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CURVATURE AND SHAPE

Steenn Markvorsen

Abstract. The simple but very powerful idea of comparing the geometry
of a given curve, surface or Riemannian manifold with the geometry of a space
of constant curvature is exemplified and illustrated. Applications to small scale
structures of biology (bio-membranes) and large scale structures of the universe
(singularities) are briefly mentioned.

Figure 1. Spherical triangles on a unit sphere.
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1. The Area of Spherical Polygons

We begin in the year 1603 when Thomas Harriot proved a very nice theorem
about spherical triangles. We present his result and proof in Section 1.2. It is quite
explicit and may thus serve as a concrete introduction to the idea of detecting
curvature via measurements on triangles.

However, before triangles we must study biangles:

Figure 2. A spherical biangle is baunded by two half great circles

1.1. Spherical Biangles. On a sphere of radius 1 we consider a domain
which is bounded by two half great circles. Such a domain is called a spherical
biangle — see Figure 2.

A spherical biangle is — modulo its position on the sphere - uniquely deter-
mined by the inner vertex angle, i.e., the angle between the two defining great circle
segments.

The area A of a spherical biangle is therefore a function of the vertex angle a
alone, ie., A = A(0), a € [0,27]. Since the area of the surface of the unit sphere
is 47, we have A(2w) = 4.

The area is furthermore clearly an additive function of the vertex angle.
The following claim is thus appropriate for our purpose:

LeEMMA 1. Let f be a real, positive and additive function on ]0,2x] with
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f(2r) = 4rn. Then

(1.1) f(z) = 2z

1.1.1. Remarks. (i) This Lemma is proved in Section 2. (ii) If we drop the
condition that f is positive, then the conclusion does not hold!

1.2. Spherical Triangles. A domain on a sphere, which is bounded by 3
great circle segments is called a spherical triangle, see Figure 3.

We are now in position to state and prove Harriots theorem:

THEOREM. (Harriot, 1603) On a unit sphere, the area A of a geodesic triangle
A is equal to the angular excess of the triangle:

(1.2) A(AD) (a1 +a2+az)—

3

27 — Z(W—ai).

i=1

(1.3)

where a; denote the inner angles at the vertices of the triangle.

1.2.1. Remark. Note that Lemma 1 may be viewed as a Harriot theorem for
biangles.

Proof. The two figures in Figure 3 and Figure 4 are reflections of each other
through the center of the sphere. Therefore they have the same area. This area must
be 27 because together the two figures cover the full sphere without overlapping
(except at the boundaries).

On the other hand, the area of Figure 3 is equal to the sum of the areas of the
three biangles minus 2Area(A), since otherwise Area(A) would be counted three
times. Since the biangles according to (1.1) have areas Area(e;) = 2a;,1=1,2,3,
we get:

27 = 2a3 + 2a3 + 2a3 — 2Area(A).

And that is what should be proved.

1.3. The n-gon case. In the general case of an n-gon we simply subdivide
the polygon into spherical triangles, use Harriots theorem for each and sum the
areas: '

COROLLARY 3. For a geodesic n-gon P, on a unit sphere the area is

n

APn) =21=) (m—a).

i=1

where a; denote the inner angles at the vertices of the polygon.
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Figure 3. A spherical triangle is the intersection of three biangles

Figure 4. The sphere minus Figure 3 (i.e., the reflection
of Figure 3 through the center of the sphere
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2. Interlude

Although Harriot probably did not worry at all about proving Lemma 1, the
proof has nevertheless some instructive elements, whence we present it below.

So we consider I =]0,2n] and a positive, real function f on I, with the
properties

(2.1) fz+y) = f2) + f(y)
forallz and yin I withz+y € I and
(2.2) f(2r) = 4nx.

‘We must then prove that

(2.3) flz) = 2z forallz € I.

Proof. Firstly, (2.2) gives (2.3) directly for £ = 2x. In the following we
therefore assume, that z is a given real value in the interval J =)0, 27[.

Since z = p% for every p € N, we get by repeated use of (2.1), that f(z) =
pf(-f;) and hence f(%) = %f(:c). For every m € N and p € N with %z € J we get
similarly: f(—';ix) = f(n;zf—,) = mf(%) = 2 f(z). In other words, whenever ¢ is a
rational number so that gz € J, then

(2.4) flgz) = qf(2).

We want to show that (2.4) in fact is also true for ‘real values’ of . So we let s
be a given real number satisfying 0 < sz < 2r. For every positive € there exist
rational numbers r and t which ‘s-approximate’ s in the following sense:

(2.5) 0<r<s<t,
(2.6) t—r <eg, and
(2.7) 0 <rz<sz<tz<2n

The function f is increasing, since
f(z + positive) = f(z) + f(positive) > f(z) .
Hence we have from (2.7):
flrz) < f(sz) < f(tz)

and thus from (2.4), since r and t are rationals:

rf(z) < f(sz) < tf(z).
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Multiplying (2.5) with the positive number f(z) we get for comparison:
rfz) < sf(z) < tf(2).
and hence
| f(sz) = 5f(z) | < tf(z) —rf(z) = (t-r)f(z) < ef(a).
This is satisfied for every positive € if and only if f(sz) — sf(z) = 0. Therefore
f(sz) = sf(z)

— which is the ‘real version’ of (2.4). Since f(r) = 1f(2r) = 2r we get in
particular:
z T z
= — = — = — = 2.
f) = 1Em) = Zim) = Zom = 2

And this was to be proved.

3. About Thomas Harriot (1560-1621)

Harriot wass born in Oxford, where he also went to University. During the
years 1585-1590 he was scientific and mathematical advisor for Sir Walter Ralegh,
one of the great explorers of that time. Presumably Harriot participated in the
colonialization of Virginia, already from 1584, see [44].

Thus Harriot is quite naturally mainly concerned with the mathematics of
navigation, instrumentation and map projections.

At around 1590 Harriot discovered the first nontrivial plane curves whose ar-
clength can be determined by elementary methods - namely the logarithmic spirals,
which in polar coordinates are given by the parametrization: () = e*?, 8 € R,
k € R. Harriot had neither the exponential function nor analytic tools such as
differentiation and integration at his disposal. The logarithmic spirals were only
known at that time by the property that they intersect the bundle of half lines is-
suing from a point under constant angle. Harriot’s determination of the arclengths
is thus quite shrewd — see [45] or [35], [36]. At the same time Harriot discovered
that the stereographic projection (of the unit sphere onto the plane) is conformal
— a fact he then puts into immediate use to illustrate his result about the area of
spherical triangles.

4. More Than 200 Years Later

In 1818-1825 C. F. Gauss was very busy working on the geodetic surveying
of Hannover. The resulting geodesic triangulation was to be linked up with the
corresponding triangulation of Denmark, which had just been completed under the _
direction of Gauss’ good friend and colleague, H. C. Schumacher, who was the
director of the Danish astronomical observatory at Altona outside Hamburg,.
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It was during these years ~ with a lot of very practical work — that Gauss
developed the theory of surfaces and the notion of curvature. These findings he
reported a few years later, in 1827, in the booklet [14].

In this section we mention some of the spectacular results from this work.
The following presentation could be close to the way Gauss actually thought about
curvature, although this is not at all clear from his writings.

4.1. Harriot’s result expanded. When approximating a given domain
on the unit sphere (or on any other surface) by a geodesic n-gon, the sum of the
extrinsic angles approaches the integral of the rate %% by which the tangent vector
field along the boundary of the domain rotates relative to any given parallel vector
field along the same curve. Note that for geodesic segments Z—f = 0 since geodesics
are autoparrallel - they parallel transport their own tangent vector field. The
function % is called the (intrinsic) geodesic curvature of the curve in question, and
we denote it by k4. As a result we therefore get the following for domains on a unit
sphere.

THEOREM 4. it For a simple domain {2 on the unit sphere: .

A(Q) = 27r—/(99 (%) ds = 27r—/m kg(s)ds.

It is now an elementary matter to deduce the following result from the classical
definition of Gauss curvature K of a given surface, namely as the determinant of
the differential of the Gauss map. The integral of K over a given domain D on a
surface M is thus (modulo sign) precisely the area of the image of D by the Gauss
mapping. Furthermore, as observed by A. Sengupta (see (40, p. 74-75]), the total
geodesic curvature |, op g(s)ds of the boundary 8D within M is also precisely the
same as the total geodesic curvature of the boundary of the Gauss map image of
D within the unit sphere. The previous theorem then gives immediately:

THEOREM 5 (The Gauss-Bonnet Formula). For a simple domain D on a
surface M:

(4.1) | /DKdA = 27 — /6D Kkg(s)ds.

4.2. Geodesic triangles revisited. In particular we may now, of course,
recover the excess formula for the area of spherical geodesic triangles - for example
via the following corollary (of the Gauss-Bonnet formula), which follows directly
from the observation that for geodesics the only contribution to [, £4(s) ds is the

sum ZL 1 (m — a;) of the extrinsic angles at the vertices:



62 Steen Markvorsen
7’

COROLLARY 6. On a surface M, the total curvature of a geodesic triangle A\
is equal to the angular excess of the triangle:

3

(4.2) /A KdA = 2 - ;(W — )
(4.3) = (g +0g+a3)—m,

where o; denote the inner angles at the vertices of the triangle.

In fact, we may have used this as a definition of the function K (p), since the
curvature may now be obtained pointwise via the following limit construction.

THEOREM 7 (Gauss). The Gauss curvature K (p) of the surface M at p is

(4.4) K(p) = Jim (al +:fe;§; : W)

This shows in particular, that the curvature is really intrinsic: The Gauss
map is not needed — we only need geodesic triangles, angles and area to measure
curvature.

Furthermore it says the following:
(i) K(p) > 0 for all p, if and only if every triangle excess is nonnegative.
(i) If K(p) > 0 for all p and if a given triangle A has excess 0, then K(q) = 0 for
all g € A.
‘These observations may be considered as comparison statements in a sense that we
will now explain:

4.3. General comparison constructions. Let M be an abstract surface
with a metric d and let A be a geodesic triangle in M, i.e., A is a simply connected
domain in M whose boundary consists of 3 geodesic segments, i.e., 3 strictly shortest
curves connecting the 3 vertices of the triangle. We denote the three interior angles
of Abya;,i = 1,2,3.

Suppose that we would like to know whether M has curvature greater than
or equal to 1.

A comparison construction will tell us:

Let S? denote the sphere of radius 1 in R3, and let A* denote the comparison
triangle on S, i.e., a triangle with edgelengths equal to the edgelengths of the
given A in M (the triangle A* is — modulo isometries of 2 - uniquely determined
by these lengths, and — most importantly — it exists if and only if the sum of
the edgelengths does not exceed 27, which is therefore implicitly assumed when
referring to comparison constructions.) We denote the interior angles of A* by af ,
i=1,2,3.
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THEOREM 8 (Alexandrov-Toponogov Triangle Comparison, [34], (43]) A sur-
face M has Gauss curvature K > 1 if and only if

(4.5) a >af, i=1,23,

for every triangle A in M and its comparison triangle A* in the unit sphere S2.

IfK > 1and ifo; = aj for some oy for some triangle A, then equality also
occurs for the other two angles in that triangle, and the triangular domain A has
constant curvature K = 1, so that A and A* are in fact isometric.

An alternative (equivalent) to this triangle comparison construction is the
hinge comparison construction:

A hinge 4 is a point (the vertex of the hinge), and two geodesic segments
(the sides of the hinge) emanating from p. The three pieces of information about
a given hinge that we will focus upon are the lengths of the sides and the angle
at p between the sides of the hinge. Suppose the largest side of a given hinge is
less than or equal to 7. A comparison hinge £* can then be constructed in §32,
and the respective distances d and d* between the two “feet” of the hinges can be
compared:

THEOREM 9 (Alexandrov-Toponogov Hinge Comparison, [34], [43]) A surface
M has Gauss curvature K > 1 if and only if

(4.6) A d< d*

for every hinge £ in M and its comparison hinge £* in the unit sphere S?.

IfK > 1 and if d = d* for some £, then the triangular domain A spanned
by £ in M has constant curvature K = 1, so that A and A* = span({*) are
isometric.

By suitable scaling, i.e., using the sphere SZ of constant curvature k as com-
parison space, we get analogous results for K’ > k > 0, and in fact for any lower
curvature bound k£ € R by using comparison-triangles and -hinges resp., in flat
space R? for £ = 0 and in hyperbolic space, HZ, of constant curvature & for & < 0.

Furthermore, the comparison still makes sense and the two theorems above
‘still hold true for Riemannian manifolds M™ of any dimension if we replace the
Gauss curvature assumption by the corresponding assumption - i.e., a lower curva-
ture bound — on the sectional curvatures of M. The comparison spaces are always
the 2—dimensional simply connected spaces of constant curvature!

5. Counting the total curvature of a compact surface

Suppose that we partition a given compact surface M without boundary into
geodesic triangles such that two triangles have at most one (and if so, then the full)
edge in common. The total curvature of the surface is then the sum of the total
curvatures of the triangles. That sum turns out to be purely combinatorial:
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If the number of vertices in the triangulation is denoted by v, the number of
edges by e, and the number of faces (i.e., the number of triangles) by f, then the
combination: x(M) = v —e+ f is called the Euler characteristic of the triangula-
tion, and this number measures the total curvature of the surface:

THEOREM 10 (Gauss-Bonnet, [11]).

f
(5.1) /MKdA = E [ xas
(5.2) =27v—fx
(5.3) =2r(v—e+f)
(5.4) = 271;-x(M).

Proof. Let Q; denote the j’th triangle in the family of f triangles covering the
surface, and let A;, B; and C; denote the corresponding angles of that triangle.
According to Corollary 6 we then have:

f f f
(5.5) /MKdA =S (4B +C) - Y+ Yom

j=1 ji=1 ji=1

The first sum on the right-hand side is 27v, since the sum of the angles
appearing at any given vertex is 2w. The second sum is 37 f, but 3f = 2e, because
3f is the total number edges counted twice. The third sum is clearly 27 f. In total
we get 2mv — 2mwe + 27 f, which is 27 - x(M) as claimed. O

A}

Figure 5. The farm has Euler characteristic x = 0
(since v = 20, e = 40 and f = 20)

5.1. Polygonalizations. Theorem 10 remains valid if instead of a trian-
gulation we use a partition consisting of simply connected geodesic polygons and
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count the vertices, edges and faces of the ‘polygonalization’ instead. Namely, each
polygon may be triangulated by introducing more vertices, edges and faces, but
in doing so, the sum v — e + f is not changed! (For example: A four-gon may be
triangulated by adding 1 new vertex in the middle. This gives 3 new faces and 4
new edges, and indeed 1 -4+43 = 0.) The total curvature is clearly also unaffected
by this alternative partitioning, and thus the generalized theorem is proved.

5.2. Deformations. Furthermore, if we deform the surface by a piecewise
diffeomorphism, i.e., by stretching and warping — in fact, even if we concentrate all
the curvature into the vertices of a given polygonalization in such a way that the
numbers v, e, f and hence x(M) do not change, then we recover Eulers Theorem
for convex polyhedra and for polyhedra of higher genus: The total curvature of any
sphere is 47 and therefore the Euler characteristic of every polyhedron obtained
by deforming a sphere is 2. The information in the Gauss-Bonnet Theorem may
of course also be used the other way around: The Euler characteristic of a “Farm”
is 0, see Figure 5, and therefore the total curvature of every surface obtained by
deforming a torus is 0. The Euler characteristic of the “Estate” is —2, and therefore
the total curvature of every surface obtained by deforming a double torus (i.e., the
connected sum T?#7?) is —4m, see Figure 6.

Estate

Figure 6. The estate has Euler characteristic y = —2
(since v = 39, e = 82 and f =41)

6. A “Biophysics” Corollary

In a living cell there are a lot of membranes formed by so called lipid bilayers.
If we model these bilayers by regular 2-dimensional surfaces, their Gauss curvature
is bounded in numerical value and also the area is naturally bounded. The purpose
of some of these membranes is to form fully 2D highways for the transportation of
proteins from one location in the cell to almost any other place in the cell. Therefore
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these membranes are shaped with a high degree of topological complexity - in other
words, their Euler characteristic is very negative. It cannot be arbitrarily negative,
however, as the following corollary to the Gauss—-Bonnet theorem states.

COROLLARY 11. A compact surface with bounded curvature cannot be arbi-
trarily topologically complicated if it also has bounded area or bounded diameter.

Proof. Suppose |K| < 1. Then

1
(6.1) 0| < 5= [ 1Kida
: diam(M)
(6.2) < / sinh(r)dr
0
(6.3) = cosh(diam(M)) — 1.

Therefore, if diam(M) < Areacosh(l + q), then |x(M)| < ¢. O

Within the area of this observation we must also mention a yet very open
problem, namely the variational problem for bio-membranes:

PROBLEM 12 (Canham-Helfrich-Willmore). Given 3 positive (structure) con-
stants Ay, A2 and A3. Minimize the following functional F on the set of all smooth,
compact surfaces M? in R® which bound a fixed volume V':

.

F(M2) = Al-Area(M)+x\2-/ H2dA+}\3'X(M)7
M

where H denotes the mean curvature of M.

7. Curvature, Diameter and Area

PRrROBLEM 13 (Alexandrovs Isodiametric Problem). Consider a convex surface
M without boundary in R®. Assume that diam (M) = n. What is the largest
area that M can have under these conditions, and which surface(s) realize(s) the
maximum?

The sphere does not solve this problem. Indeed, consider the limit space of the
sequence of deformations shown in Figure 7, namely the double disk of diameter
w, i.e., the surface obtained by identifying the boundaries of two disks of radius
m/2. The sphere has area 4w, whereas the double disk with diameter 7 has area
2r - (w/2)? = n3/2 > 4m.

It has been conjectured by Alexandrov in {1, p. 417}, that the double disk
is actually the solution to the isodiametric problem. This conjecture is still open.
Several interesting ramifications of the problem are found in [28].
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Figure 7. A collapse of a unit sphere to a double disk
preserving convexity and diameter 7

8. The recognition Program

It is apparent that information about the most basic geometric invariants
such as curvature, diameter and volume alone does not suffice to characterize Rie-
mannian manifolds in general.

For this reason we have introduced and investigated in [25] new families of
metric invariants such as g-extents and g-packing radii, which seem to pick up
global shape in the most general sense, not only for Riemannian manifolds but for
metric spaces in general.

In particular, when the spaces in question carry a good notion of curvature,
then a set of well chosen conditions on a few metric invariants will balance each
other in such a way, that the manifold is recognizable — either topologically or
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isometrically, i.e., up to homeomorphism, diffeomorphism or isometry. The full
recognition program is of course then mainly concerned with the enlargening of the
set of manifolds that can be so recognized.

The following theorems are by now classical and celebrated results of this
recognition type: ’

THEOREM 14 (Rauch-Berger-Klingenberg Diameter Theorem, {10]). Let M™
be a complete simply connected Riemannian manifold whose sectional curvature
satisfies

(8.1) 1 < sec(M) < 4. |

Then either M™ is homeomorphic to the sphere S™ or M™ is a compact rank one
symmetric space.

THEOREM . 15 (Bonnet-Myers). Let M™ be a Riemannian manifold with
sec(M) > 1. Then diam(M) < 7.

THEOREM 16 (Grove-Shiohama Diameter Sphere Theorem). Let M™ be
a Riemannian manifold with sec(M) > 1 and diam(M) > = /2. Then M is
homeomorphic to the sphere S™.

THEOREM 17 (Toponogov's Maximal Diameter Theorem). Let M™ be a
Riemannian manifold with sec(M) > 1 and diam(M) = w. Then M is isometric
to the unit sphere 8. /

Proof of the Mazimal Diameter Theorem. We let v denote a geodesic segment
connecting two diametrically oppsosite points p and g, i.e., Length(y) = #. Let
z € M and let r denote the point of v closest to . Then 7 < d(p, z) +d(z, q) by the
triangular inequality, but also d(p, ) < d*(p*,z*) and d(z, ¢) < d*(z*,q*) by the
Hinge Comparison Theorem applied to the two hinges with common vertex r. In the
Comparison sphere we have d*(p*, z*) + d*(z*, ¢*) = w, whence d(p, z) +d(z,q) =
, so that d(p, z) = d*(p*,z*) and d(z, q) = d*(z*, ¢*). But then from the rigidity
part of the Hinge Comparison Theorem the triangles A, ;. and A, both are
isometric to their respective comparison triangles with constant curvature K = 1.
By moving the point z and the diameter—realizing segment - in M we thus construct
a global isometry between M and S7. O

It is clear that to proceed in this programme, it is necessary to introduce
many more metric invariants whose combined interactions then hopefully will mold
more and more complicated topologies and geometries (if not all?).

We envision that the techniques of (finite) distance geometry as developed by
Menger, Schoenberg and Blumenthal in the 30’ies in conjunction with the relatively
new powerful tools from the comparison geometric study of Alexandrov spaces, will
provide further families of such invariants.

For example, in {30] we have introduced the invariant notion of strictly nega-
tive type for finite metric spaces and show that this property implies unique realiza-
tion of the so called infinity-extent (i.e., of the transfinite diameter). Finite metric
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spaces that have this property include all trees and all finite subsets of the Eu-
clidean spaces. We show that the strictly negative type finite subspaces of spheres
are precisely those which do not contain two or more pairs of antipodal points.

To be specific about the relevance of the notion of g-extents mentioned above
we briefly recall the precise definition and some of the results from [25]:

Definition 18. The g-extent, xto(X) of a compact metric space X is the
mazimal average distance between the points in g-tuples in X:

xte(X) = o max Xtq (21, .oy Zq) s
S Tq

where xtq : X9 +— R is the g-eztent function:

-1
xtg (z1, ..., Tg) = (g) ‘ Zdist (zi, z5) .

i<j

Any g-tuple (z1, ..., zq) € X9, which realizes the g-extent of X is called a g-
extender of X.

THEOREM 19 (Fary, Nielsen, Grove and M., [25]). For all integers n > 1 and
g > 2 we have

(8.2) xto(ST) = th(Si) = xtq([0, 7).

Those points of a g-extender, which do not appear in antipodal pafrs will all lie
on a great circle in such a way that they realize an S'- extender on that circle. In
particular, if g is even, then every g-extender consists of pairs of antipodal points.

THEOREM 20 (Grove and M., [25]). There exists a positive function e(n)
such that every Riemannian manifold M™ with curv(M"™) > 1 and xt,41(M™) >
£ — &(n) is homeomorphic to the sphere S™ or diffeomorphic to the real projective
space RP™ = S™/Z;. If xtn1(M™) = % and diam(M) = %, then M is isometric
to RP.

For other recent geometric topological applications of the g-extents see e.g.
(48], [32]

9. The Real Projective Plane Revisited

In order to illustrate a very powerful alternative way of “counting” the Euler
characteristic and hence the total curvature of a surface, we will briefly consider an
immersion of the real projective plane into R®, which is due to W. Boy, see [7] and
(2l.

According to the Morse theory applied to compact surfaces (see e.g. [13], we
only need to count the maxima (maz), minima (min) and saddle points (saddle)
for a height function (with only nondegenerate critical points) on the surface. The
Euler characteristic of the surface is then x = min - saddle + maz.
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We do this counting by computer for the case at hand, simply by displaying
the level curves for the canonical height function of Figure 8.

Figure 8. Boy'’s surface immersed into 3-space

A
A Y

Although the surface is quite convoluted, as seen in Figure 9, the array of
16 consecutive level curves shown in Figure 10 reveal quite clearly that the height
function of the surface has: 1 minimum, 2 saddle points (cf. also Figure 11) and 2
maxima.

Hence the Euler characteristicis 1-2+2 = 1, which shows that Boy’s surface
is indeed topologically equivalent to RP2.

10. A Cosmological Application of Comparison Geometry

In this final section we wish to show how the principles of comparison con-
structions a‘la Alexandrov—Toponogov may also be applied to obtain large scale
information about the structure of Lorentzian manifolds. Such manifolds are gen-
eral relativistic models of our universe considered as a space-time entity.

A line in a Riemannian manifold is a complete geodesic-with the property
that it minimizes the distance between any pair of its points. In other words, a
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line v may be thought of as a minimal connection between two “antipodal points”
¥(oc0) and y(—00) in the (necessarily) non compact manifold.

Figure 9. A look into Boy’s surface “from behind” the previous figure

The following classical result may now be proved along the very same line of
reasoning as was in use for the Maximal Diameter Theorem.

THEOREM 21. (Cohn-Vossen). Let F be a surface which satisfies the following
conditions:
(o) F is geodesically complete.
(i) F has nonnegative Gauss curvature everywhere.
(ii) F contains a geodesic line.

Then F is a generalized cylinder.

J. Cheeger and D. Gromoll proved in 1971 the generalization of this result to
arbitrary dimension and with the assumption of nonnegative Ricci curvature. It was
then conjectured by S. T. Yau in 1982, that the corresponding result should hold
for general relativistic space-times, i.e., for Lorentzian manifolds. The conjecture
was proved by R. Newman in 1990, see [41]. We also refer to [3, Chapter 14], for a
nice account of the full history of this interesting theorem.
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Figure 10. Consecutive level curves for the height function

THEOREM 22 (A “Cosmological” Corollary). Let M be a space time which
satisfies the following conditions:
(o) M is timelike geodesically complete.
(i) M has nonnegative timelike Ricci curvature everywhere
(ii) M contains a timelike line.

Then M is a generalized cylinder, i.e., a static space-time.

10.1. A final remark. Since our present universe is definitely not stat-
ic (according to the Hubble Expansion Law or just by plain Observation), the
Cosmological Corollary may be considered as a singularity theorem (taking the ex-
istence of a line and the nonnegative Ricci curvature for granted): It determines
the existence of at least one geodesic which is incomplete in the sense that it cannot
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Figure 11. The two saddle points of the height function on Boy’s surface

be extended past some finite value of its arclength (eigen time). In other words it
must hitNinto a singularity. Such a singularity could e.g. be a black hole. So, in
order to end the present geometric tour on a note which is both prosaic and poetic,
let us note that such a black hole seems indeed to be hiding inside the galaxy M87
(in Virgo !) as observed by the Hubble Space Telescope, see [37].
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