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Abstract. Тће simple but very powerful idea of comparing the geometry 
of а given curve, surface or Riemannian manifold with the geometry 'of а §расе 
of constant curvature is exemplified and illustrated. Applications to втаl1 всalе 
structures of biology (bio-membranes) and large scale structures of the universe 
(singularities) are briefly mentioned. 

Figure 1. Spherical triangles оп а unit sphere. 
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1. Тће Агеа:'оС Spherical Polygons 

We begin in the year 1603 when Thomas Harriot proved а very nice theorem 
about spherical triangles. We present his result and proof јп Section 1.2. It is quite 
explicit and тау thus serve as а concrete introduction to the idea of detecting 
curvature via measurements оп triangles. 

However, before triangles we must study biangles: 

Figure 2. А spherical biangle јв bounded Ьу two half great circles 

1.1. Spherical Biangles. Оп а sphere of radius 1 we consider а domain 
which is bounded Ьу two half great circles. Such а domain is called а spherical 
biangle - see Figure 2. 

А spherical biangle is - modulo its position оп the sphere - uniquely deter­
mined Ьу the inner vertex angle, i.e., the angle between the two defining great circle 
segments. 

The area А of а spherical biangle is therefore а function of the vertex angle о: 
alone, i.e., А = АСо:), о: Е [0,211-}. Since the area of the surface of the unit sphere 
is 41Г, we have А(21Г) = 41Г. 

The area is furthermore clearly ап additive function of the vertex angle. 

The following claim is thus appropriate for our purpose: 

LE11MA 1. Let f Ье а rea1, positive and additive function оп }0,21Г} with 
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ј(2ЈГ) = 4ЈГ. ТЬеп 

(1.1) ј(х) = 2х. 

1.1.1. Remarks. (i) This Lemma is proved in Section 2. (ii) If we drop the 
condition that ј is positive, then the conclusion does not hold! 

1.2. SphericaI Тriangles. А domain оп а sphere, which is bounded Ьу 3 
great circle segments is called а spherical triangle, see Figure 3. 

We аге now in position to state and prove Harriots theorem: 

ТИЕОRЕМ. (Harriot, 1603) Оп а unit sphere, the агеа А оЕ а geodesic triangle 
6. is equal to the angular excess оЕ the triangle: 

(1.2) 

(1.3) 

А(6.) = (Сђ + а2 + аз) - 7r 

З 

= 2ЈГ - L(7r - ai). 
i=1 

where а; denote the јппег angles at Ње vertices оЕ the triangle. 

1.2.1. Remark. Note that Lemma 1 тау Ье viewed as а Harriot theorem for 
biangles. 

Proof. The two figures јп Figure 3 and Figure 4 аге reflections of each other 
through the center of the sphere. Therefore they have the saтe агеа. This агеа must 
Ье 2ЈГ because together the two figures cover the fuH sphere without overlapping 
(except at the boundaries). 

Оп the other hand, the area of Figure 3 is equal to the sum of the areas of the 
three biangles minus 2Area(6.), since otherwise Area(6.) would Ье counted three 
times. Since the biangles according to (1.1) have агеав Area(ai) = 2ai, i = 1,2,3, 
.we get: 

2ЈГ = 2а1 + 2а2 + 2аз - 2Area(6.). 

And that is ~hat should Ье proved. 

1.3. Тће n-gon case. In the general саве of an n-gon we simply subdivide 
the polygon into spherical triangles, use Harriots theorem for each and sum the 
агеав: 

COROLLARY 3. Рог а geodesic n-gon Рn оп а unit sphere Ње агеа is 

п 

А(Рn) = 2ЈГ - L(7r - ai)· 
i=1 

иrhеге а; denote Ње јппег angles at the vertices оЕ the polygon. 
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Figure 3. А spherical triangle јв the intersection of three biangles 

Figure 4. The sphere minus Figure 3 (ј.е., the refiection 

of Figure 3 through the center of the sphere 
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·2. Interlude 

Although Harriot probably did not worry at аН about proving Lemma 1, the 
proof Ьав nevertheless some instructive elements, whence we present it below. 

80 we consider 1 = ]0, 2п] and а positive, real function ј оп 1, with the 
properties 

(2.1) Ј(х + у) = ј(х) + ј(у) 

for аН х and у in 1 with х + у Е 1 and 

(2.2) 

We must then prove that 

(2.3) ј(х) = 2х for аН х Е 1. 

Prooj. Firstly, (2.2) gives (2.3) directly for х = 2п. In the foHowing we 
therefore assume, that х is а given real value in the interval Ј = ]0, 2п[. 

8ince х = p~ far every р Е N, we get Ьу repeated use of (2.1), that Ј(х) = 
pJ(~) and hence J(~) = ~J(x). Far every т Е N and р Е N with ~x Е Ј we get 
similarly: j(~x) = J("f~) = mj(~) = ~j(x). In ather wards, whenever q is а 
ratianal number so that qx Е Ј, then 

(2.4) j(qx) = qj(x). 

We want to show that (2.4) in fact is also true for 'real values' of q. So we let s 
Ье а given real number satisfying О < вх < 2п. For every positive е there exist 
rational numbers r and t which 'e-appraximate' s in the follawing sense: 

(2.5) 

(2.6) 

(2.7) 

О < r < s < t, 
t-r < е, and 

О < rx < вх < tx < 2п. 

ТЬе function ј is increasing, since 

ј(х + positive) = ј(х) + j(positive) > ј(х) . 

Hence we have fram (2.7): 

ј(тх) < ј(вх) < j(tx) 

and thus from (2.4), since т and t are rationals: 

r Ј(х) < ј(вх) < tJ(x). 
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Multiplying (2.5) with the positive number Ј(х) we get for comparison: 

r Ј(х) < вЈ(х) < tf(X). 

and hence 

I f(sx) - sJ(x) 1< tf(x) - тЈ(х) = (t - т)Ј(х) < еЈ(х). 

This is satisfied for every positive е if and only if f(sx) - sJ(x) = О. Therefore 

f(sx) = sJ(x) 

- which is the 'real version' of (2.4). Since f(1Г) = ~f(21Г) = 21Г we get in 
particular: 

х х х 
Ј(х) = f( -1Г) = - f(1Г) = -21Г = 2х. 

1г 1г 1г 

And this was to Ье proved. 

3. About Thomas Harriot (1560-1621) 

Harriot wass born in Oxford, where he also went to University. During the 
years 1585-1590 he was scientific and mathematical advisor for Sir Walter Ralegh, 
one of the great explorers of that time. Presumably Harriot participated in the 
colonialization of Virginia, already иоm 1584, see [44]. 

Thus Harriot is quite naturally mainly concerned with the mathematics of 
navigation, instrumentation and mар projections. 

At around 1590 Harriot discovered the first nontrivial plane curves whose ar­
clength can Ье determined Ьу elementary methods - namely the logarithmic spirals, 
which in polar coordinates are given Ьу the parametrization: rk«(}) = ek8 , (} Е !R, 
k E!R. Harriot had neither the exponential function nor analytic tools such as 
differentiation and integration at his disposal. The logarithmic spirals were only 
known at that time Ьу the property that they intersect the bundle of half lines is­
suing иоm а point under constant angle. Harriot's determination of the arclengths 
is thus quite shrewd - see [45] or (35], (36]. At the saтe time Harriot discovered 
that the stereographic projection (of the unit sphere onto the plane) is conformal 
- а fact he then puts into immediate use to illustrate his result about the area of 
spherical triangles. 

4. More Than 200 Years Later 

In 1818-1825 С. F. Gauss was very busy working оп the geodetic surveying . 
of Hannover. The resulting geodesic triangulation was to Ье linked up with the 
corresponding triangulation of Denmark, which had just been completed under the , 
direction of Gauss' good friend and colleague, Н. С. Schumacher, who was the 
director of the Danish astronomical observatory at Altona outside Hamburg. 
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It was during these years - with а lot of very practical work - that Gauss 
developed the theory of surfaces and the notion of curvature. These findings he 
reported а few years later, in 1827, in the booklet [14]. 

In this section we mention some of the spectacular results from this work. 
The following presentation could Ье close to the way Gauss actually thought about 
curvature, although this is not at аll clear from his writings. 

4.1. Harriot's result expanded. When approximating а given domain 
оп the unit sphere (or оп any other surface) Ьу а geodesic n-gon, the sum of the 
extrinsic angles approaches the integral of the rate ~~ Ьу which the tangent vector 
field.along the boundary of the domain rotates relative to any given parallel vector 
field along the same curve. Note that for geodesic segments ~~ = о since geodesics 
ате autoparrallel - they ратаllеl transport their own tangent vector field. The 
function ~~ is called the (intrinsic) geodesic curvature of the curve in question, and 
we denote it Ьу "-g. As а result we therefore get the following for domains оп а unit 
sphere. 

ТИЕОRЕМ 4. it For а simple domain П оп the unit sphere: , 

It is now an elementary matter to deduce the following result from the classical 
definition of Gauss curvature К of а given surface, namely as the determinant of 
the differential of the Gauss тар. The integral of К over а given domain D оп а 
surface М is thus (modиlo sign) precisely the area of the image of D Ьу the Gauss 
mapping. Furthermore, as observed Ьу А. Sengupta (see [40, р. 74-75]), the total 
geodesic curvature f8D "-g(s)ds of the boundary {)D within М is als9 precisely the 
same as the total geodesic curvature of the boundary of the Gauss тар image of 
D withinthe unit sphere. The previous theorem then gives immediately: 

ТИЕОRЕМ 5 (The Gauss-Bonnet Formula). Рог а вјтрlе domain D оп а 
вигЕасе М: 

( 4.1) r KdA=211"- r "'g(s)ds. 
JD J8D 

4.2. Geodesic triangles revisited. In particular we тау now, of course, 
recover the excess formula for the area of spherical geodesic triangles - for example 
via the following corollary (of the Gauss-Bonnet formula), which follows directly 
from the observation that for geodesics the only contribution to f8D "'g(s) ds is the-

sum ~~ = 1 (11" - (}i) of the extrinsic angles at the vertices: 
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COROLLARY 6. Оп а 8urЕасеМ, the tota1 curvature оЕ а geode81c tr1angle 6. 
18 equa1 to the angular ехсе88 оЕ the tr1angle: 

(4.2) 
з i. К dA = 211" - {;(11" - ai) 

(4.3) = (а1 + а2 + аз) - 11" , 

where ai denote the 1nner angle8 at the vertice8 оЕ the tr1angle. 

In fact, we тау have used this as а dejinition of the function К(р), since the 
curvature тау now Ье obtained pointwise via the following limit construction. 

ТИЕОRЕМ 7 (Gauss). ТЬе ааU88 curvature К(р) оЕ the 8urface М at р 18 

(4.4) К(р) = Нт (а1 + а2 + аз - 11") • 
[). -+ р Area (D.) 

This shows in particular, that the curvature is really intrinsic: The Gauss 
тар is not needed - we only need geodesic triangles, angles and ыеа to measure 
curvature. 

Furthermore it says the following: 
(i) К(р) ~ О for аН р, if and only if every triangle excess is nonnegative. 
(ii) If К(р) ~ О for аН р and if а given triangle D. has excess О, then K(q) = О for 
aHqED.. 
These observations тау Ье considered as comparison statements in а sense that we 
will now explain: 

4.3. General comparison constructions. Let М Ье an abstract surface 
with а metric d and let D. Ье а geodesic triangle in М, i.e., D. is а simply connected 
domain in М whose boundary consists of 3 geodesic segments, i.e., 3 strictly shortest 
curves connecting the 3 vertices of the triangle. We denote the three interior angles 
of D. Ьу ai , i = 1,2,3. 

Suppose that we would like to know whether М has curvature greater than 
or equal to 1. 

А comparison construction wi1l tell us: 

Let §r denote the sphere of radius 1 in JRЗ, and let D. * denote the comparison 
triangle оп §~, i.e., а triangle with edgelengths equal to the edgelengths of the 
given D. in М (the triangle D. * is - modulo isometries of §~ - uniquely determined 
Ьу these lengths, and - most importantly - it exists if and only if the sum of 
the edgelengths does not exceed 211", which is therefore implicitly assumed when 
referring to comparison constructions.) We denote the interior angles of D.. Ьу а; , 
i = 1,2,3. 
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ТИЕОRЕМ 8 (Alexandrov-Toponogov Тriangle Comparison, [34], [43Ј) А вuг­
Еасе М Ьав Gauss curvature К ~ 1 јЕ and опlу јЕ 

(4.5) i = 1,2,3, 

Еог every triangle Д јп М and its сотрагјвоп triangle Д * јп the unit врЬеге §у. 

If К ~ 1 and i{a.i = а.; foг воте а.; foг воте triangle д, then equa1ity а1В0 
occurs foг Ње other two angles јп that triangle, and the triangulaг domain д Ьав 
constant curvature К = 1, во that д and д * аге јп Eact isometric. 

Ап alternative (equivalent) to this triangle comparison construction is the 
hinge comparison construction: 

А hinge L is а point (the vertex of the hinge), and two geodesic segments 
(the sides of the hinge) emanating from р. ТЬе three pieces of information about 
а given hinge that we wШ focus uроп аг-е the lengths of the sides and the angle 
at р between the sides of the hinge. Suppose the largest side of а given hinge is 
less than or equal to 1Г. А compaгison hinge L* сап then Ье constructed in §i, 
and the respective distances d and d* between the two "feet" of the hinges сan Ье 
compaгed: 

ТИЕОRЕМ 9 (Alexandrov-Toponogov Нinge Comparison, [34), [43]) А surEace 
М Ьав Gauss curvature К ~ 1 if and оn1у if 

(4.6) d S. d* 

foг every hinge L јп М and its compaгison hinge L* јп Ње unit sphere §у. 

If К ~ 1 and јЕ d = d* foг some L, then Ње triangulaг domain Д spanned 
Ьу L јп М Ьав constant curvature К = 1, so that Д and Д* = span(L*) аге 
isometric. 

Ву suitable scaling, i.e., using the sphere §~ of constant curvature k as соm­
parison space, we get analogous results for К ~ k > О, and in fact for anу lower 
curvature bound k Е JR Ьу using comparison-triangles and -hinges resp., in flat 
space JR2 for k = О and in hyperbolic space, ~, of constant curvature k for k < О. 

Fиrthermore, the comparison still makes sense and the two theorems аЬоуе 
. sti1l hold true for Riemannian manifolds МN of anу dimension if we replace the 
Gauss curvature assumption Ьу the corresponding assumption - i.e., а lower curva­
ture bound - оп the sectional curvatures of М. ТЬе comparison spaces are always 
the 2-dimensional simply connected spaces of constant curvature! 

5. Counting the total curvature of а compact surface 

Suppose that we partition а given compact surface М without boundary into 
geodesic triangles such that two triangles Ьауе at most опе (and if so, then the full) 
edge in соттоп. ТЬе total curvature of the surface is then the sum of the total 
curvatures of the triangles. That sum turns out to Ье purely combinatorial: 
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If the nuтber of vertices in the triangulation is denoted Ьу v, the nuтber of 
edges Ьу е, and the number of faces (i.e., the number of triangles) Ьу /, then the 
combination: х(М) = v - е + / is called the Euler characteristic of the triangula­
tion, and this number measures the total curvature of the surface: 

(5.1) 

(5.2) 

(5.З) 

(5.4) 

ТИЕОRЕМ 10 (Gauss-Bonnet, [l1Ј). 

/ 

Јм KdA = j"'fi; KdA 

= 2JГV - /1Г 

= 2JГ(V - е + f) 
= 21Г· х(М). 

I 

Ртоој. Let S1 j denote the j'th triangle in the family of f triangles covering the 
surface, and let Ај , Вј and Сј denote the corresponding angles of that triangle. 
According to Corollary 6 we then have: 

/ / / 

(5.5) 1 К dA = L (Ај + Вј + Сј) - I: З1Г + L 21Г. 
М ј=l ј=l ј=l 

The first sum оп the right-hand side is 2JГV, since the sum of the angles 
appearing at any given vertex is 21Г. The second suт is З1Г/, but З/ = 2е, because 
З/ is the total number edges counted twice. The third sum is clearly 21Г/. In total 
we get 2JГV - 21Ге + 21Г /, which is 21Г . х(М) as claimed. О 

Figure 5. The farm has Euler characteristic Х = О 
(since v = 20, е = 40 and f = 20) 

5.1. Polygonalizations. Theorem 10 remains valid if instead of а trian­
gulation we use а partition consisting of simply connected geodesic polygons and 
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count the vertices, edges and faces of the 'polygonalization' instead. Namely, each 
polygon тау Ье triangulated Ьу introducing more vertices, edges and faces, but 
јп doing so, the sum v - е + Ј is not changed! (For example: А four-gon тау Ье 
triangulated Ьу adding 1 пеw vertex јп the middle. This gives 3 пеw faces and 4 
пеw edges, and indeed 1 - 4 + 3 = О.) The total curvature is clearly also unaffected 
Ьу this alternative partitioning, and thus the generalized theorem is proved. 

5.2. Deformations. Fиrthermore, if we deform the surface Ьу а piecewise 
diffeomorphism, i.e., Ьу stretching and warping - in fact, еуеп if we concentrate аН 
the curvature into the vertices of а given polygonalization in such а way that the 
numbers v, е, Ј and hence х(М) do not change, then we recover Eulers Theorem 
for сопуех polyhedra and for polyhedra of higher genus: The total curvature of anу 
sphere is 411" and therefore the Euler characteristic of every polyhedron obtained 
Ьу deforming а sphere is 2. The information in the Gauss-Bonnet Theorem тау 
of course also Ье used the other way around: The Euler characteristic of а "Farm" 
is О, see Figure 5, and therefore the total curvature of every surface obtained Ьу 
deforming а torus is О. The Euler characteristic ofthe "Estate" is -2, and therefore 
the total curvature of every surface obtained Ьу deforming а double torus (i.e., the 
connected sum Т2#Т2) is -411", see Figure 6. 

Figure 6. The estate has Euler characteristic Х = -2 

(sјпсе v = 39, е = 82 and f = 41) 

6. А "Biophysics" Согоllагу 

In а living сеН there ате а lot of membranes formed Ьу so called lipid bilayers. 
If we model these bilayers Ьу regular 2-dimensional surfaces, their Gauss curvature 
is bounded in numerical уаЈuе and also the area is naturally bounded. The purpose 
of some of these membranes is to form ЕиНу 2D highways for the transportation of 
proteins from опе location in the сеН to almost anу other place in the сеН. Therefore 
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these membranes аге shaped with а. high degree of topological complexity - in other 
words, their Euler characteristic is very negative. It cannot Ье arbitrarily negative, 
however, as the following corollary to the Gauss-Bonnet theorem states. 

COROLLARY 11. А compact surface with bounded curvature cannot Ье агы­
trari1y topologically complicated if it a1so ЬаБ bounded агеа or ьоuпаеа diaтeter. 

(6.1) 

(6.2) 

(6.З) 

Proof. Suppose IKI ~ 1. Then 

IX(M)I ~ 2~ Јм IKldA 

rdiam(M) 

~ 10 sinh(r)dr 

= cosh(diaт(M)) - 1. 

Therefore, if diaт(M) ~ Areacosh(1 +q), then IX(M)I ~ q. о 

Within the агеа of this observation we must alsо mention а yet very ореп 
problem, namely the variational problem for bio-membranes: 

PROBLEM 12 (Canhaт-Helfrich-Willmore). Given 3 positive (structure) соп­
stants Л1, Л2 anа Л3. Miniтize the following fиnctiona1 F оп the set оЕ а11 smooth, 
compact surfaces М2 јп JR3 wblch ьоuпа а fixed volume V: . 

р(М2) = Л1 . Area (М) + Л2 . Јм H 2dA + Л3 . х(М) , 

where Н denotes the теan curvature оЕ М. 

7. Curvature, Diameter and Area 

PROBLEM 1З (Alexandrovs Isodiametric Problem). Consider а convex surface 
М without ьоuпаагу јп JR3. Assuтe that diam (М) = п. What is the largest 
area that М сan have under these conditions, anа wblch surface(s) realize(s) the 
тaxjтuт? 

The sphere does not solve this problem. Indeed, consider the limit space of the 
sequence of deformations shown in Figure 7, naтely the double disk of diameter 
п, i.e., the surface obtained Ьу identifying the boundaries of two disks of radius 
п /2. The sphere has area 4n, whereas the double disk with diameter п has area 
2n· (п /2)2 = n3 /2 > 4n. 

It has Ьееп conjectured Ьу Alexandrov in [1, р. 417], that the double disk 
is actually the solution to the isodiametric problem. This conjecture is still ореп. 
Several interesting ramifications of the problem are found in [28]. 
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Figure 7. А соIlарве of а unit sphere to а double disk 

preserving convexity and diameter 11" 

8. Тће recognition Program 

67 

It is apparent that information about the most basic geometric invariants 
such as curvature, diameter and volume шоnе does not suffice to characterize Rie­
mannian manifolds in general. 

For this reason we have introduced and investigated in [25] пеw families of 
metric invariants such as q-extents and q-packing radii, which seem to pick ир 
global shape in the most general sense, not only for Riemannian manifolds but for 
metric spaces in general. 

Јп particular, when the spaces in question carry а good notion of curvature, 
then а set of well chosen conditions оп а few metric invariants will balance each 
other in such а way, that the manifold is recognizable - either topologically or 
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isometrically, i.e., ир to homeomorphism, diffeomorphism or isometry. The full 
recognition program is of course then mainly concerned with the enlargening of the 
set of manifolds that сan Ье so recognized. 

The following theorems are Ьу now classical and celebrated results of this 
recognition type: 

ТИЕОRЕ1114 (Rauch-Berger-Кlingenberg Diameter Theorem, [10]). Let МN 
Ье а complete вјтрlу connected Юетanпјan manifold whose 8ectiona1 curvature 
8ati8fie8 

(8.1) 1 ~ sec(M) ~ 4. 

ТЬеп either МN 18 ЬоmеоmогрЫс to the 8рЬеге §n Ог МN 18 а compact rank опе 
symmetric 8расе. 

ТИЕОRЕ11 15 (Bonnet-Myers). Let МN Ье а Юеmanпјan manifo1d- with 
sec(M) ~ 1. ТЬеп diam(M) ~ 1Г. 

ТИЕОRЕ11 16 (Grove-Shiohama Diameter Sphere Theorem). Let МN Ье 
а Юетаппјan manifold with sec(M) ~ 1 and diam(M) > 1Г/2. ТЬеп М јв 
ЬоmеоmогрЫс to the 8рЬеге §n. 

ТИЕОRЕ11 17 (Toponogov's Maximal Diameter Theorem). Let МN Ье а 
Юетanп1an manifold with sec(M) ~ 1 and diam(M) = 1Г. ТЬеп М 18 isometric 
to the unit 8рЬеге §r. 

- I 
РтооЈ оЈ the М axiтal Diaтeter Theoreт. We let , denote а geodesio segment 

connecting two diametrically oppsosite points р and q, i.e., Length(,) = 1Г. Let 
х Е М and let r denote the point of, closest to х. Then 1г ~ d(p, х) +d(x, q) Ьу the 
triangular inequality, but also d(p, х) ~ d* (р*, х*) and d(x, q) ~ d* (х*, q*) Ьу the 
Нinge Comparison Theorem applied to the two hinges with common vertex Т. Јп the 
Comparison sphere we have d*(p*, х*) + d*(x*, q*) = 1Г, whence d(p, х)+ d(x, q) = 
1Г, so that d(p, х) = d* (р* , х*) and d( х, q) = d* (х* , q*). But then from the rigidity 
part of the Нinge Comparison Theorem the triangles Ap,x,r and Aq,x,r both are 
isometric to феiг respective comparison triangles with constant curvature К = 1. 
Ву moving the point х and the diameter-realizing segment , in М we thus construct 
а global isometry between М and §r. о 

Jt is clear that to proceed in this programme, it is necessary to introduce 
тanу more metric invariants whose combined interactions then hopefully will mold 
more and more comp1icated topologies and geometries (if not all?). 

We envision that the techпiques of (finite) distance geometry as developed Ьу 
Menger, Schoenberg and Вlumenthal in the 30'ies in conjunction with the relatively 
new powerful tools from the comparison geometric study of Alexandrov spaces, will 
provide further fami1ies of such invariants. 

For example, in [30] we have introduced the invariant notion of strictly nega­
tive type for finite metric spaces and show.that this property implies unique realiza­
tion of the so called infinity-extent (i.e., of the transfinite diameter). Finite metric 
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spaces that have this property include аН trees and аН finite subsets of the Еи­
clidean spaces. We show that the strictly negative type finite subspaces of spheres 
are precisely those which do not contain two or more pairs of antipodal points. 

То Ье specific about the relevance of the notion of q-extents mentioned аЬоуе 
we briefly recaH the precise definition and some of the results from [25]: 

Definition 18. The q-extent, xtq(X) of а compact metric врасе Х is the 
maximal average distance between the points in q-tuples in Х: 

where xtq : xq t---t IR is the q-extent function: 

Апу q-tuple (Х1, ... , xq) Е xq, which realizes the q-extent of Х is called а q­
extender of х. 

ТИЕОRЕМ 19 (Fary, Nielsen, Grove and М., [25]). For аЛ integers п;::: 1 and 
q;::: 2 we Ьауе 

(8.2) 
- \ 

Those points оЕ а q-extender, wblch do not арреаг јп antipoda1 pairs wШ а11 ]је 
оп а great сјгсlе јп such а way that they rea1ize ап §1_ extender оп that сјтсlе. Јп 
рагисиlаг, јЕ q is еуеп, then еуегу q-extender consjsts оЕ pairs оЕ antipoda1 points. 

ТИЕОRЕМ 20 (Grove and М., [25]). ТЬеге exists а posjtive function ,,(п) 
such that еуегу ЮеmanПЈan manifold МN with curv(Mn) ;::: 1 and xtn+l(Mn) ;::: 
I - ,,(п) is ЬоmеоmогрЫс to the sphere §n ог dШеоmогрЫс to Ње геа1 projective 
spaceIR.Pn = §nj712 . Ifxtn+1(Mn) = I and diam(M) = I' thenM isisometric 
to IR.Pf. 

For other recent geometric topological applications of the q-extents see e.g. 
[48], [32]. 

9. Тће Real Projective Plane Revisited 

In order to illustrate а very powerful alternative way of "counting" the Euler 
characteristic and hence the total curvature of а surface, we will briefly consider an 
immersion of the real projective plane into IR3 , which јв due to W. Боу, вее [7] and 
[2]. 

According to the Morse theory applied to compact surfaces (вее e.g. [13], we 
only need to count the maxima (mах) , minima (min) and saddle points (saddle) 
for а height function (with only nondegenerate critical points) оп the surface. The 
Euler characteristic of the surface is then Х = min - saddle + mах .. 
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We do this counting Ьу computer for the cзsе at hand, simply Ьу displaying 
the level curves for the canonical height function of Figure 8. 

Figure 8. Воу's surface immersed into З-sрасе 
'\ 

'\ 

Although the surface is quite convoluted, as seen in Figure 9, the array of 
16 consecutive level curves shown in Figure 10 reveal quite clearly that the height 
function of the surface has: 1 minimum, 2 saddle points (cf. also Figure 11) and 2 
таЮта. 

Непсе the Euler characteristic is 1-2+2 = 1, which shows that Boy's surface 
is indeed topologically equivalent to 1RP2 • 

. 10. А Cosmological Application of Comparison Geometry 

In this final section we wish to show how the principles of comparison con­
structions a'la Alexandrov-Toponogov тау also Ье applied to obtain large scale 
information about the structure of Lorentzian manifolds. Such manifolds are gen­
eral relativistic models of our universe considered as а space-time entity. 

А Нnе in а Riemannian manifold is а complete geodeskwith the property 
that it minimizes the distance between аnу pair of its points. In other words, а 
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liпе "1 тау Ье thought оС as а minimal connection between two "antipodal points" 
"1(00) and "1(-00) in the (necessarily) поп compact manifold. 

Figure 9. А look into Boy's surface "frorn behind" the previous figure 

The foHowing classical result тау now Ье proved along the very sаше liпе of 
reasoning as was in use for the МаЮтэl Diашеtег Theorem. 

ТИЕОRЕМ 21. (Cohn-Vossen). Let F Ье а surface which sat1sfies the fol1ow1ng 
cond1t10ns: 
(о) F 1s geodesica11y complete. 
(1) F Ьаз nonnegat1ve Gauss curvature everywhere. 
(11) F contains а geodes1c Јјпе. 

ТЬеп F 1s а genera11zed cylinder. 

Ј. Cheeger and D. GromoH proved in 1971 the generaIization of this result to 
arbitrary dimension and with the assumption of nonnegative Ricci curvature. It was 
then conjectured Ьу S. Т. Уаи in 1982, that the corresponding result should hold 
for general relativistic space-times, i.e., for Lorentzian manifolds. The conjecture 
was proved Ьу R. Newman in 1990, see [41Ј. We also refer to [3, Chapter 14], for а 
nice account оС the {иН history of this interesting theorem. 
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"""'. 

Figure 10. Consecutive level curves for the height function 

ТИЕОRЕМ 22 (А "CosmologicaP' Corollary). Let М Ье а врасе time wmcb 
satisfies tbe following conditions: 
(о) М јв timelike geodesica1ly complete. 
(i) М Ьав noпnegative timelike Ricci curvature everywbere. 
(Јј) М contains а timelike lјпе. 

ТЬеп М јв а generalized cylinder, ј.е., а static space-time. 

10.1. А final remark. Since our present universe is definitely not stat­
ic (according to the Hubble Expansi.on Law or just Ьу plain Observation), the 
Cosmological Corollary тау Ье considered as а singularity theorem (taking the ех­
istence of а line and the nonnegative Ricci curvature for granted): It determines 
the existence of at least опе geodesic which is incomplete in the·sense that it cannot 
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Figure 11. Тће two saddle points of Ље height function оп Воу'з surface 

Ье extended past some' finite value of its arclength (eigen time). In other words it 
must hit'-i.nto а singularity. Such а singularity could e.g. Ье а black hole. So, in 
order to end the present geometric tour оп а note which is both prosaic and poetic, 
let us note that such а black hole seems indeed to Ье hiding inside the galaxy М87 
(in Virgo !) as observed Ьу the НиЬblе Space Telescope, see [37]. 
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