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Part 1. CLASSICAL THEORY

The aim of lecture notes is to present the basic facts of the theory of pseudo-
differential operators and to give sufficiently enough motivations for further study
of this very important theory. Also, in the notes authors develop the theory of
pseudodifferential operators within Colombeau’s new generalized functions.

Pseudodifferential operators are generalization of differential operators. They
form the minimal algebra of operators in which each elliptic operator has the inverse
up to a smoothing operator. Thus, the roots of the theory of pseudodifferential
operators are in the theory of elliptic operators. This theory is used for microlocal
analysis of equations, the hypoellipticity for example. In the second part we show
this for the (hypo)elliptic pseudodifferential equations with coefficients in the space
of Colombeau’s generalized functions.

Part I of the notes was written when the first two authors had studied the
classical theory of pseudodifferential operators, as a part of their doctoral studies,
under the coordination of the third author, who prepared a seminar on that topic at
the Institute of Mathematics of Novi Sad University during 1988/89 and 1990/91.
The authors documented their work, writing down an extensive paper (in Serbian),
proving the theorems, explaining in details various examples etc. Some parts of
this unpublished material constitute these notes. The main references for Part I
are monographs [10], {19] and [20].

Part Il is devoted to the pseudodifferential calculus within Colombeau’s space
od generalized functions, G. The idea was established by the authors during the
seminar on Colombeau’s theory which took place in 1983/1990. The third author
made a coherent theory on pseudodifferential operators in Colombeau’s sense of
new generalized functions [16], during his stay in Japan at the Tokyo University in
the winter of 1992/1993. |

It was not an easy job to present so large theory on around sixty pages,
the number which was predicted by the editor. Because of that our exposition
is of fragmented character in some parts. We think that the reader can find in
the notes enough information for further study of pseudodifferential and Fourier

integral operators.

We assume that the reader is familiar with the basic notions of functional
analysis, distribution theory and the theory of partial differential equations. For
further study we refer to [10], [11], [15], {19] [20].
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1. Introduction

If K is a compact subset of an open set {1, ! C R, and ¢ is C* function,
then

I¢lla,x = sup [8°¢(z)l.
18)<a
zeK

Denote by D, x the Banach space of C'° functions ¢ on {2 such that supp¢ C K
and ||@||e,x < co. The projective limit of D, x, as ||a|| = o0, is denoted by Dk.
The Schwartz’s space of test functions D() is defined as the inductive limit of
spaces Dg as K CC {2 and the union of K’s exhaust . We will use the notation

& = D(f). (The notation K CC R or K CC 2 means that K is compact in R
or C.) The strong dual of the spaces D(f2) and D’'(?) is called the Schwartz space
of distributions. The space of distributions with compact supports is denoted by
E£(Q)'. 1t is the strong dual of the space smooth functions on Q with the uniform
convergence of all the derivatives on compact subsets.

Schwartz’s space of rapidly decreasing functions is defined by
§ =S(R") = {u € C®°(R"), (Va, B € Ng) (3c € R) (sup |z*(8°u)(2)]| < ¢)}-

Its strong dual is the space of tempered distributions &”.
The Fourier transformation of a function u € L! is defined by

Fu)©) =) = [ e*tu(a)ds, £ R,

and the inverse transformation by

Fl W)@ = @m™ | e*u(z)ds, (€ R™

If u is supported by a compact set, then the Fourier-Laplace transformation
is defined as above with £ substituted by ¢ € C".

The Fourier transformation is an isomorphism of S (resp. &') onto the same
space.

The Sobolev space H’ (R™), s € R consists of tempered dlstnbutmns f which
Fourier transform f satisfies the following condition

(1+ €%/ f € L3(R™).

We shall give Palley-Wiener theorem which will be used often in this work.

“Let K be a convex compact subset of R" and let H be its characteristic
function. If u is a distribution of order N supported by K, then for its Fourier—
Laplace transformation satisfies

(1.1) [a(¢)| < CA+ [N mA, ¢ eCn.
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Every entire function on C* which satisfies ( 1.1) is a Fourier-Laplace trans-
formation of a distribution with the support contained in K.

If u e C§°(K), then for every N € N
(1.2) (O] < On(1 + (¢ ~NeHUmO, ¢ecn.

Conversely, if (1.2) holds for an entire function and for every N, then it is a Fourier—
Laplace transformation of some function v € C§°(K).

2. Elliptic operators with constant coefficients

- As a motivation for the theory of pseudodifferential operators we give the
construction of a parametrix for elliptic operators.

2.1. Parametrix of elliptic operator with constant coefficients. Let us
consider the following equation in &’

(2.1) P(D)‘Uv = z CaDau - f:

la|<m

where f € £ is given D = (D4, Da, ... ,D,), Dj = —/ 13‘25, ca €C, laj <m. If
a solution exists, then

P(&)a(¢) = f(€), £ €R™,

and formally, @(€) = f(€)/P(€). Therefore, a formal solution to problem (2.1) is
given by

-1 f(g) — —n t:.:{ f(E)
@) w@=F(5R)@=0" [ LE
The integral on the right-hand side in (2.2) is not defined in general because of

zeros of P(£) and the behavior of f(£) in infinity. There are some special cases in
which a modification of (2.2) gives the solution to (2.1). We will discuss one of such
cases.

Let P(D) be a differential operator of order m, (i.e. the COI‘IESpOIldlng poly-
nomial P(£) is of order m) and let

P(§) = Pn(€) + Q(&):

where P = }_) 1, 6o D® and Q(£) is polynomial of order not greater than (m—1).
The operator P,,(D) is called the principal symbol of P(D).

Note Ppn(A) = A™ P, (£), for every A > 0 and € € R™, i.e. the polynomial
P (€) is a positive homogeneous function of order m. This implies that the set of

zeros of the polynomial P,,(¢) (the variety of P, ), for m > 0 is a cone and it is
called the characteristic cone.

Definition 2.1. A differential operator P(D) of order m is elliptic if P, (£) # 0,
for every £ € R"\{0}, where P (D) is the principal symbol of the operator P(D).

z € R™,
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Example 2.1. If the dimension of the space equals one, then all the differential
operators with constant coefficients are elliptic.

Example 2.2. The Laplace operator

8= () +(5;) + o+ (5an)

is elliptic. Its principal symbol is —|¢[® = —€% —.-- — £2.
- Ezample 2.3. For n = 2, the Cauchy-Riemann operator

%, Jd .0
‘55':‘;'(5;“55)

is elliptic, and its principal symbol is (£ + tu) /2.

' Lemma 2.2. Let P(D) be an elliptic differential operator. Then the set of
zeros of the polynomial P(£) is compact in R™.

Proof. If P(D) = P(D) + Q(D) as above, then P,(£) # 0, for £ € §™~1,
where S™! is the closed unit sphere in R®. Because of that

|Pn(€)] 2¢>0, ¢£eS™ .

If 0 #£ ¢ € R, then £/[€| € S™~1. This implies {Pn(£/[€])| > ¢ and because of the
positive homogeneity of P, (£) we have

[P (€)l > c¢I™, €€ R".
The order of polynomial Q(§) is not greater than m — 1, and therefore,

Q) < algi™ !, EeR™, [>1.
Let £ € R satisfy P(£) = 0 and }¢] > 1. Then we have

clél™ < |Pm(&)l = 1Q(&)] < crl™ .
This implies |£] < ¢; /c. Thus the set of zeros of P(£) is bounded. O

Let P(D) be an elliptic operator such that its variety is contained in the ball
L(0, p), with the center at zero and radius p and let () € C°°(R") be such that
k(&) =0 for |£| < p and k(€) =1 for |§| > p' > p. Denote

o(e) = FHFORO/PON) = @m [ S FORE/PEdE, 3 € R,

This formal integral makes sense within the space of tempered distributions.
It is the Fourier transformation of a tempered distribution.

In the sequel we will use the notation which have to be understood in the
distributional sense.

It will be shown that v(z) is not the solution of equation (2.1), but it differs
from it only by a smooth function.
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Formally (in fact in the sense of the tempered distributions)

(zi)n / = f(Qn(e) dE = F(F(©r(E) (=)

= (FYF(&)) - FHF(©)(1 - 6()))(z) = f(z) — Rf(z),

where Rf = F~1(f(£)(1 - x(¢)))- |
Note that x(£&)/P(£) is a tempered distribution on R™ since it is a bounded
smooth function. Since '

IP(E)] 2 |Pm (&) — Q&) 2 (clé] — e)léI™ " > 1,

for large enough [¢], it follows that X = F~1(k(€)/P(£)) is a tempered distribution,
and

P(D)u(z) =

v(z) = F(f(€)x(€)/ P(€))(z)
= (FH(k(€)/P(&)) * F(F(ON(=) = (K + f)(=)-
Since the function (1-k) € C§°, the Palley-Wiener theorem implies that its Fourier
transform h = F~1(1 — k) can be extended on C* as an analytic function of

exponential type, such that its restriction on R" belongs to S. Then Rf = h* f
- which implies |

(23) P(D)(K * f)(z) = f(z) — h* f(z).
Let us define operators R and K by

R:£ —»C®, R:f- RS, |
K:& =S8, K:f2Kf:=Kxf{.

Then, R is a smoothing operator i.e. a linear and continuous mapping from &’ to

C. ~
' Using this notation we write (2.3) as P(D) = K = I — R. The operator K
is called the parametrix of the differential operator P(D). If it is known, then the
solution of equation

(2.4) P(D)E =§

(the fundamental solution for P(D)) exists, and © = FE * f is the solution to
problem (2.1). By the classical theory, equation P(D)w = h has a solution which
is an analytic function on C". Solution to equation (2.4) is E = K + w (because
P(D)K =6 — h and P(D)w = h).

3. Integral operators

3.1. Kernel theorem. Schwartz’s kernel theorem is the basis one for the
theory of integral operators is based on it.
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Definition 3.1. Let X; be open subsets of R™, and let u; € C(X;), 1 € {1,2}.
Then the continuous function u; ® us on X; X X, defined by

(‘ul ®u2)($1,$2) = ul(ml)u2($2): z; € X,

is called the tensor product u; and us.

Proposition 3.2. Let u; € D'(X;), ¢ = 1,2. Then there emsts a distribution
u € D'(X; x X3) such that

u(d1 ® ¢2) = ui(d1)ua(dz), ¢: € Cg°(X;), i=1,2.

Proof. Let us define
u(¢) = u1(uz(d(z1,22))), ¢ € Cg° (X1 x X2),

(where u; depends only on z;). 1t is clear that the assertion of the proposition holds
for u and u(¢) = ua(uy(¢)). O

Note, if u; € €', 1 =1, 2, then u(¢) = uz(ui(@)), ¢ € C°(X; x Xz).

The distribution u is called the tensor product of u; and u3 and it is denoted
by u = u; ® us.

Definition 3.3. A linear and continuous operator A : D(X;) = D'(Xy) is
called integral operator.

Theorem 3.4. Let K € D'(X; x X2). By

is determinated a linear operator A : D(X3) =+ D'(X,). It is continuous, in the
sense that A¢; — 0 in the space D'(X,), when ¢; — 0 in C§°(X32), i.e. it determines
an integral operator.

Conversely, for every integral operator A there exists one and only one dis-
tribution K such that (3.1) holds. It is called the kernel of the operator A.

We refer to [10] for the proof.

Ezample 3.1. The kernel of the identity operator D(X) — D'(X), Ay = ¢,
where X is an open set in R™, is given by

(K,0) = [ $(z,2)dn, 4€CP(X xX),
i.e. K(z,y) = 6(z — y). It has the support on the diagonal.
We will use the followitig notation. f AC X and BC X xY then
AoB:={y€Y,(3z € A)(z,y) € B)}. '
IfACY and BC X x Y, then '
(3.2) BoA:={z € X,y € A)((z,y) € B)}.
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Note that if A is a compact set and B is closed, then B o A is a closed set.
In the following proposition we assume that supp K = B C X; X X3, A =
suppu C X3.

Proposition 3.5. If K € D'(X; x X3) is the kernel of the integral operator
A:D(X;) = D'(X,), then supp Au C supp K osuppu, u € C§°(Xs2).

Proof. Let us suppose that z; € (supp K o suppu). Then there exists a
neighborhood V of z; such that V N (supp K osupp u) = 0 because the set supp K o
supp u is closed. If v € C§°(V'), then

(supp(v @ u)) NsuppK =0,

and therefore (Au,v) =0,ie. Au=0o0on V, and z; €suppAu. L[

3.2. Proper integral operators. Let E and F be topological spaces and
f be a continuous mapping of F into F. The mapping f is proper if for every
compact set K C F the set f~!(K) is compact in E.
| Definition 3.6. Let X and Y be open sets in R®. An integral operator
A : C(Y) = D'(X) is proper if the mappings 7 : supp Ka(z,y) -+ X and
72 : supp Ka(z,y) = Y are proper, where K 4(x,y) is the kernel of A and 7; and
o are the first and the second projection, respectively.

Proposition 3.7. An integral operator A: Cs°(Y) — D'(X) is proper if
and only if distributions K 5(z,y)e(y) and K 4(z,y)¢(x) have compact supports in
X x Y for arbitrary functions ¢ € C§°(Y') and ¢ € C§°(X).

Proof. Let A be a proper integral operator, ¢ € C§°(Y) and ¢ € C§°(X).
Since

supp K a(z,¥)p(y) C supp K a(z,y) N 73" (supp ¢(y)),
it follows that supp K4(z,y)¢(y) is a compact set. Analogously Ka(z,y)é(y) €
E(X xY).
Assume that for every ¢ € C§°(Y) and ¢ € C§°(X) the distributions

Ka(z,y)e(y) and Ka(z,y)¢(y) belong to £'(X x Y). We will show that for arbi-
trary compact sets K; and K> of X and Y, respectively, the sets

supp K , N7, (K2) and supp K 4 N7y (K1)

are compact in X x Y. Let ¢ € C§°(Y) and ¢(y) = 1 in some neighborhood of the
set Ky. It follows

supp K , N5} (K2) C supp K 4(z,¥)6(v),

which implies the compactness of the set supp K4 N, (K3). Analogously one can
prove the compactness of the set supp K4 N7y Y(Ky). O

Proposition 3.8. If an integral operator A is proper, then its transpose
operator A is proper, as well.
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Proof Theorem 3.4 implies that there exists Ka(z,y) € D'(X xY) and
Kuy(y,z) € D'(Y x X), such that

(Au,v) = (Ka(z,y), u(y)v(z))

(Av,u) = (Ku(y, z), v(z)u(y)),
for every u € C§°(Y) and v € C°(X)
Since (Au,v) = (u, Av), it follows

(Ka(z,9), u(y)v(z)) = (Ku(y, ), v(z)u(y)),

i.e. Kq(z,y) = Ky(y,z) in D(X,Y). Thus it follows that *A is a proper operator
if A is a proper operator. []

Ezample 3.2. Let P : C§°(Y) = D'(X) be a continuous linear operator. Let
(¢;j)ies, and (p:i)ier be sequences in C§°(X) and C§°(Y’) respectively. Let the
families of sets (supp ¢;);es and (supp ¢:)ier be locally finite. (A family (Aa)aea
of subsets of R™ is locally finite if for every £ € R™ and a bounded neighbourhood
B of X, BN A, # 0 only for finitely many a € A.) The mapping u +» Qu, where

(3.3) (Qu)(z)=) _ $i(z)P(pi W)u®))(z), u € C°(Y), z € X
jed
is a proper integral operator.

Because of the local finiteness of the family (¢;)jes the above sum is finite
for every fixed z. One can simply check that @ : C§°(Y) — D'(X) is an integral
operator. Let us show that it is proper. Let ¢ € C§°(X). Since P is an integral
operator, Theorem 3.4 implies that there exists a kernel Kp(z,y) € D'(X xY),

such that

(Qu)(2), (=) = { 3 8: (@)K p (=, ), #; @)u(@)), $(=))
JjeJ |
= ((Kp(z,), 0 (v)u(v)), i (z)¥(z))

JEJ

= (Kp(z,v), 0; @)u¥)¢;(z)¥(z))

jeJ
= (3" Ke(z, 9)0; (4)¢3(2), u@)p()).
jeJ
Here we have used the fact that the sums are finite. The kernel of the integral
operator ) equals

Y Kp(z,9)pi(y)¢i(z)-

JeJ
As p € C§°(Y) (analogously ¢ € C5°(X)) the set supp ) . ; Kp(z,y)p;(¥)¢;(z)p(y)
(supp ey Kp(z,y)pj(y)¢i(z)$(z)) is compact, since the sum is finite. From The-
orem 3.7 it follows that Q is a proper integral operator.
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Note that (3.3) is well defined for u € C*°(Y).

Proposition 3.9. If A : C§°(Y') = D’(X) is a proper integral operator, with
the kernel K 4 and if u € C§°(Y), then

(3.4) supp(Au) C (supp K4) o (supp u)
and (supp K 4) o (supp u) is compact.
Proof. By Proposition 3.5, supp Au C supp K4 o suppu. We have

(Au,¥) = (Ka(z,9),u(y)¥(z)) = (Ka(z,y)uly), ¥(z)).

Let us denote T' = supp K 4, R = supp u. Since R is a compact set, it follows that
T o R is a closed set. Let W =Y \ (T o R) and assume 3 € C§°(W). This means
that T N (suppy X R) = . The kernel theorem and the fact (Au,y) = 0 imply
that (3.4). Let us prove that T o R is a compact set. From (3.2) it follows

(supp K ) o (suppu) = m1 (supp K 4 N 75} (supp u)).

The set supp Ka N 7, '(suppu) is compact, since suppu is a compact set and
w5 : supp K4 — Y is a proper mapping. Therefore 7, (supp K4 N7 *(suppu)) is a
compact set as a continuous image of a compact set. U

Theorem 3.10. If A: C§°(Y) = D'(X) is a proper integral operator, then
it can be continuously and linearly extended to an operator A : C°(Y) — D'{X).

Proof. Let A : C°(Y) — D'(X) be a proper integral operator, u € C§°(Y),
v € C§°(X), by Theorem 3.4, there exists K4(z,y) € D'(X x Y) such that

(Au,v) = (Ka(z,y),u(y)v(z)).

Let {y;}iescn be a partition of unity with the properties

(1) ¢; C C§°(X xY), j €J, and the collection of supports {suppy;}jes is
locally finite,

(2) 2jespi(z,y) =1 for every(z,y) € X XY,
(3) pi(z,y) > 0forevery(z,y) € X xY and je€ J.~

Let .
k(z,y) = Z p;i(z,y)

j :supp ¢ ;Nsupp Ka#0
Clearly, k(z,y) € C®°(X x Y). Define the. operator A : C°(Y) — D'(X) by

(Au(z),v(z)) = (Ka(z,y), 6(z, )u(y)v(z)), v € CP(Y),v € C(X).

The set supp s(z, y)u(y)v(z) is compact. Namely supp K 4(z, y)v(z) is compact
and it implies that a family of functions ¢; such that suppy; N supp K4 # 0,
is finite. Therefore A is well defined. From the definition it follows that A is a
continuous linear operator. Also, if u € C§°(Y), then

(Au(z),v(2)) = (Ka(z,y)x(z,y), u(y)v(2)) = (Ka(z,y), u(y)v(z)),
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since & = 1 on supp K4. We conclude that A is a linear continuous extension of
the operator A. [

Theorem 3.11. An integral operator A : C§°(Y') = D'(X) is proper if and
only if:
(1) For every compact subset M of Y there exists a compact subset M; of X
such that if suppu C M then supp Au C M;, where u € C§°(Y).
(2) For every compact subset L of X there exists a compact subset S of Y such
that if suppv C L, then supp Au C S, where v € C°(X).

Proof. Let us prove that condition (2) is equivalent with the following one

(2*) For every compact subset L of X there exists a compact subset S of Y such
that if u =0 on S, then Au =0 on L for u € C§°(Y).

Assume that (2*) does not hold, i.e. there exists a compact set Lg such that for
every compact set S there exits u € C$°(Y) such that suppu C Y \ S, (Au, ) #0
for some 4 with supp© C Lg. Let (2) holds and let S; be related to the set Ly by
condition (2). For every v € C§°(X), with suppv C Ly, it follows that support of
Av is in S;. Let u € C§°(Y') and let the support of u be in the complement of S; .
We should have that (9, Au) # 0 for some © € C§° with support in Ly, but it is not
true, since (¥, Au) = (49, u) and (A%, u) = 0, for every ¥ with supp C Lo.

Analogously one can prove that (2*) implies (2).

Let us suppose (1) and (2*). We will show that the mapping 7, : supp K 4(z, y)
— Y is proper. Suppose that M is an arbitrary compact subset of Y and N is a
compact subset of X, which is related to the first one by (1). Then we will prove

(3.5) 75 (M) NsuppK4 C N x M.

Let (zg,%0) € (X\N) x M, and let a function w(z,y) = v(z)u(y) be such that
suppv C X \ N, suppu C M, w # 0 in some neighborhood of the point (zo, 7o)
and w € C§°(X x Y). We have (K4,w) = (Au(z), v(z)) = 0 which implies that
(zo,y0) € w5 (M) N (supp K 4). This implies (3.5). The proof that the mapping
my : supp K 4(z,y) — X is proper is similar

Let A be a proper integral operator. Condition (1) follows immediately from
- the properties of a proper integral operator and condition (2) follows from the fact
that YA is a proper integral operator.

3.3 Smoothing operators.

Definition 3.12. A continuous linear operator A : £'(X3) = C*°(X1), X1and
X are open in R", is called a smoothing operator.

If a distribution K(z;,z2) belongs to the s;;aée C®(X; x X3), then the op-
erator A defined on £ (X3) by

(A(u(z2)))(z1) = (K(z1,22),u(z2)), z1 € X1, u€ Ef(xz)

is a smoothing operator. To prove it we need the following lemma.
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Lemma 3.13. The lineal L of the set of translations of é-distribution (L =
{3F_, a;6(z — z;), a; € C, z; € X}) is dense in the space £'(X).

i=1 .
Proof. We will show the assertion for n = 1and X = R. Forn > 1 and
X C R” the proof is analogous. Let ¢ € C§°(R). We have

B _
(6,9) = [ $(2)v(z) d,

for every ¥ € C*®°(R). The integral on the right-hand side is equal to the limit
value of Riemann’s sum i.e.

(%) = lim 3 $(z:)y(:)Az: = lim D ai(8(z - z), $(z)),
i=1 i=1

n—roo

where a; = ¢(z;)Az;. This implies that Y ", a;d(z — z;) converges to ¢ € C(R)
in £’(R), i.e. that the set of finite linear combinations of delta distributions is dense
in C§°(R). Since Cg°(R) is dense in £'(R), it follows that this set is dense in £'(R).

Theorem 3.14. An operator A : £'(X3) = C°°(X,) is a smoothing operator
if and only if there exists a distribution K (z,%3) € C°(X; x X3) such that

(A(u(z2)))() = (K (-, 22), u(z2)), u € E'(X3).

Proof. Let A: £'(X32) = C°°(X;) be a smoothing operator. Denote
K(zxy,a) = A(6(- — a))(z1),a € X3, x1 € X;.

Let a be fixed and K(z1,a) be a function of z;. It is an element of C*°(X,;). We
will show that for every fixed z; € X3, K(z1,*) is a function in C®°(X,). This
will imply K(z1,22) € C®(X1 x X2). Thus, let z; be fixed, {an}nen C X2 and
lim, 00 @n = a € X2. Then .

lim A(8(z2 — aq))(z1) = A(d(z2 — a))(z1)

N-——>00

(which is equivalent to lim,,_,. K(z1,a,) = K(z;,a)), because of the continuity
of A and the fact that §(z3 — a,) = 6(z2 — a) in £'(X2) as n = o0. Therefore,
K(z,,a) is continuous with respect to the variable a. We have |

K(zy,a+h) = K(z1,0) _ A(S(zz — a = h))(z1) = A((zs — 0))(z1)
h h o
_ A(J(.’sz - a __-:h,})l ~ 0(x2 —al)(xl)‘

Since
d(x2 —a— h) — é(zy — a)

h
the continuity of A implies

im E(mlag_'l" h) —EM — A(ts'(ﬂig _ G)).
h—0 h

— 6 (z2 —a) in £'(X:2), h—0,
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Analogously one can continue the proof for all the derivatives. This means that the

mapping
(z1,22) » K(21,22) = A(6(t — z2))(x1)

is in Cm(Xl X Xg)

It remains to prove that K4 = K, where K4 is the kernel of A. Since
(Ka(z1,22), u(z2)) € C*(X,4), it is enough to prove

(KA($11$2):"'($2)) - Y K(xlsx2)u(x2) dzs, u€ CSQ(X2)

As we have shown in Lemma 3.13, L is dense in C§°(X3). Thus, there exists
o, al8(z2 — =3;) in L which converges to u in £'(X32) as r — oco. From above it

=1

follows (z; € X,)

Pn
(Kamr,2a),u(e) = Jim A aPo(az - 230) (5:)
Pn Pn
= lim 3"l K(z1,53) = lim (K(z1,22), ) alé(z2 ~ 5:) )
i=1 i=1

Pn .
= (K(a22), im 3 aPS(as = 25)) = (K(en,2), u(e)

= K(iL‘}_, :Bz)‘u.(xg) d:!:g
X2

4. Oscillatory integrals

The notion of oscillatory integral is the crucial one for the theory of pseudo-
differential and Fourier integral operators.

In oder to explain the oscillatory integrals we will consider the definition of
generalized Fourier transformation of continuous functions u(z) for which there
exists positive real number ¢ and m € N such that

(4.1) lu(z)| < (1 + |z|)™, =z € R".

In other words we will give the meaning to the right-hand side of equality

(4. @h=[ | eu@)p©dzd, € SR,

when a continuous function u satisfies (4.1). Later on we shall give a method which
will be applied in the general case. i

Let ke Nand ¢ € S If u € S, then the integral (4.2) makes sense, since

e "¢ = (14 |z]®)~*(1 - D —---— Dfn)"e'i“ﬁ.

i



Pseudodifferential operators 125

Then we have
(6, 9) = [ ] / _u(@)p(E)(1+|2")H(1 - Dg - - Dg,)*e" ™ dz dg.

The integration by parts implies

43) @)= [ [ =0+ ) @) - DL - - DY) (e de e,

The right-hand side of (4.3) is defined not only when u € S(R") but as well as
when u satisfies (4.1) and k > m + n.

Let us suppose (4.1). Since F : S'(R*) — S'(R™) is the isomorphism, it
follows u(£€) € S'(R™). Let ¢ € C§°(R"), ¢(0) =1 and

Lo = [ [ e (eau@v(e) dode, ¥ € SR, € >0

where the integral on the right-hand side converges because of (4.1). Analogously
as above, for k € Nj, we obtain

Ipe = /,. /n e " d(ex)(1 + |a:|2)"‘u(:1:)(1 — Dgl —— Dgﬂ Yep(€) dz dE.

Let k > m + n. By the Lebesgue theorem, it follows that there exists I € R such
that lim. 0 I3 . = I. Note that the integral in (4.3) does not depend on k for which
k > m + n. We define the mapping S(R™) 3 ¢ — (i,¢) = I(y) which gives the
definition of i as an element of S'(R).

4.1. Space of symbols S7%;(X,R"). Let X be an open set in R™ and let
(formally) | '

(44) Ie=[ [ #=0a(a, u(z) dadf, u e CF(X),

where functions ¢ and a are the phase function and the symbol defined as follows.

Definition 4.1. A real valued function ¢ which is of the class (X x
(RV\{0})) positively homogeneous of order 1 with respect to the variable ¢
(i.e. ¢(z,t8) = tp(z,&) for every z € R*, ¢ € RV,t € R, t > 0) and which
does not have characteristic points on X x (RV\{0}) (ie. 0 # d¢p(z,&) =
(Pzys-ve s PznsPeys--- »Pen) for £ # 0), is called a phase function.

Definition 4.2. Let m, p, 6 € R, 0< p<1,04§ < 1.

Elements of the space 577 (X, RY), which are called symbols, are functions

a(z,£) € C=°(X x R") such that for arbitrary multi-indices a and 8 and arbitrary
compact set K C X there exists a constant ¢, g x > 0 such that

10868a(z,£)| < cap,x(1+|EN™ P+l 2 € K, £ € RV

Ezample 4.1. (1 + )™ € ST,
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We will use the following notations

S™(X,RN) = ST (X,RY), S =SM(X,RN),
SS(X,RY) = | JSms(X,RY),  S;°(X,RN) = [ S75(X, RY).

The space S™ is called the space of standard symbols.

Let us introduce the topology in the space S7%. Suppose that (K, ).en is a
sequence of compact sets such that

o
KycK,---cK,c---cX, |JK.=X

vr=1
For a(z,£) € S7'; define
la(z, &)l = sup 9¢88a(z, ©)|(1 + [¢)™+ea=48.
IEKP:EERN:IHI'(V:'ﬁI(V
It is clear that || - ||, v € N is a growing sequence of seminorms; it defines the

topology on S7% such that ST is Freshet’s space.

One can simply prove:

Proposition 4.3. Ifa € ST%(X, R"), then 8298 € ST P1*HIBl(x RNY. I
a € S7%(X,RN) and b € S™(X,RN) then a-b € S™™ (X,RN).
The right-hand side in (4.4), where a(z,£) € S7%(X, RY) and ¢(z,§), is a

phase function, is called an oscillatory integral. Qur aim will be to give the meaning
to the integral, which in the general case does not converge absolutely.

Theorem 4.4. Let ¢(z,§), (z,£) € X x RN, be a phase function. There
exists an operator

N n
(4.5 L= 0@ g0 + 3 ba(a, ) g + (5,8
J k=1

=1

such that a;(z,£) € SO°(X,R¥Y), be(z,§),c(z,&) € S~YX,RYN) and that for its
transpose operator (determined by [(Lyp)y = [ @(*Ly), ¢, € C§°)

N 5 n
‘Lu(z,8) = - ) 3—&_((1,'1:.) =) %(bku) + ¢(z, §)
j=1 k=1

there holds t Le*® = e,

Note that the operator L is not uniquely determined.
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Proof. Since 3—&—

, '¢—13—€‘-’:— e? 2 39: ‘¢“t3z ¢ we have

j=1 k=
_ 2| 99 o - €7
(J"—-"legl 0¢&; ‘;1 33:;; )e Y’

where Y(z, £) € C® (X x (R™*\{0})) is a positively homogeneous of order —2 as a
function of variable £. It follows

N
-#9(3 K55 ; o 327 ) =

and it remains only to take care of the singularity in £ = 0.

Let x{¢) € C§(R™) be such that K.(E) = 1 for [£] < 1/4 and k(£) = 0 for
1€} > 1/2. Let us define

Note Me'® = e*®. By using Proposition 4.3 one can prove that the coefficients of
‘M = L satisfy the asserted conditions. Since *M = L, it follows ¢t L =M. C

For m' > m we have 57 C ST 5 and the identity mapping I : S7% — Spjé is
continuous. |

Theorem 4.5. Let m' > m and let B be a bounded subset in S}';. The
topologies in B induced by

(a) topology of pointwise convergence on ;’5,

(b) the top ology of the uniform convergence on compact sets (topology from
E(X,R")) on S5 and

(c) the topology of the space S;’;‘; are the same.

Proof. We will give the proof of this assertion from [15]. Let us recall that a
convergence satisfies the Urysohn condition if the following holds:

A sequence is convergent if and only if its every subsequence has a convergent -
subsequence.

It is obvious that all of the mentioned topologies are Hausdorff, that they

fulfill the Urysohn axiom (because they are topological convergencies) and that the
first two are weaker that the third one on B.

We will show that the set B is relatively compact in 57 5 (every sequence in

B has a convergent subsequence in the sense of the convergence in p,J). Since B
is a bounded subset of 577, a sequence {#n}nen C B is bounded in the sense of



128 Nedeljkov, Perisi¢ and Pilipovié

convergence in £(X x RY). Therefore it has a convergent subsequence ¢ which
converges to ¢ € C®(X x RN).

Note that for every compact set K and a,8 € Nj
0¢85 bx. (2, )| < ck,,8(1 + €Y1, 2 € K, ¢ € RY,

where ¢k o g does not depend on the subsequence. It implies

10802 b(z, €)| < e ap(L+ [N, z € K, £ € RV,
Therefore ¢ € S57%;. We have |

(1 + |g})—™ +elel—=3181) 5288 (gx.. (z, &) — $(z, €))| < 2¢k,a,8(1 + |EN™™,
re K, £eRY,

for fixed compact set K C X, @ € NY, B € N?. Therefore, there exists a > 0 such
that for |£| > a the left-hand side of the inequality is less than £ > 0 independently

of k,.

For |€] < a the set K x {£, |£| < a} is compact. Since the sequence ¢y,
converges to ¢ in the sense of convergence in £, it follows

(1 + |¢])~™ +lel=01B1|52 08 (¢, (2, £) — ¢(z, €))] < &,

for some ng € N, kp > ng, (z,€) € K x {£, |€]| < a}. Thus, every sequence in B has
a convergent subsequence in ;’j :

Now we will prove that (a) implies (c). Let a sequence in B be pointwisely
convergent. We have proved that every subsequence of it has a convergent subse-

quence in :,":;. From Urysohn’s condition follows the assertion. O

4.2. The oscillatory integral and its properties. Let u € C§°(X),a €

;'}(XXRN), X isopenin R" and m < —N. Note, if a € 5775 and s = min(p, 1-¢),

then the properties of L (cf. (4.5)) and a imply that there exists C > 0 such that
|IL*(a(z, Ou(z)] < CA+[Eh™™, z€ X, eRY.

‘With the above assumptions the integral on the right-hand side of (4.4) makes
sense. Moreover

(4.6) L= [ [ #=OLa(a, Ou() dr dg

and
|74 (ua)] < csup{(1 + [{) " la(z, )], = € suppy, £ € RV},

where

e= [ W@idz [ (141D d.
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This implies that a — Iy(au) is a continuous mapping S7% — C. In the following
theorem we shall show that this mapping has a continuous extension on S5 =

>0 Sps- This extension is called the oscillation integral and it is denoted by
@) Llew=[ [ 40z, u(e) dude osc]
| n JRN .

Theorem 4.6. Let p € (0,1}, § € [0,1) and ¢ be a phase function. For a
fixed u € C§°(X) define I4(-u) by

a — I(au) = /n ]RN e (= q(z, £ u(z)dzdf, a€ o8 = U s (X, RVY

m,p,0

when that integral is absolutely convergent. Then I4(-u) can be extended uniquely
on the whole SS5 such that the mapping u — I4(au), a € S7%(X,R"), is continuous
and linear (i.e. it is a distribution).

Proof. Let x(£€) € CS°(RY), k(€) =1 in a neighborhood of zero and &, (§) =
x(€/v), v € N. The set {x,(£)a(z,£), v € N} is bounded in ST%(X,R"), therefore

ky(€)a(z,£) converges to a(z,€) in S;';;(X, RN), as v = oo for m' > m. Also it
converges pointwise. This follows from Theorem 4.5. The integral is absolutely
convergent because k, and u are compactly supported and therefore

48) L@ om@ua) = [ | e¥Dat,en,@ue) deds
= [ [ Ot at Omleuio) dedt, e CF(X)
(cf. (4.6)). It is clear that

/n /RN ei¢(z,£)Lk(a(a:,f)n,,(.f)u(g;)) dzdé€

converges to |
(4.9) [ | e#=0 L a(a, u(z)) dade,
n JRN

as v — 00, since a(z,£)k,(€) converges to a(z,§) in M(X RY) and L* maps

S;‘:; (X, R™) continuously in S;':;"k’, for s = min{p,1—4). This implies the conver-
gence of the integral in (4.8). Let us denote this limit by

(4.10) [ [ &= gz, £)u(z) dz dE [osc).
n JRN

Since for fixed v, D 3 u — I3(ax,u) defines a distribution and Is(ax,u) converges
to Is(au) for every u € D. By the sequent1al completeness of 7, it follows that
u — Iy(au) is a distribution.
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Therefore (4.10) is defined by (4.9). Clearly, in (4.8) the operator L can be
substituted by any other one which has the properties as in Theorem 4.4 and we
can take any k such that m — ks < —N. This implies that (4.10) does not depend

on L and k, i.e.
D(X) 3 uw— Iy(au)= / / e*#(=8) o(z, £)u(x) drdé [osc.],
n JRN

is an element of the space D'(X).

The same proof show that (4.8) does not depend on the choice of x, (£) with
the prescribed properties. L]

Ezample 4.2. Let us show that
6(z) = (271')/ / e?% . 1d¢ [osc.).

Note, 1 € 53,5- Let k € C§°(X), k(¢) = 1 in a neighborhood of zero and u € C§°.
Then x({/t) = 1in STy as t = oo and

((2m) /R et dg, u(z)) = (2n)"" / ,. f ei*tu(z) dz d [osc
= lim@m™ [ [ (e tyulz) dodg = Jim [ we/)FHw)(©) dg
. -

{—o00

= x(0) [ FTw)(©) & = u(0)
We have used F(F~1(u(€))(z) = u(z), which implies F(F ! (u(£))(0) = u(0).

4.3. Singularities of an oscillatory integral. Let X be open in R® and
Co = {(z,€), = € X,§ € RV\{0}, ¢¢(z, ) = 0}, Sp =mCy, Ry = X\S,,

where m; : (X x RVM\{0}) = X being the first projection of the set (X x RV\{0}).
Since Sy is closed, Ry is open.

The set Cy is a cone with respect to £, because ¢(z, £) is homogeneous function
of £ of order 1 and 8¢/0€ is homogeneous of order 0.

Theorem 4.7. Denote by A the distribution defined by (A,u) = I;(au),
u € C§°(X). Then Singsupp A C S,. |

Recall, Sing supp A is the complement of the maximal open set where A is
smooth.

Proof. We will show that there exists A € C°°(Ry) such that

I,(au) = /X A(z)u(z)dz, u € CP(Ry).
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We shall show that there exists L = > aj(z, 6)3‘-2-; +c(z, £), where a; € S°(Ry, RY),
¢ € S7Y(Ry,RY) such that Le*? = e**. Put

M = =i~ [ 3 I e R

=1

where 1 satisfies —iy Zﬁ__l |£|2|§%|2e‘¢ =€, £ #£0, k€ CLRYN) and (¢ =1
for [£] < 1. Then Me*® = e* and put Le** = Me*®. Thus

N ooy, 8¢
Lu = J;l -3-&_—3- (z(l — n)¢|£|2-3—£—u) + Ku.

Let k € C§°(R™), k(0) = 1 and «,(§) = k(€/v), v € N. Note, for every K CC X
IM*a(z, )l < CAL+ €)™, (€R®, z € K.

(A =Jim [ [ #EOLKr(Eae, u(e)) dt do
=Jim [ [ 4Ok, (@a, u(z)) de da

/ (| €8 Lka(x, £) dé)u(z) dz.

R JRN

Therefore

A(z) = /R e Lra(z,€) dt [osd).

(It does not depend on k.) For large enough k the integral exists in ordinary
sense and the function A is continuous. Moreover, we can differentiate A(z) by
differentiating the function under the integral sign. This is the consequence of
the fact that ¢(z,£) is a homogeneous function of £ of order 1 as well as all its
derivatives with respect to z. Note, if a function r(£) is homogeneous of order 1,
then

|r(&)] < const - (1 +|¢]), £ € RY.

This implies that by taking large enough k differentiation under the mtegra.l is
legitimate. Thus for any p € Np we have A(z) € CP(R;). O

Analogously one can prove:

‘ Proposition 4.8. Ifa € STs(X,R") and a = 0 in some conic neighborhood
of the set Cy, then A € C*°(X), Where A is defined by (A,u) = I(au).

5. Fourier integral operators

We shall give some introductory facts which are useful for the theory of pseu-
dodifferential operators.
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5.1. Definition and the basic properties. Let X and Y be open sets in R™-
and R"2, p> 0,5 < 1. Let

Au(z) = L /RN e (=¥ q(z, y, E)u(y) dy df, u € C3°(Y), z € X, [osc.]

where ¢(z, y, £) is a phase function on (X xY)xR¥ and a(z,y, ) € S5 (X )Y, RM).
Under these conditions the integral

(51) (Au,v)= fx /Y /R I a(z,y, uly)u(a) dedy df, v € O(X)

is defined as an oscillatory integral. For fixed u the right-hand side in (5.1) defines
a distribution Au € D'(X) (see Theorem 4.6).

Remark 5.1. In the sequel we will not write explicitly [osc.] for mtegrals which
are defined as oscillatory integrals. It will clear from the context.

Definition 5.1. An operator A : C§°(Y) = D'(X) defined by (5.1) is called
a Fourier integral operator with a phase function ¢(z,y,£) and an amplitude

a(z,y,§).

Every smoothing integral operator can be written in the form of a Fourier
integral operator:

Theorem 5.2. An integral operator A : C§°(Y) —» D'(X) is a smooth-
ing operator if and only if there exists a phase function ¢(z,y,£) and amplitude
(z,y,£) € S;o such that

(5.2 tu) = [ [ e#e90a(a,y, uly) dy de.

~ Proof. Let A be of the form (5.2). If a(z,y,£) € So° it is clear that the
kernel of the operator

/RN ei¢(z,y,£)a($1 y? 6) d€

is of the class C°(X xY). |
Conversely, by Theorem 3.14 there exists K(z,y) € C°°(X X Y) such that

Au(z) = (K(z,9),u(y)) = /Y K (z,y)u(y) dy
= [ [ #er0 K @ y)e s On(@)ulw) dyde, u e O, z € X,
Y JRYN |
where ¢ is an arbitrary phase function, & € C°(RY), [ &k(€)d¢ = 1 and k(£) = 0

in some neighbourhood of zero.
Since a(z,y, &) = K(z,y)e ¥4 k(£) € Sio » the assertion follows.
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A distribution K4 € D'(X x Y) defined as the oscillatory integral

Kawr= [ [ [ e#e30a(z,y, eu(z, y)do dy de fosc],

w € _C'(‘j”‘-j (X x Y), is the kernel of the operator A. It is the kernel of the operator A
since

(Au,v) = (Ka(z,y),u(y)v(z)),u € C°(Y), v € G5 (X).

Proposition 5.3. Let A be a Fourier integral operator given by (5.1}, and
let K4 be its kernel. Then K4 € C*(Ry), where

Ry = {(z,y), V€ € RN\{O}! ¢2(m,y, §) # 0}.
If a(z,y,£€) = 0 in a conic neighbourhood of the set
Cy = {(z,9,£), ¢¢(=,9,£) =0},
then K4 € C®°(X xY).
Proof. 1t follows immediately from Theorem 4.7 and Proposition 4.8. [

Remark 5.2. Different pairs ¢1, a; and ¢2, a; may define the same operator
A of the form (5.1). Moreover, a function a(z,y, £) is not completely determined
by the operator A, even when the phase function ¢ is fixed. '

Let A : C§°(X) — D'(X) be a Fourier integral operator given by (5.1). We
shall evaluate the form of 4 and A*. Recall, 4 : C§°(X) — D'(X) such that

(Au,v) = (u, 4v), u € C(X), v e C§°(X)
i.e.

{Au, v) = [x fy /R €93 0a(z,y, u(y)o(z) dz dydé = (u,Av).

We have
(Ho(z))(y) = [ [ 4= 0a(z,y, E)u(z) dr de,
X JRN

for y € Y = X. By the change of the variables z — y and y — z, we obtain

63 - (e)@ = [ e,z v dyds
Therefore, for z € X
(5.4) (Av(y))(z) = /X fR ) =65z, y, £)u(y) dy dE.

(The above integrals are oscillatory integrals.) This proves

_ Proposition 5.4. The phase function and the amplitude of A are defined
by ¢(z,y,8) = ¢(y,,£) and a(z,y,§) = aly,z,§)-
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The operator A* is determined by (Au,v) = (u, A*v), A* : C§°(X) = D'(X).
Therefore ‘ _
(u,tAv) = (Au,0) = (Au,7) = (v, 4°D) = (u, A75),

for u € C§°(X) and v € C§°(X) i.e.

(5.5) to(z) = A5(z) = / / =40 0(y 3 £)uly) dy d,
Y JRN
andforyeY =X

(56) Ao@) = [ [ ey, ou(e) do .

Proposition 5.5. The phase function and the amplitude of A* are given by
o(z,y,£) = é(y,z,£) and b(z,y,£) = a(y, z, ).

5.2. Fourier integral operator with operator phase function.

Definition 5.6. Phase function ¢(z,y,£),z € X,y €Y, X,Y are open in R",
is an operator phase function if the following holds

(5.7) $,6@4,6) = (Syar- -+ byarBerr--- 1) A0 for E£0,z€ X,y €,
(5.8) b, c(2,9,6) #0for ££0, zEX,yeY.

Proposition 5.7. If (5.7) holds then the operator A : C§°(Y) = D'(X),
determined by (5.1), continuously map C§°(Y') into C*°(X).

Proof. From (5.7) it follows that ¢(z,y, £), considered as function of (y, £),
is a phase function (z is a parameter). By Theorem 4.7 there exists an operator L
(which does not contain 8/8z) such that tLe*® = e*®. Analogously as in the proof
of Theorem 4.7 (with operator L instead of M) we obtain

(Au,v) = fx fy /R N =)o (z,y, E)u(y)v(z) dz dy dé
= [ ([ [, e*e#01* alo, v, uts)) dy ) v(z) da,

for u € C§°(Y) and v € C§°(X). Therefore, as in Theorem 4.7

(@)@ = [ [ 4L (o, Outr) dydé, 7 € X,

g

we can prove that Au is a smooth function. O

Proposition 5.8. If (5.8) holds, then the operator A : C§°(Y) — D'(X),
given by (5.2), can be linearly and continuously extended to A : £'(Y) = D'(X),
where the topologies in £'(Y') and D'(X) are weak topologies.
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Proof. The transpose operator 4 : C§P(X) — D'(Y) of the operator A :
C§°(Y) = D'(X) is given by

Ao@)) = [ [ e#=3a(z,y, eu(z) dzdg,v € G (X)
X JRN
From (5.8) by the previous theorem it follows A : C°(X) = C®(Y). Therefore

HHA) : £'(Y) = D'(X). Since {(A)|ce(v) = A and }(4) : £'(Y) — D'(X) is a linear
and continuous mapping, the assertion of the proposition follows.

From the previous two proposition it follows

Theorem 5.9. Let A: C§°(Y) = D'(X) be a Fourier integral operator with
an operator phase function ¢. Then :

a) A: CP(Y) - C=(X),

b) A can be linearly and continuously extended to A : £'(Y) — D'(X),

¢c) A:C(X) ~ C(Y),

d) A can be linearly and continuously extended to*A : £'(X) — D'(Y).
For the singular support the following estimation holds.

Theorem 5.10. Let A: £'(Y) — D'(X) be a Fourier integral operator with
an operator phase function ¢. Then

Sing supp Au C Sy o Singsuppu, u € £'(Y),

where Ry = {(z,y), ¢¢(x,y) # 0 for every £ € RN\{0}} and Sy = (X x Y)\Rs.

| Proof. Let u; € £'(U), where U is fixed neighbourhood of K = Singsuppu
such that © = u; on some neighbourhood of K C U. Then for us = 4; — u we
have suppuz C Y \ K. Since us € C§°(Y) and A : C§°(Y) = C°(X), it follows
Aus € C°(X). If we show that

(5.9) Sing supp Auy C M = S, o suppus,

it will means that Sing supp Au C Sing supp Au; C M C SgoU. By lettingU — K,
we will have
Sing supp Au C Sy o K = S o Sing supp u.

Let us prove (5.9). Let Ky = suppuy, K' C X such that K' x Ko C Ry (K' C
X\ M))and let X' x X C Ry be a neighbourhood of K' x Ky. We have

(Ah: k) = I¢ (ahk):
for h € Cg°(X) and k € C§°(X'). By Theorem 4.7
Sing supp A C S;.

It follows A € C*°(X' x X). Therefore Singsupp Au; C X \ K', which implies the
theorem. [
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Ezample 5.1. Let
A=) a.(z)D?,

la|<m

where aq(z) € C§°(X), X C R™. Using the Fourier transform we obtain

Du(z) = (2)™ [ [R grefeuu(y) dyde.

It implies,
tu(z) = @m)™ [[ eIy, ut) dy e,

where 04 = 3} 1< Ga(2)€” and is called the symbol of the operator A. Since
o4z, €) € S™(X x R"), A is a Fourier integral operator.
Ezample A solution to the Cauchy problem

O*E %
_2 - l— il

E=E(z),teR, e R is given by
gt(ctléi+z€) _ o—i(cti€|+z€)

(5.11) (27) " E(t, ) = / - R d§ [osc].

(5.10) c

Let us prove it. Applying the Fourier transformation on equation (5.10) we obtain

2
20T + B8 =0,

where E(t,€) = F(E(t,z))(€). Let us fix £. We obtain an ‘ordinary differential
equation (with respect to the variable t) whlch solution is E(t,£) = cie~#clél 4
coetelél. Tt follows

E(0,z) =0=>E(0,§)=0=c¢;+c;2=0

= %E(O,f) =1=F(6(z)) = —c1 + c2 = 1/icl€].

Therefore (5.11) holds.
Ezxample 5.3. Pseudodifferential operators.

If ny =ny = N =nand X =Y, then a Fourier integral operator with a
phase function ¢(z,y,£) = (z — y)¢ is called a pseudodifferential Operator (¥DO).

6. Pseudodifferential operators

Pseudodifferential operators generalizes differential and singular integral op-
erators. In this section we shall analyze the basic properties of pseudodifferential

operators.
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6.1. Definition and the properties. Let X be an open set in R”; then a
Fourier integral operator A : C§°(X) — D'(X) given by

©)  Au@)= [ [ ey, Out)dydt

is called a pseudodifferential operator, for short ¥DO.

Ezample 6.1. An example of a pseudodifferential operator which is not a
differential operator is a singular operator in R given by

A = a(z)u(z) +v.p. / L(z, (= - y)/lzr yl)

YL =Y u(y) dy
= a(z)u(z) + lim

L(:B, (9; y)/l::: — yl)
€0 ly—={>e IIB - yln

where a € C*°(R?), L = L(z,w) € C°(R" x S*!) (S™~! is a unit sphere in R")
such that

u(y) dy,

/ L(z,w)dw =0, z € R",
sn-1

With accuracy up to the operator with a smooth kernel, the operator A has
an amplitude a(z, §) = a(m)+x(£)g(m y), where x € C*°(R"), x(&) = 1, for |£] > 1,

x(€) =0, for || < 1/2 and g = T—f—s m—y L(a:, T_l[z—y )
Theorem 6.1. Let A : C§°(X) — D'(X) be a ¥DO, K4 be the kernel of
the operator A and let A be the diagonal in X xX. Then
a) Kq € C®({(X x X)\A).

b) Operator A defines linear and continuous mappings A : C§°(X) — C®°(X),
A E(X) - D(X). Ifu € £'(X), then Sing supp Au C Singsuppu. (This
property is called the pseudolocality of the operator A.)

c) The operators A and A* define linear and continuous mappings

U:CEP(X) = C®(X), 4A:&'(X) - D(X);
C(X) = C™(X), A*:&'(X) = D'(X).

Proof. a) The phase function for a ¥DO A is d(z,y,£) = (x —y)&. Therefore
Ry = X X X\A, since ¢¢ = (z—y). By putting X =Y, Proposition 5.3 immediately
implies K4 € C*((X x X)\A).

b) The following conditions are fulfilled for phase function of the operator A
¢L,£(m=y16) = ('__51: “ee —Eﬂ-:xl — Y1500 1 Tn — yﬂ) 71" 0,
¢>’$,£(a:,y,£) = (flv'“ !Eﬂ:xl —Yiy-ee sy In — yﬂ-) '_Ié 0:

for £ #0, z,y € X. Therefore A : C§°(X) — D'(X) is a Fourier integral operator
with the operator phase function. The assertions a) and c) follow from Theorem
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5.9. Since Sy = A, where Sy is the set attached to the operator A determined in
Theorem 5.10. From this theorem it follows that Sing supp Au C Ao Singsuppu =

Sing supp u.

| c) Let A : C°(X) = D'(X) be a ¥DO given by (6.1). We shall evaluate
the forms of 4 : C§(X) = D'(X) and A* : C§°(X) — D'(X). Note that these

operators are again pseudodifferential operators and the assertion c¢) follows from

y
From (5.3) it follows
Av(z) = (2m)7" fx / ] eV (=0q(y, z, £)v(y) dy dt,
for v € C$°(X). By changing of variables —¢ — £, we obtain
to(z) = @)™ [ [ N Iay,z, ~€)oty) dy d,
for v € C(X), i.e.
62 M@= [ [ &y, 0w dyd, ve CR(X).

where a(z, v, §) = a(y, z, —£). From (5.5) it follows

arv(@) = ay [ [ ez ) dude, ve ORX),
l.e.

63)  av@) =0 [ [ eIy, g dyde, ve CR(X),

where b(z,y,£) = a(y,z,£). O

Remark 6.1. Linear differential operators fulfills the condition of locality
(supp Au C suppu, u € C§°(X)), which for ¥DO’s in general case do not hold.

6.2. Algebra of pseudodifferential operators and its symbols.
6.2.1. Proper pseudodifferential operators.

Definition 6.2. Pseudodifferential operator A : C§°(X) =+ D'(X), X is open
in R™, is proper if it is proper as an integral operator.

For example, linear differential operators (5.10) are proper ¥DO.

Theorem 6.3. Let A be a proper YDO. Then, A defines linear and con-
tinuous mapping A : C§°(X) — C§°(X) which can be linearly and continually
continued to mappings |

A:8'(X)2E(X), A:C®(X)—=C®(X), A:D(X)-D(X).
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Proof. By Theorem 6.1 A : C§°(X) = C*(X) and by Proposition 3.9
(6.4) supp(Au) C (supp K4) o (suppu), u € C,

where K4 is the kernel of A. The set on the right-hand side of (6.4) is compact.
This immediately implies A : C§°(X) — C§°(X). Continuity of the operator
A : CP(X) = C3(X) easily follows. Since (6.2) holds and A defines a proper
¥DO, it follows 4 : C3°(X) — C§°(X), and

‘Y) : D'(X) = D'(X).

Since *(4)|cee = A, we have that A : C§°(X) — C§°(X) can be linearly and
continuously extended to a mapping A : D'(X) — D'(X).

By Theorem 6.1, the operator A : C§°(X) — D'(X) can be linearly and
continuously continued to mapping A : £(X) — D'(X). Then (6.4) holds for
u € £'(X), as well. The proof follows from the fact that C§°(X) is dense in £'(X).
This means that the continuation (6.2) maps £'(X) in £'(X). O

Proposition 6.4. Let A be a proper ¥DO. Then A : C§°(X) - C§° (X) can
be linearly and continuously extended to the mappings

U:8(X)—E(X), A:C®(X) = C=(X), 4:D'(X) = D'(X).

Proof. The proof is analogous to the proof of the previous theorem because
of the duality of operators A and 4. LC

We will prove that the space of pseudodifferential operators is an algebra with
respect to operation of composition.

From Theorem 6.3 it follows that the composition of two proper ¥DO defines
a linear and continuous operator on every one of the spaces C3°(X), £'(X), C°(X)
or D'(X). .

Definition 6.5. It is said that a(z,y,§) € S7%(X x X x R®) is an amplitude
with a proper support if the projections ‘

T @ SUpp, , a(z,y,€) = X, w2 :supp, ,a(z,y,§) + X

are proper for every £ € R".
Theorem 6.6. Let

Au(z) = (2m)~" / [ eE=Vea(z,y, Eyuly) dy df [osc], u € CP(X)

be a proper pseudodifferential operator, where a(z,y,§) € Sy Then A can be
defined by the formula ~

Au(z) = (2m)™" /f ei(""'y)fb(a:,y,ﬁ)u(y) dy d§ [oéc],u € Cy°,

where b(z,y, ) € S is an amplitude with a proper support.
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Proof. Let the functions k(z,y) and ¢;(z,y) be the ones constructed in the
proof of Theorem 3.10, K 4 be a kernel of the operator A. It can be easily seen that

Kzy)= Y pi@y) € CCX x X)

supp @;supp Ka#0

and that supp x(z,y) is contained in some neighbourhood of supp K 4. Let us show
that m; : supp k(z,y) = X is a proper mapping, i.e. that for every compact subset
K in X the set supp k(z,y) N a7 (K) is compact. We have

supps(z,y) N (K) Csupp( Y. wi(zy)) naT(K)
| supp @; Nsupp K4 #0

C . (supp p;(z,y) N 77 (K)).

supp ¢ ;supp K4 #0

This union is finite, because A is a proper ¥DQ, ;' (K)Nsupp K 4 is compact and
a family supp ¢; is locally finite. Since supp k(z,y) N7y 1(K) is a closed subset of
a finite union of compact sets, it is compact, too. In the same way, it can be shown
that the mapping =5 : supp k(z,y) — X is proper.

We will show that the amplitude b(z, y, &) = x(z,y)a(z,y, &) belongs to the
space of symbols S7% and that it has a proper support. It has a proper support,
because supp, , b(z,y,£) C suppk(z,y) and the first and second projections of
supp k are proper mappings. From a(z,y,§) € S7; it follows b(z,y,£) € S}5. For
every u € C§°(X) and v € C(X) -

(Au(z), 0(z)) = (Ka(z,9), u(w)0(2)) = (Ka(2,y), 5(z,9)u(y)v(z))
= [[[ éo%aa,y,9x(@ vyv(auty) do dy dg fosc

This proves the last part of the assertion. O

Let us note that if a(z,y, &) has a proper support, then the integral (6.1) is
defined for every u € C°°(X). More precisely, we have

Theorem 6.7. A proper pseudodifferential operator continuously and lin
early maps C*°(X) into C*(X). |

Theorem 6.8. Every pseudodifferential operator A : C§°(X) — D'(X) is of
the form A = A; + Az, where A, is a proper operator and As is a smoothing one.

Proof. Let A be an arbitrary pseudodifferential operator and let for u €
C5°(X)

Au(@) = @2m) [ [ a(z,y,uty) dy e
Then
Au@) = (2m)™" [ e-Den(z, y)a(s, v, Quly) dy dg

+@m)" / [ E=VE(1 — k(z,y))alz, y, E)uly) dy de,
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where x(z,y) is smooth and k(z,y) = 1 in some neighbourhood of the diagonal A
such that the both projection m; : supp k(z,y) = X and w2 : supp k(z,y) = X are
proper mapping. (The construction of a function « is given in the proof of Theorem

3.10.)
The operator A;, defined by

(Ar)(@) = @n)™ [[ = Pen(z, y)a(a,y, Euly) dy de.

is proper. The proof is analogous to a part of the proof of Theorem 6.6. The
function e!®~¥¢(1 —~ k(z,y)) a(z,y,£) equals zero in some neighbourhood of the
diagonal and out of the diagonal it is C*°. So the operator Az defined by

(42)(@) = [ =9 n(a,1))alz,, E)uly) dy dg

for u € C§°(X) is a smoothing operator by Theorem 6.1. O

6.2.2. The symbol of a proper pseudodifferential operator.

Definition 6.9 Let A be a proper YDO. The function c4(z,£) defined on
X x R", X is open in R", by

(6.5) - oA(z,£) = e'**(Ae™*)(),
where e¢(z) = €**%, is called a symbol of the pseudodifferential operator A.

If o0a(z,£) is a symbol of a proper ¥DO, then o4(z,£) € C(X x R"),
because A is a linear and continuous mapping C®(X) = C®(X) and £ — e¥% is
C°-function with respect to £ with values in C°°(X). Let us write u € C§°(X) as

u(y) = (2m)~" [ eVEG(E) dE

The continuity of A and the fact that

> evaE)AE, — | eMRa(g)dE, v — oo,

Rn

in £(R™) (where on the left-hand side we have a sequence of integral sumé) imply

W)@ = @0 [ U@ de = en™ [ e ou@ i) &

u € C§°(X), i.e.
66 (@@ =)™ [ [ o, @u)dyde, o € X,

From (6.5) and (6.6) it follows that the symbol o4(z,£) determines the operator
A.
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We shall show in Theorem 7.1 that if A has an amplitude in S;’S and 0 < p,
then oa(z,£) € S, so the integral on the left-hand side in (6.6) can be considered
as the oscillating one.

If Ais an arbitrary YDO on X, then the function o 4(z, £), which is a symbol
of a proper Y¥DO A; on X such that A — A; is smoothing, is called the symbol of
A. In this case a symbol is not uniquely determinated and two symbols differs by
a function r(z,£) € S™. '

6.2.3. Asymptotic decomposition in Sos

Definition 6.10. Let a;(z,£) € ST (X xR?), j = 1,2,..., limj_,0o mj = —00,
a(z, £) € C®°(X x R"). Then a is an asymptotic sum of a,

if for every integer r > 2 there holds

r—1
a(z,€) — Y _ aj(z,£) € ST (X, RV),

=1
where M, = max;>, m;j. Note a € S:’fg (X,RM).

Theorem 6.11. Let aj € S, (X,RY), j € N, limj,0om; = —00. Then
there exists a function a(z, §) such that

then a — a’' € S™(X x R").
The proof will be given in the case p = 1, d = 0. We follow the proof given
in [11]. First, we shall prove the following two lemmas.

Lemma 6.12. Let k € C§°(R"), x(§) = 1 in some neighbourhood of £ = 0
and F'A(E) = n(,\ﬁ). Then the set {/\_k (1- K.,\)}Q<A$1 is bounded in S{‘O(X, R“) for
every k > 0.

Proof. Let us prove that the functions

R3¢ (L+EDAAH () (- ma(©), e NG,
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are bounded independently on A € (0, 1]. Since for x there holds

l(-gé)ﬁ(l - ﬁ)l < ¢g,

we have

(g)" @ -] < [W1((5) @ - w), | < es, ae 0

First, we shall prove it for 8 = 0. Let R > 1 be large enough such that £(§) = 0 for
€] > Rand k(§) =1for || < 1/R. If0 < A < 1and (1-&,) #0, then || > 1/AR,

((L+EDNF < (1/RNN)* < R

and
IAT5(1 — Ka)| < coR*(1 + €]~

If (33-6-)‘6(1 — k)) # 0 for 8 # (0,0,...0), then [{| < R/A. This implies

(1 + 1PN < (1 + R/ < (R+1)1A]

and
A H )1 - )| < caRH R+ DB+ )L

Lemma 6.13. Let {F;} be a sequence of Frechét spaces such that Fi,; C F}
and the topology in Fy41 is stronger than the topology induced by Fy. For every
k, let (af') be a sequence of elements in Fy, which converges to 0 as m — oo. Then
there exists a sequence my, such that for every N the series ) .- ap* converges
in Fiy. B

Proof. Let pl (I € N) be a fundamental sequence of seminorms in Fy, k € N,
such that p} < pi"'l, | € N. By a simple procedure one can substitute a sequence
with equivalent one such that there holds p}, < pj.,, k,! € N. For example, pj}, can
be substituted by

{
sup pi | F, -
k' <k

Since lim 00 a]* = 0, let us chose my (increase as k increases) such that pf(al**) <
2=k, Then for | < k there holds

p(al™*) < pi(al™) < 27F,

50, for every | > 0 the series Y _p_ n Pi{ap'®) converges. Since Fy is Frechét space
it follows that "> \ ai** convergesin Fy. [

Proof of Theorem 6.11. One can suppose that ax € S{E," (X xR") when k > 1.
This can be achieved by summing elements in the sequences if it is necessary. Let
ay' = (1—K1/m)ax, where &, /., is defined in the proof of Theorem 4.7. The sequence

(1 — K1/m) converges to zero in S' and af* converges to zero in S~*+1 as m — co.
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Lemma 6.13 implies that one can chose a sequence my such that for every N > 1
the series Y o » ap* converges in S™N*1. Leta =Y ;. ,ap*. Then a is a symbol

and -
a— Y ax= Y (af* —ar)+ ) ap* € STVH,
E<N k<N =N
because (a;™* — ar) = —Ki1/mar € S~ for every k. So a & ) a;. Second part of

the assertion is obvious.
Theorem 6.14. Leta; € S::j (X xR"),lim;_y00 m; = —00,a € C®(X xR").
Assume:

1) For every compact set K C X and for all multi-indices a, there exist
constants u = u(a, B, K) and C = C(a, 3, K) such that

(6.7) [6805a(z,£)] < C(1 + [¢])*,z € K.

2) If for every compact set K C X there exists a sequence of real numbers
= w(K),! € N, and a sequence of constants C; = C;(K) such that gy — —oo for
| - oo and

-1
(6.8) la(:x:,ﬁ) — Zaj(a:,ﬁ)i < Ci(1+|EhH*, =z €K.
Then -
a(z, §) = Z a;(z, €).

j=

Proof. First we will prove the following assertion. Let the function f(t)
has continuous derivatives f/(t) and f”(¢) in [-1,1]. Let us denote A; =
sup_j<;<1 19 (t)l, 5 =0,2. Then

(6.9) | £ (0)* < 440(Ao + A2)-
By Lagrange’s theorem,
() = £ (0)] < Aq|t], te[-1,1].
Because of that,
1 . 1.,
F'®O12 17O if Asft] < 51F(0)], Jt] < 1.

Let us denote A = min {53-|f'(0)|,1}. There holds

FO2 57O tel-8,4

and

240 > [£(A) - F(~B)] 2 2A2{7(O)]
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It follows

1£'(0)] < 240/A = 240 max{242/|f'(0)}, 1},
which implies (6.9). Now by (6.9) we have the estimate needed for the proofs of
theorem.

Also, we need the following estimate. Let K; and K9 be compact sets in R
such that K; C int K2. Then there exists a constant C' > 0 such that for every
C°-function f in a neighbourhood of K,

©10) (sup 3 ID°5(@)])’

z€K) |ar|=1

<esup |f(@)| + ( sup (@) + sup 37 D*f(a)]).

36-“2 TECEN2 3€K2 Ia|=2

Now we give the proof of the assertion in the theorem. Let b=~ Y 3., a;(z,£) (such

b exists by Theorem 6.11) and let d(z, §) = a(z, £) — b(zx, £). By the assumptions,
for arbitrary compact set K C X there holds

10 08d(z, £)] < C(1+[€])*,z € K.
where C and u depend on «, 8, K and
(6.11) d(z, &)} < C-(1+ €))7,z € K, r >0,
where C, = C,(K). Let us denote d¢(z,9) = d(z,£ + ). Then
0382 d¢ (z,9)|9=0 = B¢ 0 d(z, €).
By (6.10), for K; =K X {0}, Ks = K x {1€] < 1}, where K is a compact set in X
such that K C int K and from (6.11) it follows that for 9 = 0 there holds

sup > |8882d(z,H)1)* < C(L+ €N+ 1ED) T + (1 + [€)~],
*€K Jal+i81<1

where r is arbitrary, u = u(a,8,K) and C = C(a, 8, K,r). Moreover, for z € K
and |a| + |8 < 1 the function 8¢87d(z,£) decreases faster than each power of |¢]

as |£| = oco. By induction, it follows that d € S—°(X,R*). O

7. Calculus with symbols

The simplicity of the calculus with symbols is the central point of the theory
of YDO. The main ideas of their calculus are given in Theorems 7.1 and (7.6) below.

7.1. Symbol of a proper ¥YDO. Let 6 < p. This will be a permanent
assumption in the rest of the notes.

Theorem 7.1. Let A be a proper ¥DO given by (6.1) and o a(z, £) be its
symbol. Then |

(71) JA(:B: £) ~ Z ?.:I;_!a?D:a(x: y: E)|y=x:
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where the asymptotic sum is taken over all the multi-indices.

Remark that 02 Dya(z,y,§)|y=z € gm—(p—d)|al_
Proof. We will apply Theorem 6.14. We can assume that the amplitude

a(z,y, &) is properly supported. Then by (6.5)
(7.2)

oa(z, &) = e 4% A(e¥)(z) = (2m) ™" / a(z,y, £)e' =19 =) dydd [osd],
R2n

(for fixed z the integration by y is made over a compact set). If K is a compact
subset of X, then for x € K (7.2) determines the oscillating integral depending on
the parameter z. Let us change the variablesby z=y —z,p =9 — &. Then

(7.3) (2m)" a(z, £) = f f  0(z, 7+ 2,6 +n)e™"" dzdn,

Expand a(z,z + z,£ + 1) into the Taylor series at o = 0 with the powers of 7.
Then,

(74)  a(z,z+z,E+n)= ), 6 088a(z,z+2,)0"/a+rN(z, T+ 2, 1),
la|<N-1

where
Nn©

al

(15)  rn(zz+zEm)= Y

1
/0 (1 -t)V"'8¢a(z,z + z,£ + tn) dt.
=N |

Let us note that for every £ € R" and z € K, a(z, z + 2z, £) is compactly supported
with respect to variable z. By the Fourier transform

(76) (2m)~" f Oga(z,z + z, E)n%e " dz dn

R2n
= F U (F(im1ogag a(z, = + 2,£)) (1)) (2)|:=0
= J¢ Dy a(z, T + 2, )| z=0-

This gives

1 .
oga(z,€) = Z -&Tagpga(x,y,gny:, + (27r)""/R e “Irn(z,z + 2,§,1)dz dn.
lalSN . 2n

Integration by parts gives, from (7.3),
—- —n —izn(1_1N2 _..._N2 /2 —vf2
74,8 = @n) [ [ e #M0-D2, —--~D2 ) a(z,z+2, E+n) L+ Inl) /2 dadn,
R2n

where v is a even and nonnegative number. By using

(1 + ‘E + 17|2)1/2 < (1 + ‘£I2)1/2(1 + |n|2)1/2
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the above equality implies
0¢0z0a(, )l < CAL+ AT | L+~ 070" dn,

where p = max (m — plal + 8|6|,0), z € K and v is large enough. Thus, we obtain
estimates of the form (6.7).

Let us estimate the rest of the series. Substitute a and ry (defined by (7.5)
in (7.3). After the change of the order of integration (first by ¢, then by z and 75),
let us note that we have to estimate the integral

Ros(s,€) = @0 [[  eme0ga(e, s+ 2,6+ tn) dzdn

where |a| = N, uniformly over ¢t € (0, 1) and z € K. Integration by parts gives

Ry i(z,6) = (2m)™" / / e"‘"@?Dfa(z, T+ z,€ + tn) dzdy.
R4n

Let
Re(z,8) = R, (2,8) + Ry 4(2,8),

where R, ,(x,£) is the integral over the set {(z,7), |n] < |¢|/2} and R ,(z,&)
over its complement. (Recall, z belongs to a compact set.) If |p| < |€|/2, then
1€1/2 < |€ + tnl < 3|€]/2. Since the measure of the domain of the integration of
R, .(z,£) with respect to 7 variable is less or equal to C|{|", then

|Roe(2,6)] < C(1 + [g]?)m—{p=ON+m/2,
where C' does not depend on £ and . Let us estimate R} ,(z, ). By using
1+l 7/?(1 = D, — -+~ = D7 )"/%e7" = &7,

where v is even positive integer, let us integrate by parts. Then R} ;(z,£) is a finite
sum of terms of the form

Rass(,§= @)™ [[ (14 q2) 120 D2*Pas, 5 + 2, + tn) dad,
\nl>[€1/2

where |8| < v. Since z and z belong to a compact set for |n]| > |£|/2 there holds
0§ De*Pa(z,  + z,€ + tn)| < C(1 + |n*)m={P=ON+I/2,

form—(p—0)N+dv > 0, i.e. |8§'D;‘+ﬂa(m,m+z,£+tn)| < Cform—-(p—-6)N+dv <
0. In both cases C does not depend on £, n and ¢. For large enough v there holds

|Rap.t(z,8)] <C (1 + |n|?)p~(1=99)/2 g,
Inl>[€1/2 |

where p=max(m —(p—96)N,0). fp—(1-8)vr+n+1<0, then
|Ra,p,t(z,€)] < C(1+ Jg)P=U=00HmtD/2 | (14 |nf?)(m+D)/2 dn

Rn
<C(1+ l§|2)(p—(1—5)l’+ﬂ+1)/2,
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where C does not depend on z,§,t if z € K and t € (0,1]. For v large enough we

have
|Ra,t(,8)| < C(1+ J¢)2)(m—le-ON+m)/2 1 3 e K, te (0,1].

By Theorem 6.14 the proof follows. Note that the assumption p > ¢4 is crucial for
the proof. (I |

Proposition 7.2 Let A be a proper ¥DO, oa(z,£) its symbol and o', (z, £)
a symbol of A. Then,

1
ou(z,8) m Y — O DFoa(z, —¢).

a

Proof. By (6.6)
“Uv(z) = (27) ™" / / e'==¥g 4 (y, —€)v(y) dy dé.

The assertion follows from (7.1). O
Analogously, one can prove the following assertion.

Proposition 7.3. Let A be a proper YDO with a symbol o 4(z,£) and A*
its adjoint operator. If o%(z,&) is a symbol of adjoint operator, then

" 1 o o
O'A(:n,ﬁ)mza e Dz OA-

a

Definition 7.4 A dual symbol d4(x,&) for A is given by

&A(x: 6) = J’A(m: _6)'
~ By using (4) = A we obtain
(1.7) au@) = @0 [[ &84y, Ou) dy de;

The following proposition follows immediately.

Proposition 7.5. §4(z,8) = > (—0:)*DSoa(z,£)/al

7.2. Composition of proper ¥DO’s.

Theorem 7.6. Let A and B be proper Y¥DO’sin X C R?, 04(z,£), og(z,§)
their symbols and C = BA. Then C is a proper ¥DO, with the symbol opg4(z, &)
which is given by

oa(z,§) = Z Ogop(z,§)D;oa(z,£)/al.
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 Recall DI = (71—1-5%)1
Proof. Note, the dual symbol is used for representation (7.7):

(@O = [ e *aaty,ulw) dy.

By (6.6) |
B‘U(I) = /“ eizeaB (Z, g)ﬁ(f) dg:

which implies
Cula) = @m)™ [[ oz, 5a(y, uly) dy de.

Clearly, if 04 € S, } and opg € S;’:;, then opd4 € S;’,'"""M and thus the symbol of
C isin S":""'"’ Ana.logously, we have that the symbol of !C =*A*B is in S""‘"'""
By Theorem 3.11 it follows that C is proper.

Let us find the symbol for C. By using Theorem 7.1 and Proposition 7.5 we
have

o84(®,6) = Y  0¢Dyop(2,£)54(y, )/0lly=-
(7.8) =Y _5los(z,6)DZ5a(z, £)}/c!
~ S 82[on(z,€)(—8)P Do 4(z, )]/l
a,B

Leibnitz formula implies
oAz, =Y, Y. (-1)PN9]os(z, |0 Do al, £))/5'8!

rﬁ T r7+6_a

(7.9.) = Z( -1)®l[8op(z, e)uaﬁ*"nﬁ*'“m(x £))]/8'81!

By7.0

=2 (3 Pgg)0fen Oll0f D e .

K f4é=x
We shall use the following identity
@97 = @ =)™ =)™ = 3 (Dl

B+b=a
forz=(1,...,1),y=(1,...,1). This gives

1 1 0, a#0
> Yol 3 () = {1, o7

f+é=c B+é=a
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and by substituting this in (7.8), the assertion of theorem follows. 0O

Proposition 7.7. Let 04 € S (X,R"),08 € 5,5 (X,R"),0< 6 <p <1
and let B be a proper operator. Then the operators AB, BA are determined by
the symbols in ST11™2( X R").

p.o

Proof. Let A = A; + R, where A is a proper YDO and R has a kernel
Kgr(z,£) € C°°(X x X). Then, BR and RB have smooth kernels. Let us prove
this for BR. Let ¢ € C§°. We have

B(Re)(w) = (@)™ [| e (Ro)a)blz, v, dydt
=0 [[[ ([ Knlwt)olt) dt) e, v, dy
= [ (L. Kav, 0z, 00(0) dy d ) ot .

Thus the kernel of BR equals
/ ./ e’ =EKR(y, t)b(z,y, £) dy dE
R2n
—-1)r o
- /:A;i |$(_" '!3'21' Aret(x y)ﬁKR(y: t)b(:'l:, Y, E) dy d{;—

Since |z — y| > d > 0 by taking enough large r, we obtain that the kernel of BR is
smooth with respect to £ and t. The same holds for RB. 0O

7.3. Classical symbols and pseudodifferential operators.

Definition 7.8. A classical symbol is a function a(z, &) € C*(X x R?), X is
open in R™ which has an asymptotic expansion

(7.10) a(z,8) & D am—j(z,6),

§=0

for some complex m, where a,,—;(z,£&) € C®(X x (R"\ {0})) are positively homo-
geneous with respect to £ of order m -4, § =0, 1,.... The set of such symbols is
denoted by CS™(X x R") and the corresponding pseudodifferential operators are
called classical pseudodifferential operators. a,, is called the main symbol.

Note a,—; is not smooth for £ = 0 and should be cuted off in an appropriate
way.

If ar(x,£) is positive homogeneous with respect to & of order k, then
agaf ax(z, £) is positive homogeneous with respect to ¢ of order k — |a]. Because
of that,

CS™(X x R™) c SRe(m)(X x R™).

The following proposition can be easily proved
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Proposition 7.9. a) If A and B are proper classical pseudodifferential op-
erators determinated by the symbols in CS™ and CS™2, then BA is a classical
pseudodifferential operator with the symbol in CS™1*t™3(X).

b) If A is a classical operator then A and A* are also classical with the symbols
in the same class.

7.4. Hypoellipticity and ellipticity. Parametrix. As we already said, ¥DO
are founded in the development for the theory of elliptic and hypoelliptic operators.
The construction of a parametrix for a given hypoelliptic operator which is to follow
is the most important application of the pseudodifferential calculus. Note that in
the first section we gave the motivation of the whole theory by considering elliptic
operators.

Definition 7.10. A function o(z, §) € C°(X x R"), where X is open in R",
is hypoelliptic symbol if the following holds.

a) There exist reals m and mg such that for every compact set KX C X there
exist positive constants R, C;, Cs such that

(7.11) Cilg]™ < lo(z,§)| < G281, [€] 2 R,z € K.

- b) There exist p,4,0 < § < p <1 such that for every compact set K C X
there exists a constant R such that for every pair of multi-indices a, # there exists
a constant Cy g k such that

(7.12) (B8 870(z,£))0H(x,6)] < Ca,p,kl€|?1*1HPl j¢| > R,z € K.

The class of hypoelliptic symbols is denoted by HS,;"°(X x R"). From
(7.11) and (7.12) it follows HS™;™ (X x R™) C 5™ (X x R").

Definition 7.11. ¥DO A is called hypoelliptic if there exists a proper ¥DO A,
with the symbol HS ;™ (X x R"™), such that A = A; + R;, where R, is smoothing.

If m =mg then o is called elliptic, i. e. A is called elliptic ¥DO.

Let us note that in the decomposition of a hypoelliptic ‘Operator A=A+ R,
where R; is smoothing and A; is a proper ¥DQO, it follows that its symbol belongs
to HS) ;™ (X x R™).

Recall, A= EI&ISm ao{z) D% is called elliptic, if its principal symbol satisfies

(7.13) am(z,8) = ) aa(z)€* #0,(z,£) € X x (R*\{0}).

laj=m

Ezample 7.1. Examples of hypoelliptic operators.

The Heat operator 9; — » ., 2. is an example of a hypoelliptic and not
elliptic operator.

(2) Differential operator D? + y*D2 + AD,, Re X = 0 is hypoelliptic if and
only if A #2k + 1, k € Z, while

D, +tay"D,, Rea # 0,

=1
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is hypoelliptic if and only if r = 2k, k € N.

(3) Pseudodifferential operator D,,+iay"\/ D2 + D2, Rea # 0, is hypoelliptic
if r is even or r is odd and Rea > 0, and the pseudodifferential operator given by
the symbol P(z, £) = 1 + |z|*¥|¢|?# is hypoelliptic for u/v < 1.

Remark 7.1. The change of the variables does not preserve the hypoellipticity.
For example, the change of variables

Yi=x;, 1=1,...,n, T=t+m§/2
in the heat operator, gives a non-hypoelliptic operator.

Proposition 7.12. For a differential operator A the following two conditions
are equivalent

a) A is elliptic. b) The symbol of A is in HS]§" (X x R").

Proof. The implication b) = a) is obvious. For the another part of the proof
we note that the symbol of A is

(7.14) a(z,€) = ) aa(z)t”.

la|<m
If a) holds, then

a(z,£)/am(z,§) =1+ b_1(z,§) + ... + b_m(z, ),

where b_;(z,£) € C®(X x (R™*\{0})) are homogeneous in respect to £ of order —7.
This implies (7.11), while (7.12) follows in the same manner. O

Definition 7.13. A classical operator A is called elliptic if its main symbol
am(x,£) € CS™(X x R") satisfies (7.13).

Proposition 7.12 holds for a classical ¥DO. More precisely, if a symbol of A
satisfies (7.11) for m = my then it satisfies (7.12), too. This means that in the case
of the symbols of elliptic operators we can omit the condition (7.12) for them. This
follows from the following proposition.

Proposition 7.14. Let o(z,£) € HS;™°(X x R™). Then
0™ (z,€) € HS, 5™ (X x R")
for £ large enough, [£] > & > 0. Further on, for any pair of multi-indices a, f € NI
(7.15) 9380 (z,€)/o(z,£) € S, AL

for £ large enough.

Proof. One can simply prove (7.15) for |a| = || = 1. Let p € N2*. By
induction with respect to lp|, it can be shown that

0P (z,€) _ % 3 gro+B.2)g(z, ) 1 [ 2otz ooz, £)

(7.16)  &° o(z,§) o o(z,8)

0'(:!:, E) k=0 po+..-+pr=p
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Now (7.15) follows from (7.16) by induction. [

Theorem 7.15. Let A be a proper pseudodifferential operator with a symbol
in H S;';;’"“ (X xR"), § < p. Then there exists a proper pseudodifferential operator

B with a symbol in HS, "~"°(X x R™) such that
(7.17) BA=I+R,, AB=I+R,,

where R,, Rs are smoothing operators and I is the unity operator.

If B' is an operator with the same property, then B — B’ is a smoothing
operator.

Proof. Let o4 be the symbol of the operator A. Chose bo(x,€) € H S;;"""m“ (X

x R™) such that by(z, &) = o' (z,£) for large enough ¢ and a proper pseudodif-
ferential operator By with a symbol in HS, 5%~ ™"°(X x R") such that gp, — bo €
S=*°(X x R™). Let us show that

BOA =1I- RO,
where the symbol of Ry is in S;t(," —9) (X x R™). By Theorem 7.6 it follows that

0B, A(z,6) =1+ Z 3?0‘;11:):0‘,4/&! =1+ E Bgale:aA/(a!aglaA)
al>1 la|>1

for large enough &. Propoéition 7.14 implies that Ry has the symbol in Sp_,‘(,p =9,
Let Cy be a proper YDO which satisfies

(718) Co ~ i(—l)jRg, i.e.
=0

(7.19) 00, = Y _(—1)Y 0%
3=0

From (7.18) immediately follows that the operator Co(I 4+ Rp) — I is smoothing, so,
if we put By = Cy By we obtain

(7.20) , BiA=1I+R,,

where R; is smoothing. It is clear from the construction that the symbol of B;
belongs to HS_ ;»~™°(X x R"). Analogously, we obtain that the symbol of the

operator By is in HS 7~ "°(X x R™) for which
(7.21) ABy, =1 + R,

where R, is smoothing.

Let B; and B, be a pair of ¥DO’s for which (7.20) and (7.21) hold. We
can suppose that they are proper operators. By multiplying the right-hand side of
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(7.20) with B. (in fact by applying B3) and by using (7.21) we obtain B; — B; =
R]_ Bz — Ble and R1B2 - Ble 1S smoothing. O

Definition 7.16. The operator B satisfying (7.17) is called a parametrix of
the operator A.

Note that an elliptic operator A with a symbol belonging to S}',(X x R")
has a parametrix B with a symbol in HS, ;7" (X x R").

Proposition 7.17. Let A be a hypoelliptic YDO. Then
(7.22) Sing supp Au = Sing suppu, u € £'(X).

If A is also a proper operator, then (7.22) holds for every u € D'(X).

Proof. The relation Singsupp Au C Singsuppu follows from the pseudolo-
cality of the operator A. Let B be a proper YDO which is a parametrix of the
operator A. Then from the equation u = B(Au) — Rju and pseudolocality of the

operator B it follows that
Sing suppu C Sing supp Au U Sing'supp Ru.

Since Rju € C*(X) (and Singsupp Ryu = 0) the assertion follows. O
This was a global aspect of hypoellipticity of ¥YDO’s. Now, we shall give few
assertions about a local hypoellipticity.

Definition 7.18. A class of symbols in HS}";™°(zo, &) consists of symbols
in ST, which are hypoelliptic at (zo,&), i.e. which satisfies the conditions of
Definition 7.10 in the set of the form U x I'g ,, where U is a neighbourhood of the

point g and ' , = {E, II%T - ]%g-[‘ <, [£ > R}.

A ¥DO A is called hypoelliptic at z¢ (locally hypoelliptic at =) if there
exists a proper YDO A; with a symbol in H S;':;'“" (9, &) for every £ € R™ such
that A = A; + R;, where R, is smoothing in a neighbourhood of z¢. Locally elliptic
¥DO are analogously defined.

The following assertion can be proved in the same way as in Theorem 7.15.

Proposition 7.19. Let an operator A be hypoelliptic at zo (and proper).
Then there exists an operator B, hypoelliptic at ¢ (and proper) such that

(7.23) BA=I+R,, AB=1I+Ry,

where R, Ry are smoothing operators in a neighbourhood of xzo, and I denotes
identity operator. If B' is an operator with the same property as B, then B — B’
is smoothing in a neighbourhood of z;.

Let A be a classical elliptic ¥YDO with a symbol a(z, §) such that

a(z,6) % Y am—j(2, £),

§=0
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where an—;(z,€) € C°(X x (R™*\{0})), am—;(z, &) is positively homogeneous with
respect to § of order m — j, j € N, and a,,(2,€) #0,z € X, £ #0.

Let B be a parametrix of A given by the symbol b(z,£). We shall prove that
b(z,£) has an asymptotic expansion

b(iB, 6) ~ Z b—m-—j(m: 6):

J=0

-where b_pm—_j(z,€) € C°(X x (R*\{0})), b—m—j(z,§) is positively homogeneous
with respect to £ of order —m — j, § € N. The formula for composition implies

Z O¢a(z,€)Dzb(z,€)/al =1 or

(7.24) ) 82am—i(z,E)DIb_pm—j(z,€)/al = 1.

ak,j

By factoring the expression with respect to the degree of homogeneity we obtain
the following system of equations

(7.25) Gmb-m =Lamb_m—j+ ¥ (8fam—ik)(DZbom—i1)/al =0,

k+l+|a|=j
<3

3=L12,....

The functions b_.,,—j{z, &) in (7.25) are uniquely determinated and we have to find
a proper YDO B such that og(z,€) — b(z,£) € S™°(X x R"). Such B is the
solution to the system.

‘8. Wave front sets and ¥DO

The notion of the wave front set was introduced by Hérmander [10] and,
independently, by Sato (he called it singular spectrum). It is a basic notion of
microlocal analysis.

Pseudodifferential operators do not increase the wave front set and this is
one of the most important property of this class of operators. For example, if we
apply the method of parametrix on elliptic operators, then the set of microlocal
singularities will not be changed.

8.1. Sobolev spaces and the wave front set. First we recall some properties
of Sobolev spaces.

A distribution f belongs to H* (R™) if and only if (1 — A)*/2f € L2(R").
Note that (1 — A)*/2 is an elliptic ¥DO of order s. (Note in this section we
deal with operators with symbols in $* = 57, s € R.)

Let X be an open set in R®. Then H{ (X) is the space of distributions
f € D(X) such that Af € L? (X) where A is proper elliptic pseudodifferential

loc
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operator of order s. Note, f € L? (X) if and only if for every ¢ € C§°(X),
fo € L3(X).

Proposition 8.1. (1) Let f € D'(X). Then f € H} (X) if and only if
Af e L} (X) for every proper ¥ DO A of order s.

{oc

(2) A(Hp, (X)) C Hp, ;™ (X) for every ¥DO A of order m.

Proof. (1) Let A be a proper ¥DO. Then Sf € L? . since Af = AB~!Bf,
where B is a proper elliptic operator of order s. Thus the assertion: follows.
(2) Since the composition of two proper operators of orders m; and m, is a

proper one of order m; + mo, Part 1 implies that A(H}.) C H;,.,™, where Ais a
proper pseudodifferential operator of order m. [

Note that U — H _(U) is a sheaf with respect to the restrictions. (For the
definition of a sheaf we refer to next section)

Definition 8.2 Let K be a compact subset of X. Define Hf = H} (X)NDY
(where D}, denotes the space of distributions with supports in K).

With the appropriate scalar product, H§ (X) is a Hilbert space (H .(X) is
a Frechét space).

The following assertion is important for the microlocal analysis of distribu-
tions. |

Theorem 8.3. Let A be a proper elliptic pseudodifferential operator of
ordermon X and f € D'(X). If Af|x: € H, (X'), then f|x' € H;';"‘(X'), where
X' C X, X is an open set.

Proof. Let B be a proper operator in HS~™~™ which is a parametrix for
A (BA = I + R, where R is a smoothing operator). We have shown in Proposition
7.9 that for every f € D'(X), BAf — f € C®(X). Let z € X and g = ¢ Af, where
¢ € C§°(X), and ¢ = 1 in a compact neighbourhood of . Then g € H} .(X) and
g—Afly =0, where V = int K. Moreover, (Bg—BAf)|v, (Bg—f)lv € C*(V) and
since B is of the order —m, by Proposition 8.1, (2) it follows that Bg € H;;L™(X).
So f|lv € H*t™(V). This holds for every £ € X' and this implies f|x. € H;t™(X").
0 | __

Definition 8.4. Let X be open in R®, (z9,&) € X x (R"\{0}) and u € D'(X).
Then (xg,&) is not in WF(u) if there exists v € £'(X) such that u = v in a

neighbourhood of o and there exists £ > 0 such that for every N > 0 there exists
Cn > 0 such that

8.1) O] < On (1 +€)7M2 forl & - 28] <

that is, 9(£€) rapidly decreases in a conic neighbourhood of &. In this case it is said
that u is microlocally regular in (zg, &o).

The closed conic set WF(u) € X x (R™*\{0}) (closure in X x R™ \ {0} of the
complement of the set of all microlocally regular points) is called the wave front

set of the distribution u.
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Theorem 8.5. If (z9,&) is not in WF(u), then (zg,&o) is not in WF(pu)
for every ¢ € C§°. |

Proof. Let ', be an open cone of the form [, = {nl T?:T — é-g-[ < €} and
v € &', u = v in a neighbourhood of 3. Then

@)(©) = [ 8(€ — m)@(n) dn + [ 8(€ — n)é(n) dn,

Ini<R |n]>R

for £ € I';, where R will be determined later. We have

1@)(©)] < C sup [6(6 - n)] +CCL / (1+ |€ = )P(1 + [n])~ d
In|<R In|>R

where we have used the Paley-Wiener theorem for v € £' and ¢ € Cg° (lt"}(E)l <
C(1+1€1)?, 1#(6)| < {mkyr )- This implies

$o(&)] < C sup |9(€ —m)] + CCL(L + [€])P /l i
n

In|<R

< CC sup |6(¢ —n)|+CCL(1 + |¢))PRTP-E,
in|<R

Put R = [¢]|'/2. If £ belongs to a cone 'y, €' < €, then £ — 7 € T for large enough
¢ and |n| < R. Beside that, |£ — 5| ~ |¢] and R*tP~L x |¢|(ntP—L}/2_ For large

enough L we obtain that (pv)(£) rapidly decreases when |{| =& 00,6 €. 0O

By this theorem it follows that in Definition 7.10 we can take v = u,p €
C§°(X), =1 in a neighbourhood of zy.

Fzample 8.1. 1. WF(é(z)) = {(0,€), £ € R" \ {0}}. 2. Since d(z;) =
6(z1) ® krn-1, where R*! = {z' = (z,,... ,2,)} and kpa-1 =1 for =’ € R*7}, it
follows that WF(d(z1)) = {((0, z'), (&1,0)), =' € R*1, & € R\ {0}}.

Proposition 8.6. Let w7 : X x (R*\{0}) — X be the natural projection and
let wu € D'(X). Then m WF(u) = Sing supp u.

Proof. If ¢ is not element of Sing supp u, then by taking ¢ € C§°(X), p(x) =
1 in a neighbourhood of zo, and ¢(z) = 0 __1_1_1___ a neighbourhood of Singsuppu,
we obtain that pu € C§°(X). This implies (pv) € S(R™) and thus x4 is not in
7 WF(u).

Let zo ¢ # WF(u). For every § € S™™! there exist ¢, € C§°(X) and a
conic neighbourhood I'¢, of & such that g (z) = 1 in a neighbourhood of zo and

ﬁ

(Peo 1) () rapidly decreases in I'¢,. Since S™~! is compact there exist finitely many
points £1,... ,&y such that S*~! is covered by I'g, N S™~1,... ,T¢, NS™L. Thus,
Leyy... , ey cover R®\{0}. Then, by putting ¢ = H;‘;l P¢;, we obtain that (pu)
rapidly decreases, and this means pu € C§°(X), i.e. u € C* in a neighbourhood
of g. So, zg is not in Singsuppu. O
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Proposition 8.7. Let u € D'(X) and (z0,&) € WF(u). Then there exists a
classical ¥DO A of order 0 such that 04 = 1(mod S~%°) in a conic neighbourhood
of (:!.70,50) and Au € CSO(X)

(Recall that a conic neighbourhood of (o, &) is of the form U x g ¢,, where
U is a neighbourhood of z¢ and I'g ¢, a cone around & (cf. Definition 7.18)

Proof. Let ¢ € C§°(X),y = 1 around z9. Then (pu)(£) rapidly decreases in a
conic neighbourhood of . Let x(§) € C®(R"),x(tf) = x(§) fort > 1, |&]| > 1 (x is
homogeneous of order 0 for |[£| > 1.), x(€) = 1 in some small enough neighbourhood

of &. This means that x(£)(pu)(§) rapidly decreases, so x(D)(p(z)u(x)) € C=(X).
But then ¥(z)x(D)(p(z)u(z)) € C°(X) if ¢¥(z) € C(X). We can take 9 such
that ¥(z) = 1 in a neighbourhood of zo. Then A = ¥(z)x(D)p(z) satisfies all
assertions of the proposition. 0O

Note that the operator A = ¥(z)x(D)y(z) from the previous proposition is
locally elliptic (see Definition 7.18). -

Theorem 8.8. Let u € D'(X), (zo,&0) € X x(R"\{0}) be given as well as the
classical operator A defined by the principal symbol a,(z,§) € CS™(X x R"™). Let
either u € £'(X) or A be proper. Suppose that a,,(zo, &) # 0 and Au € C°°(X).
Then (zo, &) ¢ WF(u).

Proof. By Proposition 7.19 and Section 7.4, we can make the parametrix for
a classical elliptic operators. So there exists a classical pseudodifferential operator
B with the symbol in CS~™(X x R"), such that 6p4 = 1(mod 5S™%°). Since
BAu € C*(X) we can assume that o4 = 1(mod $™°°) in a conic neighbourhood

of ($01 60)

Let x(§) = 1 in a neighbourhood of &, x(§) € C*°(R"), x(£) is homogeneous
of zero order with respect to £ for |£| > 1 and let ¢(z) € C§°(R"™), ¢ = 1 in a
neighbourhood of z¢. Let the supports of ¢, x be chosen such that |

x(€)p(z)oa(z, &) = x(€)p(z) (mod S™).

Then x(D)p(z)A — x(D)p(z) is smoothing operator, and since x(D)cp(:c)Au €
C*(X), it follows -

(8:2) o x(D)p(z)u € CP(R™).
If we prove that
(8-3) x(D)¢(z)u € S(R™),

then it would follow that x(£)(pu)(€) € S(R™), and specially, {(pu)(£€) would rapidly
decrease in a conic neighbourhood of &, what we are aimed to prove.

The implication (8.2) < (8.3) follows from the following lemma, which is
formulated separately because it has a more general meaning. [J]
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Lemma 8.9. Let v € £'(R"),x(§) € S}, p > 0. Then for every N > 0 and
a € Ny there exists Cq, v such that

(8.4) |D*x(D)v(z)| < ca,N|x|—Na z € R", d(z,suppv) > 1.

Proof. We can consider only the case a = 0, because £*x(§) € S";" ledf, Also,

we may assume that v is continuous because every element v € £'(R"™) is of the
form v =3 1., Dy, vy € C(R™). We have

(8.5) x(D)v(z) = @m)™" [ =V (E)u(y) dyde.

n

Integration by parts gives
|z — y| 72V (~Ag)Neil=—0)t = et@—v)¢

From (8.5), with d(z,suppv) > 1, we have

(8.6)  x(D)v(z) = (2m)~" / e Z 9z — y| 72N ((—A)N x(€))v(y) dyde.

By choosing large enough N, such that (—A¢)Nx(¢) € S, »—1, one can see that the
integral in (8.6) converges absolutely and satisfies C(1 +z2)~N. 0O

Definition 8.10. Let A be a classical pseudodifferential operator with the
symbol in CS™(X x R"). Then *

char(A) = {(z,£) € X x (R"\{0}), am(z,£) = 0}

Theorem 8.8 directly implies the following important (and practical) charac-
terization of the wave front set.

Theorem 8.11. (1) Let u € £'(X) and A be a classical ¥DO with a symbol
in CS™(X x R"). If Au € C*(X), then WF(u) C char(A).

(2) Let u € £'(X). Then WF(u) = () char(A), where the intersection is taken
over all classical operators of the order zero (with the symbols in CS°(X x R™))
for which Au € C*°(X).

(3) Let u € D'(X). Then WF(u) = () char(A), where the intersection is taken
over all proper classical operators of the order zero for which Au € C*®°(X).

(4) Let A be a proper ¥YDO with the symbol in CS™(X x R"), u € D', or
u € E'(X). If am(z0,&0) # 0 and (x9,&0) € WF(Au), then (zo,&) € WF(u). This
means

(8.7) WEF(u) C char(A) U WF(Au).

The importance of the second assertion is that the definition of WF(u) makes
sense if X is a manifold (see Section 9.1). This theorem gives us the estimate of
the propagation of singularities of a pseudodifferential equation.
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Theorem 8.12. (Microlocallity of ¥DO’s) Let u € D', A be a ¥DO with
symbol in S7%(X x R"), 0 < 6 < p <1 and let A be proper or u € &'(X). If
(zo,&) € WF(Au). In other words

(8.8) WF(Au) C WF(u).

Proof. The condition (zo, &) € WF(u) is equivalent to the existence of a
proper classical ¥DO of order 0 such that Pu € C*°(X) and op = 1(mod S~) in
a conic neighbourhood of (z¢,&). Let Q be a proper classical ¥DO of order zero
such that go(zo, &) # 0 (qo is the main symbol of Q) and og € S~ outside some
small conic neighbourhood of (zq,&0) and

PQ=Q and QP =@ (mod smoothing operators).

We shall show that QAu € C°(X) because op =1 (mod S~°°) in a conic neigh-
bourhood of (zg, &) and oga—0gap € S~ in this neighbourhood, and og € S~
out of it. We have that QA — QAP is smoothing. So, it is enough to verify that
QAPu € C*(X). But this follows immediately, because Pu € C*°(X). The fact
that (zq,%) & WF(Au) follows from the previous theorem. 0O

From the two previous theorems we have the following theorem.

Theorem 8.13. If u € £'(X) and A is a classical ¥DO with a symbol in
CS™(X x R"), then |

WF(Au) C WF(u) C WF(Au) U char(A).

With the assumption that A is proper, the assertion holds for u € D'(X). Specially,
if the operator A is elliptic, then WF(Au) = WF(u).

8.2. Microfunctions. In this section we shall present the notion of a micro-
function by following [11]. Microfunctions are the equivalence classes in the space
of distributions whose representatives are determined only with their singularities.

First, we shall present some of the basic facts of sheaf theory.

Let X be a topological space, U be an open set in X. Let {F(U)}uvopen set inX
be a family of vector spaces. For U such that V C U there exists a linear mapping
pvu : F(U) = F(V) such that F(U) is a vector space of the functions on U and

puvv =1d and pwv ° pyvu = pwu,

for WcVcU.

The family {F(U),puyv, U,V C X} is a presheaf. F(U) is called the set of
sections. In the sequel we shall consider the case when F(U) is a subspace of F(V)
and if py,v is a restriction of f € F(U), then py,v f = fv is a restriction of f to
VierVCU.

Presheaf is a sheaf if the following two conditions are satisfied.

(i) Let U = U,cp Ux (all sets are open) and f € F(U). If for every A € A
flu, =0, then fly = 0.
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(ii) Let fx € F(U,) and let for every A\, t € A, fr = fu in Ux NU,. Then there
exists f € F(Uyea Un) such that fly, = fx.

Let F and G be presheaves or sheaves on a topological space X. The family
h = {hy} of linear mappings F(U) = G(U) is a (pre)sheaf homomorphism if the
following diagram commutes ;

F(U) —2s G(U)

P{;UT IPE'U

Let F and G be presheaves on a topological space X. Then F is a subpresheaf
of G if for every open set U there exists associated inclusion iy : F(U) = G(U)
such that the family i = {iy} is a presheaf homomorphism. In the same way we

define a subsheaf.

Let F be a (pre)sheaf on X and z € X. Then F, = limind, ¢y F(U) is called
a stalk in z. An element in F, is called a section germ or a germ of F in z.

For a presheaf F one can construct a sheaf F with the same stalks as in F.
This sheaf is called the associated sheaf for presheaf F. If a presheaf F satisfies
condition (i) for sheaves, then its associated sheaf is simply defined:

F(U) = limindgy,} {(s2)|sx € F(Ur), salvanv, = sulvanu, }

where U, are open subsets of U.
Now we shall present the definition of a microfunction.

Let X be an open set in R® and SX = X x S™1. Let U be an open set in
SX and CU be a cone generated by U in X x R":

CU = {(z,A0)|(=z,€) € U, A > 0}.
Let us define

O™(U) = S™(CU)/S~°(CU) and O(U) = | ] O™(U) = S=(CU)/S~=(CV).
meEN

The elements of these sets are called classes of pseudodifferential operators (of order
m) on U. If there are no misunderstandings, we shall omit the word “class”.

Let us define
Sing(X) = D'(X)/C*(X).

This is a space of singularities on X. The family Sing(X), X C R, is a sheaf. For
f € D', the support of f in Sing(X) is Singsupp f in D'. ¥DO acts as a local
operator on the space of singularities, which means that it does nod increase the
singular support of the distribution (pseudolocality).

Definition 8.14. Let f € D'(X) and (x,£) € X x R™\ {0}. It is said that f
is a C*®-function in (z,§) if there exists a proper YDO A, elliptic in (z, ), such
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that Af € C°°(X). Singular spectrum of f, SingSp f, is the closure of the set of
all points (z,£) in X x R™ in which f is not C*°.

Definition 8.15. Let f € D'(X) and U be an open set in SX. We say that
f € C*(U) if SingSp f NU = (. The microfunction defined by f in U is a class of

J modulo the space C*°(U). :

By Section 8.2, one can see that the notions of WF and Sing Sp are equivalent,
so in the sequel we shall use only the notion of the wave front set instead of singular

spectrum.

We shall define the sheaf of the microfunctions in one dimension.

Recall, D'(X), X C R is a sheaf of the distributions and S® = {—1,1} is the
unit circle in R.

We say that u € D'(X) is microanalytical in (z,1) (resp. (z,—1)), z € X if
there exists a neighbourhood U of £ and v € £', u = v on U such that for every
N € N there exists a constant Cn such that

| F(©)@)] < Cn(1+€)~N2, &> 0 (resp. £<0).
The point (z, &) (where g = 1 or —1) is in WF u if and only if it is not microana-
lyt1ca.l in _(:B, Eo)
Let us define a subsheaf C** of the sheaves D'(X) x {—1} & D'(X) x {1} in
the following way. Definition 8.16. Let |
C™* = {f € D'(X); WF(u) N X x {~1} = 0}
® {f € D'(X); WF(u)nX x {1} = 0}.

The associated sheaf for a presheaf D'(X) x {~1} & D'(X) x {1}/C>* is denoted
by C and it is called the sheaf of microfunctions.

Intuitively, f € D'(X) defines a germ in (z,&) (o = £1) modulo germs of
any CF7 ¢,)-function which are microlocal in (z, o).

The support of a microfunction is a wave front set of a distribution which
defines it.

9. Change of variables

Let (y,n) — (z,€), (y,n) € V, (z,£) € U, be a diffeomorphism where U
and V are conic regions in R® x RY and R™ x RN, respectively, z = z(y,7),
¢ = &(y,n), where z(y, i) is positively homogeneous of order 0 and £(y, n7) positively
homogeneous of order 1 with respect to . Let b(y,n) = a(z(y, n), (y,n)).

Theorem 9.1. Let a(z,§) € S5)%(U). Assume that one of conditions

a)p+do=1; b)p+é>landz=2(y); c)z=z(y),{=E,M);
holds. Then b € 57%(V).

Let us consider the oscillating integral

To(aw) = [ 4= Oa(a, u(z) dz dt [os] = (A), u(@)),
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where
A@) = [ ¢#=9a(z, ) dg [osd

and where we use the same notions as in the Section 5.

A phase function ¢(z,&) is called regular if d(8¢/0¢;), 7 = 1,...,N, is a
linearly independent set in Cjy, i. e. if the range of the matrix (deedez)Nx(N+n)
equals to V.

(We shall use the notation

d(94/0¢;) —Z 3€ 3€ s +y i k% dzs,

k=1
and let us remind that Cy = {(a:, £), ¢¢(z,6) =0} and Ry = X \ C.)

Let a € S7%(X x RY) and a = 0 in a conic neighbourhood of C4. Then
A e C™®(Ry) a.nd one can simply prove that A € C*°(X).

The following lemma is interesting in its own. It is called Ha.da.mard’s lemma.
Lemma 9.2. Let ¢1(z,£),...,¢(z, &) be in C*(U) and let them be posi-

tively homogeneous of order 0 with respect to €. Let d¢s,... ,d¢x be linearly in-
dependent on the set C = {(z,§) € Ul|¢;(z,£) =0, j =1,...,k} and a € S7%(U),

alc = 0 and p+ 6 = 1. Then there exists a;j(z,§) € SZ‘;"’(U), i =1,. k such
that

k
(91) a= Z a,-tﬁj.
=1

If a(z, €) has a zero of infinite order on C, then the same holds for all a;j(z,£) on
C as well.

Theorem 9.3. Let ¢ be a regular phase function, a € S;5(X x RN) and let
one of the following conditions hold:
l)p>éandp+d=1, 2)p>6 and ¢ is linear with respect to §.

Then: a) If a has a zero of infinite order in Cy, then A(z) € C*(X).
b) If a =0 in Cj, then there exists b € S - (p=5) (X x RN) such that

Is(au) = I;(bu) for every u € C5°(X).

Proof. Suppose that 1) holds. If a|c = 0, by previous lemma, we can write

N
(9.2) a=) ajp;,a;€ S"‘*‘" (),

j=1

where ¢; = 0¢/0¢;. By using the fact that ¢;e*? = —i -5%;6“” and integrating by
parts, we obtain
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Since g—?- € Sm+6 P(U), we have proved the assertion a). This implies that if a has
J
an infinite order zero in Cy, then b can be chosen such that it has the same property.

Thus, we can transfer the assertion a) to the case a(z,§) € S, ; ~M(X x RY), where
M is arbitrary large. But, then the integral

A(z) = ./1; . ei¢(”’€)a($, £€) d¢

absolutely uniformly converges with respect to x, as well as all the integrals which
can be obtained from it by differentiating the integrand with respect to = of order
up to I(M), where (M) = o0 as M — oo, which implies the smoothness of A(x).
=

et k: X 2 X; (X and X, are open), z =k(t),z € X; CR*t€e X CR"
be a diffeomorphism. Then the induced mapping, the pull back, x* : C*°(X,;) —

C*(X) is defined by (k*9)(t) = (¥ o k)(t) = ¥(x(?)).
Let A be a YDO on X. We define A4, : C§°(X;) = C*°(X;) by the diagram

Cs°(X) 4., C>®(X)

1l

03°(X1) - y > Cm(Xl)

where x; = k1. Then
Aju = (A(u o k)(z)) o Ky, i.e.

Aru(a) = @) [[ e -Pa(w ), p, Qulx(p)dpa.
2n
If we change the variables by p = k;(y), then

03) i) = @n) [[ SO0l (2), k(). uls)| G| e,

where dp/dy = Ok, /Oy and |0k, /By| is Jacobian.
This means that A; is a Fourier integral operator with the phase function

#(z,y,€) = (r1(z) — r1(y))¢-

Theorem 9.4. With the above notation, A; is a pseudodifferential operator
forl1—p<é<op.

This will be a special case of the following theorem.

Theorem 9.5. Let ¢ be a phase function on X X X X R" such that
1) ¢(z,y,&) is linear with respect to &.

2) ¢¢(z,y,€) =0 if and only if z = y.
Let A be a Fourier integral operator

(9.4) tu@) = [[ e#es0aa,y,0)uty) dyas,
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where a € S;’:a and 1 —p <4 < p. Then A is a pseudodifferential operator with an
amplitude in S77.

We need the following lemma, for the proof.

Lemma 9.6. Let assumptions 1) and 2) of Theorem 9.5 hold. Then there
exists a neighbourhood X of the diagonal A and a C'® mapping ¢ : X — Gl (n, R)
(regular matrices of order n on R) such that:

a) ¢(z,y,¥(z,y)E) = {(z — v),£), (z,y) € X>.
b) det ¢(z, z) - det ¢gg($:y:€)|y=z = 1.

Proof. By 1),
¢3($, y,ﬂ) = Z¢j(zay)9j'

j=1
Now, by 2) we have ¢;(z,z) = 0 and if ¢;(z,y) =0for j =1,... ,n,then z = y.
Note,
n a¢ n 3¢
! ry ! — ——
ot == (35 20, 35 2

j=1 j=
By differentiating the expression ¢(z, z,8) = 0 with respect to z, it follows

¢:’= (:B! Y, 9)|t='y + ¢; (:E, Y, 9)Iz=y - 0, i.e.
(95) ¢:|: (Ia L, 9) - _¢; (:!2, T, 9)

From ¢4(z,z,0) = 0 and ¢, , 4(%,¥,0)|2=y # O it follows @7 (z,y,0)jo=y # 0. If
this is not true, then (9.5) implies ¢, (z,y,0)z=y = 0, i. €. ¢, , 4(Z,¥,6)|z=y = O,
which gives a contradiction. This means that there exists k € {1,... ,n} such that

n o,
Ej:l Ef'fgikwy # 0, so

0;, 1, .. ,¢,,).

(9.6) I det (g—%i-(x,y)) i % 0.

By Hadamard’s lemma (Lemma 9.2), for close enough = and y we have
n
$i(z,y) = Y ki (T ¥) (T — yi);
k=1

where ¢x; € C®(X"), X' is some neighbourhood of the diagonal in X x X. We also
have

a¢j (3:1 y)

3:1:k

(9.7) Prj (ﬂ‘r_, T) =

Denote by ¢(z,y) the matrix (@x;(x,y)). From (9.6) and (9.7) it follows that there
exists a neighbourhood 2 of the diagonal in X x X such that det ¢(z,y) # 0 for
(z,y) € Q. Let |

(9.8) . ¥(z,y) = ¢(z,y)~' (the inverse of ¢)

=y
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Since

¢(:Bs Y, 9) —= Z (:bkj (:L', y)aj(ﬂik - yk) - ((.'L' - y): ¢($, y)ﬂ),

3.k=1
by putting ¢(z,y)0 = £ we obtain a), while b) follows from (9.7) and (9.8). O

Proof of Theorem 9.5. We assume that a(z,y,8) equals 0 for (z,y) € X x
X\ @, where ¥ C  and €' is a neighbourhood of A. By putting 8 = ¢(z,y) "¢
in (9.4) we obtain

Au@) = [[ e r9a(a,y,9(@,9)6)| et vz, v)luly) dy .

From Theorem 9.1 it follows that a1(z,y,£) = a(z,y,¥(z,y)€) is in S7%(X x X x
R").

9.1. Pseudodifferential operators on C><-manifolds. We will give the
definition of pseudodifferential operators on a manifold, but before that we shall
recall the definitions of the theory of generalized functions on a manifold. Let us
remind that Hausdorff topological space M is locally Euclidean of dimension n if
every point in M has a neighbourhood which is homeomorphic to an open subset
of R™.

If © is a homomorphism of an open set U C M on an open subset of R",
@ is called the coordinate mapping and (U, ) is called the coordinate system or
coordinate section. Recall, a differentiable structure F of the class C¥, k € [1, 00),
on a locally Euclidean space M is a collection of coordinate systems {(Uy, o), €

A} which satisfies:

()] UpesaUa = M.
(ii) o © gaEl is of the class C* in pg(U, N Up) for every o, 8 € A.

(iii) The collection F is maximal with respect to (ii) which means that if (U, ) is
a coordinate system such that ¢ o ¢! and @, 0 ™! are of the class C* for
every a € A, then (U, ) € F.

If Fo = {(Ua, @a), @ € A} is an arbitrary collection of coordinate systems
satisfying (i) and (ii), then there exists a unique differentiable structure F contain-
ing Fo. Fo is called the atlas of a manifold M.

In the sequel we shall consider only C'*°-manifolds. Let M and N be C°-
manifolds.

Let O C M be open. Then F : O = R is a C*®-function on O, (f € C®(0))
if f o™, (wno) is a C®-function for every coordinate section (U, ¢).

A mapping 9 : M — N is of the class C*° if for every two coordinate sections
(U,) on M and (Uy, 1) on N, @1 0 oo™,y is a C®-function.

The important construction in the analysis on manifolds is the partition of
unity. Let M be a manifold and U = {U,, a € A} be a cover of M. Then there
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exists a C*° partition of unity {y;, ¢ € N} corresponding to the cover i such that
supp ; is compact for every ¢ € N and supp y; C U, for some a €A.

If v € C$°(U) (where U = ¢(U)), then we define

{ voy, inU,
U =
0, otherwise.

The definition is the same if v € C*¥(U) or v € LP(U). We shall use the
notation u = v o ¢.
Let u € C*(M) and uy = uo ¢} ', where (Ug, %) is an arbitrary coordinate
section. There holds:
(a) u=1ug ot =ug o on Up NUp.
(b) uk = up o (pr 0y ), which is denoted by (pr 0 ;') ur = us.
Conversely, if (b) holds for arbitrary sections (Ug, i) and (Ups, ), then
there exists a unique function u € C*(M) satisfying (a).

Definition 9.7. Let F = {(Uy, ¢x), k € A} be a differentiable structure of a
manifold M. If there exists a distribution u; in D'(ywx(Uk)) for every coordinate
section (U, i) and if

(c) ur = up o (prr 0 px ) on @r(Ux N Up'),

then {ux, k € A} is a distribution in M. We shall denote it by « € D'(M), and

that is in fact the notation for the family {u;, k¥ € A}. We shall use the notation
~1

Uk = UO P . |
This definition generalizes the definition of a function in C*(M). The proof
of the next theorem is omitted.

Theorem 9.8. Let F = {(Uk, ¢k), k € Ap} be an atlas for M. If {u;, k €
Ao} is a family of distributions in D'(px(Uy)) satisfying (c) for every k,k' in Ao,
Then there exist one and only one distribution u € D'(M) such that

uo ;' = uy for every k € A.

There appears a natural question: Why one can not ‘define the distribu-
tion on a manifold M as a continuous linear function on C§°(M)? The reason is
that there does not exist an invariant procedure for the definition of the integral
[ fo,f € C(M), ¢ € C§°(M) such that f can be identified with a continuous linear

functional.
Let u be a continuous linear functional on C§°(M). For every (Ui, wx), by

uk(4) = u(d o pr), ¢ € C5°(Us)
is defined an element in D'(@r(Uy)). But {ug, k € A} does not satisfy condition

()-
Let ¢ € C§°(px(Ux NUx)). Then

(uk, @) = (u, o pr) = (u,d 0k 0 P! o) = {up, P o 0 Pi').

7
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By the change of variables: t = ) o ¢}, (z) we obtain

0wl
(ua(8), 4(8)) = (e (<), bk o0 @) = (i (w07 (1), ()| 2222 D)

i.e.

O 0 0t (z _
Pk é_ik (T)I“""’ o 0 g,

This is similar to condition (c), but now we have an additional multiplication by
Jacoby’s determinant which equals |Gy o ¢ (z)/8%].

A family {ux, k € A} of elements in D’(pr(U)) satisfying (9.9) is called a
distributional density.

In the same way we define a C*-density by (9.9).

If a is a strictly positive C*-density on M, and u € D'(M), then au is the
distributional density, and the mapping 4 — au is a bijection of the space of the
distributions to the space of distributional densities.

Let u be a distributional density and = = ¢(y). There holds

(9.10) (pau(z), ¥(z)) = (u(y), ¥" ¥ ¥)) = (uly), ¥(o¥))) ’
= (u(p™ (2)), [J1¥(2)),

where |J] is a Jacoby’s determinant. This formula will be useful for the definition
of a pseudodifferential operator on a manifold which acts on distributions with

compact supports.

Let A be a linear operator, A : CP(M) - C*(M), where M is an n-
dimensional C*°-manifold. Let (U, ) be a coordinate section of the manifolds.
Then the commutative diagram

Cse(U) —=— C>(U)

w.T ” T ‘p:
C(0) —— C(0)

(9.9) Up = |

uniquely defines the operator A;.

Definition 9.9. A : C§F (M) — C*®(M) is a ¥DO on M if for every coordinate
section the operator A; defined above, is a ¥DO on U,.

By using (9.10) and the analogous procedure as in the case of ordinary ¥DO’s
and like in the previous definition we have that A is a Y¥DO on a manifold if A4, is
a YDO on U, where A; is defined by the following commutative diagram

E(U) —2— D'(U)

cp:"T lw-
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Theorem 9.5 ensures that a ¥DO on an open set X C R" can be considered as DO
on manifold X. Theorem 9.1 shows that 577%(T* M) is well defined for 1—p < § < p.

Part 1l. COLOMBEAU GENERALIZED FUNCTIONS AND ¥DO

In this part we present the basic concept of the pseudodifferential calculus in
the frame of Colombeau’s generalized functions. It is developed in [16], [17], [18]
, [12] as well as by Oberguggenberger [14].

10. Basic notions

We recall in this section the notation and notions in Colombeau’s theory.

As(R™) denotes the set of the functions ¢ in Cg°(R"™) such that [, ¢(t) dt =
1, A,(R") = {¢ € Ao, [patid(t)dt =0, 0 < |i| < g}, g € N, where t! = ]! ---tin.

Obviously, if ¢ € A;, ¢ € Ny, then for every € > 0, ¢.(z) = e "¢(z/¢),
z € R", belongs to A,.

If ¢ € Ag, then it’s support number d(¢) is defined by

d(¢) = sup{|z|, ¢(z) # 0}

In the sequel we assume that ¢ in Ag has the support number equals one,
d(¢) =1, i.e. supp¢ C B(0,1).
Denote by £[(?] the set of the functions R : Ao X ! = C, (¢,z) —» R(¢, ),

which are in C'°°(2) for every fixed ¢. Note that for any f € C°°({1), the mapping
(9, z) = f(z), (¢,7) € Ag x (, defines an element in £{?] which does not"depend

on ¢.

The space of functions R : Apg — C (resp.R) is denoted by &(C) (resp.
£o(R)). It is an algebra and it is subalgebra of £[}] in the sense of natural identi-
fication of R € £(C) (resp. &(R)), R: (¢, z) = C(9) € C (resp. R).

A function R € £[f] is called moderate if for every K CC  and o € N
there exists N € Ny such that, for every ¢ € Ay, there exist n > 0 and C > 0 such

that
0%R(¢e,x)| < Ce™, z€ K, 0<e <.

The set of all moderate elements is denoted by Ep[(].

The set of all moderate elements in £ (C) (resp. £ (R)), denoted by Eorr(C)
(resp. oar(R)), consists of elements R € £(C) (resp. & (R)) which satisfy: There
exists N € Ny such that for every ¢ € An there exist 7 > 0 and €' > 0 such that

IR(¢.)] < Ce™™, 0<e<n.

- Clearly Em[S1] and o (C) (resp. Eom(R)) are associative subalgebras of £[(]
and & (‘C) (I‘ESp. Eo (R))
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Denote by I' the set of sequences {a,} of positive numbers which strictly
increase to infinity. -

An element R € [0 is called a null element if for every K CC € and every
a € Ng there exist N € Ny and {a,} € I such that for every ¢ > N and every
¢ € A, there exists n > 0 and €' > 0 such that

|0°R(¢e,z)] < Ce® N, z€ K, 0<e <.

The space of null elements is denoted by N[Q].

The space of null elements of £(C) (resp. &(R)) denoted by Ng(C) (resp.
Mo(R)) consists of all the elements R € Eop(C) (resp. Eopr(R)) with the following
property: There exist N € Ny and {a,} € I such that for every ¢ > N and every
¢ € A, there exists n > 0 and C > 0 such that -

IR(¢.)] < Ce2e~N, 0<e<n.

 Clearly, N[Q] and Ng(C) (resp. Np(R)) are ideals of £x[?] and Egar(C) (resp.
Eom (R)). |
The spaces of generalized functions on 2, G({2), generalized complex numbers
C and generalized real numbers R are defined by

G(Q) = Em[Q/N]Q], C=Em(C)/No(C), R = Eop(R)/No(R).

( — G(Q) is a sheaf. This implies the natural definition of the support, supp, G.

Note that C and R are not fields and C = R + {IR. Because of that, from now
on, we shall use the symbols £opr = Eoar (C) and Np = No(C).

The classical complex numbers are embedded in C by

C>zm R(P) =z, ¢ € A,.

_ Let g € D'. Then Cd(g) € G is given by the representative g d., where
o(y) = ¢(-v). ' '
& is the set of all elements G € £ with the following property: For every

B € Nj there exist N € N, a € R and v > 0 such that for every ¢ € An there exist
C > 0 and > 0 such that

10°G(¢., )] < C(1 + |z|)7e®, fore < 1, z € R™.

M. is the set of elements G € & with the property: For every 8 € NI there
exist v > 0, N € N and g € T such that for every ¢ € A;, ¢ > N, there exist C > 0
and 1 > 0 such that

10°G(¢e, x)| < C(1 + |z|)"e9 DN fore < 1, z € R™.

It is an ideal of &;.

Colombeau’s space of tempered generalized functions is defined by G; =
Ee [Nt-
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It is said that G € G (G € G:) is equal to H € G (H € G;) in generalized
distribution sense, G = H(g.d.) (in generalized tempered distribution sense, G =

H(g.t.d.)), if for every ¢ € D (¢ € S)
(G - H,Y) =0in C.

A € C is associated to ¢ € C, A = ¢, if there exists N € N such that
lim. 0 Ay = c for every ¢ € An.

G € G is associated to H € G, G =~ H, if for every ¥ € D there exists N € N
such that for every ¢ € Ay |

31_%(6?(‘358: ') - H(‘:bsa ')s ¢) = 0.

The definition of t-association is obtained if one takes i € S instead of ¥y € D
above. |

For the microlocal analysis of Colombeau’s generalized functions we shall
define a subalgebra G*(2) by following Oberguggenberger [13].

G () is the set of all G € G(?) which have representatives G(¢, z) € Ep[]
with the property: For every K CC {2 there is N € N such that for every a € Np,
there is M € Ny such that for every ¢ € Ay there are ' > 0 and n > 0 such that

sup G (¢, 2)| < Ce™V, 0<e<n.

One can prove that G°((1) is a subalgebra of G({2).
Proposition 10.1. 1. g*(Q)ND'(Q) = C* () ([13)).

2. G*(QN), 2 C R" is a sheaf. | |

3. GeG())isG™® in Yy C N if it is G at every point of ;.

The last assertion means: For every x € (), there are open sets U and V such

that ) p
zelU, UccV,Vccy

and a function ¥ € C°(V), ¥ = 1 on U, such that ¥G € G*(£,;).

Definition 10.2. Let G € G(f1). The complement of the largest open set of {2
in which G is G* is called the singular support of G, Singsupp, G.

Recall, it is said that G is G* in ) C Qif Glg, € G ().
The set Sing supp, G, G € G({2) is defined to be the complement of the largest
open set ¥ C Q such that G|gr = 0.

From Proposition 10.1 we have that for distributions
Sing supp f = Sing supp, Cd f, f € D'(Q).

Denote by G.(£2) the set of all elements in G(2) which have compact supports.
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If G € G.(f), then it belongs to G.(R”) by defining

G(¢:$) =0,9€Ag, z € Rﬂ\supng

(and by using the sheaf property of G(R"™)). \

For every ¢; and 1, in C§°(R"™), where 1, and 1, equals one on correspohding
neighborhoods of supp,G,

¥1()(G(¢e, ) + NR"]) and 92(-)(G(¢x, ) + N[R"}}

determine the same element in G (R™). They are equal in G(R").
Thus the mapping M : G.(R™) — G (R"), symbolically written by

G(¢e, ") + N(R") = ¥()(G(de, ") + N[R?]) + Ne[R],

is linear, multiplicative and injective, which will enable us to consider G.(R") as a
subspace of G¢(R"). -
If G € G¢(R™), then G|, € G(w) is defined by a representative G(¢e, ‘)|,
where G(¢«, ) is a representative of G. |
If f € S'(R™) then Cd¢ f denotes the corresponding element in G¢(R") defined
b
’ (f * 9)(z) + G(9,z), where G(¢,2) € M[R"].

Let G € G:(R™) and w be an open set. If G|, determines an element in
G*°(w), then we say that it is G&° in w, where we use this notation to emphasize
that the generalized function in consideration is from G¢(R").

Let G € G(§)) and if G|, € G°°(w) where w is a bounded open set in 2. Then
M(&G), where k € C$°(R™) is equal to 1 on &, is G in w.
(Recall M(kG) = k1 (z)(£(z)G (¢, z) + N[Q]) + Ne[R"].)

Thus the singular support of G € G¢(IR") is the singular support of G consid-
ered as an element of G(R™). We define the subalgebra G (R") as follows.

G°(R™) is the set of all U € G.(IR™) which have a representative G(¢,z) €
E[R™] with the property: There is N € N such that for every a € Ny there is
M € Nj such that for every ¢ € Aps there are C > 0 and n > 0 such that

G (¢,z)] < CA+|z)Me N, 0<e <.

Note, if G € G (R") then G € G®(R").
Let p € C§°(R") such that g = 1 in some neighborhood of zero. Then
pe(z) = p(ze), € € (0,1), is called a unit net.

Let pu. be a unit net, B a measurable subset of R® and G € G;. Then we
define

t.p
G(z) dz € C by its representative / G(Pe,z)pe(z) dz € Eo, M.
B B
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If B = R" then the symbol [ “# is used. One can easily prove that G(¢.,-) € M
implies [ G(¢e,Z)pe(z) dr € Co. Thus the definition of the integral in G makes

S€nse.

11. Pseudodifferential operators

We will give the simplest definitions of an amplitude of type p=1, 0 = 0.
Definition 11.1. The set of amplitudes S;* = S7*(R™ xR™ xR" x (0, 1]), m €
R, is the set of functions a(z, y, £, €), smooth in (z,y, ) € (R")? for every ¢ € (0, 1},

continuous in € € (0, 1] for every (z,y,£) € (R™)3, such that there exists N € Ny
such that for every a, 8,7 € Nj there exists C = C(a, 8,7) > 0 such that

(11.1) ]3?353;'0(:5, y,§,¢)| < ;%'(1 + |§|)m—|a|, (z,9,£) € (R*)%,e € (0,1].

If there exists N € Ny such that for every m € R and every a, 8,7 € N§ there
exists C = C(a, #,7,m) > 0 such that (11.1) holds, then a(z,y,§,€) € S;7.

The following set of amplitudes is suitable for the calculus in the frame of
Colombeau’s generalized functions.

Definition 11.2. The set of amplitudes S;; = S;(R™ x R" x R" x (0,1]),
m € R, is the set of functions a with the same regularity properties as in Definition
11.1 but which satisfies the following:

There exists N € Ny such that for every a,83,7 € Nj there exist ¢ =
C(a,B,v) and k = k(a, 8,7) such that

050205 a(z, 9,8, €)| < ;%(1 + |z (1 + )™, (2,9, €) € (R™)?,e € (0,1].

Elements of Sg't"" are appropriately defined. In this case constants C and k depend
also on m.

We will use Definition 11.1 in Section 11 and later in order to avoid a lot of
technical difficulties which may appear.

Definition 11.3. Let a € 533, r € Ny and p1:(€), poc(y) be unit nets from
Cs° (R) and C§°(RY), respectively. Let G € G¢(R").

We define A,,, and A, ,, on G¢(R™) by
(112) ApprGl(ger7) = 7 f _er
(27)7 J Jpza (1 + [€]2)[(mI+n)/2]+r
x (a(z,y,§,€)p2e (Y)G (¢, y) dy d€, (,7) € Ag X R
where [(|m| + n)/2] is the integer part of (|m|+ n)/2, and by '

(1 13) A#l A2 G(¢E ? I)
1
(27)"

(1 = Ay)(Imi+n)/2l+r

//Rh ei(z—y,f)a(a:, v, &, &)1 () 2 (¥)G (e, y) dy dE.
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7
Note, if m < —n then we take r = 0 in (11.2) and
ApnG(¢£: :1:) - A#zG(¢e:$)

B (2%)“ /_/[;211 e‘(ﬁ-m‘E)a(a’,’ Yy 6: 6)”28 (y)G(‘lb&' ’ y) dy d&.

Theorem 11.4. 1. A, . and A, ,, are linear mappings from G¢:(R") to
G (R™).

2. For every p1c(€), poe(y),r and G € G.(R™), A,,.G and A, ,,,G are equal
in (g.t.d.) sense.

3. For every pie(§), B1e(€), b2e(y), fi2c(y) and G € gt(R"): Ay )G and
Ag 7, G are equal in (g.t.d.) sense.

Proof. The proof of 1 is obvious. Note that (11.3) is equal to

‘(3"'!!:3;')
— (1 — [(|m]+n)/2]+r
/ R2n (1+|g|2)[(|m|+n)/21+,-(1 Ay)

x (a(z,y, &, €)1 (E) 2 (W) G(de, ¥)) dy dE.

Since the proof of 3 is typical for the calculus we will collect here the equalities
and the estimations which will be used in the sequel.

There_ holds

Ap1pa G (9, T) = (2,“_)“

(1= A,) w0 = (1 + |¢2)) eite—s0,
(1-A)*(1-A )pet(:t-y,f)
T+l +1e)?

(1 — AL)%ei® 48 = (1 4 A )?ei=v:8),

A unit net u.(€), € € (0, 1], where u(¢) =1, |€] < A4, p(f) =0, || 2 B > A,
satisfies the following estimation. Let o € Nj. Since

10%ue (6)] = lel*lo*u(e€)], A< el < B

— et'(a:—y,&) :

(11.5)

it follows

(116)  |0°me(e)] < Caelel < BoCe

et 161> A/e, 10%keo] = 0, 1€ S A/e.

If i and fi, are unit nets determined by different functions p; and ps then, by the

above notation,
A B,B
(IL7)  |nel®) — ()] = 0, for g < TRAAY g gy » DD T}

Now, we will give the proof of 3. Let ¥ € S(R®) and I = [, (A, 42 G (96, Z) —
An, 5.G(e, z))¥(z) dz. By (11.5), for enough large s and p, we have

o / / /R . ei<z#y.s>_(_l_+1ylz) (1—Ad)*(1 - A,)?

X (%ﬁ% + G(Pe,y) (p1e(&) p2:(y) "‘ﬁls(oﬁk (v)) ¢(‘5)) drdydz.
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Note that the differentiation with respect to y is changed by differentiation with
respect to z. By using the identity

p1e(pze (¥) — B1(E)f2e (¥) = (11(€) — 1e(8)) 12 (¥) + 11 (€) (p2e (¥) — B2 (y))

we have that I is smaller than the linear combination of factors of the form

1 G(IE', y: E) 4 -~
6;3' vy B a £ - £
[[L.. Grpmr 1o g s - 1980ne(©) - mne(e)
X |t2e(v)] - 1G(9e, ¥)| - |8" ()| dz dy dz
e
rs (1+|y[*) (1+ [£2)P
X |p2:(y) — B2e(y)l - |G(de, y)] - Iah¢($)l dz dy dz:
where |gl, |h| < 2p, |r], It] < 2s. The properties of a(z, y, £, €) imply that for suitable
constants

0105 2 V| 1ot ()

|- 168 (116(6) — ne(©))] <
C(L+ |z)* (1 + [€*)PF™~* < CrePH*~™(1 + |z|)*.

since the left side is equal to 0 for [£| < const/s. Note that
C

eNa

(1 + |y|)PC poe(y) dy < Ce~Ne—pe—n,
Rn

. |G (e, ¥) p12: (¥) | dy <

By choosing enough large p and s, this implies that for every d > 0 the members
of the form (11.8) are o(e?), € — 0.

To prove that the members of the form (11.8) are o(ed), e — 0, for every
d > 0, we have to estimate the factor

1
(1 + |y2)*|p2e (y) — B2e (W)’

which is different from zero if |y| > 9—“:-——“—'—’-, and to take sufficiently large s.
This proves 3. The proof of 2 is almost the same. [

The relation 5<% is the relation of equivalence in G¢(R™). So, the mappings

A,.r and A, ,, are equal if they are considered as the mappings from G¢(R") into

Ge(R™)/ <.
Deﬁmtwn 11.5. The mappings A,,r and A,, ,, are the representatives of the

mapping
A: G(R™) = G (R™)/ ¥

which is called the pseudodifferential operator which corresponds to a €
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Proposition 11.6. Ifa € S;*, thén for every p1(§), p2e(y) and r € Ny the
operators A, G(¢.,z) and A, ., G(¢e, x) are in G (R").

Proof. Let r = 0. We will prove that
Ap,G(¢e,x) = (2m)7" //1;2 ei(:—y,&)a(x’ Y,&, )G (e, y) 12 (y) dy d€

is in G°(IR™). Other parts of the proposition may be proved in a similar way by
using (11.2).
Let a € NZ. Then

10%(A4,G(0e,2))| = *
: Kz—y:k) &\ la—jlga—iga
|(27r)" //;;zne "0 2 (j)" 1627192 a(z, y, €, €)G(de, y e (y) dy dE .

jlo

~

By using
02a(2,y,6,6)| < Cmae™ N (1 +[z)* (1 + €)™, =z,9,£ €R", €€ (0,1],
which holds for enough large —m (where N does not depend on m and a),
IG(#e,¥))| < Ce~™M @ +[y)™, yeR”, e€(0,n), ¢ € An

and

| (1 + |y ™ poe (y) dy 55‘5"”““, e € (0,1],
R‘I'I

we obtain:

If No = N + Nj + n, then for every a € Nj there is M € N such that for
every ¢ € Ap there are C > 0 and 5 > 0 such that

0%(4p,G(¢e, 7)) < Ce~™ (1 +[2]))™, 0<e<n. O

If an amplitude a € S7; does not depend on ¢, i.e. a = a(z,y,§), then it
determines a convenient pseudodifferential operator which will be denoted by A:

Ap(z) = (2r)~" / /Ran e'*=v8)q(z, y, £)p(y) dy d€, @ € S(R™).

It can be extended on S'(R") to be linear and continuous mapping from S'(R")
into itself.

In fact,
(*Ap)(z) = (27)" ] / - e ==v05(z,y, £)p(y) dy dé

where a(z,y,£) = a(y,z,£) is continuous and linear: S(R") -+ S(R") and A =
t( tA) is continuous and linear: S'(R") — S'(R").
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We will compare A and A but before that we need the following definition
and proposition.

Definition 11.7. If a € S} and G € G.(R"), then AG = A(MG). Let
G(de, ), (de,z) € Ao x R™, be a representative of G and x € C°(R"),x = 1 on
supp,G. Then,

R(:B)G(Q!S,,:B),:B € R", ¢ € Ao,

is a representative of MG € G;(R"). AG = A(MQG) is defined by 2 in Theorem
11.4

Amm (MG) (@e, x) = (27)™" /Lh ei:(a:—y,E)a(z, ¥,&,€) e (E)h‘.(y)G(ég, y) dy d¢.

From the next proposition it follows that this definition does not depend on .
Proposition 11.8. If k1, k2 € C§° are equal to 1 on supp, G then

(2m)~" / /R g =¥ 8 a(z,y, £, €)p1c(€) (K1 (y) — 52(9))(;(‘}’6:9) dydf =0

in G¢(R™).

The following proposition also can be proved.

Proposition 11.9. Let a € S); be independent on € and let f € S'(R™).
Then A(Cds f) = Cde(Af) in Gy (R™)/ 5% |

._____M

12. Pseudolocal property and the microlocalization

Denote G () = G (N)NG.(). Clearly, if G € () then MG € G (R™).
In the sequel we will consider G.(Q2) and GS°()) as subspaces of G¢(R").

Without the proof we give the following theorem.

Theorem 12.1. Let a € S3; and G € G°(R™). Then, AG € Gg°(R")/ g.td.

More precisely, for every p1.(€), p2:(y) andr € No, A,,+G(ds,z) and A, ., G (¢, T)
are in G°(R™) and they are equal in (g.t.d.) sense.

Definition 12.2. Let G € bt (R™) and A be a pseudodifferential operator. It
is said that AG is regular at £ € R" if there exists an open set w 3 z such that for
every unit nets pi., po. and r € No,

Auypua(G)lw and Ay, r(G)|w belong to G%°(w).

The singular support of AG, Sing supp,AG, is the complement of a set of points in
which AG is regular. If z (resp. any point of w) does not belong to Singsupp, AG,

then it is said that AG is G/ ¥ in z (resp. in w).

Proposition 12.3. Let G € G.(R"), a € S3;. Then,

Sing supp, AG C Singsupp, G.
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More precisely, for every p1.(§), p2e(y) and r € Ny,

Sing supp, Ay, rG C Singsupp, G,
Sing suppy Ay, 4G C Singsupp, G.

Proof. Let G be G*° in a neighborhood w of zo. We shall show that AG =
A(MG) isin G°/ 2% in some open set wy 3 zg, such that w; CC w.

Let k1 € C3°(w) such that xk; =1 on @, and let k2 € C§°(w) such that ko =1
on K; = supp k1. -

For small enough &, we have

K1 (:I:)AmmG(ng, T) =

o [ 0ale, .6, O DRI ()G e, 0)
-+ (2;:)“ //l;znei(z-v.f)a(a:,y, E:E)#IG(E)RI (:B)(]_ - 52(y))n(y)G(¢ny) dy df

=1, + I,.

As earlier we have that I is Gg° in R™. So we have to prove the same for I,.
Let k € N. Then

ei(z_y ,5)

I, =
1 X N
T / “ / r_';.__-_.z’.l-,ﬂ;(--,«:sﬁ) (alz,y, &, €)p1e(8)) k1 (2) (1—£2(¥))k(y)G(Pe, y) dy dE.

By using (11.3) and Leibniz’s rule one can prove that

|AE (a2, y, &, €)pe(€))] < g;,"-(l + |z[)™ (1 + ¢y 2k

C
< Ew"(l +|E)™-2nk gy, £ € R®, z € supps;,

where C and C}. are suitable constants. By taking large enough k we can apply the
same procedure as in the proof of Proposition 11.9. This implies that I, € G&°(R").
- |

The notion of the wave front for Colombeau’s generalized functions has been
introduced by Scarpalezos [18] as a natural generalization of the wave front for
distributions.

Definition 12.4. A tempered generalized function G is called G*°-rapidly
decreasing if it has a representative G(¢.,z) with the following property. There
exists IV € N such that for every a € N§ and p € N there is ng € N such that for
every ¢ € A,, there are C > 0 and é > 0 such that

|ID?G(¢e,z)| < Ce~N(1 + |2|?) 72, z € R™.
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Clearly, if G € G*®°(R") N G.(R"), then MG is G®-rapidly decreasing. If
G € G(§) and ¢ € C§°(f2), then we will denote M(pG) simply by ¢G.

Let ¢ € Cg°(R™) and G(¢«, ) be a representative of G. We define F(¢G) €
G¢(R™) by a representative J,

(12.1) Fe(0G)(9e, &) = F(p(z)G(de, z))(€), £ € R",

where F denotes the Fourier transformation in L*(R"™). One can prove easily that
this definition makes sense. Also, the following proposition is simple.

Proposition 12.5. If representative (12.1) has the properties given in Defi-
nition 12.4, then oG € G°.

We denote by I' a convex open cone in R® which does not contain a straight
line.
Let (z9,£) € 2 x (R™ \ {0}). The following functions will be used.

(a) ¢ € C§°(f1), v =1 in a neighbourhood of zg;
(12.2) supp 9 C I, ¢ is positive-homogeneous
of degree zero in I' and ¢ =1 in a neighbourhood offp.

Definition 12.6. It is said that G € G(R"™) is G®-rapidly decreasing in a cone
' if for every o € I there is ¢ with the properties in (12.2)(b) such that ¥G is
G°°-rapidly decreasing.

The cone ), (G) is the set of all n € R"\ {0} for which does not exist ¢ with
the properties in (12.2)(b) such that ¢¥G is G*®°-rapidly decreasing. ~

Definition 12.7. It is said that G € G(2) is microlocally regular in an open
conic set v C 2 X R™ (conic in the second variable) if for every (zo, ) € 2 x (R™\
{0}) there exist an open neighborhood )y of g, a conic neighborhood I'y of &,
and functions ¢ and 1 with the properties in (12.2) (with Q4 and I'o instead  and
I') such that ¥(&)Fe(pG)(£) is G*®-rapidly decreasing. The wave front of G € G
denoted by WF, G, is the complement of the union of all conic open sets v where

G is microlocally regular.

By using functions ¢ and v satisfying (12.2) and a unit net u, we define
operator ¥(D),p on G¢(R") by G — ¢¥(D).(¢G), where

B(D)u(0G)(de, 7) = (27)" [ [ 1000 )G e, vIme (©)du de.

Clearly ¥/(D),p(-) maps G¢(R"™) into itself and it defines a pseudodifferential oper-
ator. Because of (11.2), (11.3), (11.4) and the estimate

10%¢(§)] < Calé|™%, €l > R,

one can prove that ¥(D),, (¢G) and ¥(D),,(¢G) are equal in (g.t.d.) sense for
every unit nets u;. and p;.. The amplitude of ¥/(D)y is a(z,y, £, &) = Y(€)w(y).
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Proposition 12.8. A point (29, &) e’ WF, G, Ge G(Q), if and only if there
exist smooth functions , 1 with the properties in (12.2) and a unit net u. such

that ¥(D),(pG) € G¢°. :

The proofs of the following propositions are similar to the classical one in
distribution theory and because of that they are omitted.

Proposition 12.9 If h € C(R") and G € G(R"), then WF,(hG) C
WF,(G). J
This proposition implies |

Corollary 12.10. WF,G = {(z,§), £ € ,2(G) =, L4(hG)}, where the
intersection is taken over all h € C§°. ,

Denote 7*Q = @ x R® and 7 : T*Q — Q the first projection.
Proposition 12.11. # WF, G = Singsupp, G

Proposition 12.12. Let f € D'(2). Then WF f = WF, Cd f.

For the propagation of singularities of a pseudodifferential operator we need
the following definition.

Definition 12.13. WF, AG, G € G, is the complement of the sei:i of points
(z0,&0) € N2 x (R™ \ {0}) such that for every unit nets u;., g and r € Ny,

Apy s (G)|w and Aur(G)lo

are microlocally regular at (zo, &).

Proposition 12.14. Let G € G.()) and A be a pseudodifferential oberator.

Then |
WF, AG C WF,G. |

—

13. Composition of pseudodifferential operators

The results of the sections which are to follow are proved in [12]. We shell
present only the definitions and assertions without proofs.

First, we define properly supported pseudodifferential operators.

Let a € S7* and h € C§°(R) such that h(t) = 1, |t| < to, h(t) =0, [t] > t1 >
to. We decompose a representative A,,,, of A as follows: |

Aprp, G(@e, ) = AmmG(‘ﬁn ) + gnsz(‘ﬁesz): G € Gi(R"),
where

“iu1mG(¢s: :L') =
1
(27)"

/ -/Rh =¥ h(|z — y|)a(z,y, & €)M (E)n2e (4)G(Pe, y) dy dE
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and A,, ,, has (1 - h{jz — y|)) instead of A(|z — y|) in the double integral.
Let (£,€) be arbitrary, but fixed. Then the function

(@) = h(iz — yDa(z,,&,¢)

is properly supported which means that the inverses for the first and second projec-
tion of a compact set in R” intersect the support of this function over the compact

sets.
One can easily prove that h(lz — y|)a(z,y,§,€) € S}".

Definition 13.1. Pseudodifferential operator corresponding to a € S;* satis-
fying the property that for every (£,€) € R™ x (0, 1],

(R*)? 3 (z,y) ~ a(z,9,¢,8),

is properly supported, is called a properly supported pseudodifferential operator.

Pseudodifferential operator which maps G, (R") into G°(R™)/ 824 is called

the smoothing pseudodifferential operator.
As in Proposition 11.6 one can prove
Proposition 13.2. A, . : G.(R") = G (R").

So, for every pseudodifferential operator

A: G (R™) = Ge(R™)/ 527,

there exists a properly supported pseudodifferential operator
A: G (R™) — Ge(R)/ 521

such that A — Ais a smoothing pseudodifferential operator.

Remark The extension of a properly supported pseudodifferential operator
on G{R") may be done as follows. Let A be properly supported with the properly
supported amplitude a € S7* and let {x;, ¢ € N} be a partition of unity with
elements in C§°(R™). |

Let G € G(R"). Put
AG(4e,3) = 3 A(1:G) (4, 2).

ieN
Since ;G € G.(R™), any member in the sum is well defined.
One can prove easily that

APIﬁQG(¢C! 37) €éM [Rn]

for every unit nets u;. and uo., and that for different unit nets the corresponding
elements are equal in (g.t.d.) sense.
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Leta € S, b € S;“' determine operators A and B by representatives A, .,
and Bg, z,, where u;,, pa, i1, and iz, are unit nets. Put

(Amm o Bihﬁn)G — A#lnn ((Biiliiz)G): G € Gt (Rn)'

The following proposition shows that the composition of properly supported
pseudodifferential operators AB defined by a representative given above is well
defined and it can be proved by a direct calculation.

Proposition 13.3. Let a € S;*. For every eight unit nets py(£), pae(y),
ﬁle(ﬁ)x ﬁze(y), #35(5), Hae (y), H3e (f): Pae (y) and G € G (Rn)

Aﬂl K12 (Bﬁl jia G) and Auam (Bﬁsi'u G)
are equal in (g.t.d.) sense in G;(R").

From now on we shall assume that amplitudes are defined by Definition 11.1.
Properly supported amplitudes will be indicated by a. By A is denoted the
corresponding pseudodifferential operator.

Theorem 13.4 Let ¢ € S™, b € S™. Then the composition of A and B is
represented by

A

(131)  AusBansaGlber) = [[ K 19ik(z, 0,6, lne G (@e,v) dy de

where
(13'2) iﬂ(ﬂ:,!,l,ﬁ,&'):
1 sz )
2" [/Rzn efv—28-Ma(z, 2,£,€)b(z,y,1, €)fize(n) dz dn,

z,y,2,§,mn € R", € € (0,m0), (0 = no(¢)).

Moreover, fc(:r:, y,&,€) € S;."“""' and it is properly supported.

14. Calculus with symbols. Hypoelliptic operator

Definition 14.1. By S7; = S™(R™ x R" x [0,1)) is denoted the subspace of
Sy (R™ x R® x R™ x [0,1)) consisting of amplitudes a(z, {,€) independent of y for
which (11.1) holds. By 5., is denoted the set of elements from S;°° which do
not depend on y. Elements of S7; are called the symbols of degree m.

As before, it can be proved that every a € S7; defines a pseudodifferential

operator A : G¢(R") — G (R")/ gLd.

Definition 14.2 A formal symbol is a sequence of symbols a; € Sz’ , j € Ny,
such that m; — —oo strictly, and N; < N < oo (N; are exponents of ¢ for a;). It

13 denoted by
o0
Z a; (.’B ) E: E) .

=0
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As in standard theory one can make the construction of the true symbol:
Proposition 14.3. There exists a € S;,° such that for every jo € Np,
a-— Z a; € Sf;jo.
i<jo
It is determinated uniquely modulo S,;;>.

Theorem 14.4. For every amplitude a(z,y,{,€) € S;* there exists the
symbol a(z,€,€) € S;; which determinates the same pseudodifferential operator

A: G(R™) = G:(R")/ &% modulo the smoothing pseudodifferential operator A.
Thus,

—q)lel
Z ( ;)l 3?‘935(-"": ¥, &, E)ly:z
a€Ng )

determines a € S;;.
For example,

—i)lel
5 S seue)oe(a) .~

|
aeve @
is the symbol for /(D).

Theorem 14.5. I:et A and B be pseudodifferential operators with the sym-
bolsa € S;; and b € S7; and let A and B be the corresponding properly supported

operators. The symbol of the properly supported operator AB is given by

—q)lol -
> ( a)! O¢a(z,£,€)02b(z, &, €).

a€ENg

We are going to give the microlocal analysis of solutions of a pseudodifferential
equation. For this we need the next definition.

Definition 14.6. A pseudodifferential operator A in 2 is smoothing in (x, &)
€ I x (R™ \ {0}) if there exist ¢ € C§°(£2), ¢ = 1 in a neighborhood of g, and a
convex open cone I'; a neighborhood of &y, such that the symbol a(z, £, €) of A has
the following property: .

There is N > 0 such that for every a, 8 € N§ and Me No thereis Cq g0 2 0
such that |

10202 p(z)a(z, £,€)| < Capme™N(1+ €)™, z€ D, €Tk, €] > R.
A pseudodifferential operator A in ) is said to be smoothing in a conic open subset
v of Q x (R" \ {0}) if it is smoothing in every point of 7.

The complement in 2 x (R™\ {0}) of the union of all conic open sets in which
A is regularizing is called the microsupport of A and it is denoted by psupp, A.
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Proposition 14.7. Let G € G.(}) and (zg,&) € 2 x (R™ \ {0}). Then
(z0,&0) € WF, G if and only if there is a conic open neighborhoody of (zg, {o) in {2

(R™\ {0}) such that B, ,,,G € G°(2) (B,,»G € G ()) for any pseudodifferential
operator B in ()} whose microsupport is contained in 7.

Theorem 14.8. Let A be a pseudodifferential operator which is smoothing
in a conic open set v of X (R" \ {0}). If the wave front of G € G.({1) is contained

in 7' C v, then Singsupp, A(G) is empty.
The previous two propositions simply imply the following important assertion.

Proposition 14.9. Let A be a properly supported pseudodifferential opera-
tor in ) and G € G(§1). Then

WF,(AG) C (WF, G) N usupp, A.

Definition 14.10. A proper pseudodifferential operator P with a symbol
[p(z, €, €)] is called hypoelliptic if the following holds:

(1) There exists N € N such that for every compact set K C R" there exist
€0 > 0 and M > 0 such that for every ¢ € An there exist C > 0 and n > 0 such
that | | i

(14.1) CTH 1+ [E)~MeM < Ip(a, £,€)] < C(L+[EhMeY,

forz e K, |£] > &, € < 7. ..
(2) There exists N € N such that for every compact set X C R” there exists
&0 > 0 such that for every ¢ € An there exist Cqo g > 0 and 5 > 0 such that

DgDEp(z £, €)

~ < Cog(l+ D71 2z € K, |€] > &, € <.
p(:z:,&,e) = :ﬁ( IEl) Igl > &o n

(14.2)

Without a proof we give

Theorem 14.11. (i) Let P be a proper pseudodifferential operator with
symbol p(x,€,e) which satisfies Definition 14.6. Then the following holds: There
exists N € N such that for every compact set K C R™ there exists & > 0 such that
~ for every ¢ € An there exist C}, 3 > 0 and 1 > 0 such that

DgD8p(z,€,e)"
p(z,§,€)~!

(ii) For every hypoelliptic pseudodifferential operator P there exists a proper
pseudodifferential operator QQ such that PQ —-I€ S~,and QP -1 € S~

Proposition 14.12. Let P be a hypoelliptic pseudodifferential operator;

(14.3) <Cop(l+E)l, zeK, €] >&,e<n

Then | |
WF,(PG) = WF, G

for every G € G.
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Pseudodifierential operator P is called elliptic with a classical amplitude if
its symbol p(z, &, €) satisfies the following inequality

(14.4) CH(1+[E)~ < |p(=z,&,8) < CA+ [¢)M

instead of (14.1). One can prove that (14.4) implies (14.2) and that means that
there exist a parametrix for such pseudodifferential operators, too.

Pseudodifferential operator is called elliptic if
(14.5) CTHA+ )~ Me™ < [p(z, &, €)l < C(A+ [¢)Me™N

holds instead of (14.1). As in the previous case, one can prove that then (14.5)
implies (14.2), and this implies the existence of the parametrix for A.
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