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0. Introduction

- First version of the present text appeared as one-semester course lecture notes
in algebraic geometry. The course for graduate students of mathematics, of geo-
metrieal, topological and algebraic orientation, took place in the spring semester of
1994 /95, and was organized on the initiative of Z. Markovié, head of Mathematical
Institute in Belgrade, with great support from my colleagues from the Belgrade
GTA Seminar!, especially R. Zivaljevi¢ and S. Vreéica.

I had a difficult task. In a short course one should have reached some rele-
vant topics of algebraic geometry. Basics of algebraic geometry require an ample
preliminary material, mostly from commutative algebra, homological algebra and
topology. I tried to avoid this and to include only a minimal amount of such mate-
rial. Consequently, the style of writing is laconic, with many references to existing
(excellent) textbooks in algebraic geometry, but on the other side, it is consistent,
in order to be readable, with some effort of course. The scope of the course should
include some of the interesting and important results in algebraic geometry. Two
such results are included, both classical but very important: the 27 lines on a cubic
surface and the Riemann-Roch theorem for curves. I leave to the reader to judge,
whether my task has been solved, and to which extent.

The present text could serve different purposes. It could be used as an in-
troduction for nonspecialists, who would like to understand what is going on in
algebraic geometry, but are not willing to read long textbooks. It could also be
used as a digest for students, who are preparing to take a serious course in alge-
braic geometry. Nowadays, algebraic geometry became an indispensable tool in
many closely related or even far standing disciplines, such as theoretical physics,
combinatorics and many others. Specialists in these fields may also find this text
useful. |

1. Rational algebraic curves

In the courée of Calculus one evaluates indefinite integrals of the form

(1) /R(:c, Vvaz? 4 bz + ¢)dz

Supported by Ministry of Science and Technology of Serbia, grant number 04M03 /C
1GTA stands for: Geometry, Topology, Algebra
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where R(z,y) is a rational function with two arguments. These are the simplest
integrals with so called quadratic irrationalities. Some readers remember that these
integrals are being calculated with the help of so-called Euler substitutions. There
are three such substitutions (the types are not distinct):

Type I. If a > 0, one puts vaz? + bz +c=t— v/az

Type IL. If ¢ > 0, one puts vaz? + bz + ¢ = zt + /c

Type III. If the polynomial has real roots A and g, az? + bz + ¢ = a(z — A)
(z — ), and we use vVaz? + bz + ¢ = t(z — A).

In all three cases, the differential R(z,y)dz is being rationalized and the
integral evaluated in elementary functions.

The Euler substitutions are described in traditional calculus textbooks, such
as (30, p. 59]. A few students understand what is the real meaning of these substi-
tutions. However, they have fine geometrical interpretation. Introduce the curve

of second order

(2) v’ =az? +bzx+c

and its point (zo,y0). After the translation to that point, the equation of the curve
1S

(y — yo)2 + 2yo(y — o) = a(z — 930)2 + 2azo(z — z0) + b(z - To)

Let y — yo = t(x — o) be the line through that point with variable slope t (see the
figure)

(z,v)

(30: yO)

- The other, variable intersection point of the line and the curve (2) is obtained
from the system ' .

(t* — a)(z — zo) = (2azo + b) — 2yot
¥y — Yo = t(z — zo)

whose solution (z,y) depends rationally on ¢ (for almost all £):
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After substitution in the integral, one obtains rational function of argument ¢ and
the integral evaluates easily:

fR(a:, vaz? + bz + c)dr = /R(a:(t), y(t))z' (t)dt = - - -

Euler substitutions can be deduced from this general algorithm by different special
choices of the point (zg, ¥0). |

Type III. The point (zg, ¥o0) = (A, 0) lies on the curve and weé put y = t(z— ).
Type II. The point (zo, y0) = (0, 1/c) lies on the curve and we put y—+/c = zt.

Type 1. Here the situation is slightly more complicated. In the case a > 0 the
curve (2) is a hyperbola with asymptotic directions (1/a,+1). As starting point
(zo,¥0), one takes the point at the infinity of one of these two directions. Then
the lines through that point are exactly the lines y = +/az + ¢ parallel to the
asymptote. Each of these lines intersects the curve in one more point (z,y) and we
use y = /azx + ¢.

From previous discussion one can see that the expressibility of the integral (1)
in elementary functions is based on the following specific property of the conic (2).
There exist rational functions z = £(t); ¥ = n(t) of one argument ¢ such that for
different parameter values ¢, the corresponding point (£(¢),n(t)) lies on the curve.
In this way one obtains all (but one) points of the curve. More specifically, for each™
point (z,y) # (xo,yo) on the curve (2) it is sufficient to draw a line through (zo, y0)
with the slope t = (y —yo)/(z — o). We say that in such case curve (2) has rational
parametrization. One can easily show that every plane curve of second order has
a rational parametrization. Such curves have been called unicursal Today one
rather uses the term rational curves.

Let us now apply the above principle of evaluation of the integral (1) with

irrationalities of the type v/ P(z) where P(z) is a polynomial of degree greater than
2. In this case, along with the integral

(3) [ Rz, v/P@)ds
one should consider the curve .
(4) y? = P(z)

Here we have different behavior. ~ Some of the curves (4) do admit rational
parametrization, and some of them do not.

Examples. 1. It is obvious that the curve y? = 23 has rational parametriza-
tion (which one?).

2. The curve y®> = z3 + 22 also has rational parametrization z = 2 — 1,
y = t(t? — 1), It is obtained when one finds the intersection points of the curve and
the lines y = tz through (0, 0).
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- 3. The curve y? = z3 + az? + bz + c has rational parametrization if and only
if the polynomial 23 + az? + bz + ¢ has multiple root.

When rational parametrization of the curve (4) exists, the integral (3) could
be transformed into integral of rational function. How one evaluates the integral
when there is no such parametrization? Interesting and complicated theory is
obtained already when degree of the polynomial P(z) equals 3 or 4. It is sufficient
to consider only the latter case, since degree 3 could be transformed to degree 4 by
rational transformations.

Example. For a given curve
(5) ' 2=g3+ar®*+bz+c

the right-hand side polynomial of degree 3 has at least one real root. Applying the
translation along z axis one could make this root 0 i.e., one could put ¢ = 0. After
substitution y = itz we get |

2+ (a—-t3)z+b=0

a—12\?2 a—12\°
'(a:+ 5 ) +b—( 5 ) =0

The rational parametrization

a — t2 - a-—t?
(6) T=u—— y-t(t;t-— 5 1)

transforms the curve (5) in the curve of degree 4 with equation

1 a?
2 _ L4 .2 a-
-u.—4t a.t+(4 )

The parametrization (6) is rationally invertible — it has a rational inverse

t=—, u=zx

Y a — (y/z)’
x + 2

This is a very important fact, as we will see later.

2. Plane algebraic curves. Polynomials in many variables

Now we should make the term “plane algebraic curve” more precise. Let K
be field, so-called ground field, and K|z, y] polynomial ring in two variables with
coefficients in K. | | '

Definition. Plane algebraic curve in the affine plane K2 = A% is the set of
points in the plane defined by algebraic polynomial equation

X = {(z,y) € K2_| f(z,y) =0}
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where f(z,y) € K|z,y]. This set is denoted X = V(f).

Even such simple definition leads to several problems. Naturally, one would
like to establish a one-to-one correspondence between sets and their equations.
However, already in the real analytic geometry there exist examples where basically
different equations define the same set, or equations define sets that seem unnatural
to call “curves”. So, in the real plane, equations z = 0 and z? = 0 define the z-axis,
equations z2 + y2 = 0, (z2 + 42)? = 0 and z° + y* = 0 define the point (0,0), and
equation z2 + y% + 1 = 0 defines the empty set. Immediately, two questions arise:

first, how to treat objects which are produced by this definition but do not
agree with our intuitive notion of “curve”; '

second, in which extent is the set X = V(f) determined by the polynomial f
and how to modify the definition in order to get one-to-one correspondence.

These problems are present already in the course of analytical geometry for
first-year undergraduates. Problem with curves which “are not curves” is being
bypassed by calling them “degenerate”, etc. The question, in which extent is equa-
tion determined by the set of points, is usually not treated at all. The first problem
can be easily solved: one should consider complex numbers instead of real ones.
This is known as the complezification process. In the general case, one should take
the algebraic closure of the given field. The “empty” curves like V(22 + y* + 1)
then disappear. In the sequel the ground field K'will always be algebraically closed,
unless the opposite is explicitly stated. Usually, it will be the field of complex
numbers C. |

As to the second problem, it is being answered by the following fact, known as
Study’s lemma?. Note that when polynomial f divides polynomial g, then g = fh
and every root of fis at the same time the root of g, that is V(f) C V(g). In the
case of algebraically closed field the converse is also true.

Lemma. Let K be algebraically closed field and f(z,y) € Klz,y] irreducible
polynomial. If the polynomial g(x,y) € K|[z,y] has a zero in every point of the
curve X =V (f) (i.e., if V(f) CV(g)), then f divides g.

Proof. Let g # 0 (in the opposite, f divides g). Then also f # 0. If f is-
constant, then f divides g. Suppose f is not constant, but an actual polynomial,
say in y: f(z,y) = ao(z)y™ + --- € (K[z])[y] with ag # 0, n > 0. Let us show
that ¢ is then also an actual polynomial in y. If ¢ = g(z) € K{z], then 0 # aog =
ao(z)g(z) € Klz] and there should exist £ € K such that ao(§)g(§) # 0. Since
K is algebraically closed, there exists n € K such that f(£,17) = 0, which is a
contradiction to the choice of £&. Therefore, g(z,y) = bo(z)y™ + --- € (K{z])[v}
with b9 £ 0, m > 0.

Let now R = R(f,g) € K{z] be the resultant of polynomials f and g with
respect to y. Let £ € K be such that ag(£) # 0. Since K is algebraically closed,
there exists 7 € K such that f(§,7) = 0. Then also g(&,7) = 0 and therefore
R(€) = 0. In such way, agR = 0 € K[z]. Since ao # 0, it must be R = 0, which

2Eduard Study (1862-1930), German geometer (Fubini-Study metric in projective space)
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means that f and g have a nontrivial common factor. However, f is irreducible
and therefore f must divide g.

Corollary. Irreducible factors of curve’s equation are determined uniquely
(up to ordering). If f = pi*ps*...pp* is a factorization in irreducible factors, then

V() =V(®Pp3®...p") =V(mpz ... .pr).
This proof can easily be generalized for more than two variables.

We see that in the case of algebraically closed field, one of all possible equa-
tions of a given curve is determined uniquely by the condition that it has no multiple
factors i.e., it is reduced.

Study’s lemma is a special case of a very important theorem, which could
be considered also as a generalization of the main theorem of algebra. It is a
famous Hilbert’s® Nullstellensatz, which in its classical version states that “non-
trivial” system of algebraic equations over an algebraically closed field always has
a solution. Here “nontrivial” means that it is not possible to algebraically deduce
a contradiction from the system. More precisely:

If the field Kis algebraically closed and f, ..., fi € K|z)1,...,z,] are polyno-
mials in n variables such that there are no polynomials g;,...,g9x € K{z1,... ,Za]
for which it would be gy f1 +-- -+ gx fr = 1, then the system of algebraic equations

f1($1,... ,:cn) =0

fk(ml,... ,.’.L'n) =0

has a solution.

It is known that polynomial ring in one variable over a field is a PID (principal
ideal domain): it is even Euclidean. This is a consequence of the existence of Eu-
clidean gcd division algorithm. However, in polynomial rings in two variables this is
no more true. For instance, ideal (z,y) cannot be generated by single polynomial.
However, in 1868 Gordan* proved that it is possible to find 2 finite generating set
of polynomials in every ideal. His proof was constructive — he described a construc-
tion of such basis. Many mathematicians tried to generalize Gordan’s construction
to the case of more than two variables, but nobody could overcome computing dif-
ficulties, and for twenty years this problem, known as Gordan’s problem, remained
open. In 1888 Hilbert proved in his famous basis theorem that every ideal in the
polynomial ring with n variables has a finite basis. His proof was existential, not
constructive. It has been said that Gordan, after he saw Hilbert’s proof, said: “Das
ist nicht Mathematik. Das ist Theologie!”®. Only when later Hilbert fodnd a con-
structive proof, Gordan was satisfied and said that theology has its merits. Only
after this, existential proofs in mathematics became legitimate.

3David Hilbert (1862-1943), German mathematician. Most famous for his list of problems

for 20. century
4Paul Albert Gordan (1837-1912), German mathematician

5«This is not mathematics. This is theology!”
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The notion of resultant was used in the proof of Study’s lemma. Let us briefly
describe it here.

Let A be a UFD (unique factorization domain, factorial ring), say polynomial
ring over a field, and let f,g € A[z] be two polynomials with coefficients in A,
f=ax™+---+am, g =box™ + -+ b, (we allow also the possibility ag, by = 0).
Since Alz] is also a UFD, we are interested in their common divisors. The definition
of a common divisor easily leads to the following lemma.

Lemma. Polynomials f and g have nontrivial common divisor <» there exist
polynomials u,v € Alz], u,v # 0 such that degu < degf, degv < degg and
vf = ug. |

If one writes this condition explicitly, one has u = cgz™ ' + -+ + cp—1,
v=doz" ! +---+d,_1 and from equality vf = ug one deduces

m n—1 n m-1
—1 —j-1 —i —-J=-1 _
Za;x"" '. E dig" 7" — E biz" "t - E c;g™ I =
i=0 | 4=0 1=0 j=0
m+n—1
= E E (a;dj - b,;Cj)x(m'i'"_l)_k =0
k=0 it+j=k

and comparing the coefficients for z one obtains system of m + n linear equations

z (aid;j — bic;) =0 (k=0,...,m+n-—1)

i+i=k
or explicitly
aodp — bgco =
a1do + aod; —~bico —bocy =0
amdo —biem-1 =0

................................................

with m + n indeterminates cg,...c¢m—-1,d0,... ,dn—1. This system has nontrivial
solution if and only if its determinant equals 0.

Definition. Determinant of this system, i.e., the determiinant B
! ao 0.1 « s am
Gp a Am n
' _ ao a]_ S am
R(.fsg)_ bO b bﬂ,
bo b bn
m
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is called resultant of polynomials f, g with respect to z.

The resultant is a polynomial in coefficients a; and b; of degree m 4 n, homo-
geneous in each group of indeterminates. Preceding discussion proved the following
theorem.

Theorem. Polynomials f and ¢ have nontrivial common divisor if anf only
if R(f,9) = 0.
Applications. 1. Solution of systems with two polynomial equations. Let

f,9 € Klz,y] = (K[z])[y] be two polynomials and R(f,g) = R(z) € Kfz]. If
(z0,70) is a solution of the system

At

f(z,y) =0, g(z,y)=0

then R(zo) = 0. One consequence is, if the system has infinitely many solutions,
then polynomials f and g have a nontrivial common divisor h = gcd(f, g) and the
ideal (f, g) = (h) is principal.

2. Parameter elimination. Suppose curve X 1is described by its rational
parametrization

T = Pi(t)/Q1(t)
y = P(t)/Q2(t)

Let f(z,t) = P(t) — Q1(t)z, g(y,t) = P2(t) — Q2(t)y and let R = R(f,g) € K|z, y]
be the resultant of these polynomials. Then

(Z0,%0) € X & Tto : f(Zo,t0) = 9(yo,t0) = 0 < R(zo,40) =0

This means that the equation of X is R(z,y) = 0.

Example. Find the equation of the curve that has a parametrization z = ¢2,
y=1t3—t. Here f=t2 —z,g=1t> -t —y and

1 0 - O 0
10 1 0 —=z O
R(f,g99=10 0 1 0 —z|=y?’—-23+22%2-=z
1 0 -1 -y O
IO 1 0 -1 -y

/

Therefore, the equation of X is y? = z3 —22% + 2. One could obtain it also without
~ use of the resultant, but the present method is generally applicable.

3. Transcendence degree. Hilbert’s Nullstellensatz

Let K be a field and L its extension. Subset S C K is algebraically inde-
pendent over K if there is no polynomial relation between elements in S, i.e., if
there is no polynomial f € Klzy,...,Z,] such that f(c;,...,en) = 0 for some
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Cly... Cn € S. Family of algebraically independent sets is ordered by inclusion.
Maximal elements of this family i.e., maximal algebraically independent sets are
called transcendence bases of L over K. For example, in the field of rational func-
tions K(z;,... ,Z,) the set {z1,...,Z,} is one of its transcendence bases over K.
Note that, if S is a transcendence basis of L over K, then L is algebraic over
K (S). Main statements about transcendence bases are analogous to corresponding
statements about (linear) bases in vector spaces over fields.

Theorem. A. Let L be the field generated over K by the set M and let
N C M be its algebraically independent subset. There exists a transcendence
basis B between N and M. In other words, algebraically independent set can be
extended to transcendence basis by adding elements from a given generating set.

Theorem. B. Every two transcendence bases of the field L over K have the
same cardinality.

Cardinality of any (and every) transcendence basis of L over K is called
transcendence degree of that field extension.

Our next goal is to prove Hilbert’s Nullstellensatz. That will be done in few
steps.

Step 1. Let K be algebraically closed and L its finitely generated extension.
There exist elements z1,...,2441 In L such that

1. they generate L over K,

2. z1,...,2q are algebraically independent,

3. zq41 is algebraic over K(z,... , 24).

Proof. Follows from the known theorem on the primitive element.

Step 2. Let K be algebraically closed field and F,... ,F, € K[t,... ,t,]
polynomials. If the system of equations Fj = 0,...,F,, = 0 has a solution in
finitely generated extension L over K, then it has a solution in K also.

Proof. L is of the foorm L = K(z;,...,Zs,n) where z,,...,z, are al-
gebraically independent over K and 7 is algebraic over K(zx;,...,z,). Let
F(zy,...,zy,y) € K(z1,...,2.)[y] be the minimal polynomial of 1. Let now
(£1,. .. ,&,) be the solution of the system in L™. One has &; = Ci(z1,... ,z.,1n) for
some polynomials Ci(z,...,%.,y) € K(z1,...,Z,)[y]. Since F is minimal, there
exist polynomials (); such that

F:E(Cl(xla-“ ,-’Bny),--- :Cn(a:l:-" axr:y)) - F(:Bl:“' ,xray)Qi(mly--- :zr:y)

identically with respect to zi,...,z,,y. Since K is infinite, there exist ele-
ments a3,... ,a, € K such that all denominators in coefficients of polynomials
F,Q1y...,Q¢C1,...,Cn € K(zy,...,z,)[y] and also the highest order coeffi-
cient of polynomial F' are different from 0 after substitution z; = «a;. Since K
is algebraically closed, there exists 8 € K such that F(ay,...,a,,8) = 0. Then

© 7 = Ci(ay, ... ,ay, B) is the solution in K™.
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Step 3. If polynomials Fy,...,Fn, € K[t1,...,t,] do not generate the unit
ideal, then the system F} =0,... , F;n = 0 has a solution in the field K.

Proof. Ideal (Fi,..., F,,) is contained in some maximal ideal M. Therefore
the quotient L = Kit;,...,t,]/M is a field. Let the image of ¢; in L be &;. Obvi-
ously, L = K(&1,.-.,&n) and (&,...,&,) is a solution of our system in the field L.
According to Step 2, there exists a solution in K.

Step 4. If the polynomial G equals zero in all zero-points in K™ of polynomials
Fi,...,F,, then for some r, G" € (Fl, Y O}

Proof. Introduce a new variable ¥ and consider polynomials Fi,... , EF,,
uG — 1 in the polynomial ring KJt;,...,tn,u]. According to assumption, they
do not have common roots in K, and therefore (Step 3) generate the unit ideal:
there exist polynomials Py,...,P,,Q € Klt,... ,tn,u] such that PiFy + --- +
P,.Fp + Q(uG — 1) = 1. This identity remains true after the substitution u = 1/G.
Eliminating the denominator, one obtains the necessary statement. This proves
the Hilbert’s Nullstellensatz.

4. Algebraic sets and polynomial ideals

Definition of algebraic sets in higher dimensional space generalizes the notion
of plane algebraic curves. Intuitively, algebraic set is a solution set of system of
polynomial equations: If fi,...,fm € Klzi,...,z,), the set V(fy,...,fm) =
{z e K*| fi(z) = -+ = fia(z) = 0} of solutions of the system fi(z) = --- =
fm(z) = 0 is called algebraic set in the affine space K™. For m = 1 (one equation),
the corresponding set V(f) is called hypersurface.

Even for plane algebraic curves it was not easy to establish a one-to-one corre-
spondence between solution sets and equations: different equations could represent
the same algebraic set. Instead of systems, let us consider their left-hand sides, that
is, finite sets of polynomials. Instead of finite sets, it is useful to consider arbitrary
sets of polynomials.

We shall use the notations A = K|z,,... ,Z,] for ground polynomial ring and
X = K™ = A% for ambient affine point space in the whole section.

Definition. For any subset S C K{z,,...,Z], algebraic set in X defined by
S is the set V(S) = {{ = (&,...,&,) € X|Vf€eS, f(§) =0} C X.

In this way one obtains the correspondence between subsets in A and subsets
in X, that is, the mapping of partitive sets V : P(A) = P(X). Let us establish its
elementary properties. -

Lemma 1. (a) S C T = V(T') C V(S) (more equations, less solutions).

b) V@) =X, V(A)=0. (c) V(5:1U8:2) =V(S1)NV(S,).

(d)V(fi,...,fm) =V(H)D...NV(fn) (every algebraic set is the intersection
of hypersurfaces). |

One can easily show that even for arbitrary unions V(|J, Sa) = ), V(Sa)-
Does the analogous statement hold for intersections, at least for finite ones?
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»

Lemma 2. If I = (S) is the ideal generated by S C A, then V(S) = V(I).

According to the Hilbert basis theorem, the ring A is Noetherian, I =
(fi,...,fm) and V(S) = V(I) = V(f1,...,fm).- Therefore, every set V(S) is
algebraic set, described by finite set of equation.

One sees, that the mapping V defines (anti)epimorphism of partially ordered

sets
V :ideals inA — algebraic sets in X

When do the different ideals define the same algebraic set? Here the main role is
played by the Hilbert’s Nullstellensatz. It could be stated in the following manner:

ifV(I)=0,thenI=A
and its generalized form: I
if V(I) C V(f), then f € VI

Here VI = RadI = {a€ A|3r >0:a" € I} C A is the radical of the ideal I.
Construction of radical of a given ideal is possible in every commutative ring and
has the following main properties, which could be easily proved.

Lemma 3. (a)\/fiéidealan; (b)ICJ=>\/fCﬁ; (c) I CI;
(d) VVI = VI.

Proposition. V(I) = V(J) & VI=VJ

Proof. The direction < follows from the easy fact that V(I) = V(v/I). Let
us prove the opposite direction =. If V(I) C V{(J) and J = (f1,..., fm), one has

V(I) C V(fl)n“'nv(fm) = f1y---, fm € ﬁ=> J C \/T: \/jc V \/f= \/T-
VT is the greatest element in the family of all ideals that define the algebraic set
V(f). It coincides with its own radical. The ideal I is a radical ideal, if it coincides

with its radical: I = V1. In such way, the restriction of the mapping V

V :radical ideals in A — algebraic sets in X

becomes a bijection, that is, (anti)isomorphism of ordered sets.

Example. In the case of hypersurface V(f), if one factorizes the polynomial f

into irreducible factors f = p; ' p3? ... pp*, it is easy to see that \/(f) = (fred) where
frea = p1...px. This agrees with earlier results on equations of plane algebraic
curves, and motivates the notation of radical as a root.

If one considers the mapping V restricted to ideals only, its behavior with
respect to unions and intersections becomes better.

Lemma 4. (a) (},V(la) = V(U 1a) = V(3. Ia); (b)) V(L) VUV (L) =
V(Il N I2) = V(Ilfg).
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Proof. (a) follows from Lemma 2. Let us now prove (b). Since for any
two ideals in the ring A one has I1I, C I " I; C I;,I; and the mapping V is
(anti)monotonic, V(LU V(L) c V(i nL) c V(I11,). ¥z ¢ V(I,) UV (],),
then there exist f; € I, fa € I such that fi1(z) # 0 and fao(z) # 0. Therefore

(flfg)(x) 7’-‘ 0 and z ¢ V(IlIg) ‘
The last property extends directly to finite unions of algebraic sets.

Lemmas 1, 2 and 4 show that the family AlgSets X of all algebraic sets in X
is closed with respect to finite unions and arbitrary intersections, and it contains
whole X and the empty set ). Therefore, this family is the family of closed sets of
some topology on X = K™ = A%, called Zariski topology. Let us have a closer look
on this topology.

It follows from Lemma 1(d), that the basis of this topology is the family of
complements of hypersurfaces D(f) = X \ V(f), so called basic or principal open
sets. This indicates that the Zariski topology is very coarse: open sets are unions
of complements of hypersurfaces. |

For n = 1 the set V(f) is finite, since it is the zero set of a polynomial in one
variable. Therefore, in addition to the whole space and the empty set, closed sets
in K! are only finite sets of points.

Finite sets are closed also for n = 2. Are there other closed sets? If the
set V(fi,..-,fm) is not finite, it follows from Study’s lemma that polynomials
fi,--. , fm have nontrivial gcd h, therefore f; = hg; and V(f1,...,fm) =V(h)U
V(gi,...,9m)- Theset V(g1,...,9m) is finite, and V(h) is a plane algebraic curve.
In this way, closed sets are finite sets of points, plane algebraic curves and their
unions.

The Zariski topology is compact, in the sense that every open covering con-
tains a finite subcovering. If0 =, V(l.) = V(U, ) = V(3_, 1), then applying
the Nullstellensatz and the basis theorem one has 1 = f1g1 + -+ + figx for some
fi € I,; and therefore 0 = V(Ia, +-- + Ia,) = V(o) N--- NV (1,).

One could introduce the inverse operation for V. If Y C X is a subset,
consider the set of all polynomials that are “annihilated” on this set:

IY)={fe€A|Vzx €Y, f(z) =0}

It is easy to check the main properties of this operation.

Lemma 5. (a) I(Y) isideal in A; (b)Y C Z = I(Z) C I(Y); (c) I(®) = A,
I(X) = (0).

Proposition. (a) J C I(V(J)) = V/J for every ideal J in A;
(b)Y CV(I(Y)) =Y for any subset Y in X (closure in the Zariski topology).

In this way, we obtained the mapping

I : algebraic sets in X — radical ideals in A

as an inverse to the mapping V.
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First step in classification of closed algebraic sets is the attempt to represent
them as unions of simpler subsets. Lemma 4(b) shows that this is connected with
product of ideals. It is known that, in a Noetherian ring, every ideal can be repre-
sented as a product of primary ideals, and every radical ideal as a product of prime
ideals. This is a generalization of the factorization theorem for polynomials, and it
is equivalent to it in the case of principal ideals:

V) = /0703 .. .07) = (p1P2- . - Pm) = (21)(P2) - - - (Pm)

An arbitrary ideal I is primary ifabe IANa ¢ I = b€ VT and prime ifabe I =
a € IVb e I. Every prime ideal is radical. Decomposition of radical ideal in the
product of primes is connected with decomposition of algebraic sets in intersection
of irreducible ones:

Definition. Algebraic set Y C X is srreducible if it can not be represented
as union Y =Y UY, of two its proper algebraic subsets Y¥;,Y2 CY, Y;,Ys #Y.

Proposition. Algebraic set Y is irreducible < ideal I(Y') is prime,

Proof. Y =Y, UYs where Y; # Y, then 3f; € I(Y;) \ I(Y). However,
I(Y)=IN)I(Ys) and fifs € I(Y), so the ideal I(Y) is not prime. Conversely, if
this ideal is not prime, then 3f; ¢ I(Y') such that f;fo € I(Y). Let I; = I(Y) + (f;)
be ideals and Y; = V(I;) = ¥ N V(f;) corresponding closed sets (i = 1,2). Then
Y =Y; UY; is a nontrivial decomposition, since

e

$€Y=>(f1f2)($)=0=>f1($)=0Vf2(:L')=0=>$€Y1V$€i€2

| Proposition. Every algebraic set can be decomposed in finite union of irre-
ducible algebraic setsY = YjU---UYy, whereY; ¢ Y; fori # j. Such representation
is determined uniquely (up to permutation).

Mapping V defines a bijection between prime ideals and irreducible algebraic

sets
V : prime ideals in A — irreducible algebraic sets in X

Set of all prime ideals in commutative ring A is called (prime) spectrum of the ring
A and denoted Spec A.

This (anti)isomorphism of ordered sets sends minimal irreducible algebraic
sets in X (thus points) to maximal elements of the set Spec A (thus maximal
ideals in the ring A). Recall that the ideal of the ring A is mazimal if it is not
contained in any proper ideal except itself, that is, if it is a maximal element in
the set of all proper ideals in A. One has V(I) = {¢} = {(&4,.-.,6)} & I =
(1 —&y-.. ,2n — &) © I C A is maximal. We obtained a bijection

V : maximal ideals in A — points in X

The set of all maximal ideals in the commutative ring A is called mazimal spectrum
and denoted Max A or Specm A. One could identify X = Max A, at least as
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sets of points. However, the meaning of this identification is much deeper than
simple bijection of sets, which becomes visible in the general theory of schemes.
On the base of maximal (or prime) spectrum of the ring one could recover the full
geometrical structure of the corresponding algebraic set.

5. Regular functions and mappings. Rational functions.
Dimension. Singularities

In the description of geometrical objects there are always natural functions on

these objects®. For example, on vector spaces natural functions are linear functions,

on topological spaces — continuous ones, on smooth manifolds — smooth functions,
on complex varieties — holomorphic ones. What are the natural functions on
algebraic sets? By analogy with other geometrical objects, it should be polynomial
or rational functions. Such “naive” definition should be made more precise.

Let us start with polynomial functions. Let V C X be algebraic set and
I C A corresponding radical ideal.

Definition. The function f : V — K is a polynomial or regular function
on V if it is defined by a polynomial, that is, if there is a polynomial F € A =
Klzq,...,z,) such that Vz € V, f(z) = F(z).

All polynomial functions build a ring (and a K-algebra) ‘with respect to usual
operations of addition and multiplication of functions. Since two polynomials F
and G define the same function & Vz € V, F(z)-G(z) =0& F—-G € I, this ring
could be identified with quotient ring A/I of the polynomial ring by the defining
ideal of the algebraic set V.

Definition. The ring A/I is called ring of regular functions or coordinate
ring of the algebraic set V and denoted K[V].

Examples. (a) If V = {z} is a point, its corresponding ideal M is maximal
and A/M = K is the ground field: function in a point is uniquely determined by

its value. More generally, for n points, K[V] 2 K& --- @ K.
g

n

(b) For V = X one has I = (0) and K[V] = A, which is natural.

(c) f V = V(y—=?) is a parabola in the plane, its coordinate ring is isomorphic
to polynomial ring in one variable, that is, to coordinate ring of a straight line:
K[V} = K[z,4)/(y - 7°)  K[a].

(d) ¥V = V(y?—z) is a semicubic parabola (a cusp curve), one has K[V] =
Klz,yl/(y? — z°) = K[z] + K[z]-y. This is a K-algebra without zero-divisors,
generated by two elements.

The ring K[V] is always a finitely generated K-algebra. Could it be charac-
terized by pure algebraic method? Since ideal I is radical, this algebra does not

contain nontrivial nilpotent elements — it is reduced, as one says. The converse
also holds: for any finitely generated reduced algebra B there exists an algebraic

61t can be said that the definition of functions describes the corresponding geometrical
object. This is formalized via ringed spaces — spaces with structure sheaf of rings
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set V such that K[V] 2 B. It is enough to chose generators of B over K, that is,
represent the algebra in the form B = K[by,... , b, ] and consider the epimorphism
from the corresponding polynomial ring A = K{[z;,... ,2m] = K[b1,... ,bm] = B,
z; — b;. Its kernel I is the defining ideal for the algebraic set V. The choice
of generators from the geometrical point of view corresponds to embedding of the
algebraic set V' into some affine space K™ and vice versa.

The properties of algebras K[V] are analogous to the properties of polynomi-
al ring. The main point is that in these rings two Hilbert’s theorems hold — the
basis theorem and the Nullstellensatz. These algebras are Noetherian, as quotients
of Noetherian rings. The analogon of the Nullstellensatz is: if g1,... ,9n € K[V]
and f € K[V] are such that f(z) = 0 for every z € V which satisfies the system
gi1{(z) = --- = gm(z) = 0, then for some r, f™ € (g1,.-. ,9m) C K[V]. Both the-
orems, as well as other properties, follow from the known properties of quotient
rings, the main of which is that for any commutative ring B and its ideal I, natural
epimorphism h : B — B/I = B' defines an order-preserving bijection between
ideals in B/I and these ideals in B which contain I, in which radical ideals cor-
respond to radical ideals, prime to prime ideals, maximal to maximal ideals. If J'
is an ideal in B’, the corresponding ideal in B is J = h~1(J') D I and one has
B/J = (B/I)/(J/I) = B'/J'. Let B = A be the polynomial ring, B’ = K[V}
the coordinate ring and I = I(V) the ideal of some algebraic set V. Ideal J D I
corresponds to the closed set V(J) =W C V. Ideal J/I = I(W)/I(V) of algebraic
subset W in algebraic set V is denoted by Iyv(W). Therefore, here we also have
the corresponding bijections

algebraic subsets in V < radical ideals in K[V]
irreducible algebraic subsets in V < prime ideals in K{V]
points in V 4 maximal ideals in K[V]

The Zariski topology on V is induced from X = K™. Its open base is also built by
principal open sets D(g) =V \V(g), g € K[V]. L

Using regular functions one can define mappings which connect algebraic
sets and play the role of morphisms in the corresponding category. Let U C K™,
V C K™ be two algebraic sets and ¢ : U &+ V a mapping. Composition with ¢
defines a mapping |

" : functions on V — functions on U

in the usual way, by the formula ¢*(f) = f o .

Definition. We say that ¢ is a regular mapping, if p* transforms regular
functions into regular functions, that is, if f € K[V] = ¢*(f) € K[U].

Proposition. (a) ¢ is a regular mapping <> it is defined in coordinates
with m regular functions, that is, there exist fi,... , fm € K[U] such that ¢(z) =
(fi(z),... ,fm(z)) €V forallz € U.
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(b) It'-c,a‘ is regular, ¢* : K[V] — K|[U] is an algebra homomorphism.
(¢) Conversely, for any algebra homomorphism h : K{V] — K|[U] there is a
regular mapping ¢ : U = V such that ¢* = h.

(d) The mapping 1

U Kl{U]
wl —) Tfp" |
4 4\

is a contravariant functor. The category of algebraic sets and regular mappings is
equivalent to the category of finitely generated K-algebras without nilpotents (so
called affine K-algebras) and homomorphisms.

Proof. (a) If y; € K[V] are coordinate functions (images of generators of
polynomial ring in which the algebraic set V is defined) and ¢*(y;) = f; € K|[U],
then for Vz € U, i-th coordinate of the point ¢(z) is yi(p(z)) = @*(y:)(z) =
fi(z) and p(z) = (fi(z),..., fm(z)). Conversely, if ¢ is a mapping of that form
and g € K{V] a regular function on V, then for Vx € U, ¢*(g9)(z) = g(p(z)) =
g{fi(z),... , fm(x)) is a polynomial function of coordinates z, that is, a regular
function.

(b) is obvious.

(c) Let again y; € K[V] be coordinate functions and h(y;) = f; € K[U].
Define for z € U, ¢(x) = (fi(z),..., fm(z)) and prove that ¢(z) € V. In-
deed, if F € I(V), then F(y1,... ,Yym) = 0. One has 0 = h(F(y1,... ,ym)) =
F(h(y1),... ,hlym)) = F(f1,... , fm) and F(p(z)) = h(F)(x) = 0, and this means
exactly that ¢(z) € V. For z € U and g € K[V] one has ¢*{g)(z) = g{p(z)) =
g(f1(z),--- , fm(x)) = g(h(11)(z), - .. , A{ym)(z)) = h(g)(z) i.e., p* = h.

(d) This is also straightforward.

Definition. Isomorphism of algebraic sets” is isomorphism in the categor-
ical sense, that is, a regular mapping which has inverse regular mapping. In
this equivalence of categories, it corresponds to isomorphism of algebras, i.e.,
U=V & K[U]= K[V].

Examples. 1. Projection ¢{z,y) = z is a regular mapping of the hyperbola
V = {zy = 1} in the line A!, but not an isomorphism (not even a set bijection).
Corresponding algebras are K{z,y]/(zy — 1) 2 K][t].

2. Mapping ¢ : A = V = {32 =23}, t o (t2,¢%) is regular and a set-
theoretic bijection. However, it is not an isomorphism. The corresponding homo-
morphism of algebras ¢* : K[V] = K|z,y]/(y® — z°) = K[t] = K[A?!] is defined by
z — t2, y v t3. Tts image is Im ¢* = K|[t%,t°] ¢ K|[t]. Since ¢ is a bijection, it has
Inverse mapping |

p:V = AL ¢(a:,y)={y/m’ (z,y) # (0,0)

0, (=z,9)=(0,0)

" Biregular isomorphism, as opposed to birational isomorphism which will be introduced

later.
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but it fails to be regular in the point (0,0). One could give the following informal
interpretation. Algebra K[V] is smaller than K[A'], since in the latter there is a
polynomial function with derivative in 0 different from 0, and in the former there
is no such function: mapping is “leveling” all tangent vectors in 0.

3. Parabola y = z* is isomorphic to the line Al. The corresponding isomor-
phisms are ¢(z,y) = z, Y(t) = (t,t*). '

4. Let V = {y? = 23 + 22} be the alpha-curve. As we already know, it has
a rational parametrization ¢(t) = (¢ — 1,t> — t). The parametrization defines a

regular mapping ¢ : A' — V. Is this an isomorphism? More generally, is there an
isomorphism of V and Al?

The examples show that, despite our wish to work only with polynomials,
the involvement of rational functions is inevitable. Usual rational functions are not
functions in a precise sense of the word - they have not to be defined everywhere.
We are interested in rational functions on a given algebraic set, say curve ' with
equation f(z,y) = 0. Rational functions on the whole plane are the elements of the

fraction field K(z,y) of the polynomial ring K{z,y]. Two such rational functions
" may define the same function on C.

Example. On the circle C : 22 + y® = 1 one has z2 = (1 —y)(1 + y), so the
two rational functions
| (0,1)

1-y
991(3:'.'/)— T ’
T

(»02(3: y) -

1+y (01_1)

on C coincide in their common functional domain. Note that the domains of
these two functions on C are different: the first is not defined in points (0, 1)
and (0, —1), the second only in (0,—1). They coincide in the Zariski open subset
U = C\{(0,1),(0,—1)} of the curve C (see fig.

Definition. Let V' C A" be irreducible closed set with coordinate ring K{V].
The fraction field K(V') of the domain K[V] is the field of rational functions on V
(or simply the function field of V'), and its elements rational functionson V.

Let V C A" be a closed set, x € V a point, U its open neighborhood and
r : U — K a function in the neighborhood. Function r is regular at the point z if
there exist polynomial functions f,g € K[V] such that g(z) # 0 i.e., z € D(g) and
r = f/g on U N D(g).

Proposition. This local definition of regularity is consistent with the previ-
ous global one. In other words, if the function r : V — K is regular in every point
xr € V, then r € K[V].

Proof. From the definition, for every = there is a representation r = f, /g,
on D(gz). Due to compactness, V = |J,cy D(9z) = D(g1) U --- U D(gm), or
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(9z |z € V) = (g1,... ,9m) where g; = g-,. Since V{(g1,...,9m) = 0, from the
analogon of Nullstellensatz one has (g1,... ,9m) = 1, or g1h1 + -+ + gmhm = 1.
Consider the polynomial function f = fihy + -+ + fmhm € K[V]. Since g;9;, = 0
on V(gig;) and fig; = fjgi on D(g:ig;) = D(9:) N D(g;), then gig;(fig; — figi) =0
on whole V. If we write r = f;/g; = figi/g?, then we have f;g; = f;g; on whole V.
Therefore fj =1- fj = Z‘- f,-g.-hi = Ei f,;g,-h,-; = f * G5 and r = f = K[V]
Definition. Let V C A" be closed set, K[V] its coordinate ring and K(V)
field of rational functions. If £ € V is a point, all rational functions r € K (V)
regular in z build a ring denoted by O, v or O, and called the local ring of V' at
the point . Regular function on whole V is a function, regular in every point of
V. All regular functions on V also build a ring O(V). The preceding statement
proves that O(V) = K[V]. One has also O(V) =(),cy Oz,v C Oz,v C K(V).

The ring O, v consists of all rational functions from K (V) which has a rep-
resentation where z is not a zero of the nominator (a pole of the function). All
regular functions which have a zero in z build a maximal ideal in K[V] and the
ring O, v is its minimal extension in which all elements of the complement of this

ideal become invertible.

We could already note the importance of the principal open sets, which form
the basis of the Zariski topology. The following result shall confirm this opinion.

Proposition. Principal open sets are affine: they are isomorphic to affine
closed sets.

Proof. Let V C A™ be an affine closed set with coordinate ring K{V], f €
K|[V] a regular function and D(f) = V\V(f) = {z € V|f(z) # 0} principal open
set. Let J = I(V) C Klzxy,...,z,] be the ideal of V and F defining polynomial
for f. Introduce a new indeterminate y and consider the ideal I = J + (yF — 1) C
K[zy,... ,Zn,y]. TU =V ({) C A™1 is a closed set, then

K{U] = K[z1,... ,2n, 9]/ (J + WF = 1)) = (K[z1,... , 2]/ I) [f '] = K[V][f ']

that is, D(f) 2 U. Geometrically, this is analogous to projection of the hyperbola
on the axis (see the figure).

From the proof one can see that the principal open set D(f) is the affine closed
set corresponding to subalgebra K[V][f~'} ¢ K(V). This subalgebra consists of all
rational functions which in the denominator have only powers of f. In other words,
it is a minimal extension of the algebra K[V] in which the set {f, f2,f3,...} C
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K{V] becomes invertible. This construction, as well as the above construction
of the local ring at the point, is called the localization of the ring with respect to
multiplicative subset. It is very common in commutative algebra. Its oldest version
is the construction of domain’s fraction field, when all nonzero eléments become

invertible.

Rational functions are used to define rational mappings, specific for algebraic
geometry. Let X C A™ and Y C A™ be two algebraic sets, and X irreducible.

Definition. Rational mapping f : X --» Y is a mapping defined by m
rational functions fi,... , fm € K(X) with the formula z — (f;(z),... , fm(z)) in
every point £ € X in which all functions are regular.

Rational mapping is not everywhere defined, only on an open set. The nota-
tion should also stress the fact, that we have a partial function here. It is however,
uniquely defined by its values in the domain of definition. In other words, if one has
two rational mappings (on different open sets), which coincide on some nonempty
open set, then they are equal.

If the image of rational mapping f : X --» Y is dense in Y, it defines a
mapping of rational functions on Y to rational functions on X (by simple change
of variables). In this way one has a monomorphism of fields K(Y) <+ K(X). Sim-
ilarly to regular mappings and corresponding ring homomorphisms K[Y] - K[X],
a functorial connection is defined between rational mappings and homomorphisms
(i.e. inclusions) of function fields. That means that isomorphisms of fields corre-

spond to “isomorphism” rational mappings.

Definition. Rational mapping is a birational tsomorphism, if it has in-
verse rational mapping (inverse here means that the compositions are identities
on nonempty open subsets!). Algebraic sets X and Y are birationally isomorphic,
if there is a birational isomorphism between them, i.e., if K(X) = K(Y). Alge-
braic set X is rational, if it is birationally isomorphic to affine space, that is, if
K(X)2 K(z1,... ,Zn).

As a result, there are two different equivalence relations and two classifications
of algebraic sets. One is the finer classification up to isomorphism, or classification

of coordinate rings, the other is the coarser birational classification, or classification
of function fields.

Example. The alpha-curve y> = z3 + z2? is rational: it has a rational
parametrization which defines isomorphism of its function field with the field of
usual rational functions in one variable K(z). The same holds for semicubic parabo-
la y2 = 3. However, if in the plane cubic curve y? = P3(z) the right-hand-side
polynomial has no multiple roots, it is not rational.

How should one properly define dimension of algebraic set? There are several
characterizations of geometrical notion of dimension. The oldest description of
dimension is probably one from the Euclid’s “Elements”: the point is the border of
the line, the line is the border of the surface,... One says that the algebraic set V
is of dimension d if d is a maximal length of strictly increasing chain {z} = Vj C
Vi C --- C V3 = V of irreducible subvarieties in V. Due to connection between
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irreducible subvarieties in V' and prime ideals in K[V], d is at the same time the
maximal length of strictly increasing chain (0) = Is C I; C --+ C I3 of proper
prime ideals in K{V].

Definition. Krull dimension of commutative ring A is the maximal length
of strictly increasing chain of proper prime ideals in A.

So, the dimension of algebraic set equals to Krull dimension of its coordinate
ring. For example, Krulldim K[z,,... ,z,] = n, in accordance to our intuition.

In courses of commutative algebra it is shown that Krull dimension of the
affine algebra (finitely generated reduced algebra over the ground field) is equal
to the transcendence degree of the corresponding fraction filed i.e. function field:
dimV = Krulldim K[V] = trdegg K(V) [1, p. 150}. What is the geometrical
meaning of this equality? If tr degy K (V) = d, then one could chose d algebraical-
ly independent elements such that field extension K(V) D K(z1,...,z4) = K(A%)
is algebraic. This extension defines a regular mapping V — A¢, so-called normal-
1zation of the algebraic set V. Normalization is a finite morphism, which means
~ also that it is a finite covering, i.e., over each paint of A? there are at most d points
of V. This gives us another geometrical explanation of dimension.

Every local ring O, v (z € V) has the same dimension dim V. In local rings
(rings with only one maximal ideal) there exists a connection between dimension
and the maximal ideal itself: dimyx M/M? > Krulldim O. The ring O, v (and the
point z) is regular, if the exact equality holds. What is the meaning of the vector
space M/M?2? It consists of linear parts (i.e., differentials) of all functions, regular
and equal to zero in z. Therefore, its dual vector space (M /M?2)* plays the role of
the tangent space to the algebraic set V' at the point . The above inequality means
that there can exist points which are not regular in the sense that the dimension of
the tangent space is strictly greater than the dimension of V itself. Such points are
special points. If V is defined by its global equations, they can be characterized in
the following way.

Definition. Point z € V is a singular point (singularity) of algebraic set
V=V(f1,...,fx) C A" if it is a solution of the following system:

@)= gi@ == l@=0 G=1...,b.

In other words, the singular points are the points where the rank of the
Jacobi matrix (gﬁ_—(x)),-ﬂ,___ & drops down. In regular points this rank is equal to

j=1,...n
codimension of V. ’
The algebraic definition of singular point, independent of the embedding of
V in ambient affine space, was introduced by Zariski®. He also proved equivalence
with above traditional analytical definition.

80scar Zariski (1899-1986), italian and american algebraic geometer.
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Algebraic sets without singularities, nonsingular varieties, are the closest anal-
ogons of smooth manifolds or complex-analytic varieties. The presence of singular
points complicates the structure of algebraic varieties and makes them interesting.

Example. There are two typical plane singular cubics, which correspond to
simplest types of singularities. These are the alpha-curve y? = z* + 22 with a nodal
point (a “node”), and the semicubic parabola y? = z* with a cuspidal point (a
“cusp”).

The theory of singularities of algebraic varieties is a very deep theory, which
itself requires a long introduction. There are many aspects of studying singulari-
ties, such as classification by discrete invariants, topological structure, resolution of
singularities, etc. One fruitful method for investigation of singularities of hypersur-
faces is given by a combinatorial-geometrical invariant called Newton polyhedron.
It was introduced by Newton, but it attracted proper attention only recently, main-
ly in the work of Arnold’s singularity group, in the 1970’s (see [2]). Some simple,
though interesting combinatorial connections between singularity and its Newton
polyhedron were studied by the author [17]. )

6. Projectivization. Projective varieties

Besides the algebraic closure of the ground field, there is one more problem in
correspondence between the curve as a set of points on one side, and its equation
on the other. If the degree of the curve’s equation is d, the number of intersection
points with an arbitrary straight line is at most d, but it can also be less.

Let C be a plain curve of degree d, defined by equation f(z,y) = 0 where
f is a polynomial of degree d. If L:z = a + bt, y = ¢+ dt is a straight line, the
intersection of C' with L is determined by the equation

f(a"l'bt,C'l'dt) =g(t) =aﬂ(a,b,c,d)td+..

It can happen that some of the roots are multiple, that is, some intersections have
higher order. The notion of intersection multiplicity resolves this problem (this,
however, is not trivial). However, it can happen that the degree of the equation
in ¢ is strictly less than d, since the coefficient of the highest order term equals O.
In the case of hyperbola and its asymptotic lines, the intersection point has “gone
to infinity”. Therefore, the points at the infinity should be introduced. It is done
with the process of projectivization.

There are many equivalent ways to define projective space. A common one
is to define the n-dimensional projective space P* over the field K as the set of
all one-dimensional subspaces, that is, the set of all lines through the origin in
the vector space K™+, If one considers a unit sphere in this space, each line in-
tersects the sphere exactly in two antipodal points. For this reason, in topology,
P* is defined mostly as the sphere S® C K™+! with its antipodal points identi-
fied. We are interested in analytical approach to this construction: n-dimensional
projective space = P% over K is the quotient of the set K™*! \ {0} by the
equivalence relation, induced by homothety: (xg,Z1,... ,Z5n) ~ (Azg, AZ1,... ,ATy)
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where A # 0. Points in projective space are the corresponding equivalence classes,
denoted z = (zg:Z1:... : Tn). Therefore, (zg:z1:... :Zp) = (ATo: ATy :... : Azy).
Numbers z; are homogeneous coordinates of the point z. Since there is always a co-
ordinate different from 0, the space P" is covered by sets A? = {z € P"|z; # 0} =
{z = (zo:...:1:...:2,)} = K™, each of them isomorphic to the affine space

A". These are 1:he affine charts of the projective space. The transition from ho-
mogeneous coordinates of the point z = (zg:21:...:2,) in P" to coordinates
(1:z1/xg:... :2nf/To) = (1 /Z0,... ,Tn/Zo) in the affine chart A} = A" is called
dehomogenization in g, and the converse transition from coordinates (y1,... ,¥n)
in A® to coordinates (1:y;:...:y,) in P"® homogenization.. The complements

of affine charts P" \ A? = {z€P"|z; =0} = {m:(mo:...:Q:...:a:n)} =

3

]P’:,{”'1 =~ Pn—l are isomorphic to the projective space of dimension n — 1, that
is P* = AP UP?™!. This decomposition is easily seen on the previous model also.
If in the space K™*! one considers the i-th coordinate hyperplane X; : z; = 0 and
its parallel hyperplane Y; : z; = 1, then one could divide the lines through the
origin into two types: the lines which intersect hyperplane Y; and the lines which
are parallel to it. Lines in the first family correspond to points of this hyperplane,
and they form an affine space Y; = K" = A"™. The other family of lines is the
set of all one-dimensional subspaces of the vector space X; = K™. They form a
projective space P*~! of dimension n — 1. Points in this projective space, that is,
lines in X;, represent the “points at infinity” of the corresponding parallel lines in
the “finite” part Y;. The whole projective space P™ is the (disjoint) union of its
“Anite” part Y; = A" and its “points at infinity” complement P"~!. Note that
the distinction between finite points and points at infinity of the space P" is only
formal, since it depends on coordinates. Every point could be made finite or infinite
by corresponding change of coordinates.

The next step is to define algebraic subsets in projective space. How-
. ever, there is a small difference comparing to affine case. Polynomial equa-
tions in homogeneous coordinates in P" can always be considered to be homo-
geneous. If f € Klsg,s1,...,8,] is a polynomial over K in n 4+ 1 indetermi-
nates sy, 81, ... ,8n, then it is represented as a sum of its homogeneous components
f=fo+hfit---+fr. Inowé& = (§:&:... :&,) is a point in P™ for which f(£) =0,

then f(AEOs' .o :)‘En) = fﬂ(gﬂr- .« . :fﬂ)'l'Afl(fB:- v o 1£ﬂ)+“'+xr.fr(£0:- o :fﬂ) =0
for all X € K*. Since the field K is infinite, it follows that all f;(%,...,&,) =0.

The transition from homogeneous polynomial f(sq,...,8n) € K[S0,--- ,3n]
to polynomial f(1,%1,...,t,) € K[t,... ,ts] is called dehomogenization, and the
transition from polynomial g(t;,... ,t,) € K[t1,... ,ts] to homogeneous polynomi-
al s3°89.9(s1 /50, .. ,8n/50) € K[s0, 81, .. , 5] (this is a homogeneous polynomial!)
homogenization with respect to sg.

Closed algebraic set V C P™ is the set of common zeros of the finite (or
infinite) set of polynomials f € K]sg,... ,3s]. The correspondence between closed
sets V and ideals I is the same as in the affine case, only the ideals obtained are
not arbitrary, but with every polynomial they contain also all its homogeneous
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components.

Definition. Ideal I C K{sq,...,s,] is homogeneous if: f € I = all homoge-
neous components of f belong to 1.

Every homogeneous ideal has a basis of homogeneous polynomials. Therefore,
every closed set in projective space can be defined by homogeneous equations.

Another difference is the absence of Hilbert’s Nullstellensatz: there are ho-
mogeneous ideals defining the empty set. They can be easily described.

Lemma. V(I) =0 & for some k, I D I := (sg,... , 8 ).

Proof. The direction <= is obvious since V(I;) = 0. Conversely, let I be
homogeneous and V(I) = 0. Let I = (f1,..., fr) be some homogeneous basis,
deg f; = m;. Dehomogenized system

fl(l,tl,... ,tn) =
(t: = s:/30)
fr(l, tl,- ’ e itﬂ) — 0

has no solutions, since an eventual solution would give a point in V(I). From the
Nullstellensatz, one has 1 = f1(1,t)g:1 (t)+- - -+ fr(1,t) g (t) in the ring K{t;, ... , t,).
Homogenizing in sg, that is multiplying by s3'°, one has sg° € I. Therefore, all
sgo,...,s% € I. If now m = max(mg,...,mp) and k = (m —- 1)(n + 1) + 1,
then in every monomial 33" C e sﬁ“ with kg + --- + kn > k at least one exponent
ki >m > m;, and I C 1.

Let V C P® be a projective closed set. The process of dehomogenization in .
so corresponds to intersection with affine chart Aj. In other words, intersection
V N A2 of the projective closed set V and an affine chart is an affine closed set. Its
equations are obtained by dehomogenizing the equations of V' with respect to sg.
It should be noted that V' N Af is closed as subset in Aj and open as subset in V.
Conversely, let W C A7 =2 A™ be an affine closed set. Homogenizing its equations
with respect to so one obtains equations of a projective closed set V = W C P
which represents the closure of the set W with respect to Zariski topology in P™,
projective closure of W. It is obtained by adding the “points at infinity” to its
“finite” part W =V N Aj.

The coordinate ring of the projective closed set V' C P" is defined in the
same way as in the affine case. It is a quotient ring K[V] = Kls,,... ,s.}/I(V).
Since the ideal I(V') is homogeneous, this ring is graded (in the affine case it may
not be so). Its elements can not be interpreted as functions on V. Their value
in points of V' is not determined, since it depends on the choice of homogeneous
coordinates. Also, the elements of its fraction field, “rational” functions, are not
proper functions. Only those among them which originate from rational functions
of degree 0 (that is, quotient of two polynomials of the same degree) define functions
which have values in points of V', even then not all, but only the points in which the
denominator is different from 0. Therefore, the definition of rational and regular
function has to be changed, and one should use the local definition of regularity.
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Lemma. (& definition). Rational function in projective closed set V C P
is the fraction of degree 0 in the field of fractions of the ring K{V]. The set
K (V) of all such fractions of degree 0 is a field, the field of rational functions of
a projective closed set V. If z € V, the rational function r € K(V) is regular
in the point x if it has a representation r = f/g, f,g € K[V}, z ¢ V(g9) C V.
All functions regular in a given point x build a ring, denoted O, v or O, and
called local ring of V' in z. Regular function on whole V' is a function, regular
in each point of V. All regular functions on V also build a ring O(V). One has
OV) = ,ey Oz,v CO:,v C K(V).

In the case of affine sets there are many regular functions, since O(V') = K{V).
However, in the projective case, it is not so.

Proposition. The only global regular functions on irreducible projective
closed set V are constants: O(V) = K.

Proof. Let K[V] = K{so,...,8s)/I(V) and z; = s;mod I(V) coordinate
functions on V. Then V' = I, D(z;) since [}, V(z:) = V ((zo,..- ,Za)) = 0.
One could renumber coordinates in such way that g,... ;2 # 0, Tm41,... ,Tp =
0. Let r € O(V) be global regular function.” Then in every D(z;) function r has
representation r = f;/z7* where n; = deg f;. Let now k = ng+---+n,,. If the sum
of exponents is ko + - -+ + km = k, then the function z&° . - . zf» . r € K{[V] (since
at least one k; > n;). It follows that, if K[V] is the subset of all homogeneous
elements of degree k, then r! - K[V} C K{[V]i for all ! € N. Particularly, r! - z§ €
K[V}i. This means that the ring K{V][r] is finitely generated K[V}-submodule of
a finitely generated (and Noetherian) K[V])-module K[V]+ 1/z§ - K[V]. Therefore
r is integral over K[V], that is, r? + a;r?~! + .- + a, = 0 for some a; € K[V]. By
taking homogeneous components of degree 0 in the ring of fractions of the ring K[V,
one sees by coefficient comparison that a; could be replaced by their homogeneous

components of degree 0 i.e., constants from K. Therefore, r is algebraic over an
algebraically closed field K, and r € K.

The definition of regular and rational mappings is the same as in the affine
case. Regular mapping of projective varieties f : X — Y is a mapping which takes
regular functions on Y in regular functions in X. Rational mapping f : X --» YV
can be defined in more ways. It is given by regular mapping f : U — V where
UC X and V CY are open sets, and two such mappings are identified if they
agree on a common open set. Rational mapping is not a function in the proper
sense. As a function it is defined on some maximal open subset, the domain of the
rational mapping. If X C P" and ¥ C P™, rational mapping f : X --» Y can
be described by m + 1 homogeneous forms Fgy,... , F,, of the same degreein n+1
indeterminates zg,... ,Zn, Or by m + 1 rational functions fy,...,fm on X. Some
important examples will be stated later.

Besides affine and projective closed sets, their open subsets also naturally
appear. This is the most general type of variety we met by now.

Definition. Open subset of projective closed subset is called quasiprojective
vartety.
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Affine and projective closed sets are both quasiprojective varieties. All previ-
- ously defined notions are transferred to quasiprojective varieties: regular functions
(local definition), rational functions, local ring of the functions, regular in a given
point, field of rational functions. Also, the notions of regular and rational mapping
are transferred, as well as the notions of isomorphism and birational isomorphism.
Two irreducible varieties are birationally isomorphic if and only if they contain two
isomorphic open subsets {33, p. 69].

Definition. Quasiprojective variety isomorphic to an affine (projective)
closed set, is called affine (projective) variety.

These notions are introduced in order to study varieties independently of their
embedding in the ambient space. As opposed to affine closed sets, the notion of
affine variety is invariant with respect to isomorphism.

A property of a geometrical object is local, if every point of it has an open
neighborhood in which this property holds. For example, being a closed set is a
local property. In the study of local properties, we can always restrict ourselves to
affine varieties. .

Proposition. If X is quasiprojective variety and £ € X, then z has a
neighborhood isomorphic to an affine variety.

Proof. Let X CP", XNA™ =Y\ Z where Y, Z C Y are closed in A®. Since
T € Y \ Z, there exists a polynomial F' € K[A"] such that F € I(Z) and F(z) # 0.
Then V(F) D Z and D(F) = Y \ V(F). Let the ideal I(Y) = (Fi,... ,Fn) C
K[A"]. Consider the closed set W = V(F,... ,Fpn,y - F — 1) C A®*!, Then the
projection A**! — A™ defines a mapping ¢ : W = D(F) and ¢ : D(F) - W by
(Z1,-..,Zn) > (Z1,... ,Zn, 1/ F(z1,... ,Z,)).

Finally, let us state two important theorems which will be used in the sequel.
In both cases, theorems are proved by local technique of reduction to affine case,
and then by algebraic calculation in the polynomial ring.

The first theorem states that projective varieties behave better than affine
with respect to regular mappings. Regular image of an afine variety need not be
closed (example: a projection of hyperbola onto axis). This can not happen for
projective varieties.

Theorem. (on closed image, [33, p. 76]). The image of the projective variety
X under a regular mapping f: X - Y isaclosed setin Y.

The second theorem is analogous to the corresponding theorem from differ-
ential geometry. A regular mapping foliates the domain into disjoint preimages of
points—hbres over points. What is the dimension of each fibre? In differential
geometry, it is equal to the difference between dimensions of the domain and its
image. In algebraic situation this is the case “almost everywhere”, that is, on an
open subset.

Theorem. (on dimension of fibres, {33, p. 97]). Let f : X — Y be regular
mapping of an irreducible variety X of dimension n onto an irreducible variety Y of
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dimension m. Then m < n, fibres f~*(y) over y € Y have dimension dim f~(y) >
n — m and the equality holds over a nonempty openset U C Y.

7. Veronese and Grassmann varieties. Lines on surfaces

7.1. The Veronese variety. Homogeneous polynomials F(zg,... ,z,) =

> Qig...i, a:f,“ ... z*» of degree m in n+1 indeterminates form a vector space
o+ +in=m
of dimension d, = ("T™). The form F defines a projective hypersurface H =
{F =0} C P® of degree m. Two forms define the same hypersurface if and only
if they are proportional. Therefore, all projective hypersurfaces of degree m form
a projective space P9m—1 of dimension d? — 1 = (";’“) — 1, with homogeneous
coordinates (vi,..s. |10+ -+ i =m).

Define a regular mapping V7 : P* — Pdm—1 by (ug:...:up) Vig...i, =
u® ... u*. Itsimage V7 (P") = V,» C P9» 1 js called Veronese variety. It is defined
by equa.tions Vig...in " Yjo...fn = VUkg...kn * Ulp...In (‘fo + _‘fo —_ ko -+ lo, .o ,‘iﬂ + jn -

kn+1,). Namely, if these equations define the variety X%, then obviously V.? C X®.
Conversely, one deduces from these equations that on X at least one coordinate

111111

{¥mo...0 # 0} D X the mapping ,

Up = VUm,0,...,0
U1 = VYm-i1,1,... ,0 .

Un = Ym-1,0,...,1

is regular and inverse for V2 : P® — P9m—1, So, V% : P* = YV (P*) = V* C P¢=—1,
The dimension of the Veronese variety V! is n. '
Example 1. Forn = 1, m = 3, V;j : P! < P3. The equations of V;! C P3 are

_ .2 .2
Vo3V30 = V12V21, Vo3V21 = Uy, V3oVi2 = VU3

where (vo3 :v12:v21 :v3p) are the homogeneous coordinates in P°. Dehomogeniza-
tion on vp3 # 0, with notations £ = vy2/ve3, ¥ = v21 /v03, 2 = v30/V03, gives

z=zxy, y==1x°, zTz=19°

2 2

or y = x%, z = z° since the ideal (z — zy,y — 22,22 — ¥*) = (y — 22,2 — 7).
Therefore, the Veronese curve V! C P? is exactly the space cubic (or the norm-
curve) t —» (t,12,83). |

Example 2. More generally, if n = 1, the Veronese mapping V. : P! — P™
is (z:y) = (g™ : 2™ 1y:... :y™). The system of equations for Veronese curve can
be written as VI = {(zo:21:... :2m) | (To:21) = (21 :22) = -+ = (Tm—1:Zm)} OF

m 3: :E LR I I — '
rank | 0 1 72 m-l1 <1
ml mz $3 s a0w zm
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In the affine chart the corresponding curve has rational parametrization ¢
(t,t2,...,t™).

Example 3. If F(xo,...,Zn) = Y Gi..i Ty -..Ti is a form of
fo+ +ia=m

degree m and H = {F =0} C P" corresponding hypersurface, then V7 (H) =
VN E where E is a hyperplane ) Qi,. i Vig..i, = 0in P4m~1, Using this

to +"-'+£n =m
fact it is easy to see that a complement of a hypersurface in P™ is an affine variety

(that is, isomorphic to an affine closed set).

It is not difficult to prove that the Veronese variety V7 (P*) = V* C P91
is not contained in any linear subspace of P%m 1,

7.2. The Grassmannian. Let V be the vector space of dimension n. The set
Gr(r, V) of all r-dimensional subspaces of the space V is called the Grassmannian of
V (of corresponding dimension). If I, € Gr(r, V) is one such subspace and e;,... , e,
its basis, it defines an element e; A...Ae, € ATV of the exterior power of the vector
space V. If e}, ... ,el is another basis of L, then ej A...Ae. = a-e1 A...Ae, where
a = det C.,e» # 0 is the determinant of the transition matrix. This means that
the element e; A... A e, € ATV defines a point in the projectivization. P(A"V),
which does not depend on the choice of base, but only on the subspace L. In this
way one obtains a mapping P : Gr(r,V) - P(A"V), L — P(L). It is easily seen
that this is an injection, that is, Gr(r,V) < P(A"V). If e,... ,en is a basis in
V, {ei;, A...Ae; .} is a basis in A"V, the dimension of this vector space equals
(), and dimension of its projectivization equals (*) — 1. If L € Gr(r,V), one

has P(L)= Y. pi..i. -€i; A...Aei.. The homogeneous coordinates {p;,. ;. }
$1<...<ip

of the point P(L) € P(ATV) are called the Plicker® coordinates of the subspace
L € Gr(r,V). However, the mapping P is not surjective. Let us determine the
image Im P. This reduces to a question, could one explicitly describe conditions
that a vector x € A"V is decomposable, that is, has the form z = fi A ... A f;.
In order to solve it, one introduces a new operation in the exterior algebra of a
vector space, a mapping V* X ATV = A"V which “reduces” exterior degree, by
the following inductive definition.

Let u € V* be a linear function on V. For z € A°V = K define usz = 0. For
z € A'V =V define usz = (u,z) = u(z). In the general case, for vectors of the
formz Ay € ATV (r > 2) (which generate whole A"V) one defines us(z A y) =
(uaz) Ay+(—1)"zA(uay), and extends it linearly on arbitrary vectors. Finally, this
mapping can be iteratively defined for vectors u = u; A... Aug € AFV* (k> 2)
and linearly extended on arbitrary vectors u € A¥V*. One obtains a linear map
AFV* x ATV = ATV (u, z) = uaz, called cancellation'®.

Example. For r = 1 and z,y € V one has ux(z A y) = u(z) - y — u(y) - =.
Particularly, for x # 0, z* € V* and z*1(z A y) = y, which justifies the term.

9Julius Pliicker (1801-1868), German geometer, who first introduced homogeneous coordi-
nates and coordinate method in projective geometry. He was teacher of Felix Klein.

10in Russian “cpepTka”
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The following lemma shows the connection between cancellation and the
Pliicker coordinates and can be proved straightforwardly.

Lemma. Let e),...,e, be a basis in V and e},...,e;, its dual basis in
V*. If {p;,..i.} are Pliicker coordinates of the vector = in e, then p;, .; =

e; J(...(e} 1z)...).

Proposition. A given vector £ € A"V is of the formz = fi A...A f, for any
u € A""1V* one has (usz) Az = 0.

Proof. Let us describe the proof in the case n = 4, r = 2. The direction = is
checked easily. Prove the opposite direction. Let x = p1se; Aea+pizei Aeg+---#0
in some basis e;, es,€e3,e4 and, say, p12 = 1. Let uj,us,u3,us be the dual basis
in V*. From previous properties one has ugi(u;0z) = p12 = 1, (ujaz) Az = 0,
ug1 ((u12z) Az) = 0, therefore 0 = (uga(ug1z)) Az — (U1 92) A(ugaz) = - (uyaz) A
(uz1x), and one has z = (u;.z) A (ug1z). :

Vectors f1 and f, in the decomposition £ = f; A fo can be described explicitly.
Namely, if z = e; Aez +p13e1 Aez + pra€1 Aeg + pagea Aes+ pasea Aey + pases Ney
(12 = 1) and if fi = ujoz = -+ = €3 + p13es + praey, fo = Ugux = --- =
—e1 + p23es + pase4, then one sees that x = fi A f2 & P34 = p13pe4 — prapas.

Note that it suffices to check the condition (usx) Az = 0 only for basis
vectors u € AT"1V*, which leads to a system of polynomial equations with respect
to indeterminate Pliicker coordinates. Therefore, the Grassmannian Gr(r,V) =
ImP C P(A"V) has a natural structure of a projective algebraic variety, which
parametrizes the set of all (r — 1)-dimensional projective subspaces of a (n — 1)-
dimensional projective space. It is clear that this variety does not depend on the
choice of the space V but only on its dimension n and therefore it is usually denoted
Gr(r,n). In the sequel we shall be interested mostly in the case n = 4, r = 2, that
is, the case of the Grassmannian Gr(2, 4) of all projective lines in a projective space.
Here the defining system could be explicitly written down and it simplifies to single
equation: ’

P12P34 — P13P24 + P14p23 = 0

This equation defines a hypersurface II C P°, Plicker hypersurface.

Lemma. If vectors fi = zie1 + - + 24€4, fo = y1€1 + -+ + yseq form
a base of the plane L, then fi A fo = Y (z;y; — z;yi)e; A e; and Pliicker co-
ordinates of the corresponding line are p;; = =z;y; — zjyi. The plane L =
Span{fi, fa} = {us(fi A f2) |u € Vx}. If u has coordinates a;, a3, 03,04 in the
dual base uj, uz,u3, uq, that is, u = a;u; + azus + azus + aquy, then us(fi A f2) =

u(fi)fo —u(fo) L = Z; QiTi Ej Yyjje; — E; a;Yi E;,- Tje; = Z,- (E, a,-p,-j) e; and
projective coordinates of an arbitrary point of the corresponding projective line are
z‘i=2jpija_f (i=1,...,4). ‘

7.3. Lines on surfaces in projective space. We have seen that surfaces of
a given degree m in projective space P3 are parametrized by points of projective
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space P* with k = ("‘;’ 3) — 1. Lines in projective space P> are parametrized by
points of Pliicker hypersurface II C P°. We are interested in conditions when
some surface contains some lines. Consider the product P* x II and its subset

= {(&,n) |n C €} C P* x II of all pairs (£, 1) where ¢ is a surface and 7 a line

conta.med in it.

Proposition. The set T' = {(£,n) |n C €} C P* x I is closed, i.e., it is a
projective variety.

This follows directly from the following lemma.

. Lemma. Let n € II be a line in P? with Pliicker coordinates p;; (1 < i <
j < 4) and £ € P* a surface of degree m with coeflicients g;i,s,i5 (3, ix = m). The
condition n C £ is algebraic with respect to p and q, homogeneous on each group
of indeterminates separately.

Proof. Coordinates of arbitrary point on the line n are z; = }_ . pijo;
(i = 1,...,4) with indeterminate a;,as,a3,a4. If F(21,22,23,24) = 0 is a ho-
mogeneous equation of the surface &, then n C £ if and only if the equality

F(EJ- P1jQj, Do; P2jQj, )i P3jCyy D p4ja_,-) = (0 holds for all ;. This gives ho-
mogeneous equations for p and gq.

Consider two projections o : ' = Pk, (§,n) = fand ¢ : T = II, (§,1n) — n.
These are regular mappings. The second projection 1 is surjective, since any line is
contained in at least one (say, reducible) surface of degree m. Let us calculate the
dimension of the fibre ¥~ (n) = {(£,7) | € D n}. A coordinate transformation in P3
allows us to suppose that the equations for n are z9g = z; = 0. Then the equation
of the surface £ which contains this line has to be of the form F(z) = 20G(z) +
~ z1H(z). The set of all such homogeneous forms in the space of all forms of degree
m in 4 indeterminates forms a linear subspace of dimension I. The form F(2) =

Y Gig..isZ ... 233 is of the form zoG(z) + 21 H(2z) <> in each summand o >

t0+4---fiz=m
1ori; > 1, and this is a complement of the condition ig = 7; = 0. Therefore | = (the

number of forms in 4 indeterminates)— (the number of forms in 2 indeterminates) =
(™F3) — (™) = tm{m + 1)(m + 5). Now dimy~1(n) = tm(m + 1)(m + 5) — 1.
All fibres have the same dimension and I is irreducible. According to the theorem
of dimensions of fibres, dimI' = dim¥(T') + dimy~1(n) = tm(m + 1)(m + 5) + 3.
Consider now the projection ¢. According to the theorem on closed image, ¢(I') C
P* is a closed subset of dimension dimy(I') < dimI'. For a given surface £ of
degree m the fibre ¢=1(¢) C T consists of all pairs (£,7n) for which the line i lays
~on the surface £&. Obviously, if dimT' < k = (?‘;’ 3) — 1, ¢ cannot be surjective, that
is, there are surfaces of degree m which do not contain lines. For ¢ € ¢(T'), from
the theorem of dimension of fibres it follows that dim ¢~ (£) > dim " — dim ¢(T).

Compare the values of k and dim I for different m:

m 1 2 3 4
k 3 9 19 34
dimI’ 5 10 19 33
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If m > 4, then dim I’ < k. This means that there is always a surface of degreem > 4
on which there are no lines at all. Consider more closely the cases m = 1,2, 3. For
m = 1, surfaces of degree 1 are planes, parametrized by points of P® (principle of
projective duality!). On any plane there are infinitely many lines—dimension of the
fibre is > 2. For m = 2, surfaces of degree 2 are quadrics, parametrized by points
of P°. On any quadric there are infinitely many lines - dimension of the fibre is > 1.
The case m = 3 is most interesting. Cubic surfaces are parametrized by points of
the space P'°. Here the dimension of non-empty fibres is > 0. Now prove that this
lower bound is reached, that is, there exists a cubic surface with only finitely many
lines. Consider the surface zyz = 1. In the finite part of the space, A3, it does not
contain any line, whereas in the plane at infinity P? it contains three lines zyz = 0.
This means that dim (') = dimI' = 19 and that ¢ is surjective! We have just
proved the following theorem.

Theorem. Any cubic surface contains a line. The set of cubic surfaces that
contain only finitely many lines is open in P'°.

This is a classical result, showing a very specific method of proof in classical
algebraic geometry: one example has proved the theorem. Cubic surfaces have
been extensively studied. One of the most complete monographs on the subject is

[21). |

8. Twenty-seven lines on a cubic surface

We have proved that on any cubic surface there is at least one line and
that “almost all” cubic surfaces contain finitely many lines. How many? One of
the most beautiful classical theorems of geometry says that any nonsingular cubic
surface contains exactly 27 lines.

Let S be nonsingular cubic surface in P3. Note the following simple facts.
Lemma 1. IfII is a plane, then S N1I is a plane cubic curve.
Lemma 2. If this cubic contains a line I, then S NI = [ U {conic}.

Lemma 3. If this conic is reducible, then all three lines are different (there
are no multiple lines) and their configuration belongs to one of the following two

types |

Proof. Coordinates could be chosen so that Il : {t=0}, 1 : {z =t =0}
and S : {f(z,y,2,t) =0}. If | is the multiple line of the intersection S N II, then
f(z,y,2,t) = z%-a(z,y, z, t)+t-b(z,y, z,t) where a is a linear form and b a quadratic
form. But then SingS D {z =t = b(x,y, 2,t}) = 0} # & in F°.
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Lemma 4. If the point P € S, then all linesl on S through P are coplanar
(since all such | C Tp(S)) and there are at most three such lines.

Lemma 5. If the linel C S, then there exist exactIy- 5 planes I1,, ... ,Ils for
which the corresponding conic Q = (SNII)\l is reducible, that is, SNII; = lU(; Ul})
(see the figure)

Proof. Let us choose the coordinates so that the line I has equation [ :
{z =t = 0} and write the equation of the cubic surface in the form

S: f(z,y, z,t) = a1(z,t)z%+by (2, t)zy+c1(2,t)y? +aa2(z, )z +ba(z, 1) y+aa(z,t) = 0

where aj, b1, c; are linear forms, as, b2 quadratic forms and az a cubic form. A
bundle of planes through [ has equation II : uz = Af, and one obtains the following
equation of the conic in the intersection S NII:

al(/\, 1)332 + bl(/\, 1).1:y+ Cl(/\, 1)y2 -+ GQ(A, l)a:t -+ bg(/\, l)yt -+ 03(/\, 1)t2 — 0
This conic is reducible if and only if the corresponding determinant

| a1 51/2 02[2
A= |b1/2 C1 62/2 =0
02/2 52/2 ajs

equals zero. This is an equation of the fifth degree in A. It has at most five roots,
that is, at most five corresponding planes in which the conic is reducible. Let us
prove that there are exactly five such planes, i.e., that all these roots are different.
This will follow from nonsingularity of the cubic surface S. We could suppose
that one of the roots is A = 0 i.e., that IT = {2 = 0} is one of these planes. The
intersection S N II consists of three lines with one of the above two configuration

types.

Type 1. We can choose coordinates in such way that the three lines in the
plane z =0 aret = 0, £ = 0 and £ = t. The corresponding equation f is then f =
z(z —1)t 4 zg where g is quadratic form. Comparing the corresponding coefficients,
we obtain a; = t + az, ag = —t% + 2d, where d; is linear form, and z|b,, ¢y, b2, as.
Since S is nonsingular at the point (0:1:0:0), one has ¢; = vz, v #0.

Type 2. We can choose coordinates in such way that the three lines in the
plane z =0 aret = 0, x = 0 and y = 0. The corresponding equation f is then
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f = zyt + zg where g is quadratic form. Comparing the corresponding coefficients,
we obtain b, =t + az and z|ay,c,a2,bs,a3. Since S is nonsingular at the point
(0:0:0:1), one has ag = yzt? +---, v #0.

In both cases the determinant has the form A = z2h — v2zt*, and z = 0 is its
single root.

Lemma 6. Lines from different pairs l;,l} (i = 1,...,5) do not intersect.
This follows from Lemma 4.

Lemma 7. If m is a line on S that does not intersect with l, then m intersects
with exactly one line of each pair I;,l} (i = 1,...,5).

Proof. Line m intersects with any plane in P3, therefore with II;. However,
it can not be contained in II; since m does not intersect with I. Since SNII; =
U (l; Ul), m has to intersect with configuration {;Ul}, and due to Lemma 3 it can
not intersect with both of these lines.

Let now ! and m be two nonintersecting lines on S. From previous results it
follows that such lines exist. The line | determines 10 lines I;,1; (i = 1,...,5), and
exactly one of the each pair intersects with m. Change the notations in such way
that [; intersect with m. The line m also determines its 10 lines, 5 pairs of lines, and
exactly one of the each pair is the line l;. Let these be the lines {;,1! ( =1,...,5).
Each line I does not intersect with any of lines I; (7 # 7) and therefore has to
intersect all lines l; (j # 7). One has a configuration of 1 +1+5+5+ 5 = 17 lines.

Lemma 8. a) Any 4 nonincident lines on S do not belong to a nonsingular
quadric. (In such case the whole quadric would be contained in S, and the cubic S

would be reducible.)

b) Any 4 nonincident lines in P3 that do not belong to a nonsingular quadric,
could have at most two common incident lines. ‘

Lemma 9. Ifn is a line on S different from the mentioned 17, tlz;en it
intersects with exactly three of five lines l;.

Proof. If n intersects with at least four, then n = [ or n = m, which is a
contradiction. If n intersects with at most two, then it has to intersect with at
least three of five lines I} (since it intersects with exactly one line of each pair). Let
these be, say, lines 13, 15,13, 1;. These four nonincident lines on S already have two
common incident lines [ and {{’. It follows then from Lemma 9 that n =1lorn =¥
which is again a contradiction.

Lemma 10. For any choice of three indexes {1, j,k} C {1,2,3,4,5} there is
exactly one line l;;; C S that intersects with three lines l;, l; and . -

Proof. Choose one of the indexes, say 1 = 1 and consider the line [;. From
Lemma 5, one has 10 lines intersecting with it. Four of them are l,1},m,{{. There
are six lines left. From Lemma 9, each of them intersects with exactly two of the
lines I3, 13,14, 5. Since (3) = 6, each possibility is being realized.
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There are (g) = 10 new lines. These, with previous 17, add up to 27 lines on
a cubic surface S. |

Theorem. (Salmon, Cayley, 1849)'! On any nonsingular cubic surface there
are exactly 27 lines.

This remarkable theorem is among the most interesting results in geometry
of the last century. The configuration of 27 lines has been extensively studied. In
1869 Wiener produced a model of a cubic surface with all its 27 lines real and visible
in the model (see [35, p. 127]). The automorphism group of the configuration of
27 lines was first studied by Jordan!2[11]. The order of that group is 51840 =
27345 and it has been later classified as the Weyl group E¢. It has a simple
subgroup of index 2 and of order 25920. There is a reach literature concerning 27
lines. In the 20th century it has been slowly (and unjustly) forgotten. With the
renaissance of algebraic geometry in the fifties, the investigation of cubic surfaces
had its culmination in papers and the bock of Manin [21}], and the 27 lines theorem
became an inevitable part of many introductory courses of algebraic geometry. Our
proof follows the book of Reid [25].

9. Number of equations. Multiple subvarieties. Weil divisors

In general, each additional equation in an affine or projective set’s defining
system decreases the dimension of the solution set by 1. However, it can happen
that adding the equation does not change the dimension (if the equation is already
contained in the ideal generated by previous ones). In other words, not all closed
sets in A™ or P" of codimension k could be defined by k equations. One has only

codimV {(fi,...,fr) <k.
Definition. The variety X C A" of codimension k (and dimension n — k)
is a complete intersection if I(X) = (f1,..., fr) C K|[z1,...,2Z,}), and set-theoretic

complete intersection if I(X) = \/( fi,.-., fr)- Clearly, each complete intersection
is a set-theoretic one, but the converse does not hold. The variety X is a set-

theoretic intersection if it can be represented as intersection of k hypersurfaces.

Examples. 1. [8, p. 242], [31, p. 290, ex. 4.9] In A* the set V(z;1,z2) U
V(z3,z4) has codimension 2, but can not be defined with two equations.

2. [31, p. 32, ex. 2.17] If X C P? is the projective closure of the space cubic

r=¢t y=t3, z=¢

the homogeneous ideal I(X) can not be generated by 2 elements.

3. [31, p. 25, ex. 1.11] Affine space cubic can be defined with two equations,
as intersection of two quadrics, a cylinder and a cone, since I(X) = (y—z2%,9y% —z2).
However, if X C A3 is a space curve ‘

T =1, y=t4, z=1

11 George Salmon (1819-1904), Irish mathematician. Arthur Cayley (1821—1895), English
mathematician.
*2Camille Jordan (1838-1922), French mathematician
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then the corresponding ideal can not be generated by 2 elements. The intersection
of any two of these three surfaces, besides the space curve, contains a coordinate
axis. The general case of a space curve

=™, y=t™, z=t"

has been treated only recently [32]. If ¢; € N are the least positive integers such that
nici € njN+ngN (here, the triple (i, j, k) goes through all three cyclic permutations
of the triple (1,2, 3)), then the ideal I{X) has

(a) either two generators, I(X) = (z — 2,y — x™12723) and the curve is a
complete intersection. Example: (n;,ns,n3) = (4,5,6), I(X) = (z® — 22,y? — z2);
(b) or three generators, I(X) = (z€ — yM22zM18,y2 — gT213728 263 _ gTs14732) and
the curve is not a complete intersection. Example: (ni,n2,n3) = (3,4,5), I(X) =
(23 — yz,9% — x2, 2% — 2%y).

Cases (a) and (b) could be distinguished algorithmically. The case (b) how-
ever, is a set-theoretic complete intersection, since there is always a polynomial

p(z,y, z) such that I{X) = /(p, 2z — z™s1y"sz},

In codimension 1 the corresponding equality holds. Any subvariety in A"
or P* of codimension 1 can be given by one equation: it is a hypersurface. More
generally, if X is a nonsingular projective or affine variety and Y C X a subvariety
of codimension 1, then near each of its points, it is defined by one equation, that
is, Vx € Y 3U 3 z such that I(Y NU) = (f) C K[U] is principal. In the proof, the
factorial property of the local ring of regular point is used essentially |8, p. 241],
(33, t. 1, pp. 90, 134].

. Let us consider the multiplicity. Already in the case of curves we have seen
that one has to take it into account. Radical ideals were introduced in order to
remove the nilpotents from the coordinate ring. When one considers intersections
of subvarieties, it becomes more complex. Let X be a variety and Y, Z C X
two its subvarieties with corresponding ideals I(Y),I(Z). Then the intersection
YNZ=V{I(Y)+I(Z)). However, the sum of two radical ideals does not have to
be radical, it can contain nilpotents.

Example 1. Let X = A?, K[X] = K|z,y]andlet Y = V(y), Z = V(y —z?)
be irreducible curves. The ideal I(Y) + I{Z) = (y) + (y — z%) = (22,y) and the
coordinate ring K[Y N Z] = K|[z,y]/(z?,y) has a nilpotent z. This corresponds to
the intuitively clear fact that the parabola and the line are tangent to each other
in their intersection point, the multiplicity of that point being 2.

Example 2. [14, p. 28] Consider the variety V = {zz = yz =0} C A’ in
the affine space. One has V = V; UV;, where V; = {z = y = 0} is the coordinate
axis and V2 = {z =0} the coordinate plane. For corresponding ideals one has
I(V) = (z2,yz) = (z,y) - (z) = I - I,. The ideals I}, = I(V;) and I = I(V;)
are prime, I(V) is radical and V' = V; U V; is the irreducible decomposition of V.
The corresponding coordinate ring is K{V] = K|z, y, z}/(zz,yz). Consider now the
plane W = {z = 2} C A’ with the ideal I(W) = (z — z), and find the intersection
V NW. The corresponding ideal is I[VNW) = I(V) + I(W) = (zz,yz,z — z), the
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coordinate ring K[V N W] = K|z,y, 2}/ (zz,yz,z — 2) & K[z,y]/(z? zy). This is
not an affine algebra: it contains a nilpotent z. This reflects the fact that in some
way the origin is a double point of the intersection V N W, since it belongs to both
components of the variety V. -

Examples show that, although radical ideals helped to avoid varieties with
multiple components, the multiplicity still appears when one considers intersections
of varieties. The notion of multiplicity is one of the fundamental notions in algebraic
geometry. To work with it, one must assign multiplicities to subvarieties and in
this way introduce a new type of objects. The codimension 1 case is the simplest,
since each such subvariety can be defined by a single equation. We will consider
only this case.

Definition. Let X be an irreducible nonsingular variety. Consider the set of
all its irreducible subvarieties of codimension 1, and call its elements simple divisors.
The free abelian group generated by this set is denoted Div X and called the divisor
group of the variety X, its elements are divisors on X. A divisor is, therefore,
a formal linear combination D = n1C; + --- + niCi of irreducible subvarieties
Ci,...,Cr C X of codimension 1 with integer coeflicients n;,... ,n; € Z. If all
coefficients are nonnegative, we say that the divisor is effective and denote this by
D > 0. Each divisor can be represented as a difference of two effective divisors. The
number d = nj + - - - + ng is called the degree of the divisor D =n1Cy +-- -+ n C}
and defines an epimorphism deg : Div(X) — Z.

13

Divisors introduced by this definition are called sometimes Weil divisors®>,
as opposed to more general Cartier divisor, which will be introduced later.

To a rational function f(t) = t‘: - 3 :11'_'_"((2:2‘1 ::', € K(t) on the affine line

X = A! one could associate adivisor D =Py +---+ng P —m1Q1 —... —mQy,
as a formal linear combination of zeros and poles with corresponding multiplicities
as coefficients, the so-called divisor of zeros and poles of the rational function. The
analogous construction is possible in the general case. Let X be an irreducible
variety and f € K(X) a rational function on X, f #0. If C C X is an irreducible
subvariety of codimension 1, then it is locally defined by one equation, that is, in
some nonempty open set U C X one has CNU = V(p) where p € K[U].

Definition. 1) If the function f € K{U], that is, it is regular on U, then,
since the intersection ((p*) = 0, 3k > 0 such that p*| f, p**1 { f. This integer
is uniquely determined and does not depend on the choice of local parameter p.
The number k is called the order of (regular) function f along subvariety C' and
denoted k = ord¢ f.

2) If the function f is not regular, it has a representation f = g/h where
g,h € K[U]. The order of (rational) function f along subvariety C is defined as
the integer ord¢ f = ordc g — ordc h. This number does not depend on the choice
of nonempty open set U. This follows from irreducibility of X, since two nonempty
open sets always intersect and their intersection is nonempty and open.

————

13after André Weil (1906-), French mathematician, one of the founders of the Bourbaki
group, and not after Hermann Wey) (1885-1955), German mathematician and physicist.
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Lemma. Order of function along subvariety has the following properties:

1) ord¢(fg) = orde f + orde g;
2) orde(f + g) Z_min {orde f, ordc g} (f + g # 0).

Lemma. For a given rational function f there are only finitely many irre-
ducible subvarieties C of codimension 1 for which ord¢ f'# 0.

Definition. If f € K(X)* is a rational function, the formal linear combi-

nation (f) = > (ordc f) - C has finitely many terms and represents a divisor on

cCcX
X. It is called the divisor of the function f. The sum of all terms with positive

coefficient is the divisor of zeros (f)o, and with negative coefficient the divisor of
poles (f)oo of the function f. One has (f)o > 0, (f)eo = 0 and (£) = (£)o — (£)co-

The mapping div : K(X)* — Div(X), f — (f) is a homomorphism of
- groups (the first group is multiplicative, the second one additive). Namely, one has

(fg) = (f) + (9).

The divisor of a regular function is effective. The converse also holds.
Lemma. If f € K(X)*, then (f) > 04& f € K[X].

Proof. Let f be nonregular in £ € X. One has a representation f = g/h ¢
Oz, g,h € O;. Since the ring O, is factorial, one could consider g and h relatively
prime. Let p be a prime factor of h, which does not divide g. The variety V(p)
has in some open neighborhood of z codimension 1, therefore Vip)=CcC Xisa
subvariety of codimension 1 and ordc f < 0.

Corollary. On a nonsingular projective variety, rational function is deter-
mined uniquely up to constant factor by its divisor.

Proof. If (f) = (g), then 0 = (f)—(9) = (fg~!) and fg~! is a global regular
function on a projective variety, that is, constant. -

Definition. Divisors of the form (f) where f is rational function on X, are
called principal divisors. They form a subgroup P(X) C Div X of principal divisors
in the group of all divisors. It is the image of the homomorphism div : K(X)* —
Div(X).

Is every divisor principal? In other words, could one represent a given divisor
as a divisor of zeros and poles of some rational function? The answer depends
on variety X and it is not always affirmative. There could be also nonprincipal
divisors. More precise answer is given by the factorgroup Div(X)/P(X) = CI(X),
the divisor class group of the variety X. This quotient introduces a relation of
linear equivalence of divisors: Dy ~ Dy & D; — D, = (f) for some global rational
function f.

Examples. 1. CI(A") = 0. More generally, if the ring K|[X] is factorial,
then Cl(X) = 0.

2. CI(P™) = Z. [33, t. 1, p. 188}, [31, p. 175]. Each irreducible subvariety
C C P of codimension 1 is globally defined by a homogeneous equation, that is,
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by irreducible homogeneous polynomial F', of degree m. Its affine parts are of the
form CNAJ =V (F/zy'). Let D = n,C} + - - - +niCy be an effective divisor on P*
(with all n; > 0), forms F; define subvarieties C; and let F = FJ" --- F"* be the
corresponding product. Then (F') = ny1(Fy) + -+ 4+ ng(Fr) = D (more precisely,
this holds in affine chart). In other words, each effective divisor on P” is a divisor of
a homogeneous polynomial form. Let now D be an arbitrary divisor, D = D, — D,
its decomposition as difference of effective divisors, and D; = (G;) (i = 1,2) their
representation by homogeneous forms. Let d; = degD; and d = deg D = d; — d,.
Consider the rational function f = G;/z3G> and its principal divisor (f). This
is a global rational function of degree 0, that is, an element of the field K(P").
Its principal divisor is (f) + dH = D, — Dy = D, where H is the divisor of the
" hyperplane zy = 0 (the hyperplane section divisor). This means that D ~ dH and
Cl(P*)=Z-H = Z.

Theorem. [31, p. 176] Let X be a nonsingular variety, Y C X its subvariety
and U = X \Y. Then

(1) the mapping > n;C; — >_n;(C; nU) is an epimorphism C1(X) — Cl(U);
(2) if codimx Y > 2, then it is an isomorphism Cl(X) = Cl(U);

(3) if codimx Y = 1, then 1+ 1Y defines a mapping Z — Cl(X) and the
sequence Z — Cl(X) — Cl(U) — 0 is exact.

Example. If Y C P? is an irreducible curve of degree d, then CI(P2\Y) = Z,.
This can be easily proved by the previous theorem.

10. The divisor class group of nonsingular quadric and cone

Let us now determine the divisor class group of the nonsingular quadric Q.
We shall represent the quadric by the so-called Segre embedding!4. Stop for the
moment to define the product of varieties. The set-theoretic (Cartesian) prod-
uct of affine spaces is again an affine space: A" x A™ = A™™  and similarly
for corresponding closed subsets. However, for projective closed sets, the situa-
tion is more complex. How should one define a structure of a projective variety
on the set-theoretic product of two projective lines? Define the Segre embedding
S : Pl x Pl - P3, (10:3:1) X (yo :yl) > (Zoo : 201 :2102211) with Z2ij = TilY;- The
image S(P! x P!) is on the quadric @ = {zp0211 = 201210} C P3. Conversely, if
the point (zgo: 201 : 210:211) € @, then at least one coordinate, say zp # 0, and
S ((200 : 201) X (Z00:210)) = (200200 : 200201 : Z00Z10 : 201210) = (Zo0 : Zo1 12101 211)-
So, the mapping S defines bijection P! x P! =¢ Q, which makes it possible to trans-
port the structure of algebraic variety, induced on the quadric ) from the ambient
space P3, on the set P! x P!. Could one define this structure independently from
the embedding? Homogeneous polynomial on @ has the form F(zgo, 201, 210, 211) =
F(zoyo, Zoy1, T1¥0, T1¥1) = G(Zo, T1;Y0,¥1). This is a polynomial in two groups of
variables, homogeneous in each group separately. The degree in each of the groups
of variables need not to be equal: if s = deg, G < deg, G = r, then the equation

14Corrado Segre (1863-1924), Italian geometer, famous by his work in birational geometry.
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G = 0 is equivalent to the system y) °G = y] ~*G = 0. Closed subsets'in P* x P!
are defined by systems of polynomial equations of the form G(xg, z1;v0,%1) = 0,
homogeneous in each group of variables separately. Subvarieties of codimension
1 in P! x P! are defined by one such equation, as in standard projective space.
Namely, if the polynomial F(zo,Z1;%0,%1) is homogeneous in each group of vari-
ables separately, and if F' factorizes in product of two polynomials F = G - H,
then each of the factors must have the same homogeneity property. Let us deter-
mine the divisor class group CI{(P! x P!). The given divisor D € Div(P! x P!),
in addition to the usual degree deg D, has two degrees deg, D and deg, D in each
of the groups of variables, and one has deg D = deg, D + deg, D. In this way,
one obtains an epimorphism Div(P* x P') — Z?, D ~ (deg, D,deg, D). It is
straightforward to check that its kernel is exactly the principal divisor subgroup, so
CI(P* x P') = Z2. The pair (deg, D,deg, D) is called type of the divisor D. Segre
embedding S : P! x P! — P? defines a homomorphism Div(lP®) — Div(P! x P!)
by intersection with Q. It extends to classes of divisors, and coincides with the
diagonal embedding CI(P3) = Z = Z% = CI(P* x P!), 1~ (1,1).

Example. Apply this to the case of the projective space cubic C. It has the
following parametrization:

I — a2 — a2 — a3
2o =u, z2Z1=uUuvV, 2Z0=uUV, 21 =YV

Obviously, C C Q. Is it possible to represent C as intersection of the quadric and
some surface? Consider the cone K : 291211 = 2%,. The intersection is KNQ = LUC
where L is a line. The divisor class group is CY(P3) = Z - H = Z where H is
the divisor of the (hyper)plane section, so K ~ 2H. The diagonal embedding
gives K = 2 = 2(1,1) = (2,2) = KN Q. The type of this divisor is K NQ =
L+ C = (2,2), and the type of the divisor L = (1,0). Therefore, one has the
type of C = (2,2) — (1,0) = (1,2). Let now Y C P° be the surface such that its
intersection with the quadricis Y NQ = C. Then the type of the divisor Y N Q) is,
on one side, rC = r(1,2) = (r,2r) and on the other, dH = d(1,1) = (d,d). Since
(r, 2r) # (d, d), this means that the answer to the above question is negative: there
is no surface which would intersect the quadric ¢ by the curve C!

Consider the cone X = V(zy — 2?) C A3, with ideal I = I(X) = (zy — 2%) C
K{z,y, z] and coordinate ring K[X] = K|z, y, z)/(zy—2?), and determine its divisor
class group. The generators of the ring, the images of the indeterminates z, y, z we
will denote also z, y, z. The directrisse of the cone is theline Y = V(y,z) C X C
A3, and this is an irreducible subvariety in X of codimension 1 - a simple divisor
in X. Corresponding chain of ideals in K|z,y, 2] is

(0) C (zy — 2%) C (y,2) C (z,¥,2)

However, after the factorization by I(X) one obtains the ideal Ix(Y) = (y,2) C
K|[X], which is of height 1 but not principal! The corresponding chain of ideals is

(0) C (zy — 2%) C (y,2) C (2,¥,2)
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If (y,z) = (f) in K[X], then the corresponding originals in K[z,y, z] would satisfy
v,z € (f,zy — 22), f € (y,2,3y — z%) = (y, 2), and this gives a contradiction when
one considers f modulo ideal (z,y, z)? (that is, its linear components). So, Y # 0
in C1(X)! Let us prove that 2Y = 0 in C1(X), or that 2Y is principal. Consider the
function y € K[X], and find a local equation of the set V(y) N X =Y in the open
subset U = D(z)NX. Then K[U] = K|[z,y, 2,27 |/(zy— 2%) = K[z,z71,2], y=
z~12%2. One has Y NU = V(y, z) N U, the corresponding coordinate ring is K{Y N
Ul = K|z,z71,2]/(z712%,2) = K[z,z™1,2]/(2). The local equation of Y in U is
z = 0, the local parameter z. The function y € K[U] has the form y = z7122.
Therefore v(y) = 2 and the principal divisor is (y) = 2Y. Now, there is the exact
sequence Z — Cl(X) = Cl(X \Y) — 0, where the first mappingis1 — 1-Y.
The ring K{X \ Y] = K[X n D(y)] = K[y,y~, 2] is factorial, so CI{(X \Y) = 0.
Therefore Z — Cl(X) is an epimorphism and CI(X) = Z/2Z = Z,.

11. Group of points of nonsingular cubic. Elliptic curves

As we have seen, the degree of the divisor defines a natural homomorphism
of the divisor group on the group of integers Div(X) — Z. In some cases it factors
through principal divisors (that is, the principal divisors have degree 0) and defines
epimorphism Cl(X) — Z. This was the case for projective space. This is also the
case for nonsingular projective curves.

Theorem. (33, t. 1, pp. 205-209] If X is a nonsingular projective curve, the
degree of any principal divisor is 0.

The kernel C1°(X) of deg : CI(X) —+ Z is an important subgroup in C1(X):

Theorem. The following statements are equivalent:

(1) the curve X is rational;

(2) the group CI°(X) =0, that is, Cl(X) = Z;

(3) there exist two different points P,Q € X such that P ~ Q.

Proof. If CI°(X) = 0, each divisor of degree 0 is principal, and for any two
different points P, Q) € X there is a nonconstant rational function f € K(X) such
that P — Q = (f). This function defines a rational mapping ¢ : X — P! and
K(X)= K(f), P is a zero and Q is a pole of the function f.

Theorem. If X is a nonsingular cubic, then there exists a bijection C1°(X) =
0, which induces the structure of Abelian group in the set of points of X.

Proof. Let O € X be an arbitrary but fixed point. Define the mapping
X = CI°X), P~ Cp = P-0. It is injective since Cp = Cqg = P — O ~
Q—0 = P~ Q. In order to show that this mapping is also surjective, let us prove
that any effective divisor D € Div X, D > 0, is equivalent to the divisor of the form
P + kO, by induction on deg D.

1. fdegD =1,then D~ P=P+0-0.

2. Let degD > 1. Then D = D'+ P, degD' = degD -1, D' > 0. By
induction D' ~ P+1-0. Then D ~ P+ Q +1- 0. Find the point R such that
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P+ @ ~ R+ 0. We do this by a geometrical construction. Suppose that points P
and Q are different, and let p be the line that they determine. Let S be the third
point of intersection of that line and the cubic X. Let ¢ be the line through O and
S and let R be the third intersection point of the line ¢ and cubic X. Then one
has P+ Q4+ S~ (p) ~{(¢) ~O+ S+ R and P+ Q ~ R+ O (se the figure). In
the case when some points coincide (P = @ or O = S), one takes tangents instead
of secants p and q.

We have proved that any effective divisor D > 0 on X is equivalent to the
divisor of the form P + kO, where O is a fixed point. Obviously, ¥ = deg D — 1.
If now D is a divisor of degree 0, then 1t is a difference of two effective divisors of
the same degree D = Dy — Dy ~ (R+k-0) - (Q+ k- 0) = R— Q. Using the
same geometrical construction as above in reverse order, one finds the point S as
intersection of X and the line through R and O, and then point P as intersection
of the line through @ and S (see the same figure). One obtains P+ Q ~ R+ O or
D~ R—-Q~ P -0 = Cp. Therefore, the mapping P — Cp is bijective.

This bijection introduces a structure of an Abelian group on the set of points
of the curve X. This structure is defined purely geometrically, by the constructions
described above. The point O is the neutral element. If P and @ are two points
of our curve, the point R i1s their sum, and S = —R. One could prove directly
that this is a group. The most complicated part is the proof of associative law,
elementary but long.

How many nonisomorphic nonsingular cubics do exist? We shall give the
answer to this question for complex ground field C. The equation of the plane
nonsingular cubic is 4> = P3(z) where the right-hand-side polynomial of the third
degree does not have multiple roots. By translation and homothety in z one could
obtain two of its three roots to be 0 and 1. In other words, P3(z) = z(z — 1)(z — A)
where the third root A # 0,1 parametrizes all such curves. However, for different
parameter values one could get isomorphic curves: curves y* = z(z —1){(z + 1) and
y? = z(z — 1)(z — 2) are obviously isomorphic by isomorphism z — 1 — z.

The three element permutation group S3 (with six permutations) acts on
the root triple (0,1,A). If we apply the linear transformation on z again after
permutation, to obtain the root triple (0, 1, A), it 1s easy to check that A could take

one of the following six values: A, 3, 1 — A, 115, 32+, 25, It follows directly

that all six curves which correspond to these parameter values aré isomorphic. Let
us produce a function in ), invariant with respect to this action and in this way
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remove the six-ply ambiguity. An obvious candidate would be

Q) = (,\+1)( +1)((1 ,\)+1)( 1A+1)(1—%—1-+1)(A;1+1)

(A 4 1)%(X — 2)2(2) — 1)2
(=12

and another

L QD2 A-2%@A-1)? 4 (A2 —A+1)
27A2(\ - 1)2 27 A2(A—1)2

JA)=1- —Q(f\)

Definition. If X is a nonsingular cubic with the equation y* = z(z—1)(z—\)
(A #0,1), the complex number

_ 63 3()\2 A+1)°
71(X) =2°3°J = 2——-————--)\20__‘1)2

is called the j-invariant of the curve X.

The functlon A = j(X) defines a six-to-one covering j : A! — Al
{A, 5H1-A15, Aili "‘:\'1} + j(X), branched over points 0 and 1. The value
of the j-invariant classifies nonsingular cubics, as the following theorem shows.

Theorem. (15, p. 249}, {31],... a) Two cubics X areY isomorphic < j(X) =
(). _
b) For any complex number a there is a curve X with j(X) = a.

Therefore, nonisomorphic nonsingular cubics are parametrized by pomts of
complex line.

Nonsingular cubics are called also elliptic curves. This name originates from
elliptic integrals. When the arc length of the ellipse (and other curves) is being
_calculated, the integrals of functions with radicals \/Ps(z) appear. In the spirit of
lecture 1, these integrals are connected to curves y? = Py(x), which are birationally
isomorphic to nonsingular cubics.

Classical theory of elliptic integrals culminated in the middle of the last cen-
tury in the works of Legendre [15]. He reduced all elhptic integrals to the fol-
lowing three basic types: first type F(yp) = [/ second type E(p) =

dz The arc length

focp \/ 1 — k2 sin® zdz and third type G(p) = fo (sm:-c) m

of the ellipse is expressed by the elliptic integral of the second type, and the first
type appears in the arc length of the lemniscate. There is a family. of curves with
this property, discovered by Serret [28], which is connected to some interesting
questions of the theory of elliptic curves and arithmetic. For more details see {23],

(18]

1— k2 sm.2 ’
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As we have seen, the set of points of elliptic curve forms an Abelian group.
What is this group? |

Theorem. As a group, the elliptic curve X is a two-dimensional torus:
X=2C/A=2R/Z x R/Z.

Here A C C is a lattice, that is, a free additive subgroup A =Z 4+ Zr C C of
rank 2 over Z (r ¢ R).

Proof. |31, pp. 414-416] We will sketch the proof. It requires some classical
theory of complex functions.

Definition. The function p(2) = ¥+ Y {——)—g__"l — -l;] of the complex
“~ mEA\{O} [ Z =) Wt
argument 2 is called Weserstrass function.
2

The Weierstrass function and its derivative p'(2) = — 3 cp =5y are dou-
bly periodic complex functions with periods 1 and 7, in other words A-periodic
functions. They satisfy the equation (p')? = 4p° — g2 — g3 where coefficients g, =
60 Y w?andgs=140 Y w9 and the discriminant A = g3 — 2792 # 0.

weA\{0} w€eA\{0}

It follows from these properties that if the lattice A is given, then the mapping
C — P?%(C) defined with z = (p(z), 9'(2)) factors through homomorphism C —
C/A and induces a bijection of the torus C/L and the cubic y* = 42® — g2z — g3.
Conversely, if the cubic is given, that is, two numbers g, and g3 satisfying A =
gs — 27g2 # 0, then one could show the existence of the lattice A such that its
Weierstrass function satisfies the given equation. |

One could obtain also the connection between j-invariant of the curve and its
coefficients: J = g3/A or j(X) = 172843/ A.
Any lattice A or a complex number 7 ¢ R defines an elliptic curve. Obviously,

different values of 7 could define isomorphic curves, exactly when their j-invariants
coincide. The following theorem describes when this takes place.

Theorem. [31, p. 416) J(7) = J(7') & 7' = gj_’jﬂ for some regular integer
matrix (¢1) € GL2(Z)

In the sequel we shall show the connection between elliptic curves and number
theory. .

Let X be an elliptic curve with fixed origin O and corresponding group struc-
ture. For any n € N one has the mapping ¢, : X = X, P~ nP with ¢,(0) = O.
One could show that this is a regular (polynomial) morphism and homomorphism
of the group structure. |

Definition. Endomorphism of the elliptic curve with fixed origin (X, O) is
algebraic morphism f: X —+ X which maps the point O again in O.

If f and g are two endomorphisms, define their sum in a usual way, pointwise
(f + 9)(P) = f(P)+ g(P), and their product as composition (f - g)(P) = f (g(P)).
The zero-element will be the constant function O(P) = O, the neutral element -
the identity 1(P) = P.
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Lemma. Endomorphism of elliptic curve is a homomorphism of its group
structure. The set End(X, O) of all endomorphisms is a ring.

Theorem. (31, p. 417}, [15, p. 18] There exists a bijection between endomor-
phisms of the elliptic curve (X, O) and complex numbers a € C which leave the
lattice invariant aA C A. In such way, an embedding is defined.

Proof. From the Serre’s theorem on isomorphism of algebraic and analytical
structures on complex algebraic varieties [27], algebraic morphisms f : X = X cor-
respond to holomorphic morphisms f : C/A — C/A. Each such mapping extends
to the mapping f : C = C, f(A) C A. Itis a holomorphlc homomorphism in the

neighborhood of 0, so f(z) = ap + a1z 4+ a22% + - -- and f(z1 + 22) = f(z1) + f(zz)
Comparing the coefficients in the equa.hty ag +a1(z1 +22) +as(z1 + 22)% +--- =
(ao+a12; +azz2+--+-)+(ag+a122+az22+---) one obtainsag = az = a3 =---=0
and f(z) = a;z.

So, End(X,0)=R={a€ClaACA}isaring, ZC RCC.

Let us now analyze more closely rings of the form R = {a € ClaA C A}
where A = Z 4+ Z1 (7 ¢ R) is a given lattice. Note that R C A, RA C A, that is,
the lattice A is a R-module.

Lemma. FEach a € R is integral algebrmc number, and R is a subring of the .
ring of integral algebraic numbers Q.

Proof. cACA® a-1=a+br, a-7=c+dr wherea, b, c, d arelintegers.
Therefore, (a — a)(d — a) —bc = 0 and o? — (a + d)a + (ad — be) = 0.

Clearly, integers do leave any lattice invariant, or Z C R. When does the
lattice admit nontrivial endomorphisms?

Lemma. The ring R is strictly greater than the ring of integers Z & T is
algebraic number of degree 2 over Q.

Proof. One has: dJa € R,a ¢ Z,aA C A & da,b,c,d € Z,b # 0 such that
a-1 = a+br, a1 = c+dr, and by elimination of a one obtains b7%+(a—d)7—c = 0.

Conversely, if 7 € Q(v—-D) = Q[v/—-D} forsome D € Z, D > 0, 7 = r + sv/—D,
then

R={a=a+b7'|a1'=a1'+b1'2€L}={_a+bTEL|b1'2€L}
== {a+b1'|a,b,2br,b(r2+D32) € Z}

since br? = —b(r? + Ds?) + 2br7. It is clear that R is strictly greater than Z.

One has R C O = ON K where the field K = Q(7) = Q[r] = Q[v/—D), and
O is its ring of integers. Note that the lattice A is a projective R-module, since
RRQ = L®Q = Q[7]. One hasrankz R = dimg R®Q = rankz O = 2. This means
that for some p € O, O =Z + Zp. Then RN Zp is a subgroup in Zp, necessary of
the form RN Zp = c - Zp for some positive integer ¢ € N.

Lemma. (& definition) R = Z +c-Zp. The number c is called the conductor
of the ring R.
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Proof. fz =a+bp € R,thenbp=2—a € RNZp = c-Zp. In other words,
clband z =a+c-bp.

Example. Let D = 1, K = Q(¢) = Q[i] and O = Z[i] = Z + Zi.

l. ft=1i,then R=0=1Z[i},c=1and R=Z + Zi.

2. Ift = 2i,then R=12Z[2i]] G O,c=2and R =Z+2Zi = {a + 2bi | a,b € Z}.

Let us return to elliptic curves. Integers correspond to “trivial” endomor-
phisms ¢, : X =& X, P +— nP. Is it possible to describe all elliptic curves which

allow also nontrivial endomorphisms? The answer is given by a wonderful theorem
of number theory.

Definition. The elliptic curve X = C/A is a curve with complex multiplica-
tion, if End(X, O) # Z.

Theorem. (Weber, Fiiter, Serre) If the curve X has complex multiplication,
R = End(X, O) its ring of endomorphisms and K = Q[v/—D)] corresponding field
of algebraic numbers, then

(1) the invariant § = j7(X) is an integral algebraic number;
(2) Galois’ group Gal(K(j)/K) is Abelian, of order |Pic(R)| = |CI(R)|;

, (3) number j is rational & K(7) = K & |Cl(R)| = 1 & ring O is factorial,
and there are exactly 13 such values for j:

D C 7
(discriminant) (conductor) (invariant)
1 1 2633

2 2653

3 0

7 ~3353
11 —215
19 21533
43 ~.2183353
67 —2153353113
163 —2183353233293
1 2 2333113

3 » 243353

7 3353173

3 3 ~2193 . 53

The groups Cl(R) and Pic(R) which appear in the theorem are the class group
of fractional ideals of the ring R, and the class group of projective R-modules of
rank 1.

The question how many factorial rings O exist, has been answered only re-
cently. From classical theoretical considerations it followed that there are at most
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ten, and the calculated tables for small values of D contained only nine such rings
(the above table with conductor 1). It was a long-standing open problem whether
there is tenth ring (the so called problem of the tenth discriminant). In 1967 Stark
[29] answered negatively and showed that there is no such ring (see [12, p. 438], [3,

p- 253)).

12. Cartier divisors and group of points of sinqular cubic

The notion of Weil divisor was introduced only for varieties that are nonsin-
gular in codimension 1. In the case of curves, these are the nonsingular projective
curves. But what about singular varieties? It would be possible to define divi-
sors for arbitrary varieties as formal finite combinations D = ) n;C; of irreducible
subvarieties of codimension 1. However, already the notion of principal divisor
(and the divisor class group) does not work: the multiplicity of a rational function
can not be always consistently defined along subvariety of codimension 1, since it
may contain singular points. In this case one uses a different definition of divisor,
suggested by connection between divisors and functions in projective space.

The notion of divisor occurs as the answer to a classical question: is there a
rational function that has zeros (n; > 0) and poles (n; < 0) of given multiplicity
n; on given hypersurfaces C;. If D = ). n;C; is a divisor on IP®, each irreducible
subvariety C; of codimension 1 is globally defined by one polynomial homogeneous
irreducible equation g; = 0 and the solution of the problem is the rational function
f=11g:". Thisis a global rational function on P" only if the degree of the divisor
equals 0, that is, if ) .n; = 0. However, in any affine chart U; = {z;# 0} it
defines a proper rational function f; = f /:z:_g-zﬂ"). In addition, the family {Uj;, f;}
( =0,...,n) has the property that functions f;/fr have neither zeros nor poles
on intersections U; N Uy, since corresponding factors cancellate.

For arbitrary nonsingular variety X, in an analogous way, each Weil divisor
D = > n;C; on X defines a family {U;, f;} consisting of covering U; of X and of
rational functions f; € K(U;)* on each element of the covering, such that function
f; on U; cuts out the principal divisor (f;) = D NUj, and rational functions f;/ fx
have neither zeros nor poles on intersections U; N Ug. One needs nonsingularity in
order to describe each C; locally by one equation g; = 0. Such a family {U;, f;}
is called coherent system of functions. Conversely, coherent system of functions
{U;, f;} on X defines a divisor D = }_ n;C; on X: note that K(Uj) is the field of
fractions of the factorial domain K[U;] and represent f; in the form f; = [] gz.” :
The coherency conditions uniquely determine subvarieties C; and multiplicities n;.
Two coherent systems of functions {U;, f;} and {Vi, g} define the same divisor
if and only if corresponding principal divisors coincide: (f;) = (gx) on intersec-
tions U; N Vi, that is, if rational functions f;/gx have neither zeros nor poles on
U; N V. This defines equivalence on the family of coherent systems of functions.
Corresponding equivalence classes are called locally principal (or Cartier divisors.

A Weil divisor corresponds to each Cartier divisor and vice versa, and this is a
bijection. |

TGHh
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The good property of Cartier divisors is that they can be defined for arbitrary
variety X, even when Weil divisors can not. The product of two Cartier divisors -
{Uj, fi} and {Vi, gx} is a Cartier divisor {U; N V;, f;gr}, and this defines a
group structure on the set CaDiv(X) of Cartier divisors. Analogously to Weil
divisors, this operation is written additively and called the sum. Every global
rational function f on X defines a principal Cartier divisor {X, f}. This defines
a homomorphism K(X)* — CaDiv(X). The quotient group of CaDiv(X) by the
subgroup of principal divisors is the group of Cartier divisor classes Ca Cl{ X).

If the variety X is nonsingular in codimension 1, then there exist both Weil
and Cartier divisors. The construction of Weil divisor, corresponding to Cartier one,
defines a homomorphism CaCl(X) — CI(X). The construction of Cartier divisor
shows that this is an inclusion. However, it does not have to be a surjection, as the
example of the simple cone shows. In this case, the group Cl(X) = Z, is generated
by the class of the directrisse L of the cone. This directrisse can not be defined by
one equation in any neighborhood of cone’s vertex, since any function which should
describe L as a set of points, cuts out the divisor 2L. Therefore, L is not locally
principal, every locally principal divisor is principal, and Ca Cl(X) = 0.

Let us now calculate the Cartier divisor class group of the singular cubic
X = V(y?*z — z3) C P? (the “cusp”-curve). That will introduce group structure
on its set of nonsingular points, exactly as in the case of nonsingular cubic. Our
construction follows that of {31, p. 187]. First prove an important lemma.

Lemma. (“removing the point from divisor’s support”; (generalization see
in [33, t.-1, p. 193]). If X is a plane projective curve, P € X its point and
D € CaDiv(X) Cartier divisor on X, then there is a divisor D' ~ D whose support
does not contain the given point.

Proof. Let U be a neighborhood of P and f rational function defining locally
principal divisor D in that neighborhood. Suppose that the support of the divisor
contains the given point. This means that P is a zero or a pole of the function f, of
some multiplicity n. Take a global rational function g € K(X) which in the point
P has zero or pole of multiplicity n. The divisor D' = D — (g) has the required
property, since the function fg—! is regular in some neighborhood of P.

| Let now X = V(y%z — z%) C P? with singular point S = (0:0:1) and let

Y = X \ S be the nonsingular subvariety. Each Cartier divisor D € CaDiv(X)
is equivalent to divisor D' whose support does not contain the point S, that is,
whose local equation does not have a pole in that point. Therefore, D' is a Weil
divisor on Y. If D is principal, D’ is such. The divisor D’ has not to be uniquely
determined, but its degree is. In such way, one defines the degree of divisor D, that
is, a homomorphism CaCl(X) — Z. Consider its subgroup Ca Cl(X)° of divisor
classes of degree 0 and, as in the case of nonsingular cubic, define a mapping
@:Y = CaCl(X)°, P+~ Dp = P — 0O, where O = (0:1:0) is a chosen point
(point at infinity of the y-axis). One could also prove, by construction similar to
nonsingular cubic case, that ¢ is a bijection. One should only note that if in the
equality P + Q = R + O points P and @ belong to Y, then the same holds for R.
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The group operation on CaCl(X)° is therefore carried to Y. The construction of
the point P + @ is as before: if R is the third intersection point of the line through
P and @ with the curve Y and T the third intersection point of line through R and
O with the curve, then P4+ Q =T.

Note that Y = X \ S =2 A! since the curve X is rational. The corresponding
isomorphism is given by the formula (z:y:z) — z/y and its inverse ¢t — (t:1:13).
However, A! has its usual structure of (additive) group, which is carried by this iso-
morphism to Y, and this is exactly the described group structure: if P = (u:1:u®%)
and Q@ = (v:1:93), then T = ((u + v) : 1: (u + v)?). Namely, if one switches to the
chart y # 0, intersection of the curve Y : z ="z and the line z = az + 8 are the
points P, @ and R whose z-coordinates are the roots of the equation z3~az—f8 = 0,
that is, u, v and —(u + v) respectively (Viet’s rule!). The point T is symmetric to
R with respect to the origin. Therefore, its z-coordinate equals u + v, which proves
the assertion (see the figures). |

P

13. Sheaves and Czech cohomology

In the past 40 years homology became an indispensable tool in algebraic ge-
ometry. In the context of algebraic varieties these concepts are easily introduced
via sheaf theory. Sheaves represent one of the most important contemporary tech-
niques 1n algebraic geometry, and also in other geometrical theories, everywhere
where one has local constructions and needs global 1nvariants. Sheaves are the
most important tool for globalization in modern geometry. In this short review it
1s not possible to develop the sheaf theory in its full extent. However, we will try
to give some motivation, main definitions and examples.

In the definition of fundamental geometrical objects such as topological and
differential manifolds, complex analytical and algebraic varieties, the same general
method 1s used. First, one introduces and studies objects which play the role of
local models. For example, local models of differential manifolds are open domains
in R". Then one builds global object from local models by procedure of gluing
(identification).

Example. [20, p. 47] Two copies of the real line R! can be glued along
its open subsets U = R! \ {0} in different ways, with two different identification
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functions f : U — U. Using the function f(z) = z one obtains the line with
doubled origin 0, and using the function f(x) = 1/z one obtains the circle—sphere
S1t.

In the process of gluing one should take care of corresponding local structure.
The local structure of a geometrical object is described by the set of permissible
functions on that object. Continuous functions, differentiable functions, analytical
functions, rational functions—all these are the classes of permissible functions for
corresponding geometrical objects. By gluing of two local objects, identifying their
parts, one must take care that on these common parts gluing takes permissible
functions to permissible functions. One should know what permissible functions
are, not only on the whole object, but also on its local parts. In such way one
comes to a new type of structure, built by permissible functions. Let us explain it
on the example of topological spaces, where the permissible functions are continuous
functions. For any open subset U C X one has a set C(U) of all real continuous
functions on U. It is a ring with respect to usual addition and multiplication of
functions. If V C U, one has a homomorphism of rings p¥ : C(U) - C(V) defined
by restriction of functions p{(f) = flv. Composition of restrictions is again a
restriction: if W C V C U, then p}, o p¥ = pl,. This provides us with the
motivation for the following definition.

Definition. Presheaf of objects of a given category C (of sets, rings, Abelian
groups,...) on a topological space X is a contravariant functor F : top X — C from
partially ordered structure of open sets in X (viewed as a category) to category
C. In other words, for each open subset U C X there is an object F(U) € Ob(
of corresponding type (a set, a ring, an Abelian group,...), and for any inclusion
of open sets V C U there is a corresponding homomorphism pY : F(U) — F(V),
pY € MorC, with the following properties:

1) pY =id; 2) if W CcV c U, then p} o p¥ = p¥%.

One uses the term “restriction” and the notation p¥(f) = flv also in the
general case, although objects F(U) are not necessarily sets of functions, and ho-
momorphisms pY-restrictions of functions. Elements of the set F(U) are called
sections of the sheaf F over the open set U. Sections over whole X are called
global sections. In the sequel, all objects F(U) will have at least the structure
of Abelian group, and therefore one could speak about their subob jECtS quotient
objects, kernels and images of homomorphisms etc.

Let us return to the presheaf of real continuous functions on topological space
X. It has one specific property, concerning families of functions on coverings of
X. Namely, if {U,} is an open covering of X, then each continuous function f
on X is uniquely determined by its restrictions fly, on U,. Conversely, a given
family of functions f, on U, determines a global function on whole X if and
only if functions f, are coherent on intersections i.e., if for any two indexes and,
falv.nus = flu.nus. This property could be formalized in the following manner.

Definition. Presheaf J on a topological space X is a sheaf if for any open
subset U and its open cover {U,} the following sequence of homomorphisms is
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exact:
0 F(U) 5 [ FUa) 2 [] F(Ua nUp)
o o,

where ¢ : f = {flu.}, ¥ : {fo} » {falv.nu, — folu.nu,}- In other words,
Ker ¢ = 0, that is, if the families of restrictions of two sections coincide then these

two sections itself also coincide; and Ker1 = Im ¢, that is, any family of sections
which coincide on intersections originates from some global section.

All important presheaves which we have already mentioned, are in fact
sheaves. Such are: the sheaf of differentiable functions on a smooth manifold,
the sheaf of analytical functions on a complex-analytic variety etc. In the case
of sheaves, one could give the interpretation of sections and restrictions as proper
functions and corresponding restrictions, by technique of étalé spaces. Even when
a presheaf is not a sheaf, one could associate a sheaf to it, called associated sheaf,
which is locally equal to given presheaf.

Example. If the space X has two connected components and F = Z is a
presheaf of constant functions with integer values (that is, for any open subset U,
F(U) = Z) then it is not a sheaf: a family of two functions, one on each component,
which take two different values (say 0 and 1), agrees on intersections (they are all
empty), but does not originate from a global section.

Let F be a (pre)sheaf on X, z € X a point, U and V its open neighborhoods.
One says that two sections f € F(U) and g € F(V) (over different neighborhoods)
are equivalent if their restrictions coincide in some common neighborhood W C
U N V. The quotient of the disjoint union [[,;..cy F(U) of all sections over all
neighborhoods of a given point is called germ of a (pre)sheaf F at the point # and
denoted F,. For example, an element of germ of sheaf of continuous functions at the
point z is a function continuous in some neighborhood of that point, and two such
functions are identified if they coincide in some (maybe smaller) neighborhood of
z. The associated sheaf may be defined in the following way. Consider the disjoint
union [, .y Fz = E and the corresponding projection w: E = X, F; — z. Let
E be topologized by the smallest (coarsest) topology in which w is still continuous.
One obtains the étalé space of the presheaf 7. For any open U C X, define
FH({U) = T'(U,F) as a set of all continuous functions s : U — FE such that ¢ =
wos:U — E — X is the identity on U. In this way one obtains a sheaf F,
the associated sheaf of the presheaf 7. What is the direct connection between
and F(U)? An element s € F*(U) can be interpreted as a family of sections
sq¢ € F(U,), coherent on intersections U, N Uy, where U = {U,} is an open cover
of U. Two such families of sections in two different coverings i/ and V are identified
if they agree on cross-intersections U, N Vg. Presheaf F and associated sheaf F+
have equal germs F, = F.

Example. Associated sheaf 7 of the presheaf F of constant functions on a
topological space X is the sheaf of locally constant functions. Their germs coincide
in each point (these are the functions, constant in some neighborhood of given
point). Even their sections on each connected component of the space coincide.
However, if the space has more than one component, then F+ # F.
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Morphism of sheaves is introduced in a standard categorical way: it is a
natural transformation of functors. More precisely, morphism « : F = G consists
of a family of homomorphisms ay : F(U) = G(U) commuting with restrictions:
ayopyp = pg,G oay. If all homomorphisms ay : F(U) C G(U) are inclusions, we
say that F C G is a subsheaf. The definition of quotient sheaf is more complicated.
Namely, if F C G is a subsheaf, quotient groups G(U)/F(U) form only a presheaf.
By definition, a quotient sheaf G/F is the corresponding associated sheaf. One
could write (G/F)(U) = [G(U)/F(U)]*. Due to this construction, sections of the
exact sequence of sheaves need not build an exact sequence. In other words, functor
of sections is not right exact: if the sequence 0 =+ ¥ =+ G — G/F — 0 is exact,
only the sequence 0 — F(U) = G(U) — (G/F)(U) will be exact, and the last
homomorphism need not be epimorphism. To the contrary, the functor of germs is
exact: if the sequence 0 -+ ¥ = G — G/F — 0 is exact, then for all x sequence
0— F: =G = (G/F): = 0is also exact (and vice versa).

Examples. 1. [20, p. 51] Let X = S*. Consider the sheaf C of continuous
functions on X, its subsheaf Z of all constant functions and presheaf F(U) =
C(U)/Z(U). Cover X with two open sets: two half-circles overlapping at both
ends, X =U, U, U1 NU; = VUV;. Let f = 0 be the zero-function on X,
g a continuous function on X which equals O on V; and 1 on V5 and let f; =
fIUla Ja = gIUz' Then, ObViouSly fllVl — f2lV1 = 0, fllVa - f2|V2 = 1. The pair
{f1, f2} defines a section of the sheaf 7+ = C/Z over U which does not originate
- from F(U) =CU)/Z(U).

2. [7, p- 134) If X = C, O the sheaf of holomorphic functions on X and O*
the sheaf of (multiplicative groups of) holomorphic functions which are everywhere
different from 0, the morphism exp : O — O*, locally defined by f — exp(f) is an
epimorphism of sheaves, since it is epi on germs: any holomorphic function different
from 0 at the point £ may in some neighborhood of that point be written as exp(f)
for some holomorphic function f. However, if U is the open ring around 0, then
expy : O(U) — O*(U) is not surjective.

Let us return to algebraic varieties. If X is an algebraic variety over alge-
braically closed field K, then generally there is no natural topology on the set X.
The only topology which we could use is the Zariski topology. Which are the per-
missible functions? If U C X is an open subset, let O(U) be the ring of regular
functions on U. One obtains a sheaf O of rings on X, the structure sheaf of regular
functions on X. If instead of regular, one takes rational functions and lets X(U)
be the field of rational functions on U, one gets the sheaf K of fields of rational
functions on X. This is a constant sheaf if X is irreducible.

Let us mention an important short exact sequence of sheaves (of multiplicative
groups): 0 =& O* = K* = K*/O* — 0. If one compares the definition of Cartier
divisor and the definition of quotient sheaf K*/O*, one sees that Cartier divisor on
X is the same as global section of the sheaf K* /O*, that is, an element of the group
(K*/0*)(X) = T'(X,K*/O*). How to describe principal Cartier divisors? These
are the classes of those coherent systems of functions {U,, fo} for which there is a
global function f such that f, = fly,. In other words, this is the image of the last
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morphism in the sequence of global sections 0 = O*(X) = K£*(X) = (K*/O*)(X)
which needs not to be a surjection. Note one fact. Let {U,, fo} be coherent system
of (rational) functions. This means that on all U, N Upg, functions g, = f./fs are
regular and different from 0, that is, gog € O*(U,NUg). However, the system {gns}
is not arbitrary - it satisfies some special coherency conditions. For any index triple
(a, B, ) one should have gog9sy = fo/ fo° f8/fy = fal f4 = gav On the intersection
Ua NUg N U,. These conditions could be written in the form gg,g5; 945 = 1 and
called the cocycle conditions. This homological terminology has its explanation, as
we will shortly see.

The exact sequence in the definition of sheaf extends naturally into a complex,
Czech complex of the sheaf, determined by the given covering. Let F be a sheaf
on a topological space X and & = {U,} an open covering of X. Introduce the
notation Ugyay...ay = UagNUa, N...NU,, and define the cochain group C*(U, F) =
[L(ao,a1.... .ax) F (Uaoas...a) for any k > 0 and also differentials d = d*:C*(U,F) =

C*t1(U, F) with

d({saoal...ak.]-l}) = { Z (-l)isaﬂal--.&i...ﬂﬁq-lIqual...nh_l_l }

0<i<k+1

Therefore, d® : {34} = {(s5 — 5a)lvas}> d* : {8ag} = {(58y — Say + 508)|Uns, }
etc. Direct calculation shows that this is a proper differential, that is, d* = 0.

One obtains Czech complex CO(U, F) 5 C YU, F) 5 C2(U,F) = ---. Iis
cohomology groups H*(U,F) = Kerd*/Imd*~! (i > 0), H®°(U,F) = Kerd® are
called Czech cohomology groups of the sheaf 7 on the space X corresponding to
covering U. If one orders the set of indexes (for example, if the covering is finite)
and leaves in the definition of C}. only all increasing k-tuples ag < a; < ... < ag,
that is, if we eliminate all terms of the product which differ only by the sequence of
open sets, one could check that cohomology will not change. In the same manner,
if the covering has finite dimension, that is, if there exists an integer d such that
the intersection of any d 4 1 elements of the covering is empty, then the cochains
C; for 1 > d are trivial, Czech complex is finite and corresponding cohomologies are
trivial starting from the position d + 1. All this simplifies the explicit calculation.

The sheaf condition for F could be written also as H(U,F) = ['(X,F) =
F(X). Let us note that this does not depend on the covering U, thus justifying
the notation H°(U, F) = H%(X, F). This may not be so for higher cohomologies.
In the general case, relation of refinement of coverings gives us the connection
between cohomology groups of the same sheaf over two different coverings, and one
takes the direct limit by all coverings. This theory has been developed by Cartan,
Leray and Serre. Soon afterwards, Grothendieck has founded cohomological theory
for sheaves in a more general context, using resolvents and derived functors. A
very nice exposition of this theory may be found in [31]. We shall not discuss the
general cohomological theories in this short report. For us it will do, that there
exist cohomological groups H*(X,F) which do not depend on the covering and
which satisfy all usual theorems of homology theory, and also that the calculation
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of Czech cohomology, described above, gives good results for some “well chosen”
coverings. One of the most important results in homological algebra is the so-called
long cohomological sequence: if 0 - F —- G — H — 0 is a short exact sequence of
sheaves, then there exists a long exact sequence of cohomology

0+ HYX,F) - H*(X,G) - H(X,H)
v
HYX,F) = HY(X,G) = HY(X,H)
- | Ve
HY (X, F)— H}(X,G) - - -

The beginning of the sequence is just the left exact sequence of global sections.

Examples. 1. [31, p. 284] Let X = S? be the one-dimensional sphere with
the (already introduced) covering by two overlapping half-circles U = {U;, U2},
X =U,0U0,, UinNnU; = ViUV, and let F = Z be the constant sheaf. One
has COU, F) = FU)x F(V)=Z x Z, CY{U,F) =F({UNV)=12Z x Z and the
corresponding differential in the Czech complex 0 —+ C°(U, F) 23 Ct Uu,r) -
0—---isd:{a,b) = (b—a,b—a). Cohomology groups are H°(U,F) = Kerd = Z
and H*(U,F) = Cokerd = C* (U, F)/Imd = Z.

2. [6, p. 61] Let X = P! be the complex projective line with homogeneous
coordinates u,v and usual affine covering U = {U,V}, U = {v # 0}, V = {u # 0},
UNV =C* and F = O the sheaf of holomorphic functions. One has C°(U,0) =
OU) x O(V), CY({U,0) = O(U NV) and the differential d : (f, g) — g — f where
F=2 soant™ € OU), g =2 ,.50b:t™ € O(V). On the intersection U NV one
has v = u~! and -

g—fﬁO@anu—"-—z:anunzo-t}aozbm anzbn:.-O(n)ﬁ)
n>0 n>0

Therefore, H°(U,O) = C, that is, global holomorphic functions on X are only
constants. For H! one gets

H'U,0) = C'(U,0)/Imd = C(u,u7"]/ ( > awt =Y bu) =0.

3. [9, p. 34] Let us calculate the cohomology groups of the structure sheaf
on nonprojective quasiprojective algebraic variety. Let X = A%\ {(0,0)} be the
plane without the origin, with coordinates u,v and coveringd = {U,V}, U = {v #
0} = D(v), V = {u # 0} = D(u) and let O be the sheaf of regular functions on X.
One has O(U) = O(D(v)) = K{u,v]w) = Ku,v,v7Y], C°(U,0) = K[u,v,u'] x
Klu,v,v~ '} and C*'(U,0) = O(UNV) = K[u,v,u",v7!], and also d : (f,g) —
g—f. One gets H°(U,O) = Kerd = K[u,v] = H°(A%, O), that is, regular functions
on X can be extended to the whole plane A%. Let us calculate now H*(U,0) =
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Kfu,v,u~t,v71]/Imd = K[{u™™,v~"|m,n > 0}], therefore dimgx H'(U,O) = co.
The dimension of cohomology groups is not necessarily finite.

4. [31, p. 284] Let us calculate cohomology groups of the sheaf of reg-
ular differential forms on the projective line. Let again X = P! with usual
coordinates and affine covering, and let (! be the sheaf of regular differential
forms [31, p. 224]. One has Co(U, Q) = QU) x QV) = Klu]du x K[v]dv,
C'U,Q) =QUNV) =Ku,utlduand d : u = u, v =» u™l, dv » —u%du.
Now, Kerd = {(f(u)du, g(v)dv)| f(u) + u=2g(u~!) =0} = O (where f and g are
polynomials), and H%(U/, ) = 0. Further,

Imd = {(f(u) + u~2g(u™")) du} = Spang {u"du|n € Z\ {-1}} C K{u,u]du
so HY({U,Q) = K 'u“?du and dimyg H* (U, Q) = 1.
14. Genus of algeﬁraic variety

14.1. Topological genus of projective algebraic curve. Plane projective
algebraic nonsingular curve (over the field of complex numbers) is a 2-dimensional
compact smooth orientable manifold in C? = R%. As it is known, such manifolds
are uniquely classified by one integer parameter—topological genus g (this is the
number of “handles” on X). This number is called topological genus of the corre-
sponding nonsingular curve.

14.2. Arithmetical genus of projective variety. Theorem. (Hilbert’s
syzygy theorem) Let A = Clzo,... ,z,] and M finitely generated graded A-module
(M = @;>¢ Mi as an Abelian group, and for any homogeneous polynomial f of
degree d, f - My, C My.q). Then there exists a polynomial Py (t) € Q,[t] with
rational coefficients, of degree at most n, such that dimg¢ My = pp(k) for k> 0.

Proof. Induction on n. 1. Forn = -1, A = C, M is a finite-dimensional
C-vector space, M =0 for k£ > 0 and Py = 0. -

2. The inductive step. Multiplication homomorphism ¢ : M, I M k+1 has
kernel Kerp = N'={m € M : z,m = 0} and cokernel Cokery = N" = M/z, M,
so one has an exact sequence of vector spaces |

0 N.L = My~ My = NIy =0

from which one has
dim M4, — dim M = dim N ; — dim NV

Since multiplication with z,, annulates N' and N”, one can view it as finitely
generated C[z,... ,Zn—1]-modules. By the induction hypothesis, dim N} = P'(k),

dim N, = P"(k+1). We will use the following elementary lemma on polynomials.

Lemma. For any rational polynomial f € Q[t] of degree d there exists a
polynomial g € Q[t] of degree d + 1 such that f(t) = g(t + 1) — g(t).
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Proof. Since (t +1)4 —t% =d-t%"! + ..., the lemma follows by induction
on degree of f.

From the lemma., P"(k + 1) —~ P'(k) = Q(k + 1) — Q(k) for some polynomial
Q, and

dim Mi41 — dim M = dim N, ; — dim Ny = P"(k+ 1) — P'(k) = Q(k+1) — Q(k)

Therefore, dim My = Q(k)+ constfor k > 0. This proves the theorem.
Definition. If X C P" is a projective algebraic variety and M = C[{X] =

Clzo, ... ,z,)/I(X) its homogeneous coordinate ring, viewed as Clzg,...,zy]-
module, polynomial Px(t) := Pa(t) is called Hilbert polynomial of X.
Examples. 1) Projective n-dimensional space: M == A = Cixy,...,zn),

M}, = {homogeneous forms of degree k with n+1 indeterminates}, dim M}, = (*1")
and Py (t) = (}T™) =1-t"/nl.
2) Projective hypersurface of degree d: M = A / (f), where f is homogeneous

of degree d. From the exact sequence 0 — Ax_q = Ak - [AJ( D]« —)10 one has
dim{A/ ()l = (*3") = (F727") and Pu() = (77) - (F77) =d- i +

3) Particularly, for n = 2, that is, for plane projective algebraic curves of
degree d one has Pp(t) = () - (279 =d-t + (1 (d'l)z(d_zl).

Note that if f € Q[t] is a rational polynomial of degree n such that inn +1
consequent integer points k,k+1,... ,k+n G Z it has integer values, then it can
be written in the form P(t) = an( ) +au_1 ( ,) +-+ -+ ag with integer coefficients.
Therefore, the highest order coefficient of the Hilbert polynomial has the form d/n!
(d € Z), which can be guessed from previous examples. Examples also show that
the degree of Hilbert polynomial equals the dimension of projective variety X. This
is really so. One can show that not only the degree, but also the whole polynomial
(all its coefficients) is an invariant of the variety, independent from the embedding
X C P™. Some of the coefficients (the first and the last) have a special meaning
and geometrical interpretation.

Definition. Let Px(t) = d- %} + .-+ 4+ Px{(0). The coefficient d is called
degree of projective variety X. The integer p,(X) := (—1)"[Px(0) — 1] is called
arithmetical genus of the variety X.

Example. Arithmetical genus of the plane algebraic nonsingular curve of
degree d equals (d — 1)(d — 2}/2.

One can see that the definition of arithmetical genus really does not depend
on the embedding X C P™ when it is expressed in terms of structure sheaf of the
variety. Namely, if ¥ is a sheaf on X, its Euler characteristic is defined by x(F) =
dim H%(X,3) — dim H}(X,§) + ---. One could prove that Euler characteristic of
the structure sheaf O of regular functmns on a variety X equals x(O) Px (0).
Therefore, the arithmetic genus of nonsingular projective variety X C P™ equals
Pa{X) = (-1)"[x(O) — 1] where r = dim X. For curves this is reduced to equality
p.(X) =dim HY(X, 0) = h1(X, O).
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14.3. Geometrical genus of projective variety. The notion of geometrical
genus appears for the first time in the works of Riemann, connected with maximal
number of linearly independent global differential forms on a Riemann surface. On

the language of sheaves this can be expressed in the following way. Let ! be the

sheaf of regular differential forms on projective nonsingular variety X of dimension
r. The canonical sheaf of the variety X is the sheaf wx = AT{}, and the dimension
of the space of its global sections — geometrical genus.

Definition. p,(X) = dim H%( X, wx)-

Example. Let X = P! be the complex projective line and X = U UV its
standard affine covering. Then w = ) and its restriction on U = A! is a free
O-module of rank 1, generated by the differential of the local coordinate du. Now,

C°(X,w) = QU) x Q(V) = Klu]du x K[v]dv,

CH{X,w)=QUNYV) = Klu, 1/u]du,

d:ur—u, v ;1;, dvr-—)-;}_rdu,

Kerd = { (f(u)du, g(v)dv) | f(u) + Jug(2) = 0} =0,

Cokerd = C'/Imd, Imd = {[f(u) + u~%g(1/u)]du} = Span{u”du,n # —1},

H(X,w)=0, HY(X,w)=K-1/u-du=2 K, h® =0, h! = 1.

Therefore, the geometrical genus equals p,(P') = 0. We have also calculated
H'(P!,w).

14.4. Equality of topological, algebraic and geometrical genus for non-
singular projective curves. The most important types of geometrical theorems
are probably the duality theorems, connecting complementary homological objects
(homology and cohomology, homology of complementary dimension etc.). These
are the key theorems of geometry and topology. Such is the Serre’s duality theo-
rem for projective nonsingular varieties, which expresses sheaf cohomology in terms
of higher derived functors of the functor Hom(—,w) of complementary dimension.
Due to our space restrictions, we shall only state the theorem and the corollary, in
which we are now interested.

Theorem. H™ (X, F)* = Ext*(F,w) forall 0<i<r (r =dim X).

Corollary. Particularly, for 1 = 0 and F = O (structure sheaf of regular
functions) one obtains H%(X,w) = Hom(O,w) = H"(X, O)*. Therefore, the geo-
metrical genus equals p,(X) = h°(X,w) = h"(X, ). For curves, r = 1 and this
leads to equality py(X) = p.(X). This equality is valid only for curves. For surfaces
a new component appears, so-called trregularity. Its existence was known already
in the Italian geometrical school. In this case r = 2 and

p.(X) = (—1)2[X(O) — 1] =A% X,0) - K1 (X,0) + R*(X,0) — 1
= h¥(X,0) — h}(X, 0) = py(X) — irr(X)

The equality of arithmetical and topological genus for curves can be proved by
complex-analytic means, naturally only when the main field is the field of complex
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numbers, that is, when the topological genus is defined. Note that both arithmetical
and geometrical genera can be defined for varieties over any algebraically closed
field, not only the field of complex numbers.

15. Vector space, associated to a divisor

Let 0o € P! be the point at infinity of the projective line. The polynomial
f € K|[P!\ o] of degree n has in 0o a pole of order n and does not have other
poles. Vice versa, a rational function f € K(P') which has only one pole at oo, is
a polynomial. One has

degf<n& (f)+n-002>0

The vector space of all polynomials of degree at most n (as a subset of the field of
rational functions) could be described by this condition.

More generally, let X be a projective variety and D € Div X.

Definition. L(D) = {f € K(X) | (f)+ D > 0} Cc K(X). This is a vector
space over the ground field K, of dimension dimg L(D) = I(D), the space of all
rational functions whose zeros’ and poles’ divisor is bounded below by the divisor
—D.

Remarks. 1. If deg D < 0, then /(D) = 0. Global rational functions on a
projective variety X have degree 0.

2. Spaces of equivalent divisors are isomorphic, that is, if D; ~ D,, then
L(D,) & L(D3) and I(D;) = I(D3). Namely, if Dy — D, = (g) where g € K(X)
is a rational ‘function, then the multiplication with g produces isomorphism of
corresponding vector spaces, since

f€L(D1) = (f) + D1 > 0= (fg) + Da = (f) + (9) + D2 = (f) + Dy > 0
= fg € L(D)

Therefore, L(D) and I(D) are well defined for classes of equivalent divisors.

A priori, the space L(D) has not to be finitely dimensional. However, this is
the case. We shall prove it for projective curves.

Theorem. If X is a nonsingular projective curve and D divisor on X, then
the number l(D) is finite.

Proof. Let D =P + -+ P, ~-Q1 — -+ = Qm (n > m) with possible
repetitions. Since L(D) C L(FP, +--- + P,), one could consider m = 0. There is a
sequence of vector subspaces L(0) C L{P,) C --- C L(P, + -+- + P,), and one sees
that it suffices to prove dim L(D)/L(D — P) < oo. Let m be the multiplicity of P in
the divisor D and let u be the local parameter in P. Now f € L(D) = (f)+D >0
= ordp f > —m = (u™f)(P) € C. One has a linear mapping L(D) = C, f —
(u™ f)(P) whose kernel equals {f € L(D)| (uv™ f)(P) =0} = L(D — P). It follows
that dim L(D)/L(D — P) < 1.
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The proof even provides an upper bound of the dimension (D) < deg D + 1.
Attempting to calculate this dimension, Riemann obtained a lower bound, which

was later named after him.

Theorem. (Riemann’s inequality) If g is the genus of the curve, then I(D) >
degD +1—g. -

Riemann’s student Roch made this inequality a precise equality, by calculat-
ing the additional term. In this way he arrived to very important theorem, named
later after Riemann and Roch.

Theorem. (The Riemann-Roch theorem for curves) (D) — (K — D) =
deg D + 1 - g where K is the so called canonical divisor of the curve X.

This theorem will be stated and proved later in a different context, using
sheaves.

16. Linear systems

Vector space of rational functions associated to a given divisor is a very im-
portant object. In what follows, we will describe its connection to classical notion

of linear system.

It is known that through each five points of the projective plane in the general
position passes exactly one curve of second order. Less known is perhaps such fact:
if the curve of third order passes through eight of nine intersection points built by
three pairs of lines in the plane, then it passes also through the ninth point. These
and similar geometrical theorems were very important in the classical geometry of
the last century. They were often proved using linear systems. The simplest linear
system is mentioned even today in courses of analytical geometry. This is the
bundle of lines in the plane - a set of all lines in the plane passing through a given
point. The condition of passing through point can be written as a linear condition
on (general) coefficients of line’s equation. When, instead of a line, one takes an
arbitrary plane algebraic curve of a given order, besides the condition of passing
through a point (which is a linear condition on coefficients of curve’s equation), one
prescribes also the highest multiplicity of this point on the curve (surprisingly, this
is also a linear condition on the coefficients!) and finally if, instead of one point,
one takes a finite set of points with prescribed multiplicities (that is, an effective
divisor), then one obtains a linear system of equations on curve’s coeflicients, or
linear system for short. This notion can be defined more precisely in a different
way.

Let X be a projective nonsingular variety, D € Div(X) a divisor on X and
L(D) the corresponding associated vector space.

Definition. Complete linear system on X, defined by the divisor D is a set
of divisors |[D| = {D' € Divt X | D' ~ D} = {(f) + D| f € L(D)}.

Note that (f)+ D =(g)+ D & (f) = (9) © f = ag, a € K* and therefore
|D| = P(L(D)) = Gr(L(D), 1) is a projective space of dimension dim |D{ = (D) -1,
the projectivization of the vector space L(D).
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Definition. Linear system on X is a projective subspace of some complete
linear system |D]|.

Suppose that L C |D| is a given linear system of dimension m. Since it is
a projective subspace, it allows a coordinatization L = P™. Instead of identifying
divisors of L with points of projective space, let us use the projective duality prin-
ciple and identify them with linear forms on that space. In such way, one obtains
coordinate isomorphism ¢ : L — (P™)*. Let z; € (P™)* be coordinate functions
on P™ and f; = ¢~!(z;) € L(D) corresponding rational functions (i = 0,... ,m).
Then a rational mapping ® : X — P™, &(x) = (fo(x),... , fm(z)) is defined. Show
that conversely, any rational mapping of X in a projective space defines a linear
system with chosen coordinatization. Let ® : X — P™ be rational mapping and
—0® : K(P™) — K(X) the corresponding homomorphism of fields of rational
functions. If I € (P™)* is a linear form on P™ and H C P™ a hyperplane it de-
fines, then ®~1(H) C X is the zeros’ divisor of the regular function [ o & € K[X].
Set of all such divisors when I € (IP™)* is a linear system L with coordinatization
(P™)* - L, H — & (H).

Examples. Consider the case X = IP™ more closely. The class divisor group
here is CI(X) = Z, the given effective divisor D € Div™(X) is equivalent to a
divisor (f) where f is a homogeneous polynomial of degree d = deg'f = deg D.
Vector space L(D) is isomorphic to vector space V of all homogeneous polynomials

of degree d and its dimension is (“}'d), and full linear system |D| = L4 is its projec-

tivization, of dimension N = ("jd) —1. Linear system of dimension m is a projective
subspace of that space, with basis consisting of m + 1 homogeneous polynomials
of degree d. If these are fo(z),...,fm(z) € V C K|zo,... ,Z,], the corresponding
rational mapping is @ : P* = P™, (zg:... :zn) = 2 = (fo(x):... : fu(x)). Con-
versely, any rational mapping is defined by such polynomials, which for their part
define linear system i.e., vector subspace of dimension m + 1 in vector space V of

all homogeneous polynomials of corresponding degree.
1) n =1, d = 2. Complete linear system

Ly = {(f) | f = 02033 + a11Zo21 + Gozwf}

defines a rational mapping ® : P! — P2, &(zo:x;) = (22 : zox1 : 72) and ®(P) is a
conic.

2) n = 2, d = 2. Complete linear system L, has projective dimension 5
and defines familiar Veronese rational mapping ® : P? — P% &(zo:z;:15) =
(22 : 20z : ToT2 : T3 : 2172 : 22) and B (P?) = P! x P1.

3) Rational mapping T : (20:21:22) — (-;—ﬂ- : EIT : ;1;- = (T1Z2:22T0: ToT1)
is known as Cremona transformation of projective plane T : P2 — P2, What
is the corresponding linear system? One has L = {(f)|f € V'} where V=
{aoz1Z2 + a1Z2Z0 + a2xoz1} C V is a 3-dimensional subspace of 6-dimensional
vector space of all homogeneous polynomials of degree 2 in 3 indeterminates.
Each equation in V is the equation of a quadric passing through three points
P=(1:0:0),Q=1(0:1:0), R=(0:0:1). Conversely, any quadric passing through
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these three points should have equation of that form. Therefore, L is the linear
system of all quadrics passing through points P, @, R. Its projective dimension is
2 i.e., it is a two-parameter family of quadrics passing through three given points.
Such points are called basic points of a linear systern. What is their connection
to starting rational mapping? The points in which the mapping @ is not regular
are the solutions of the system 2122 = 2229 = Zzoz1 = 0 and these are exactly the
three basic points. This is a general fact, not simply a coincidence.

17. Sheaf, associated to a divisor

Let X be a nonsingular projective variety and D a divisoron X. f O C K
are sheaves of regular and rational functions on X, then the vector space L(D)
associated to divisor D appears on the level of global sections L(D) C K(X), and
for D = 0, L(0) = O(X) = K (the only global regular functions on a projective
variety are constants). We want to define a sheaf, whose sections over open U
would play a role of the vector space L(D N U). The given divisor D on X is
locally principal, which means that any point has a neighborhood U such that
C:nU = (f;)) or DNU = 5 ni(fi) = (g9), where f; € K[U] are regular on
U and g = [] f*. The condition (f) + D > 0 for f € L(D) locally on U is
(f) + 3 n:(f;) = (f) + (g) = (fg) > 0 i.e., on each component C; N U of divisor
D one hasord f > —n;, or f-g € K[U] = O(U) or equivalently f € 1/g - O(U).
One sees that the role of the space L(D N U) is played by the submodule of the
field of rational functions in which the local equation g of the divisor D becomes
invertible: O(U) € 1/g-O(U) C K(U) = K(X). This enables us to define the space
associated to a divisor D in more general setting of Cartier divisors.

Definition. If D € CaDivX is a Cartier divisor on a variety X, D =
{(Us;, i)}, the sheaf associated to D is the sheaf of submodules O(D) C K of the
sheaf of rational functions, generated by 1/ f; on U;.

Obviously, L{D) = H°(X,O(D)) is the space of global sections of this sheaf,
and [(D) = dim H°(X,O(D)) = h%(O(D)) its dimension. Higher cohomology
groups of the sheaf O(D) provide new integer invariants, and their alternating sum
- Euler characteristic of the sheaf $: x(S) = h%(S) — A1(]) +--- + (-1)*A"(S)
where h*(Q) = dim H*(X, Q) and n = dim X. The Riemann—-Roch theorem could
now be formulated in the following way. We will also give the sketch of its proof {31,
p. 376]. Although it is not possible to explain all technical details in a short review,
this proof illustrates the power of the technique of sheaves and their cohomology
in modern geometry.

Theorem. (Riemann—Roch theorem for curves). If X is a nonsingular pro-
jective curve, O its structure sheaf and D a divisor on X, then

x(O(D)) = deg D + x(0)

Proof. Induction on degree of divisor. 1) If D =0, then O(D) = O and the
statement is obvious. |
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2) Let the formula hold for divisor D and let P € X. Consider P as a
subvariety in X. Its structure sheaf is the “skyscraper”-sheaf X' = Kp concentrated
in the point P and zero outside it. Its sheaf of ideals is the sheaf O(—P). One has

the short exact sequence of sheaves
0+0O(-P)>0O0—-Kp—~0

which, after tensoring with locally free sheaf O(D + P) of rank 1, gives the exact
sequence

00 0(-P)O0OD+P)->0O0(D+P)-»Kp®OD+P)—=0

Oor
0— OD) - O(D+P)—Kp—0

Since the Euler characteristic is additive on exact sequences, and x(Kp) = 1, one
obtains x(O(D + P)) = x(O(D)) + 1 which proves the inductive step.

How to deduce the previous statement of the Riemann-Roch theorem from
this one? Since it is a curve case, the Euler characteristic contain$ only two terms

x(0) = h%(0) — hY(O) = dim H*(X,0) —=dim HY(X,0) =1—-pa(X)=1—-¢
x(O(D)) = h*(O(D)) — h*(O(D)) = (D) — dim H'(O(D))

The last term, introduced by Roch, could be interpreted in the following way. From
Serre’s duality theorem, one has

HY(X,0(D)) = Hom(O(D),w) = Hom(O, w ® O(D)*)
= H%(X,w ® O(D)*) = H°(X, O(K — D))

where K is the canonical divisor, which corresponds to the canonical sheaf of differ-
ential forms w. Now h'(O(D)) = h°(O(K — D)) = I(X — D) and the Riemann-Roch
formula for curves takes its previous form: .

({D)-l(K—-D)=degD+1—¢g

18. Applications of Riemann-Roch theorem for curves

From the Riemann-Roch theorem on nonsingular projective curves one could
directly derive important corollaries on degree of canonical divisor, curves of genus
0 and 1, and other. ’

Application 1. Put D = K, then {(K) — l(0) = deg K — g + 1. Since,
according to definition of canonical divisor, I{(K) = ¢, and since I{(0) = 1 one
obtains that the degree of the canonical divisor is deg K = 2g — 2.
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Application 2. If divisor D has a sufficiently high degree, or more precisely
if deg D > 2g — 2 = deg K, then deg(K — D) < 0 and I(K — D) = 0. Therefore,
I(D)=degD+1-—g.

Application 3. Let X be a projective curve of genus 0 and D = P € X one
point. Then

(D) =degD+1—g+I(K —D)=2+1K — D) > 2

This means that the vector space L(D) contains a nonconstant rational function
f with a pole of multiplicity 1 in the point P, that is, (f)e = P. This function
defines a rational mapping f : X — P! of degree 1. From this one could show that
f is an isomorphism, that is, all curves of genus 0 are rational.

Application 4. Let X be a nonsingular projective curve of genus 1, P € X
its point and D = nP. Then deg K = 0 and for all n > 0 one has deg(K —nP) <0
and h°(K —nP) = 0. Therefore h°(nP) = degnP —g+1 = n. There is a sequence
of vector spaces H°(O(P)) C H°(O(2P)) C ... C HY(OnP)) C ... of strictly
increasing dimension 1 < 2 < 3 < --- < n < --- Rational functions in H°(O(nP))
do have a pole in P of multiplicity at most n. Particularly, for n = 2 one has
dim H°(O(2P)) = 2 and this vector space has a basis {1,z}. Complete it to the
basis {1, z,y} of H°(O(3P)). The seven functions 1, z, y, z2, zy, z*, y* must be
linearly dependent in the six-dimensional space H°(O(6P)). Each of them has only
one pole in P, of multiplicity at most 0, 2, 3, 4, 5, 6, 6 respectively. One concludes
that the coefficients in y? and z°® should be different from zero. By homothety with
respect to £ and y one could transform these coefficients to get 1, so the linear
combination has the form y2 + aijzy + a2y = % + 0122 + baz + bs. At last, by
change y + 2(a1z + az) — y (adding to a complete square) it could be transformed
to the canonical form

Y=z 4+’ ¥z + ¢

We obtained the canonical equation of nonsingular projective curve of genus 1.
As we already know, X is nonsingular < the right-hand-side polynomial has only
simple roots. We conclude that every nonsingular projective algebraic curve of
genus 1 is a plane curve defined by such equation in P2,
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