, as a part of their doctoral studies, 
under the coordination of the third author, who prepared a seminar on that topic at 
the Institute of Mathematics of Novi Sad University during 1988/89 and 1990/91. 
The authors documented their work, writing down an extensive paper (in Serbian), 
proving the theorems, explaining in details various examples etc. Some parts of 
this unpublished material constitute these notes. The main references for Part I 
are monographs [10], [19] and [20]. 

Part II is devoted to the pseudodifferential calculus within Colombeau's space 
od generalized functions, Q. The idea was established by the authors during the 
seminar on Colombeau's theory which took place in 1989/1990. The third author 
made a coherent theory on pseudo differential operators in Colombeau's sense of 
new generalized functions [16], during his stay in Japan at the Tokyo University in 
the winter of 1992/1993. . 

It was not an easy job to present so large theory on around sixty pages, 
the number which was predicted by the editor. Because of that our exposition 
is of fragmented character in some parts. We think that the reader can find in 
the notes enough information for further study of pseudodifferential and Fourier 
integral operators. 

We assume that the reader is familiar with the basic notions of functional 
analysis, distribution theory and the theory of partial differential equations. For 
further study we refer to [10], [11], [15], [19] [20]. 
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1. Introduction 

If K is a compact subset of an open set 0, 0 C lR, and l/l is Coo function, 

1Il/llla,K = sup laP l/l(x) I· 
IIPII$a 
zEK 

Denote by Va,K the Banach space of Coo functions l/l on 0 such that supp l/l c K 
and 1Il/llla,K < 00. The projective limit of Va,K, as 11011 --t 00, is denoted by 1JK. 
The Schwartz's space of test functions V(O) is defined as the inductive limit of 
spaces VK as K cc 0 and the union of K's exhaust O. We will use the notation 
Cif = V(O). (The notation K cc lR or K cc 0 means that K is compact inlR 
or C.) The strong dual of the spaces V(O) and 1J'(0) is called the Schwartz space 
of distributions. The space of distributions with compact supports is denoted by 
&(0)'. It is the strong dual of the space smooth functions on 0 with the uniform 
convergence of all the derivatives on compact subsets. 

Schwartz's space of rapidly decreasing functions is defined by 

Its strong dual is the space of tempered distributions S'. 

The Fourier transformation of a function u E L1 is defined by 

.r(u)(~) = u(~) = e-izeu(x) dx, ~ E lRn , 
Rn 

and the inverse transfoImation by 

.r-1(U)(~) = (21l")-n eiZeu(x)dx, ~ E lRn. 
Rn 

If u is supported by a compact set, then the Fourier-Laplace transformation 
is defined as above with ~ substituted by , E cn. 

The Fourier transformation is an isomorphism of S (resp. S') onto the same 
space. 

The Sobolev space HB(lRn), s E lR consists of tempered distributions f which 
~ 

Fourier transform f satisfies the following condition 

We shall give Palley-Wiener theorem which will be used often in this work. 

"Let K be a convex compact subset of lRn and let H be its characteristic 
function. If u is a distribution of order N supported by K, then for its Fourier­
Laplace transformation satisfies 

(1.1) 
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Every entire function on en which satisfies (1.1) is a Fourier-Laplace trans­
formation of a distribution with the support contained in K. 

IT u E Cgo(K), then for every N E N 

(1.2) 

Conversely, if (1.2) holds for an entire function and for every N, then it is a Fourier­
Laplace transformation of some function u E Cgo(K). 

2. Elliptic operators with constant coefficients 

As a motivation for the theory of pseudodifferential operators we give the 
construction of a parametrix for elliptic operators. 

2.1. Parametrix of elliptic operator with constant coefficients. Let us 
consider the following equation in S' 

(2.1) P(D)u = 2: caDau = f, 
lal~m 

where fEc' is given D = (D 1 , D2 , ... , Dn), Dj = -A.8~" Ca E C, lal :$ m. IT 
J 

a solution exists, then 
P(~)u(~) = j(~), ~ E Rn, 

and formally, u(e) = j (~) / P(~). Therefore, a formal solution to problem (2.1) is 
given by 

(2.2) 

The integral on the right-hand side in (2.2) is not defined in general because of 
A 

zeros of P({) and the behavior of f({) in infinity. There are some special cases in 
which a modification of (2.2) gives the solution to (2.1). We will discuss one of such 
cases. 

Let P(D) be a differential operator of order m, (Le. the corresponding poly­
nomial P(~) is of order m) and let 

where Pm = Elal=m GaDa and Q(~) is polynomial of order not greater than (m-I). 
The operator Pm{D) is called the principal symbol of P(D). 

Note Pm(>'~) = Ampm(~)' for every A > 0 and ~ E Rn, Le. the polynomial 
Pm{~) is a positive homogeneous function of order m. This implies that the set of 
zeros of the polynomial Pm(~) (the variety of Pm), for m > 0 is a cone and it is 
called the characteristic cone. 

• 

Definition 2.1. A differential operator P(D) of order mjs elliptic if Pm(~) # 0, 
for every ~ E Rn\{o}, where Pm{D) is the principal symbol of the operator P{D). 
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Example 2.1. If the dimension of the space equals one, then all the differential 
operators with constant coefficients are elliptic. 

Example 2.2. The Laplace operator 

6. _ ( 8 )2 + ( 8 )2 + ... + ( 8 )2 
- 8X1 8X2 8xn 

is elliptic. Its principal symbol is -lel2 = -e~ - ... - e!. 
Example 2.3. For n = 2, the Cauchy-Riemann operator . 

8 1(8 .8) 
8z = 2" 8x +~8y 

is elliptic, and its principal symbol is i(e + il-')/2. 

Lemma 2.2. Let P(D) be an elliptic differential operator. Then the set of 
zeros of the polynomial p(e) is compact in ]Rn. . 

Proof. If P(D) = Pm(D) + Q(D) as above, then Pm(e) i= 0, for e E sn-1, 
where sn-l is the closed unit sphere in Rn. Because of that 

IPm(e)1 2: c> 0, e E sn-1. 

If 0 i= e E Rn, then e/lel E sn-1. This implies !Pm (e!IW I 2: C and because of the 
positive homogeneity of Pm (e) we have 

The order of polynomial Q(e) is not greater than m - I, and therefore, 

IQ(e)I$C1Ielm- 1
, eE]Rn, lel>1. 

Let e E Rn satisfy p(e) = 0 and lel > 1. Then we have 

clelm $ !Pm(e)1 = IQ(e)1 $ c1Ielm -
1. ' 

This implies lel $ Cl/C. Thus the set of zeros of p(e) is bounded. 0 

Let P(D) be an elliptic operator such that its variety is contained in the ball 
L(O,p), with the center at zero and radius p and let lI:(e) E coo(]Rn) be such that 
lI:(e) = 0 for lel < p and lI:(e) = 1 for lel > p' > p. Denote 

This formal integral makes sense within the space of tempered distributions. 
It is the Fourier transformation of a tempered distribution. 

In the sequel we will use the notation which have to be understood in the 
distributional sense. 

It will be shown that v(x) is not the solution of equation (2.1), but it differs 
from it only by a smooth function. 

'. 
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Formally (in fact in the sense of the tempered distributions) 
, 

P(D)v(x) = (2!)n R" eiz~ j«(.)K.(e) de = .r--1(j(e)K.(e»(x) 

= (:F-1 (j(e» - :F-1(j(e)(1- K.(e)))(x) = I(x) - RI(x), 

• 

Note that K.(e)/p(e) is a tempered distribution on Rn since it is a bounded 
smooth function. Since . 

.. 

for large enough lel, it follows that JC = :F-1(K.(e)/p(e» is a tempered distribution, 
and 

vex} = :F-1(j(e)K.(e)/p(e))(x) 

= (:F-1(K.(e)/p(e) * :F-1(j(e)))(x) = (JC * f)(x). 

Since the function (1- K.) E C~, the Palley-Wiener theorem implies that its Fourier 
transform h = :F-1(1 - K.} can be extended on en as an analytic function of 
exponential type, such that its restriction on Rn belongs to S. Then RI = h * I 
which implies 

(2.3) P(D)(JC * I}{x) = I{x) - h * I{x) .. 

Let us define operators R and K by 

R : &' -+ Coo, R: I -+ RI, 
• 

K : &' -+ S' , K : I -+ K I := JC * I. 
Then, R is a smoothing operator i.e. a linear and continuous mapping from &' to 
Coo. 

Using this notation we write (2.3) as P{D) = K = I - R. The operator K 
is called the parametrix of the differential operator P{D). H it is known, then the 
solution of equation 

(2.4) P{D)E = () 

(the fundamental solution for P(D» exists, and u = E * I is the solution to 
problem (2.1). By the classical theory, equation P(D)w = h has a solution which 

. is an analytic function on en. Solution to equation (2.4) is E = JC + w (because 
P(D}JC = () - h and P(D)w = h). 

3. Integral operators • 

3.1. Kernel theorem. Schwartz's kernel theorem is the basis one for the 
theory of integral operators is based on it. 

• 
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Definition ~.l. Let Xi be open subsets of Rn;, and let Ui E C(Xi), i E {1,2}. 
Then the continuous function U1 ® U2 on Xl x X 2 defined by 

(U1 ®U2)(X1,X2) = u1(xdu2(X2), Xi E Xi, 

is called the tensor product U1 and U2. 

Proposition 3.2. Let Ui E V'(Xi), i = 1,2. Then there exists a distribution 
U E V'(X1 x X 2) such that . 

U(l/J1 ® l/J2) = U1(l/Jt}U2(l/J2), l/Ji E C8"(Xi), i = 1,2. 

Proof. Let us define 

u(l/J) = U1(U2(l/J(XllX2))), l/J E C8"(X1 x X 2), 

(where Ui depends only on Xi). It is clear that the assertion of the proposition holds 
for U and u(l/J) = U2 (U1 (l/J». 0 

Note, if Ui Ee', i = 1,2, then u(l/J) = U2(U1(l/J», l/J E COO(X1 x X 2). 
The distribution U is called the tensor product of U1 and U2 and it is denoted 

by U = U1 ® U2. 

Definition 3.3. A linear and continuous operator A : V(X2) -+ V '(X1) is 
called integral operator. 

Theorem 3.4. Let K E V'(X1 x X 2). By 

(3.1) 

is determinated a linear operator A : V(X2) -+ V'(X1). It is continuous, in the 
sense that Al/Jj -+ 0 in the spaceV' (X1), when l/Jj -+ 0 in C8"(X2), i.e. it determines 
an integral operator. 

Conversely, for every integral operator A there exists one and only one dis­
tribution K such that (3.1) holds. It is called the kernel of the operator A. 

We refer to [10] for the proof. 

Example 3.1. The kernel of the identity operator V(X) -+ V'(X), Acp = cp, 
where X is an open set in Rn, is given by 

(K,l/J) = l/J(x,x)dx, l/J E C8"(X x X), 
x 

i.e. K(x,y) = 8(x - y). It has the support on the diagonal. 

We will use the following notation. If A c X and B c X x Y then 

A 0 B := {y E Y, (3x E A)«x, y) E B)}. 

If A c Y and B c X x Y, then 

(3.2) BoA := {x E X, (3y E A)«x, y) E B)}. 
• 
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Note that if A is a compact set and B is closed, then BoA is a closed set. 

In the following proposition we assume that suppK = B C Xl X X2, A = 
suppu C X 2• 

Proposition 3.5. If K E V'(Xl x X 2 ) is the kernel of the integral operator 
A: V(Xl ) -t V' (X2 ), then suppAu C suppK 0 suppu, u E C(f(X2).· 

Proof. Let us suppose that Xl fI. (supp K 0 supp u). Then there exists a 
neighborhood V of Xl such that Vn(suppK osuppu) = 0 because the set suppK 0 

suppu is closed. IT v E C(f(V), then 

(supp(v ® u» n suppK = 0, 

and therefore (Au, v) = 0, i.e. Au = 0 on V, and Xl fI. supp Au. 0 

3.2. Proper integral operators. Let E and F be topological spaces and 
f be a continuous mapping of E into F. The mapping f is proper if for every 
compact set KeF the set f-l(K) is compact in E. 

Definition 3.6. Let X and Y be open sets in Rn. An integral operator 
A : C(f(Y) -t V'(X) is proper if the mappings 11"1 : SUPpKA(X,y) -t X and 
11"2: SUppKA(X,y) -t Y are proper, where KA(X,y) is the kernel of A and 11"1 and 
11"2 are the first and the second projection, respectively . 

. 

Proposition 3.7. An integral operator A : C8"(Y) -t V'(X) is proper if 
and only if distributions KA(X, y)cp(y) and KA(X, y)ifJ(x) have compact supports in 
X x Y for arbitrary functions ifJ E C(f(Y) and cp E C(f(X). 

Proof. Let A be a proper integral operator, ifJ E C(f(Y) and cp E C~(X). 
Since 

SUppKA(X,y)cp(y) c SUPpKA(X,y) n1l"2l(suppcp(y», 

it follows that SUppKA(X,y)cp(y) is a compact set. Analogously KA(X,y)ifJ(y) E 
£'(X x Y). 

Assume that for every ifJ E C~(Y) and cp E C~(X) the distributions 
KA(X,y)cp(y) and KA(X,y)ifJ(y) belong to £'(X x Y). We will show that for arbi­
trary compact sets Kl and K2 of X and Y, respectively, the sets 

suPpKA n1l"2l(K2) and SUPpKA n1l"I l (Kl ) 

are compact in X x Y. Let ifJ E C(f (Y) and ifJ(y) = 1 in some neighborhood of the 
set K2. It follows 

• 

which implies the compactness of the set supp KA n1l"2l (K2). Analogously one can 
prove the compactness of the set supp KA n 11"11 (Kl ). 0 

Proposition 3.8. If an integral operator A is proper, then its transpose 
operator ~ is proper, as well. 

• 



120 Nedeljkov, PeriSie and pilipovie 

Proof. Theorem 3.4 implies that there exists KA(X,y) E V'(X x Y) and 
K ~(y,x) E V'(Y x X), such that 

(Au,v) = (KA(i,y),u(y)v(x» 

(~v,u) = (K~(y,x),v(x)u(y», 
for every u E CQ'(Y) and v E CQ'(X) 

Since (Au, v) = (u, ~v), it follows 

(KA(X, y), u(y)v(x» = (K~(y, x), v(x)u(y», 

i.e. KA(X,y) = K~(y,x) in 1)(X,Y). Thus it follows that $1 is a'proper operator 
if A is a proper operator. D 

Example 3.2. Let P : CQ'(Y) -t 1)'(X) be a continuous linear operator. Let 
(c/Jj)jEJ, and (CPi)iEI be sequences in CQ'(X) and CQ'(Y) respectively. Let the 
families of sets (suppc/Jj)jEJ and (SUPPCPi)iEI be locally finite. (A family (Aa)aEA 
of subsets of )Rn is locally finite if for every x E )Rn and a bounded neighbourhood 
B of X, B n Aa =F 0 only for finitely many a E A.) The mapping u ~ Qu, where 

(3.3) (Qu) (x)= Lc/Jj(x)P(cpj(Y)u(y»(x), u E CQ'(Y), x E X 
jEJ 

is a proper integral operator. 
, . 

Because of the local finiteness of the family (c/Jj)jEJ the above sum is finite 
for every fixed x. One can simply check that Q : CQ'(Y) -t V'(X) is an integral 
operator. Let us show that it is proper. Let t/J E CQ'(X). Since P is an integral 
operator, Theorem 3.4 implies that there exists a kernel Kp(x;y) E 1)'(X x Y), 
such that 

«Qu)(x), t/J(x» = (L c/Jj (x)(Kp (x, y), cpj(Y)u(y», t/J(x») 
jEJ 

• 

= L «Kp(x, y), CPj (y)u(y», c/Jj(x)t/J(x» 
jEJ 

= L(Kp(x, y), CPj (y)u(y)c/Jj (x)t/J(x» 
jEJ 

= (L Kp(x, y)cpj(y)c/Jj(x), u(Y)t/J(x»). 
jEJ 

Here we have used the fact that the sums are finite. The kernel of the integral 
operator Q equals 

L Kp(x, y)cpj(y)c/Jj(x). 
jEJ 

As cp E CQ'(Y) (analogously c/J E CQ'(X» the set supp I:jEJ Kp(x, y)cpj(y)c/Jj(x)cp(y) 
(supp I:jEJ Kp(x,Y)CPj(y)c/Jj(x)c/J(x» is compact, since the sum is finite. From The­
orem 3.7 it follows that Q is a proper integral operator. 
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Note that (3.3) is well defined for u E COO(y). 

Proposition 3.9. If A: Ccf(Y) -.. V'(X) is a proper integral operator, with 
the kernel KA and ifu E Ccf(Y), then 

, 

(3.4) supp(Au) c (SUPpKA) 0 (suppu) , 

and (SUppKA) 0 (suppu) is compact. 

Proof. By Proposition 3.5, supp Au c supp KA 0 supp u. We have 

(Au,t/J) = (KA(X,y),u(y)t/J(x» = (KA(X,Y)U(y),t/J(x» . 

Let us denote T = SUppKA, R = suppu. Since R is a compact set, it follows that 
ToR is a closed set. Let W = Y \ (T 0 R) and assume t/J E COX>(W). This means 
that T n (supp t/J x R) = 0. The kernel theorem and the fact (Au, t/J) = 0 imply 
that (3.4). Let us prove that ToR is a compact set. From (3.2) it follows 

(suppKA) 0 (suppu) = 11'1 (supp KA n1l'21(suppu». 

The set SUppKA n 11'21 (suppu) is compact, since suppu is a compact set and 
11'2 : supp KA -.. Y is a proper mapping. Therefore 11'1 (supp KA n 11'21 (supp u» is a 
compact set as a continuous image of a compact set. 0 

Theorem 3.10. If A: C8"(Y) -.. 'D'(X) is a proper integral operator, then 
it can be continuously and linearly extended to an operator A: COO(Y) -.. V'{X). 

Proof. Let A : C8"(Y) -.. 'D'(X) be a proper integral operator, u E Ccf(Y), 
v E C8"(X), by Theorem 3.4, there exists KA(X,y) E V' (X x Y) such that 

(Au, v} = (KA(X,y),u(y)v(x» .. • 

Let {<pj }jEJCN be a partition of unity with the properties 

Let 

(1) <pj C C8"(X x Y), j E J, and the collection of supports {sUPP<Pj};EJ is 
locally finite, 

(2) 'EjEJ<Pj(x,y) = 1 for every(x,y) E X x Y, 
(3) <Pj(x,y) ~ 0 for every(x,y) E X x Y and j E J. -

K(X,y) = <Pj(X,y) 
j: SUPP'I'jnSUpp KAi'0 

-Clearly, K(X,y) E COO(X x Y). Define the operator A: COO(y) -.. 'D'(X) by 

(Au(x),v(x» = (KA(X,y),K(X,y)U(y)v(x», u E COO (Y),v E COO(X). 

The set SUppK(X,y)U(Y)v(x) is compact. Namely SUppKA(X,y)V(x) is compact 
and it implies that a family of functions <pj such that supp <pj n supp KA :I 0, - -is finite. Therefore A is well defined. From the definition it follows that A is a 
continuous linear operator. Also, if u E Ccf (Y), then 

(Au(x),v(x)} = (KA(X,y)K(X,y),u(y)v(x)} = (KA(X,y),u(y)v(x», 
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-since K. = 1 on SUPpKA. We conclude that A is a linear continuous extension of 
the operator A. 0 

Theorem 3.11. An integral operator A: C.f(Y) -t V'(X) is proper if and 
only if: 

(1) For every compact subset M of Y there exists a compact subset M1 of X 
such that if supp u c M then supp Au C Ml, where u E C.f(Y). 

(2) For every compact subset L of X there exists a compact subset S ofY such 
that if supp v C L, then supp ~u C S, where v E C.f(X). 

Proof. Let us prove that condition (2) is equivalent with the following one 

(2*) For every compact subset L of X there exists a compact subset S of Y such 
that if u = 0 on S, then Au = 0 on L for u E C8"(Y). 
Assume that (2*) does not hold, Le. there exists a compact set Lo such that for 

every compact set S there exits u E C8" (Y) such that supp u C Y \ S, (Au, v) # 0 
for some v with supp v c Lo. Let (2) holds and let Sl be related to the set Lo by 
condition (2). For every v E C8"(X), with supp v C Lo, it follows that support of 
~v is in Sl. Let u E C8" (Y) and let the support of u be in the complement of Sl. 
We should have that (v, Au) # 0 for some v E C8" with support in Lo, but it is not 
true, since (v, Au) = (~v, u) and (~v, u) = 0, for every v with supp v C Lo. 

Analogously one can prove that (2*) implies (2). 

Let us suppose (1) and (2*). We will show that the mapping 71'2 : supp KA(X, y) 
-t Y is proper. Suppose that M is an arbitrary compact subset of Y and N is a 
compact subset of X, which is related to the first one by (1). Then we will prove 

(3.5) 71';-1 (M) n SUppKA C N x M. 

Let (xo, Yo) E (X\N) x M, and let a function w(x, y) = v(x)u(y) be such that 
suppv C X \ N, suppu C M, w f; 0 in some neighborhood of the point (xo,Yo) 
and w E C8"(X x Y). We have (KA,W) = (Au(x),v(x» = 0 which implies that 
(XO,yo) rt 71';-1 (M) n (SUPpKA)' This implies (3.5). The proof that the mapping 
71'1 : supp KA(x, y) -t X is proper is similar 

Let A be a proper integral operator. Condition (1) follows immediately from 
the properties of a proper integral operator and condition (2) follows from the fact 
that ~ is a proper integral operator. 0 

3.3 Smoothing operators. 
Definition 3.12. A continuous linear operator A : £'(X2) -t COO(Xt}, X1and 

X2 are open in JRn, is called a smoothing operator. 
, 

IT a distribution K(XllX2) belongs to the space COO(X1 x X 2), then the op-, 
erator A defined on £ (X2) by 

(A(U(X2)))(Xt) = (K(XltX2),U(X2»), Xl E Xl, U E £'(X2) 

is a smoothing operator. To prove it we need the following lemma. 
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Lemma 3.13. The lineal L of the set of translations of <5-distribution (L = 
(Ef=1 ai<5(x - Xi), ai -E C, Xi E X}) is dense in the space £/(X). 

Proof. We will show the assertion for n = 1 and X = R. For n > 1 and 
X C Rn the proof is analogous. Let tP E Ccf (R). We have 

(3 

{tP,,p) = tP(x),p(x) dx, 

for every ,p E COO(R). The integral on the right-hand side is equal to the limit 
value of Riemann's sum i.e. . 

n n 

(tP,,p) = lim "tP(Xi),p(Xi)Axi = Hm "ado(x - Xi), ,p(x», n-+oo L.J n-+oo L.J 
~1 ~1 

where ai = tP(Xi)Axi. This implies that L:~=1 aio(x - Xi) converges to tP E Ccf(R) 
in £' (R), i.e. that the set of finite linear combinations of delta distributions is dense 
in Ccf(lR). Since Ccf(R) is dense in £/(R), it follows that this set is dense in £/(R). 
o ' 

Theorem 3.14. An operator A: £/(X2) -+ COO(Xl) is a smoothing operator 
if and only if there exists a distribution K(Xb X2) E COO(Xl x X2) such that 

• 

Proof. Let A: £/(X2 ) -+ COO(Xl ) be a smoothing operator. Denote 

K(Xl, a) = A(a(· - a»(xl), a E X2, Xl E Xl. 
. 

Let a be fixed and K(Xl, a) be a function of Xl. It is an element of COO(Xl). We 
will show that for every fixed Xl E Xl, K(Xb·) is a function in COO(X2). This 
will imply K(Xl,X2) E COO(Xl x X2). Thus, let Xl be fixed, {an}nEN C X2 and 
limn-+oo an = a E X 2 • Then 

(which is equivalent to limn-+ooK(xl,an) = K(xl,a)), because of the continuity 
of A and the fact that <5(X2 - an) -+ 0(X2 - a) in £/(X2) as n -+ 00. Therefore, 
K (Xl, a) is continuous with respect to the variable a. We have ' 

K(xl,a + h) - K(xl,a) A(0(X2 - a - h»(Xl) - A(<5(X2 - a»(xd 
h = ---O..-'-"'-----~~h:----c......;..~-'-~= 

• 

(
0(X2 - a - h) - <5(X2 -ar) = A h (Xl). 

Since 
0(X2 - a - h) - <5(X2 - a) £/( ). CO/(X) 

h -+ U X2 - a 1D c, 2, h -+ 0, 

the continuity of A implies 

li K(Xl,a+h)-K(Xl,a) A(£/( » 
m h = U X2 - a . 

h-+O 

-
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Analogously one can continue the proof for all the derivatives. This means that the 
• mappmg 

is in COO(Xl x X2) 

It remains to prove that KA = K,- where KA is the kernel of A. Since 
(KA(Xl,X2),U(X2» E COO(Xl), it is enough to prove 

(KA(Xl, X2), U(X2» = K(Xlo X2)U(X2) dx2, U E Cij>(X2). 
X2 

As we have shown in Lemma 3.13, L is dense in C~(X2)' Thus, there exists 
I:f;l ai O(X2 - x~i) in L which converges to U in E'(X2) as r -t 00. From above it 
follows (Xl E Xl) 

p .. 

(KA(Xl,X2),U(X2» = lim A("aio(x2 -x~i»)(xd 
... n~oo L..J 

i=l 
P.. P .. 

= lim "aiK(xl,X~i) = lim (K(Xl,:J:2)'" aio(x2 - X~i») n~oo L...J n~oo L...J 
i=l i=l 

• p .. 

= (K(Xl' X2), nl~n;.,:E aio(x2-- X~i») = (K(Xlo X2), U(X2» 

--

i=l 

K(Xlo X2)U(X2) dx2 
X2 

o 

4. Oscillatory integrals 

The notion of oscillatory integral is the crucial one for the theory of pseudo­
differential and Fourier integral operators. 

In oder to explain the oscillatory integrals we will consider the definition of 
generalized Fourier transformation of continuous functions u(x) for which there 
exists positive real number c and mEN such that 

(4.1) 

In other words we will give the meaning to the right-hand side of equality 

(4.2) (u,4» = 

when a continuous function U satisfies (4.1). Later on we shall give a method which 
will be applied in the general case. -

Let kEN and 1/1 E S If U E S, then the integral (4.2) makes sense, since 

e-i %( = (1 + IxI2)-k(1- D~l _ ... - D~Jke-i%(. 

-
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Then we have 

(u,1jJ) = 1£(x)1jJ(~)(1 + IxI2)-k(1 - D~l - ... - D~Jke-iz( dx de. 
R" R" 

The integration by parts implies 

(4.3) (u,1jJ) = e-iz( (1 + IxI2)-k1£(x)(1 - D~l - ... - D~.y1jJ(~) dx de. 
R" R" 

The right-hand side of (4.3) is defined not only when 1£ E S(Rn) but as well as 
when 1£ satisfies (4.1) and k > m + n. 

Let us suppose (4.1). Since:F: S'(Rn) ~ S'(Rn) is the isomorphism, it 
follows u(~) E S'(Rn). Let t/J E Ctf(Rn), t/J(O) = 1 and 

e-iZ(t/J(ex)1£(x)1jJ(~)dxde, 1jJ E S(Rn ), e > o. 

where the integral on the right-hand side converges because of (4.1). Analogously 
as above, for kENO, we obtain 

, 

I,p,e = e-iz(t/J(ex)(1 + IxI2)-k1£(x)(1 - D~l - ... - D~" )k1jJ(~) dx de. 
R" R" , 

. 

Let k > m + n. By the Lebesgue theorem, it follows that there exists I E R such 
that limE~o I,p,E = I. Note that the integral in (4.3) does not depend on k for which 
k > m + n. We define the mapping S(Rn) 3 1jJ t-+ (u,1jJ) = I(1jJ) which gives the 
definition of u as an element of S'(R). 

4.1. 
(formally) 

Space of symbols S;;:5(X, RN). Let X be an open set in Rn and let 
, 

-
(4.4) I,p(au)= ei,p(z'()a(x, ~)u(x) dxd~, 1£ E Cgo(x), 

RN RN 

where functions t/J and a are the phase function and the symbol defined as follows. 

Definition 4.1. A real valued function t/J which is of the class COO(X x 
(RN\{O})) positively homogeneous of order 1 with respect to the variable ~ 
(Le. t/J(x,t~) = tt/J(x,~) for every x E Rn,~ E RN,t E R, t > 0) and which 
does not have characteristic points on X x (RN\ {O}) (Le. 0 ¥- dt/J(x,~) = 
(t/JZ1'··. ,t/Jz", t/J(l'··· ,t/JeN) for ~ ¥- 0), is called a phase function. 

Definition 4.2. Let m, p, 5 E R, 0 < p $ 1, 0 ~ 5 < 1. 

Elements of the space S;;:5(X, RN), which are called symbols, are functions 
a(x,~) E COO (X x RN) such that for arbitrary multi-indices a and f3 and arbitrary 
compact set K C X there exists a constant CQ ,f3,K > 0 such that 

18r8~a(x, ~)I $ cQ ,f3,K(1 + Iwm-pIQIHIf3I, x E K, ~ E RN 

Example 4.1. (1 + I~\)m E Sr.o. 



I 

126 Nedeljkov, Periiiic and Pilipovic 

We will use the following notations 

sm(x, ]RN) = SrO(X, ]RN), S;::5 = S;::5(X, ]RN), 

S;,'5(X, ]RN) = U S;::5(X, ]RN), S;,r(X, RN) = n S;::5(X, ]RN). 
m m 

The space sm is called the space of standard symbols. 

Let us introduce the topology in the space S;::5' Suppose that (K"),,eN is a 
sequence of compact sets such that 

00' 

K1 C K2 ... C K" C ... c X, U K" = X . 
.,=1 

For a(x,~) E S;::5 define 

lIa(x,~)II" = sup lara~a(x,~)I(l + 1~I)-m+pa-5.8. 
zeK",eeRN ,lal</I,I.81 <" 

It is clear that 11 . 11." V E N is a growing sequence of seminormsj it defines the 
, 

topology on S;::5 such that S;::5 is F'reshet's space. 

One can simply prove: 

Proposition 4.3. Ha E S;::5(X, Rn), then araga E S~5-plal+5I.81(X, ]RN). H 

a E sm (X RN) and b E sm' (X JRN) then a . b E sm+m' (X JRN) p,o , p,5 , p,o' . 

The right-hand side in (4.4), where a(x,~) E S;::o(X,JRN ) and </J(x,~), is a 
phase function, is called an oscillatory integral. Our aim will be to give the meaning 
to the integral, which in the general case does not converge absolutely. 

Theorem 4.4. Let </J(x, ~), (x,~) E X X JRN, be a phase function. There 
exists an operator 

(4.5) 

such that aj(x,~) E SO(X,]RN), bk(X,~),c(x,~) E S-1(X,JRN ) and that for its 
transpose operator (determined by f (L<p)'I/; = f <p(t L'I/;), <p, 'I/; E Cff) 

N a n a 
t Lu(x,~) = - f;t a~j (aju) - t; OXk (bk U ) + c(x,~) 

there holds t LeitP = eitP . 

Note that the operator L is not uniquely determined. 
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. 

where 1/J(x,e} E COO(X x (IRn\{o})} is a positively homogeneous of order -2 as a 
function of variable e. It follows 

-i1/J(I: 1~12 8cjJ 8 + t 8cjJ 8 )ei </> = ei </>, 

;=1 8~j 8{j k=1 8Xk 8Xk 

and it remains only to take care of the singularity in e = O. 

Let II:W E Ccf(lRn} be such that II:(~) = 1 for I{I < 1/4 and II:(~) = 0 for 
I~I > 1/2. Let us define 

. N 2 8cjJ 8 n 8cjJ 8 
M = -t(l - 1I:)1/J [~If.1 8{j 8~j + ~ 8Xk 8Xk] + 11:. 

Note M ei </> = ei</>. By using Proposition 4.3 one can prove.that the coefficients of 
t M = L satisfy the asserted conditions. Since t M = L, it follows t L = M. 0 

For rn' > rn we have S;;:6 c S;;:~ and the identity mapping I : S;;:6 -+ S;;:~ is 
continuous. 

Theorem 4.5. Let rn' > rn and let B be a bounded subset in S;;:6' The 
topologies in B induced by 

(a) topology of pointwise convergence on S;;:~, 
(b) the topology of the uniform convergence on compact sets (topology from , 

£(X, IRn») on S;;:6 and 
, 

(c) the topology of the space S;::6 are the same. 

Proof. We will give the proof of this assertion from [15]. Let us recall that a 
convergence satisfies the Urysohn condition if the following holds: 

A sequence is convergent if and only if its every subsequence has a convergent -
subsequence. 

It is obvious that all of the mentioned topologies are Hausdorff, that they 
fulfill the Urysohn axiom (because they are topological convergencies) and that the 
first two are weaker that the third one on B. 

We will show that the set B is relatively compact in S;;:~ (every sequence in , 
B has a convergent subsequence in the sense of the convergence in S;::6)' Since B 
is a bounded subset of S;;:6' a sequence {cjJn}nEN c B is bounded in the sense of 
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convergence in E(X X RN). Therefore it has a convergent subsequence <Pk" which 
converges to <P E COO(X X RN). 

Note that for every compact set K and a, /3 E NO' 

18r~ <Pk" (x, e)1 :::; cK,Q,p(1 + Iwm-pIQIHIPI, x E K, ~ E RN, 

where CK,Q,p does not depend on the subsequence. It implies 

, 
Therefore <P E S;::6' We have 

(1 + lel)-ml+pIQI-6IPI18r8~ (<pk" (x, e) - <p(x, em :::; 2CK,Q,p(1 + 1~l)m-m', 

xEK, eERN , 

for fixed compact set K eX, a E N~, /3 E NO. Therefore, there exists a > 0 such 
that for lel > a the left-hand side of the inequality is less than e > 0 independently 
of kn • 

For lel :::; a the set K x {e, lel :::; a} is compact. Since the sequence <Pk" 
converges to <P in the sense of convergence in E, it follows 

I . 

(1 + lw-m +pIQI-6IPI18r~(<pk" (x, e) - <p(x, e))1 < e, 

for some no EN, kn > no, (x,{) E K x {e, I{I :::; a}. Thus, every sequence in B has 
a convergent subsequence in S;::;. 

Now we will prove that (a) implies (c). Let a sequence in B be pointwisely 
convergent. We have proved that every subsequence of it has a convergent subse-
. I 

quence in S;::6' From Urysohn's condition follows the assertion. 0 

4.2. The oscillatory integral and its properties. Let u E C~(X), a E 
S;::6(X x \RN), X is open in Rn and m < -N. Note, if a E S;::6 and s = min(p, 1-6), 
then the properties of L (cf. (4.5)) and a imply that there exists C> 0 such that 

ILk(a(x, e)u(x))I :::; C(1 + leDm-ks, x E X, { E \RN . 

. With the above assumptions the integral on the right-hand side of (4.4) makes 
sense. Moreover 

(4.6) It/>(au) = eit/>(z,() Lk(a(x, {)u(x)) dx cl{ 
R" RN 

and 

where 

C = lu(x)1 dx (1 + IWm cl{. 
X RN 

- -- ._-
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This implies that a 1-+ 1t{1(au) is a continuous mapping S;::6 -+ C. In the following 
theorem we shall show that this mapping has a continuous extension on S:,'6 = 
Um>O S;::6· This extension is called the oscillation integral and it is denoted by 

(4.7) 1t{1(au) = eit{l(z'()a(x, e)u(x) dxde [osc]. 
R" RN . 

Theorem 4.6. Let p E (0,1], 6 E [0,1) and r/J be a phase function. For a 
fixed 1£ E C~(X) def1ne 1t{1(·u) by 

a H It{I(au) = eit{l(z'()a(x, e)u(x) dxde, 
R" RN 

a E S:,'6 = U S;::6(X, aN) 
m,p,6 

when that integral is absolutely convergent. Then 1t{1(."") can be extended uniquely 
on the whole S~ such that the mapping 1£ 1-+ 1t{1(au), a E S;::6(X, ]RN), is continuous 
and linear (i.e. it is a distribution). 

Proof. Let lI:(e) E C~(]RN), lI:(e) = 1 in a neighborhood of zero and 1I:,,(e) = 
lI:(e/v), v E N. The set {1I:,,(e)a(x, e), v E N} is bounded in S;::6(X, aN), therefore 

1I:,,(e)a(x, e) converges to a(x, e) in S;::;(X, aN), as v -+ 00 for rn' > rn. Also it 
converges pointwise. This follows from Theorem 4.5. The integral is absolutely 
convergent because 11:" and 1£ are compactly supported and therefore 

-- eit{l(Z,() Lie (a(x, e) 11:" (e)u(x» dxde, 1£ E cgo(X) 
R" RN 

(cf. (4.6». It is clear that 

eit{l( Z ,() Lie (a( x, e) 11:" (e)u (x» dxde 
R" RN 

converges to 

(4.9) eit{l(Z,() Lie (a(x, e)u(x» dxde, 
R" RN 

as v -+ 00, since a(x,e)II:,,(e) converges to a(x,e) in S;::;(X,]RN) and Lie maps 

S;;;(X, ]Rn) continuously in S;::;-ks, for 8 = min(p, 1-6). This implies the conver­
gence of the integral in (4.8). Let us denote this limit by 

(4.10) eit{l(Z'()a(x, e)u(x) dx ~ [osc]. 
R" RN 

Since for fixed v, 1) 3 1£ 1-+ 1t{1(all:"u) defines a distribution and 1t{1(all:"u) converges 
to 1t{1(au) for every 1£ E V. By the sequential completeness of 1)', it follows that 
1£ H 1t{1(au) is a distribution. . 

• 
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Therefore (4.10) is defined by (4.9). Clearly, in (4.8) the operator L can be 
substituted by any other one which has the properties as in Theorem 4.4 and we 
can take any k such that m - ks < -N. This implies that (4.10) does not depend 
on L and k, i.e. 

V(X) 3 u t-7 I",(au)= ei",(z,e>a(x, {)u(x) dxd{ [osc.], 
R" RN 

is an element of the space 1J'(X). 

The same proof show that (4.8) does not ~epend on the choice of I\:II({) with 
the prescribed properties. 0 . 

Example 4.2. Let us show that 

c5(x) = (21r) eiz·e . 1 de [osc.]. 
R" R" 

Note, 1 E ~,6. Let I\: E C~(X), I\:({) = 1 in a neighborhood of zero and u E C~. 
Then I\:({/t) -+ 1 in Sra as t -+ 00 and , 

= 1\:(0) 
R" 

We have used .1"(.1"-l(U({))(x) = u(x), which implies .1"(.1"-1 (u({)) (0) = u(O). 

4.3. Singularities of an oscillatory integral. Let X be open in IRA and 

C'" = {(x, e), x E X, { E RN\ {O}, 4>e(x, {) = O}, S'" = 1rl C"" R", = X\S"" 

where 1rl : (X x RN\ {O}) -+ X being the first projection of the set (X x RN\ {O}). 
Since S'" is closed, R", is open. 

The set C", is a cone with respect to {, because 4>(x, {) is homogeneous function 
of {of order 1 and 84>/8{ is homogeneous of order o. 

Theorem 4.7. Denote by A the distribution defined by (A,u) = I",(au), 
u E C~(X). Then SingsuppA CS",. 

Recall, Sing supp A is the complement of the maximal open set where A is 
smooth. 

Proof. We will show that there exists A E COO(R",) such that 

I",(au) = A(x)u(x) dx, u E C[f'(R",). 
x 

.. _-----
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We shall show that there exists L = L: aj(x, e) at +c(x, e), where aj E so (14, aN), 
_ c E S-1 (Rt/l, aN) such that Leit/l = eit/l. Put 

-

N a a 

where tP satisfies -itPL:f=1IeI2IltI2eit/l = eit/l, e:F 0, K. E c.rcaN ) and K.(e) = 1 
for lel < 1. Then M eit/l = eit/l and put Leit/l = M eit/l. Thus 

N a a~ 
Lv. = ~ ae. (i(l - K.)tPleI2 

ae u) + K.u. 
3=1 1 

Let K. E C8"(JRn), K.(O) = 1 and K.,,(e) = K.(e/v), v E N. Note, for every K cc X 

IMka(x, e)1 ~ C(l + leDm-k, e E JR!', x E K. 

Therefore 

(A,u) = lim 
"-.00 

= lim 
"-.00 

eit/l(z,() Lk (K.,,(e)a(x, e)v.(x» de dx 
Rn RN 

-- ( eit/l(Z,() Lka(x, e) de)u(x) dx. 
Rn RN 

A(x) = eit/l(z,() Lka(x,e) de [osc]. 
RN 

(It does not depend on k.) For large enough k the integral exists in ordinary 
sense and the function A is continuous. Moreover, we can differentiate A(x) by 
differentiating the function under the integral sign. This is the consequence of 
the fact that ~(x, e) is a homogeneous function of e of order 1 as well as all its 
derivatives with respect to x. Note, if a function r(e) is homogeneous of order 1, 
then 

Ir(e)1 < const· (1 + lW, e E aN. 

This implies that by taking large enough k differentiation under the integral is 
legitimate. Thus for any p E No we have A(x) E CP(Rt/l). 0 

Analogously one can prove: 

Proposition 4.8. Ha E S;;:6(X, JRN) and a = 0 in some conic neighborhood 
of the set Ct/l, then A E Coo (X), where A is defined by (A, v.) = ft/l (av.). 

5. Fourier integral operators 

We shall give some introductory facts which are useful for the theory of pseu­
do differential operators. 
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5.1. Definition and the basic properties. Let X and Y be open sets in Rnl 
and Rn2 , p > 0, 6 < 1. Let 

Au(x) = ei,p(z'II'()a(x,y,~)u(y)dyc:te, u E Co(Y), x E X, [osc.] 
Y RN . 

where 4>(x,y,~) is a phase function on (XxY)xRN and a(x,y,~) E S;:'6(XXY, RN). 
Under these conditions the integral 

(5.1) {Au, v} = ei,p(z,II'()a(x, y, ~)u(y)v(x) dx dy~, v E Co(X) 
x Y RN 

is defined as an oscillatory integral. For fixed u the right-hand side in (5.1) defines 
a distribution Au E V'(X) (see Theorem 4.6). 

Remark 5.1. In the sequel we will not write explicitly [osc.] for integrals which 
are defined as oscillatory integrals. It will clear from the context. 

Definition 5.1. An operator A : Ccf(Y) -+ V'(X) defined by (5.1) is called 
a Fourier integral operator with a phase function 4>(x, y,~) and an amplitude 
a(x,y,~). . 

Every smoothing integral operator can be written in the fOIm of a Fourier 
integral operator: 

Theorem 5.2. An integral operator A : Ccf(Y) -+ V'(X) is a smooth­
ing operator if and only if there exists a phase function 4>(x, y,~) and amplitude 
a(x, y,~) E SI~ such that , 

(5.2) Au(x) = ei,p(z,II'()a(x, y, ~)u(y) dy~. 
Y RN 

Proof. Let A be of the form (5.2). If a(x, y,~) E SI.': it is clear that the 
kernel of the operator 

ei,p(z,II'()a(x, y,~) ~ 
RN 

is of the class COO(X x Y). 

Conversely, by Theorem 3.14 there exists K(x, y) E COO(X x Y) such that 

Au(x) = {K(x, y), u(y» = K(x,y)u(y) dy 
Y 

-- ei,p(z'II'()(K(x,y)e-i,p(z'II'()I\:(~»u(y)dy~, u E Co, x EX, 
Y RN 

where 4> is an arbitrary phase function, I\: E Ccf(RN ), I I\:(~) d~ = 1 and I\:(~) = 0 
in some neighbourhood of zero. 

Since a(x,y,~) = K(x,y)e-i4>(z'II'()I\:(~) E SI':, the assertion follows. 0 , 
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A distribution KA E V/(X X Y) defined as the oscillatory integral 

• 

(KA,W) = ei«>(Z,II'()a(x, y, e)w(x, y) dx dy de [osc.] , 
x Y RN 

w E Cg:' (X X Y), is the kernel of the operator A. It is the kernel of the operator A 
• smce 

(Au,v) = (KA(X,y),u(y)v(x)},u E Cg:'(Y), v E Cg:'(X). 

Proposition 5.3. Let A be a Fourier integral operator given by (5.1), and 
let KA be its kernel. Then KA E COO(Rq,), where 

Rt/J = {(x,y), "le E IRN\{o}, tP«x, V, e) ,; a}. 

H a(x, y, e) = a in a conic neighbourhood of the set 

Ct/J = {(x, y, e), tP~(x, y, e) = O}, 

then KA E COO(X X Y). 

Proof. It follows immediately from Theorem 4.7 and Proposition 4.8. 0 

Remark 5.2. Different pairs tPt, at and tP2, a2 may define the same operator 
A of the form (5.1). Moreover, a function a(x,y,e) is not completely determined 
by the operator A, even when the phase function'tP is fixed. 

Let A : Cg:'(X) -+ V'(X) be a Fourier integral operator given by (5.l). We 
shall evaluate the form of ~ and A*. Recall, ~: Cg:'(X) -+ V'(X) such that 

(Au,v) = (u, ~v), u E Cgo(X), v E Cgo(X) 
• 1.e. 

{Au, v} = eit/J(Z,II'()a(x, y, e)u(y)v(x) dx dyde = (u,tAv). 
x Y RN 

We have 
(~v(x»(y) = eit/J(Z,II'()a(x, y, e)v(x) dx de, 

x RN 

for y E Y = X. By the change of the variables x t-+ y and V t-+ x, we obtain 

(5.3) (~v(y»(x) = eit/J(II,Z'()a(y, x, {)v(y) dy cl{. 
Y RN 

Therefore, for x E X 

(5.4) (~v(y»(x) = ei~(Z'II'()a(x, V, e)v(y) dy cl{. 
x RN . 

(The above integrals are oscillatory integrals.) This proves 
'. 

Proposition 5.4. The phase function and the amplitude of ~ are defined 
by ~(x, v, e) = tP(y, x, e) and a(x, y, e) = a(y, x, e)· , 
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The operator A* is determined by (A1.£,v) = (1.£, A*v), A* : C~(X) -+ 1Y(X). 
Therefore ' 

(1.£,tAv) = (A1.£, v) = (A1.£,v) = (1.£,A*v) = (1.£,B), 

for 1.£ E C~(X) and v E C~(X) i.e. 

(5.5) ~v(x) = A*v(x) = e-,</lClI,:t'()a(y, x, e)v(y) dy ~, 
Y RN 

and for y E Y = X 

(5.6) (A*v(x»(y) = e'\OC:t,lI'()b(x, y, e)v(x) dx~. 
x RN 

Proposition 5.5. The phase function and the amplitude of A* are given by 
<p(x, y, e) = 4>(y, X, e) and b(x, y, e) = a(y, X, e)· 

5.2. Fourier integral operator with operator phase function. 
Definition 5.6. Phase function 4>(x, y, e), X E X ,yE Y I X, Y are open in an I 

is an operator phase function if the following holds 

(5. 7) 4>~,e (x, y, e) = (4)1Il>" .• ,4>lIn' 4>(1" .. ,4>(J ~ P for e ~ 0, x E X, Y E Y, 

(5.8) 4>~,e(x, y, e) ~ ° for e ~ 0, x E X, yE Y. 

Proposition 5.7. H (5.7) holds then the operator A : C~(Y) -+ V'(X), 
determined by (5.1), continuously map C~(Y) into COO(X). 

Proof. From (5.7) it follows that 4>(x,y,e), considered as function of (y,e), 
is a phase function (x is a parameter). By Theorem 4.7 there exists an operator L 
(which does not contain 8/ 8x) such that t Le'</l = e'</l. Analogously as in the proof 
of Theorem 4.7 (with operator L instead of M) we obtain 

(A1.£, v) = 

--

e,</lC:t,lI,() a(x, y, e)1.£(y )v(x) dx dy ~ 
x Y RN 

( e,</lC:t,lI,e) Lk(a(x, y, e)1.£(y» dy~) v(x) dx, 
x Y RN 

for 1.£ E C~(Y) and v E C~(X). Therefore, as in Theorem 4.7 

(A1.£(Y»(x) = ei </lC:t,lI,() L~,e(a(x, y, e)1.£(Y» dy~, x E X, 
Y RN .. 

we can prove that A1.£ is a smooth function. 0 

Proposition 5.8. If (5.8) holds, then the operator A : C~(Y) -+ V'(X), 
given by (5.2), can be linearly and continuously extended to A : &'(Y) -+ 1)'(X), 
where the topologies in E' (Y) and V' (X) are weak topologies. 
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Proof. The transpose operator ~ : C~(X) -t V'(Y) of the operator A : 
C~(Y) -t V'(X) is given by 

(~v(x))(y) = ei4>(2l'!I'~)a(x,y,e)v(x)dx~,v E C:f(X). 
X RN 

From (5.8) by the previous theorem it follows ~ : C~(X) -t Coo(Y). Therefore 
t(11) : £,(Y) -t V'(X). Since t(~)IGO'(Y) = A and t(~) : £'(Y) -t V'(X) is a linear 
and continuous mapping~ the assertion of the proposition follows. 0 

From the previous two proposition it follows 

Theorem 5.9. Let A: C~(Y) -t V' (X) be a Fourier integral operator with 
an operator phase function tfJ. Then 

a) A: C~(Y) -t Coo(X), 
b) A can be linearly and continuously extended to A: £'(Y) -t V'(X), 

c) 11: C(f(X) -t Coo(y), 

d) 11 can be linearly and continuously extended to 11 : £'(X) -t V'(Y). 

For the singular support the following estimation holds. 

Theorem 5.10. Let A : £'(Y) -t V'(X) be a Fourier integral operator with 
an operator phase function tfJ. Then 

Sing supp Au C S4> 0 Sing supp u, U E £' (Y), 

where Rq, = ((x,y), tfJdx,y) =j:. 0 for every e E JRN\{O}} and S4> = (X x Y)\Rq,. 

Proof. Let Ul E £'(U), where U is fixed neighbourhood of K = Singsuppu 
such that U = Ul on some neighbourhood of K c U. Then for U2 = Ul - U we 
have SUPPU2 C Y \ K. Since U2 E C(f(Y) and A : C(f(Y) -+ Coo(X), it follows 
AU2 E Coo(X). IT we show that 

(5.9) Sing supp AUl C M = S4> 0 supp Ul, 

it will means that Sing supp Au C Sing supp AUl CM C S4>0U. By letting U -+ K, 
we will have 

Sing supp Au C S4> 0 K = Sq, 0 Sing supp u. 

Let us prove (5.9). Let Ko = SUPPU1, K' C X such that K' x Ko c Rq, (K' c 
X \ M» and let X' x X C R4> be a neighbourhood of K' x Ko. We have 

(Ah, k) = 14>(ahk), 

for hE C(f(X) and k E C(f(X'). By Theorem 4.7 

Sing supp A C Sq,. 

It follows A E Coo(X' x X). Therefore Singsupp AUl eX \ K', which implies the 
theorem. 0 
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A = . L aa(x)Da , 
lal:$m 

where aa(x) E C~(X), X c an. Using the Fourier transform we obtain 

Dau(x) = (211")-n eaei(Z-II)(u(y) dy de. 
R2n 

It implies, 

Au(x) = (211")-n ei(Z-II)(O"A(X,e)u(y)dyde, 
R2n 

where O"A = L:1al:$m aa(x)ea and is called the symbol of the operator A. Since 
O"A(X,e) E sm(x x an), A is a Fourier integral operator. 

Example A solution to the Cauchy problem 

(5.10) 
82 E 8 

c-2 8t2 - AE = 0, E(O, x) = 0, 8t E(O, x) = 6(x), 

E = E(t, x), t E lR, x E an, is given by 

ei(ctl(l+z() _ e-i(ctl(l+z() 
(5.11) (211")-1 E(t, x) = 2ilelc de [osc]. 

Let us prove it. Applying the Fourier transformation on equation (5.10) we obtain 

2 -
_2 8 E I 2 -( ) C 8t2 + el E t, e = 0, 

where E(t,e) = F(E(t,x))(e). Let us fix e. We obtain an ordinary differential 
equation (with respect to the variable t) which solution is E(t, e) = cle-itcl(1 + 
c2eitcl(l. It follows 

-
E(O, x) = ° => E(O, e) = ° => Cl + C2 = ° 

8 -=> FtE(O, e) = 1 = F(6(x)) => -Cl + C2 = l/iclel· 

Therefore (5.11) holds. 

Example 5.3. Pseudodifferential operators. 

If nl = n2 = N = n and X = Y, then a Fourier integral operator with a 
phase function </J(x, y, e) = (x - y)e is called a pseudodifferential operator (iItDO). 

6. Pseudo differential operators 

Pseudodifferential operators generalizes differential and singular integral op­
erators. In this section we shall analyze the basic properties of pseudodifferential 
operators . 



, 

Pseudodifferential operators 137 

6.1. Definition and the properties. Let X be an open set in JRn; then a 
Fourier integral operator A: Ccf(X) -+ V'(X) given by 

(6.1) Au(x) = ei (z-II)(a(x, y, e)u(y) dy de 
x Rft 

, 

is called a pseudodifferential operator, for short ~DO. 

Example 6.1. An example of a pseudodifferential operator which is not a 
differential operator is a singular operator in JRn given by 

A () ( ) L(x, (x - y)/Ix - yl)u( )'d 
= a x u x + v.p. Ix _ yln y y 

= a(x)u(x) + 1im L(x, (~ - y)~~x - yl) u(y) dy, 
&-+0 III-zl~& X - Y 

where a E COO(JRn), L = L(x,w) E coo(JRn x sn-l) (sn-l is a unit sphere in JRn) 
such that 

L(x, w)dw = 0, x E JRn
• 

5,,-1 

With accuracy up to the operator with a smooth kernel, the operator A has 
an amplitude a(x, e) = a(x)+x(e)g(x, y), where X E coo(JRn), X(e) = 1, for lel ~ 1, 

X(e) = 0, for lel ~ 1/2 and 9 = IZ!III" L( x, 1:=:1)· 
Theorem 6.1. Let A: Ccf(X) -+ 'D'(X) be a ~DO, KA be tbe kernel of 

the operator A and let A be tbe diagonal in XxX. Then 

a) KA E COO«X x X)\A). 

b) Operator A defines linear and continuous mappings A: Ccf(X) -+ COO(X), 
A: £'(X) -+ V'(X). Hu E £'(X), tben SingsuppAu C Singsuppu. (Tbis 
property is called the pseudolocaJjty of the operator A.) 

c) The operators;t and A* define linear and continuous mappings 
• 

~: Ccf(X) -+ COO(X), ~: £'(X) -+ 'D'(X)i 

A* : COO(X) -+ COO(X), A*: £'(X) -+ 'D'(X). 

Proof. a) The phase function for a ~DO A is <p(x, y, e) = (x ..... y)e. Therefore 
R", = X x X\A, since <p( = (x-y). By putting X = Y, Proposition 5.3 immediately 
implies KA E COO«X x X)\A). 

b) The following conditions are fulfilled for phase function of the operator A 
• 

<p~.(x, y, e) = (-el' ... , -en, Xl - Yi, . .. , Xn - Yn) # 0, 

<p~.(x,y,e) = (6,··· ,en,XI-YI, ... ,Xn -Yn) #0, 

for e:j:. 0, x,y E X. Therefore A : C~(X) -+ V'(X) is a Fourier integral operator 
with the operator phase function. The assertions a) and c) follow from Theorem 

, 

• 
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5.9. Since S.p = A, where S.p is the set attached to the operator A determined in 
Theorem 5.10. From this theorem it follows that Sing supp Au c A 0 Sing supp u = 
Singsuppu. 

c) Let A : C~(X) -+ V'(X) be a wOO given by (6.1). We shall evaluate 
the forms of ~ : C~(X) -+ V'(X) and A* : C~(X) -+ V'(X). Note that these 
operators are again pseudodifferential operators and the assertion c) follows from 
b) 

From (5.3) it follows 

ei (Z-II)( -() a(y, x, e)v(y) dy dI;., 
X Rn 

for v E C~(X). By changing of variables -e -+ e, we obtain 

• 

for v E C~(X), Le. 

(6.2) ei(Z-II)(ii(x, y, e)v(y) dll dI;., v E C~(X). 
X Rn 

where ii(x, y, e) = a(y, x, -e). From (5.5) it follows 

A*v(x) = (21r)-n ei(Z-II)(a(y,x,e)v(y)dydl;., v E C~(X), 
X Rn 

• l.e. 

(6.3) A*v(x) = (21r)-n ei(z-lI)(b(x, y, e)v(y) dy dI;., v E C~(X), 
X Rn 

where b(x, y, e) = a(y, x, e). 0 

Remark 6.1. Linear differential operators fulfills the condition of locality 
(supp Au c supp u, u E C~(X», which for wOO's in general case do not hold. 

6.2. Algebra of pseudodifferential operators and its symbols. 
6.2.1. Proper pseudo differential operators. 

Definition 6.2. Pseudodifferential operator A : Cr(X) -+ V'(X), X is open 
in IRn, is proper if it is proper as an integral operator. 

For example, linear differential operators (5.10) are proper wOO. 

Theorem 6.3. Let A be a proper W DO. Then, A defines linear and con­
tinuous mapping A : C(f(X) -+ C(f(X) which can be linearly and continually 
continued to mappings 

A: E'(X) -+ E'(X), A: COO(X) -+ COO(X), A: V'(X) -+ V'(X). 
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Proof. By Theorem 6.1 A : C~(X) -+ COO(X) and by Proposition 3.9 
. 

(6.4) supp(Au) c (suppKA ) 0 (suppu), u E C~, 

where KA is the kernel of A. The set on the right-hand side of (6.4) is compact. 
This immediately implies A : C~(X) -+ C~(X). Continuity of the operator 
A : C~(X) -+ C~(X) easily follows. Since (6.2) holds and ~ defines a proper 
wDO, it follows ~ : C~(X) -+ C~(X), and 

t(~) : V/eX) -+ V'(X). 

Since t(~)lc8'" = A, we have that A : C~(X) -+ C~(X) can be linearly and 
continuously extended to a mapping A: V'(X) -+ V'(X). 

By Theorem 6.1, the operator A : C~(X) -+ V'(X) can be linearly and 
continuously continued to mapping A : £'(X) -+ V'(X). Then (6.4) holds for 
u E £'(X), as well. The prooffollows from the fact that C~(X) is dense in £'(X). 
This means that the continuation (6.2) maps £'(X) in £'(X). 0 

, 

Proposition 6.4. Let A be a proper W DO. Then ~ : C~ (X) -+ C~ (X) can 
be linearly and continuously extended to the mappings 

~: £'(X) -+ £'(X), ~: COO(X) -+ COO(X), ~: V'(X) -+ V'(X). 

Proof. The proof is analogous to the proof of the previous theorem because 
of the duality of operators A and ~. 0 

We will prove that the space of pseudodifferential operators is an algebra with 
respect to operation of composition. 

From Theorem 6.3 it follows that the composition of two proper wDO defines 
a linear and continuous operator on everyone of the spaces C~(X), £'(X), COO(X) 
or V'(X). 

Definition 6.S. It is said that a(x, y,~) E S;;;6(X x X x ]Rn) is an amplitude 
with a proper support if the projections . 

11'1 : SUPPz,y a(x, y,~) -+ X, 11'2: SUPPz,y a(x, y,~) -+ X 

are proper for every ~ E an. 
Theorem 6.6. Let 

Au(x) = (211')-n ei(z-y)ea(x, y, ~)u(y) dy de [osc], u E O~(X) 

be a proper pseudodifIerential operator, where a(x,y,~) E S;;;6. Then A can be 
defined by the formula ... 

Au(x) = (211')-n ei(;C-y)eb(x, y, ~)u(y) dy de [osc] , u E C~, 

wbere b(x, y,~) E S;;;6 is an amplitude witb a proper support. 
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Proof. Let the functions K,(x,y) and 'Pi(x,y) be the ones constructed in the 
proof of Theorem 3.10, KA be a kernel of the operator A. It can be easily seen that 

K,(x,y) = 'Pi(x,y) E COO(X x X) 
supp 'Pjnsupp KA#0 

and that supp K,(x, y) is contained in some neighbourhood of supp KA. Let us show 
that 11'1 : supp 1\";( x, y) -+ X is a proper mapping, i.e. that for every compact subset 
K in X the set SUppK,(x,y) n 1I'11(K) is compact. We have 

SUppK,(x,y) n1l'11(K) C supp( l: 'Pj(x,y») n1l'11(K) 
SUPP'PjnSUppKA#O 

c u (supp 'Pi (x, y) n 11'11 (K». 
supp 'Pjnsupp KA#O 

This union is finite, because A is a proper wno, 1I'11(K) nsupp KA is compact and 
a family supp 'Pi is locally finite. Since supp K,(x, y) n 11'11 (K) is a closed subset of 
a finite union of compact sets, it is compact, too. In the same way, it can be shown 
that the mapping 11'2: SUPPK,(X,Y) -+ X is proper. 

We will show that the amplitude b(x,y,~) = I\";(x,y)a(x,y,~) belongs to the 
space of symbols 8;;:6 and that it has a proper support. It has a proper support, 
because sUPPz,yb(x,y,{) C SUppK,(x,y) and the first and second projections of 
SUppK, are proper mappings. From a(x,y,~) E S;;:6 it follows b(x,y,~) E S;;:6' For 
every u E Ccf(X) and v E Ccf(X) . 

(Au(x),v(x» = {KA{X,y),u(y)v(x» = {KA(X,y),K,(x,y)u(y)v(x» 

-- ei(y-z)ea{x, y, ~)K,(x, y)v(x)u(y) dx dy cl{ [osc.]. 

This proves the last part of the assertion. 0 

Let us note that if a(x,y,{) has a proper support, then the integral (6.1) is 
defined for every u E COO(X). More precisely, we have 

Theorem 6.7. A proper pseudodifIerential operator continuously and lin­
early maps COO(X) into COO(X). 

Theorem 6.8. Every pseudodifIerential operator A: Ccf(X) -+1)'(X) is of 
the form A = A1 + A2, where A1 is a proper operator and A2 is a smoothing one. 

Proof. Let A be an arbitrary pseudodifferential operator and let for u E 
Ccf(X) 

Then 
• 

• 

• 

- -- ---- -----

• 
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where I\:(x,y) is smooth and I\:(x,y) = 1 in some neighbourhood of the diagonal A 
such that the both projection 11"1 : supp I\:(x, y) ~ X and 11"2 : supp I\:(x, y) ~ X are 
proper mapping. (The construction of a function I\: is given in the proof of Theorem 
3.10.) 

The operator AI, defined by 

ei(z-y)( I\:(x, y)a(x, y, e)u(y) dy de. 

is proper. The proof is analogous to a part of the proof of Theorem 6.6. The 
function e i(z-y)(l - I\:(x, y)) a(x, y, e) equals zero in some neighbourhood of the 
diagonal and out of the diagonal it is Coo. So the operator A2 defined by 

for u E C~(X) is a smoothing operator by Theorem 6.1. 0 

6.2.2. The symbol of a proper pseudodifferential operator. 

Definition 6.9 Let A be a proper 'lino. The function 0' A (x, e) defined on 
X x Rn, X is open in Rn, by 

(6.5) 

where ee(x) = eiz(, is called a symbol of the pseudodifferential operator A. 

H O'A(X,e) is a symbol of a proper 'linO, then O'A(X,e) E Coo(X x Rn), 
because A is a linear and continuous mapping Coo(X) ~ Coo(X) and e t-t ei(z is 
COO-function with respect to e with values in Coo(X). Let us write u E C~(X) as 

u(y) = (211")-n 
Rn 

The continuity of A and the fact that 

• 

in [(Rn) (where on the left-hand side we have a sequence of integral sums) imply 

(Au(y))(x) = (211")-n 

u E C~(X), i.e. • 

(6.6) (Au(y))(x) = (211")-n 
Rn Rn 

From (6.5) and (6.6) it follows that the symbol O'A(X,e) determines the operator 
A. 
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• 

We shall show in Theorem 7.1 that if A has an amplitude in S;::& and 8 < p, 
then O'A(X,e) E S;::&, so the integral on the left-hand side in (6.6) can be considered 
as the oscillating one. 

II A is an arbitrary qiDO on X, then the function O'A(X, e), which is a symbol 
of a proper qiDO Al on X such that A - Al is smoothing, is called the symbol of 
A. In this case a symbol is not uniquely deterlllinated and two symbols differs by 
a function r(x, e) E S-oo. 

6.2.3. Asymptotic decomposition in S;::& 

Definition 6.10. Let a; (x, e) E S;'J (X x Rn), j = 1,2, ... , lim;~oo m; = -00, 

a(x, e) E Coo(X x Rn). Then a is an asymptotic sum of ak, 

00 

a(x,e) ~ La;(x,e), 
;=1. 

if for every integer r ~ 2 there holds 

r-l 

a(x, e) - L a; (x, e) E S-:'i(X, RN), 
;=1 

where mr = max;~rm;. Note a E S-:'i(X, RN). 

Theorem 6.11. Let a; E S;'J (X, RN), j E N, lim;~oo m; = -00. Tben 
tbere exists a function a(x, e) such tbat 

()() 

a(x, e) ~ La;(x,e). 
;=1 

If tbere exists anotber function a' witb tbe same property 

00 

a'(x, e) ~ La;(x,e), 
;=1 

tben a - a' E S-oo(X x Rn). 

Tbe proof will be given in tbe case p = 1, 8 = O. We follow tbe proof given 
in [11J. First, we sball prove tbe following two lemmas. 

Lemma 6.12. Let K. E Ccf'(JRn), K.(e) = 1 in some neigbbourbood of e = 0 
and K..\(e) = K.(..\e). Tben tbe set {..\-k(l- K.>')}O<>'~l is bounded in S~o(X, Rn) for 
every'k ~ O. 

Proof. Let us prove that the functions 
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are bo:unded independently on oX E (0,1]. Since for K. there holds 

we have 

First, we shall prove it for /3 = O. Let R > 1 be large enough such that K.(e) = 0 for 
lel > Rand K.(e) = 1 for lel < l/R. If 0 < oX ~ 1 and (1-K.>.) '" 0, then lel2: l/AR, 

«1 + le\)oX)-" ~ «l/RoX)oX)-" ~ R" 

and 
loX-"(l- K.>.)I ~ CoR"(l + IW". 

If (-k)p (1 - K.>.) '" 0 for /3 '" (0,0, ... 0), then lel ~ R/ oX. This implies 

«1 + le\)oX)IPI ~ «1 + R/oX)oX)IPI ~ (R+ l)IPI 

and 

o 

Lemma 6.13. Let {F,,} be a sequence ofFtecbet spaces such that Fk+l c F" 
and the topology in Fk+l is stronger than the topology induced by F". For every 
k, let (ai:') be a sequence of elements in F" which converges to 0 as m -+ 00. Then 
there exists a sequence m" such that for every N the series I:,,> N a~· converges 
in FN' -

Proof. Let P1,(1 E N) be a fundamental sequence of seminorms inF", kEN, 
, such that P'" ~ p~H, I E N. By a simple procedure one can substitute a sequence 

with equivalent one such that there holds P1, ~ P1,H' k, I E' N. For example, P1, can 
be substituted by 

sup p~'IF •. ",<" -
Since limm -+oo ai:' = 0, let us chose m" (increase ask increases) such that p~(a~·) ~ 
2-". Then for I < k there holds -

so, for every I 2: 0 the series I::'N p',,(a~·) converges. Since FN is Frechet space 
it folloyvs that E:'N a~· converges in FN. 0 

Proof of Theorem 6.11. One can suppose that a" E slc1'(X x JRn) when k 2: 1. 
This can be achieved by summing elements in the sequences if it is necessary. Let 
ai:' = (l-K.l/m)ak, where K.l/m is defined in the proof of Theorem 4.7. Thesequence 
(1 - K.l/m) converges to zero in SI and ai:' converges to zero in S-"+1 as m -+ 00. 
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Lemma 6.13 implies that one can chose a sequence mk such that for every N :::: 1 
the series E~N a~· converges in S-N+l. Let a = E~o a~·. Then a is a symbol 
and 

00 

a - ~ ak = ~ (a~· - ak) + ~ a~· E S-N+l, 
k<N k<N k=N 

because (a~· - ak) = -K.l/mak E S-oo for every k. So a ~ E ak. Second part of 
the assertion is obvious. 

Theorem 6.14. Let aj E S;::HX x JR.n),limj-+oo mj = -00, a E Coo(XxJR.n ). 

Assume: 
1) For every compact set K c X and for all multi-indices a, (3 there exist 

constants I" = l"(a,{3,K) and C = C(a,{3,K) such that 

(6.7) laea~a(x,{)1 ~ C(l + IW",x E K. 

2) If for every compact set K c X there exists a sequence of real numbers 
1'" = I",(K), I EN, and a sequence of constants C, = C,(K) such that 1'" --+ -00 for 
1 --+ 00 and 

'-I 
(6.8) la(x,{) - ~aj(x,{)1 ~ C,(1+ IW"', x E K. 

j=1 

Then 
00 

a(x, {) ~ ~ aj(x, e). 
j=1 

Proof. First we will prove the following assertion. 
has continuous derivatives f'(t) and f"(t) in [-1,1]. 
SUP_1<t<1 IfW(t)l, j = 0,2. Then - -
(6.9) 

By Lagrange's theorem, 

If'(t) - 1'(0)1 ~ A21tl, t E [-1,1]. 

Because of that, 

Let the function f(t) 
Let us denote Aj = 

If'(t)1 :::: ~lf'(O)I, if A21tl ~ ~lf'(O)I, It I ~ l. 
Let us denote fl = min {2~2If'(0)1, 1}. There holds 

If'(t)1 :::: ~lf'(O)I, t E [-fl, fl] 

and 

2Ao :::: If(fl) - f( -fl)1 :::: 2fl~lf'(0)1. 
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It follows 
11'(0)1 $ 2~/6. = 2~ max{2A2/11'(0)1, I}, 

which implies (6.9). Now by (6.9) we have the estimate needed for the proofs of 
theorem. 

Also, we need the following estimate. Let Kl and K2 be compact sets in Rn 
such that Kl C int K2. Then there exists a constant C > 0 such that for every 
COO-function f in a neighbourhood of K2 

(6.10) (sup E IDa f(x)lf 
ZeKl lal=l 

• 

$ c sup If(x)1 + ( sup If(x)1 + sup E IDa f(x)I). 
ZeK2 ZeK2 ZeK2 lal=2 

Now we give the proof of the assertion in the theorem. Let b ~ L::l aj(x, e) (such 
b exists by Theorem 6.11) and let d(x, e) = a(x, e) - b(x, e). By the assumptions, 
for arbitrary compact set K C X there holds 

laea~d(x,e)1 $ C(l + IW",x E K. 

where C and JL depend on a, (3, K and 

(6.11) 

where Cr = Cr(K). Let us denote d(x,D) = d(x,e + D). Then 

a~~d(x,D)I17=O = ae~d(x,e). 
~ ~ 

By (6.10), for Kl = K x {O}, K2 = K x {lel $ I}, where K is a compact set in X 
~ 

such that K C int K and from (6.11) it follows that for D = 0 there holds 

sup L: laea~d(x,e)l)2 $ C(l + Iw-r[(l + Iw-r + (1 + leD"], 
zeK lal+I.819 

where r is arbitrary, JL = JL(a, (3, K) and C = C(a, (3, K, r). Moreover, for x E K 
and lal + 1{31 $ 1 the function aea~ d(x, €) decreases faster than each power of I€I 
as lel ~ 00. By induction, it follows that dE S-oo(X, Rn). 0 

7. Calculus with symbols 

The simplicity of the calculus with symbols is the central point of the theory 
of 'lino. The majn ideas of their calculus are given in Theorems 7.1 and (7.6) below. 

7.1. Symbol of a proper 'lino. Let fJ < p. This will be a permanent 
assumption in the rest of the notes. 

Theorem 7.1. Let A be a proper 'liDO given by (6.1) and O"A(X,e) be its 
symbo1. Then 

(7.1) 
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where the asymptotic sum is taken over all the multi-indices. 

Remark that 8t D~a(x, y, {)III=:X: E sm-(p-6)lal. 

Proof. We will apply Theorem 6.14. We can assume that the amplitude 
a(x, y, {) is properly supported. Then by (6.5) 
(7.2) 

U A (x, {) = e-i(:X: A(eille ) (x) = (27l")-n a(x, y, {)ei(:X:-l/)" ei (II-:x:)e dyd'19 [osc], 
R2" 

(for fixed x the integration by y is made over a compact set). If K is a compact 
subset of X, then for x E K (7.2) determines the oscillating integral depending on 
the parameter x. Let us change the variables by z = y - x, 1] = {) - {. Then 

(7.3) (27l")nUA (x,{) = a(x,x+z,{+1])e- iZ f/dzd1]. 
R2" 

Expand a(x,x + z,{ + 1]) into the Taylor series at 1]0 = 0 with the powers of 1]. 
Then, 

(7.4) a(x,x+z,e+1])= L: ata(x,x+z,{)1]ajO!+rN(x,x+Z,{,1]), 

where 

(7.5) 

lal5N-l 

N1]a 
TN(X, x + z, e, 1]) = L: , 

o. 
lal=N 

1 

(1- t)N-1ata(x,x + z,e + t1]) dt. 
o 

Let us note that for every { E ]Rn and x E K, a(x, x + z, {) is compactly supported 
with respect to variable z. By the Fourier transform 

(7.6) (27l")-n 8ta(x, x + z, {)1]ae-izf/ dz d1] 
R2" 

= .r-l(.r(i-Ialata;a(x,x + z,{))(1]))(z)lz=o 

= at D~a(x, x + z, e)lz=o. 

This gives 

UA(X,e) = L: ~atD~a(x,y,{)III=:x:+(27l")-n 
lal5N o. 

Integration by parts gives, from (7.3), 

where 11 is a even and nonnegative number. By using 

• 
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the above equality implies 

(1 + 17112)(1'-(1-6)11)/2 d71, 
R" 

where p = max (m - pial + 151.81,0), x E K and v is large enough. Thus, we obta,in 
estimates of the form (6.7). 

Let us estimate the rest of the series. Substitute a and rN {defined by (7.5) 
in (7.3). After the change of the order of integration (first by t, then by z and 71), 
let US note that we have to estimate the integral 

Ra,t{X, e) = (21r)-n e-i%1/71a8ra(X, x + z, e + t71) dz d71, 
R2n 

where lal = N, uniformly over t E (0,1] and x E K. Integration by parts gives 

Ra,t{x, e) = (21r)-n e-iZ1/8r D:a(x, x + z, e + t71) dzd71· 
R2" 

Let 
Ra,t{x,e) = R~,t{x,e) + R~,t{x,e), 

where R~,t{x, e) is the integral over the set {(Z,71), 1711 ~ lel/2} and R~,t(x, e) 
over its complement. (Recall, z belongs to a compact set.) H 1711 ~ lel/2, then 
lel/2 ~ le + t711 ~ 3Iel/2. Since the measure of the domain of the integration of 
R~,t (x, e) with respect to 71 variable is less or equal to Cleln

, then 

IR~,t{x,e)1 ~ C{1 + leI2)(m-(p-6)N+n)/2, 

where C does not depend on e and t. Let us estimate R~,t (x, e). By using 

(1 + 1711 2)-1I/2{1- D;l - ... - D;nt/2e-iZ1/ = e-iz1/, 

where v is even positive integer, let us integrate by parts. Then R~,t{x,e) is a finite 
sum of terms of the form 

Ra,{J,t{x, e) = (21r)-n e-iZ1/{1 + 712)-1I/28r D:+{J a{x, x + z, e + t71) dz d71, 
11/1>1~1/2 

where 1,81 ~ v. Since x and z belong to a compact set for 1711 > lel/2 there holds 

18r D:+{Ja(x, x + z, e + t71) 1 ~ C{1 + 17112)(m-(p-6)N+cSII)/2, 

form-{p-c5)N+c5v ~ 0, i.e.18rD~+{Ja{x,x+z,e+t71)1 ~ Cform-{p-c5)N+c5v < 
o. In both cases C does not depend on e, 71 and t. For large enough v there holds 

IRa,{J,t{x, e)1 ~ C {1 + 17112)(1'-(1-6)11)/2 d71, 
11/1> 1~1/2 ' 

where p = max {m - (p - c5)N, 0). Hp - (1 - c5)v + n + 1 < 0, then 

, 
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where C does not depend on x, e, t if x E K and t E (0,1]. For v large enough we 
have 

IRa,t(x, e)1 ~ C(1 + leI2)(m-(p-6)N+n)/2, x E K, t E (0,1]. 

By Theorem 6.14 the proof follows. Note that the assumption p > 6 is crucial for 
the proof. 0 

Proposition 7.2 Let A be a proper 'liDO, O"A(X,e) its symbol and O"A(X, e) 
a symbol of~. Then, 

Proof. By (6.6) 

~v(x) = (21l")-n ei(Z-tl){O"A(y,-e)v(y)dy~. 

The assertion follows from (7.1). 0 

Analogously, one can prove the following assertion. 

Proposition 7.3. Let A be a proper 'liDO with a symbol O"A(X,e) and A* 
its adjoint operator. If 0";" (x, e) is a symbol of adjoint operator, then 

O";"(x,e) ~ L \8eD~O"A. a. 
a 

Definition 7.4 A dual symbol UA(X,e) for A is given by 

UA(X,e) = O"'A(X,-e) . 

. By using t(~) = A we obtain 

(7.7) 

The following .proposition follows immediately. 

Proposition 7.5. UA(X,e) ~ E(-8daD~O"A(X,e)/a!. 

7.2. Composition of proper 'lino's. 
Theorem 7.6. Let A and B be proper 'liDO's in X Can, O"A(X, e), O"B(X,e) 

their symbols and C = BA. Then C is a proper 'liDO, with the symbol O"BA (x, e) 
which is given by 
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• . (1 8)' Recall D~ = 7-i 8Z . 

Proof. Note, the dual symbol is used for representation (7.7): 

-- .. 
(Au)(e) = 

By (6.6) 

Bu(x) = 
which implies 

Clearly, if O"A E S;::l and O"B E S;::;, then O"BUA E S;:1+m2 and thus the symbol of 
C is in S;::l +m2. Analogously, we have that the symbol of tc =t At B is in S;::; +m2 • 

By Theorem 3.11 it follows that C is proper. 

Let us find the symbol for C. By using Theorem 7.1 and Proposition 7.5 we 
have 

a 

(7.8) 
a 

~ :E ar[O"B(X,e)( -ad.8 D~+.8O"A(X,e)]/a!,8!. 
a,.8 

Leibnitz formula implies 

=:E:E ( :E (-1)1.81,8~6!)[alo"B(x,e)][a;D=+'Yo"A(x,e))]h!. 
'Y " .8+6=" 

We shall use the following identity 

for x = (1, ... ,1), Y = (1, ... , 1). This gives 

:E (-1) 1.81 ~ , = 1, 
10 r ,8.6. ... +o=a 

:E (-1)1.81 ~6' = 
.8+6=a ,8 .. 

0, a i: 0 

1, a = 0 
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and by substituting this in (7.8), the assertion of theorem follows. 0 

Proposition 7.7. Let O"A E S:HX,JRn),O"B E S:i(x,JRn),o =5 fJ < p =5 1 
and let B be a proper operator. Then the operators AB, BA are determined by 
the symbols in S;::J+m2(X, JRn). 

Proof. Let A = Al + R, where A is a proper wDO and R has a kernel 
KR(X, e) E COO (X x X). Then, BR and RB have smooth kernels. Let us prove 
this for BR. Let <p E Cijl. We have 

B(R<p)(x) = (21r)-n ei(z-Y)(R<p)(y)b(x,y,e)dyde 
R2" 

-- ei(Z-Y)( KR(Y, t)b(x, y, e)<p(t) dy de <p(t) dt. 
R" R2" 

Thus the kernel of BR equals 

(_I)r [).rei(z-Y)(KR(y,t)b(x,y,e) dyde. 
R2" Ix - yl2r 

--

Since Ix - YI > d > 0 by taking enough large r, we obtain that the kernel of BR is 
smooth with respect to x and t. The same holds for RB. 0 

7.3. Classical symbols and pseudo differential operators. 
Definition 7.8. A classical symbol is a function a(x, e) E Coo(X x JRn), X is 

open in Rn which has an asymptotic expansion 

00 

(7.10) a(x, e) I!::l L am_;(x, e), 
;=0 

for some complex rn, where am-;(x,e) E Coo(X x (Rn \ {O})) are positively homo­
geneous with respect to e of order m - j, j = 0,1, .... The set of such symbols is 
denoted by csm(x x JRn) and the corresponding pseudo differential operators are 
called classical pseudodifferential operators. am is called the main symbol. 

Note am -; is not smooth for e = 0 and should be cuted off in an appropriate 
way. 

If ak(X,e) is positive homogeneous with respect to e of order k, then 
a(a~ak(x, e) is positive homogeneous with respect to e of order k -Ial. 'Because 
of that, 

CSm(X x JRn) C sRe(m) (X x JRn). 

The following proposition can be easily proved 

.. ---- .. - ----- ---



Pseudodifferential operators 151 

Proposition 7.9. a) H A and B are proper classical pseudodifIerential op­
erators determinated by the symbols in CSm1 and csm2, then BA is a classical 
pseudodifIerential operator with the symbol in csml+m2(X). 

b) HA is a classical operator then ;t and A· are also classical with the symbols 
in the same class. 

7.4. Hypoellipticity and ellipticity. Parametrix. As we already said, 'liDO 
are fov.nded in the development for the theory of elliptic and hypoelliptic operators. 
The construction of a parametrix for a given hypoelliptic operator which is to follow 
is the most important application of the pseudodifferential calculus. Note that in 
the first section we gave the motivation of the whole theory by considering elliptic 
operators. 

Definition 7.10. A function a(x,~) E COO(X x ]Rn), where X is open in ]Rn, 

is hypoelliptic symbol if the following holds. 

a) There exist reals m and mo such that for every compact set K C X there 
exist positive constants R, Cl, C2 such that 

(7.11) 
-

. b) There exist p, a, 0 $ a < p $ 1 such that for every compact set K c X 
there exists a constant R such that for every pair of multi-indices cr, f3 there exists 
a constant Co:,{3,K such that 

(7.12) I(at~ a(x, ~))a-l (x, ~)I $ Co:,{3,KI~I-plo:IHI{3I, I~I ~ R, x E K. 

The class of hypoelliptic symbols is denoted by HS;::rO(X x ]Rn). From 
(7.11) and (7.12) it follows HS;::6m o(X x ]Rn) C S;;:.s(X x ]Rn). 

Definition 7.11. 'liDO A is called hypoelliptic if there exists a proper wDO A1 
with the symbol H S;::ro (X x ]Rn), such that A = A1 + Rlo where R1 is smoothing. 

IT m = mo then a is called elliptic, i. e. A is called elliptic 'liDO . 
• 

Let us note that in the decomposition of a hypoelliptic operator A = A1 + R1, 
where Rl is smoothing and A1 is a proper 'liDO, it follows that its symbol belongs 
to HS;::rO(X x ]Rn). 

Recall, A = 2: lo: l:5m ao:(x)DO: is called elliptic, ifits principal symbol satisfies 

(7.13) am(x,~) = L ao:(x)~O: # 0, (x,~) E X x (]Rn \ {O}). 
lo:l=m 

Example 7.1. Examples of hypoelliptic operators. 

The Heat operator at - 2::=1 a;, is an example of a hypoelliptic and not 
elliptic operator. 

(2) Differential operator D; + y2 D; + >"D%, Re>.. = 0 is hypoelliptic if and 
only if >.. # 2k + 1, k E Z, while 

Dy + iayrD%, Rea # 0, 
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is hypoelliptic if and only if r = 2k, kEN. 

(3) Pseudodifferential operator DII+iayr VDi + D~, Rea =F 0, is hypoelliptic 

if r is even or r is odd and Re a > 0, and the pseudodifferential operator given by 
the symbol P(x, e) = 1 + IxI2111el2p is hypoelliptic for I'/v < 1. 

Remark 7.1. The change of the variables does not preserve the hypoellipticity. 
For example, the change of variables 

Yi = Xi, i = 1, . " , n, T = t + xV2 

in the heat operator, gives a non-hypoelliptic operator. 

Proposition .7.12. For a differential operator A the following two conditions 
are equivalent 

a) A is elliptic. b) The symbol of A is in HS'(':om(X x Rn). 

Proof. The implication b) => a) is obvious. For the another part of the proof 
we note that the symbol of A is 

(7.14) 

IT a) holds, then 

a(x,e) = I: aa(x)ea. 
lal$m 

a(x, e)/am(x, e) = 1 + Ll(X, e) +.:. + Lm(x,e), 

• 

where Lj(x,e) E COO(X x (JRn\{O})) are homogeneous in respect to e of order -j. 
This implies (7.11), while (7.12) follows in the same manner. 0 

Definition Z.13. A classical operator A is called elliptic if its majn symbol 
am(x,e) E csm(x x JRn) satisfies (7.13). 

Proposition 7.12 holds for a classical wDO. More precisely, if a symbol of A 
satisfies (7.11) for m = mo then it satisfies (7.12), too. This means that in the case 
of the symbols of elliptic operators we can omit the condition (7.12) for them. This 
follows from the following proposition. 

Proposition 7.14. Let u(x,e) E HS;::rO(X x JRn). Then 

u-1(x,e) E HS;,,;,-mo(X x JRn) 

for e large enough, lel > eo > O. Further on, for any pair of multi-indices a, fJ E NO, 
(7.15) 8l8~u(x,e)/u(x,e) E S;,:I~IHI(3I, 

for e large enough. 

Proof. One can simply prove (7.15) for lal = IfJl = 1. Let P E ~n. By 
induction with respect to Ipl, it can be shown that 

(7.16) (JP 8(a,(3)u(x, e) = f L 8po+«(3,a)u(x, e) IT 8P' u(x, e) . 
u(x, e) k=O po+ ... +Pk=P u(x, e) 1=1 U(X, e) 
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Now (7.15) follows from (7.16) by induction. 0 

Theorem 7.15. Let A be a proper pseudodifferential operator with a symbol 
in HS;:rO(X x JRn), 6 < p. Then there exists a proper pseudodifferential operator 

B with a symbol in HS;,;,·-mo(X x JRn) such that 

(7.17) BA = 1+ Rt. AB = 1+ R2, 

where Rb R2 are smoothing operators and I is the unity operator. 

H B' is an operator with the same property, then B - B' is a smoothing 
operator. 

Proof. LetO'A be the symbol oftheoperator A. Chose bo(x, e) E HS;,;,·-mo(X 
x JRn) such that bo(x,e) = 0'.:41 (x,e) for large enough e and a proper pseudodif­
ferential operator Bo with a symbol in Hs;,;,·-mo(X x JRn) such that O'Bo - bo E 
S-oo(X x JRn). Let us show that 

, 

BoA = I -Ro, 

where the symbol of Ro is in S;,~p-6)(X X JRn). By Theorem 7.6 it follows that 

O'BoA(X,e) ::::: 1 + :E 8;0'.:41 DC;O'A/a! = 1 + :E 8;0'.:41 DC;O'A/(a!0'.:410'A) 
lal~l lal~l 

for large enough e. Propo~ition 7.14 implies that Ro has the symbol in S;'~P-6). 
Let Co be a proper wDO which satisfies 

00 

(7.18) Co ::::: :E( -l)j m, • I.e. 
j=O 
00 

(7.19) 0'00 ::::: :E( -l)j~. 
j=O 

From (7.18) immediately follows that the operator Co (I +Ro) - I is smoothing, so, 
if we put BI = CoBo we obtain 

(7.20) B 1A= I +R1' 

where R1 is smoothing. It is clear from the construction that the symbol of B1 
belongs to HS;,;,·-mo(X x JRn). Analogously, we obtain that the symbol of the 

operator B2 is in H S;,;,·-mo (X x JRn) for which 
, 

(7.21) 

where R2 is smoothing. 

Let B1 and B2 be a pair of wDO's for which (7.20) and (7.21) hold. We 
can suppose that they are proper operators. By multiplying the right-hand side of 
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(7.20) with B2 (in fact by applying B2) and by using (7.21) we obtain BI - B2 = 
RIB2 - BIR2 and RIB2 - BI~ is smoothing. 0 

Definition 7.16. The operator B satisfying (7.17) is called a parametrix of 
the operator A. 

Note that an elliptic operator A with a symbol belonging to S;:AX x JRn) 
has a parametrix B with a symbol in HS;,r:,-m(X x JRn). 

Proposition 7.17. Let A be a hypoelliptic wDO. Then 

(7.22) Sing supp Au = Sing supp u, u E ['(X). 

If A is also a proper operator, then (7.22) holds for every u E V'(X). 

Proof. The relation Sing supp Au C Sing supp u follows from the pseudolo­
cality of the operator A. Let B be a proper wDO which is a parametrix of the 
operator A. Then from the equation u = B(Au) - Rlu and pseudolocality of the 
operator B it follows that 

Sing supp u C Sing supp Au USing supp RI u. 

Since RIU E COO(X) (and Sing supp RIu = 0) the assertion follows. 0 

This was a global aspect of hypoellipticity of wDO's. Now, we shall give few 
assertions about a local hypoellipticity. 

Definition 7.18. A class of symbols in Hs;:.;.mo(xo, {a) consists of symbols 
in S;:6' which are hypoelliptic at (xo, {a), i.e. which satisfies the conditions of 
Definition 7.10 in the set of the form U x r R ,,, where U is a neighbourhood of the 

point Xo and r R ,,, = {~, I liT - ~I < 1], I{I > R}. 
A wDO A is called hypoelliptic at Xo (locally hypoelliptic at xo) if there 

exists a proper wDO Al with a symbol in HS;::rO(xo, {) for every { E JRn such 
that A = Al + RI, where RI is smoothing in a neighbourhood of Xo. Locally elliptic 
wDO are analogously defined. 

The following assertion can be proved in the same way as in Theorem 7.15. 

Proposition 7.19. Let an operator A be hypoe11iptic at Xo (and proper). 
Then there exists an operator B, hypoelliptic at Xo (and proper) such that 

(7.23) BA = I + RI, AB = 1+ R2, 

where RI, R2 are smoothing operators in a neighbourhood of Xo, and I denotes 
identity operator. If B' is an operator with the same property as B, then B - B' 
is smoothing in a neighbourhood of Xo. 

Let A be a classical elliptic wDO with a symbol a(x, {) such that 

00 

a(x, {) ~ L am_;(x, {), 
;=0 
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where a.n-;(x,~) E Coo(X x (JRn\{o}»,am_;(x,~) is positively Q,omogeneous with 
respect to ~ of order m - j, j E N, and am(x,~) '" 0, x E X, ~ '" o. 

Let B be a parametrix of A given by the symbol b(x, ~). We shall prove that 
b(x,~) has an asymptotic expansion 

• 

00 

b(x,~) ~ :ELm-;(x,~), 
j=O 

where Lm_j(x,~) E Coo(X x (JRn\{O})), b_m-j(x,~) is positively homogeneous 
with respect to ~ of order -m - j, j E N. The formula for composition implies 

a 

(7.24) :E 8;am-k(X,~)D~Lm-j(x,~)/o:! ~ 1. 
a,k,; 

By factoring the expression with respect to the degree of homogeneity we obtajn 
the following system of equations 

(7.25) amLm = 1,amL m-; + :E (8;am-k)(D~Lm-I)/O:! = 0, 
k+l+lal=; 

1<; 
j = 1,2, .... 

The functions b_m-;(x,~) in (7.25) are uniquely determinated and we have to find 
a proper 'ltDO B such that O'B(X,~) - b(x,~) E S-OO(X x JRn). Such B is the 
solution to the system. 

8. Wave front sets and 'ltDO 

The notion of the wave front set was introduced by Hormander [10] and, 
independently, by Sato (he called it singular spectrum). It is a basic notion of 
microlocal analysis. 

Pseudo differential operators do not increase the wave front set and this is 
one of the most important property of this class of oper~tors. For example, if we 
apply the method of parametrix on elliptic operators, then the set of micro local 
singularities will not be changed. 

--
8.1. Sobolev spaces and the wave front set. First we recall some properties 

of Sobolev spaces. 

A distribution I belongs to HB(JRn) if and only if (1- b.)B/2 lE L2(JRn). 

Note that (1 - b.)B/2 is an elliptic 'ltDO of order 8. (Note in this section we 
deal with operators with symbols in SB = S:,o, 8 E JR.) 

Let X be an open set in ]Rn. Then Htoc(X) is the space of distributions 
I E V(X) such that Al E L~oc(X) where A is proper elliptic pseudodifferential 
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operator of order s. Note, I E Lloc(X) if and only if for every cp E Cg'(X), 
Icp E L2(X). 

Proposition 8.1. (1) Let I E 1J'(X). Then I E HtoC<X) if and only if 
AI E Lloc(X) for every proper \.[I DO A of order s. 

(2) A(Htoc(X» c H;o~m(x) for every \.[IDO A of order m. 

Proof. (1) Let A be a proper \.[IDO. Then SI E Lloc since AI = AB-IB/, 
where B is a proper elliptic operator of order s. Thus the assertion follows. 

(2) Since the composition of two proper operators of orders ml and m2 is a 
proper one of order ml + m2, Part 1 implies that A(Htoc) C H;o~m, where A is a 
proper pseudo differential operator of order m. 0 

Note that U --+ Htoc(U) is a sheaf with respect to the restrictions. (For the 
definition of a sheaf we refer to next section) 

Definition 8.2 Let K be a compact subset of X. Define HI< = H;oc(X) n 1J'K 
(where V K denotes the space of distributions with supports in K). 

With the appropriate scalar product, HK(X) is a Hilbert space (H;oc(X) is 
a Frechet space). 

The following assertion is important for the microlocal analysis of distribu-
tions. . 

Theorem 8.3. Let A be a proper elliptic pseudodifferential operator of 
order m on X and lE V'(X). If Allx. E H;oc(X'), then Ilx. E H;o~m(x'), where 
X' C X, X is an open set. 

Proof. Let B be a proper operator in Hs-ml.-m which is a parametrix for 
A (BA = 1+ R, where R is a smoothing operator). We have shown in Proposition 
7.9 that for every I E V'(X), BAI - lE COO(X). Let x E X and 9 = </JAI, where 
</J E Cg'(X), and </J = 1 in a compact neighbourhood of x. Then 9 E H;oc(X) and 
g-Allv = 0, where V = intK. Moreover, (Bg-BAf)lv, (Bg-1)lv E COO(V) and 
since B is of the order -m, by Proposition 8.1, (2) it follows that Bg E H;o~m(x). 
So Ilv E Hs+m(V). This holds for every x E X' and this implies Ilx. E H;o~m(x'). 
o 

Definition 8.4. Let X be open in ]Rn, (xo,eo) E X X (an\{O}) and u E V'(X). 
Then (xo, eo) is not in WF(u) if there exists v E £'(X) such that u = v in a 
neighbourhood of Xo and there exists e > 0 such that for every N > 0 there exists 
eN > 0 such that 

(8.1) 

that is, v(e) rapidly decreases in a conic neighbourhood of eo. In this case it is said 
that u is microlocally regular in (xo, eo). 

The closed conic set WF(u) C X x (an\{O}) (closure in X x an \ {O} of the 
complement of the set of all microlocally regular points) is called the wave front 
set of the distribution u. 
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Theorem 8.5. If (xo,eo) is not in WF(u), then (xo,eo) is not in WF(tptt) 
for every tp E C:'. 

Proof. Let re be an open cone of the form re = {.,., I Tfu - ~ < E} and 
v EE', u = v in a neighbourhood of Xo. Then 

.. -
(cpv)(e) = v(e -1])cj;(1]) d1] + v(e -1])cj;(1]) d1], 

I'IISR I'II>R 

for e E re, where R will be deteImined later. We have 

(1 + le - .,.,I}P(1 + 11]I}-L d1] 
I'II>R 

where we have used the Paley-Wiener theorem for v E E' and tp E c:, (Iv(e)1 :5 

C(1 + IWP, Icj;(e) I :5 (l:\tDL ). This implies 

11jv(e)1 :5 C sup Iv(e -1])1 + CCL(1 + lel)p (1 + 11]l}p-L d1] 
I'IISR I'II>R 

5: CC sup Iv(e -1])1 + CCdl + leI)P Rn+p-L. 
I'IISR 

Put R = lel l / 2 • IT e belongs to a cone re', E' < E, then e -1] Ere for large enough 
e and 11]1 < R. Beside that, le -1]1 ~ lel and Rn+p-L ~ lel(n+p-L)/2. For large 

- -
enough L we obtain that (cpv)(e) rapidly decreases when lel-+ oo,e Ere'. 0 

By this theorem it follows that in Definition 7.10 we can take v = tptt, tp E 
C:'(X), tp = 1 in a neighbourhood of Xo. 

Example 8.1. 1. WF(o(x» = {(O, e), e E an \ {On. 2. Since O(Xl) = 
O(Xl) ® il:R,,-I, where an - l = {x' = (X2, ... , xn)} and il:R,,-l = 1 for x' E an - l , it 
follows that WF(o(xd) = {«O, x'), (ell 0», x' E an -l, el E a \ {On. 

Proposition 8.6. Let 11": X x (JRn\{o}) -+ X be the natural projection and 
let u E V'(X). Then 1I"WF(u) = Sing supp u. 

. 

Proof. IT Xo is not element of Sing suppu, then by taking tp E C:'(X),tp(x) = 
1 in a neighbourhood of xo, and tp(x) = 0 in a neighbourhood of Singsuppu, 

- "-

we obtain that tpu E C:'(X). This implies (cpv) E S(JRn ) and thus Xo is not in 
1I"WF(u). 

Let Xo f/ 1I"WF(u). For every eo E sn-l there exist tpF.o E C:'(X) and a 
conic neighbourhood rF.o of eo such that tpF.o(x) = 1 in a neighbourhood of Xo and 

(tpF.ou}(e) rapidly decreases in rF.o. Since sn-l is compact there exist finitely many 
points 6, ... , eN such that sn-l is covered by r (1 n sn-l , ... , r F.N n sn-l. Thus, 

r(w" ,fF.N cover an\{O}. Then, by putting tp = n~l tp(;, we obtain that (tptt) 
rapidly decreases, and this means tptt E C:'(X), i.e. u E Coo in a neighbourhood 
of Xo. So, Xo is not in Singsuppu. 0 
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Proposition 8.7. Let u E P(X) and (xo, ~o) ~ WF(u). Then there exists a 
classical \If DO A of order 0 such that 0' A = 1 (mod S-oo) in a conic neighbourhood 
of(xo,~o) and Au E C~(X). 

(Recall that a conic neighbourhood of (xo, ~o) is of the form U x rR.eo' where 
U is a neighbourhood of Xo and rR.eo a cone around ~o (cf. Definition 7.18) 

.. ... 
Proof. Let cp E C~(X), cp = 1 around Xo. Then (cpu)({) rapidly decreases in a 

conic neighbourhood of ~o. Let X(e) E coo(lRn),X(t{) = X(~) for t ~ 1, I~I ~ 1 (X is 
homogeneous of order 0 for I~I ~ 1.), X(~) = 1 in some small enough neighbourhood 

of ~o. This means that X(~)(CPU)(~) rapidly decreases, so X(D)(cp(x)u(x» E COO(X). 
But then 1jJ(x)X(D)(cp(x)u(x» E C~(X) if 1jJ(x) E C~(X). We can take 1jJ such 
that 1jJ(x) = 1 in a neighbourhood of Xo. Then A = 1jJ(x)X(D)cp(x) satisfies all 
assertions of the proposition. 0 

Note that the operator A = 1jJ(x)X(D)cp(x) from the previous proposition is 
locally elliptic (see Definition 7.18). 

Theorem 8.8. Letu E 1)'(X) , (xo,~o) E Xx (JRn\{o}) be given as well as the 
classical operator A defined by the principal symbol am (x,~) E C sm (X x JRn). Let 
either u E ['(X) or A be proper. Suppose that am(xo,~o) "10 and Au E COO(X). 
Then (xo,~o) ~ WF(u). 

Proof. By Proposition 7.19 and Section 7.4, we can make the parametrix for 
a classical elliptic operators. So there exists a classical pseudodifferential operator 
B with the symbol in cs-m(x x JRn), such that O'BA = 1(modS-00

). Since 
BAu E COO(X) we can assume that O'A = 1(modS-00

) in a conic neighbourhood 
of (xo,~o). 

Let X(~) = 1 in a neighbourhood of ~o, X(~) E coo(JRn),X(~) is homogeneous 
of zero order with respect to ~ for I~I ~ 1 and let cp(x) E C~(lRn), cp = 1 in a 
neighbourhood of Xo. Let the supports of cp, X be chosen such that 

x(~)cp(x)O' A (x, {) = X(~)cp(x) (mod S-oo). 

Then X(D)cp(x)A - X(D)cp(x) is smoothing operator, and since X(D)cp(x)Au E 
Coo(X), it follows 

, 

(8.2) 

IT we prove that 

(8.3) 

.... ... .... ... 
then it would follow that X(~)(cpu)(~) E S(JRn ), and specially, (cpu)(~) would rapidly 
decrease in a conic neighbourhood of ~o, what we are aimed to prove. 

The implication (8.2) {:: (8.3) follows from the following lemma, which is 
formulated separately because it has a more general meaning. 0 
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Lemma 8.9. Let v E £'(]Rn),X(e) E S;::o, p > O. Then for every N > 0 and 
et E NO there exists Co,N such that 

(8.4) IDOx{D)v{x) I ~ co,Nlxl-N, x ERn, d{x,suppv) ~ 1. 

Proof. We can consider only the case et = 0, because eOX{e) E S;;,~Hol. Also, 
we may assume that v is continuous because every element v E £' (]Rn) is of the 
form v = L:hl~p D"'v.." v.., E C{]Rn). We have 

I 
(8.5) X{D)v{x) = (27r)-n 

Integration by parts gives 

Ix - YI-2N{_~()Nei(z-II)( = ei (Z-II)( 

From (8.5), with d{x,suppv) ~ 1, we have 

By choosing large enough N, such that (_~e)N X(e) E S;,;;-I, one can see that the 
integral in (8.6) converges absolutely and satisfies C(l + X2)-N. 0 

Definition 8.10. Let A be a classical pseudodifferential operator with the 
symbol in csm(x x ]Rn). Then 

char(A) = {(x,e) E X x (Rn\{O}), am(x,e) = O}. 

Theorem 8.8 directly implies the following important (and practical) charac­
terization of the wave front set. 

Theorem 8.11. (1) Let u E £'(X) and A be a classical ~DO with a symbol 
in csm(x x Rn). If Au E COO(X), then WF(u) C char(A). 

(2) Let u E £'(X). Then WF(u) = n char(A), where the intersection is taken 
over all classical operators of the order zero (with the symbols in CSO(X x ]Rn») 
for which Au E COO(X). 

(3) Let u E V'(X). Then WF(u) = n char(A) , where the intersection is taken 
over all proper classical operators of the order zero for which Au E COO{X). 

(4) Let A be a proper ~DO with the symbol in csm(x x ]Rn), U E V', or 
u E £'(X). If am(xo, eo) =F 0 and (xo, eo) ~ WF(Au), then (xo,eo) ~ WF(u). This 
means 

(8.7) WF{u) C char(A) U WF{Au). 

The importance ofthe second assertion is that the definition ofWF{u) makes 
sense if X is a manifold (see Section 9.1). This theorem gives us the estimate of 
the propagation of singularities of a pseudodifferential equation. 
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Theorem 8.12. (Microlocallity of wDO's) Let u E TY, A be a wDO with 
symbol in S;;:6(X x an), 0 ::; 6 < p ::; 1 and let A be proper or u E £/(X). If 
(xo, eo) ~ WF(Au). In other words 

(8.8) WF(Au) C WF(u). 

Proof. The condition (xo,eo) ~ WF(u) is equivalent to the existence of a 
proper classical wDO of order 0 such that Pu E Coo(X) and up = 1(modS-00

) in 
a conic neighbourhood of (xo, eo). Let Q be a proper classical wDO of order zero 
such that qo(xo, eo) # 0 (qO is the main symbol of Q) and uQ E S-oo outside some 
small conic neighbourhood of (xo, eo) an d 

PQ = Q a.nd QP = Q (mod smoothing operators). 

We shall show that QAu E Coo(X) because Up = 1 (mod S-oo) in a conic neigh­
bourhood of (xo, eo) a.nd UQA -UQAP E S-oo in this neighbourhood, and uQ E S-oo 
out of it. We have that QA - QAP is smoothing. So, it is enough to verify that 
QAPu E Coo(X). But this follows immediately, because Pu E Coo(X). The fact 
that (xo, eo) ~ WF(Au) follows from the previous theorem. 0 

From the two previous theorems we have the following theorem. 

Theorem 8.13. If u E £/(X) and A is a classical wDO with a symbol in 
csm(x x an), then 

WF(Au) C WF(u) C WF(Au) U char(A). 

With the assumption that A is proper, the assertion holds for u E V' (X). Specially, 
if the operator A is elliptic, then WF(Au) = WF(u). 

8.2. Microfunctions. In this section we shall present the notion of a micro­
function by following [11]. Microfunctions are the equivalence classes in the space 
of distributions whose tepresentatives are determined only with their singularities. 

First, we shall present some of the basic facts of sheaf theory. 

Let X be a topological space, U be an open set in X. Let {:F(U)}Uopen set inX 
be a family of vector spaces. For U such that V C U there exists a linear mapping 
PVU : :F(U) -+ :F(V) such that :F(U) is a vector space of the functions on U and 

PUU = id and pwv 0 PVU = PWU, 

for W eVe U. 
The family {:F(U),pu,v, U, V c X} is a presheaf. :F(U) is called the set of 

sections. In the sequel we shall consider the case when :F(U) is a subspace of :F(V) 
and if pu,v is a restriction of f E :F(U), then pu,v f = flY is a restriction of f to 
V for V C U. 

Presheaf is a sheaf if the following two conditions are satisfied. 

(i) Let U = U~EA U~ (all sets are open) and f E :F(U). IT for every ~ E A 
flu~ = 0, then flu = O. 
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(ii) Let f>.. E F(U).) and let for every A,p E A, I). = I~ in U). n Uw Then there 
exists I E F(U)'EA U).) such that Ilu>, = I).· 
Let F and Q be presheaves or sheaves on a topological space X. The family 

h = {hu} of linear mappings F(U) -+ Q(U) is a (pre)sheaf homomorphism if the 
following diagram commutes I 

F(U) h
u • Q(U) 

F(V) ---+) Q(V) 
hv 

Let F and Q be presheaves on a topological space X. Then F is a subpresheaf 
of Q if for every open set U there exists associated inclusion iu : F(U) -+ Q(U) 
such that the family i = {iu} is a presheaf homomorphism. In the same way we 
define a subsheaf. 

Let F be a (pre)sheaf on X and x EX. Then Fz = limindzEu F(U) is called 
a stalk in x. An element in Fz is called a section germ or a germ of Fin x. 

For a presheaf F one can construct a sheaf F with the same stalks as in F. 
This sheaf is called the associated sheaf for presheaf F. IT a presheaf F satisfies 
condition (i) for sheaves, then its associated sheaf is simply defined: 

F(U) = limind{u>'l ((s).) Is). E F(U).), s).lu>,nu,. = s~lu>,nu,.}, 

where U). are open subsets of U. 
Now we shall present the definition of a microfunction. 

Let X be an open set in JRn and SX = X X sn-l. Let U be an open set in 
SX and CU be a cone generated by U in X x JRn: 

CU = {(x,Ae)l(x,e) E U,A > O}. 

Let us define 

om(u) = sm(CU)jS-oo(CU) and O(U) = U om(u) = Soo(CU)jS-oo(CU). 
mEN 

The elements of these sets are called classes of pseudodifferential operators (of order 
m) on U. IT there are no misunderstandings, we shall omit the word "class". 

Let us define 
Sing(X) = V' (X)jCoo (X). 

This is a space of singularities on X. The family Sing(X), X c JR, is a sheaf. For 
I E V', the support of I in Sing(X) is Sing supp I in V'. wDO acts as a local 
operator on the space of singularities, which means that it does nod increase the 
singular support of the distribution (pseudolocality). 

Definition 8.14. Let lE V'(X) and (x,e) E X x JRn \ {O}. It is said that I 
is a COO-function in (x, e) if there exists a proper wDO A, elliptic in (x, e), such 
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that Af E Coo(X). Singular spectrum of f, SingSpf, is the closure of the set of 
all points (x,~) in X x an in which f is not Coo. 

Definition 8.15. Let f E V'(X) and U be an open set in SX. We say that 
f E Coo(U) if SingSp f nU = 0. The microfunction defined by f in U is a class of 
f modulo the space Coo(U). I 

By Section 8.2, one can see that the notions of WF and Sing Sp are equivalent, 
so in the sequel we shall use only the notion of the wave front set instead of singular 
spectrum. ' 

We shall define the sheaf of the microfunctions in one dimension. 

Recall, '[)' (X), X c a is a sheaf of the distributions and SO = {-I, I} is the 
unit circle in a. 

We say that u E V'(X) is microanalytical in (x, 1) (resp. (x, -1», x E X if 
there exists a neighbourhood U of x and v E e', u = v on U such that for every 
NE N there exists a constant CN such that 

1.r(v}(~)1 < CN(I + e)-N/2, ~ > 0 (resp. ~ < 0). 

The point (x, ~o) (where ~o = 1 or -1) is in WF u if and only if it is not microana­
lytical in (x, ~o). 

Let us define a subsheaf Coo* ofthe sheaves V'(X) x {-I} EBV'(X) x {I} in 
the following way. Definition 8.16. Let 

Coo* = {f E V'(X)j WF(u) n X x {-I} = 0} 

EB {J E V'(X}j WF(u} nX x {I} = 0}. 

The associated sheaf for a presheaf V' (X) x {-I} EB V' (X) x {I} / Coo* is denoted 
by C and it is called the sheaf of microfunctions. 

Intuitively, f E V'(X} defines a germ in (x,~o) (eo = ±I) modulo germs of 
any Crz,eo)-function which are microlocal in (x, ~o). 

The support of a microfunction is a wave froni set of a distribution which 
defines it. 

9. Change of variables 

. Let (y,"1) -+ (x,~), (y,"1) E V, (x,e) E U, be a diffeomorphism where U 
and V are conic regions in an x aN and anI x aN, respectively, x = x(y, 77), 
e = ~(y, 77), where x(y, 77) is positively homogeneous of order 0 and e(y, 77} positively 
homogeneous of order 1 with respect to 77. Let b(Y,77} = a(x(y, 77}, e(y, 77» . 

Theorem 9.1. Let a(x, e} E S;::6(U). Assume that one of conditions 
a) p + 5 = 1; b) p + 5 ~ 1 and x = x(y}; c) x = x(y}, e = e("1}; 

holds. Then b E S;::6 (V). 

Let us consider the oscillating integral 

ei9(z,e)a(x,e}u(x}dxcLe [osc] = (A(x},u(x», 
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where 
A(x) = eiq,(z,() a(x, {) de [osc] 

and where we use the same notions as in the Section 5. 

A phase function l/J( x, {) is called regular if d( al/J / a{j ), j = 1,... , N, is a 
linearly independent set in Cq" i. e. if the range of the matrix (l/J((l/J(z)Nx(N+n) 
equals to N. . 

(We shall use the notation 

N al/J n al/J 
d(al/J/a{j) = L: a{ a{. dele + L: ax ae. dxle, 

1e=1 le J 1e=1 le J 

and let us remind that Cq, = ((x,{), l/J(x,{) = O} and Rq, = X \ C.) 
Let a E S;::.s(X x ]RN) and a = 0 in a conic neighbourhood of Cq,. Then 

A E COO(1Rq,) and one can simply prove that A E COO(X). 
The following lemma is interesting in its own. It is called Hadamard's lemma. 

Lemma 9.2. Let l/J1(X,{), ... ,l/JIe(x,{) be in COO(U) and let them be posi­
tively homogeneous of order 0 with respect to {. Let dl/J1, .. : , dl/J1e be linearly in­
dependent on the set C = ((x,{) E UIl/Jj(x,{) = 0, j = 1, ... ,k} and a E S;::.s(U), 
ale = 0 and p + 6 = 1. Then there exists aj(x,{) E ~t.s(U), j = 1, ... ,k such 
that 

le 

(9.1) a = L: ajl/Jj. 
j=1 

If a(x, {) has a zero of infinite order on C, then the same holds for all aj(x, {) on 
C as well. 

Theorem 9.3. Let l/J be a regular phase function, a E,S;::.s(X x ]RN) and let 
one of the following conditions hold:· 

1) p > 6 and p + 6 = 1, 2) P > 6 and l/J is linear with respect to {. 

Then: a) If a has a zero of infinite order in Cq" then A(x) E COO(X). 

b) If a = 0 in Cq" then there exists b E S;:'i(p-.s)(X x ]RN) such that 

1q,(au) = 141(00) for every u E Cff(X). 

Proof. Suppose that 1) holds. If ale = 0, by previous lemma, we can write 

N 

(9.2) a = L:ajl/Jj,aj E s;;;t.s(U), 
j=1 

where l/Jj = al/J/a{j. By using the fact that l/Jjeiq, = -i 8~i eiq, and integrating by 
parts, we obtajn 

• 
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Since :~; E S;::t.s-P(U), we have proved the assertion a). This implies that if a has 
an infinite order zero in CiP' then b can be chosen such that it has the same property. 
Thus, we can transfer the assertion a) to the case a(x, e) E s;,f (X x aN), where 
M is arbitrary large. But, then the integral 

A(x) = eiiP(Z'()a(x,e) £le 
RN 

absolutely uniformly converges with respect to x, as well as all the integrals which 
ca.n be obtained from it by differentiating the integrand with respect to x of order 
up to I(M), where I(M) --t 00 as M --t 00, which implies the smoothness of A(x). 
o 

Let '" : X --t Xl (X and Xl are open), x = ",(t) , x E Xl C an, t E X c an 
be a diffeomorphism. Then the induced mapping, the pull back, ",* : COO(Xt} --t 

COO(X) is defined by ("'*t/J)(t) = (t/J 0 "')(t) = t/J(",(t». . 
Let A be a 'liDO on X. We define Al : COO(Xl ) --t COO(Xl) by the diagram 

COO (X) 

~·l 
COO (Xl) 

where "'I = ",-1. Then 

Alu = (A(u 0 ",)(x» 0 "'11 i.e. 

AlU(X) = (211") ei(~l(Z)-P)(a("'l(X),p,e)u(",(p»dp£le. 
R2 .. 

If we change the variables by p = "'I (y), then 

(9.3) AlU(X) = (211") ei(~l(Z)-~l(U»(a("'l(x)''''l(y),e)u(Y)la'''lldY£le, 
R2.. ay 

where ap/ay = a",l/8y and la"'l/ayl is Jacobian. 
This means that Al is a Fourier integral opera.tor with the phase function 

l/J(x,y,e) = ("'1 (x) - "'1 (y»e· . 

Theorem 9.4. With the above notation, Al is a pseudodifIerential operator 
for 1 - p $ J < p. 

This will be a special case of the following theorem. 

Theorem 9.5. Let <p be a phase function on X x X x an such that 
1) l/J(x,y,e) is linear with respect to e. 
2) l/J(x,y, e) = 0 if and only if x = y. 

Let A be a Fourier integral operator 

(9.4) Au(x) = eiiP(z,u,fJ)a(x,y,fJ)u(y)dyd8, 
R2 .. 

• 

/ 
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where a E S;;:6 and 1 - P $ 0 < p. Then A is a pseudo differential operator with an 
amplitude in S;;:6' 

We need the following lemma for the proof. 

Lemma 9.6. Let assumptions 1) and 2) of Tbeorem 9.5 bold. Tben tbere 
exists a neigbbourbood X of tbe diagonal ~ and a Coo mapping 1/J : X -+ Gl (n, JR) 
(regular matrices of order n on JR) such tbat: 

a) 4>(x, y, 1/J(x, y)e) = «x - y), e}, (x, Y) E X2. 

b) det1/J(x,x) .det4>~(x,y,e)I3I=z = 1. 

Proof. By 1), 
n 

4>(x,y,O) = ~4>j(x,y)Oj. 
j=l 

Now, by 2) we have 4>j(x,x) = 0 and if 4>j(x,y) = 0 for j = 1, ... ,n, then x = y. 
Note, 

(4)~,4>~) = 4>~.(J = (t :4> OJ, •.• ,t :4> OJ,4>l,''' ,4>n). 
o 1 xl 0 1 Xn 
]= ]= 

By differentiating the expression 4>(x, x, 8) = 0 with respect to x, it follows 

(9.5) 

4>~(x,y,8)lz=31 + 4>~(x,y,8h'=31 = 0, 

4>~ (x, x, 8) = -4>~ (x, x, 8). 

• I.e. 

From 4>8(x,x,O) = 0 and 4>~.31.(J(x,y,8)lz=31 ~ 0 it follows 4>~(x,y,8)lz=31 ~ O. IT 
this is not true, then (9.5) implies 4>~(x,y,8)lz=1I = 0, i. e. 4>~.31.(J(x,y,8)lz=1I = 0, 
which gives a contradiction. This means that there exists k E {l, ... ,n} such that 
",n 8<Pi 8 J. 0 L.Jj=l 8z. jlz=1I r ,so 

(9.6) 

By Hadamard's lemma (Lemma 9.2), for close enough x and y we have 

n 

4>;(x,y) = ~4>kj(X,Y)(Xk -Yk), 
k=l 

. 

where 4>kj E Coo (X'), X' is some neighbourhood of the diagonal in X x X. We also 
have 

(9.7) ,/.. o( ) _ 84>j(x,y) I 
'l'k] x, X - 8 . Xk Z=II 

Denote by 4>(x,y) the matrix (4)kj(X,y)). From (9.6) and (9.7) it follows that there 
exists a neighbourhood 0 of the diagonal in X x X such that det 4>(x, y) ~ 0 for 
(x, y) E O. Let 

(9.8) 1/J(x, y) = 4>(x, y)-l (the inverse of 4» 

, 

/ 
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Since 
n 

ljJ(x,y,8) = L ljJkj(x,y)8j (Xk - y,,:) = «x - y),ljJ(x,y)8), 
j,k=l 

by putting ljJ(x,y)8 = ~ we obtain a), while b) follows from (9.7) and (9.8). 0 

Proof of Theorem 9.5. We assume that a(x,y,8) equals 0 for (x,y) E X x 
X \ 0', where 0' C 0 and 0' is a neighbourhood of /}.. By putting 8 = ljJ(x,y)-l~ 
in (9.4) we obtain 

From Theorem 9.1 it follows that al(x,y,~) = a(x,y,tP(x,y)~) is in S;::6(X x X x 
an) . 

9.1. Pseudodifferential operators on Coo-manifolds. We will give the 
definition of pseudodifferential operators on a manifold, but before that we shall 
recall the definitions of the theory of generalized functions on a manifold. Let us 
remind that Hausdorff topological space M is locally Euclidean of dimension n if 
every point in M has a neighbourhood which is homeomorphic to an open subset 
of an. 

IT tp is a homomorphism of an open set U c M on an open subset of an, 
tp is called the coordinate mapping and (U, tp) is called the coordinate system or 
coordinate section. Recall, a differentiable structure :F of the class Ck, k E [1,00], 
on a locally Euclidean space M is a collection of coordinate systems {(Ua , tpa), £lE 
A} which satisfies: . 

(i)] UaEA Ua = M. 

(il) tpa 0 tppl is of the class Ck in tp{3(Ua n U{3) for every a,{3 E A. 

(iii) The collection :F is maximal with respect to (ii) which means that if (U, tp) is 
a coordinate system such that tp 0 tp;;l and tpa 0 tp-l are of the class Ck for 
every a E A, then (U, tp) E :F. 

IT :Fo = {(Ua , tpa), a E A} is an arbitrary collection of coordinate systems 
satisfying (i) and (ii), then there exists a unique differentiable structure:F contain­
ing :Fo. :Fo is called the atlas of a manifold M. 

, 

In the sequel we shall consider only COO-manifolds. Let M and N be coo_ 
manifolds. 

Let 0 C M be open. Then F: 0 -t a is a COO-function on 0, (f E Coo(O» 
if f 0 tp-ll<p(uno) is a COO-function for every coordinate section (U,tp). 

A mapping tP : M -t N is of the class Coo if for every two coordinate sections 
(U, tp) on M and (Ul , tpt) on N, tpl 0 tP 0 tp-ll<p(u) is a COO-function. 

The important construction in the analysis on manifolds is the partition of 
unity. Let M be a manifold and U = {Ua , a E A} be a cover of M. Then there 

, 
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exists a Coo partition of unity {CPi, i E N} corresponding to the cover U such that 
supp CPi is compact for every i E N and supp CPi C U at for some a EA. 

H v E C~(u) (where U = cp(U», then we define 

U= 
v 0 cP, 

o , 
in U, 
otherwise. 

The definition is the same if v E Ck(U) or v E V(U). We shall use the 
notation U = v 0 cp. 

Let U E Ck(M) and Uk = U 0 cp;1, where (Uk,CPk) is an arbitrary coordinate 
section. There holds: 

(a) U = Uk 0 CPk = Uk' 0 CPk' on Uk n Uk', 
(b) Uk = Uk' 0 (CPk' 0 cp;1), which is denoted by (CPk' 0 cp;1)*Uk' = Uk. 

Conversely, if (b) holds for arbitrary sections (Uk,CPk) and (Uk',CPk'), then 
there exists a unique function U E Ck(M) satisfying (a). 

Definition 9.7. Let:F = {(Uk, CPk), k E A} be a differentiable structure of a 
manifold M. H there exists a distribution Uk in V'(CPk(Uk» for every coordinate 
section (Uk,tpk) and if / 

(c) Uk = Uk' 0 (tpk' 0 tp;1) on tpk(Uk n Uk'), 
then {Uk, k E A} is a distribution in M. We shall denote it by U E V'(M), and 
that is in fact the notation for the family {Uk, k E A}. We shall use the notation 

-1 Uk = U 0 CPk . 

This definition generalizes the definition of a function in Ck(M). The proof 
of the next theorem is omitted. 

Theorem 9.8. Let :F = {(Uk, tpk), k E Aa} be an atlas for M. If {Uk, k E 
Aa} is a family of distributions in V'(CPk(Uk» satisfying (c) for every k,k' in AQ , 

Then there exist one and only one distribution U E V'(M) such that 

U 0 tp;1 = Uk for every k E Aa. 

There appears a natural question: Why one can not 'define the distribu­
tion on a manifold M as a continuous linear function on C~(M)? The reason is 
that there does not exist an invariant procedure for the definition of the integral 
J jl/J, j E C(M), l/J E CCf'(M) such that j can be identified with a continuous linear 
functional. 

Let U be a continuous linear functional on C~(M). For every (Uk,CPk), by 

Uk(l/J) = u(l/J 0 tpk), l/J E C~(Uk) 

is defined an element in V'(tpk(Uk». But {Uk, k E A} does not satisfy condition 
(c). 

Let l/J E C~(tpk(Uk n Uk'», Then 

(Uk,l/J) = (U,l/JOtpk) = (U,l/J 0 CPk otp;,t 0cpk') = (Uk',l/JOCPk ocp;.1). 

, 
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By the change of variables: t = CPk ° cp;,l(x) we obtain 

(uk(t),cfo(t)) = (uk,(x),cfo0cpk ° cp;,l (x» = (Uk'(CPk' ocp;l(t»,cfo(t)1
8

CPk' o;:;l(X) I), ' 
• l.e. 

(9.9) 

This is similar to condition (c), but now we have an additional multiplication by 
Jacoby's determinant which equals 18cpk ° cp;,l(x)/8tl. 

A family {Uk' k E A} of elements in 1)'(CPk(Uk)) satisfying (9.9) is called a 
distributional density. 

In the same way we define a Ck-density by (9.9). 

IT a is a strictly positive Coo-density on M, and U E 1)'(M), then au is the 
distributional density, and the mapping u ~ au is a bijection of the space of the 
distributions to the space of distributional densities. 

Let U be a distributional density and x = cp(y). There holds 

(9.10) (cp*U(x),t/J(x» = (u(y),cp*t/J(y» = (u(y),t/J(cp(y))) / 

= (U(cp-l (x)), 1 Jlt/J(x)) , 

where IJI is a Jacoby's determinant. This formula will be useful for the definition 
of a pseudodifferential operator on a manifold which acts on distributions with 
compact supports. 

Let A be a linear operator, A : C8"(M) ~ COO (M), where M is an n­
dimensional COO-manifold. Let (U, cp) be a coordinate section of the manifolds. 
Then the commutative diagram 

C8"(U) A ) Coo(U) 

~·T T ~. 
C8"CU) ---+) COO CU) 

Al 

uniquely defines the operator Al. 

Definition 9.9. A: C8P(M) ~ Coo(M) is a wOO on M if for every coordinate 
section the operator Al defined above, is a wOO on Ul. 

By using (9.10) and the analogous procedure as in the case of ordinary wOO's 
and like in the previous definition we have that A is a wOO on a manifold if Al is 
a wOO on U, where Al is defined by the following commutative diagram 

['(U) 

~;lT 
['(U) 

A ) 1)'(U) 

1~· 
----+) 1)'(U) 

Al 
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Theorem 9.5 ensures that a q,DO on an open set X C IRn can be considered as q,DO 
on manifold X. Theorem 9.1 shows that S;;:t5(T* M) is well defined for I-p 5 d < p. 

Part 11. COLOMBEAU GENERALIZED FUNCTIONS AND q,DO 

In this part we present the basic concept of the pseudodifferential calculus in 
the frame of Colombeau's generalized functions. It is developed in [16), [17), [18) 
, [12) as well as by Oberguggenberger [14). 

10. Basic notions 

We recall in this section the notation and notions in Colombeau's theory. 

Ao(lRn) denotes the set of the functions </J in C8"(lRn) such that JR" </J(t) dt = 
1, Aq(lRn) = {</J E .40, JRn ti</J(t) dt = 0, 0 < lil 5 q}, q E N, where t i = ti1 

••• t~. 

Obviously, if </J E Aq, q E No, then for every e: > 0, </Je(x) = e:-n</J(x/e:), 
x E IRn, belongs to Aq. 

IT </J E .40, then it's support number d(</J) is defined by 

d(</J) = sup{lxl, </J(x) :I O}. 

In the sequel we assume that </J in .40 has the support number equals one, 
d(</J) = 1, i.e. supp</J C B(O, 1). 

Denote by &[0) the set of the functions R: .40 x 0 --? C, (</J, x) ..... R(</J, x), 
which are in Coo(O) for every fixed </J. Note that for any I E Coo(O), the mapping 
(</J,x) ..... I(x), (</J,x) E .40 x 0, defines an element in &[0) which does not""'depend 
on </J. 

The space of functions R : .40 --? C (resp.lR) is denoted by &o(C) (resp. 
&0 (IR». It is an algebra and it is subalgebra of &[0) in the sense of natural identi­
fication of R E &0(C) (resp. &o(IR», R: (</J,x) ..... C(</J) E C (resp. IR). 

A function R E &[0) is called moderate if for every K cc 0 and 0: E No 
there exists N E No such that, for every </J E AN, there exist 1] > 0 and C > 0 such 

• 

that 
180<R(</Je,x)1 5 Ce:-N, x E K, 0 < e: < 1]. 

The set of all moderate elements is denoted by &M[O). 

The set of all moderate elements in &0(C) (resp. &0(1R», denoted by &OM(C) 
(resp. &OM(IR», consists of elements RE &0(C) (resp. &0(1R» which satisfy: There 
exists N E No such that for every </J E AN there exist 1] > 0 and C > 0 such that 

IR(</Je)1 < Ce:-N, 0 < e: < 1]. 

Clearly &M[O) and &OM(C) (resp. &OM(IR» are associative subalgebras of &[0) 
and &0(C) (resp. eo(IR». 

, 
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Denote by r the set of sequences {aq } of positive numbers which strictly 
increase to infinity. 

An element RE CM[O] is called a null element if for every K cc 0 and every 
Cl! E Ni) there exist N E No and {aq } E r such that for every q ~ N and every 
t/J E Aq there exists '1 > 0 and 0 > 0 such that 

\8''' R(t/JE' x)1 $ Oeoq
-

N
, x E K, 0 < e < '1. 

The space of null elements is denoted by N[O]. 
The space of null elements of to(C) (resp. to(JR)) denoted by No(C) (resp. 

No(JR)) consists of all the elements R E COM(C) (resp. tOM(1R)) with the following 
property: There exist N E No and {aq } E r such that for every q ~ N and every 
t/J E Aq there exists '1 > 0 and 0 > 0 such that . 

IR(t/JE)1 $ Oeoq
-

N
, 0 < e < '1. 

Clearly, N[O] and No (C) (resp. No(JR)) are ideals of CM [0] and COM(C) (resp. 
COM(JR)). 

The spaces of generalized functions on 0, g(O), generalized complex numbers 
C and generalized real nnmbers it are defined by 

g(O) = cM[O]fN[O], C = cOM(C)/No(C), it = cOM(JR)/No(JR). 

o I--t g(O) is a sheaf. This implies the natural definition of the support, SUPPg g. 

Note that C and it are not fields and C = it + iR. Because of that, from now 
on, we shall use the symbols COM = COM(C) and No = No(C). 

The classical complex numbers are embedded in C by -
C 3 z I--t R(t/J) = z, t/J E Aa. 

Let 9 E V'. 
4>(y) = t/J( -y). 

Then Cd(g) E g is given by the representative 9 * ~E' where 
• 

Ct is the set of all elements G E C with the following property: For every 
f3 E Ni) there exist N E N, a E JR and 'Y > 0 such that for every t/J E AN there exist 
o > 0 and '1 > 0 such that 

Iafi'G(t/JE,X)1 $ 0(1 + Ixl)'Yeo
, for e < '1, x E JRn

• 

Nt is the set of elements G E E:t. with the property: For every f3 E Ni) there 
exist 'Y > 0, N E N and 9 E r such that for every t/J E Aq, q ~ N, there exist 0 > 0 
and '1 > 0 such that 

Iafi'G(t/JE,X)1 $ 0(1 + IxIFeg(q)-N,fore < '1, x E JRn
• 

It is an ideal of Ct. 
Colombeau's space of tempered generalized functions is defined by gt = 

Ct/Nt. 
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It is said that G E g (G E gt) is equal to H E g (H E gt) in generalized 
distribution sense, G = H(g.d.) (in generalized tempered distribution sense, G = 
H(g.t.d.», if for every ,p E V (,p E S) , 

(G - H, 'p) = 0 in C. 

A E C is associated to eEC, A ~ c, if there exists N E N such that 
lime-+o AI/I.e = c for every t/J E AN. 

G E g is associated to H E g, G ~ H, if for every ,p E 1) there exists N E N 
such that for every t/J E AN 

The definition of t-association is obtained if one takes ,p E S instead of ,p E 1) 

above. 

For the microlocal analysis of Colombeau's generalized functions we shall 
define a subalgebra goo(n) by following Oberguggenberger [13]. 

goo(n) is the set of all G E g(n) which have representatives G(t/J, x) E £M[n] 
with the property: For every K cc n there is N E N such that for every et E No, 
there is M E No such that for every t/J E AN there are C > 0 and '1 > 0 such that 

that 

sup IG(a)(t/Je,x)1 ~ Ce-N , 0 < e <.'1. 
zeK 

One can prove that goo(n) is a subalgebra of g(f!). 

Proposition 10.1. 1. goo (n) n V' (n) = Coo (n) ((13]). 

2. goo(n), n c !Rn is a sheaf. 
• 

3. G E g(n) is goo in n l C n if it is goo at every pOint ofn l . 

The last assertion means: For every x E nl there are open sets U and V such 

x E U, 0' cc V, V cc nl 

and a function ,p E C8"(V), ,p == 1 on 0', such that ,pG E goo(n l ). 

Definition 10.2. Let G E g(n). The complement of the largest open set of n 
in which G is goo is .called the singular support of G, SingsuPPg G. 

Recall, it is said that G is goo in n l C n if Glnl E goo(n l ). 

The set Sing SUPPg G, G E g(n) is defined to be the complement of the largest 
open set n' C n such that Gin. = O. 

From Proposition 10.1 we have that for distributions 

Sing supp / = Sing SUPPg Cd /, / E V' (n). 

Denote by gc(n) the set of all elements in g(n) which have compact supports. 
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IT G E 9c(0), then it belongs to 9c(lR.~) by defining 

G(tP,x) = 0, tP E.40, x E IRn\supPgG 

(and by using the sheaf property of 9 (IRn ) ). \ , 

For every,pl and ,p2 in Ccf (IRn), where ,pl and ,p2 equals one on corresponding 
neighborhoods of suppgG, 

determine the same element in 9t(lRn). They are equal in 9(lRn). 

Thus the mapping M : 9c(lRn) -+ 9t(lRn), symbolically written by 

is linear, multiplicative and injective, which will enable us to consider 9c(lRn) as a 
subspace of 9t(lRn). • 

IT G E 9t(lRn), then Glw E 9(w) is defined by a representative G(tP€, ·)1101, 
where G(tP€,·) is a representative of G. 

IT f E S' (IRn) then Cdt f denotes the corresponding element in 9t (IRn) defined 
by 

(f * ~)(x) + G(tP,x), where G(tP,x) E M[lRn]. 

Let G E 9t(lRn) and w be an open set. IT Glw determines an element in 
9°O(w), then we say that it is 9~ in w, where we use this notation to emphasize 
that the generalized function in consideration is from 9t(lRn). 

Let G E 9(0) and if Glw E 9°O(w) where w is a bounded open set in O. Then 
M(ltG), where It E Ccf(lRn) is equal to 1 on W, is 9~ in w. 

(Recall M(ltG) = Itl(X)(It(X)G(tP,x) +N[O]) + M [lRn].) 

Thus the singular support of G E 9t (IRn) is the singular support of G consid­
ered as an element of 9(lRn). We define the subalgebra 9~(lRn) as follows. 

9~(lRn) is the set of all U E 9t(lRn) which have a representative G(tP,x) E 
tt[lRn] with the property: There is N E N such that for every et E N~ there is 
M E No such that for every tP E AM there are C > 0 and 1'/ > 0 such that 

IG(a) (tP, x)1 ::; C(1 + Ixl)M e-N , 0 < e < 1'/ • 
• 

Note, if G E 9~(lRn) then G E 9°O(JRn). 

Let ~ E Ccf (IRn) such that ~ = 1 in some neighborhood of zero. Then 
~€(x) = ~(Xe), e E (0,1), is called a unit net. 

Let ~€ be a unit net, B a measurable subset of IRn and G E 9t. Then we 
define 

t,,, 
G(x)dx E C by its representative G(tP€,x)~€(x)dx E EO,M. 

B B 
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IT B = JRn then the symbol t,p is used. One can easily prove that G(<!JE,·) ENt. 
implies iB G(<!JE, X)/JE(X) dx E Co. Thus the definition of the integral in Qt makes 
sense. , 

-

11. Pseudo differential operators -

We will give the simplest definitions of an amplitude of type p = 1, u = O. 

Definition 11.1. The set of amplitudes Sr; = Sr;(JRn x JRn x JRn x (0, 1)), m E 
JR, is the set of functions a(x, y,~, e), smooth in (x, y,~) E (JRn)3 for everye E (0,1], 
continuous in e E (0,1] for every (x,y,~) E (JRn)3, such that there exists,N E No 
such that for every a,{j,'Y E Ni: there exists C = C(a,{j,'Y) > 0 such that 

(11.1) 

IT there exists N E No such that for every m E JR and every a, (j, 'Y E Ni: there 
exists C = C(a,{j,'Y, m) > 0 such that (11.1) holds, then a(x,y,~,e) E S;oo. 

The following set of amplitudes is suitable for the calculus in the frame of 
Colombeau's generalized functions. 

Definition 11.2. The set of amplitudes S;: = S;:(JRn x JRn x ]Rn X (0,1)), 
m E JR, is the set of functions a with the same regularity properties as in Definition 
11.1 but which satisfies the following: 

There exists N E No such that for every a, (j, 'Y E No there exist C = 
C(a,{j,'Y) and k = k(a,{j,'Y) such that 

18l8~8Ja(x,y,~,e)1 ~ e~ (1 + Ixnk(l + IWm- 1crl , (x,y,~) E (JRn)3,e E (0,1]. 

Elements of S;,.OO are appropriately defined. In this case constants C and k depend 
also on m. 

We will use Definition 11.1 in Section 11 and later in order to avoid a lot of 
technical difficulties which may appear. 

Definition 11.3. Let a E S;:, r E No and /JIE (~), /J2E (y) be unit nets from 
CIf(JRr) and CIf(~), respectively. Let GE Qt(JRn). 

We define Ap2r and AP1P2 on Qt(JRn) by 

( ) A G(<!J ) - 1 ei(x-!l,() (1 _ D. )[(iml+n)/21+r 
11.2 I-'2r E, X - (21l")n R2n (1 + 1~12)[(Iml+n)/21+r !I 

X (a(x,y,~,e)/J2E(y)G(<!JE,y)dycLe, (<!J,x) E Aa x JR 

where [(Iml + n)/2] is the integer part of (Iml+ n)/2, and by 

(11.3) AI-'11-'2G(<!JE' x) 
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Note, if m < -n then we take r = ° in (11.2) and 

AI'2G(cPe, x) = AI'2G(cPe, x) 
1 -- (211')n 

Theorem 11.4. 1. AI'2r and AI'11'2 are linear mappings from ~ft(JRn) to 
~ft (JRn). 

2. For every I'le(e),1'2e(y),r and G E Qt(JRn), AI'2rG and AI'1P2G are equal 
in (g.t.d.) sense. 

3. For every I'le(e),P1e(e),1'2e(Y),P2e(Y) and G. E Qt (JRn), AI'112G and 
Aii1ii2G are equal in (g.t.d.) sense. 

Proof. The proof of 1 is obvious. Note that (11.3) is equal to 

A G(cP ) - 1 ei(z-tl,() (1 A )[(lml+n)/21+r 
1'11'2 e, X - (211")n R2n (1 + leI2)«iml+n)/21+r - tI 

/ 

X (a(x, y, e, e)l'le(e)1'2e(y)G(cPe, y» dy de. 
Since the proof of 3 is typical for the calculus we will collect here the equalities 

and the estimations which will be used in the sequel. 

There holds 

(1 - Az)-ei(z-tl,() = (1 + le I)B ei(z-tl,() , 

(1- At)8(I- Az)Pei(z-tl,() .( _ t) 
-'--...,..,--" .. ..:..,..-.:::-:-:-....,.....;=-:-=__ = e' z tI ... 

(I+ly21)8(I+le2I)p , 
(11.5) 

(1 - Az)Bei(z-tl.() = (1 + A
tI

)8ei(Z-tl,(). 

A unit net I'e(e), e E (0,11, where I'(e) = 1, lel ~ A, I'(e) = 0, lel ~ B > A, 
satisfies the following estimation. Let Cl E Ni). Since 

laarl'e(e)1 = lelarlaarl'(ee)l, A ~ leel ~ B 

it follows 

(11.6) 

IT I'e and Pe are unit n~!s determined by different functions 1'1 and 1'2 then, by the 
above notation, . 

(11. 7) Il'e(e) - Pe (e)1 = 0, for lel ~ min~, A} and lel ~ max~, B} . 

Now, we will give the proof of 3. Let"" E S(JRn) and 1= fR(AI'11'2G(cPe,x)­
Aii1ii2G(cPe, x»",,(x) dx. By (11.5), for enough large 8 and p, we have 

1= ei(z-tl.()· 1 (1- A()B(I- Az)P 
Ra.. (1 + IYI2)B 

x ag:i~~~) + G(cPe, y)(l'le (e)1'2e (1l) -P1e(e)P2e(y» ""(x) dx dy dz. 
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Note that the differentiation with respect to y is changed by differentiation with 
respect to x. By using the identity, 

we have that I is smaller than the linear combination of factors of the form 

R3n (1 + ~YI2).la:af (~~' ,~i;;p 1'laHpIE(e) - illE(e))1 
x Ip2E(y)I'IG(<PE,y)I'lah,p(x)1 dxdydz 

, -

1 laqar aCx,y,e) I lat - (t)1 
Ra (1 + lyI2)- z e (1 + lel2)p . eP1E

" 

x Ip2E(Y) - il2E(y)I·IG(<PE, y)I'lah,p(x)1 dx dy dz, 

where Iql, Ihl $ 2p, Irl, It I $ 2s. The properties of a(x, y, e, c) imply that for suitable 
constants 

la:af (~~',~i;;p 1'laHpIE(e) - illE(e))1 $ 

C(l + Ix!)"(l + leI2)-p+m-- $ C1cP+B-m(1 + Ix!)". 

since the left side is equal to 0 for lel <const/s. Note that 

C 
IG(<PE' Y)P2E(y)1 dy $ c No (1 + ly!)PO P2E(y) dy $ Cc-No-po-n. 

Rn Rn 

By choosing enough large p and s, this implies that for every d > 0 the members 
of the form (11.8) are o(cd), c -+ O. 

To prove that the members of the form (11.8) are o(cd), c -+ 0, for every 
d> 0, we have to estimate the factor 

1 

which is different from zero if Iyl > co~st, and to take sufficiently large s. 

This proves 3. The proof of 2 is almost the same. 0 

The relation g.~d. is the relation of equivalence in ~ft(JRn). So, the mappings 
Ap2r and A p1P2 are equal if they are considered as the mappings from gt(JRn) into 
gt (JRn) / g.~d .. 

Definition 11.5. The mappings Ap2r and Ap1P2 are the representatives of the 
• mappmg 

A: gt(JRn) -+ gt(,4!n)l g.~d. 

which is called the pseudodifferential operator which corresponds to a E S:;. 
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, 

Proposition 11.6. If a E S;"OO, then for every J.'le(e}, J.'2e(y} and rE No the 
operators Ap2rG(<Pe, x} and Ap1P2 G(<Pe, x} are in g~(JRn}. 

Proof. Let r = O. We will prove that 

is in gro(JRn}. Other parts of the proposition may be proved in a similar way by 
using (11.2). 

Let a E Ni:. Then 

laQ (Ap2 G(<Pe,x»1 = • 

I (2!}n 
, 

By using 

la~a(x,y,e,c}1 ~ Cm,Qc-N (1 + Ixl)k(1 + lel)m, x,y,e E JRn
, c E (0,1], 

which holds for enough large -m (where N does not depend on m and a), 

IG(<Pe,y»1 ~ Cc-NI (1 + lyl)Nl, yE JRn, c E (0,'1), <P E AN 

and 

we obtajn: 

IT N2 = N + NI + n, then for every a E N~ there is MEN such that for 
every <P E AM there are C > 0 and '1 > 0 such that 

Wl:(Ap2 G(<Pe,x»1 ~ Cc-N2 (1 + Ixl)}M, 0 < c < '1. 0 

IT an amplitude a E S;: does not depend on c, i.e. a = a(x, y, e}, then it 
determines a convenient pseudodifferential operator which will be denoted by A: 

It can be extended on S' (Rn) to be linear and continuous mapping from S' (JRn) 
into itself. 

In fact, 

where ii(x, y, e) = a(y, x, e) is continuous and linear: S(JRn) -t S(JRn} and A = 
t( tAl is continuous and linear: S'(JRn) -t S'(JRn). 

- -_. . .. - -- .-.. --
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We will compare A and A but before that we need the following definition 
and proposition. 

Definition 11.7. IT a E S;; and G E Qc (R.n), then AG = A(MG). Let 
G(tPE' x), (tPE, x) E Ao x R.n, be a representative of G and K. E Ccf(R.n), K. == 1 on 
suPPgG. Then, 

K.{x )G( tPE' x), x E R.n , tP E Ao, 
is a representative of MG E Qt{lRn). AG = A(MG) is defined by 2 in Theorem 
11.4 

" 

AI'1l'2(MG)(tPE'x) = (211")-n. ei (Z-lI,e>a(x,y,e,e)J.LIE(e)K.(y)G(tPE,Y) dy d{. 
R2n 

From the next proposition it follows that this definition does not depend on K.. 

Proposition 11.8. H K.l,'K.2 E COO are equal to 1 on SUPPg G then 

in Qt(R.n). 

The following proposition also can be proved. 

Proposition 11.9. Let a E S;; be independent on e and let f E S'(R.n). 

Then A(Cdt f) = Cdt(Af) in Qt(R.n)/ g.;:d .. 

12. Pseudolocal property and the microlocalization 

Denote Q~ (0) = Qoo (O)nQc(O). Clearly, if G E Q~ (0) then MG E Q~ (R.n). 
In the sequel we will consider Qc(O) and Q~(O) as subspaces of Qt{R.n). 

Without the proof we give the following theorem. 

Theorem 12.1. Let a E S;; and G E Q~{R.n). Then, AG E Q~(R.n)f g.;:d .. 
More precisely, for every J.LIE(e), J.L2E{y) and rENo, AI'2rG(tPE' x) and A'HI'2G(tPE' x) 
are in Q~(R.n) and they are equal in (g.t.d.) sense . 

• 

Definition 12.2. Let G E Qt(R.n) and A be a pSElUdodifferential operator. It 
is said that AG is regular at x E R.n if there exists an open set w :3 x such that for 
every unit nets J.LIE, J.L2E and rENo, 

AI'1l'2(G)lw and AI'2r (G)lw belong to QOO(w). 

The singular support of AG, Sing suppgAG, is the complement of a set of points in 
which AG is regular. IT x (resp. any point of w) does not belong to SingsuPPg AG, 

then it is said that AG is Q~ / g.::d. in x (resp. in w). 

Proposition 12.3. Let G E Qc(R.n), a E S;;. Then, 

SingsupPgAG c SingsuPPgG. 
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More precisely, for every /J1e (~), /J2e (y) and r E No, 

SingsuPPg AI'2crG C SingsuPPg G, 

. SingsuPPg AI'lcl'2cG C SingsuPPg G. 

Proof. Let G be goo in a neighborhood w of Xo. We shall show that AG = 
A(MG) is in gr' / g.~d. in some open set W1 3 xo, such that Lilt CC w. 

Let 11:1 E C~(w) such that 11:1 == 1 on Lilt and let 11:2 E C~(w) such that 11:2 == 1 
on K1 = sUPP 11:1 . 

. For small enough e, we have 

1I:1(x)Ap1P2G(4>e,x) = 
1 

As earlier we have that 11 is gr' in Rn. So we have to prove the same for h. 
Let kEN. Then 

By using (11.3) and Leibniz's rule one can prove that 

16~(a(x, y,~,e)/J1e(~»1 $ ~~ (1 + IxW· (1 + Iwm- 2nk 

-
$ e

CNk (1 + ICI)m-2nk, (: E Rn E .. y,.., X SUPPII:1, 

-where Ck and Ck are suitable constants. By taking large enough k we can apply the 
same procedure as in the proof of Proposition 11.9. This implies that 12 E gr'(Rn). 
o 

The notion of the wave front for Colombeau's generalized functions has been 
introduced by Scarpalezos [18] as a natural generalization of the wave front for 
distributions. 

Definition 12.4. A tempered generalized function G is called goo-rapidly 
decreasing if it has a representative G(4)e,x) with the following property. There 
exists N E N such that for every a E Nl: and pEN there is no E N such that for 
every 4> E Ana there are C > 0 and J > 0 such that 

IDQ G(4)e,x)1 $ Ce-N (1 + IxI2)-p/2, X ERn. 
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Clearly, if G E goo(Rn) n gc(Rn), then MG is goo-rapidly decreasing. IT 
G E g(O) and cp E Ccf(O), then we will denote M(cpG) simply by cpG. 

Let cp E Ccf(Rn) and G(t/1e,·) be a representative of G. We define :F(cpG) E 
gt (Rn) by a representative I 

(12.1) 

where:F denotes the Fourier transfoImation in LI(Rn). One can prove easily that 
this definition makes sense. Also, the following proposition is simple. 

Proposition 12.5. If representative (12.1) has the properties given in Defi­
nition 12.4, then cpG E g~. 

line. 

(12.2) 

We denote by r a convex open cone in Rn which does not contain a straight 

Let (xo, e) EO x (Rn \ {O}). The following functions will be used. 

(a) cp E Ccf(O), cp = 1 in a neighbourhood of Xo; 

supptP c r, tP is positive-homogeneous 
, 

of degree zero in r and tP = 1 in a neighbourhood of eo., 
I 

Definition 12.6. It is said that G E g(Rn) is goo-rapidly decreasing in a cone 
r iffor every eo E r there is tP with the properties in (12.2)(b) such that tPG is 
goo-rapidly decreasing. 

The cone Eg(G) is the set of all1J E Rn \ {O} for which does not exist tP with 
the properties in (12.2)(b) such that tPG is goo-rapidly decreasing . 

. 

Definition 12.7. It is said that G E g(O) is microlocally regular in an open 
conic set 'Y COx Rn (conic in the second variable) if for every (xo, eo) E 0 x (Rn \ 
{O}) there exist an open neighborhood 0 0 of xo, a conic neighborhood ro of eo, 
and functions cp and tP with the properties in (12.2) (with 0 0 and ro instead 0 and 
r) such that tP(e):Ft(cpG)(e) is goo-rapidly decreasing. The wave front of G E g 
denoted by WF 9 G, is the complement of the union of all conic open sets 'Y where 
G is microlocally regular. 

By using functions cp and tP satisfying (12.2) and a unit net Pe we define 
operator tP(D)pcp on gt(lRn) by G -+ tP(D)p(cpG), where 

Clearly tP(D)pcp(·) maps gt(Rn) into itself and it defines a pseudodifferential oper­
ator. Because of (11.2), (11.3), (11.4) and the estimate 

IOOtP(e) I ~ Calel-a, lel > R, 

one can prove that tP(D)Pl (cpG) and tP(D)P2(cpG) are equal in (g.t.d.) sense for 
every unit nets Pie and P2e. The amplitude of tP(D)cp is a(x, y, e, e) = tP(e)cp(y)· 

-
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Proposition 12.8. A point (XO, ~O) f/. WF 9 G, G E g (0), if and only if there 
exist smooth functions <p, tjJ with the properties in (12.2) and a unit net JLe such 
that tjJ(D)p (<pG) E g~. ; 

The proofs of the following propositions are similar to the classical one in 
distribution theory and because of that they are omitted. 

Proposition 12.9 If h E CO'(JRn) and G E g(JRn), then WFg(hG) C 
WFg(G). 

This proposition implies 

Corollary 12.10. WFgG = ((x,~), ~ E ~gz(G) = nh~g(hG)}, where the 
intersection is taken over all h E CO'. 

-

Denote T*O = 0 x JRn and 11' : T*O -t 0 the first projection. 

Proposition 12.11. 11' WF 9 G = Sing SUPPg G 

Proposition 12.12. Let f E 1)'(0). Then WF f = WFg Cdf. 

For the propagation of singularities of a pseudodifferential operator we need 
the following definition. 

\ 
Definition 12.13. WFg AG, G E gt, is the complement of the set of points 

(xo, ~o) E 0 x (JRn \ {O}) such that for every unit nets JLlE, JL2e and rENo, 

Ap1P2 (G)lw and Ap2r(G)lw 

are microlocally regular at (xo, eo). 
-

Proposition 12.14. Let G E gc(O) and A be a pseudodifferential operator. 
Then 

WFgAG C WFgG. \. 

13. Composition of pseudodifferential operators 

The results of the sections which are to follow are proved in [12]. We shell 
present only the definitions and assertions without proofs. 

First, we define properly supported pseudodifferential operators. 

Let a E Sr: and hE CO'(JR) such that h(t) = 1, It I ~ to, h(t) = 0, It I > tl > 
to. We decompose a representative AP1P2 of A as follows: 

Ap1P2G(<I>e,x) = Ap1P2 G(<I>e , x) + Ap1P2 G(<I>e , x), G E gt(JRn), 

where 

Ap1P2 G(<I>e,X) = 
1 

(211')n 
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and AI'11'2 has (1 - h(lx - yl)) instead of h(lx - yl) in the double integral. 

Let (~,E) be arbitrary, but fixed. Then the function 

(x,y) ~ h(lx - YDa(x,y,~,E) 
/ 

is properly supported which means that the inverses for the first and second projec­
tion of a compact set in JRn intersect the support of this function over the compact 
sets. 

One can easily prove that h(lx - yl)a(x,y,~,E) E S,:. 
Definition 13.1. Pseudodifferential operator corresponding to a E S': satis­

fying the property that for every (~,E) E JRn x (0,1], 

(JRn )2 3 (x,y) ~ a(x,y,e,E), 

is properly supported, is called a properly supported pseudodifferential operator. 

Pseudodifferential operator which maps Qc(JRn) into Q~(R.n)/ g~d is called 
the smoothing pseudodifferential operator. 

As in Proposition 11.6 one can prove 

Proposition 13.2. AI'11'2 : Qc(JRn) --+ Q~(JRn). 

So, for every pseudodifferential operator 

there exists a properly supported pseudo differential operator 

A : Qt (JRn) --+ Qt (JRn) / g~d 

such that A - A is a smoothing pseudo differential operator .. 
• 

.I 

, 

Remark The extension of a properly supported pseudodifferential operator 
on Q(JRn) may be done as follows. Let A be properly supported.with the properly 
supported amplitude a E S': and let {lti' i E N} be a partition of unity with 
elements in C~ (JRn ). 

Let G E Q(JRn). Put 

AG(4)E' x) = :EA(ltiG)(4>E'X). 
iEN 

• 

Since /tiG E Qc(lRn ), any member in the sum is well defined. 

One can prove easily that 

Al'l 1'2 G(4)E , x) E £M[JRn] 

for every unit nets J.'iE and J.'2E' and that for different unit nets the corresponding 
elements are equal in (g.t.d.) sense. 

-
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Let a E S':' bE S,:' detelmine operators A and B by representatives Ap1P2 
and Bi'Ii'2' where J.'le,J-'2e, file and fi2e are unit nets. Put 

(Ap1P2 0 Bi'Ii'2)G = Ap1P2 «Bi'Ii'2)G), G E gt(]Rn). 

The following proposition shows that the composition of properly supported 
pseudodifferential operators AB defined by a representative given above is well 
defined and it can be proved by a direct calculation. 

Proposition 13.3. Let a E S;. For every eight unit nets J.'le(e), f.i2e(Y), 
Ple(e), fi2e(Y), J.'3e(e), J.'4e(Y), P3e(e), P4e(Y) and G E gt(]Rn,) 

Ap1P2 (Bihi'2 G) and Ap3P" (Bi'3i'" G) 

are equal in (g.t.d.) sense in gt(]Rn). 

From now on we shall assume that amplitudes are defined by Definition 11.1. 
• 

Properly supported amplitudes will be indicated by a. By A is denoted the 
corresponding pseudodifferential operator. 

. , - . . 
Theorem 13.4 Let a E s;, b E s; . Then the composition of A and B is 

represented by 

(13.1) 

where 

(13.2) k(X,y,e,E) = 
1 

(211")n 

\ 

i(fI-Z (-'7) ( C )b( ) - () d d e . a X,z, .. ,E z,Y,17,E f.i2e 17 z 17, 
R2 .. 

x,y,z,e,17 E ]Rn, E E (0,1]0), (1]0 = 1]0(</1». 

Moreover, k(X,y,e,E) E s;:+m' and it is pr;operly supported. 

14. Calculus with symbols. Hypoelliptic operator 

Definition 14.1. By S:; = sm(]Rn x ]Rn X [0,1» is denoted the subspace of 
S;(]Rn x]Rn x]Rn X [0,1» consisting of amplitudes a(X,e,E) independent ofy for 
which (11.1) holds. By S;goo is denoted the set of elements from S;oo which do 
not depend on y. Elements of S:; are called the symbols of degree m. 

--
As before, it can be proved that every a E S:; defines a pseudodifferential 

operator A: gt(]Rn) -t gt(]Rn)/ g.~d .. 

Definition 14.2 A fOlmal symbol is a sequence of symbols a; E S:;;, j E No, 
such that m; -t -00 strictly, and N; ::; N < 00 (N; are exponents of E for ail. It 
is denoted by 

00 

Ea;(X,e,E). 
;=0 
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AB in standard theory one can make the construction of the true symbol: 

Proposition 14.3. There exists a E S:;o such that for every jo E No, 

• 
" Smio a - L..J ai E .g • 

i<io 

It is deteJ.llIinated uniquely modulo S;goo . 

Theorem 14.4. For every amplitude a(x,y,e,e) E Sr;' there exists the 
symbol a(x,e,e) E S:; which determinates the same pseudodifferential operator 

A : gt (Rn) -+ gt (Rn) / g.~d. modulo the smoothing pseudodiflerential operator A. 
Thus, 

determines a E S:;. 
For example, 

\ 

is the symbol for t/J(D)cp. 

Theorem 14.5. Let A and B be pseudodiflerential operators with the sym-, .. 
bols a E S:; and b E S:; and let A and B be the corresponding properly supported 
operators. The symbol of the properly supported operator AB is given by 

(-i)lal . L ,ota(x,e,e)a:b(x,e,e). 
et. 

aEN~ 

We are going to give the microlocal analysis of solutions of a pseudodifferential 
equation. For this we need the next definition. 

Definition 14.6. A pseudodifferential operator A in 0 is smoothing in (xo, eo) 
E 0 x (JRn \ {O}) if there exist cp E Ccf(O), cp = 1 in a neighborhood of Xo, and a 
convex open cone r, a neighborhood of eo, such that the symbol a(x,e,e) of A has 
the following property: 

There is N > 0 such that for every et, {J E N8 and M E No there is Ca,P,M ~ 0 
such that 

18:afcp(x)a(x,e,e)1 $ Ca ,p,Me-N (1 + lW-M, X E 0, e ErR, lel > R. 

A pseudodifferential operator A in 0 is said to be smoothing in a conic open subset 
'Y of 0 x (Rn \ {O}) if it is smoothing in every point of 'Y. 

The complement in 0 x (Rn \ {O}) of the union of all conic open sets in which 
A is regularizing is called the microsu~port of A and it is denoted by p. SUPPg A. 

- . - - ------ -- - --- - ---- - ------ - -- ---- --- -- ----- - - -------- ---- --- - --- ------ -,_. ---------- "- - - -- -- --- --- -- -' ... ----~----------- --------------._-----.--- .,- ----- - ----------
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Proposition 14.7. Let G E ge(n) and (xo,€o) E n x (]RA \ {a}). Then 
(xo, {a) f/. WF 9 G if and only if there is a conic open neighborhood '1 of(xo, {a) in nx 
(IRA \ {a}) such that B IJ11J2 G E green) (BlJlrG E green») for any pseudodifIerential 
operator B in n whose microsupport is contained in '1. 

Theorem 14.8. Let A be a pseudodifIerential operator which is smoothing 
in a conic open set '1 ofn x (]RA \ {o}). If the wave front ofG E ge(O) is contained 
in '1' C'Y, then SingsuPPg A(G) is empty. . 

The previous two propositions simply imply the following important assertion. 

Proposition 14.9. Let A be a properly supported pseudodifIerential opera­
tor in n and G E g(n). Then 

WFg(AG) C (WFgG)nJ.'supPgA. 

Definition 14.10. A proper pseudodifferenti~ operator P with a symbol 
[vex, {, e)] is called hypoelliptic if the following holds: 

(1) There exists N E I'll such that for every compact set K C IRA there exist 
{o > 0 and M > 0 such that for every t/J E AN there exist C > 0 and '1 > 0 such 
that 

(14.1) C-1(1 + lW-MeN :51P(x,{,e)1 :5 C(I+ I{DMe-N , 

for x E K, I{I ~ {a, e < '1. 
(2) There exists N E I'll such that for every compact set K C IRA there exists 

{o > 0 such that for every t/J E AN there exist Ca,p > 0 and '1 > 0 such that 
, 

I DeD~P(X,{,e) I I I 
(14.2) p(x, {, e) :5 Ca ,p(1 + I{I)- a , X E K, I{I ~ {a, e < '1. 

Without a proof we give 

Theorem 14.11. (i) Let P be a proper pseudodifIerential operator with 
symbol p(X,{,e) whi(:b, satisfies Definition 14.6. Then the following holds: There 
exists N E I'll such that for every compact set K C IRA there exists {o > 0 such that 
for every t/J E AN there exist C~,p > 0 and '1 > 0 such that . 

I DeD~p(x,{,e)-ll I I 
(14.3) p(x, {, e)-l :5 Ca ,p(1 + I{D- a , X E K, I{I ~ {a, e < '1. ' 

(ll) For every hypoelliptic pseudodifIerential operator P there exists a proper 
pseudodifIerential operator Q such that PQ - I E 8-00

, and QP - I E 8-00
• 

, 

Proposition 14.12. Let P be a hypoelliptic pseudodifIerential operator. 
Then 

for every G E g. 
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Pseudodifferential operator P is called elliptic with a classical amplitude if 
its symbol p( x, e, c) satisfies the following inequality 

• 

(14.4) 

instead of (14.1). One can prove that (14.4) implies (14.2) and that means that 
there exist a parametrix for such pseudodifferential operators, too. 

Pseudodifferential operator is caned elliptic if 

holds instead of (14.1). As in the previous case, one can prove that then (14.5) 
implies (14.2), and this implies the existence of the parametrix for A. 

- -~ - ~-- ---- ----- -- ~- - - ---- ---
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