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Introduction

M. Sato ([27], [28]) introduced a new class of generalized functions, called
hyperfunctions, as the n-th derived sheaf of the sheaf of holomorphic functions. He
left without proof many details in these papers. To this day, subsequent papers of
mathematicians, especially Japanese, completed these “gaps” ([3], [10], [13], [15],
28], (20}, [30)).

Hyperfunctions have many important properties which are indispensable for
an exquisite theory of partial differential equations, microfunctions, micro-local
analysis, Fourier transform (cf. [13]). They became a major tool of several areas of
analysis and applications.

The set of hyperfunctions forms a flabby sheaf on R™ [20]. Schwartz’s space
D'(2) (2 is an open set in R™) of distributions and the dual space of Gevrey class
of functions on ) are naturally contained in the space B(f2), of hyperfunctions on {2
(cf. [13]). For the relations between hyperfunctions and other generalized functions
we refer to [4], [5], [19], [22] and [23].

Since Sato’s theory utilizes the most advanced concept of sheaf cohomologies,
it is not so popular as Schwartz distributions or Beurling and Roumieu ultradistri-
butions. Also, there are a lot of introductory books on different types of generalized
functions, but very few on Sato hyperfunctions. However there is a number of dif-
ferent approaches to hyperfunctions. Some of them are based on the same idea as
Schwartz’s distributions. Martineau [13] started with the space A’'(R"™) of analytic
functionals carried by compact subsets of R™. For any open set {} C R" the space
of hyperfunctions on 2 is defined so that its elements are locally equal to those in
A'(R"™). A topology of hyperfunctions, has many exceptional features. (see also
[1], [4], {13]). In the book [6] Imai introduced hyperfunctions from the viewpoint
of applied mathematics.

In 1988 appeared Kaneko’s book [7] (English edition) which is intended to
be the first easily accessible introduction to Sato’s hyperfunctions. Kaneko defines
hyperfunctions using boundary value representation (“intuitive” method). Such an
approach has been used from the very beginning only as an'#llustration. But after
progress in the theory of Radon transform this approach has claimed its own place
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74 | B. Stankovié

in the foundation of hyperfunctions as a precise mathematical theory. The first
rigorous proofs in this sense have beerj given by Morimoto [20]. There exist many
papers on this subject. Kaneko’s book is the first monograph with a systematic
elaborated theory of hyperfunctions defined by boundary value representation. -

Our aim is to draw attention, especially of young mathematicians, to hyper-
functions and to Kaneko’s book which is the main reference in this text and can be
the next step to make acquaintance of hyperfunction.

1. PRELIMINARIES

We repeat some standard part of the theory of sheaves and sheaf cohomology
we need to introduce hyperfunctions. For this part one can consult any book on
algebraic analysis and sheaves theory, for example {10].

1.1. Notation and notions

By X we denote a topological space and by S a locally closed set in X. S is
*locally closed set in X if it can be written as the intersection of an open and an
closed set in X. Thus there exists an open set U C X containing S as relatively
closed subset. In R every interval is locally closed.

A conein R" will be denoted by 'orby A; prI’= {z € T |jz|| = 1}; ' cCT
means that prI¥ C intT; T0 = {¢ = (&1,...,&) € R.€x = §171,... ,€nTn > 0
for every z = (z1,... ,z,) € I'} is called the *dual cone to I

{Fa; o € A} is a *locally finite family of subset of F if for every z € F and
every neighbourhood V(z) of z. V(z) N F, # 0 only for a finite number a € A.

E =@, e Ea is the *direct sum of vector spaces Eq, @ € A, if every z € E
can be given in a unique way as the finite sum Xz,, z, € E,.

Let U= {U Cc X; U D A} be the set of open sets containing A ¢ X. To
each U € U there is associated a C-vector space Ey and to each pair U,V, € U,
U D V, there is associated a C-linear mapping pv,y : Ey — Ey (restriction) in
such a way that: i) pyy = id; ii) pwu = pwv © pvy, whenever U DV O W. Then
{Eu; U € U} is an *inductive system of C-vector spaces. Let E = | |,y Ev (U
is formed by taking the union of Ey’s regarding the Ey’s as mutually unrelated).
Introduce an equivalence relation ~ in E as follows: F ~ G (F € Ey, G € Ey)
means that pwu F = pwv G in BEw for some W C UNV. The *inductive limit is

l'En_y Ey =E/ ~.
UeU

Tere exists a natural mapping py : By — h_r}n Ey.
UeUu
Ezample. Let (! be an open set in R and U an open set in C, a neighbourhood
of  in C. By O(U) is denoted the set of holomorphic functions on U. Then
A() = limg O(U) is the set of *real analytic functions on Q.
UoQ
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1.2. Presheaves and sheaves

| We say that a *presheaf F of C-vector spaces on X is given if: 1) to each open
set V C X there is associated a C-vector space F(V) and ii) to each pair (V, W),
V DO W, there is associated a C-linear mapping pw v : F(V) — F(W) such that:
3.) pvy = id; b) PZWOPWYV = PZV, ZCVCW. Every element f of F(V) is called
a *section of F on U. We also write pwy (f) = fi, (*restriction of f € F(V) on
W,wW c V).

A presheaf F is a *sheaf on X if for any open covering {Uy : XA € A} of an
open set V C X we have the following properties: iii) if f € F(V) andf|y, = 0
for every Uy, A € A, then f = 0 (0 is the zero element of F(V)); iv) for a family
{fx; A € A}; fa € F(Uy), such that falv,av, = falvanu,, UxNUy # 0, there exists
f € F(V) which has the property flu, = fn, A € A.

A CV is the *support of f € F(V) if V' \ A is the largest open set contained
in V on which f is zero.

Remark. Usually presheaves and sheaves are defined for Abelian groups with
pwy Abelian group homomorphism.

Ezamples 1. The sheaf O of holomorphic functions on C"; to each open set
V C C" there is associated O(V).

2. The presheaf L; on R (Lebesgue integrable functions). L; is not a sheaf
because iii) is not satisfied. Let Uy = (=, A) and f), =1 for A € Ry. We can not
find an f € L1 (R) such that f|y, =1 for every A € R.

3. The sheaf A of real analytic functions on R".

Let F and G be two (pre)sheaves on X. A family h = {hy} of C-linear
mappings, hy : F(V) — G(V) is *a (pre)sheaf homomorphzsm if the following
diagram commutes:

F(V) 2% G(V)

Pafvl J'ng

F(W) —— G(W)

hw
Sheaf homomorphisms do not enlarge the support of a section.

The linear differential operator with real analytic coefficients is a homomor-
phism of the sheaf A of real analytic functions.

F is said to be a *subsheaf of the sheaf G if for every open set V C X there is
associated the inclusion iy : F(V) = G(V) such that ¢+ = {iy'} constitutes a sheaf
homomorphism. We write in short F C G. |

The restriction of the sheaf F to the open set V' C X is the sheaf defined by:
W — F(W) for every open set W C V; we denote it by F/y (attention, F/y is a
sheaf and F(V) is a vector space).

A sheaf F on X is *flabby if for every open set V C X, pyx : F(X) =+ F(V)
18 surjective,
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Proposition 1.1. If F is flabby, then for every pair of open sets (U,V),
U DV, the restriction pyy : F(U) - F(V) is surjective.

Proof. For a given v € F(V) there exists z € F(X) such that pyx(z) = v; let
pux(z) = u, then v = pyx () = pvv ° pux(z) = pvv(u), where u € F(U). O
Let S be a locally closed set in X and U an open neighbourhood of it contain-

ing S as a relatively closed subset. Denote by I's(X, F) = {s € F(U); supps C S},
where F is a sheaf on X.

~ Proposition 1.2. The definition of the C-vector space I's(X,F) does not
depend on the choice of U.

Proof. Let U; and U, be two such open neighbourhoods of S Then Uy NUs
is again such an open neighbourhood of S. Hence, it suffices to show that the

restriction
i:{s € F(U;); supps C S} = {s € F(U,);supps C S}

is an isomorphism when U; O U,. But this is obvious because if s € F(Us),
supps C S C Uz C Uj, then s can be extended to

s € F(Ul), SIIU:: = 8, 3”']:;'1\[;2 = (. ]

A direct consequence of Proposition 1.2 is

Proposition 1.3. T'y(X,F) = F(U) ; I's(X,F) = I's(U,F|v), where S is
relatively closed subset of the open set U; if S is closed, then I's(X,F) = {s €
F(X),supps C S}.

Proposition 1.4. Let V be an open set in X and S a locally closed set'in X.
The correspondence V' — I'sqv (X, F) constitutes a sheaf on X denoted by T s(F).
It may also be regarded as a sheaf on S. |

Proof. 1t is obvious that Ts(F) is a presheaf. Also iii) and iv) follow from
the fact that F is a sheaf.

Taking S as a topoloéica.l space with the topology induced by X, then
Ts(FHV) =Tsav(X,F) and V = Ts(F)(V), VNS # B, where V is any open set
in X, defines a sheaf on S. ([ |

Remark. If U is an open set in.X, then Ty(F) = Fly and Ts(F)(X) =
I's(X, F).

Proposition 1.5. If F is flabby, then Ts(F') is flabby, as well.

Proof. Let U be an open set in X containing S as a relatively closed subset.
We will prove that for any open set V' C X, VNS is relatively closed subset of VNU.
By definition of a locally closed set we have S = Os N Zg, where Og is an open set
in X and Zg is a closed set in X. Then SNV = (ZsNO0g)NV =ZsnN (OsNV).
Hence, SNV is locally closed in X.
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To prove that S NV is relatively closed in VNU take an z € V NU and
z & SNV. Since S is a relatively closed in U, there exists an open set O 3 z,
O CU suchthat SNO =@. Theopenset ONV 3zand ONV CUNV. Also,

OnNVIN(VNS)=0nVInS=(0nS)nV =4.

Consequently S NV is relatively closed in V N U.

By Proposition 1.2, Ts(F)(V) = I'snv(X,F) = {s € F(V NU); supps C
S NV}. Therefore, for s € Ts(FNV), s|lw\s)nwnv) = 0. By Proposition 1.1
there exists an s' € F((U \ S) U (U NV)) such that s'|;ns = 0, §'jvnv = s. By
the same Proposition, s’ can be extended to § = F(U), 3|yns = 0. Consequently
§eTs(X,F) =Ts(F)(X). O

Let F be a (pre)sheaf on the topological space X. ‘For an z € X and any
open neighbourhood V of z,

F, = h_n>1 F(V),
z€V
is called the *stalk of F at z. An element of F; is called *a germ of sections of
F at z. A germ consists of local sections of F, defined in a neighbourhood of z,
which coincide on a smaller neighbourhood of z. A section s € (V') defines a germ
s: € F, at every point z € V.

Proposition 1.6. If F is a sheaf and s € F(V), then s = 0 if and only if
s, =0 forallzeV.

The proof is a direct consequence of the definition of a sheaf (see property
iii)). _

Attention. Make a distinction of s; and s(z); s; = 0 means that s(y) = 0 for
y belonging to a neighbourhood of z. |

For a presheaf F' on X and for every open set V C X we construct the vector
space F(V) = {§: V — ||,cy Fz, such that for each z € V there exists an open
set W CV, W >z andt € F(W), with the property that 3(y) = ¢(y) for every
ye W}

__ Proposition 1.7. Let'V be any open set in X. The correspondence: V —
F (V) with canonical restriction gives a sheafon X and ¥, = F,.

Proof. It is obvious that F is a presheaf. First the verification of iii). Let
{U»} be an open covering of the open set V C X and let 5 € F(V), §ly, = 0.
There exists an open set W, x € W C U), and t € F(W) such that 5(y) =t(y) =0
for every y € W. It follows that 3(x) = 0 as an element of F, for every x € Uy and -
for every Uy € {U,}. By definition of 3, § = 0.

Verification of iv). Given {5,}, 5x € F(U)) with the property 3i|v,nu, =

3nluanu,, where Uy NU, # 0. We construct 3 € F(V) such that 3|y, = 5, in the
following way: if z € V, then there exists Uy, = € Uy; now 3(zx) = 3)(z).

‘At the end we prove that F,=F, (These two spaces are isomorphic). Let
5z € Fg, then 3, is given by an element £ € F(V'), where V is an open set containing
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z. We can take a smaller open set W 3 z such that tljw = ¢ € F(W). Then ¢
determines an element of F,. Hence we constructed a mapping ¥, — F;. By the
construction, it is surjective and an isomorphism. [

The constructed sheaf F is called *the sheaf associated with the presheaf F.

Ezample. Let X = R and V be an open set in R. By V = Li(V) is
defined the presheaf of Lebesgue integrable functions. This is not a sheaf. The
sheaf associated with' this presheaf is the *sheaf of locally integrable functions on
R: V- L[oc(V).

Let G be a fixed vector space associated to every openset V C X, V —
F(V) = G. Take the identity mapping of G as the restriction. Then V' — G defines
a presheaf F on X. It is not a sheaf in general. The property iv) is not always
satisfied. Suppose that V is not connected, namely that V' = U; UU; where U; and
U, are open set and UyNU> = . Let g; € F(U;) =G and g5 € F(U,) =G, g1 # g3.
We can not find a g € F(V) = G such that gy, = g1 and gly, = g2.

The sheaf associated to this presheaf F is called the *constant sheaf Gx. The
difference between F(V) and F(V') appears when V is not connected.

If G = {0}, Gx is a sheaf for each X; it is denoted by 0.

Given a sheaf G on X and its subsheaf F. The correspondence: V —»
G(V)/F(V) (the quotient space) for open sets V C X gives a presheaf on X
(property iv) is not always satisfied). The sheaf associated with this presheaf is
called the *quotient sheaf of G by F and denoted by G/F.

Let h: F - G be a sheaf homomorphism and V an open setin X. V -
ker hy determines a subsheaf of F' denoted by Ker h (kernel of k). We shall prove
that Ker h is a sheaf.

kerhy = {f € F(V); hv(f) = 0} is a vector space. With restrictions
pwv,W C V, V — kerhy is a presheaf. Property iii). Let {U,} be an open
covering of the open set V and f € kerhy, fly, = 0, Ux € {U,}. Since F is a
sheaf, f = 0 on V and 0 € ker hy. Property.iv). With the same open covering
{Ur} of V let f\ € kerhy, = {f € F(U)); hv,(f) = 0}. EU\NU, # 0, then by
supposition, fy = f, on Uy NU,. Since F is a sheaf, there exists f € F(V) such
that fly, = fi. By the property of the sheaf homomorphism we have

pS o hv(f) = huy o o5, () = hu, (fr) = 0.

Hence, hy(f)|u, = 0. Since G is also a sheaf, hy(f) =0 and f € kerhy.

The correspondence: V' — im hy for an open set V' C X defines a presheaf.
The sheaf associated with it is denoted by Im A (image of h). |

Example. Consider the sheaf homomorphism ‘—1% : O = O, where O is the
sheaf of holomorphic functions on C. Ker % is the constant sheaf Cc. The image

7’

of (-‘%)V : O(V) = O(V); where V is an open set in C, consists of all functions




f whose contour integrals around any “hole” in V, if such a “hole” exists in V, are
all zero because in this case

F(z) = [ £(6)d€ € OV) and £F() = £(2),

where z, zo € V. The sheaf associated with the presheaf: V — im (;;)V(V) is O

(Im -‘;1—2 = O).

The presheaf homomorphism h : F —+ G induces the C-linear mapping h; :
F. — G, in the following way: F; > s, LN (hv(s))z, where s € 3z, 3 € F(V),
V 3 z. We have to prove that this definition does not depend on the chosen
representative of s; and the openset V C X. Let t € s;, t € F(W),W 3> z. By
definition of s, there exists Z C V N W such that t(y) = s(y), y € Z, or

L., (&) = 0}, (3).
By the property of homomorphism h we have: |
 pS,ohy(s)=hzopL, (s) =hzop;, (t) =pC, ohw(t).
Hence, hy(s)(y) = hw(t)(¥), ¥ € Z and (hv(s))z = (hw(t))2-
Proposition 1.8. (ImhA); = imh,.

Proof. Denote by H the presheaf V' — im hy, where V is any open set in
X. Then by Proposition 1.7, (Im h), = H, for every z € X. By definition of k;,
H, =imh, because of H, = h_n):t imhy. O
Voz
Proposition 1.9. If F and G are two sheaves and ¥ C G, then F = G is
equivalent to F¥; = G, for all z € X.

Proof. Denote by i = (iy) inclusion: F —+ G. If F, = G_, then i, is
surjective. We have to prove that iy is surjective for every open set V C X.
Suppose that £ € G(V), then £ € &, € Gz, £ € V. There exists s; € F; such
that s, = £,. Consequently, there exists s* € F(W3), W, 3 z, W; C V sich that
E(y) = s*(y), vy € W,. The family of open sets {W,;x € V'} is an open covering
of V. By property iv) there exists f € F(V) such that f|lw, = s* for every z € V.
Consequently, f = €fon V. If F = G it is clear that F; = G, for every z € X.
O

1.3. Sheafi'cohomology

Let F 29 G =3+ Hbea sequence of sheaf homomorphisms where F, G, H
are sheaves on X. This *sequence is said to be *exact at G if Imh = Kerk. (For

short, *eract sequence). In particular, 0 =+ G -5 H is exact at G if and only if k
is injective; F — G — 0 is exact at G if and only if h is surjective.
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The same definition is for the exact sequence of vector spaces.

Proposition 1.10. The sequence F -+ G —+ H is exact at G if and only if
the sequence of vector spaces. F, -h—'> G, i} H;_I= is exact at G, for every z € X.

Proof. According to propositions 1.8 and 1.9 the following three assertions are
equivalent: Imh = Kerk; (Imh), = (Kerk),; imh, = kerk, for every z € X.
O |

FF G -5 His exact, then the sequence of vector spaces
F(V) =% G(V) =% H(V)

is not necessarily exact ((ImA)y has not to be equal to im hy). But if the above
sequence of vector spaces is exact at G(V') for all open sets V' which constitute a

fundamental system of neighbourhood of z, then F, L G, LR H, is exact in
G.. |

Proposition 1.11. Let F, ¥’ and F" be sheaves on X, S be locally closed
inXandVbeanopensetinX |

a) If0 — F' 2y P 2y B is an exact sequence at F' and F, then the
following sequences of vector Spaces are exact

(1) 0 —» F/(V) 2% F(v) 2% po(v);
(2) 0 — PS(Xa Fr) — FS(X: F) — FS(X: F”)'

b) If0 —» F' 2y P 2 P 5 0 s an exact sequence and if further F' is
flabby, then the foﬂowmg sequences of vector spaces are exact

(3) 0 = F'(V) —) F(V) - F'(V) = 0;
(4) 0 »Ts(X,F') 2 T's(X,F) =2 I's(X,F") - 0.

Proof. a) (1) First we shall show that h, is injective. Suppose that s’ € F/(V)

and hy (s’) = 0. The injectivity of A’ implies that h! (s.) = 0 (cf. Proposition 1.10)

for every £ € V. Thus there exists a neighbourhood W, C V of z such that

8'|w, = 0. In such a way we constructed an open covering {W,;z € V} of V. By
property iii), s' = 0. Therefore h}, is injective.

Next we will prove that im Ay, C kerhy. Since by Proposition 1. 10 (hs o
hl)(s.) = 0 for s’ € F(V) and for each z € V, one can find a neighbourhood W (x)
of z such that (hy oh; )(s’ )lw(z) = 0. Since F” is a sheaf, by property iii) it follows
that (hy o hy,)(s’) = 0. Consequently, im hf, C ker hy.

It remains to prove that im hj, D kerhy. Let s € F(V) such that hy(s) = 0.
Then for each z € V, h,(s;) = 0 holds. By the exactness of the sequence in F,
there exists s;, € F'; such that h.(s;) = s,. This implies that Ay, (s%)lw, = sjw.
for an open set W2z, W, CV,and s* € (W), s* € s_ Smce h w. is injective,
s* is unique. Therefore we have s%|w,qw, = Sylw.nw,- By property iv), there
exists s € F'(V) such that sy, = s®|w, for every z € V. Thus hj,s" = s and
ker hy C im h;y,.
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a)(2) Let S be relatively closed in the open set U. It is only to be shown that
supp s’ C S provided that supps C S, where s and s” are as in the above.

Note that h‘;,\ s(s"lv\s) = 0 and that hj, \S is injective. Therefore sv\ g =
and supps” C S.

In b) it suffices to show that hy is surjective. We omit thls proof. One can
find it in [10, Proposition 1.1.2]. O

Corollary 1.1. Let 0 —» F/ A5 F 25 F 5 0 be an exact sequence of
sheaves on a topological space X. If ¥/, ¥ are flabby, then F'' is also flabby.

Proof. Since F' is flabby, by Proposition 1.11b) each row of the following
commutative diagram is exact

0 — F'(X) —fri—y» F(X) hx F'(X) —— 0

Pi'xl PVxJ{ Pg’xl

0 — FI(V) Y F(V) 22 F/(V) > 0
Thus hy is surjective. Because of the flabbiness of F, pyx is also surjective. Let
s € F'(V), then there exists an element 8 € F(X) such that hy o pyx(s) = s".
By the commutativity of the above diagram, s” = p{,x o hx(s); hx(s) € F"(X) is
the desired extension of s”. Hence F* is flabby. 0O

0 , 1 »
Corollary 1.2. Let 0 — F® = F! 25 ... 5 F* =3 G — 0 be an exact
sequence of sheaves on X. If F?, 0 < j < r are all flabby, then G is also flabby.
Furthermore, the following sequences are exact

0 r
05 FOV) 2% ... 5 F (V) 2% G(V) = 0,
0 I[s(X,F% = ... 2 Ts(X,F") » I's(X,G) = 0.

Proof. The given long exact sequence can be decomposed into slanted short
exact sequences as follows: |

0 0 0 0
N /" /"
G! -G8 G
A N h3 h" /"
0 F 2ypt A, g2 A g, pr
ho PN A8 /!
GO G2 G_r—-l
/ VAR /N



LOrouary 1.1 1o Tne slanted €Xact Sequences successively Irom tne ler, we can see
that every G7, 7 =0,1,...,r — 1, and G are flabby. Applying Proposition 1.11b)
the corresponding short sequences of vector spaces

0> G (V)2 (V) G/(V)=>0, j=1,...,r,

are all exact. Combining these short sequences into one in the reversed procedure
of that applied above, we obtain the first long exact sequence of vector spaces.

For the second long sequence of vector spaces we have only to take care of
the support of sections. O

Let F be a sheaf on X. A *flabby resolution of F is an exact sequence

with flabby sheaves L7, § = 0,1, .... The smallest integer r such that I7 =0, j > r
(if it exists) is called *the length of this resolution. The minimum of the lengths of
all flabby resolutions of F is called *the flabby dimension of F, denoted by ldim F.
Flabby dimension measures, roughly speaking, how far the sheaf F is distant from
flabbiness.

If F is flabby, then r = 0 since 0 — F —3 F — 0 is an exact sequence
(L° = F).

Proposition 1.12. Every sheaf possesses a flabby resolution.

Proof. For a sheaf F on X, we first construct a flabby sheaf C°(F) such that

0 - F — CO(F) is exact. Let C°(F) be the sheaf constructed in the following
way. Let V be an open set in X. To V it corresponds the vector space

CO(F)(V) = {s°:V = | | F. such that s°(z) € F.}.
z€V |

If s € F(V), then s defines an element s° € C°(F) where s%(z) = s, € F;. Thus,
inclusion ¢ : F — CO(F') is a sheaf homomorphism.

The property that C°(F) is flabby is obvious. In this way we constructed -
0 —» F — C°(F).

Next, for the quotient sheaf C°(F)/F we construct C°(C°(F)/F) in the same
way as above and denote it by C*(F). Now we construct the following commutative
diagram ‘
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0 0
N
C°(F)/F
k/ N
0-F -5 C(F) - CiYF)
i
F

/"
0

The sequence 0 = F —3 CO(F) is exact because Keri = {0}. The two slanted
sequences: 0 -+ C°(F)/F - C!(F) and 0 =+ F LI C(F) £, (F)/F are also
exact. Hence, Kerp = Ker(i; 0k) =Imiand 0 -+ F LI C°(F) &5 CY{(F) is
exact.

If we continue the same procedure, then we obtain a flabby resolution of F

given by the flabby sheaves C?(F'), j =0, 1, ... The constructed resolution is called
the *canonical flabby resolution. [J ' |

Let {K™} be a sequence of C-vector spaces and {d.} be a sequence of C-
linear mappings, d, : K™ - K™*t! such that d® o d*~* = 0, n € N. Then the
sequence of pairs {(K™,d"); n € N} is called *a cochain complex of C-vector spaces
and is denoted by K~ or (K ,d’). An element of K™ is called *an n-cochain. By
definition, imd®*~! C kerd™, n € N. |

An element of kerd® is called *an n-cocycle; an element of imd™~! is called
*an n-coboundary. The quotient space kerd™/im d™~! is said to be *the cohomology
of degree n of the complez (K ,d ) which is denoted by H*(K")-H"(K ") is a vector
space, but according to the traditional terminology (which started with a sequence
{K™} of Abelian groups it is called sometimes the n-th *cohomology group.

If H*(K ) = 0, then the sequence {K™} is exact at the term K™. Hence,
cohomologies provide the concept for measuring the non-exactness of a sequence of

vector spaces.

Let F be a sheaf on X and {C?(F)} be the sequence of flabby shea.ﬁes from

the canonical flabby resolution. Denote by I's (X,C"(F)) the complex of spaces
{I's(X,C’(F)), 1 =0,1,...}.
The sequence of vector spaces

0 - I's(X, C*(F)) - L's(X, C(F)) = ---

is not necessarily exact. The cohomology of degree n of the complex I's(X, C (F))
we denote by H2(X,F) = H*(['s(X,C (F))) and call it *the n-th relative (local)
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cohomology of the pair (X, X \ S) with coefficients in F having support in S. If §
is an open set U in X, then we denote it by H*»(U,F) = H*(T(U, C" (F))) and call
. it *the n-th absolute (global) cohomology of the open set U with coeflicients in F.

Note that HZ(X,F) can be defined by any flabby resolution of F (cf. [7,
Theorem 1.1.1]).

Proposition 1.13. For a sheaf F, H3(X,F) = I's(X, F). IfF is flabby, then
HZ(X,F)=0,n2>1. |

Proof. By Proposition 1.11a)(2) the sequence of vector spaces |

0 = I's(X,F) = I's(X, C*(F)) <% I's(X, CL(F))

is exact. Hence, by the definition of the 0-th cohomology, H2(X,F) = Kerd® =
Ls(X, F). |

For the second part of the assertion, let us suppose that F' is flabby. Cut the
canonical flabby resolution to a bounded sequence

0 —+ F - C°(F) % CY(F) - --- 22 C™(F) 55 Imd™H! - 0.

By Corollary 1.2 after Proposition 1.11 the last term (Im d™+1) is also flabby and

0 — Is(X,F) = I's(X,C(F)) =% Lg(X, CL(F)) =5 --- =25 (X, C™H(F))

is exact. It follows that H3(X,F) =0, n > 1.

The *n-th derived sheaf H3(F) of F is the sheaf associated with the following
presheaf: V — H3Z. . (X,F). As we noted in Proposition 1.4 this presheaf can be
regarded as the presheaf SNV — HZ. (X,F) and H%(F) can be considered as a
sheaf on S.

Since S is a locally"closed set in X, there exists an open set U C X containing
S as relatively closed subset. Then HZ(X,F) = HZ(U,F|y) and HZ(X,F) =
HZ(U,F) (cf. Proposition 1.2). |

A closed set S in X is called *purely m-codimensional with respect to a sheaf
F if HL(F) = 0 for all j # m.

Proposition 1.14. (Sato’s theorem). R™ C C® is purely n-codimensional
relative to the sheaf O.

Sato’s theorem gives a cohomological property of holomorphic functions. We
omit the proof. A discussion of this theorem and its proof can be find in [7, Part
II, Chapter 6, §5].

We have seen that: V — H2.\(F) is only a presheaf. The next proposition
gives a sufficient condition that such a presheaf is also a sheaf. First we shall discuss
the case n = 0 and cite a lemma.

Since H3(X,F) = I's(X,F) (Proposition 1.13) and V = I'gav (X, F) is the
sheaf Tg(F) (Proposition 1.4), V = H2./(X,F) defines always a sheaf.
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Lemma 1.1. Let 0 & F — L% =5 L! — ... be a flabby resolution of F and
Ts(L") the correspondent sequence of sheaves Ts(I4), j =0,1,...:

Ts(L') : 0 - Ts(L°) 55 Ts(L!) 5 - -

Then H2(F) = Kerd" /Imd"!.

The proof is based on the inductive limit of the family of complexes and we
omit it. (cf. [7, Lemma 5.2.8 and the remark after Definition 5.3.4]).

Proposition 1.15. IfH’S(F) = 0 for 0 < j < n — 1, then the presheaf:
V = HZ v (V,F) is a sheaf and hence HZ(F)(V) = HZ~y (V, F).

Proof. By Lemma 1.1, the complex of sheaves Ts(L") given above

0 - Ts(L®) -S> Ts(L) 5 ...

is exact up to the (n — 1)-st term. Then

0o Ts(L%) S Ts@)) L - - Ts(@L* 1) £ Imd™! = 0

is an exact sequence. By Proposition 1.5 every Ts(L?), j = 1,... is flabby. By
Corollary 1.2 the sheaf Imd™~! is also flabby and for any open set V ¢ X

' . 1 ~ ne1
0-T'say (V, L%) 2 Psav (V, LY 2% . .. 5 Psny (V, L™ 1) %5 (Imd™1)(V) =0
is exact. Now, we can construct the commutative diagram:
Csnv(V,L"Y) % Tsav(V,L")
N2
(Imd"~")(V)

AR
0 0

From this diagram it follows that (Imd™~!)(V) =imdj,~'. The sequence
0 = Imd™! — Kerd® — HY(F) =0
is exact. Since Imd"~! is a flabby sheaf, by Proposition 1.11 b) (1),
0 = (Imd*1)(V) = (Kerd*}(V) - HXF) (V) = 0
is exact. Consequently
2(F)(V) = (Kerd®)/(Imd™')(V) = kerd}/imd™ = Hioy(V;F). O
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1.4. Cech cohomology

Let F be a sheaf on a topological space X and U = {Ux; A € A} be an

open covering of X. Denote by ¢ = (0(0),...,0(n)) a permutation of the set
{0,1,...,n}. Denote by sgn b,,...n. the equivalence class related to the intersection

Uy, N---NU,, as follows: Classify all the symbols b,,...n, into two sets by the
relation: sgnby,..x, = sgno sgnby,,..a, .- In particular, if in (Aoy---,An) two
elements are equal, then the expression sgnb,,..x, = 0.

Consider the set of formal expressions
Z Sgn bxo--.xnwlﬁ-"ln ’ "pAO---l\n e F(UJ\O n e N Ui\n)'
(A0ser yAn JEARH1

for a fixed n € Ny and with the above convention on sgnby,...n,,. This set consti-
tutes a C-vector space with the C-linear operations and it is denoted by C™(U, F).

We also define a subspace of C"(U,F). Let S be a closed set in X and
U' = {Ux; A€ A’}, A’ C A, be an open covering of X \ S. Then by definition

C™(U mod U',F) =

- { 2 g0 bxs.. A P20, Aa € CT(U,F)i0rg..0, =0
(:\o,... ,}«,.)EA“"J

if (Mo, -+ , M) € (A)™+1 ],

Furthermore, let {6”} be a sequence of C-linear mappings which map
C"(U,F) - C**1(U,F) as follows: :

5“( E Sgn bAu...A,.QOAO_”,\“)
(A0seee 3An )EAR T

= > SE0 A Andnt1PhoAlu,
(Ao,". IAII ,AH+I)EAH+2 !

where

Pro...An € F(U,\o Nn...N U);n) and

‘pxo---v\n'[fxn_{'l = ()o;\o...z\ﬂUAon...nUA“nUAn_*_l e F(UAO n ees n UAn n UAH‘!‘I)'
We shall prove that 6"t odé” =0, n=0,1,...

"t o 5"( Z - sgn b,\u...x,,saxo...a,.) =
Aoy A )EARH1

("0 gens IAﬂ. gAn +1 ,,\,.+2)6An+3

—5gnbxy.. Aniare4a the correspondent terms cancel each other in pairs. Conse-
quently, 6"t oé” =0, n=0,1,... !
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It is clear that 6” maps C*(U mod U’, F) into C**(U mod U, F). Insuch a
way we have two cochain complexes of C-vector spaces, C" (U, F) = {C*(U, F), 6"}
and C (U mod U',F) = {C™(U mod U',F),§"}. Let us denote by H*(U,F) =
H™(C" (U,F)) and by H*(U mod U",F) = H*(C" (U mod U’,F)) and call them
the n-th *(absolute) cohomology group of the covering U with coefficients in F
and the n-th *relative cohomology group of the relative covering U mod U’ with
coefficients in F, respectively.

We shall cite two theorems without proofs.

Proposition 1.16. (Leray’s theorem). Let X be a topological space and
F C X be a closed set. Let V = {V), A € A} be a covering of X and suppose that
its part V' = {Vy\; A€ A'}, A’ C A, is a covering of X \ F. Then, for a sheaf F on
. X, there exist canonical mappings as follows:

&% : H*(V mod V', F) - H3(X, F).

In addition, if H*(V), N...NVy,,F) = 0, n > 1, holds for any family of indices,
then the above mappings are isomorphisms. (The covering {Vy; A € A} satisfying
this condition is called the Leray covering for the sheaf F).

For the proof see for example |7, p. 268].

Before we cite the next theorem we shall recall some notions of complex
analysis of several variables.

A domain U C C" (an open and connected set in C") is said to be *a domain
of holomorphy if for every boundary point z € 8U there exists a function f € O(U)
such that it cannot be analytically continued to any neighbourhood of z. An open
set V C C" is called a *Stein open set if each connected component of it is a domain
of holomorphy. The intersection of Stein open sets is also a Stein open set.

Proposition 1.17. (Oka—Cartan—Serre theorem). Let V C C" be a Stein
open set. Then H*(V,0) =0, n > 1.

For the proof see for example {7, pp. 307-308].

2. HYPERFUNCTIONS OF SEVERAL VARIABLES

First we give a cohomological definition of the sheaf B of hyperfunctions
following Sato’s approach [28]. Secondly we pass to the “intuitive” definition and
elaborate it following Kaneko’s ideas and results [7].

2.1. Cohomological definitions of hyperfunctions
Definition 2.1. (Sato). B = H3.(O) (regarded as a sheaf on R").

Proposition 2.1. Let ) be an open set in R™ and let U be an open set
in C" such that ! = R™® NU and that 2 is relatively closed in U Then B() =
H3(U, O0) = HG(C™, O).
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Proof. By Proposition 1.2, H3(U,O) = H2Z(C™,0). Now by definition of
k~ and by propositions 1.14 and 1.15

B(Q?) = HRA (0)(?) = Hi» (0)(U) = HRanu(U, 0) = H3(U, 0). 0

We can relate B(f2) with the n-th relative cohomology group. -

Let 2 be an open set in R®. By Grauert’s theorem (cf. [7, p.f311]) there
exists a Stein open set U C C™ such that = R® N U and that Q is relatively
closed in U. Denote by: |

Ui=UnN{z=(z1,...,20) € C"; Imz; #0}, j=1,...,n;
U={UU,...,Uy}; U ={U,...,Us};
(2.1) U#Q=U,N..NU ={ze€U;Imz; #0, j=1,...,n};
U#J'Q=Ulﬂ...nt_anj+1n...ﬂUn=
={z€U;Imz #0, k=1,...,j—1, j+1,...,n}

Proposition 2.2. Let ) be an open set in R™ and let U be a Stein open
set in C™ such that ! = R N U and that () is relatively closed in U. Then
B(f1) = H™*(U mod U’, O)(B(R?) is isomorphic to H*(U mod U’, O)), where the
families of covering U and U’ are as above.

Proof. Let U be taken as a topological space and {2 as the closed subset of
U, then U is a covering of U and U’ a covering of U \ 2. If U is a Stein open set,
then U; =UN{z€ C*Imz; #0}, j =1,...,n, is also a Stein open set because
{z € C*; Im z; # 0} is Stein. Also U, N...NUy, for any set of indices which belong
to {1,...,n} is Stein. By Proposition 1.17, H*(Ug, N...NU,,0) =0, n > 1 for
any set of indices which belong to {1,... ,n}. By Proposition 1.16 and Proposition
2.1 |

(2.2) H™(U mod U’, 0) = H2(U, O) = B(Q).

- Corollary 2.1. Let Q,U,U and U’ be as in Proposition 2.2; then

(2.3) | B(Q) 2 O(U#0) /> ow#in).

=1

- Proof. By Proposition 2.2, B(2) = H*(U mod U’, O). We have to construct
H™(U mod U’, O) when U, U and U’ are given as in Proposition 2.2.

A relative n-cochain is only of the form sgn bg.. n¢0...n, Yo..n € O(Upg N ...N
U,) = O(Uy N...NU,), where Uy = U. This n-cochain is in the same time the

n-cocycle. ,
A relative (n — 1)-cochain has the form

n

ngn bO...j—l 7+1...n¥0...5—-1 j+1..;n: $0...j—1j+1...n € O(U#JQ)
j=1 |
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Its boundary is
i

Z(—l)j sgn bo...nP0...j~1j+1...n-
j=1
Consequently (2.3) is true.
Corollary 2.2. In one-dimensional case (2.3) has the form

(2.4) B(Q) = O(U \ 2)/0(V).

Proof. In this case 2 = RNU and U’ consists of only one element U; = {z €
U/Imz #0}. Then U#Q =U, = U \ Q and U#,Q = U. With this notation (2.3)
gives (2.4). [

Consequently, in one-dimensional case, B(f2) is given by the quotient space
O(U \ Q)/O(U). Every equivalence class [F], where. F' € O(U \ 1), is considered
to be a hyperfunction f on ! C R; the function F is called a *defining function of

f.

In many-dimensional case we have the same situation. Every equivalence
class [F} where F' € O(U#Q) is considered to be a hyperfunction f € B(?), where
() is an open set belonging to R™. F is called the *defining function of f and we

write f = [F.
Proposition 2.3. The sheaf B is flabby.

For the proof see [7, pp. 350-351].

f € B(f2) is said to be 0 on an open set ' C Qif flgr = 0. *The support of
f € B(Q)) (for short supp f) is the complement in  of the largest open subset of
{1 on which f equals zero.

Between different operations on hyperfunctions we define some of them. De-
note by {2 an open set in R".

Let f = [F] and g = [G] be elements of B({2) and A, be two complex
numbers. Then Af + ng = [AF + 9G] € B(1); thus B(?) has a C-vector space
structure.

For a real analytic function ¢ € A(f2) there exists an open set U C C"
such that @ C U and ¢ € O(U). Therefore we can define the multiplication by
@ € A(Q) : of =[pF], where f = [F] € B(Q). _

Every f = [F] € B(2) has all derivatives. If we adopt the abbreviation: D% =
Df..Dg~, Dj = 0/0z;, § = 1,...,n, then DZf = [D?F]. Moreover, the linear
partial differential operator with real analytic coefficients P(z, D) = > aq.(z)D*®

- | la|<m
acts as a sheaf homomorphism on the sheaf B, (la| =a; + - - + a,).

The sheaf A of real analytic functions: 2 — A(f}) is a subsheaf of B. To

define this natural mapping A LN B, let us start with an element ¢ € A({2) and let
U be an open set in C" such that ¢ is holomorphic on U. Introduce the function
¢ such that |

¢(z) = p(2), z € (2 +il,); $(z) =0, z € (U#Q)\ (2 + 1)
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where I', is any orthant in R™. Then the looked-for mapping ¢ is: ¢ — [¢]. The
defined mapping i does not depend on the chosen I',.

*The singular support of f € B(f2) (for short sing supp f) is the complement
in ) of the largest open set €} C §2 such that f|g- is real analytic.

The next proposition shows an important property of the sheaf B and also
that many properties of this sheaf can be obtained from properties of the holomor-
phic functions.

Proposition 2.4. Let §) be an open set in R™. If g € B(1), then the equation
(8/0x1) f(z) = g(z) admits a solution f € B(?) and every solution (8/0x1) f(z) =
0 is a hyperfunction depending only on the variables (z2,... ,T,).

Proof. Since B is flabby, ¢ can be extended to an element belonging to
B(R"™). Thus we can take {2 = R™ and ¢ € B(R"). Let G be a defining function
of g, G € O(C"#R"). From the theory of hoiomorphic functions there exists
a function F € O(C"#R") such that (9/0z1)F(z) = G(z). Then the sought
hyperfunction is f = [F].

The second part of the proof is not so easy because the hyperfunction zero is

defined by any element of the vector space 2 o # if).
1=1
By the same reason as in the first part of the proof we can take = {z €
R™|z;| <gq, j=1,...,n}. Denote by U the convex open set in C*, U = Q+:R",
and by F' the defining function of f which satisfies the equation (8/0z,;) f(z) =
Then F satisfies

(25)  (8/0z1)F(z) =) Gi(2)luga, G € OU#j9), j=1,...,n

j=1

By the same property of holomorphic functions, we used in the first part of the
proof, there exist H; € O(U#3jQ), j =1,...,n, such that (0/0z1)H;(z) = G;(z),
7=1,...,n, because U#;(2 is an open set in C" consisting of convex components.
Consequently (2.5) has now the form

S (F(2) - ZH, (Dlu#a) =

It follows that F'(z) — E H;(z)|lvga € O(U#(2) and depends on (23,... ,2,) only.

Denote by I'? t.he o-th orthant in R™ and by V, = (2 + zl".,-) N U, then
U#Q =1, Vs,. Ifby 1, is denoted the set 0 = {|z;] < g; 3 =2,...,n}, then the

function F(z) — E H;(z)|usq can be continued to ({|z;| < q}+3R) X () +i21),
J_
being constant in 2.

This shows that f is a hyperfunction which depends on (z3,...,z,) only.
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A more general assertion can be proved. Let P(D) be a differential operator
with constant coefficients of the elliptic type. Denote by A¥ = {u € A; P(D)u =

0} then 0 = AP - B — "B s0isa flabby resolution of AF [30].
Definition 2.2. An infinite-order differential operator

J(D)= Y baD% (lof =01 +...+an),

with coefficients satisfying lim|q| 00 /bl =0, is called a local operator with
constant coefficients.

By properties of holomorphic functions the series

J(D)F = Z baD*F, FeO(U).
laf20

converges locally uniformly in U. Hence a local operator is an endomorphism of
the sheaf O and induces also an endomorphism of the sheaf B.

Moreover, a hyperfunction f with support only at the origin is uniquely ex-
pressible as

f=J(D)s = ) _ baD",

|a|>0

where J (D) is an appropriate local operator (see {7, p. 156}).

2.2. Hyperfunctions defined by boundary value representation

2.2.1. Definition and main properties. In the next definition of hyperfunc-
tions we need the notion of infinitesimal wedge.

Definition 2.3. Let ) be an open set in R™ and I an open cone in R™. An
open set W C C" is called an infinitesimal wedge (for short i.w.) of type €2 + iI'0
if it satisfies the following conditions:

a) W C Q +1I;

b) For every proper subcone I, IY CC IT" and for every € > 0, there exists § > 0
such that W D Q¢ + (I N {y; |lyl| < }), where Q. = {z € Q;d(z,00) > €}; Qis
the edge of this i.w.

There are infinitely many infinitesimal wedges of type 24I'0; such an i.w. we

denote by the same symbol Q+iI'0 or by Q+4iI. We also express by F € O({2+:I'0)
the fact that F'is holomorphic on one of such i.w. of type 2 + iI'0.

Consider X (?) = &rO( +1I'0), where I' ranges over all open cones V in R.
By the local Bochner theorem, if F' is holomorphic on an i.w. {1 4 i] of the type
{1 +1I'0, then it is also holomorphic on 2+ 11, where I is the convex hull of I. Thus
we can assume, without loss of generality, that every I' is convex.

- X(Q2) is a C-vector space with the C-linear operation: A@;_, Fi+n@, G;
= AR &:-- B A, ®nG1 & ... ® 3G, where F; € O(Q2 +41,0),i = 1,...,n, and
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G; € O(1 +1:I0), 5 = 1,... ,m. Using the notation + in place of @, consider
the C-vector space Y (1) generated by the elements of X ({2) of the following form:
F} + F, — F3, where Fj € O(1+iI';0), j = 1,2,3 and I’y NI’y D I'y; Fi(2)+ F3(2) =
F3(z) holds on the common domain. In particular if F € O(Q +¢I'0) and IV C T,
then the difference of F and its restriction on i.w. of type §? + iI"0 also belong to
Y (Q).

Definition 2.4. The mapping
(2.6) = X(QD)/Y(Q),

where () is an open set in R", defines a presheaf on R"™; we denote it by B.
(If ' C , then the restriction ra'q B() — B(Q') is defined as usually via

restriction of functions).

Denote by F(z + iI'0) an element of the quotient space X(Q)/Y (Q) deter-
mined by F' € O(Q2 +1I), where Q + I is an i.w. of the type Q +:I'0. Any element

of B() is represented by

(2.7) f(z) =) Fj(z +il;0)

i=1

where {F;;j =1,...,m} is the set which gives the defining function of f.

To prove the next proposition we need the assertions of a lemma cited below.
The proof of this lemma is easy and one can find it in {7, p. 332].

Lemma 2.1. Suppose that the vectors n°,nt,... ,n™ belong to R™ and
that the open half spaces determined by them: E, = {y € R"*;(n',y) > 0},
1 =0,1,...,n satisfy |

(2.8) EoUEnU..UE)p =R"\ {0}.

Then the following statements hold:

a) EpNExN..NEp = N

b) Any n vectors of n°,n,... ,n" are linearly independent. Hence the inter-
section of half spaces corresponding to them is a proper open convex cone.

c) Denote by T'y = Egpo N ... N E',,j N.NEs;w. Let 3,k € {0,1,..,n}. Then
I'j+T: = Epn..N EynN..n E,,h N ... N E,n, where the notation ~ denotes
suppression of the factor under it.

Proposition 2.5. The presheaf B defined by (2.6) is isomorphic to the n-th
derived sheaf H} . (O) as a presheaf and hence it is actually a sheaf.

Proof. Let n°,n',... 7™ € R™ be such that (2.8) holds, where E: = {y €
R™; (p*,y) > 0}, i = 0,1,...,n, are the open half spaces determined by n*. Set
Ui =(R"+tE;)NU,5=0,1,... ,n,and Upyy =U. U = {Uy,Uy,... ,Upn,Upns1},
U’ = {Up,U,,...,Un} give a relative Stein covering of the pair of open sets (U, U \
(1), where U is a Stein open set in C™ such that U N R™ = 2 and 2 is relatively
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closed in U. Now we can follow the idea of the proof of Corollary 2.1. Just by
the same reasons as in the proof of Proposition 2.2, (2.3) holds. Thus a relative
n-cochain with respect to the constructed covering is of the form

n
(2.9) Z sgnby 3 n41Fi(2), F5€ 0O(UoN...N U;iN..NUps), 1=0,1,...,n.
§=0
(The notation™denotes suppression of the factor under it).

By Lemma 2.1 a), Eqo N Ep N...N Egn = (. It follows that there exist no
relative (n + 1)-cochains and (2.9) is necessarily a relative cocycle.

A relative (n — 1)-cochain is of the form
Z sgnby = %..a+1fik (2),
_ i<k
Fir € O(UoN..0T;0..nNUkN..cNUpnp1), 5,k=0,...,n,

and its boundary is
3 b, g (D Fi(@) + 3 (-1 iy 2)).
§=0 k>j k<j

Denote by I'; = Epo n...nE,,,- N...NEy. By Lemma 2.1 b) and c), I'; is a proper cone

in R™ and UpN...NU;N...AUL 41 = (R +i0)NU; UoN...nTU;N...NTeN...NUpyy =

R +i(T; +Te))NU. | '
As in Proposition 2.2 and Corollary 2.1 we conclude that

(2.10) B(Q) = }n: O((R™ +iT;) N V) / 3" O((R™ +i(T; + Ti)) N V).
j=0 | <k

Now we can define a C-linear mapping B(2) — B(Q) which is consistent with
restrictions so that it is a presheaf homomorphisin: Suppose that the functions

F; e OUon..nU;N..NU,), j=0,1,...,n.
We associate with the element f € B(2), given by (Fy,... , F},), the element

(2.11) i(-nfpy(a: +1T';0) € B(Q).
_ =

We have to construct the inverse correspondence to this one. Take an el-
ement F(zx + i['0) € B(Q) given by F € O( + i['0). Determine n + 1 vectors
n%,n',...,7™ € R™in such a way that E:N...NEy» CC I and that (2.8) holds. We
also assume that the n-simplex formed by n, ... ,n" is compatible with the orienta-
tion of R™. Choose a Stein open set U C C*, UNR"™ = 2 such that €} is relatively
closed in U and that F'(z) is holomorphic on thei.w. (Q+i(E,1N...NEy»))NU. Now
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we can construct the relative covering U = {Up,... ,Un41}, U’ = {Up,... ,Un} of
the pair (U, U \ ), where U; = U +iE,;)NU, j=0,1,...,n,and Upyy = U.
With this relative covering the function F' defines an element of H"(U mod U’, O)
and an element of H3(U,O) = B(f) as in the first part of the proof. Mori-
moto (see {7, p. 335]) proved that this element does not depend on the choice
of the vectors n% n',...,n". To the obtained element, by C-linear mapping
B(Q2) — B(Q) defined in the second part of the proof, it corresponds F(z + i[,0),
where I'o = E,1N...NEy» CC I'. By the definition of the equivalence class in X (),
F(z +1il'g0) = F(z +iI'0). Consequently, the composition of homomorphisms just
defined, B(2) - B(2) — B(R) is the identity mapping. Analogously, it can be
proved that the composition B(2) -+ B(2) = B() is the identity mapping, as
well. (O

In one-dimensional case there is only two open cones with vertex at zero:
'y =RyandI'. =R_. fU c Cis an open set such that UNR = §, N is
relatively closed in U, then U, = UN{z € C; Imz >0} and U_ =UN{z €
C; Im 2 < 0} are infinitesimal wedges. Now (2.7) can be given as follows

f(z) = Fy(z+iR;0) - F_(z +iR_0),
where F; € O(Q2 +tR+0) and F_ € O(f2 + tR_0). We write for short
(2.12) f(z) = Fi(xz +i0) — F_(z — i0).

(Fy,F_) is *the pair of defining functions of f.

Remark. After Proposition 2.5 we can identify B and B and we shall write
only B for the both sheaves. The definition of hyperfunctions via B is said to
be "intuitive” definition or definition by boundary value representation. The ”in-
tuitive” definition is easier to understand and to apply in solving mathematical
models. But theoretically it is in some sense incomplete. First, expression (2.7) is
not invariant under coordinate transformations. Secondly, it.is not easy to check
that a given hyperfunction is zero in a neighbourhood of a point.

The elementary operations, we gave for the elements of B(f2), can be easily
transfered if these elements have the form given in (2.7). Let

f(@) = Fj(z +il;0) and g(z) = Zk: Gi(z +il%0)
J
be elements of B({2) given in the form as in (2.7) then:
Mf(z) +ng(z) = Y AFj(z +iT;0) + Y nGi(z +iT}0), n,\,p€ C
] k
(wf)(Jm) = Z(son)(w +1I;0), v € A(Q)
J

D2 f(x) = Y (D2F;)(z +iT10).

J
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2.2.2. Microfunctions. When we investigate solutions of mathematical
models focusing our attention on points in which these solutions have their singu-
larities, we need not the sheaf B but the sheaf of microfunctions R. The theory
and applications of microfunctions are significantly developed within last years (cf.
[13]). For the further study of microfunctions and micro-local operators one can
derive a profit from the book [10]; see also [24].

The construction of the sheaf R we shall give in one-dimensional case because
of simplicity, but our intention is to explain the concept and the idea of microfunc-
tions theory in many-dimensional case, too. According to this purpose we shall
adapt the more general notation than are really needed in one-dimensional case.

Definition 2.5. Let S° = {£1} and denote a point (z,£) of R x S% by
(z,(£/1)dzoo) for convenience. A hyperfunction f is said to be microanalytic at
the point (z, (1/1)dzoo) if a pair of defining functions (Fy, F_) of f can be both
analytically continued to Uy = UN {z € C; Imz > 0}, where U is a suitable
complex neighbourhood of z. Similarly, f is said to be microanalytic at the point
(z,—(1/%)dzoo) if F+ and F_ can be both analytically continued to U_ =Un{z €
C; Imz < 0}.

From the definition of the set of points, where f is microanalytic, it follows
that this set is an open set in R x S°.

Definition 2.6. The set of all points where the hyperfunction f is not micro-
analytic is called the singular spectrum of f (for short SS f).

If # : R xS° - R is a natural projection, then #(SS f) = singsupp f.
The linear dJﬁerentlal operator with real analytic coefficients does not enlarge the
singular spectrum of a hyperfunction.

The first idea to investigate local properties of hyperfunctions required the
construction of the quotient sheaf B/A. But for the singular spectrum of a hy-
perfunction, B/A was still incomplete. So we have to introduce an other quotient

space. |

Definition 2.7. Let h : X — Y be a continuous mapping of a topological
space X into a topological space Y. Let U be an open set in X and V be any open
set belonging to Y and containing h(U). For a sheaf G on Y, the correspondence

U — lim G(V) is a presheaf on X. Its associated sheaf is called the inverse
—*VDOh(U)

sheaf of G by h and is denoted by h~1G.

In particular when f is an open function, if for every y € Y and open set
U CX,Un f~'(y) is connected, then f~1G(U) = G(f(U)) holds.

Let us apply the construction of the inverse sheaf to the canonical projection
7:R xS% = R. Let Q) x {idzoo} U2 x {—idzoo} be an open set in R x S° (2,
and ), are open in R). Then we have

7' B(Q; x {idzoo} U Q3 X {—idzoo}) = B(h) & B(f)

Definition 2.8. We have the following two sheaves over R x S°;
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1. The subsheaf A* of #~!B defined by
A* () x {idzoo} Uy x {—idzoo} =
= {f € B(); SSf NNy x {idzoo} = @}
@ {f € B(f22); SS fNQy x {—idzxoo} = ¥}.
2. The sheaf of microfunctions: R = 7#~!B/A*.

From 2 we have the exact sequence: 0 -+ A* - 7~ 'B - R — 0.
The sheaf R has the following main properties:

Proposition 2.6. 1. R is a flabby shealf.
2. For any open set U C R x S%, R(U) = n~'B(U)/A*(U), or equivalently
0— A*(U) >« 'B(U)—=>RU) =0

1S an exact sequence.

3. The linear differential operator with real analytic coeflicients induces a
sheaf endomorphism R =& R. |

For the proof see for example {7, pp. 53-55].
Let F € O(U), where U C C is a domain (open and connected set) and a

neighbourhood of a point a. Define D! by -
| -
(2.13) D1F(z) = / F(Q)d¢
a

with an appropriate path connecting a and 2. Consider the infinite series of oper-
ators

(2.14) Q(z,D,) = i be(z) Dk,

k=1

Definition 2.9. Operator (2.14) whose coefficients satisfy the following condi-
tion | .

1. bix(z) are holomorphic in a complex domain U C C;
2. limsupy_, o +/5UP,ck |br(2)]/k! < 00

holds for every compact set K C U, is called a *pseudo-differential operator or a
micro-differential operator of order < 0.

‘A pseudo-differential operator of order < 0 defines a sheaf endomorphism of
R in a special way via germs (cf. [7, p. 61])."

2.3. Fourier hyperfunctions and the Fourier transform of them

2.3.1. Mainly used approaches to Fourier hyperfunctions. 1. *Sato’s
definition ([27] for the proofs see also [12]). Denote by D" the compactification of
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R", D™ = R™U S}, obtained by adding points at infinity in all directions. A
fundamental system of neighbourhoods of a point at infinity {(aoco) is

Up,r(aco) = {z € R™; (z/ljzl}) € B, liz|l > r} U {zo0; z € B},

where B is a neighbourhood of the point a in S™~?. @ will be the sheaf on D" +iR"
defined as follows: For any open set U C D" +1R", O(U) consists of those elements
of O(U N C") which satisfy |F(z)| < Cv,c exp{¢| Re z|) uniformly for any open set
V Cc C*,V C U and for every € > 0, where V is the closure of V in D™ + iR". If
'U ¢ C", then O(U) = O(U). Hence, Olcn = O It is proved that D™ C D" +iR"
is purely n-codimensional relative to O ([25]). The n-th derived sheaf Hg,..(O),
denoted by Q and regarded as a sheaf on D", is called the sheaf *of Fourier
hyperfunctions (of slowly increasing hyperfunctions). Q is flabby sheaf on D™. In
particular Q|r~ = H{. (O) = B. Hence the sequence

Q(R") - B(R") =0

1S exact.
One of the main results on the sheaf Q is the following proposition.

Proposition 2.7. [7) Let U C D™ +1R" be an open set such that UNC™ is

convex and Im z is bounded on (U N C™). Then H*(U,O) = 0 for k > 1. Hence,
in particular if we choose a convex neighbourhood I of 0 € R", then U = D" + 11,

= (D™ +iI)N{Imz; # 0}, j =1,... ,n, is a relative Leray ¢overing for the pair
(D™ +iI, (D™ +4I) \ D™) relative to the sheaf O and the representation

Q(D™) = O((D" +iD#D") [ 3 O((D" +iN)#iD")
=1
is valid.
This theorem gives a possibility of another approach to the Fourier hyper-
functions. Namely, the set of Fourier hyperfunctions can be defined as

O((D" + i[)#D") / Y O((D™ +il)#5D").
j=1
2. *Zharinov’s definition [35]. Denote by TM = R™ + iM and by sy (£) =
sup{—y&;y € M}, where y§ = 1141 + -+ ynén and M C R™. Let A and B be

bounded domains in R™. We denote by ®(A, B) the Banach space of holomorphic
functions on T4 with the norm

lollZ, = sup{exp(s(£))|e(£ +in)l; € +in € T4}

The space &, defined as the inductive limit over all A and B which contain
ZEero,

d = E $(A, B)

A>0,B30
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is a DF'S space. The dual space, &' is an FS space (Fréchet—Schwartz). Y
is 1somorph1c to the space of Fourier hyperfunctlons The Fourier transform of

f € & is given by (Ff,0) = (f, Fy), ¢ € ® and is an automorphism on &'.

3. “Intustive” definition of Fourier hyperfunctions. The systematic exposition
of this approach one can find in [7]. We shall follow it in the next part.

2.3.2. “Intuitive” definition of Fourier hyperfunctions. Let T'; be an
open cone in R® and D" + ¢I; an infinitesimal wedge of type D" + i[';0. F; €
O(D™ + iI;) means that F; is holomorphic on R™ + iI; and for every ¢ > 0,
|F;(z)| < Cv,cexp(e| Re z|) uniformly for any open set V C C*, V C D" +il;.

Consider X = @rO(D" +iI'0) where I ranges over all open convex cones. X
is a C-vector space. We denote by Y the C-vector space generated by the elements
of X of the following form: Fy + F; — F3, where F; € O(D" + i[';0), 7 = 1,2,3,
and I't Ny D I's; F1(z) + Fa(z) = F3(z) holds on the common domain.

Denote by Q = X/Y. This is a C-vector space too. By F(z +iI'0) we denote
the element of the quotient space Q determined by F € O(D" + 1I).

If 5 = 0 and F3 can be extended to D™ +1];, then F3 can be substituted by
F; 1 in Pr. \

Corollary 8.5.4 in the book of Kaneko [7] asserts that Q(D") = Q. The proof

is just the same as the proof for Proposition 2.5. We shall prove only that there
exists a homomorphism Q(D"™) — Q. Notice that Proposition 2.7 asserts that

Q(D™) = O((D" +iD#D™) / 3 O((D" +il)#;iD").

Then every element of Q(D™) is represented by F € 6((D“ + tI)#D™) and F
consists of 2" independent holomorphic functions F,, F, € O(D" + tI,) where
D™ + 11, is an infinitesimal wedge of the form D" + :I',0, I', is the o-th orthant
in R*. To F we associate the following element of Q:

Z sgn o Fy (z 4 i, 0). ,

Any element G; € O((D™+iI)#;D™) is holomorphic across the interface I mz; = 0.
The pairs given by G; in the sum ) __ sgnoF,(z +i[',0) cancel each other because

of the definition of Y in Q. Thus the mapping Q(D") — Q is well defined and it
is C-linear. .

In Q(D") is defined a topology. First, we define a family of seminorms || - ||k,
in O((D™ 4+ iI)#D") = E: For every compact set K CC I\ {0} and ¢ > 0

K,e = Sup z}e ; € L. -
IF ||k, |F(z)|e~cIRe#l FeE
zeR"+iK

The set of all such seminorms reduces essentially to a countable family and 0((D“+
1I)#D"™) turns out to be a Fréchet space. It is also a Montel space. Since the spa.ce
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H= Y O((D™+il)#jD") is a closed subspace of O((D"™ +iI)#D"), the quotient
i=1 |

space E/H admits the structure of a Fréchet and Montel space. If 7 is the canonical

mapping: £ — E/H, then 7 is an open mapping. A family of seminorms on Q(D")
is given by _ N

pi«(F) = inf |F+hixe, FeFeQD™.

| Since the space Q is isomorphic to the space Q(D:‘) , this isomorphism induces

a topology on Q. In this way the construction of Q gives an approach to the

Fourier hyperfunctions, easier then the q_lassical one, given by Sato which uses the

cohomology theory. Every element f € Q is given by

N
(2.15) f(z) = ) F;(z +iT;0),
=1

where every Fj(z + iT';0) denotes the element of the quotient space Q determined
by F; € O(D™ +1I;), j = 1,...,N. The functions Fj, j = 1,...,N define a
function F and we write f = [F]. _

The relation between Fourier hyperfunctions and hyperfunctions is unexpect-
ed. Namely, we have a well defined mapping Q — B(R"): given f € Q by (2.15),

it can be regarded as a hyperfunction in the form (2.3) with the same defining func-
tion. Theorem 8.4.4 in Kaneko’s book [7] asserts that this is a surjective mapping.

Let ¢ be a real analytic function such that it can be analytically continuable
to a complex neighbourhood U C D™ + iR™ of D™ and suth that 0(z) € O(U). If

f € Q, then the multiplication is defined by: ¢ f = [¢F], where f = [F].

2.3.3. Fourier transform of Fourier hyperfunctions. Kaneko [7] has ex-
plained Sato’s fundamental ideas concerning the Fourier transform as follows. De-
note by F the Fourier transform. Let f € Q, where f(z) = Fy(z+iR40)~F_(z+
iR_0) then F(f) = [¢], where

0 0
$+(¢) = [ e U F (2 + iy, )dz — / e~ =H-XF_(z +iy_)dz, Im( >0,
=00 —00 ,
$-(¢) = ] e FHVIE, (2 + iy, )dz — f e =+ U-XF_(z +iy.)dz, Im( <0,
0 0

where y; > 0 and y_ < 0 are fixed belonging to the infinitesimal wedges R+ 1R, 0
and R + 1R_0, respectively. |

All the integrals have a meaning because of: —i(z +iy)(§+in) =zn+ fy — -
1(z€ — ny).

To give a precise definition of the Fourier transform of elements belonging to
Q we need the following proposition.
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Let F € O(D™+4I), where R®+iI is an infinitesimal wedge of type R™+iI0.
It is said that F' *decreases exponentially outside a closed convex proper cone A°
if restricting Re z outside any cone containing A° as a proper subcone, then F
satisfies the estimate |F'(z)| = O(exp(—é|Rez|)) for a suitable § > 0 and locally
uniformly for y € I.

Proposition 2.8. Suppose that for an infinitesimal wedge R" +1I of type
(R™ 4 iI'0) the function F € O(D"™ + iI) and decreases exponentially outside a
closed convex proper cone A® (AP is the dual cone to the cone A). Set

6= [ eiF@s

Imz=y

for any y € I. Then it converges locally uniformly in ¢ ranging over an infinitesimal
wedge R" —iJ of type R" —iA0 and G € O(D" —iJ). Furthermore, G(() decreases
exponentially outside I'°. Hence F[F(z + i['0)] = G(¢ — iAQ), where G € Q, as
well.

Proof. Let K be a fixed compact set belonging to —A. Choose the cone A’
containing A% such that Re(—iz¢) = zn + y€ < —cklz| + y€ for n € K, z € A,
where cx > 0. We can now analyse the function G(().

G(¢) = / e~ F(z)dz =

Im z=yerl

.l
= / e {EH W E (2 4 fy)dx + / e~ F+ VI F(z + iy)dz.

Al R\A%

The first integral converges locally uniformly in ¢ € R +iK because F € O(D" +
tI) and Re(—1z() < —ck|z| + y§. For the second integral we can use that |F(z)| =
O(e~%1*!) locally uniformly for y € I. If we suppose that n € KN {|n| < dx} for a
suitable chosen ég, then the second integral converges locally uniformly on R™ +
i(KN{lnl <dx}). Hence, G(() is a holomorphic function in ¢ on an infinitesimal
wedge of type R™ — 1A0. From the both integrals we can draw out the factor e¥.
Consequently G € (”)(Dﬂ — 1J) and if £ moves outside a cone containing I'? as a
proper subcone, we have y¢§ < —4,[¢|, 8, > 0. Thus G(¢) decreases exponentially
outside I'?. 0O "

In order to define the Fourier transform of an element f € Q, f=[F]=
ZM Fo(z + iI'0) we shall first prove that Fi,, m = 1,...,M, can be made

m=]
decomposed into a finite sum of functions decreasing exponentially outside a closed

convex cone. One of such decomposition can be in the following way:

Let o = £1, k = 1,... ,n; the multi signature ¢ = (01,... ,0n) determines
the cone I, as the o-th orthant in R™. Put x.(t) = e*/(1+¢*), x-(t) = 1/(1+¢?)
and x,(2) = Xo,(21)---Xo.(2n). Every x,(z) decreases exponentially along the
real axis outside any cone containing the closed o-th orthant as a proper subcone
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and ) _Xxo(z) = 1. These properties of x, make possible the decomposition of
Fin, Fa(2) = Y0, Xo(2)Fin(2), where each term x(2)F,,(2z) decreases exponentially

outside the closed o-th orthant. Consequently, the Fourier hyperfunctlon f [F]
can be given in the form

N
(2.16) f(z) =) Un(z +1iT40),

k=1

where Ux € O(D™ + ili), D™ + il; is an infinitesimal wedge of the form R"r+
i['+0 and |Ux(z)| = O(exp(—6|Rez|)) for a § > 0 when restricting Re z outside
any cone containing a fixed cone A} but locally uniformly for Im z € I;.

Definition 2.10. The Fourier transform of f = [F] given by (2.16) is

Flfl = Z FlUr(z + zI‘kO)]

k=1

By Proposition 2.8 it maps Q into Q. One can prove (Lemma 8.3.3 in (7))
that F[f] does not depend on the decomposition of the defining function F' into
finite sums of hyperfunctions decreasing exponentially outside a closed convex cone.

By Proposition 2.8 it is easy to define the inverse Fourier transform F—!:

FUG = e [ €6Qd = Fa).

Im{=n€—J

The properties of F and G given in Proposition 2.8 make elementary the proof
that F~1F = FF~1 = id. Hence this holds for any Fourier hyperfunction and the

Fourier transform is an automorphism of Q.

We saw that the mapping Q — B(R") is surjective. In this sense every
hyperfunction has the Fourier transform. .. \

2.3.4. An other definition of the Fourier transform of Fourier hyper-
functions. First we shall define the space P,. Let 4 be a positive constant and
I an open set in R™ containing 0. Then O~%(D™ + iI) is defined as the set of
holomorphic functions F on R™ 4 i1 such that for every compact set K CC I and
every € > 0 there exists Ck . > 0, |F(z)| < Ck . exp(—(0 — e)| Re z|) uniformly for
z€ R*+1K. Then

= l_LEhEO"’(D“ +u)

130 540
with the topology of inductive limit.
It is easy to prove that if f € O~%(D" + z{|y| < fy}), the Founer transform

Ff=F) = [ e~ f(z)dz € O~7(D™ +i{ln] < 6}, Iyl < 7.

Imz=y
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The Fourier transform is an automorphism of P.. P, is called the space of *rapidly
decreasing real analytic functions.

By Theorem 8.6.2 in [7], P, and Q are topological dual to each other. The
inner product is given by

(fre) = [ f(@)p(z)dz = Z: [ @r@as

Im z=y(i)
where

- N -
y9I e I;, p€P,, f=[F]=)  Fj(z +il;0) € Q.
s

The Fourier transform actsasa topological automorphlsm on Q and (Ff, ) =
(f, Fe) is valid.

Let us remark that the space @ in Zharinov’s approach is just the space P.,.
This gives a connection between Zharinov’s approach and the other two. Also the
three different definitions of the Fourier transform give the same operation.

Remark. The proof that &' is isomorphic to Q(D") can be find in [12].

2.4. Asymptotic behaviour of Fourier hyperfunctions and its applications

Asymptotic behaviour of generalized functions has an important role in the
analysis of solutions to mathematical models, to precise the asymptotics of integral
transforms or to discuss some problems in the theoretical phisics.

2.4.1. Quasiasymptotics. As we cited in 2.3.1, Zharinov [35] defined the
space ' which is 1som0rph1c to Q or Q(D™). But in the same paper he constructed
the space A’(®) C &', where @ is a domain in R"‘ For an element of A’(O), he
defined the quasiasymptotics.

Let T be a convex closed acute cone in R®. We denote by ¥ = int I'?, where
I is the dual cone to I'. We will follow Zharinov’s definitions and results given in

[34] and [35].
Let A and B be two bounded domains in R™. Denote by sg(§) = sup{—y¢;
y € B} and by A(A, B) the Ba.na,ch space of functions holomorphic on R" +1A4 and

such that
lollA,, = sup{e™*2®|p(¢ +in); ¢ € R™+i4} < oo

with the topology given by the norm || - [|4,_ . It is easy to see that A(A,B) C
A(A',B’), when A’ C A and B C B’. With the inclusion mapping pap a5’ :
A(A,B) = A(A’, B') we can define -
- . \re .
AX) = lg)n A(A,B); A(D) = 1(13_1 A(B, A).
A30, BCCX BCCET, 0€A

The space A (¥) is a DF'S space and its dual space (2) is an FS  space. But

Iy (X) is an F'S space. Zharinov (cf [35]) proved that ®'r C A _;(E) C &', where &'
is defined in 2.3.1 and &'r = {g € &;suppg C I'}.
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Now we can cite the definition of the quasiasymptotics (cf. [34]).

Definition 2.11. Suppose that g € A (2) and that p is a positive and contin-
uous function on (0, 00). If there exists

lim g(tQ)/p(t) = h(¢) in A(E), h#0,

then it is said that g has the quasiasymptotics related to p.
~ Since A'(2) is an FS space, the limit in Definition 2.11 is equivalent with

Jim (g(t£)/p(t), (£)) = (h, ), B # 0

for every p € A(Z).
Similarly as for the quasiasymptotics of distributions (cf. [33]) one can prove
that p and h in Definition 2.11 have the following properties:

1) p has the form p(t) = t*L(t), a € R and L is Ka.ramata 8 slowly varying
function {9];

2) his hombgeneous of degree a.

- The defined quasiasymptotic behaviour of Fourier hyperfunctions can be used
to precise properties of solutions to mathematical models (partial differential equa-
tions, integral equations,...) as it is done by means of the quasiasymptotics of
distributions (cf. [33]). Applications of the quasiasymptotic behaviour of Fourier
hyperfunctions are not yet developed but one can expect interesting results of such
investigations.

- To illustrate the applications of the quasiasymptotics we cite an Abehan type
theorem for the Laplace transform of Fourier hyperfunctions (cf. {34]). But first we

have to define the Laplace transform of elements belonging to A’(X).

For a fixed z € R™ + iB, where B is a bounded subset of £, e** € A(A, B)
for every bounded set A and ||e**||4,, = e*4(®), z = z + iy. Thus for every fixed

z € R" +1X, e% € A().
Definition 2.12. The Laplace transform of g € &'(2), Lg, is defined by

Lg(z) = (g(£),€**¢), z € R™ +iX.

In [35] Zhannov have proved that the Laplace transform defines an isomor-

phism A’(X) onto X (¥). With this preperty and the cited properties of the family
of functions {e**%; z € R™ 41X} it is easy to prove the following pr0p031t1on of the
Abelian type.

Proposition 2.9. Suppose that g,h € A'(E) and p(t) = t*L(t), a € R.
Denote by G = Lg and H = Lh, then G,H € A(E) If
g(t€)/p(t) — h(€), t =+ 00, in AY(E),

then —
G(z/t)/t"p(t) = H(z), t = 00, in A (Z).
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In [34] one can find other properties of the quasiasymptotics of Fourier hy-
perfunctions. | .

Let us remark that Komatsu in [16] has also defined the Laplace transform
of a subspace of hyperfunctions, denoted by B[ 2,00)’ and in [17] he has related his
theory with other theories of the Laplace transform of generalized functions.

2.4.2. S-asymptotics. An other asymptotic behaviour has been defined for
distributions (ultradistributions) and has been applied in the quantum field theory
(cf. [25], [26]). It is called the S-asymptotlcs It is easy to extend it to Fourier
hyperfunctions.

Definition 2.13. Suppose that ¢ is a positive function defined on R™ and
f € Q(D™). f issaid to have the S-asymptotics related to c in the cone I if there
exists .

: fG-+k) . . ..
(2.17) ker,lﬁ‘:?u-m "0 =h in Q(D"), h#0.

Since Q(D™) is a Montel space, (2.17) can be given in the form:

(2.18) Cim (EE @) = (), h#0,

kerl, [[kll-oo" c(k)

for every ¢ € P,. |

The next examples shows that Definition 2.13 is not a trivial extension of
the S-asymptotics of distributions. Let P(D) be a local operator }_, 154 0% D%,
b® # 0. The Fourier hyperfunction f = 1 + P(D)é has the S-asymptotics related
to c =1 in any cone I and with the limit A = 1 but f is not a distribution. For
the S-asymptotics of f it is enough to prove that

ke, ||k|| oo(P(D )8(z + k), ¢(z)) =0, ¢ € P..

~ Since P(D) maps P, into P,, .
(P(D)S(z + k), p(z)) = (§(z + k), P(~D)p(z)) =14(k),

where ¥ = P(—D)y. By the property of elements belongmg to P, (see 2.3.4)

lim k) = 0 fi L.
rer D 1,{)( ) = 0 for every cone

A hyperfunction g supported by the origin is uniquely expressible as ¢ =
P(D)é, where P(D) is a local operator. In such a way, with the above, we proved
that every Fourier hyperfunctlon with support {0} has the limit, given m (2.17)
and (2.18), equal zero.

Since P(D)d = }_,150 baD4 is a distribution if and only if b, # 0 for a
finite number of a, the Fourier hyperfunctlon 1+ P(D)é is not a distribution, but
it has the S-asymptotics related to ¢ = 1.

We can also find such coefficients b, of the local operator P(D) such that
f =1+ P(D)é is not defined by an ultradistribution belonging to the Gevrey class
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D) or D18} s> 1. Because of simplicity, we shall consider one-dimensiohal case.
Choose P(D) such that the coefficients of P(D) are: b, = (n!)~(}+%) 5 € N, where
cn = (10logn)~t. With these coefficients, P(D) is a local operator. Namely,

. n | — nN—1/(nloglogn) _
255, Vbant = Jim ()" 0

Also any ultradistribution in Gevrey class s > 1, supported by {0}, is of the
form

‘

(2.19) J(D)é = ianD“J, la,| < CEk™[(n))?

n=0

with some constants k¥ and C (Beurling’s type) or for any k > 0 with a constant C
(Roumieu’s type). But b, = (n!)~(1+¢») does not satisfy condition for coefficients
of J(D) in (2.19). Namely, since ¢, — 0 when n — oo, for any s > 1, there exists
ng such that 1 < 1+ ¢, < 8, n > ng. Thus,

(n!)~(ten) 5 Ck™/(n1)®, n > ne, k> 0.

Consequently, P(D)d does not represent an ultradistribution.

However we can suppose that P(D)d is an ultradistribution g with support
{0} in Gevrey class s > 1. Then we would have an ultradifferential operator J; (D)
such that .~

- ;
g=Ji(D)s =) e D", |en| < CKk™/(n!)’.

n=0
But in this case J1(D) would be a local operator, J; (D) # P(D). This contradicts
the fact that a hyperfunction with support at {0} is given by a unique local operator.

The defined S-asymptotics can be also used in order to precise the behaviour
of solutions to mathematical models as it is done with the S-asymptotics of distri-
butions (cf. [26]). We shall illustrate this with the problem of asymptotic behaviour
of solutions to equations given by local operators.

Since a local operator maps continuously Q(D™) into Q(D™), we have:

Proposition 2.10. Suppose that f € Q(D") and has the S-asymptotics
related to ¢ and to the cone I' with the limit h. Then

, P(D)f(z+ k) . n
ker,l“u&_m () = P(D)h in Q(D").

Corollary. A necessary condition that a solution of the equation P(D)z = f
has the S-asymptotics related to ¢ and to the cone I' with the limit u is that f has
the limit (2.16) with h = P(D)u.

If P(D) fulfils some additional properties, we would have in the Corollary not
only necessary, but necessary and sufficient condition. Such a case is if P(D)y = ¢
has a solution in Q~7(D"), v > 0. '
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Let us remark that we have only first results concerning the asymptotics of
Fourier hyperfunctions. Regarding the definition of the asymptotic behaviour of
hyperfunction in general case we do not know that such a definition exists.

2.4.3. Asymptotics Taylor expansion. Estrada and Kanwal [2] elaborated a

method of asymptotic expansions for distributions quite different in relation to the

methods which can be find for distributions in [21], [26], [31] and [33]. The results
of Estrada and Kanwal gave a nice confirmation that the asymptotic expansions
have arisen in several fields of applications as a powerful technique. They started

by considering the asymptotic Taylor expansion for distributions, its application
and generalizations.

Definition 2.14. If f e D', thenfor afixed { € R and e€ R

(2.20) f(z + €€) ~ Z D" f(:c) (e€)*, as € =0,

|k|=0

which means that for any function w € D and for any N € N

(e + ey @) = 3 LLELEN (e o o)

Okl
|k}=0 k

as € = 0. The formal series in (2.20) is called the asymptotic Taylor expansion for
f (on the straight line {h¢; h € R}). |

For any f € D', (2.20) holds. Also, Definition 2.14 can be applied to any
space of generalized functions defined as the dual space A’ of a basic space A of
smooth functions. Since the space of Fourier hyperfunctions is a space of this type,
Definition 2.14 can be repeated with the space Q(D") instead of D’.

Concerning this definition a natural question arises: What are necessary and
sufficient conditions that the asymptotic Taylor expansion for a generalized function
f is in the same time the Taylor series for f, convergent in the space of generalized

functions.

The answer on this question for dlstnbutlons and ultradistributions one can
find in [32]. For the Fourier hyperfunction we can prove

Proposition 2.11. The asymptotic Taylor expansion (2.20) for u € Q(D™)
on the straight line {h&;h € R}, where §; # 0,1 = 1,...,n, is the Taylor series
convergent in Q(D") when n€ € B(0,m9&) for an 1y > 0 if and only if there exists an
r=(ry,...,™), ri > 0,1 =1,... ,n, such that u is determined by a real analytic
function which can be extended as a holomorphic function on {z € C*; |{Im z;| <
¢, 1= 1,... ,n}.

The proof is based on two Kaneko’s results. First every Fourier hyperfunction
u € Q(D") can be given in the form u = P,(D)f, where P, (D) is an elliptic local
operator and f is an infinitely differentiable function of infra exponential growth {7].
Second, there exist an elliptic local operator P»(D) and an infinitely differentiable
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function g *rapidly decreasing (|g(z)| < C exp(—allz]l), z € R" for some a > 0)
such that 6 = Po(D)g (0 is the delta distribution) [8).
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